S. H. Ackerman and A. Tzagoloff, Function, structure, and biogenesis of mitochondrial ATP synthase, Prog. Nucleic Acid Res. Mol. Biol, vol.80, pp.95-133, 2005.

M. P. Ashe, S. K. De-long, and A. B. Sachs, Glucose depletion rapidly inhibits translation initiation in yeast, Mol. Biol. Cell, vol.11, pp.833-848, 2000.

A. K. Bandyopadhyay and M. P. Deutscher, Complex of aminoacyltransfer RNA synthetases, J. Mol. Biol, vol.60, pp.113-122, 1971.

M. H. Barros, M. Rak, J. A. Paulela, and A. Tzagoloff, Characterization of Gtf1p, the connector subunit of yeast mitochondrial tRNA-dependent amidotransferase, J. Biol. Chem, vol.286, pp.32937-32947, 2011.

M. Bietenhader, A. Martos, E. Tetaud, R. S. Aiyar, C. H. Sellem et al., , 2012.

, Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution, PLoS Genet, vol.8, p.1002876

M. V. Brown, J. S. Reader, and E. Tzima, Mammalian aminoacyl-tRNA synthetases: cell signaling functions of the protein translation machinery, 2010.

, Vascul. Pharmacol, vol.52, pp.21-26

S. Buschlen, J. M. Amillet, B. Guiard, A. Fournier, C. Marcireau et al., The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression, 2003.

, Comp. Funct. Genomics, vol.4, pp.37-46

G. Cannarozzi, N. N. Schraudolph, M. Faty, P. Von-rohr, M. T. Friberg et al., A role for codon order in translation dynamics, Cell, vol.141, pp.355-367, 2010.

I. Cestari, S. Kalidas, S. Monnerat, A. Anupama, M. A. Phillips et al., A multiple aminoacyl-tRNA synthetase complex that enhances tRNAaminoacylation in African trypanosomes, Mol. Cell. Biol, vol.33, pp.4872-4888, 2013.

E. Couplan, R. S. Aiyar, R. Kucharczyk, A. Kabala, N. Ezkurdia et al., A yeast-based assay identifies drugs active against human mitochondrial disorders, Proc. Natl. Acad. Sci. USA, vol.108, pp.11989-11994, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00608540

S. Duvezin-caubet, M. Caron, M. Giraud, J. Velours, and J. Di-rago, The two rotor components of yeast mitochondrial ATP synthase are mechanically coupled by subunit d, Proc. Natl. Acad. Sci. USA, vol.100, p.13235, 2003.

T. D. Fox, Mitochondrial protein synthesis, import, and assembly, Genetics, vol.192, pp.1203-1234, 2012.

M. Frechin, B. Senger, M. Brayé, D. Kern, R. P. Martin et al., Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS, Genes Dev, vol.23, pp.1119-1130, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00484960

M. Frechin, D. Kern, R. P. Martin, H. D. Becker, and B. Senger, Arc1p: anchoring, routing, coordinating, FEBS Lett, vol.584, pp.427-433, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00451322

J. S. Graindorge, B. Senger, D. Tritch, G. Simos, and F. Fasiolo, Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity, Biochemistry, vol.44, pp.1344-1352, 2005.

M. Guo and P. Schimmel, Essential nontranslational functions of tRNA synthetases, Nat. Chem. Biol, vol.9, pp.145-153, 2013.

M. Guo, X. L. Yang, and P. Schimmel, New functions of aminoacyltRNA synthetases beyond translation, Nat. Rev. Mol. Cell Biol, vol.11, pp.668-674, 2010.

V. Haurie, H. Boucherie, and F. Sagliocco, The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae, J. Biol. Chem, vol.278, pp.45391-45396, 2003.

C. D. Hausmann and M. Ibba, Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed, FEMS Microbiol. Rev, vol.32, pp.705-721, 2008.

S. Havrylenko, R. Legouis, B. Negrutskii, and M. Mirande, , 2011.

, Caenorhabditis elegans evolves a new architecture for the multi-aminoacyltRNA synthetase complex, J. Biol. Chem, vol.286, pp.28476-28487

K. Hedbacker and M. Carlson, SNF1/AMPK pathways in yeast, Front. Biosci, vol.13, pp.2408-2420, 2008.

M. Ibba and D. Sö-ll, Aminoacyl-tRNA synthesis, Annu. Rev. Biochem, vol.69, pp.617-650, 2000.

M. Kaminska, S. Havrylenko, P. Decottignies, S. Gillet, P. Le-maré-chal et al., Dissection of the structural organization of the aminoacyl-tRNA synthetase complex, J. Biol. Chem, vol.284, pp.6053-6060, 2009.

Y. G. Ko, Y. S. Kang, E. K. Kim, S. G. Park, K. et al., Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis, J. Cell Biol, vol.149, pp.567-574, 2000.

L. Lefebvre-legendre, J. Vaillier, H. Benabdelhak, J. Velours, P. P. Slonimski et al., Identification of a nuclear gene (FMC1) required for the assembly/stability of yeast mitochondrial F(1)-ATPase in heat stress conditions, J. Biol. Chem, vol.276, pp.6789-6796, 2001.

F. Chapeville, F. Lipmann, G. Von-ehrenstein, B. Weisblum, W. J. Ray et al., On the role of soluble ribonucleic acid in coding for amino acids, Proc. Natl. Acad. Sci. U.S.A, vol.48, pp.1086-1092, 1962.

C. De-duve, Transfer RNAs: the second genetic code, Nature, vol.333, pp.117-118, 1988.

P. Schimmel and L. Ribas-de-pouplana, Footprints of aminoacyl-tRNA synthetases are everywhere, Trends Biochem. Sci, vol.25, pp.207-209, 2000.

M. B. Hoagland, An enzymic mechanism for amino acid activation in animal tissues, Biochim. Biophys. Acta, vol.16, pp.288-289, 1955.

M. B. Hoagland, E. B. Keller, and P. C. Zamecnik, Enzymatic carboxyl activation of amino acids, J. Biol. Chem, vol.218, pp.345-358, 1956.

E. J. Ofengand, M. Dieckmann, and P. Berg, The enzymic synthesis of amino acyl derivatives of ribonucleic acid. III. Isolation of amino acidacceptor ribonucleic acids from Escherichia coli, J. Biol. Chem, vol.236, pp.1741-1747, 1961.

A. K. Bandyopadhyay and M. P. Deutscher, Complex of aminoacyltransfer RNA synthetases, J. Mol. Biol, vol.60, pp.113-122, 1971.

D. Laporte, FEBS Letters, vol.588, pp.4268-4278, 2014.

M. P. Deutscher, Aminoacyl-tRNA synthetase complex from rat liver, Methods Enzymol, vol.29, pp.577-583, 1974.

D. Kern, A. Dietrich, F. Fasiolo, M. Renaud, R. Giege et al., The yeast aminoacyl-tRNA synthetases. Methodology for their complete or partial purification and comparison of their relative activities under various extraction conditions, Biochimie, vol.59, pp.453-462, 1977.

D. Kern and J. Lapointe, The twenty aminoacyl-tRNA synthetases from Escherichia coli. General separation procedure, and comparison of the influence of pH and divalent cations on their catalytic activities, Biochimie, vol.61, pp.1257-1272, 1979.

C. L. Harris, An aminoacyl-tRNA synthetase complex in Escherichia coli, J. Bacteriol, vol.169, pp.2718-2723, 1987.

C. T. Yu and P. C. Zamecnik, On the aminoacyl-RNA synthetase recognition sites of yeast and E. Coli transfer RNA, Biochem. Biophy. Res. Commun, vol.12, pp.457-463, 1963.

P. Schimmel and L. Ribas-de-pouplana, Transfer RNA: from minihelix to genetic code, Cell, vol.81, pp.983-986, 1995.

M. Delarue and D. Moras, The aminoacyl-transfer RNA-synthetase family-modules at work, BioEssays, vol.15, pp.675-687, 1993.

P. Schimmel and L. Ribas-de-pouplana, Formation of two classes of tRNA synthetases in relation to editing functions and genetic code, Cold Spring Harb. Symp. Quant. Biol, vol.66, pp.161-166, 2001.

H. D. Becker, H. Roy, L. Moulinier, M. H. Mazauric, G. Keith et al., Thermus thermophilus contains an eubacterial and an archaebacterial aspartyl-tRNA synthetase, Biochemistry, vol.39, pp.3216-3230, 2000.

L. Moulinier, S. Eiler, G. Eriani, J. Gangloff, J. C. Thierry et al., The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism, EMBO J, vol.20, pp.5290-5301, 2001.

H. Oshikane, K. Sheppard, S. Fukai, Y. Nakamura, R. Ishitani et al., Structural basis of RNA-dependent recruitment of glutamine to the genetic code, Science, vol.312, pp.1950-1954, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00502072

H. Simader, M. Hothorn, C. Kohler, J. Basquin, G. Simos et al., Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes, Nucleic Acids Res, vol.34, pp.3968-3979, 2006.

H. Simader, M. Hothorn, and D. Suck, Structures of the interacting domains from yeast glutamyl-tRNA synthetase and tRNA-aminoacylation and nuclear-export cofactor Arc1p reveal a novel function for an old fold, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.1510-1519, 2006.

S. Quevillon, F. Agou, J. C. Robinson, and M. Mirande, The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine, J. Biol. Chem, vol.272, pp.32573-32579, 1997.

I. Cestari, S. Kalidas, S. Monnerat, A. Anupama, M. A. Phillips et al., A multiple aminoacyl-tRNA synthetase complex that enhances tRNAaminoacylation in African trypanosomes, Mol. Cell. Biol, vol.33, pp.4872-4888, 2013.

V. Godinic-mikulcic, J. Jaric, C. D. Hausmann, M. Ibba, and I. Weyganddurasevic, An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions, J. Biol. Chem, vol.286, pp.3396-3404, 2011.

G. Simos, A. Segref, F. Fasiolo, K. Hellmuth, A. Shevchenko et al., The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl-and glutamyl-tRNA synthetases, EMBO J, vol.15, pp.5437-5448, 1996.

S. M. Eswarappa and P. L. Fox, Citric acid cycle and the origin of MARS, Trends Biochem. Sci, vol.38, pp.222-228, 2013.

P. Sampath, B. Mazumder, V. Seshadri, C. A. Gerber, L. Chavatte et al., Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation, Cell, vol.119, pp.195-208, 2004.

M. Frechin, B. Senger, M. Braye, D. Kern, R. P. Martin et al., Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS, Genes Dev, vol.23, pp.1119-1130, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00484960

P. S. Ray, A. Arif, and P. L. Fox, Macromolecular complexes as depots for releasable regulatory proteins, Trends Biochem. Sci, vol.32, pp.158-164, 2007.

S. G. Park, P. Schimmel, and S. Kim, Aminoacyl tRNA synthetases and their connections to disease, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.11043-11049, 2008.

C. D. Hausmann and M. Ibba, Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed, FEMS Microbiol. Rev, vol.32, pp.705-721, 2008.

Y. G. Ko, Y. S. Kang, E. K. Kim, S. G. Park, and S. Kim, Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis, J. Cell Biol, vol.149, pp.567-574, 2000.

J. M. Han, S. J. Jeong, M. C. Park, G. Kim, N. H. Kwon et al., Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway, Cell, vol.149, pp.410-424, 2012.

E. Lund and J. E. Dahlberg, Proofreading and aminoacylation of tRNAs before export from the nucleus, Science, vol.282, pp.2082-2085, 1998.

S. Sarkar, A. K. Azad, and A. K. Hopper, Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.14366-14371, 1999.

J. Hradec and Z. Dusek, All factors required for protein synthesis are retained on heparin bound to Sepharose, Biochem. J, vol.172, pp.1-7, 1978.

L. Nathanson and M. P. Deutscher, Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex, J. Biol. Chem, vol.275, pp.31559-31562, 2000.

M. Bailly, M. Blaise, B. Lorber, H. D. Becker, and D. Kern, The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis, Mol. Cell, vol.28, pp.228-239, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00199217

F. Fischer, J. L. Huot, B. Lorber, G. Diss, T. L. Hendrickson et al., The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyltRNA synthetase safeguards the genetic code, Nucleic Acids Res, vol.40, pp.4965-4976, 2012.

Y. Goldgur and M. Safro, Aminoacyl-tRNA synthetases from Haloarcula marismortui: an evidence for a multienzyme complex in a procaryotic system, Biochem. Mol. Biol. Int, vol.32, pp.1075-1083, 1994.

M. Praetorius-ibba, T. E. Rogers, R. Samson, Z. Kelman, and M. Ibba, Association between Archaeal prolyl-and leucyl-tRNA synthetases enhances tRNA(Pro) aminoacylation, J. Biol. Chem, vol.280, pp.26099-26104, 2005.

C. D. Hausmann, M. Praetorius-ibba, and M. Ibba, An aminoacyl-tRNA synthetase: elongation factor complex for substrate channeling in archaeal translation, Nucleic Acids Res, vol.35, pp.6094-6102, 2007.

C. D. Hausmann and M. Ibba, Structural and functional mapping of the archaeal multi-aminoacyl-tRNA synthetase complex, FEBS Lett, vol.582, pp.2178-2182, 2008.

T. Li, Y. Li, N. Guo, E. Wang, and Y. Wang, Discrimination of tRNALeu isoacceptors by the insertion mutant of Escherichia coli leucyl-tRNA synthetase, Biochemistry, vol.38, pp.9084-9088, 1999.

V. Godinic-mikulcic, J. Jaric, B. J. Greber, V. Franke, V. Hodnik et al., Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs, Nucleic Acids Res, 2014.

R. S. Lipman, J. Chen, C. Evilia, O. Vitseva, and Y. M. Hou, Association of an aminoacyl-tRNA synthetase with a putative metabolic protein in archaea, Biochemistry, vol.42, pp.7487-7496, 2003.

C. Afting, E. Kremmer, C. Brucker, A. Hochheimer, and R. K. Thauer, Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis, Arch. Microbiol, vol.174, pp.225-232, 2000.

J. P. Oza, K. R. Sowers, and J. J. Perona, Linking energy production and protein synthesis in hydrogenotrophic methanogens, Biochemistry, vol.51, pp.2378-2389, 2012.

M. Raina, S. Elgamal, T. J. Santangelo, and M. Ibba, Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis, FEBS Lett, vol.586, pp.2232-2238, 2012.

C. M. James, T. K. Ferguson, J. F. Leykam, and J. A. Krzycki, The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon, J. Biol. Chem, vol.276, pp.34252-34258, 2001.

S. K. Blight, R. C. Larue, A. Mahapatra, D. G. Longstaff, E. Chang et al., Direct charging of tRNACUA with pyrrolysine in vitro and in vivo, Nature, vol.431, pp.333-335, 2004.

C. Polycarpo, A. Ambrogelly, B. Ruan, D. Tumbula-hansen, S. F. Ataide et al., Activation of the pyrrolysine suppressor tRNA requires formation of a ternary complex with class I and class II lysyl-tRNA synthetases, Mol. Cell, vol.12, pp.287-294, 2003.

M. Kaminska, S. Havrylenko, P. Decottignies, S. Gillet, P. Le-marechal et al., Dissection of the structural organization of the aminoacyl-tRNA synthetase complex, J. Biol. Chem, vol.284, pp.6053-6060, 2009.

E. Karanasios and G. Simos, Building arks for tRNA: structure and function of the Arc1p family of non-catalytic tRNA-binding proteins, FEBS Lett, vol.584, pp.3842-3849, 2010.

M. Frechin, D. Kern, R. P. Martin, H. D. Becker, and B. Senger, Arc1p: anchoring, routing, coordinating, FEBS Lett, vol.584, pp.427-433, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00451322

K. Galani, E. Hurt, and G. Simos, The tRNA aminoacylation co-factor Arc1p is excluded from the nucleus by an Xpo1p-dependent mechanism, FEBS Lett, vol.579, pp.969-975, 2005.

K. Galani, H. Grosshans, K. Deinert, E. C. Hurt, and G. Simos, The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p, EMBO J, vol.20, pp.6889-6898, 2001.

J. S. Graindorge, B. Senger, D. Tritch, G. Simos, and F. Fasiolo, Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity, Biochemistry, vol.44, pp.1344-1352, 2005.

G. Simos, A. Sauer, F. Fasiolo, and E. C. Hurt, A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases, Mol. Cell, vol.1, pp.235-242, 1998.

M. P. Golinelli-cohen and M. Mirande, Arc1p is required for cytoplasmic confinement of synthetases and tRNA, Mol. Cell. Biochem, vol.300, pp.47-59, 2007.

E. Wiltrout, J. M. Goodenbour, M. Frechin, and T. Pan, Misacylation of tRNA with methionine in Saccharomyces cerevisiae, Nucleic Acids Res, vol.40, pp.10494-10506, 2012.

S. Luo and R. L. Levine, Methionine in proteins defends against oxidative stress, FASEB J, vol.23, pp.464-472, 2009.

W. Vogt, Oxidation of methionyl residues in proteins: tools, targets, and reversal, Free Radical Biol. Med, vol.18, pp.93-105, 1995.

Z. Sha, L. M. Brill, R. Cabrera, O. Kleifeld, J. S. Scheliga et al., , 2009.

D. Laporte, FEBS Letters, vol.588, p.4277, 2014.

, translasome, a supercomplex linking protein synthesis and degradation machineries, Mol. Cell, vol.36, pp.141-152

S. An and K. Musier-forsyth, Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex, J. Biol. Chem, vol.280, pp.34465-34472, 2005.

B. Ruan and D. Soll, The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase, J. Biol. Chem, vol.280, pp.25887-25891, 2005.

J. M. Van-rooyen, J. B. Murat, P. M. Hammoudi, S. Kieffer-jaquinod, Y. Coute et al., Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43, PLoS One, vol.9, p.89487, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02086278

S. Havrylenko, R. Legouis, B. Negrutskii, and M. Mirande, Caenorhabditis elegans evolves a new architecture for the multi-aminoacyltRNA synthetase complex, J. Biol. Chem, vol.286, pp.28476-28487, 2011.

S. Havrylenko, R. Legouis, B. Negrutskii, and M. Mirande, MethionyltRNA synthetase from Caenorhabditis elegans: a specific multidomain organization for convergent functional evolution, Protein Sci, vol.19, pp.2475-2484, 2010.

S. G. Park, K. L. Ewalt, and S. Kim, Functional expansion of aminoacyltRNA synthetases and their interacting factors: new perspectives on housekeepers, Trends Biochem. Sci, vol.30, pp.569-574, 2005.

A. Arif, J. Jia, R. Mukhopadhyay, B. Willard, M. Kinter et al., Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity, Mol. Cell, vol.35, pp.164-180, 2009.

M. Mirande, O. Kellermann, and J. P. Waller, Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II. Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit, 1982.

, J. Biol. Chem, vol.257, pp.11049-11055

M. Guo and X. L. Yang, Architecture and metamorphosis, Top. Curr. Chem, vol.344, pp.89-118, 2014.

L. Eichinger, J. A. Pachebat, G. Glockner, M. A. Rajandream, R. Sucgang et al., The genome of the social amoeba Dictyostelium discoideum, Nature, vol.435, pp.43-57, 2005.

J. E. Kim, K. H. Kim, S. W. Lee, W. Seol, K. Shiba et al., An elongation factor-associating domain is inserted into human cysteinyl-tRNA synthetase by alternative splicing, Nucleic Acids Res, vol.28, pp.2866-2872, 2000.

B. Cahuzac, E. Berthonneau, N. Birlirakis, E. Guittet, and M. Mirande, A recurrent RNA-binding domain is appended to eukaryotic aminoacyl-tRNA synthetases, EMBO J, vol.19, pp.445-452, 2000.

E. J. Jeong, G. S. Hwang, K. H. Kim, M. J. Kim, S. Kim et al., Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats, Biochemistry, vol.39, pp.15775-15782, 2000.

S. B. Rho, J. S. Lee, E. J. Jeong, K. S. Kim, Y. G. Kim et al., A multifunctional repeated motif is present in human bifunctional tRNA synthetase, J. Biol. Chem, vol.273, pp.11267-11273, 1998.

J. Jia, A. Arif, P. S. Ray, and P. L. Fox, WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression, Mol. Cell, vol.29, pp.679-690, 2008.

S. W. Lee, B. H. Cho, S. G. Park, and S. Kim, Aminoacyl-tRNA synthetase complexes: beyond translation, J. Cell Sci, vol.117, pp.3725-3734, 2004.

E. A. Merritt, T. L. Arakaki, J. R. Gillespie, E. T. Larson, A. Kelley et al., Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs, J. Mol. Biol, vol.397, pp.481-494, 2010.

K. Shiba, Intron positions delineate the evolutionary path of a pervasively appended peptide in five human aminoacyl-tRNA synthetases, J. Mol. Evol, vol.55, pp.727-733, 2002.

M. Praetorius-ibba, C. D. Hausmann, M. Paras, T. E. Rogers, and M. Ibba, Functional association between three archaeal aminoacyl-tRNA synthetases, J. Biol. Chem, vol.282, pp.3680-3687, 2007.

A. Ambrogelly, S. Kamtekar, C. Stathopoulos, D. Kennedy, and D. Soll, Asymmetric behavior of archaeal prolyl-tRNA synthetase, FEBS Lett, vol.579, pp.6017-6022, 2005.

C. Ling, Y. N. Yao, Y. G. Zheng, H. Wei, L. Wang et al., The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex, J. Biol. Chem, vol.280, pp.34755-34763, 2005.

J. Kao, J. Ryan, G. Brett, J. Chen, H. Shen et al., Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates hostresponse mechanisms, J. Biol. Chem, vol.267, pp.20239-20247, 1992.

T. Crepin, E. Schmitt, S. Blanquet, and Y. Mechulam, Structure and function of the C-terminal domain of methionyl-tRNA synthetase, Biochemistry, vol.41, pp.13003-13011, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00770920

S. Kawaguchi, J. Muller, D. Linde, S. Kuramitsu, T. Shibata et al., The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus, EMBO J, vol.20, pp.562-569, 2001.

M. A. Swairjo, A. J. Morales, C. C. Wang, A. R. Ortiz, and P. Schimmel, Crystal structure of trbp111: a structure-specific tRNA-binding protein, 2000.

, EMBO J, vol.19, pp.6287-6298

L. Renault, P. Kerjan, S. Pasqualato, J. Menetrey, J. C. Robinson et al., Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry, EMBO J, vol.20, pp.570-578, 2001.

E. Karanasios, H. Simader, G. Panayotou, D. Suck, and G. Simos, Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly, J. Mol. Biol, vol.374, pp.1077-1090, 2007.

K. Hellmuth, D. M. Lau, F. R. Bischoff, M. Kunzler, E. Hurt et al., Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA, Mol. Cell. Biol, vol.18, pp.6374-6386, 1998.

K. Wakasugi and P. Schimmel, Two distinct cytokines released from a human aminoacyl-tRNA synthetase, Science, vol.284, pp.147-151, 1999.

M. Castro-de-moura, F. Miro, J. M. Han, S. Kim, A. Celada et al., Entamoeba lysyl-tRNA synthetase contains a cytokinelike domain with chemokine activity towards human endothelial cells, PLoS Negl. Trop Dis, vol.5, 1398.

C. Vieille and G. J. Zeikus, Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol, Mol. Biol. Rev, vol.65, pp.1-43, 2001.

B. J. Reading, V. N. Williams, R. W. Chapman, T. I. Williams, and C. V. Sullivan, Dynamics of the striped bass (Morone saxatilis) ovary proteome reveal a complex network of the translasome, J. Proteome Res, vol.12, pp.1691-1699, 2013.

M. Kaminska, S. Havrylenko, P. Decottignies, P. Le-marechal, B. Negrutskii et al., Dynamic organization of aminoacyl-tRNA synthetase complexes in the cytoplasm of human cells, J. Biol. Chem, vol.284, pp.13746-13754, 2009.

G. Eriani, M. Delarue, O. Poch, J. Gangloff, and D. Moras, Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs, Nature, vol.347, pp.203-206, 1990.

P. J. Beuning and K. Musier-forsyth, Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase, J. Biol. Chem, vol.276, pp.30779-30785, 2001.

P. J. Beuning and K. Musier-forsyth, Hydrolytic editing by a class II aminoacyl-tRNA synthetase, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.8916-8920, 2000.

N. Netzer, J. M. Goodenbour, A. David, K. A. Dittmar, R. B. Jones et al., Innate immune and chemically triggered oxidative stress modifies translational fidelity, Nature, vol.462, pp.522-526, 2009.

S. G. Park, Y. S. Kang, J. Y. Kim, C. S. Lee, Y. G. Ko et al., Hormonal activity of AIMP1/p43 for glucose homeostasis, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.14913-14918, 2006.

D. Laporte, FEBS Letters, vol.588, pp.4268-4278, 2014.

. , 00 4.2. Purification of nuclei and preparation of nuclear protein extracts

,

/. , The Authors, 2016.

. , Mass spectrometry analysis and identification of cytosolic aaRSs in yeast mitochondrial extracts

. , Microscopy analysis and single cell

. .. Acknowledgements,

M. Ibba and D. Söll, Aminoacyl-tRNA synthesis, Annu. Rev. Biochem, vol.69, pp.617-650, 2000.

D. R. Smith and P. J. Keeling, Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.10177-10184, 2015.

M. Sissler, J. Pütz, F. Fasiolo, and C. Florentz, Mitochondrial aminoacyl-tRNA synthetases, madame Curie Biosci, Database

A. Biosci, , 2000.

D. Diodato, D. Ghezzi, and V. Tiranti, The mitochondrial aminoacyl tRNA synthetases: genes and syndromes, Int. J. Cell Biol, p.787956, 2014.

J. L. Huot, L. Enkler, C. Megel, L. Karim, D. Laporte et al., Idiosyncrasies in decoding mitochondrial genomes, vol.100, pp.95-106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00965580

J. R. Brown, D. Gentry, J. A. Becker, K. Ingraham, D. J. Holmes et al., Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens, EMBO Rep, vol.4, pp.692-698, 2003.

B. Brindefalk, J. Viklund, D. Larsson, M. Thollesson, and S. G. Andersson, Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases, Mol. Biol. Evol, vol.24, pp.743-756, 2007.

A. Duchêne, A. Giritch, B. Hoffmann, V. Cognat, D. Lancelin et al., Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.16484-16489, 2005.

C. Pujol, M. Bailly, D. Kern, L. Marechal-drouard, H. Becker et al., Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.6481-6485, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356301

Y. Hirakawa, F. Burki, and P. J. Keeling, Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes, J. Cell Sci, vol.125, pp.6176-6184, 2012.

G. H. Gile, D. Moog, C. H. Slamovits, U. Maier, and J. M. Archibald, Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes, Genome Biol. Evol, vol.7, pp.1728-1742, 2015.

G. Natsoulis, F. Hilger, and G. R. Fink, The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae, Cell, vol.46, pp.235-243, 1986.

B. Chatton, P. Walter, J. P. Ebel, F. Lacroute, and F. Fasiolo, The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases, J. Biol. Chem, vol.263, pp.52-57, 1988.

E. Tolkunova, H. Park, J. Xia, M. P. King, and E. Davidson, The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript, J. Biol. Chem, vol.275, pp.35063-35069, 2000.

J. Alexandrova, C. Paulus, J. Rudinger-thirion, F. Jossinet, and M. Frugier, Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase, RNA Biol, vol.6286, pp.1301-1313, 2015.

H. Tang, L. Yeh, N. Chen, T. Ripmaster, P. Schimmel et al., Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG Codons, J. Biol. Chem, vol.279, pp.49656-49663, 2004.

C. Chien, Y. Chen, Y. Wu, C. Chang, T. Wang et al., Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme, PLoS One, vol.9, p.94659, 2014.

Y. Ofir-birin, P. Fang, S. P. Bennett, H. Zhang, J. Wang et al., Structural switch of lysyl-tRNA synthetase between translation and transcription, Mol. Cell, vol.49, pp.30-42, 2013.

N. Gunasekera, S. W. Lee, S. Kim, K. Musier-forsyth, and E. Arriaga, Nuclear localization of aminoacyl-tRNA synthetases using single-cell capillary electrophoresis laser-induced fluorescence analysis, Anal. Chem, vol.76, pp.4741-4746, 2004.

Y. G. Ko, Y. S. Kang, E. K. Kim, S. G. Park, and S. Kim, Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis, J. Cell Biol, vol.149, pp.567-574, 2000.

M. Mirande, D. Le-corre, D. Louvard, H. Reggio, J. Pailliez et al., Association of an aminoacyl-tRNA synthetase complex and of phenylalanyltRNA synthetase with the cytoskeletal framework fraction from mammalian cells, Exp. Cell Res, vol.156, pp.91-102, 1985.

M. Sajish, Q. Zhou, S. Kishi, D. M. Valdez, M. Kapoor et al.,

P. Yang and . Schimmel, Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-c and p53 signaling, Nat. Chem. Biol, vol.8, pp.547-554, 2012.

V. I. Popenko, N. E. Cherny, S. F. Beresten, J. L. Ivanova, V. V. Filonenko et al., Immunoelectron microscopic location of tryptophanyl-tRNA synthetase in mammalian, prokaryotic and archaebacterial cells, Eur. J. Cell Biol, vol.62, pp.248-258, 1993.

E. L. Paley, V. N. Baranov, N. M. Alexandrova, and L. L. Kisselev, Tryptophanyl-tRNA synthetase in cell lines resistant to tryptophan analogs, Exp. Cell Res, vol.195, pp.66-78, 1991.

G. Fu, T. Xu, Y. Shi, N. Wei, and X. Yang, TRNA-controlled nuclear import of a human tRNA synthetase, J. Biol. Chem, vol.287, pp.9330-9334, 2012.

N. Wei, Y. Shi, L. N. Truong, K. M. Fisch, T. Xu et al., Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage, Mol. Cell, vol.56, pp.323-332, 2014.

H. Huang, H. Tang, H. Chao, L. Yeh, and C. Wang, An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms, Mol. Microbiol, vol.60, pp.189-198, 2006.

M. Frechin, B. Senger, M. Braye, D. Kern, R. P. Martin et al., Yeast mitochondrial Gln-tRNAGln is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS, Genes Dev, vol.23, pp.1119-1130, 2009.

M. Frechin, L. Enkler, E. Tetaud, D. Laporte, B. Senger et al., Expression of nuclear and mitochondrial genes encoding ATP synthase is synchronized by disassembly of a multisynthetase complex, Mol. Cell, vol.56, pp.763-776, 2014.

K. Chang and C. Wang, Translation initiation from a naturally occurring nonAUG codon in Saccharomyces cerevisiae, J. Biol. Chem, vol.279, pp.13778-13785, 2004.

R. J. Turner, M. Lovato, and P. Schimmel, One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions, J. Biol. Chem, vol.275, pp.27681-27688, 2000.

M. I. Chiu, T. L. Mason, and G. R. Fink, HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of compartmentation, Genetics, vol.132, pp.987-1001, 1992.

C. Wang, K. Chang, H. Tang, C. Hsieh, and P. Schimmel, Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide, Biochemistry, vol.42, pp.1646-1651, 2003.

K. Galani, H. Grosshans, K. Deinert, E. C. Hurt, and G. Simos, The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p, EMBO J, vol.20, pp.6889-6898, 2001.

A. K. Azad, D. R. Stanford, S. Sarkar, and A. K. Hopper, Role of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear export, Mol. Biol. Cell, vol.12, pp.1381-1392, 2001.

J. Rettig, Y. Wang, A. Schneider, and T. Ochsenreiter, Dual targeting of isoleucyltRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing, Nucleic Acids Res, vol.40, pp.1299-1306, 2012.

I. Cestari, S. Kalidas, S. Monnerat, A. Anupama, M. A. Phillips et al., A multiple aminoacyl-tRNA synthetase complex that enhances tRNAaminoacylation in African trypanosomes, Mol. Cell. Biol, vol.33, pp.4872-4888, 2013.

J. Rinehart, E. K. Horn, D. Wei, D. Soll, and A. Schneider, Non-canonical eukaryotic glutaminyl-and glutamyl-tRNA synthetases form mitochondrial aminoacyltRNA in Trypanosoma brucei, J. Biol. Chem, vol.279, pp.1161-1166, 2004.

K. E. Jackson, J. S. Pham, M. Kwek, N. S. Silva, S. M. Allen et al., Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum, Int. J. Parasitol, vol.42, pp.177-186, 2012.

J. S. Pham, R. Sakaguchi, L. M. Yeoh, N. S. Silva, G. I. Mcfadden et al., A dual-targeted aminoacyl-tRNA synthetase in Plasmodium falciparum charges cytosolic and apicoplast tRNACys, Biochem. J, vol.458, pp.513-523, 2014.

M. Frechin, A. Duchêne, and H. D. Becker, Translating organellar glutamine codons: a case by case scenario?, RNA Biol, vol.6, pp.31-34, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00484966

P. López-garcía and D. Moreira, Open questions on the origin of eukaryotes, Trends Ecol. Evol, vol.30, pp.697-708, 2015.

A. Schön, C. G. Kannangara, S. Cough, and D. Söll, Protein biosynthesis in organelles requires misaminoacylation of tRNA, Nature, vol.331, pp.187-190, 1988.

A. Nagao, T. Suzuki, T. Katoh, Y. Sakaguchi, and T. Suzuki, Biogenesis of glutaminylmt tRNAGln in human mitochondria, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.16209-16214, 2009.

Y. Araiso, J. L. Huot, T. Sekiguchi, M. Frechin, F. Fischer et al., Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases, Nucleic Acids Res, vol.42, pp.6052-6063, 2014.

S. Merz and B. Westermann, Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae, Genome Biol, vol.10, p.95, 2009.

S. Hati, B. Ziervogel, J. Sternjohn, F. Wong, M. C. Nagan et al., Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in ''selective release" of noncognate amino acids ?, J. Biochem, vol.281, pp.27862-27872, 2006.

C. Meisinger, T. Sommer, and N. Pfanner, Purification of saccharomyces cerevisiae mitochondria devoid of microsomal and cytosolic contaminations, Anal. Biochem, vol.287, pp.339-342, 2000.

E. Lund and J. E. Dahlberg, Proofreading and aminoacylation of tRNAs before export from the nucleus, Science, vol.282, pp.2082-2085, 1998.

S. Sarkar, A. K. Azad, and A. K. Hopper, Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.14366-14371, 1999.

J. Dostie, F. Lejbkowicz, and N. Sonenberg, Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles, J. Cell Biol, vol.148, pp.239-247, 2000.

P. Schimmel and C. Wang, Getting tRNA synthetases into the nucleus, Trends Biochem. Sci, vol.24, pp.127-128, 1999.

A. K. Bandyopadhyay and M. P. Deutscher, Complex of aminoacyl-transfer RNA synthetases, J. Mol. Biol, vol.60, pp.113-122, 1971.

P. Kerjan, C. Cerini, M. Sémériva, and M. Mirande, The multienzyme complex containing nine aminoacyl-tRNA synthetases is ubiquitous from Drosophila to mammals, Biochim. Biophys. Acta, vol.1199, pp.293-297, 1994.

S. Debard, , 2016.

S. Debard, Methods, 2016.

G. Simos, A. Segref, F. Fasiolo, K. Hellmuth, A. Shevchenko et al., The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl-and glutamyl-tRNA synthetases, EMBO J, vol.15, pp.5437-5448, 1996.

S. Quevillon and M. Mirande, The p18 component of the multisynthetase complex shares a protein motif with the b and c subunits of eukaryotic elongation factor 1, FEBS Lett, vol.395, pp.63-67, 1996.

S. Quevillon, J. Robinson, E. Berthonneau, M. Siatecka, and M. Mirande, Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein, J. Mol. Biol, vol.285, pp.183-195, 1999.

S. S. Kim, S. Y. Hur, Y. R. Kim, N. J. Yoo, and S. H. Lee, Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer, Tumori J, vol.97, pp.380-385, 2011.

D. Laporte, J. L. Huot, G. Bader, L. Enkler, B. Senger et al., Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: Lessons from unicellular organisms, FEBS Lett, vol.588, pp.4268-4278, 2014.

B. S. Negrutskii, R. Stapulionis, and M. P. Deutschert, Supramolecular organization of the mammalian translation system, Biochemistry, vol.91, pp.964-968, 1994.

P. S. Ray, A. Arif, and P. L. Fox, Macromolecular complexes as depots for releasable regulatory proteins, Trends Biochem. Sci, vol.32, pp.158-164, 2007.

C. B. Saper, A guide to the perplexed on the specificity of antibodies, J. Histochem. Cytochem, vol.57, pp.1-5, 2009.

J. E. Gilda, R. Ghosh, J. X. Cheah, T. M. West, S. C. Bodine et al., Western blotting inaccuracies with unverified antibodies: need for a western blotting minimal reporting standard (WBMRS), vol.10, p.135392, 2015.

S. E. Rieder and S. D. Emr, Overview of subcellular fractionation procedures for the yeast Saccharomyces cerevisiae, Curr. Protoc. Cell Biol. Chapter, vol.3, 2001.

E. Palmer and T. Freeman, Investigation into the use of C-and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays, Comp. Funct. Genomics, vol.5, pp.342-353, 2004.

M. Kaminska, S. Havrylenko, P. Decottignies, P. L. Maréchal, B. Negrutskii et al., Dynamic organization of aminoacyl-tRNA synthetase complexes in the cytoplasm of human cells, J. Biol. Chem, vol.284, pp.13746-13754, 2009.

J. Rinehart, B. Krett, M. A. Rubio, J. D. Alfonzo, and D. Söll, Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion, Genes Dev, vol.19, pp.583-592, 2005.

P. Dönnes and A. Höglund, Predicting protein subcellular localization: past, present, and future, Genomics Proteomics Bioinformatics, vol.2, pp.209-215, 2004.

K. Chou and H. Shen, A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: EukmPLoc 2.0, PLoS One, vol.5, p.9931, 2010.

C. Savojardo, P. L. Martelli, P. Fariselli, and R. Casadio, TPpred2: improving the prediction of mitochondrial targeting peptide cleavage sites by exploiting sequence motifs, Bioinformatics, vol.30, pp.2973-2974, 2014.

O. Emanuelsson, H. Nielsen, S. Brunak, and G. Von-heijne, Predicting subcellular localization of proteins based on their N-terminal amino acid sequence, J. Mol. Biol, vol.300, pp.1005-1016, 2000.

H. Nielsen, J. Engelbrecht, S. Brunak, and G. Von-heijne, Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites, Protein Eng, vol.10, pp.1-6, 1997.

Y. Fukasawa, J. Tsuji, S. Fu, K. Tomii, P. Horton et al., MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites, Mol. Cell. Proteomics, vol.14, pp.1113-1126, 2015.

A. N. Nguyen-ba, A. Pogoutse, N. Provart, and A. M. Moses, NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction, BMC Bioinformatics, vol.10, p.202, 2009.

J. Lin and J. Hu, SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring, PLoS One, vol.8, p.76864, 2013.

S. Kosugi, M. Hasebe, M. Tomita, and H. Yanagawa, Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.10171-10176, 2009.

K. Nakai and P. Horton, PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization, Trends Biochem. Sci, vol.24, pp.34-36, 1999.

C. J. Bonangelino, N. L. Catlett, and L. S. Weisman, Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology, Mol. Cell. Biol, vol.17, pp.6847-6858, 1997.

S. E. Rieder and S. D. Emr, Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae, Curr. Protoc. Cell Biol. Chapter, vol.3, 2001.

J. M. Dahlman and D. C. Guttridge, Detection of NF-jB activity in skeletal muscle cells by electrophoretic mobility shift analysis, Methods Mol. Biol, vol.798, pp.505-516, 2012.

E. Olmedo-verd, J. Santamaría-gómez, J. A. Ochoa-de-alda, L. Ribas-de-pouplana, and I. Luque, Membrane anchoring of aminoacyl-tRNA synthetases by convergent acquisition of a novel protein domain, J. Biol. Chem, vol.286, pp.41057-41068, 2011.

T. A. Vida and S. D. Emr, A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast, J. Cell Biol, vol.128, pp.779-792, 1995.

W. He, G. Bai, H. Zhou, N. Wei, N. M. White et al., CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase, Nature, vol.526, pp.710-714, 2015.

M. C. Park, T. Kang, D. Jin, J. M. Han, S. B. Kim et al., Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.640-647, 2012.

Z. Wei, Z. Xu, X. Liu, W. Lo, F. Ye et al., Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase, Nucleic Acids Res, vol.44, pp.1247-1255, 2016.

S. Debard, Methods, 2016.

Y. Abe, T. Shodai, T. Muto, K. Mihara, H. Torii et al., Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20, Cell, vol.100, pp.551-560, 2000.

M. Aebi, G. Kirchner, J. Y. Chen, U. Vijayraghavan, A. Jacobson et al., Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae, The Journal of biological chemistry, vol.265, pp.16216-16220, 1990.

I. Ahel, D. Korencic, M. Ibba, and D. Soll, Trans-editing of mischarged tRNAs, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.15422-15427, 2003.

H. C. Ahn, S. Kim, and B. J. Lee, Solution structure and p43 binding of the p38 leucine zipper motif: coiled-coil interactions mediate the association between p38 and p43, FEBS letters, vol.542, pp.119-124, 2003.

H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging, Biochem J, vol.400, pp.531-540, 2006.

R. A. Akins and A. M. Lambowitz, A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof, Cell, vol.50, pp.331-345, 1987.

J. Alexandrova, C. Paulus, J. Rudinger-thirion, F. Jossinet, and M. Frugier, Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase, RNA Biol, vol.12, pp.1301-1313, 2015.

M. A. Algire, D. Maag, P. Savio, M. G. Acker, S. Z. Tarun et al., Development and characterization of a reconstituted yeast translation initiation system, Rna, vol.8, pp.382-397, 2002.

E. Z. Alkalaeva, A. V. Pisarev, L. Y. Frolova, L. L. Kisselev, and T. V. Pestova, In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3, Cell, vol.125, pp.1125-1136, 2006.

R. Altman, Die Elementarorganismen und ihre Beziehungen zu den Zellen, pp.28-145, 1890.

S. An and K. Musier-forsyth, Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex, The Journal of biological chemistry, vol.280, pp.34465-34472, 2005.

M. Anand, B. Balar, R. Ulloque, S. R. Gross, and T. G. Kinzy, Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A, The Journal of biological chemistry, vol.281, pp.32318-32326, 2006.

M. Anand, K. Chakraburtty, M. J. Marton, A. G. Hinnebusch, and T. G. Kinzy, Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3, The Journal of biological chemistry, vol.278, pp.6985-6991, 2003.

C. B. Andersen, T. Becker, M. Blau, M. Anand, M. Halic et al., Structure of eEF3 and the mechanism of transfer RNA release from the E-site, Nature, vol.443, pp.663-668, 2006.

J. Anderson, L. Phan, R. Cuesta, B. A. Carlson, M. Pak et al., The essential Gcd10p-Gcd14p nuclear complex is required for 1methyladenosine modification and maturation of initiator methionyl-tRNA, Genes & development, vol.12, pp.3650-3662, 1998.

S. Anderson, A. T. Bankier, B. G. Barrell, M. H. De-bruijn, A. R. Coulson et al., Sequence and organization of the human mitochondrial genome, Nature, vol.290, pp.457-465, 1981.

S. G. Andersson, A. Zomorodipour, J. O. Andersson, T. Sicheritz-ponten, U. C. Alsmark et al., The genome sequence of Rickettsia prowazekii and the origin of mitochondria, Nature, vol.396, pp.133-140, 1998.

Y. Araiso, J. L. Huot, T. Sekiguchi, M. Frechin, F. Fischer et al., Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases, Nucleic acids research, vol.42, pp.6052-6063, 2014.

A. Arif, J. Jia, R. A. Moodt, P. E. Dicorleto, and P. L. Fox, Phosphorylation of glutamyl-prolyl tRNA synthetase by cyclin-dependent kinase 5 dictates transcript-selective translational control, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.1415-1420, 2011.

A. Arif, J. Jia, R. Mukhopadhyay, B. Willard, M. Kinter et al., Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity, Molecular cell, vol.35, pp.164-180, 2009.

A. Arif, F. Terenzi, A. A. Potdar, J. Jia, J. Sacks et al., EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice, Nature, vol.542, pp.357-361, 2017.

K. Asano, L. Phan, L. Valasek, L. W. Schoenfeld, A. Shalev et al., A multifactor complex of eIF1, eIF2, eIF3, eIF5, and tRNA(i)Met promotes initiation complex assembly and couples GTP hydrolysis to AUG recognition, Cold Spring Harb Symp Quant Biol, vol.66, pp.403-415, 2001.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. et al., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys J, vol.16, pp.1055-1069, 1976.

A. K. Azad, D. R. Stanford, S. Sarkar, and A. K. Hopper, Role of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear export, Molecular biology of the cell, vol.12, pp.1381-1392, 2001.

K. Bacia, S. A. Kim, and P. Schwille, Fluorescence cross-correlation spectroscopy in living cells, Nat Methods, vol.3, pp.83-89, 2006.

G. Bader, S. Debard, J. O. De-craene, L. Enkler, S. Bar et al., Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells, Methods, vol.113, pp.91-104, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01771885

P. J. Baehler, R. M. Biondi, M. Van-bemmelen, M. Veron, R. et al., Random insertion of green fluorescent protein into the regulatory subunit of cyclic adenosine monophosphatedependent protein kinase, Methods Mol Biol, vol.183, pp.57-68, 2002.

M. Bailly, M. Blaise, B. Lorber, H. D. Becker, and D. Kern, The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis, Molecular cell, vol.28, pp.228-239, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00199217

K. Bakowska-zywicka, M. Kasprzyk, and T. Twardowski, tRNA-derived short RNAs bind to Saccharomyces cerevisiae ribosomes in a stress-dependent manner and inhibit protein synthesis in vitro, FEMS yeast research, p.16, 2016.

K. Bakowska-zywicka, A. M. Mleczko, M. Kasprzyk, P. Machtel, M. Zywicki et al., The widespread occurrence of tRNA-derived fragments in Saccharomyces cerevisiae, FEBS Open Bio, vol.6, pp.1186-1200, 2016.

R. S. Balaban, S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging, Cell, vol.120, pp.483-495, 2005.

M. Baleva, A. Gowher, P. Kamenski, I. Tarassov, N. Entelis et al., A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA, Int J Mol Sci, vol.16, pp.9354-9367, 2015.

A. K. Bandyopadhyay and M. P. Deutscher, Complex of aminoacyl-transfer RNA synthetases, Journal of molecular biology, vol.60, pp.113-122, 1971.

R. Banerjee, C. Gladkova, K. Mapa, G. Witte, and D. Mokranjac, Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein, Journal Article, vol.4, 2015.

E. Barbarese, D. E. Koppel, M. P. Deutscher, C. L. Smith, K. Ainger et al., Protein translation components are colocalized in granules in oligodendrocytes, Journal of cell science, vol.108, pp.2781-2790, 1995.

A. Barrientos, A. Zambrano, and A. Tzagoloff, Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae, The EMBO journal, vol.23, pp.3472-3482, 2004.

D. Barthelme, S. Dinkelaker, S. V. Albers, P. Londei, U. Ermler et al., Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.3228-3233, 2011.

N. Baudendistel, G. Muller, W. Waldeck, P. Angel, and J. Langowski, Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo, Chemphyschem, vol.6, pp.984-990, 2005.

D. A. Baum, B. Baum, D. L. Beach, E. D. Salmon, and K. Bloom, Localization and anchoring of mRNA in budding yeast, Current biology : CB, vol.12, pp.569-578, 1999.

H. D. Becker and D. Kern, Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways, Proceedings of the National Academy of Sciences of the United States of America, vol.95, pp.12832-12837, 1998.

H. D. Becker, B. Min, C. Jacobi, G. Raczniak, J. Pelaschier et al., The heterotrimeric Thermus thermophilus Asp-tRNA(Asn) amidotransferase can also generate Gln-tRNA(Gln), FEBS letters, vol.476, pp.140-144, 2000.

L. Becker, M. Bannwarth, C. Meisinger, K. Hill, K. Model et al., Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore, Journal of molecular biology, vol.353, pp.1011-1020, 2005.

T. Becker, L. S. Wenz, V. Kruger, W. Lehmann, J. M. Muller et al., The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins, The Journal of cell biology, vol.194, pp.387-395, 2011.

A. Ben-shem, N. Garreau-de-loubresse, S. Melnikov, L. Jenner, G. Yusupova et al., The structure of the eukaryotic ribosome at 3.0 A resolution, Science, vol.334, pp.1524-1529, 2011.

A. Ben-shem, L. Jenner, G. Yusupova, Y. , and M. , Crystal structure of the eukaryotic ribosome, Science, vol.330, pp.1203-1209, 2010.

E. Bertrand, P. Chartrand, M. Schaefer, S. M. Shenoy, R. H. Singer et al., Localization of ASH1 mRNA particles in living yeast, Molecular cell, vol.2, pp.437-445, 1998.

M. K. Bhangoo, S. Tzankov, A. C. Fan, K. Dejgaard, D. Y. Thomas et al., Multiple 40kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import, Molecular biology of the cell, vol.18, pp.3414-3428, 2007.

F. R. Blattner, G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland et al., The complete genome sequence of Escherichia coli K-12, Science, vol.277, pp.1453-1462, 1997.

S. Bockler and B. Westermann, ER-mitochondria contacts as sites of mitophagosome formation, Autophagy, vol.10, pp.1346-1347, 2014.

G. Bonfils, M. Jaquenoud, S. Bontron, C. Ostrowicz, C. Ungermann et al., LeucyltRNA synthetase controls TORC1 via the EGO complex, Molecular cell, vol.46, pp.105-110, 2012.

N. Bonnefoy and T. D. Fox, Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination, Methods Mol Biol, vol.372, pp.153-166, 2007.

K. Brejc, T. K. Sixma, P. A. Kitts, S. R. Kain, R. Y. Tsien et al., Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proceedings of the National Academy of Sciences of the United States of America, vol.94, pp.2306-2311, 1997.

J. Brix, S. Rudiger, B. Bukau, J. Schneider-mergener, and N. Pfanner, Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequencecarrying preprotein and a non-cleavable preprotein, The Journal of biological chemistry, vol.274, pp.16522-16530, 1999.

C. Brunel, P. Romby, H. Moine, J. Caillet, M. Grunberg-manago et al., Translational regulation of the Escherichia coli threonyl-tRNA synthetase gene: structural and functional importance of the thrS operator domains, Biochimie, vol.75, pp.1167-1179, 1993.

M. R. Buddha, K. M. Keery, and B. R. Crane, An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.15881-15886, 2004.

M. R. Buddha, T. Tao, R. J. Parry, and B. R. Crane, Regioselective nitration of tryptophan by a complex between bacterial nitric-oxide synthase and tryptophanyl-tRNA synthetase, The Journal of biological chemistry, vol.279, pp.49567-49570, 2004.

C. J. Bult, O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann et al., Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science, vol.273, pp.1058-1073, 1996.

H. M. Burgess, W. A. Richardson, R. C. Anderson, C. Salaun, S. V. Graham et al., Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs, Journal of cell science, vol.124, pp.3344-3355, 2011.

S. Cabantous, H. B. Nguyen, J. D. Pedelacq, F. Koraichi, A. Chaudhary et al., A new protein-protein interaction sensor based on tripartite split-GFP association, Sci Rep, vol.3, 2013.

S. Cabantous, J. D. Pedelacq, B. L. Mark, C. Naranjo, T. C. Terwilliger et al., Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis, J Struct Funct Genomics, vol.6, pp.113-119, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078736

S. Cabantous, T. C. Terwilliger, W. , and G. S. , Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein, Nature biotechnology, vol.23, pp.102-107, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078734

B. Causier and B. Davies, Analysing protein-protein interactions with the yeast two-hybrid system, Plant Mol Biol, vol.50, pp.855-870, 2002.

T. Cavalier-smith, Electron and light microscopy of gametogenesis and gamete fusion in Chlamydomonas reinhardii, Protoplasma, vol.86, pp.1-18, 1975.

D. R. Cavener, R. , and S. C. , Eukaryotic start and stop translation sites, Nucleic acids research, vol.19, pp.3185-3192, 1991.

I. Cestari, S. Kalidas, S. Monnerat, A. Anupama, M. A. Phillips et al., A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes, Molecular and cellular biology, vol.33, pp.4872-4888, 2013.

A. Chacinska, S. Pfannschmidt, N. Wiedemann, V. Kozjak, L. K. Sanjuan-szklarz et al., Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins, The EMBO journal, vol.23, pp.3735-3746, 2004.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, Green fluorescent protein as a marker for gene expression, Science, vol.263, pp.802-805, 1994.

J. R. Chamberlain, Y. Lee, W. S. Lane, and D. R. Engelke, Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP, Genes & development, vol.12, pp.1678-1690, 1998.

K. J. Chang, W. , and C. C. , Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae, The Journal of biological chemistry, vol.279, pp.13778-13785, 2004.

K. M. Chang and T. L. Hendrickson, Recognition of tRNAGln by Helicobacter pylori GluRS2-a tRNAGln-specific glutamyl-tRNA synthetase, Nucleic acids research, vol.37, pp.6942-6949, 2009.

B. Chatton, P. Walter, J. P. Ebel, F. Lacroute, and F. Fasiolo, The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases, The Journal of biological chemistry, vol.263, pp.52-57, 1988.

Q. Chen, E. J. Vazquez, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Production of reactive oxygen species by mitochondria: central role of complex III, The Journal of biological chemistry, vol.278, pp.36027-36031, 2003.

Y. Chen, A. Beck, C. Davenport, Y. Chen, D. Shattuck et al., Characterization of TRZ1, a yeast homolog of the human candidate prostate cancer susceptibility gene ELAC2 encoding tRNase Z, BMC Mol Biol, vol.6, p.12, 2005.

J. M. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley et al., Saccharomyces Genome Database: the genomics resource of budding yeast, Nucleic acids research, vol.40, pp.700-705, 2012.

C. I. Chien, Y. W. Chen, Y. H. Wu, C. Y. Chang, T. L. Wang et al., Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme, PloS one, vol.9, p.94659, 2014.

A. C. Chinault, K. H. Tan, S. M. Hassur, and S. M. Hecht, Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs, Biochemistry, vol.16, pp.766-776, 1977.

J. W. Choi, J. Y. Um, J. K. Kundu, Y. J. Surh, K. et al., Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis, Carcinogenesis, vol.30, pp.1638-1644, 2009.

A. Claude and E. F. Fullam, An Electron Microscope Study of Isolated Mitochondria : Method and Preliminary Results, J Exp Med, vol.81, pp.51-62, 1945.

C. W. Cody, D. C. Prasher, W. M. Westler, F. G. Prendergast, and W. W. Ward, Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein, Biochemistry, vol.32, pp.1212-1218, 1993.

S. Commans and A. Bock, Selenocysteine inserting tRNAs: an overview, FEMS microbiology reviews, vol.23, pp.335-351, 1999.

K. F. Cooper, M. S. Scarnati, E. Krasley, M. J. Mallory, C. Jin et al., Oxidativestress-induced nuclear to cytoplasmic relocalization is required for Not4-dependent cyclin C destruction, Journal of cell science, vol.125, pp.1015-1026, 2012.

L. A. Copela, C. F. Fernandez, R. L. Sherrer, and S. L. Wolin, Competition between the Rex1 exonuclease and the La protein affects both Trf4p-mediated RNA quality control and pre-tRNA maturation, Rna, vol.14, pp.1214-1227, 2008.

O. Corti, C. Hampe, H. Koutnikova, F. Darios, S. Jacquier et al., The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration, Hum Mol Genet, vol.12, pp.1427-1437, 2003.

A. Crameri, E. A. Whitehorn, E. Tate, and W. P. Stemmer, Improved green fluorescent protein by molecular evolution using DNA shuffling, Nature biotechnology, vol.14, pp.315-319, 1996.

F. H. Crick, The origin of the genetic code, Journal of molecular biology, vol.38, pp.367-379, 1968.

A. B. Cubitt, R. Heim, S. R. Adams, A. E. Boyd, L. A. Gross et al., Understanding, improving and using green fluorescent proteins, Trends in biochemical sciences, vol.20, pp.448-455, 1995.

A. W. Curnow, M. Ibba, and D. Soll, tRNA-dependent asparagine formation, Nature, vol.382, pp.589-590, 1996.

S. Cusack, C. Berthet-colominas, M. Hartlein, N. Nassar, and R. Leberman, A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A, Nature, vol.347, pp.249-255, 1990.

A. Czirok, J. Zach, B. A. Kozel, R. P. Mecham, E. C. Davis et al., Elastic fiber macroassembly is a hierarchical, cell motion-mediated process, J Cell Physiol, vol.207, pp.97-106, 2006.

D. F. Dai, Y. A. Chiao, D. J. Marcinek, H. H. Szeto, and P. S. Rabinovitch, Mitochondrial oxidative stress in aging and healthspan, Longev Healthspan, vol.3, p.6, 2014.

N. Daigle and J. Ellenberg, LambdaN-GFP: an RNA reporter system for live-cell imaging, Nat Methods, vol.4, pp.633-636, 2007.

T. P. Dalton, H. G. Shertzer, and A. Puga, Regulation of gene expression by reactive oxygen, Annu Rev Pharmacol Toxicol, vol.39, pp.67-101, 1999.

M. De-zamaroczy and G. Bernardi, The primary structure of the mitochondrial genome of Saccharomyces cerevisiae-a review, Gene, vol.47, pp.155-177, 1986.

K. Deinert, F. Fasiolo, E. C. Hurt, and G. Simos, Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs, The Journal of biological chemistry, vol.276, pp.6000-6008, 2001.

R. M. Denney, Detection and partial purification of rapidly sedimenting forms of aminoacyltransfer ribonucleic acid synthetases from human placenta, Archives of biochemistry and biophysics, vol.183, pp.156-167, 1977.

J. M. Dhahbi, S. R. Spindler, H. Atamna, D. Boffelli, M. et al., Deep Sequencing of Serum Small RNAs Identifies Patterns of 5' tRNA Half and YRNA Fragment Expression Associated with Breast Cancer, Biomark Cancer, vol.6, pp.37-47, 2014.

J. Dias, L. Renault, J. Perez, and M. Mirande, Small-angle X-ray solution scattering study of the multi-aminoacyl-tRNA synthetase complex reveals an elongated and multi-armed particle, The Journal of biological chemistry, vol.288, pp.23979-23989, 2013.

K. S. Dimmer, D. Papic, B. Schumann, D. Sperl, K. Krumpe et al., , 2012.

, A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins, Journal of cell science, vol.125, pp.3464-3473

J. Dopf and T. M. Horiagon, Deletion mapping of the Aequorea victoria green fluorescent protein, Gene, vol.173, pp.39-44, 1996.

S. Drose and U. Brandt, The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex, The Journal of biological chemistry, vol.283, pp.21649-21654, 2008.

A. M. Duchene, A. Giritch, B. Hoffmann, V. Cognat, D. Lancelin et al., Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.16484-16489, 2005.

A. M. Duchene, N. Peeters, A. Dietrich, A. Cosset, I. D. Small et al., Overlapping destinations for two dual targeted glycyl-tRNA synthetases in Arabidopsis thaliana and Phaseolus vulgaris, The Journal of biological chemistry, vol.276, pp.15275-15283, 2001.

J. L. Dynes and O. Steward, Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites, J Comp Neurol, vol.500, pp.433-447, 2007.

B. Ehresmann, H. Moine, P. Romby, M. Springer, M. Grunberg-manago et al., Secondary structure of the Escherichia coli translational operator of threonyl-tRNA synthetase and relationship to its function, Gene, vol.72, pp.187-188, 1988.

Y. Elbaz-alon, E. Rosenfeld-gur, V. Shinder, . Futerman, H. Anthony et al., A Dynamic Interface between Vacuoles and Mitochondria in Yeast, Developmental Cell, vol.30, pp.95-102, 2014.

M. Endres, W. Neupert, and M. Brunner, Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22.54 complex, The EMBO journal, vol.18, pp.3214-3221, 1999.

G. Eriani, M. Delarue, O. Poch, J. Gangloff, and D. Moras, Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs, Nature, vol.347, pp.203-206, 1990.

K. Esser, B. Tursun, M. Ingenhoven, G. Michaelis, P. et al., A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1, Journal of molecular biology, vol.323, pp.835-843, 2002.

E. H. Feinberg, M. K. Vanhoven, A. Bendesky, G. Wang, R. D. Fetter et al., GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems, Neuron, vol.57, pp.353-363, 2008.

J. P. Fernandez-murray and C. R. Mcmaster, Identification of novel phospholipid binding proteins in Saccharomyces cerevisiae, FEBS letters, vol.580, pp.82-86, 2006.

A. R. Fernie, F. Carrari, and L. J. Sweetlove, Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport, Current opinion in plant biology, vol.7, pp.254-261, 2004.

A. R. Fersht and C. Dingwall, Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases, Biochemistry, vol.18, pp.2627-2631, 1979.

S. Feyder, J. O. De-craene, S. Bar, D. L. Bertazzi, and S. Friant, Membrane trafficking in the yeast Saccharomyces cerevisiae model, Int J Mol Sci, vol.16, pp.1509-1525, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01771802

S. Fields and O. Song, A novel genetic system to detect protein-protein interactions, Nature, vol.340, pp.245-246, 1989.

R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness et al., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd, Science, vol.269, pp.496-512, 1995.

F. Foury, T. Roganti, N. Lecrenier, P. , and B. , The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae, FEBS letters, vol.440, pp.325-331, 1998.

M. Frechin, A. M. Duchene, and H. D. Becker, Translating organellar glutamine codons: a case by case scenario?, RNA Biol, vol.6, pp.31-34, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00484966

M. Frechin, L. Enkler, E. Tetaud, D. Laporte, B. Senger et al., Expression of nuclear and mitochondrial genes encoding ATP synthase is synchronized by disassembly of a multisynthetase complex, Molecular cell, vol.56, pp.763-776, 2014.

M. Frechin, D. Kern, R. P. Martin, H. D. Becker, and B. Senger, Arc1p: anchoring, routing, coordinating, FEBS letters, vol.584, pp.427-433, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00451322

M. Frechin, B. Senger, M. Braye, D. Kern, R. P. Martin et al., Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS, Genes & development, vol.23, pp.1119-1130, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00484960

L. Frolova, X. Le-goff, G. Zhouravleva, E. Davydova, M. Philippe et al., Eukaryotic polypeptide chain release factor eRF3 is an eRF1-and ribosome-dependent guanosine triphosphatase, Rna, vol.2, pp.334-341, 1996.

G. Fu, T. Xu, Y. Shi, N. Wei, Y. et al., tRNA-controlled nuclear import of a human tRNA synthetase, The Journal of biological chemistry, vol.287, pp.9330-9334, 2012.

H. Fukui, R. Hanaoka, and A. Kawahara, Noncanonical activity of seryl-tRNA synthetase is involved in vascular development, Circ Res, vol.104, pp.1253-1259, 2009.

D. Fusco, N. Accornero, B. Lavoie, S. M. Shenoy, J. M. Blanchard et al., , 2003.

, Single mRNA molecules demonstrate probabilistic movement in living mammalian cells, Current biology : CB, vol.13, pp.161-167

K. Galani, H. Grosshans, K. Deinert, E. Hurt, and G. Simos, The intracellualr location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p, The EMBO journal, vol.20, pp.6889-6898, 2001.

K. Galani, E. Hurt, and G. Simos, The tRNA aminoacylation co-factor Arc1p is excluded from the nucleus by an Xpo1p-dependent mechanism, FEBS letters, vol.579, pp.969-975, 2005.

L. Galluzzi, O. Kepp, and G. Kroemer, Mitochondria: master regulators of danger signalling, Nature reviews Molecular cell biology, vol.13, pp.780-788, 2012.

S. Ghaemmaghami, W. K. Huh, K. Bower, R. W. Howson, A. Belle et al., Global analysis of protein expression in yeast, Nature, vol.425, pp.737-741, 2003.

I. Ghosh, A. Hamilton, R. , and L. , Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein, J Am Chem Soc, vol.122, pp.5658-5659, 2000.

B. S. Glick, A. Brandt, K. Cunningham, S. Muller, R. L. Hallberg et al., Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism, Cell, vol.69, pp.809-822, 1992.

D. E. Godar, D. E. Godar, V. Garcia, A. Jacobo, U. Aebi et al., Structural organization of the multienzyme complex of mammalian aminoacyl-tRNA synthetases, Biochemistry, vol.27, pp.6921-6928, 1988.

V. Godinic-mikulcic, J. Jaric, B. J. Greber, V. Franke, V. Hodnik et al., Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs, Nucleic acids research, vol.42, pp.5191-5201, 2014.

V. Godinic, M. Mocibob, S. Rocak, M. Ibba, and I. Weygand-durasevic, Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser), The FEBS journal, vol.274, pp.2788-2799, 2007.

J. Goksoyr, Y. Goldgur, and M. Safro, Aminoacyl-tRNA synthetases from Haloarcula marismortui: an evidence for a multienzyme complex in a procaryotic system, Biochem Mol Biol Int, vol.214, pp.1075-1083, 1161.

M. P. Golinelli-cohen and M. Mirande, Arc1p is required for cytoplasmic confinement of synthetases and tRNA, Molecular and cellular biochemistry, vol.300, pp.47-59, 2007.

M. P. Golinelli-cohen, A. Zakrzewska, and M. Mirande, Complementation of yeast Arc1p by the p43 component of the human multisynthetase complex does not require its association with yeast MetRS and GluRS, Journal of molecular biology, vol.340, pp.15-27, 2004.

H. Gonczarowska-jorge, R. P. Zahedi, and A. Sickmann, The proteome of baker's yeast mitochondria, Mitochondrion, vol.33, pp.15-21, 2017.

W. Gorner, E. Durchschlag, M. T. Martinez-pastor, F. Estruch, G. Ammerer et al., Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity, Genes & development, vol.12, pp.586-597, 1998.

A. Gowher, A. Smirnov, I. Tarassov, and N. Entelis, Induced tRNA import into human mitochondria: implication of a host aminoacyl-tRNA-synthetase, PloS one, vol.8, p.66228, 2013.

J. S. Graindorge, B. Senger, D. Tritch, G. Simos, and F. Fasiolo, Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity, Biochemistry, vol.44, pp.1344-1352, 2005.

M. W. Gray, The pre-endosymbiont hypothesis: a new perspective on the origin and evolution of mitochondria, Cold Spring Harb Perspect Biol, vol.6, 2014.

O. Griesbeck, G. S. Baird, R. E. Campbell, D. A. Zacharias, and R. Y. Tsien, Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications, The Journal of biological chemistry, vol.276, pp.29188-29194, 2001.

H. Grosshans, E. Hurt, and G. Simos, An aminoacylation-dependent nuclear tRNA export pathway in yeast, Genes & Dev, vol.14, pp.830-840, 2000.

W. Gu, R. L. Hurto, A. K. Hopper, E. J. Grayhack, and E. M. Phizicky, Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C, Molecular and cellular biology, vol.25, pp.8191-8201, 2005.

W. Gu, J. E. Jackman, A. J. Lohan, M. W. Gray, and E. M. Phizicky, tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5' end of tRNAHis, Genes & development, vol.17, pp.2889-2901, 2003.

N. Gunasekera, S. W. Lee, S. Kim, K. Musier-forsyth, and E. Arriaga, Nuclear localization of aminoacyl-tRNA synthetases using single-cell capillary electrophoresis laser-induced fluorescence analysis, Analytical chemistry, vol.76, pp.4741-4746, 2004.

M. Guo and P. Schimmel, Essential nontranslational functions of tRNA synthetases, Nat Chem Biol, vol.9, pp.145-153, 2013.

R. B. Hamanaka and N. S. Chandel, Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes, Trends in biochemical sciences, vol.35, pp.505-513, 2010.

J. M. Han, S. J. Jeong, M. C. Park, G. Kim, N. H. Kwon et al., , 2012.

, Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway, Cell, vol.149, pp.410-424

J. M. Han, B. J. Park, S. G. Park, Y. S. Oh, S. J. Choi et al., AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.11206-11211, 2008.

B. Hao, W. Gong, T. K. Ferguson, C. M. James, J. A. Krzycki et al., A new UAGencoded residue in the structure of a methanogen methyltransferase, Science, vol.296, pp.1462-1466, 2002.

C. L. Harris, An aminoacyl-tRNA synthetase complex in Escherichia coli, Journal of bacteriology, vol.169, pp.2718-2723, 1987.

C. L. Harris, High-molecular-weight forms of aminoacyl-tRNA synthetases and tRNA modification enzymes in Escherichia coli, Journal of bacteriology, vol.172, pp.1798-1803, 1990.

C. D. Hausmann and M. Ibba, Structural and functional mapping of the archaeal multiaminoacyl-tRNA synthetase complex, FEBS letters, vol.582, pp.2178-2182, 2008.

C. D. Hausmann, M. Praetorius-ibba, and M. Ibba, An aminoacyl-tRNA synthetase:elongation factor complex for substrate channeling in archaeal translation, Nucleic acids research, vol.35, pp.6094-6102, 2007.

S. Havrylenko, R. Legouis, B. Negrutskii, and M. Mirande, Methionyl-tRNA synthetase from Caenorhabditis elegans: a specific multidomain organization for convergent functional evolution, Protein science : a publication of the Protein Society, vol.19, pp.2475-2484, 2010.

S. Havrylenko, R. Legouis, B. Negrutskii, and M. Mirande, Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex, The Journal of biological chemistry, vol.286, pp.28476-28487, 2011.

R. Heim, A. B. Cubitt, and R. Y. Tsien, Improved green fluorescence, Nature, vol.373, pp.663-664, 1995.

R. Heim, D. C. Prasher, and R. Y. Tsien, Wavelength mutations and posttranslational autoxidation of green fluorescent protein, Proceedings of the National Academy of Sciences of the United States of America, vol.91, pp.12501-12504, 1994.

I. U. Heinemann, D. Soll, and L. Randau, Transfer RNA processing in archaea: unusual pathways and enzymes, FEBS letters, vol.584, pp.303-309, 2010.

K. Hellmuth, D. M. Lau, F. R. Bischoff, M. Kunzler, E. Hurt et al., Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA, Molecular and cellular biology, vol.18, pp.6374-6386, 1998.

C. J. Herbert, M. Labouesse, G. Dujardin, and P. P. Slonimski, The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing, The EMBO journal, vol.7, pp.473-483, 1988.

W. Herzog, K. Muller, J. Huisken, and D. Y. Stainier, Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development, Circ Res, vol.104, pp.1260-1266, 2009.

A. G. Hinnebusch, Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome, The Journal of biological chemistry, vol.272, pp.21661-21664, 1997.

A. G. Hinnebusch, Translational regulation of GCN4 and the general amino acid control of yeast, Annual review of microbiology, vol.59, pp.407-450, 2005.

S. Honda, P. Loher, M. Shigematsu, J. P. Palazzo, R. Suzuki et al., Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.3816-3825, 2015.

A. K. Hopper and E. M. Phizicky, tRNA transfers to the limelight, Genes & development, vol.17, pp.162-180, 2003.

M. Horst, W. Oppliger, S. Rospert, H. J. Schonfeld, G. Schatz et al., Sequential action of two hsp70 complexes during protein import into mitochondria, The EMBO journal, vol.16, pp.1842-1849, 1997.

Y. M. Hou and P. Schimmel, A simple structural feature is a major determinant of the identity of a transfer RNA, Nature, vol.333, pp.140-145, 1988.

S. M. Houten and R. J. Wanders, A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation, Journal of inherited metabolic disease, vol.33, pp.469-477, 2010.

H. Y. Huang, H. L. Tang, H. Y. Chao, L. S. Yeh, W. et al., An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms, Molecular microbiology, vol.60, pp.189-198, 2006.

S. I. Hyun, L. Maruri-avidal, M. , and B. , Topology of Endoplasmic Reticulum-Associated Cellular and Viral Proteins Determined with Split-GFP, Traffic, vol.16, pp.787-795, 2015.

M. Ibba and D. Soll, Aminoacyl-tRNA synthesis, Annu Rev Biochem, vol.69, pp.617-650, 2000.

F. Iborra, M. Dorizzi, L. , and J. , Tryptophanyl-transfer ribonucleic-acid synthetase from beef pancreas. Ligand binding and dissociation equilibrium between the active dimeric and inactive monomeric structures, Eur J Biochem, vol.39, pp.275-282, 1973.

R. Ieva, S. G. Schrempp, L. Opalinski, F. Wollweber, P. Hoss et al., Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane, Molecular cell, vol.56, pp.641-652, 2014.

J. A. Imlay, Cellular defenses against superoxide and hydrogen peroxide, Annual review of biochemistry, vol.77, pp.755-776, 2008.

S. Inouye and F. I. Tsuji, Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein, FEBS letters, vol.341, pp.277-280, 1994.

K. E. Jackson, J. S. Pham, M. Kwek, N. S. De-silva, S. M. Allen et al., Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum, Int J Parasitol, vol.42, pp.177-186, 2012.

R. J. Jackson, C. U. Hellen, and T. V. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nature reviews Molecular cell biology, vol.11, pp.113-127, 2010.

D. Jahn, Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during the tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas reinhardtii, FEBS letters, vol.314, pp.77-80, 1992.

A. M. Jaramillo, T. T. Weil, J. Goodhouse, E. R. Gavis, and T. Schupbach, The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila, Journal of cell science, vol.121, pp.887-894, 2008.

S. Jayaraman, P. Haggie, R. M. Wachter, S. J. Remington, and A. S. Verkman, Mechanism and cellular applications of a green fluorescent protein-based halide sensor, The Journal of biological chemistry, vol.275, pp.6047-6050, 2000.

S. Jindal, A. K. Dudani, B. Singh, C. B. Harley, and R. S. Gupta, Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen, Molecular and cellular biology, vol.9, pp.2279-2283, 1989.

E. C. Johnson, K. , and S. B. , Studies on the insolubility of a transmembrane peptide from signal peptide peptidase, J Am Chem Soc, vol.128, pp.7140-7141, 2006.

S. A. Johnston, P. Q. Anziano, K. Shark, J. C. Sanford, and R. A. Butow, Mitochondrial transformation in yeast by bombardment with microprojectiles, Science, vol.240, pp.1538-1541, 1988.

D. H. Jones, A. J. Mcmillan, A. R. Fersht, and G. Winter, Reversible dissociation of dimeric tyrosyl-tRNA synthetase by mutagenesis at the subunit interface, Biochemistry, vol.24, pp.5852-5857, 1985.

T. Jores, A. Klinger, L. E. Gross, S. Kawano, N. Flinner et al., Characterization of the targeting signal in mitochondrial betabarrel proteins, Nat Commun, vol.7, p.12036, 2016.

L. Kaddoum, E. Magdeleine, G. S. Waldo, E. Joly, C. et al., One-step split GFP staining for sensitive protein detection and localization in mammalian cells, Biotechniques, vol.49, pp.727-728, 2010.

M. Kaishima, J. Ishii, T. Matsuno, N. Fukuda, and A. Kondo, Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity, Sci Rep, vol.6, p.35932, 2016.

D. Kalderon, W. D. Richardson, A. F. Markham, and A. E. Smith, Sequence requirements for nuclear location of simian virus 40 large-T antigen, Nature, vol.311, pp.33-38, 1984.

M. Kaminska, M. Deniziak, P. Kerjan, J. Barciszewski, and M. Mirande, A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation, The EMBO journal, vol.19, pp.6908-6917, 2000.

M. Kaminska, S. Havrylenko, P. Decottignies, S. Gillet, P. Le-marechal et al., Dissection of the structural organization of the aminoacyl-tRNA synthetase complex, The Journal of biological chemistry, vol.284, pp.6053-6060, 2009.

M. Kaminska, S. Havrylenko, P. Decottignies, P. Le-marechal, B. Negrutskii et al., , 2009.

, Dynamic Organization of Aminoacyl-tRNA Synthetase Complexes in the Cytoplasm of Human Cells, The Journal of biological chemistry, vol.284, pp.13746-13754

D. Kamiyama, S. Sekine, B. Barsi-rhyne, J. Hu, B. Chen et al., Versatile protein tagging in cells with split fluorescent protein, Nat Commun, vol.7, p.11046, 2016.

P. J. Kang, J. Ostermann, J. Shilling, W. Neupert, E. A. Craig et al., Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins, Nature, vol.348, pp.137-143, 1990.

T. Kang, N. H. Kwon, J. Y. Lee, M. C. Park, E. Kang et al., AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex, Journal of molecular biology, vol.423, pp.475-481, 2012.

P. Kapasi, S. Chaudhuri, K. Vyas, D. Baus, A. A. Komar et al., L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control, Molecular cell, vol.25, pp.113-126, 2007.

E. Karanasios, H. Boleti, and G. Simos, Incorporation of the Arc1p tRNA-binding domain to the catalytic core of MetRS can functionally replace the yeast Arc1p-MetRS complex, Journal of molecular biology, vol.381, pp.763-771, 2008.

E. Karanasios, H. Simader, G. Panayotou, D. Suck, and G. Simos, Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly, Journal of molecular biology, vol.374, pp.1077-1090, 2007.

B. R. Kelemen, T. A. Klink, M. A. Behlke, S. R. Eubanks, P. A. Leland et al., , 1999.

, Hypersensitive substrate for ribonucleases, Nucleic acids research, vol.27, pp.3696-3701

O. Kellermann, A. Brevet, H. Tonetti, and J. P. Waller, Macromolecular complexes of aminoacyl-tRNA synthetases from eukaryotes. 1. Extensive purification and characterization of the high-molecular-weight complex(es) of seven aminoacyl-tRNA synthetases from sheep liver, Eur J Biochem, vol.99, pp.541-550, 1979.

O. Kellermann, H. Tonetti, A. Brevet, M. Mirande, J. P. Pailliez et al., , 1982.

, Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. I. Species specificity of the polypeptide composition, The Journal of biological chemistry, vol.257, pp.11041-11048

C. Kemper, S. J. Habib, G. Engl, P. Heckmeyer, K. S. Dimmer et al., Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components, Journal of cell science, vol.121, 1990.

P. Kerjan, C. Cerini, M. Semeriva, and M. Mirande, The multienzyme complex containing nine aminoacyl-tRNA synthetases is ubiquitous from Drosophila to mammals, Biochimica et biophysica acta, vol.1199, pp.293-297, 1994.

S. Khoshnevis, P. Neumann, and R. Ficner, Crystal structure of the RNA recognition motif of yeast translation initiation factor eIF3b reveals differences to human eIF3b, PloS, vol.5, 2010.

E. Kim, S. H. Kim, S. Kim, K. , and T. S. , The novel cytokine p43 induces IL-12 production in macrophages via NF-kappaB activation, leading to enhanced IFN-gamma production in CD4+ T cells, J Immunol, vol.176, pp.256-264, 2006.

H. S. Kim, U. Hoja, J. Stolz, G. Sauer, and E. Schweizer, Identification of the tRNA-binding protein Arc1p as a novel target of in vivo biotinylation in Saccharomyces cerevisiae, The Journal of biological chemistry, vol.279, pp.42445-42452, 2004.

J. S. Kim and R. T. Raines, Ribonuclease S-peptide as a carrier in fusion proteins, Protein science : a publication of the Protein Society, vol.2, pp.348-356, 1993.

K. J. Kim, M. C. Park, S. J. Choi, Y. S. Oh, E. C. Choi et al., Determination of three-dimensional structure and residues of the novel tumor suppressor AIMP3/p18 required for the interaction with ATM, The Journal of biological chemistry, vol.283, pp.14032-14040, 2008.

S. A. Kim, K. G. Heinze, K. Bacia, M. N. Waxham, and P. Schwille, Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry, Biophys J, vol.88, pp.4319-4336, 2005.

S. A. Kim, K. G. Heinze, M. N. Waxham, and P. Schwille, Intracellular calmodulin availability accessed with two-photon cross-correlation, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.105-110, 2004.

T. Kim, S. G. Park, J. E. Kim, W. Seol, Y. G. Ko et al., Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex, The Journal of biological chemistry, vol.275, pp.21768-21772, 2000.

Y. E. Kim, Y. N. Kim, J. A. Kim, H. M. Kim, J. et al., Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency, Nat Commun, vol.6, p.7134, 2015.

A. Kimelman, A. Levy, H. Sberro, S. Kidron, A. Leavitt et al., A vast collection of microbial genes that are toxic to bacteria, Genome research, vol.22, pp.802-809, 2012.
DOI : 10.1101/gr.133850.111

URL : http://genome.cshlp.org/content/22/4/802.full.pdf

Y. Kise, S. W. Lee, S. G. Park, S. Fukai, T. Sengoku et al., , 2004.

, A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase, Nature structural & molecular biology, vol.11, pp.149-156

S. Klinge, F. Voigts-hoffmann, M. Leibundgut, S. Arpagaus, and N. Ban, Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6, Science, vol.334, pp.941-948, 2011.

G. Knapp, R. C. Ogden, C. L. Peebles, A. , and J. , Splicing of yeast tRNA precursors: structure of the reaction intermediates, Cell, vol.18, pp.37-45, 1979.

H. S. Ko, R. Von-coelln, S. R. Sriram, S. W. Kim, K. K. Chung et al., Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.25, pp.7968-7978, 2005.

Y. G. Ko, Y. S. Kang, E. K. Kim, S. G. Park, K. et al., Nucleolar localization of human methionyltRNA synthetase and its role in ribosomal RNA synthesis, The Journal of cell biology, vol.149, pp.567-574, 2000.

Y. G. Ko, E. Y. Kim, T. Kim, H. Park, H. S. Park et al., Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1, The Journal of biological chemistry, vol.276, pp.6030-6036, 2001.
DOI : 10.1074/jbc.m006189200

URL : http://www.jbc.org/content/276/8/6030.full.pdf

J. R. Koch and F. X. Schmid, Mia40 is optimized for function in mitochondrial oxidative protein folding and import, ACS chemical biology, vol.9, pp.2049-2057, 2014.
DOI : 10.1021/cb500408n

C. Koehler, A. Round, H. Simader, D. Suck, and D. Svergun, Quaternary structure of the yeast Arc1p-aminoacyl-tRNA synthetase complex in solution and its compaction upon binding of tRNAs, Nucleic acids research, vol.41, pp.667-676, 2013.

A. Kolkman, M. M. Olsthoorn, C. E. Heeremans, A. J. Heck, and M. Slijper, Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol, Molecular & cellular proteomics : MCP, vol.4, pp.1-11, 2005.

V. G. Kolupaeva, S. De-breyne, T. V. Pestova, H. , and C. U. , In vitro reconstitution and biochemical characterization of translation initiation by internal ribosomal entry, Methods in enzymology, vol.430, pp.409-439, 2007.

E. V. Koonin and A. S. Novozhilov, Origin and evolution of the genetic code: the universal enigma, IUBMB life, vol.61, pp.99-111, 2009.

D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, W. et al., Dynamics of fluorescence marker concentration as a probe of mobility, Biophys J, vol.16, pp.1315-1329, 1976.

B. Kornmann, E. Currie, S. R. Collins, M. Schuldiner, J. Nunnari et al., , 2009.

, An ER-mitochondria tethering complex revealed by a synthetic biology screen, Science, vol.325, pp.477-481

B. Kornmann, C. Osman, and P. Walter, The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.14151-14156, 2011.
DOI : 10.1073/pnas.1111314108

URL : http://www.pnas.org/content/108/34/14151.full.pdf

M. Kozak, How do eucaryotic ribosomes select initiation regions in messenger RNA?, Cell, vol.15, pp.1109-1123, 1978.
DOI : 10.1016/0092-8674(78)90039-9

B. A. Kozel, B. J. Rongish, A. Czirok, J. Zach, C. D. Little et al., Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters, J Cell Physiol, vol.207, pp.87-96, 2006.

H. A. Krebs, J. , and W. A. , Metabolism of ketonic acids in animal tissues, Biochem J, vol.31, pp.645-660, 1937.

M. K. Kruger, S. Pedersen, T. G. Hagervall, and M. A. Sorensen, The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo, Journal of molecular biology, vol.284, pp.621-631, 1998.

K. Krumpe, I. Frumkin, Y. Herzig, N. Rimon, C. Ozbalci et al., Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes, Molecular biology of the cell, vol.23, pp.3927-3935, 2012.

J. Kufel and D. Tollervey, 3'-processing of yeast tRNATrp precedes 5'-processing, Rna, vol.9, pp.202-208, 2003.

S. Kulzer, W. Petersen, A. Baser, K. Mandel, and J. M. Przyborski, Use of self-assembling GFP to determine protein topology and compartmentalisation in the Plasmodium falciparum-infected erythrocyte, Mol Biochem Parasitol, vol.187, pp.87-90, 2013.

T. Kuner, A. , and G. J. , A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons, Neuron, vol.27, pp.447-459, 2000.

C. G. Kurland, A. , and S. G. , Origin and evolution of the mitochondrial proteome, Microbiology and molecular biology reviews : MMBR, vol.64, pp.786-820, 2000.

S. Kutik, D. Stojanovski, L. Becker, T. Becker, M. Meinecke et al., Dissecting membrane insertion of mitochondrial beta-barrel proteins, Cell, vol.132, pp.1011-1024, 2008.

N. H. Kwon, T. Kang, J. Y. Lee, H. H. Kim, H. R. Kim et al., Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3, Proceedings of the National Academy of Sciences of the United States of America, vol.108, 2011.

S. Lange, Y. Katayama, M. Schmid, O. Burkacky, C. Brauchle et al., Simultaneous transport of different localized mRNA species revealed by live-cell imaging, Traffic, vol.9, pp.1256-1267, 2008.

F. J. Lariviere, A. D. Wolfson, and O. C. Uhlenbeck, Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation, Science, vol.294, pp.165-168, 2001.

J. Lederberg, Cell genetics and hereditary symbiosis, Physiol Rev, vol.32, pp.403-430, 1952.

C. M. Lee, J. Sedman, W. Neupert, and R. A. Stuart, The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal, The Journal of biological chemistry, vol.274, pp.20937-20942, 1999.

E. Y. Lee, H. C. Lee, H. K. Kim, S. Y. Jang, S. J. Park et al., Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity, Nat Immunol, vol.17, pp.1252-1262, 2016.

Y. N. Lee, H. Nechushtan, N. Figov, R. , and E. , The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcepsilonRI-activated mast cells, Immunity, vol.20, pp.145-151, 2004.

Y. S. Lee, Y. Shibata, A. Malhotra, and A. Dutta, A novel class of small RNAs: tRNA-derived RNA fragments (tRFs), Genes & development, vol.23, pp.2639-2649, 2009.

G. Lenaz, A. Baracca, G. Barbero, C. Bergamini, M. E. Dalmonte et al., Mitochondrial respiratory chain super-complex I-III in physiology and pathology, Biochimica et biophysica acta, vol.1797, pp.633-640, 2010.

R. Lill and U. Muhlenhoff, Iron-sulfur-protein biogenesis in eukaryotes, Trends in biochemical sciences, vol.30, pp.133-141, 2005.

C. Ling, Y. N. Yao, Y. G. Zheng, H. Wei, L. Wang et al., The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex, The Journal of biological chemistry, vol.280, pp.34755-34763, 2005.

J. Ling, P. O'donoghue, and D. Soll, Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology, Nat Rev Microbiol, vol.13, pp.707-721, 2015.

R. S. Lipman, J. Chen, C. Evilia, O. Vitseva, and Y. M. Hou, Association of an aminoacyl-tRNA synthetase with a putative metabolic protein in archaea, Biochemistry, vol.42, pp.7487-7496, 2003.

J. Lippincott-schwartz, N. Altan-bonnet, and G. H. Patterson, Photobleaching and photoactivation: following protein dynamics in living cells, Nature cell biology, pp.7-14, 2003.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu et al., , 2007.

, Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system, Nature, vol.450, pp.56-62

J. Llopis, J. M. Mccaffery, A. Miyawaki, M. G. Farquhar, and R. Y. Tsien, Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins, Proceedings of the National Academy of Sciences of the United States of America, vol.95, pp.6803-6808, 1998.

S. Luo and R. L. Levine, Methionine in proteins defends against oxidative stress, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.23, pp.464-472, 2009.
DOI : 10.1096/fj.08-118414

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630790/pdf

T. J. Magliery, C. G. Wilson, W. Pan, D. Mishler, I. Ghosh et al., Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism, J Am Chem Soc, vol.127, pp.146-157, 2005.
DOI : 10.1021/ja046699g

B. M. Mailu, L. Li, J. Arthur, T. M. Nelson, G. Ramasamy et al., Plasmodium Apicoplast Gln-tRNAGln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites, The Journal of biological chemistry, vol.290, pp.29629-29641, 2015.
DOI : 10.1074/jbc.m115.655100

URL : http://www.jbc.org/content/290/49/29629.full.pdf

B. M. Mailu, G. Ramasamay, D. G. Mudeppa, L. Li, S. E. Lindner et al., A nondiscriminating glutamyl-tRNA synthetase in the plasmodium apicoplast: the first enzyme in an indirect aminoacylation pathway, The Journal of biological chemistry, vol.288, pp.32539-32552, 2013.

R. Majumdar, A. Bandyopadhyay, and U. Maitra, Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex, The Journal of biological chemistry, vol.278, pp.6580-6587, 2003.

R. J. Maraia and T. N. Lamichhane, 3' processing of eukaryotic precursor tRNAs, Wiley interdisciplinary reviews RNA, vol.2, pp.362-375, 2011.

R. Marquet, C. Isel, C. Ehresmann, and B. Ehresmann, tRNAs as primer of reverse transcriptases, Biochimie, vol.77, pp.113-124, 1995.
DOI : 10.1016/0300-9084(96)88114-4

E. S. Martens-uzunova, S. E. Jalava, N. F. Dits, G. J. Van-leenders, S. Moller et al., Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer, Oncogene, vol.31, pp.978-991, 2012.

J. Martin, K. Mahlke, and N. Pfanner, Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences, The Journal of biological chemistry, vol.266, pp.18051-18057, 1991.

A. P. Mascarenhas and S. A. Martinis, Functional segregation of a predicted "hinge" site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase, Biochemistry, vol.47, pp.4808-4816, 2008.

J. E. Mccarthy, Posttranscriptional control of gene expression in yeast. Microbiology and molecular biology reviews : MMBR 62, pp.1492-1553, 1998.

M. Meinecke, R. Wagner, P. Kovermann, B. Guiard, D. U. Mick et al., Tim50 maintains the permeability barrier of the mitochondrial inner membrane, Science, vol.312, pp.1523-1526, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132755

C. Meisinger, N. Pfanner, and K. N. Truscott, Isolation of yeast mitochondria, Methods Mol Biol, vol.313, pp.33-39, 2006.
DOI : 10.1385/1-59259-958-3:033

C. Mereschkowsky, Über Natur und Ursprung der Chromatophoren imPflanzenreiche, Biol Centralbl, vol.25, pp.593-604, 1905.

D. U. Mick, K. Wagner, M. Van-der-laan, A. E. Frazier, I. Perschil et al., Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly, The EMBO journal, vol.26, pp.4347-4358, 2007.
DOI : 10.1038/sj.emboj.7601862

URL : http://emboj.embopress.org/content/26/20/4347.full.pdf

R. Mirabella, C. Franken, G. N. Van-der-krogt, T. Bisseling, G. et al., Use of the fluorescent timer DsRED-E5 as reporter to monitor dynamics of gene activity in plants, Plant Physiol, vol.135, pp.1879-1887, 2004.

M. Mirande, O. Kellermann, and J. P. Waller, Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II. Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit, The Journal of biological chemistry, vol.257, pp.11049-11055, 1982.

M. Mirande, D. Le-corre, D. Louvard, H. Reggio, J. P. Pailliez et al., Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells, Experimental cell research, vol.156, pp.91-102, 1985.

H. Mireau, D. Lancelin, and I. D. Small, The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases, Plant Cell, vol.8, pp.1027-1039, 1996.
DOI : 10.2307/3870213

T. Miyatsuka, Z. Li, G. , and M. S. , Chronology of islet differentiation revealed by temporal cell labeling, Diabetes, vol.58, pp.1863-1868, 2009.
DOI : 10.2337/db09-0390

URL : http://diabetes.diabetesjournals.org/content/58/8/1863.full.pdf

H. Moine, P. Romby, M. Springer, M. Grunberg-manago, J. P. Ebel et al., Messenger RNA structure and gene regulation at the translational level in Escherichia coli: the case of threonine:tRNAThr ligase, Proceedings of the National Academy of Sciences of the United States of America, vol.85, pp.7892-7896, 1988.

D. Moradpour, M. J. Evans, R. Gosert, Z. Yuan, H. E. Blum et al., Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes, J Virol, vol.78, pp.7400-7409, 2004.

J. G. Morin, H. , and J. W. , Energy transfer in a bioluminescent system, J Cell Physiol, vol.77, pp.313-318, 1971.
DOI : 10.1002/jcp.1040770305

H. Morise, O. Shimomura, F. H. Johnson, and J. Winant, Intermolecular energy transfer in the bioluminescent system of Aequorea, Biochemistry, vol.13, pp.2656-2662, 1974.

D. Mossmann, C. Meisinger, and F. N. Vogtle, Processing of mitochondrial presequences, Biochimica et biophysica acta, vol.1819, pp.1098-1106, 2012.
DOI : 10.1016/j.bbagrm.2011.11.007

D. Mossmann, F. N. Vogtle, A. A. Taskin, P. F. Teixeira, J. Ring et al., Amyloid-beta Peptide Induces Mitochondrial Dysfunction by Inhibition of Preprotein Maturation, Cell metabolism, vol.20, pp.662-669, 2014.

T. Mukai, T. Kobayashi, N. Hino, T. Yanagisawa, K. Sakamoto et al., Adding llysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases, Biochemical and biophysical research communications, vol.371, pp.818-822, 2008.

R. Mukhopadhyay, J. Jia, A. Arif, P. S. Ray, and P. L. Fox, The GAIT system: a gatekeeper of inflammatory gene expression, Trends in biochemical sciences, vol.34, pp.324-331, 2009.

R. Mukhopadhyay, P. S. Ray, A. Arif, A. K. Brady, M. Kinter et al., DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression, Molecular cell, vol.32, pp.371-382, 2008.
DOI : 10.1016/j.molcel.2008.09.019

URL : https://doi.org/10.1016/j.molcel.2008.09.019

T. Nagai, K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba et al., A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications, Nature biotechnology, vol.20, pp.87-90, 2002.

A. Nagao, T. Suzuki, T. Katoh, Y. Sakaguchi, and T. Suzuki, Biogenesis of glutaminyl-mt tRNAGln in human mitochondria, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.16209-16214, 2009.

S. Nakagawa, Y. Niimura, T. Gojobori, H. Tanaka, and K. Miura, Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes, Nucleic acids research, vol.36, pp.861-871, 2008.

S. Namgoong, K. Sheppard, R. L. Sherrer, and D. Soll, Co-evolution of the archaeal tRNAdependent amidotransferase GatCAB with tRNA(Asn), FEBS letters, vol.581, pp.309-314, 2007.

G. Natsoulis, F. Hilger, and G. R. Fink, The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae, Cell, vol.46, pp.235-243, 1986.

W. W. Navarre and O. Schneewind, Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope, Microbiology and molecular biology reviews : MMBR, vol.63, pp.174-229, 1999.

B. S. Negrutskii, R. Stapulionis, and M. P. Deutscher, Supramolecular organization of the mammalian translation system, Proc Natl Acad Sci U S A, vol.91, pp.964-968, 1994.

N. Netzer, J. M. Goodenbour, A. David, K. A. Dittmar, R. B. Jones et al., Innate immune and chemically triggered oxidative stress modifies translational fidelity, Nature, vol.462, pp.522-526, 2009.

H. Niwa, S. Inouye, T. Hirano, T. Matsuno, S. Kojima et al., Chemical nature of the light emitter of the Aequorea green fluorescent protein, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.13617-13622, 1996.

A. E. Nixon and S. J. Benkovic, Improvement in the efficiency of formyl transfer of a GAR transformylase hybrid enzyme, Protein Eng, vol.13, pp.323-327, 2000.

M. T. Norcum, Isolation and electron microscopic characterization of the high molecular mass aminoacyl-tRNA synthetase complex from murine erythroleukemia cells, The Journal of biological chemistry, vol.264, pp.15043-15051, 1989.

J. P. O'connor and C. L. Peebles, In vivo pre-tRNA processing in Saccharomyces cerevisiae, Molecular and cellular biology, vol.11, pp.425-439, 1991.

Y. Ofir-birin, P. Fang, S. P. Bennett, H. M. Zhang, J. Wang et al., Structural switch of lysyl-tRNA synthetase between translation and transcription, Molecular cell, vol.49, pp.30-42, 2013.

T. Ohira and T. Suzuki, Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.10502-10507, 2011.

S. Ohlmeier, A. J. Kastaniotis, J. K. Hiltunen, and U. Bergmann, The yeast mitochondrial proteome, a study of fermentative and respiratory growth, The Journal of biological chemistry, vol.279, pp.3956-3979, 2004.

M. Ormo, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien et al., Crystal structure of the Aequorea victoria green fluorescent protein, Science, vol.273, pp.1392-1395, 1996.

S. Orrenius, B. Zhivotovsky, and P. Nicotera, Regulation of cell death: the calcium-apoptosis link, Nature reviews Molecular cell biology, vol.4, pp.552-565, 2003.

A. Otani, B. M. Slike, M. I. Dorrell, J. Hood, K. Kinder et al., A fragment of human TrpRS as a potent antagonist of ocular angiogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.178-183, 2002.

S. G. Ozanick, X. Wang, M. Costanzo, R. L. Brost, C. Boone et al., Rex1p deficiency leads to accumulation of precursor initiator tRNAMet and polyadenylation of substrate RNAs in Saccharomyces cerevisiae, Nucleic acids research, vol.37, pp.298-308, 2009.

T. Ozawa, Y. Natori, M. Sato, and Y. Umezawa, Imaging dynamics of endogenous mitochondrial RNA in single living cells, Nat Methods, vol.4, pp.413-419, 2007.

G. E. Palade, An electron microscope study of the mitochondrial structure, J Histochem Cytochem, vol.1, pp.188-211, 1953.

E. L. Paley, V. N. Baranov, N. M. Alexandrova, and L. L. Kisselev, Tryptophanyl-tRNA synthetase in cell lines resistant to tryptophan analogs, Experimental cell research, vol.195, pp.66-78, 1991.

B. J. Park, J. W. Kang, S. W. Lee, S. J. Choi, Y. K. Shin et al., The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR, Cell, vol.120, pp.209-221, 2005.

B. J. Park, Y. S. Oh, S. Y. Park, S. J. Choi, C. Rudolph et al., AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability, Cancer Res, vol.66, pp.6913-6918, 2006.

H. Park, S. G. Park, J. Kim, Y. G. Ko, K. et al., Signaling pathways for TNF production induced by human aminoacyl-tRNA synthetase-associating factor, p43, Cytokine, vol.20, pp.148-153, 2002.

K. Park, S. Y. Yi, C. S. Lee, K. E. Kim, H. S. Pai et al., A split enhanced green fluorescent protein-based reporter in yeast two-hybrid system, Protein J, vol.26, pp.107-116, 2007.

G. H. Patterson, S. M. Knobel, W. D. Sharif, S. R. Kain, and D. W. Piston, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy, Biophys J, vol.73, pp.2782-2790, 1997.

P. J. Paukstelis and A. M. Lambowitz, Identification and evolution of fungal mitochondrial tyrosyl-tRNA synthetases with group I intron splicing activity, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.6010-6015, 2008.

S. V. Paushkin, M. Patel, B. S. Furia, S. W. Peltz, and C. R. Trotta, Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation, Cell, vol.117, pp.311-321, 2004.

J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, W. et al., Engineering and characterization of a superfolder green fluorescent protein, Nature biotechnology, vol.24, pp.79-88, 2006.

C. L. Peebles, R. C. Ogden, G. Knapp, A. , and J. , Splicing of yeast tRNA precursors: a twostage reaction, Cell, vol.18, pp.27-35, 1979.

S. R. Pelc, Correlation between coding-triplets and amino-acids, Nature, vol.207, pp.597-599, 1965.

S. Pelet, Nuclear relocation of Kss1 contributes to the specificity of the mating response, Sci Rep, vol.7, p.43636, 2017.

E. Perkins, D. Sun, A. Nguyen, S. Tulac, M. Francesco et al., Novel inhibitors of poly(ADP-ribose) polymerase/PARP1 and PARP2 identified using a cell-based screen in yeast, Cancer Res, vol.61, pp.4175-4183, 2001.

J. J. Perona and I. Sovulj, Synthetic and editing mechanisms of aminoacyl-tRNA synthetases, Topics in current chemistry, vol.344, pp.1-41, 2014.

M. A. Perozzo, K. B. Ward, R. B. Thompson, and W. W. Ward, X-ray diffraction and timeresolved fluorescence analyses of Aequorea green fluorescent protein crystals, The Journal of biological chemistry, vol.263, pp.7713-7716, 1988.

J. Petschnigg, B. Groisman, M. Kotlyar, M. Taipale, Y. Zheng et al., The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells, Nat Methods, vol.11, pp.585-592, 2014.

R. D. Phair and T. Misteli, High mobility of proteins in the mammalian cell nucleus, Nature, vol.404, pp.604-609, 2000.

J. S. Pham, R. Sakaguchi, L. M. Yeoh, N. S. De-silva, G. I. Mcfadden et al., A dual-targeted aminoacyl-tRNA synthetase in Plasmodium falciparum charges cytosolic and apicoplast tRNACys, Biochem J, vol.458, pp.513-523, 2014.

E. M. Phizicky and A. K. Hopper, tRNA biology charges to the front, Genes & development, vol.24, pp.1832-1860, 2010.

F. Pierrel, M. L. Bestwick, P. A. Cobine, O. Khalimonchuk, J. A. Cricco et al., Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly, The EMBO journal, vol.26, pp.4335-4346, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00374057

F. Pinaud and M. Dahan, Targeting and imaging single biomolecules in living cells by complementation-activated light microscopy with split-fluorescent proteins, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.201-210, 2011.

P. Pinton, C. Giorgi, R. Siviero, E. Zecchini, R. et al., Calcium and apoptosis: ERmitochondria Ca2+ transfer in the control of apoptosis, Oncogene, vol.27, pp.6407-6418, 2008.

A. V. Pisarev, C. U. Hellen, and T. V. Pestova, Recycling of eukaryotic posttermination ribosomal complexes, Cell, vol.131, pp.286-299, 2007.

A. V. Pisarev, M. A. Skabkin, V. P. Pisareva, O. V. Skabkina, A. M. Rakotondrafara et al., The role of ABCE1 in eukaryotic posttermination ribosomal recycling, Molecular cell, vol.37, pp.196-210, 2010.

D. W. Piston and G. J. Kremers, Fluorescent protein FRET: the good, the bad and the ugly, Trends in biochemical sciences, vol.32, pp.407-414, 2007.

C. Polycarpo, A. Ambrogelly, A. Berube, S. M. Winbush, J. A. Mccloskey et al., An aminoacyl-tRNA synthetase that specifically activates pyrrolysine, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.12450-12454, 2004.

V. I. Popenko, N. E. Cherny, S. F. Beresten, J. L. Ivanova, V. V. Filonenko et al., , 1993.

, Immunoelectron microscopic location of tryptophanyl-tRNA synthetase in mammalian, prokaryotic and archaebacterial cells, Eur J Cell Biol, vol.62, pp.248-258

M. Praetorius-ibba, C. D. Hausmann, M. Paras, T. E. Rogers, and M. Ibba, Functional association between three archaeal aminoacyl-tRNA synthetases, The Journal of biological chemistry, vol.282, pp.3680-3687, 2007.
DOI : 10.1074/jbc.m609988200

URL : http://www.jbc.org/content/282/6/3680.full.pdf

D. Prasher, R. O. Mccann, and M. J. Cormier, Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein, Biochemical and biophysical research communications, vol.126, pp.1259-1268, 1985.

F. G. Prendergast and K. G. Mann, Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskalea, Biochemistry, vol.17, pp.3448-3453, 1978.

M. A. Preston and E. M. Phizicky, The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase, Rna, vol.16, pp.1068-1077, 2010.

C. Pujol, M. Bailly, D. Kern, L. Marechal-drouard, H. Becker et al., Dualtargeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic GlntRNAGln synthesis in plants, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.6481-6485, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00309521

S. D. Putney and P. Schimmel, An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription, Nature, vol.291, pp.632-635, 1981.

S. Quevillon, F. Agou, J. C. Robinson, and M. Mirande, The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine, The Journal of biological chemistry, vol.272, pp.32573-32579, 1997.

S. Quevillon and M. Mirande, The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1, FEBS letters, vol.395, pp.63-67, 1996.

S. Quevillon, J. C. Robinson, E. Berthonneau, M. Siatecka, and M. Mirande, Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein, Journal of molecular biology, vol.285, pp.183-195, 1999.

J. Rabl, M. Leibundgut, S. F. Ataide, A. Haag, and N. Ban, Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1, Science, vol.331, pp.730-736, 2011.

O. Rackham and C. M. Brown, Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs, The EMBO journal, vol.23, pp.3346-3355, 2004.

R. A. Raff and H. R. Mahler, The non symbiotic origin of mitochondria, Science, vol.177, pp.575-582, 1972.

B. Rahman, S. Kawano, K. Yunoki-esaki, T. Anzai, and T. Endo, NMR analyses on the interactions of the yeast Tim50 C-terminal region with the presequence and Tim50 core domain, FEBS letters, vol.588, pp.678-684, 2014.

M. Raina, S. Elgamal, T. J. Santangelo, and M. Ibba, Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis, FEBS letters, vol.586, pp.2232-2238, 2012.

L. Rajkowitsch, C. Vilela, K. Berthelot, C. V. Ramirez, and J. E. Mccarthy, Reinitiation and recycling are distinct processes occurring downstream of translation termination in yeast, Journal of molecular biology, vol.335, pp.71-85, 2004.

P. D. Ray, B. W. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cellular signalling, vol.24, pp.981-990, 2012.

J. S. Reece-hoyes, A. Diallo, B. Lajoie, A. Kent, S. Shrestha et al., Enhanced yeast one-hybrid assays for high-throughput gene-centered regulatory network mapping, Nat Methods, vol.8, pp.1059-1064, 2011.

P. Rehling, K. Model, K. Brandner, P. Kovermann, A. Sickmann et al., Protein insertion into the mitochondrial inner membrane by a twin-pore translocase, Science, vol.299, pp.1747-1751, 2003.

A. S. Reichert and W. Neupert, Mitochondriomics or what makes us breathe, Trends in genetics : TIG, vol.20, pp.555-562, 2004.

B. G. Reid, F. , and G. C. , Chromophore formation in green fluorescent protein, Biochemistry, vol.36, pp.6786-6791, 1997.

J. Reinders and A. Sickmann, Proteomics of yeast mitochondria, Methods Mol Biol, vol.372, pp.543-557, 2007.

L. Renault, P. Kerjan, S. Pasqualato, J. Menetrey, J. C. Robinson et al., Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry, The EMBO journal, vol.20, pp.570-578, 2001.

M. Renvoise, L. Bonhomme, M. Davanture, B. Valot, M. Zivy et al., Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae, Journal of proteomics, vol.106, pp.140-150, 2014.

J. Rettig, Y. Wang, A. Schneider, and T. Ochsenreiter, Dual targeting of isoleucyl-tRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing, Nucleic acids research, vol.40, pp.1299-1306, 2012.

S. B. Rho, M. J. Kim, J. S. Lee, W. Seol, H. Motegi et al., Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.4488-4493, 1999.

S. B. Rho, K. H. Lee, J. W. Kim, K. Shiba, Y. J. Jo et al., Interaction between human tRNA synthetases involves repeated sequence elements, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.10128-10133, 1996.

S. B. Rho, T. L. Lincecum, . Jr, and S. A. Martinis, An inserted region of leucyl-tRNA synthetase plays a critical role in group I intron splicing, The EMBO journal, vol.21, pp.6874-6881, 2002.

L. Ribas-de-pouplana and P. Schimmel, Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem, Cell, vol.104, pp.191-193, 2001.

F. M. Richards and P. J. Vithayathil, The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components, The Journal of biological chemistry, vol.234, pp.1459-1465, 1959.

J. Rinehart, E. K. Horn, D. Wei, D. Soll, and A. Schneider, Non-canonical eukaryotic glutaminyland glutamyl-tRNA synthetases form mitochondrial aminoacyl-tRNA in Trypanosoma brucei, The Journal of biological chemistry, vol.279, pp.1161-1166, 2004.

J. Rinehart, B. Krett, M. A. Rubio, J. D. Alfonzo, and D. Soll, Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion, Genes & development, vol.19, pp.583-592, 2005.

M. A. Rizzo, G. H. Springer, B. Granada, and D. W. Piston, An improved cyan fluorescent protein variant useful for FRET, Nature biotechnology, vol.22, pp.445-449, 2004.

S. Rocak, I. Landeka, and I. Weygand-durasevic, Identifying Pex21p as a protein that specifically interacts with yeast seryl-tRNA synthetase, FEMS Microbiol Lett, vol.214, pp.101-106, 2002.

J. V. Rocheleau, M. Edidin, and D. W. Piston, Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment, Biophys J, vol.84, pp.4078-4086, 2003.

M. J. Rogers and D. Soll, Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA, Proceedings of the National Academy of Sciences of the United States of America, vol.85, pp.6627-6631, 1988.

D. Roise, S. J. Horvath, J. M. Tomich, J. H. Richards, and G. Schatz, A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers, The EMBO journal, vol.5, pp.1327-1334, 1986.

P. Romby, J. Caillet, C. Ebel, C. Sacerdot, M. Graffe et al., The expression of E.coli threonyl-tRNA synthetase is regulated at the translational level by symmetrical operator-repressor interactions, The EMBO journal, vol.15, pp.5976-5987, 1996.

M. S. Rook, M. Lu, and K. S. Kosik, CaMKIIalpha 3' untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.20, pp.6385-6393, 2000.

M. A. Rould, J. J. Perona, D. Soll, and T. A. Steitz, Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution, Science, vol.246, pp.1135-1142, 1989.

H. Roy, H. D. Becker, J. Reinbolt, and D. Kern, When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.9837-9842, 2003.
DOI : 10.1073/pnas.1632156100

URL : http://www.pnas.org/content/100/17/9837.full.pdf

H. Roy and M. Ibba, Monitoring Lys-tRNA(Lys) phosphatidylglycerol transferase activity, Methods, vol.44, pp.164-169, 2008.
DOI : 10.1016/j.ymeth.2007.09.002

URL : http://europepmc.org/articles/pmc2271063?pdf=render

N. Y. Saad, B. Schiel, M. Braye, J. T. Heap, N. P. Minton et al., Riboswitch (T-box)-mediated control of tRNA-dependent amidation in Clostridium acetobutylicum rationalizes gene and pathway redundancy for asparagine and asparaginyl-trnaasn synthesis, The Journal of biological chemistry, vol.287, pp.20382-20394, 2012.

M. S. Sachs and A. P. Geballe, Downstream control of upstream open reading frames, Genes & development, vol.20, pp.915-921, 2006.
DOI : 10.1101/gad.1427006

URL : http://genesdev.cshlp.org/content/20/8/915.full.pdf

L. Sagan, On the origin of mitosing cells, Journal of theoretical biology, vol.14, pp.255-274, 1967.

M. Sajish, Q. Zhou, S. Kishi, D. M. Valdez, . Jr et al., Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-gamma and p53 signaling, Nat Chem Biol, vol.8, pp.547-554, 2012.
DOI : 10.1038/nchembio.937

URL : http://europepmc.org/articles/pmc3780985?pdf=render

A. Sakaue-sawano, K. Ohtawa, H. Hama, M. Kawano, M. Ogawa et al., Tracing the silhouette of individual cells in S/G2/M phases with fluorescence, Chemistry & biology, vol.15, pp.1243-1248, 2008.

P. Sampath, B. Mazumder, V. Seshadri, and P. L. Fox, Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region, Molecular and cellular biology, vol.23, pp.1509-1519, 2003.

P. Sampath, B. Mazumder, V. Seshadri, C. A. Gerber, L. Chavatte et al., Noncanonical function of glutamyl-prolyl-tRNA synthetase: genespecific silencing of translation, Cell, vol.119, pp.195-208, 2004.

M. A. Santos, A. C. Gomes, M. C. Santos, L. C. Carreto, and G. R. Moura, The genetic code of the fungal CTG clade, C R Biol, vol.334, pp.607-611, 2011.

M. A. Santos, G. Moura, S. E. Massey, and M. F. Tuite, Driving change: the evolution of alternative genetic codes, Trends in genetics : TIG, vol.20, pp.95-102, 2004.

J. Sarkar, K. Poruri, M. T. Boniecki, K. K. Mctavish, and S. A. Martinis, Yeast mitochondrial leucyl-tRNA synthetase CP1 domain has functionally diverged to accommodate RNA splicing at expense of hydrolytic editing, The Journal of biological chemistry, vol.287, pp.14772-14781, 2012.

A. Sauerwald, W. Zhu, T. A. Major, H. Roy, S. Palioura et al., RNA-dependent cysteine biosynthesis in archaea, Science, vol.307, pp.1969-1972, 2005.
DOI : 10.1126/science.1108329

P. Schimmel, R. De-pouplana, and L. , Transfer RNA: from minihelix to genetic code, Cell, vol.81, pp.983-986, 1995.
DOI : 10.1016/s0092-8674(05)80002-9

URL : https://doi.org/10.1016/s0092-8674(05)80002-9

P. Schimmel, W. , and C. C. , Getting tRNA synthetases into the nucleus, Trends in biochemical sciences, vol.24, pp.127-128, 1999.
DOI : 10.1016/s0968-0004(99)01369-9

R. M. Schwartz and M. O. Dayhoff, Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts, Science, vol.199, pp.395-403, 1978.
DOI : 10.1126/science.202030

P. Schwille, F. J. Meyer-almes, and R. Rigler, Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution, Biophys J, vol.72, pp.1878-1886, 1997.
DOI : 10.1016/s0006-3495(97)78833-7

URL : https://doi.org/10.1016/s0006-3495(97)78833-7

N. Segev and N. Hay, Hijacking leucyl-tRNA synthetase for amino acid-dependent regulation of TORC1, Molecular cell, vol.46, pp.4-6, 2012.
DOI : 10.1016/j.molcel.2012.03.028

URL : https://doi.org/10.1016/j.molcel.2012.03.028

M. Sekigawa, T. Kunoh, S. Wada, Y. Mukai, K. Ohshima et al., Comprehensive screening of human genes with inhibitory effects on yeast growth and validation of a yeast cell-based system for screening chemicals, J Biomol Screen, vol.15, pp.368-378, 2010.

S. Sekine, O. Nureki, A. Shimada, D. G. Vassylyev, Y. et al., Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase, Nat Struct Biol, vol.8, pp.203-206, 2001.

S. Sengupta and P. G. Higgs, Pathways of Genetic Code Evolution in Ancient and Modern Organisms, Journal of molecular evolution, vol.80, pp.229-243, 2015.

V. Shalak, M. Kaminska, and M. Mirande, Translation initiation from two in-frame AUGs generates mitochondrial and cytoplasmic forms of the p43 component of the multisynthetase complex, Biochemistry, vol.48, pp.9959-9968, 2009.

V. Shalak, M. Kaminska, R. Mitnacht-kraus, P. Vandenabeele, M. Clauss et al., , 2001.

, The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component, The Journal of biological chemistry, vol.276, pp.23769-23776

K. Sheppard, P. M. Akochy, J. C. Salazar, and D. Soll, The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln, The Journal of biological chemistry, vol.282, pp.11866-11873, 2007.

O. Shimomura, Structure of the chromophore of Aequorea green fluorescent protein, FEBS Lett, vol.104, pp.220-222, 1979.

O. Shimomura, F. H. Johnson, and Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, vol.59, pp.223-239, 1962.

C. J. Shoemaker, D. E. Eyler, and R. Green, Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay, Science, vol.330, pp.369-372, 2010.

C. J. Shoemaker and R. Green, Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.1392-1398, 2011.

A. Sickmann, J. Reinders, Y. Wagner, C. Joppich, R. Zahedi et al., The proteome of Saccharomyces cerevisiae mitochondria, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.13207-13212, 2003.

R. M. Siegel, F. K. Chan, D. A. Zacharias, R. Swofford, K. L. Holmes et al., Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein, Sci STKE, p.1, 2000.

H. Simader, M. Hothorn, C. Kohler, J. Basquin, G. Simos et al., Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary subcomplexes, Nucleic acids research, vol.34, pp.3968-3979, 2006.

G. Simos, A. Sauer, F. Fasiolo, and E. C. Hurt, A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases, Molecular cell, vol.1, pp.235-242, 1998.

G. Simos, A. Segref, F. Fasiolo, K. Hellmuth, A. Shevchenko et al., The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl-and glutamyl-tRNA synthetases, Embo Journal, vol.15, pp.5437-5448, 1996.

M. Sissler, R. Giege, and C. Florentz, The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA, Rna, vol.4, pp.647-657, 1998.

F. S. Sjostrand, Electron microscopy of mitochondria and cytoplasmic double membranes, Nature, vol.171, pp.30-32, 1953.

E. V. Smirnova, V. A. Lakunina, I. Tarassov, I. A. Krasheninnikov, and P. A. Kamenski, Noncanonical functions of aminoacyl-tRNA synthetases, Biochemistry (Mosc), vol.77, pp.15-25, 2012.

M. Solimena and H. H. Gerdes, Secretory granules: and the last shall be first, Trends in cell biology, vol.13, pp.399-402, 2003.

D. Soll, Genetic code: enter a new amino acid, Nature, vol.331, pp.662-663, 1988.

H. Song, P. Mugnier, A. K. Das, H. M. Webb, D. R. Evans et al., The crystal structure of human eukaryotic release factor eRF1-mechanism of stop codon recognition and peptidyl-tRNA hydrolysis, Cell, vol.100, pp.311-321, 2000.

T. M. Sonneborn, Nucleotide Sequence of a Gene: First Complete Specification, Science, vol.148, p.1410, 1965.

G. Souciet, B. Menand, J. Ovesna, A. Cosset, A. Dietrich et al., Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs, Eur J Biochem, vol.266, pp.848-854, 1999.

M. Sprinzl and F. Cramer, Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2'-or 3'-hydroxyl group of the terminal adenosine, Proceedings of the National Academy of Sciences of the United States of America, vol.72, pp.3049-3053, 1975.

G. Srinivasan, C. M. James, and J. A. Krzycki, Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA, Science, vol.296, pp.1459-1462, 2002.

I. Stansfield, K. M. Jones, V. V. Kushnirov, A. R. Dagkesamanskaya, A. I. Poznyakovski et al., The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae, The EMBO journal, vol.14, pp.4365-4373, 1995.

C. Stathopoulos, C. Jacquin-becker, H. D. Becker, T. Li, A. Ambrogelly et al., Methanococcus jannaschii prolyl-cysteinyl-tRNA synthetase possesses overlapping amino acid binding sites, Biochemistry, vol.40, pp.46-52, 2001.

D. A. Stroud, S. Oeljeklaus, S. Wiese, M. Bohnert, U. Lewandrowski et al., Composition and topology of the endoplasmic reticulum-mitochondria encounter structure, Journal of molecular biology, vol.413, pp.743-750, 2011.

F. V. Subach, O. M. Subach, I. S. Gundorov, K. S. Morozova, K. D. Piatkevich et al., Monomeric fluorescent timers that change color from blue to red report on cellular trafficking, Nat Chem Biol, vol.5, pp.118-126, 2009.

M. Sugiyama, S. P. Akase, R. Nakanishi, H. Horie, Y. Kaneko et al., Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae, Appl Environ Microbiol, vol.80, pp.3488-3495, 2014.

M. K. Sung and W. K. Huh, Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae, Yeast, vol.24, pp.767-775, 2007.

M. K. Sung, G. Lim, D. G. Yi, Y. J. Chang, E. B. Yang et al., Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast, Genome research, vol.23, pp.736-746, 2013.

D. F. Tardiff, N. T. Jui, V. Khurana, M. A. Tambe, M. L. Thompson et al., Yeast reveal a "druggable" Rsp5/Nedd4 network that ameliorates alpha-synuclein toxicity in neurons, Science, vol.342, pp.979-983, 2013.

T. Tatsuta, S. Augustin, M. Nolden, B. Friedrichs, and T. Langer, m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria, The EMBO journal, vol.26, pp.325-335, 2007.

A. B. Taylor, B. S. Smith, S. Kitada, K. Kojima, H. Miyaura et al., Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences, Structure, vol.9, pp.615-625, 2001.

A. Theobald-dietrich, M. Frugier, R. Giege, and J. Rudinger-thirion, Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA, Nucleic acids research, vol.32, pp.1091-1096, 2004.

L. H. Tolerico, A. L. Benko, J. P. Aris, D. R. Stanford, N. C. Martin et al., , 1999.

, Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations, Genetics, vol.151, pp.57-75

E. Tolkunova, H. Park, J. Xia, M. P. King, D. et al., The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript, The Journal of biological chemistry, vol.275, pp.35063-35069, 2000.

S. Treusch, S. Hamamichi, J. L. Goodman, K. E. Matlack, C. Y. Chung et al., Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast, Science, vol.334, pp.1241-1245, 2011.

F. J. Triana-alonso, K. Chakraburtty, and K. H. Nierhaus, The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor, The Journal of biological chemistry, vol.270, pp.20473-20478, 1995.

C. R. Trotta, F. Miao, E. A. Arn, S. W. Stevens, C. K. Ho et al., The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases, Cell, vol.89, pp.849-858, 1997.

K. N. Truscott, P. Kovermann, A. Geissler, A. Merlin, M. Meijer et al., A presequence-and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23, Nat Struct Biol, vol.8, pp.1074-1082, 2001.

R. Tsien and D. Prasher, GFP: Green Fluorescent Protein Strategies and Applications, 1997.

D. L. Tumbula, H. D. Becker, W. Z. Chang, and D. Soll, Domain-specific recruitment of amide amino acids for protein synthesis, Nature, vol.407, pp.106-110, 2000.
DOI : 10.1038/35024120

U. Turakhiya, K. Von-der-malsburg, V. A. Gold, B. Guiard, A. Chacinska et al., Protein Import by the Mitochondrial Presequence Translocase in the Absence of a Membrane Potential, Journal of molecular biology, vol.428, pp.1041-1052, 2016.

R. J. Turner, M. Lovato, and P. Schimmel, One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions, The Journal of biological chemistry, vol.275, pp.27681-27688, 2000.

A. Ullmann, F. Jacob, M. , and J. , Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of Escherichia coli, Journal of molecular biology, vol.24, pp.339-343, 1967.

M. A. Ussery, W. K. Tanaka, and B. Hardesty, Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells, Eur J Biochem, vol.72, pp.491-500, 1977.

M. Valencia-burton, R. M. Mccullough, C. R. Cantor, and N. E. Broude, RNA visualization in live bacterial cells using fluorescent protein complementation, Nat Methods, vol.4, pp.769-770, 2003.
DOI : 10.1038/nmeth1023

S. B. Van-engelenburg, P. , and A. E. , Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors, Nat Methods, vol.7, pp.325-330, 2010.

A. Van-hoof, P. Lennertz, P. , R. Van-rooyen, J. M. Murat et al., Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs, Assembly of the Novel Five-Component Apicomplexan MultiAminoacyl-tRNA Synthetase Complex Is Driven by the Hybrid Scaffold Protein Tg-p43. PloS one 9, vol.20, p.89487, 2000.

C. J. Vennegoor, A. L. Stols, and H. Bloemendal, More evidence for a particle character of aminoacyl-transfer RNA synthetases isolated from rat liver, Journal of molecular biology, vol.65, pp.375-378, 1972.

V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins, Chemistry & biology, vol.11, pp.845-854, 2004.

W. Vogt, Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free radical biology & medicine 18, pp.93-105, 1995.

F. N. Vogtle, S. Wortelkamp, R. P. Zahedi, D. Becker, C. Leidhold et al., Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability, Cell, vol.139, pp.428-439, 2009.

K. Vyas, S. Chaudhuri, D. W. Leaman, A. A. Komar, A. Musiyenko et al., , 2009.

, Genome-wide polysome profiling reveals an inflammation-responsive posttranscriptional operon in gamma interferon-activated monocytes, Molecular and cellular biology, vol.29, pp.458-470

R. M. Wachter, M. A. Elsliger, K. Kallio, G. T. Hanson, R. et al., Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein, Structure, vol.6, pp.1267-1277, 1998.

K. Wakasugi and P. Schimmel, Two distinct cytokines released from a human aminoacyl-tRNA synthetase, Science, vol.284, pp.147-151, 1999.
DOI : 10.1126/science.284.5411.147

K. Wakasugi, B. M. Slike, J. Hood, A. Otani, K. L. Ewalt et al., A human aminoacyl-tRNA synthetase as a regulator of angiogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.173-177, 2002.

G. S. Waldo, B. M. Standish, J. Berendzen, and T. C. Terwilliger, Rapid protein-folding assay using green fluorescent protein, Nature biotechnology, vol.17, pp.691-695, 1999.

I. Wallin, Symbionticism and the origin of species London, UK: Bailliere, 1927.

S. Wang and T. Hazelrigg, Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis, Nature, vol.369, pp.400-403, 1994.

W. W. Ward and S. H. Bokman, Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein, Biochemistry, vol.21, pp.4535-4540, 1982.

M. Watford, The urea cycle: a two-compartment system, Essays Biochem, vol.26, pp.49-58, 1991.

T. Wehrman, B. Kleaveland, J. H. Her, R. F. Balint, and H. M. Blau, Protein-protein interactions monitored in mammalian cells via complementation of beta-lactamase enzyme fragments, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.3469-3474, 2002.

N. Wei, Y. Shi, L. N. Truong, K. M. Fisch, T. Xu et al., Oxidative Stress Diverts tRNA Synthetase to Nucleus for Protection against DNA Damage, Molecular cell, 2014.

T. T. Weil, K. M. Forrest, and E. R. Gavis, Localization of bicoid mRNA in late oocytes is maintained by continual active transport, Dev Cell, vol.11, pp.251-262, 2006.

N. Wiedemann, M. Van-der-laan, D. P. Hutu, P. Rehling, and N. Pfanner, Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain, The Journal of cell biology, vol.179, pp.1115-1122, 2007.

M. Wilcox and M. Nirenberg, Transfer RNA as a cofactor coupling amino acid synthesis with that of protein, Proceedings of the National Academy of Sciences of the United States of America, vol.61, pp.229-236, 1968.

D. N. Wilson, D. Cate, and J. H. , The structure and function of the eukaryotic ribosome, Cold Spring Harb Perspect Biol, vol.4, 2012.

J. E. Wilusz, J. M. Whipple, E. M. Phizicky, and P. A. Sharp, tRNAs marked with CCACCA are targeted for degradation, Science, vol.334, pp.817-821, 2011.

C. R. Woese, On the evolution of the genetic code, Proceedings of the National Academy of Sciences of the United States of America, vol.54, pp.1546-1552, 1965.

F. C. Wong, P. J. Beuning, C. Silvers, and K. Musier-forsyth, An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing, The Journal of biological chemistry, vol.278, pp.52857-52864, 2003.

J. T. Wong, A co-evolution theory of the genetic code, Proceedings of the National Academy of Sciences of the United States of America, vol.72, pp.1909-1912, 1975.

S. S. Yadavalli and M. Ibba, Quality control in aminoacyl-tRNA synthesis its role in translational fidelity, Adv Protein Chem Struct Biol, vol.86, pp.1-43, 2012.

D. Yang, Y. Oyaizu, H. Oyaizu, G. J. Olsen, and C. R. Woese, Mitochondrial origins, Proceedings of the National Academy of Sciences of the United States of America, vol.82, pp.4443-4447, 1985.

F. Yang, L. G. Moss, G. N. Phillips, and . Jr, The molecular structure of green fluorescent protein, Nature biotechnology, vol.14, pp.1246-1251, 1996.

N. Yannay-cohen, I. Carmi-levy, G. Kay, C. M. Yang, J. M. Han et al., LysRS serves as a key signaling molecule in the immune response by regulating gene expression, Molecular cell, vol.34, pp.603-611, 2009.

P. Yao and P. L. Fox, A truncated tRNA synthetase directs a "translational trickle" of gene expression, Cell Cycle, vol.11, pp.1868-1869, 2012.

P. Yao, A. A. Potdar, A. Arif, P. S. Ray, R. Mukhopadhyay et al., Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression, Cell, vol.149, pp.88-100, 2012.
DOI : 10.1016/j.cell.2012.02.018

URL : https://doi.org/10.1016/j.cell.2012.02.018

M. L. Yeung, L. Houzet, V. S. Yedavalli, J. , and K. T. , A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication, The Journal of biological chemistry, vol.284, pp.19463-19473, 2009.

C. J. Yoo and S. L. Wolin, The yeast La protein is required for the 3' endonucleolytic cleavage that matures tRNA precursors, Cell, vol.89, pp.393-402, 1997.

T. Yoshihisa, K. Yunoki-esaki, C. Ohshima, N. Tanaka, and T. Endo, Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria, Molecular biology of the cell, vol.14, pp.3266-3279, 2003.

J. C. Young, N. J. Hoogenraad, and F. U. Hartl, Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70, Cell, vol.112, pp.41-50, 2003.
DOI : 10.1016/s0092-8674(02)01250-3

URL : https://doi.org/10.1016/s0092-8674(02)01250-3

M. M. Yusupov, G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest et al., Crystal structure of the ribosome at 5.5 A resolution, Science, vol.292, pp.883-896, 2001.

G. Zhouravleva, L. Frolova, X. Le-goff, R. Le-guellec, S. Inge-vechtomov et al., Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3, The EMBO journal, vol.14, pp.4065-4072, 1995.

X. Zhu, Y. Liu, Y. Yin, A. Shao, B. Zhang et al., MSC p43 required for axonal development in motor neurons, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.15944-15949, 2009.
DOI : 10.1073/pnas.0901872106

URL : http://www.pnas.org/content/106/37/15944.full.pdf

V. L. Zimyanin, K. Belaya, J. Pecreaux, M. J. Gilchrist, A. Clark et al., In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization, Cell, vol.134, pp.843-853, 2008.

M. Zywicki, K. Bakowska-zywicka, P. , and N. , Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis, Nucleic acids research, vol.40, pp.4013-4024, 2012.
DOI : 10.1093/nar/gks020

URL : https://academic.oup.com/nar/article-pdf/40/9/4013/16957087/gks020.pdf