C. Seeger, F. Zoulim, and W. M. Hepadnaviruses, , vol.6

W. Health, , 2014.

C. Trépo, H. Chan, and A. Lok, Hepatitis B virus infection, The Lancet, vol.384, pp.2053-2063, 2014.

M. B. Zeisel, J. Lucifora, W. S. Mason, C. Sureau, J. Beck et al., Towards an HBV cure: state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure, Gut, vol.64, pp.1314-1326, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157784

R. Zampino, C. Sagnelli, A. Boemio, E. Sagnelli, and N. Coppola, Treatment of chronic HBV infection in developing countries, Ann Hepatol, vol.15, pp.816-823, 2016.

H. B. El-serag, Epidemiology of viral hepatitis and hepatocellular carcinoma, Gastroenterology, vol.142, pp.1264-1273, 2012.

Y. T. Huang, C. L. Jen, H. I. Yang, M. H. Lee, J. Su et al., Lifetime risk and sex difference of hepatocellular carcinoma among patients with chronic hepatitis B and C, J Clin Oncol, vol.29, pp.3643-3650, 2011.

H. Y. Jiang, S. Y. Wang, M. Deng, Y. C. Li, Z. X. Ling et al., Immune response to hepatitis B vaccination among people with inflammatory bowel diseases: A systematic review and meta-analysis, Vaccine, vol.35, pp.2633-2641, 2017.

J. Wu and Z. J. Chen, Innate immune sensing and signaling of cytosolic nucleic acids, Annu Rev Immunol, vol.32, pp.461-488, 2014.

L. G. Guidotti and F. V. Chisari, Immunobiology and Pathogenesis of Viral Hepatitis, Annu. Rev. Pathol

, Mech. Dis, vol.1, pp.23-61, 2006.

S. H. Park and B. Rehermann, Immune responses to HCV and other hepatitis viruses, Immunity, vol.40, pp.13-24, 2014.

S. F. Wieland, R. Thimme, R. H. Purcell, and F. V. Chisari, Genomic analysis of the host response to hepatitis B virus infection, Proc Natl Acad Sci U S A, vol.101, pp.6669-6674, 2004.

F. V. Chisari, M. Isogawa, and S. F. Wieland, Pathogenesis of hepatitis B virus infection, Pathol Biol (Paris), vol.58, pp.258-266, 2010.

H. Kwon and A. S. Lok, Hepatitis B therapy, Nat Rev Gastroenterol Hepatol, vol.8, pp.275-284, 2011.

C. M. Croagh and J. S. Lubel, Natural history of chronic hepatitis B: phases in a complex relationship

, World J Gastroenterol, vol.20, pp.10395-10404, 2014.

R. A. Ponde, Atypical serological profiles in hepatitis B virus infection, Eur J Clin Microbiol Infect Dis, vol.32, pp.461-476, 2013.

H. L. Chan, Changing scene in hepatitis B serology interpretation, Hosp Med, vol.63, pp.16-19, 2002.

S. Chevaliez and J. M. Pawlotsky, Diagnosis and management of chronic viral hepatitis: antigens, antibodies and viral genomes, Best Pract Res Clin Gastroenterol, vol.22, pp.1031-1048, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00368349

J. Juszczyk, Clinical course and consequences of hepatitis B infection, Vaccine, vol.18, pp.23-25, 2002.

M. C. Jung and G. R. Pape, Immunology of hepatitis B infection, The Lancet Infectious Diseases, vol.2, pp.43-50, 2002.

T. J. Liang, Hepatitis B: the virus and disease, Hepatology, vol.49, pp.13-21, 2009.

B. Rehermann and M. Nascimbeni, Immunology of hepatitis B virus and hepatitis C virus infection

, Nat Rev Immunol, vol.5, pp.215-229, 2005.

D. Halegoua-de-marzio and H. W. Hann, Then and now: the progress in hepatitis B treatment over the past 20 years, World J Gastroenterol, vol.20, pp.401-413, 2014.

R. Gish, J. D. Jia, S. Locarmini, and F. Zoulim, Selection of chronic hepatitis B therapy with high barrier to resistance. The Lancet infectious diseases, vol.12, pp.341-353, 2012.

V. Rijckborst and H. L. Janssen, The Role of Interferon in Hepatitis B Therapy, Curr Hepat Rep, vol.9, pp.231-238, 2010.

G. Baltayiannis and P. Karayiannis, Treatment options beyond IFNalpha and NUCs for chronic HBV infection: expectations for tomorrow, J Viral Hepat, vol.21, pp.753-761, 2014.

M. Nassal, New insights into HBV replication: new opportunities for improved therapies, Future Virology, pp.55-70, 2009.

M. Umeda, H. Marusawa, H. Seno, A. Katsurada, M. Nabeshima et al.,

, Hepatitis B virus infection in lymphatic tissues in inactive hepatitis B carriers, J Hepatol, vol.42, pp.806-812, 2005.

H. J. Jin, H. T. Li, H. X. Sui, M. Q. Xue, Y. N. Wang et al., Nicotine stimulated bone marrowderived dendritic cells could augment HBV specific CTL priming by activating PI3K-Akt pathway

, Immunol Lett, vol.146, pp.40-49, 2012.

J. Song, S. Li, Y. Zhou, J. Liu, S. Francois et al., Different antiviral effects of IFNalpha subtypes in a mouse model of HBV infection, Sci Rep, vol.7, p.334, 2017.

A. Zanetto, A. Ferrarese, I. Bortoluzzi, P. Burra, and F. P. Russo, New Perspectives on Treatment of

, Hepatitis B Before and After Liver Transplantation. Annals of Transplantation, vol.21, pp.632-643, 2016.

A. Brind, J. Jiang, D. Samuel, M. Gigou, C. Feray et al., Evidence for selection of hepatitis B mutants after liver transplantation through peripheral blood mononuclear cell infection

, J Hepatol, vol.26, pp.228-235, 1997.

E. Loggi, F. Conti, A. Cucchetti, G. Ercolani, A. D. Pinna et al., Liver grafts from hepatitis B surface antigen-positive donors: A review of the literature, World J Gastroenterol, vol.22, pp.8010-8016, 2016.

L. Grellier, D. Mutimer, M. Ahmed, D. Brown, A. K. Burroughs et al., Lamivudine prophylaxis against reinfection in liver transplantation for hepatitis B cirrhosis, The Lancet, vol.348, pp.1212-1215, 1996.

X. Y. Fu, D. M. Tan, C. M. Liu, B. Gu, L. H. Hu et al., Early hepatitis B viral DNA clearance predicts treatment response at week 96, World J Gastroenterol, vol.23, pp.2978-2986, 2017.

M. F. Yuen, W. K. Seto, D. H. Chow, K. Tsui, D. K. Wong et al., Long-term lamivudine therapy reduces the risk of long-term complications of chronic hepatitis B infection even in patients without advanced disease, Antivir Ther, vol.12, pp.1295-1303, 2006.

A. R. Zanetti, P. Van-damme, and D. Shouval, The global impact of vaccination against hepatitis B: a historical overview, Vaccine, vol.26, pp.6266-6273, 2008.

W. Szmuness, C. E. Stevens, E. A. Zang, E. J. Harley, and A. Kellner, A controlled clinical trial of the efficacy of the hepatitis B vaccine (Heptavax B): a final report, Hepatology, vol.1, pp.377-385, 1981.

K. Tajiri and Y. Shimizu, Unsolved problems and future perspectives of hepatitis B virus vaccination

, World J Gastroenterol, vol.21, pp.7074-7083, 2015.

C. M. Fauquet, M. A. Mayo, and J. Maniloff, Virus Taxonomy: Eighth Report of the International Committee of Taxonomy of Viruses, 2005.

T. Piasecki, G. W. Harkins, K. Chrzastek, L. Julian, D. P. Martin et al., Avihepadnavirus diversity in parrots is comparable to that found amongst all other avian species, Virology, vol.438, pp.98-105, 2013.

T. Piasecki, B. Kurenbach, K. Chrzastek, K. Bednarek, S. Kraberger et al., Molecular characterisation of an avihepadnavirus isolated from Psittacula krameri (ring-necked parrot), Arch Virol, vol.157, pp.585-590, 2012.

J. F. Drexler, A. Geipel, A. Konig, V. M. Corman, D. Van-riel et al., Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes, Proc Natl Acad Sci U S A, vol.110, pp.16151-16156, 2013.

D. Paraskevis, G. Magiorkinis, E. Magiorkinis, S. Y. Ho, R. Belshaw et al., Dating the origin and dispersal of hepatitis B virus infection in humans and primates, Hepatology, vol.57, pp.908-916, 2013.

D. S. Dane, C. H. Cameron, and M. Briggs, Virus-like particles in serum of patients with Australiaantigen-associated hepatitis, Lancet, vol.1, pp.695-698, 1970.

W. S. Robinson, D. A. Clayton, and R. L. Greenman, DNA of a Human Hepatitis B Virus Candidate, J Virol, vol.14, pp.384-391, 1974.

. P. Kaplan, R. L. Greenman, J. L. Gerin, R. H. Purcell, and W. S. Robinson, DNA polymerase associated with human hepatitis B antigen, J Virol, vol.12, pp.995-1005, 1973.

S. Urban, R. Bartenschlager, R. Kubitz, and F. Zoulim, Strategies to inhibit entry of HBV and HDV into hepatocytes, Gastroenterology, vol.147, pp.48-64, 2014.

M. Blanchet and C. Sureau, Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues, J Virol, vol.81, pp.5841-5849, 2007.

R. J. Gilbert, L. Beales, D. Blond, M. N. Simon, B. Y. Lin et al., Hepatitis B small surface antigen particles are octahedral, Proc Natl Acad Sci U S A, vol.102, pp.14783-14788, 2005.

K. H. Heermann, U. Goldmann, W. Schwartz, T. Seyffarth, H. Baumgarten et al., Large surface proteins of hepatitis B virus containing the pre-s sequence, J Virol, vol.52, pp.396-402, 1984.

C. Seeger and W. S. Mason, Molecular biology of hepatitis B virus infection, Virology, pp.672-686, 2015.

W. H. Gerlich and W. S. Robinson, Hepatitis B virus contains protein attached to the 5' terminus of its complete DNA strand, Cell, vol.21, 1980.

J. Summers, A. O'connell, and I. Millman, Genome of hepatitis B virus: Restriction enzyme cleavage and structure of DNA extracted from Dane particles Proc, Nat. Acad. Sci. USA, vol.72, pp.4597-4601, 1975.

H. Delius, N. M. Gough, C. H. Cameron, and K. Murray, Structure of the hepatitis B virus genome, J Virol, vol.47, 1983.

K. M. Haines and D. D. Loeb, The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis in hepatitis B virus, J Mol Biol, vol.370, pp.471-480, 2007.

R. Bartenschlager and . Schaller-h, The amino-terminal domain of the hepadnaviral P-gene encodes the terminal protein (genome-linked protein) believed to prime reverse transcription, The EMBO J, vol.7, pp.4185-4192, 1988.

R. G. Gish, B. D. Given, C. L. Lai, S. A. Locarnini, J. Y. Lau et al., Chronic hepatitis B: Virology, natural history, current management and a glimpse at future opportunities, Antiviral Res, vol.121, pp.47-58, 2015.

G. Doitsh and Y. Shaul, Enhancer I Predominance in Hepatitis B Virus Gene Expression, Molecular and Cellular Biology, vol.24, pp.1799-1808, 2004.

H. Yan, Y. Liu, J. Sui, and W. Li, NTCP opens the door for hepatitis B virus infection, Antiviral Res, vol.121, pp.24-30, 2015.

W. J. Mcaleer, E. B. Buynak, R. Z. Maigetter, D. E. Wampler, W. J. Miller et al., Human hepatitis B vaccine from recombinate yeast, Nature, p.307, 1984.

B. M. Chain and R. Myers, Variability and conservation in hepatitis B virus core protein, BMC Microbiol, vol.5, p.33, 2005.

J. F. Conway, N. Cheng, A. Zlotnick, P. T. Wingfield, S. J. Stahl et al., Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy, Nature, vol.3386, pp.91-94, 1997.

Z. Tan, M. L. Maguire, D. D. Loeb, and A. Zlotnick, Genetically altering the thermodynamics and kinetics of hepatitis B virus capsid assembly has profound effects on virus replication in cell culture, J Virol, vol.87, pp.3208-3216, 2013.

J. Jung, S. G. Hwang, Y. J. Chwae, S. Park, H. J. Shin et al., Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication, J Virol, vol.88, pp.8754-8767, 2014.

S. H. Basagoudanavar, D. H. Perlman, and J. Hu, Regulation of hepadnavirus reverse transcription by dynamic nucleocapsid phosphorylation, J Virol, vol.81, pp.1641-1649, 2007.

K. Liu, L. Ludgate, Z. Yuan, J. Hu, and G. Mcfadden, Regulation of Multiple Stages of Hepadnavirus Replication by the Carboxyl-Terminal Domain of Viral Core Protein in trans, Journal of Virology, vol.89, pp.2918-2930, 2015.

C. T. Bock, S. Schwinn, S. Locarnini, J. Fyfe, M. P. Manns et al., Structural organization of the hepatitis B virus minichromosome, J Mol Biol, vol.307, pp.183-196, 2001.

T. Pollicino, L. Belloni, G. Raffa, N. Pediconi, G. Squadrito et al., Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones, Gastroenterology, vol.130, pp.823-837, 2006.

P. Pumpens and E. Grens, Hepatitis B core particles as a universal display model: a structure-function basis for development, FEBS Lett, vol.442, pp.1-6, 1999.

A. Zlotnick, Z. Tan, and L. Selzer, One protein, at least three structures, and many functions, Structure, vol.21, pp.6-8, 2013.

J. F. Wu, H. Y. Hsu, Y. H. Ni, H. L. Chen, T. C. Wu et al., Suppression of furin by interferon-gamma and the impact on hepatitis B virus antigen biosynthesis in human hepatocytes, Am J Pathol, vol.181, pp.19-25, 2012.

J. Wang, A. S. Lee, and J. H. Ou, Proteolytic conversion of hepatitis B virus e antigen precursor to end product occurs in a postendoplasmic reticulum compartment, J Virol, vol.65, pp.5080-5083, 1991.

M. T. Chen, J. N. Billaud, M. Sallberg, L. G. Guidotti, F. V. Chisari et al., A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen, Proc Natl Acad Sci U S A, vol.101, pp.14913-14918, 2004.

M. Chen, M. Sallberg, J. Hughes, J. Jones, L. G. Guidotti et al., Immune tolerance split between hepatitis B virus precore and core proteins, J Virol, vol.79, pp.3016-3027, 2005.

M. A. Dimattia, N. R. Watts, S. J. Stahl, J. M. Grimes, A. C. Steven et al., Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein, Structure, vol.21, pp.133-142, 2013.

L. J. Stuyver, S. A. Locarnini, A. Lok, D. D. Richman, W. F. Carman et al.,

, Nomenclature for antiviral-resistant human hepatitis B virus mutations in the polymerase region, Hepatology, vol.33, pp.751-757, 2001.

D. N. Clark and J. Hu, Unveiling the roles of HBV polymerase for new antiviral strategies, Future Virol, vol.10, pp.283-295, 2015.

F. Zoulim, J. Saputelli, and C. Seeger, Woodchuck hepatitis virus X protein is required for viral infection in vivo, J Virol, vol.68, pp.2026-2030, 1994.

M. Weber, V. Bronsema, H. Bartos, A. Bosserhoff, R. Bartenschlager et al., Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription, J Virol, vol.68, pp.2994-2999, 1994.

P. Chen, Y. Gan, N. Han, W. Fang, J. Li et al., Computational evolutionary analysis of the overlapped surface (S) and polymerase (P) region in hepatitis B virus indicates the spacer domain in P is crucial for survival, PLoS One, vol.8, p.60098, 2013.

G. Radziwill, W. Tucker, and H. Schaller, Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity, J Virol, vol.64, pp.613-620, 1990.

A. W. Walsh, D. R. Langley, R. J. Colonno, and D. J. Tenney, Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir, PLoS One, vol.5, 2010.

L. Menendez-arias, M. Alvarez, and B. Pacheco, Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance, Curr Opin Virol, vol.8, pp.1-9, 2014.

Y. Xiong and T. Eickbush, Origin and evolution of retroelements based upon their reverse transcriptase sequences, The EMBO J, vol.9, pp.3353-3362, 1990.

R. Bartenschlager and J. Schaller-h, The P Gene Product of Hepatitis B

, Virus Is Required as a Structural Component for Genomic RNA Encapsidation, Journal of Virology, vol.64, pp.5324-5332, 1990.

J. Li, Y. Du, X. Liu, Q. C. Shen, A. L. Huang et al., Binding sensitivity of adefovir to the polymerase from different genotypes of HBV: molecular modeling, docking and dynamics simulation studies, Acta Pharmacol Sin, vol.34, pp.319-328, 2013.

J. Lucifora, S. Arzberger, D. Durantel, L. Belloni, M. Strubin et al., Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection, J Hepatol, vol.55, pp.996-1003, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00850162

T. L. Gearhart and M. J. Bouchard, The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication, J Virol, vol.84, pp.2675-2686, 2010.

B. L. Slagle and M. J. Bouchard, Hepatitis B Virus X and Regulation of Viral Gene Expression, Cold Spring Harb Perspect Med, vol.6, 2016.

S. Rawat and M. J. Bouchard, The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival, JVI, vol.89, pp.999-1012, 2015.

T. L. Gearhart and M. J. Bouchard, Replication of the hepatitis B virus requires a calcium-dependent

, HBx-induced G1 phase arrest of hepatocytes, Virology, vol.407, pp.14-25, 2010.

M. J. Bouchard and R. J. Schneider, The enigmatic X gene of hepatitis B virus, J Virol, vol.78, pp.12725-12734, 2004.

A. Hsieh, H. S. Kim, S. O. Lim, D. Y. Yu, and G. Jung, Hepatitis B viral X protein interacts with tumor suppressor adenomatous polyposis coli to activate Wnt/beta-catenin signaling, Cancer Lett, vol.300, pp.162-172, 2011.

S. Iyer and J. D. Groopman, Interaction of mutant hepatitis B X protein with p53 tumor suppressor protein affects both transcription and cell survival, Mol Carcinog, vol.50, pp.972-980, 2011.

W. S. Mason, G. Seal, and J. Summers, Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus, J Virol, vol.36, pp.829-836, 1980.

J. Summers and W. Mason, Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate, Cell, vol.29, pp.403-415, 1982.

H. Yan, G. Zhong, G. Xu, W. He, Z. Jing et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus, 2012.

E. R. Verrier, C. C. Colpitts, C. Bach, L. Heydmann, A. Weiss et al., A Targeted Functional RNA Interference Screen Uncovers Glypican 5 as an Entry Factor for Hepatitis B and D Viruses, Hepatology, vol.63, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01796197

A. Schulze, P. Gripon, and S. Urban, Hepatitis B virus infection initiates with a large surface proteindependent binding to heparan sulfate proteoglycans, Hepatology, vol.46, pp.1759-1768, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690474

T. Claro-da-silva, J. E. Polli, and P. W. Swaan, The solute carrier family 10 (SLC10): beyond bile acid transport, Mol Aspects Med, vol.34, pp.252-269, 2013.

Y. Ni, F. A. Lempp, S. Mehrle, S. Nkongolo, C. Kaufman et al., Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes, Gastroenterology, vol.146, pp.1070-1083, 2014.

H. C. Huang, C. C. Chen, W. C. Chang, M. H. Tao, and C. Huang, Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis, J Virol, vol.86, pp.9443-9453, 2012.

A. Macovei, C. Radulescu, C. Lazar, S. Petrescu, D. Durantel et al., Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells, J Virol, vol.84, pp.243-253, 2010.

M. L. Blondot, V. Bruss, and M. Kann, Intracellular transport and egress of hepatitis B virus, J Hepatol, vol.64, pp.49-59, 2016.

B. Rabe, A. Vlachou, N. Pante, A. Helenius, and M. Kann, Nuclear import of hepatitis B virus capsids and release of the viral genome, Proc Natl Acad Sci U S A, vol.100, pp.9849-9854, 2003.

A. Schmitz, A. Schwarz, M. Foss, L. Zhou, B. Rabe et al.,

M. Nassal, HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B, Gut, vol.64, pp.1972-1984, 2015.

M. Levrero, T. Pollicino, J. Petersen, L. Belloni, G. Raimondo et al., Control of cccDNA function in hepatitis B virus infection, J Hepatol, vol.51, pp.581-592, 2009.

C. T. Bock, P. Schranz, C. H. Schröder, and H. Zentgraf, Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell, Virus Genes, vol.8, pp.215-229, 1994.

R. Bartenschlager and H. S. , Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome, The EMBO, vol.11, pp.3413-3420, 1992.

A. Rieger and M. Nassal, Specific Hepatitis B Virus Minus-Strand DNA Synthesis Requires Only the

, Encapsidation Signal and the 39-Proximal Direct Repeat DR1, J Virol, pp.585-589, 1996.

R. C. Hirsch, D. D. Loeb, J. R. Pollack, and D. Ganem, cis-acting sequences required for encapsidation of duck hepatitis B virus pregenomic RNA, J Virol, vol.65, pp.3309-3316, 1991.

G. H. Wang and C. Seeger, Novel Mechanism for Reverse Transcription in Hepatitis B Viruses, Journal of Virology, vol.67, pp.6507-6512, 1993.

F. Zoulim and C. Seeger, Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase, J Virol, vol.68, pp.6-13, 1994.

R. C. Hirsch, J. E. Lavine, L. J. Chang, H. E. Varmus, and D. Ganem, Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription, Nature, vol.344, pp.552-555, 1990.

T. B. Lentz and D. D. Loeb, Roles of the envelope proteins in the amplification of covalently closed circular DNA and completion of synthesis of the plus-strand DNA in hepatitis B virus, J Virol, vol.85, pp.11916-11927, 2011.

S. Locarnini and W. S. Mason, Cellular and virological mechanisms of HBV drug resistance, J Hepatol, vol.44, pp.422-431, 2006.

J. Kock, C. Rosler, J. J. Zhang, H. E. Blum, M. Nassal et al., Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner, PLoS Pathog, vol.6, p.1001082, 2010.

J. H. Ou and W. J. Rutter, Regulation of Secretion of the Hepatitis B Virus Major Surface Antigen by the PreS-1 Protein, JVI, vol.61, pp.782-786, 1987.

E. J. Patzer, G. R. Nakamura, C. C. Simonsen, A. D. Levinson, and R. Brands, Intracellular assembly and packaging of hepatitis B surface antigen particles occur in the endoplasmic reticulum, J Virol, vol.58, pp.884-892, 1986.

C. A. Janeway, Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb Symp Quant Biol, vol.54, pp.1-1, 1989.

C. Watts, M. A. West, and R. Zaru, TLR signalling regulated antigen presentation in dendritic cells, Curr Opin Immunol, vol.22, pp.124-130, 2010.

L. B. Ivashkiv and L. T. Donlin, Regulation of type I interferon responses, Nat Rev Immunol, vol.14, pp.36-49, 2014.

M. R. Capobianchi, E. Uleri, C. Caglioti, and A. Dolei, Type I IFN family members: similarity, differences and interaction, Cytokine Growth Factor Rev, vol.26, pp.103-111, 2015.

C. Gurtler and A. G. Bowie, Innate immune detection of microbial nucleic acids, Trends Microbiol, vol.21, pp.413-420, 2013.

A. Bertoletti and C. Ferrari, Adaptive immunity in HBV infection, J Hepatol, vol.64, pp.71-83, 2016.

E. Thomas and T. J. Liang, Experimental models of hepatitis B and C-new insights and progress, Nat Rev Gastroenterol Hepatol, vol.13, pp.362-374, 2016.

S. Gordon, Pattern recognition receptors: doubling up for the innate immune response, Cell, vol.111, pp.927-930, 2002.

C. A. Janeway and R. Medzhitov, Innate immune recognition, Annu Rev Immunol, vol.20, pp.197-216, 2002.

T. H. Mogensen, Pathogen recognition and inflammatory signaling in innate immune defenses

, Clin Microbiol Rev, vol.22, pp.240-273, 2009.

S. E. Hardison and G. D. Brown, C-type lectin receptors orchestrate antifungal immunity, Nat Immunol, vol.13, pp.817-822, 2012.

R. Barbalat, S. E. Ewald, M. L. Mouchess, and G. M. Barton, Nucleic acid recognition by the innate immune system, Annu Rev Immunol, vol.29, pp.185-214, 2011.

B. Opitz, A. Puschel, B. Schmeck, A. C. Hocke, S. Rosseau et al.,

, Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae, J Biol Chem, vol.279, pp.36426-36432, 2004.

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Tolllike receptors, Nat Immunol, vol.11, pp.373-384, 2010.

Z. Shi, Z. Cai, A. Sanchez, T. Zhang, S. Wen et al., A novel Toll-like receptor that recognizes vesicular stomatitis virus, J Biol Chem, vol.286, pp.4517-4524, 2011.

R. Pifer, A. Benson, C. R. Sturge, and F. Yarovinsky, UNC93B1 is essential for TLR11 activation and IL12-dependent host resistance to Toxoplasma gondii, J Biol Chem, vol.286, pp.3307-3314, 2011.

W. A. Andrade, C. Souza-mdo, E. Ramos-martinez, K. Nagpal, M. S. Dutra et al.,

D. C. , Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice, Cell Host Microbe, vol.13, pp.42-53, 2013.

A. M. Krieg, AIMing 2 defend against intracellular pathogens, Nat Immunol, vol.11, pp.367-369, 2010.

C. Leong, H. Oshiumi, T. Suzuki, M. Matsumoto, and T. Seya, Nucleic Acid Sensors Involved in the Recognition of HBV in the Liver-Specific in vivo Transfection Mouse Models-Pattern Recognition Receptors and Sensors for HBV, Medical Sciences, vol.3, pp.16-24, 2015.

B. Shi, G. Ren, Y. Hu, S. Wang, Z. Zhang et al., HBsAg inhibits IFN-alpha production in plasmacytoid dendritic cells through TNF-alpha and IL-10 induction in monocytes, PLoS One, vol.7, p.44900, 2012.

S. Wang, Z. Chen, C. Hu, F. Qian, Y. Cheng et al., Hepatitis B virus surface antigen selectively inhibits TLR2 ligand-induced IL-12 production in monocytes/macrophages by interfering with JNK activation, J Immunol, vol.190, pp.5142-5151, 2013.

J. Wu, Z. Meng, M. Jiang, R. Pei, M. Trippler et al., Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells, Hepatology, vol.49, pp.1132-1140, 2009.

D. Liu, A. Wu, L. Cui, R. Hao, Y. Wang et al., Hepatitis B virus polymerase suppresses NF

M. Karimi-googheri, H. Daneshvar, M. Khaleghinia, R. Bidaki, K. Arababadi et al., Decreased Expressions of STING but not IRF3 Molecules in Chronic HBV Infected Patients, Arch Iran Med, vol.18, pp.351-354, 2015.

Z. Chen, Y. Cheng, Y. Xu, J. Liao, X. Zhang et al., Expression profiles and function of Toll-like receptors 2 and 4 in peripheral blood mononuclear cells of chronic hepatitis B patients, Clin Immunol, vol.128, pp.400-408, 2008.

K. J. Lin, T. M. Lin, C. H. Wang, H. C. Liu, Y. L. Lin et al., Down-regulation of Toll-like receptor 7 expression in hepatitis-virus-related human hepatocellular carcinoma, Hum Pathol, vol.44, pp.534-541, 2013.

J. F. Wu, C. H. Chen, Y. H. Ni, Y. T. Lin, H. L. Chen et al., Toll-like receptor and hepatitis B virus clearance in chronic infected patients: a long-term prospective cohort study in Taiwan, J Infect Dis, vol.206, pp.662-668, 2012.

S. Yu, J. Chen, M. Wu, H. Chen, N. Kato et al., Hepatitis B virus polymerase inhibits RIG-I-and

, Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBK1/IKKepsilon and DDX3, J Gen Virol, vol.91, pp.2080-2090, 2010.

I. E. Vincent, C. Zannetti, J. Lucifora, H. Norder, U. Protzer et al., Hepatitis B virus impairs TLR9 expression and function in plasmacytoid dendritic cells, PLoS One, vol.6, p.26315, 2011.

M. Yoneyama, M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi et al., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses

, Nat Immunol, vol.5, pp.730-737, 2004.

T. D. Kanneganti, M. Lamkanfi, and G. Nunez, Intracellular NOD-like receptors in host defense and disease, Immunity, vol.27, pp.549-559, 2007.

C. J. Desmet and K. J. Ishii, Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination, Nat Rev Immunol, vol.12, pp.479-491, 2012.

Y. K. Chan and M. U. Gack, Viral evasion of intracellular DNA and RNA sensing, Nat Rev Microbiol, vol.14, pp.360-373, 2016.

D. Iwakiri and K. Takada, Role of EBERs in the Pathogenesis of EBV Infection, vol.107, pp.119-136, 2010.

K. Brulois and J. U. Jung, Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system, Cytokine Growth Factor Rev, vol.25, pp.597-609, 2014.

S. B. Rasmussen, S. B. Jensen, C. Nielsen, E. Quartin, H. Kato et al., Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene-like receptors, which synergize to induce type I interferon production, J Gen Virol, vol.90, pp.74-78, 2009.

D. Goubau, S. Deddouche, and C. Reis-e-sousa, Cytosolic sensing of viruses, Immunity, vol.38, pp.855-869, 2013.

S. Sato, K. Li, T. Kameyama, T. Hayashi, Y. Ishida et al., The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus, Immunity, vol.42, pp.123-132, 2015.

H. Kato, O. Takeuchi, E. Mikamo-satoh, R. Hirai, T. Kawai et al., Lengthdependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5, J Exp Med, vol.205, pp.1601-1610, 2008.

J. Rehwinkel, C. P. Tan, D. Goubau, O. Schulz, A. Pichlmair et al., RIG-I detects viral genomic RNA during negative-strand RNA virus infection, Cell, vol.140, pp.397-408, 2010.

A. Sabbah, T. H. Chang, R. Harnack, V. Frohlich, K. Tominaga et al., Activation of innate immune antiviral responses by Nod2, Nat Immunol, vol.10, pp.1073-1080, 2009.

S. E. Brennan-laun, H. J. Ezelle, X. L. Li, and B. A. Hassel, RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting, J Interferon Cytokine Res, vol.34, pp.275-288, 2014.

X. Cui, D. N. Clark, K. Liu, X. D. Xu, J. T. Guo et al., Viral DNA-Dependent Induction of Innate Immune Response to Hepatitis B Virus in Immortalized Mouse Hepatocytes, J Virol, vol.90, pp.486-496, 2016.

H. Wang and W. S. Ryu, Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion, PLoS Pathog, vol.6, p.1000986, 2010.

H. L. Lu and F. Liao, Melanoma differentiation-associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication, J Immunol, vol.191, pp.3264-3276, 2013.

I. Mozer-lisewska, A. Kowala-piaskowska, A. Mania, R. Jenek, H. Samara et al.,

, Expression of pattern recognition receptors in liver biopsy specimens of children chronically infected with HBV and HCV, Folia Histochem. Cytobiol, p.49, 2011.

X. Cai, Y. H. Chiu, and Z. J. Chen, The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling, Mol Cell, vol.54, pp.289-296, 2014.

S. R. Paludan and A. G. Bowie, Immune sensing of DNA, Immunity, vol.38, pp.870-880, 2013.

S. E. Keating, M. Baran, and A. G. Bowie, Cytosolic DNA sensors regulating type I interferon induction

, Trends Immunol, vol.32, pp.574-581, 2011.

L. Unterholzner, The interferon response to intracellular DNA: why so many receptors?, Immunobiology, vol.218, pp.1312-1321, 2013.

S. F. Wieland, R. G. Vega, R. Muller, C. F. Evans, B. Hilbush et al., Searching for Interferon-Induced Genes That Inhibit Hepatitis B Virus Replication in Transgenic Mouse Hepatocytes, Journal of Virology, vol.77, pp.1227-1236, 2003.

Q. Y. Chen, Y. H. Liu, J. H. Li, Z. K. Wang, J. X. Liu et al., DNA-dependent activator of interferonregulatory factors inhibits hepatitis B virus replication, World J Gastroenterol, vol.18, pp.2850-2858, 2012.

Z. Zhang, B. Yuan, M. Bao, N. Lu, T. Kim et al., The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells, Nat Immunol, vol.12, pp.959-965, 2011.

V. A. Rathinam, Z. Jiang, S. N. Waggoner, S. Sharma, L. E. Cole et al., The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses, Nat Immunol, vol.11, pp.395-402, 2010.

J. Zhen, L. Zhang, J. Pan, S. Ma, X. Yu et al., AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1beta, and IL-18, Mediators Inflamm, 2014.

M. H. Orzalli, N. M. Broekema, B. A. Diner, D. C. Hancks, N. C. Elde et al., cGASmediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection, Proc Natl Acad Sci U S A, vol.112, pp.1773-1781, 2015.

L. Sun, J. Wu, F. Du, X. Chen, and Z. J. , Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway, 2013.

S. F. Wieland and F. V. Chisari, Stealth and cunning: hepatitis B and hepatitis C viruses, J Virol, vol.79, pp.9369-9380, 2005.

H. Dansako, Y. Ueda, N. Okumura, S. Satoh, M. Sugiyama et al., The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly, FEBS J, vol.283, pp.144-156, 2016.

J. Wu, L. Sun, X. Chen, F. Du, H. Shi et al., Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA, Science, vol.339, 2013.

X. Wu, F. H. Wu, X. Wang, L. Wang, J. N. Siedow et al., Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING, Nucleic Acids Res, vol.42, pp.8243-8257, 2014.

F. Civril, T. Deimling, C. C. De-oliveira-mann, A. Ablasser, M. Moldt et al., Structural mechanism of cytosolic DNA sensing by cGAS, Nature, vol.498, pp.332-337, 2013.

P. J. Kranzusch, A. S. Lee, J. M. Berger, and J. A. Doudna, Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity, Cell Rep, vol.3, pp.1362-1368, 2013.

P. Gao, M. Ascano, Y. Wu, W. Barchet, B. L. Gaffney et al., 5')pA(3',5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase, Cell, vol.153, issue.2, pp.1094-1107, 2013.

X. Zhang, J. Wu, F. Du, H. Xu, L. Sun et al., The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop, Cell Rep, vol.6, pp.421-430, 2014.

X. Li, C. Shu, G. Yi, C. T. Chaton, C. L. Shelton et al., Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization, Immunity, vol.39, pp.1019-1031, 2013.

Q. Yin, T. M. Fu, J. Li, and H. Wu, Structural biology of innate immunity, Annu Rev Immunol, vol.33, pp.393-416, 2015.

A. K. Mankan, T. Schmidt, D. Chauhan, M. Goldeck, K. Honing et al.,

, Cytosolic RNA:DNA hybrids activate the cGAS-STING axis, EMBO J, vol.33, pp.2937-2946, 2014.

A. M. Herzner, C. A. Hagmann, M. Goldeck, S. Wolter, K. Kubler et al.,

, Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA, Nat Immunol, vol.16, pp.1025-1033, 2015.

Q. Liang, G. J. Seo, Y. J. Choi, M. J. Kwak, J. Ge et al., Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses, Cell Host Microbe, vol.15, pp.228-238, 2014.

G. J. Seo, A. Yang, B. Tan, S. Kim, Q. Liang et al., Akt Kinase-Mediated Checkpoint of cGAS DNA Sensing Pathway, Cell Rep, vol.13, pp.440-449, 2015.

P. Xia, B. Ye, S. Wang, X. Zhu, Y. Du et al., Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity, Nat Immunol, vol.17, pp.369-378, 2016.

C. Shu, X. Li, and P. Li, The mechanism of double-stranded DNA sensing through the cGAS-STING pathway, Cytokine Growth Factor Rev, vol.25, pp.641-648, 2014.

A. Ablasser, J. L. Schmid-burgk, I. Hemmerling, G. L. Horvath, T. Schmidt et al., Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP, Nature, vol.503, pp.530-534, 2013.

A. Bridgeman, J. Maelfait, T. Davenne, T. Partridge, Y. Peng et al., Viruses transfer the antiviral second messenger cGAMP between cells, Science, vol.349, pp.1228-1232, 2015.

M. Gentili, J. Kowal, M. Tkach, T. Satoh, X. Lahaye et al., Transmission of innate immune signaling by packaging of cGAMP in viral particles, Science, vol.349, pp.1232-1236, 2015.

Q. Chen, L. Sun, and Z. J. Chen, Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing, Nat Immunol, vol.17, pp.1142-1149, 2016.

X. D. Li, J. Wu, D. Gao, H. Wang, L. Sun et al., Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects, Science, vol.342, 2013.

H. Ishikawa, Z. Ma, and G. N. Barber, STING regulates intracellular DNA-mediated, type I interferondependent innate immunity, Nature, vol.461, pp.788-792, 2009.

J. W. Schoggins, D. A. Macduff, N. Imanaka, M. D. Gainey, B. Shrestha et al., Panviral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity, Nature, vol.505, pp.691-695, 2014.

Z. Ma, S. R. Jacobs, J. A. West, C. Stopford, Z. Zhang et al., Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses, Proc Natl Acad Sci U S A, vol.112, pp.4306-4315, 2015.

E. Lam, S. Stein, and E. Falck-pedersen, Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade, J Virol, vol.88, pp.974-981, 2014.

N. Sunthamala, F. Thierry, S. Teissier, C. Pientong, B. Kongyingyoes et al.,

U. Sangkomkamhang, E2 proteins of high risk human papillomaviruses down-modulate STING and IFN-kappa transcription in keratinocytes, PLoS One, vol.9, p.91473, 2014.

J. Paijo, M. Doring, J. Spanier, E. Grabski, M. Nooruzzaman et al., cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells

, PLoS Pathog, vol.12, p.1005546, 2016.

A. P. West, W. Khoury-hanold, M. Staron, M. C. Tal, C. M. Pineda et al.,

, Mitochondrial DNA stress primes the antiviral innate immune response, Nature, vol.520, pp.553-557, 2015.

B. Sun, K. B. Sundstrom, J. J. Chew, P. Bist, E. S. Gan et al., Dengue virus activates cGAS through the release of mitochondrial DNA, Sci Rep, vol.7, p.3594, 2017.

M. H. Christensen and S. R. Paludan, Viral evasion of DNA-stimulated innate immune responses, Cell Mol Immunol, vol.14, pp.4-13, 2017.

D. Gao, J. Wu, Y. T. Wu, F. Du, C. Aroh et al., Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses, Science, vol.341, pp.903-906, 2013.

M. R. Jakobsen, R. O. Bak, A. Andersen, R. K. Berg, S. B. Jensen et al.,

, DNA forms of the lentiviral replication cycle and controls HIV-1 replication, Proc Natl Acad Sci U S A, vol.110, pp.4571-4580, 2013.

K. A. Horan, K. Hansen, M. R. Jakobsen, C. K. Holm, S. Soby et al.,

, Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors, J Immunol, vol.190, pp.2311-2319, 2013.

K. E. Johnson, L. Chikoti, and B. Chandran, Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes, J Virol, vol.87, pp.5005-5018, 2013.

T. Li, J. Chen, and I. M. Cristea, Human cytomegalovirus tegument protein pUL83 inhibits IFI16mediated DNA sensing for immune evasion, Cell Host Microbe, vol.14, pp.591-599, 2013.

N. Kerur, M. V. Veettil, N. Sharma-walia, V. Bottero, S. Sadagopan et al., IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection, Cell Host Microbe, vol.9, pp.363-375, 2011.

M. A. Ansari, V. V. Singh, S. Dutta, M. V. Veettil, D. Dutta et al., Constitutive interferoninducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells, J Virol, vol.87, pp.8606-8623, 2013.

V. Hornung, A. Ablasser, M. Charrel-dennis, F. Bauernfeind, G. Horvath et al.,

, AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC, Nature, vol.458, pp.514-518, 2009.

T. E. Abbink and B. Berkhout, HIV-1 reverse transcription initiation: a potential target for novel antivirals?, Virus Res, vol.134, pp.4-18, 2008.

D. C. Beachboard and S. M. Horner, Innate immune evasion strategies of DNA and RNA viruses

, Opin Microbiol, vol.32, pp.113-119, 2016.

J. J. Wu, W. Li, Y. Shao, D. Avey, B. Fu et al., Inhibition of cGAS DNA Sensing by a

, Herpesvirus Virion Protein. Cell Host Microbe, vol.18, pp.333-344, 2015.

G. Zhang, B. Chan, N. Samarina, B. Abere, M. Weidner-glunde et al., Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS, Proc Natl Acad Sci U S A, vol.113, pp.1034-1043, 2016.

M. H. Christensen, S. B. Jensen, J. J. Miettinen, S. Luecke, T. Prabakaran et al., HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression, EMBO J, vol.35, pp.1385-1399, 2016.

L. Lau, E. E. Gray, R. L. Brunette, and D. B. Stetson, DNA tumor virus oncogenes antagonize the cGAS

, STING DNA-sensing pathway, Science, vol.350, pp.568-571, 2015.

Y. Liu, J. Li, J. Chen, Y. Li, W. Wang et al., Hepatitis B virus polymerase disrupts K63linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways, J Virol, vol.89, pp.2287-2300, 2015.

J. Rasaiyaah, C. P. Tan, A. J. Fletcher, A. J. Price, C. Blondeau et al., HIV-1 evades innate immune recognition through specific cofactor recruitment, Nature, vol.503, pp.402-405, 2013.

U. Protzer, M. K. Maini, and P. A. Knolle, Living in the liver: hepatic infections, Nat Rev Immunol, vol.12, pp.201-213, 2012.

X. Zhang, H. Shi, J. Wu, L. Sun, C. Chen et al., Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING, Mol Cell, vol.51, pp.226-235, 2013.

M. K. Thomsen, R. Nandakumar, D. Stadler, A. Malo, R. M. Valls et al., Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection, Hepatology, vol.64, pp.746-759, 2016.

E. Gerhardt and V. Bruss, Phenotypic mixing of rodent but not avian hepadnavirus surface proteins into human hepatitis B virus particles, J Virol, vol.69, pp.1-08, 1995.

M. Dandri, P. Schirmacher, and C. E. Rogler, Woodchuck hepatitis virus X protein is present in chronically infected woodchuck liver and woodchuck hepatocellular carcinomas which are permissive for viral replication, J Virol, vol.70, pp.5246-5254, 1996.

S. F. Wieland, The Chimpanzee Model for Hepatitis B Virus Infection. Cold Spring Harb Perspect

J. Bukh, A critical role for the chimpanzee model in the study of hepatitis C, Hepatology, vol.39, pp.1469-1475, 2004.

O. Weber, K. H. Schlemmer, E. Hartmann, I. Hagelschuer, A. Paessens et al.,

, Inhibition of human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse model, Antiviral Res, vol.54, pp.69-78, 2002.

F. Chisari, C. Pinkert, D. Milich, P. Filippi, A. Mclachlan et al., A transgenic mouse model of the chronic hepatitis B surface antigen carrier state, Science, vol.230, pp.1157-1160, 1985.

P. L. Yang, A. Althage, J. Chung, and F. V. Chisari, Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection, Proc Natl Acad Sci U S A, vol.99, pp.13825-13830, 2002.

M. F. Sprinzl, H. Oberwinkler, H. Schaller, and U. Protzer, Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier, J Virol, vol.75, pp.5108-5118, 2001.

S. Zeissig, K. Murata, L. Sweet, J. Publicover, Z. Hu et al., Hepatitis B virusinduced lipid alterations contribute to natural killer T cell-dependent protective immunity, Nat Med, vol.18, pp.1060-1068, 2012.

L. Sandmann and A. Ploss, Barriers of hepatitis C virus interspecies transmission, Virology, vol.435, pp.70-80, 2013.

A. K. Raney, C. M. Eggers, E. F. Kline, L. G. Guidotti, M. Pontoglio et al., Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha-null hepatitis B virus transgenic mice, J Virol, vol.75, pp.2900-2911, 2001.

M. Dandri, M. R. Burda, E. Torok, J. M. Pollok, A. Iwanska et al., Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus, Hepatology, vol.33, pp.981-988, 2001.

M. Lutgehetmann, T. Bornscheuer, T. Volz, L. Allweiss, J. H. Bockmann et al.,

, Hepatitis B virus limits response of human hepatocytes to interferon-alpha in chimeric mice, Gastroenterology, vol.140, pp.2074-2083, 2011.

D. F. Mercer, D. E. Schiller, J. F. Elliott, D. N. Douglas, C. Hao et al., Hepatitis C virus replication in mice with chimeric human livers, Nat Med, vol.7, pp.927-933, 2001.

M. Dorner, J. A. Horwitz, B. M. Donovan, R. N. Labitt, W. C. Budell et al., Completion of the entire hepatitis C virus life cycle in genetically humanized mice, Nature, vol.501, pp.237-241, 2013.

F. A. Lempp, P. Mutz, C. Lipps, D. Wirth, R. Bartenschlager et al., Evidence that hepatitis B virus replication in mouse cells is limited by the lack of a host cell dependency factor, J Hepatol, vol.64, pp.556-564, 2016.

F. A. Lempp, B. Qu, Y. X. Wang, and S. Urban, Hepatitis B Virus Infection of a Mouse Hepatic Cell Line Reconstituted with Human Sodium Taurocholate Cotransporting Polypeptide, J Virol, vol.90, pp.4827-4831, 2016.

L. Mailly, M. B. Zeisel, and T. F. Baumert, Towards novel immunocompetent animal models for hepatitis B virus infection, Hepatology, 2017.

H. Nakabayashi, K. Taketa, K. Miyano, T. Yamane, and J. Sato, Growth of Human Hepatoma Cell Lines with Differentiated Functions in Chemically Defined Medium, Cancer Reserch, vol.42, pp.3858-3863, 1982.

C. Sureau, J. L. Romet-lemonne, J. I. Mullins, and M. Essex, Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA, Cell, vol.47, p.37047, 1986.

J. Lucifora, Y. Xia, F. Reisinger, K. Zhang, D. Stadler et al., Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA, Science, vol.3436176, pp.1221-1228, 2014.

T. B. Andersson, K. P. Kanebratt, and J. G. Kenna, The HepaRG cell line: a unique in vitro tool for

P. Gripon, S. Rumin, S. Urban, L. Seyec, J. Glaise et al., Longterm propagation of serum hepatitis C virus (HCV) with production of enveloped HCV particles in human HepaRG hepatocytes, Proc Natl Acad Sci U S A, vol.99, pp.406-417, 2002.

J. Chen, M. Wu, K. Liu, W. Zhang, Y. Li et al., New insights into hepatitis B virus biology and implications for novel antiviral strategies, National Science Review, vol.2, pp.296-313, 2015.

D. Thomas and F. Zoulim, New challenges in viral hepatitis, Gut, vol.61, issue.1, pp.1-5, 2012.

A. Ploss, S. R. Khetani, C. T. Jones, A. J. Syder, K. Trehan et al., Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures, Proc Natl Acad Sci U S A, vol.107, pp.3141-3145, 2010.

A. Sivaraman, J. K. Leach, S. Townsend, T. Iida, B. J. Hogan et al.,

, Vitro Physiological Model of the Liver: Predictive Screens for Drug Metabolism and Enzyme Induction, Current Drug Metabolism, vol.6, pp.569-591, 2005.

M. Iwamoto, K. Watashi, S. Tsukuda, H. H. Aly, M. Fukasawa et al., Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP, Biochem Biophys Res Commun, vol.443, pp.808-813, 2014.

W. Li and S. Urban, Entry of hepatitis B and hepatitis D virus into hepatocytes: Basic insights and clinical implications, J Hepatol, vol.64, pp.32-40, 2016.

N. Oehler, T. Volz, O. D. Bhadra, J. Kah, L. Allweiss et al., Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism, Hepatology, vol.60, pp.1483-1493, 2014.

A. Schieck, A. Schulze, C. Gahler, T. Muller, U. Haberkorn et al., Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts, Hepatology, vol.58, pp.43-53, 2013.

T. F. Baumert, E. R. Verrier, M. Nassal, R. T. Chung, and M. B. Zeisel, Host-targeting agents for treatment of hepatitis B virus infection, Curr Opin Virol, vol.14, pp.41-46, 2015.

E. R. Verrier, C. C. Colpitts, C. Sureau, and T. F. Baumert, Hepatitis B virus receptors and molecular drug targets, Hepatol Int, vol.10, pp.567-573, 2016.
DOI : 10.1007/s12072-016-9718-5

M. Blanchet, C. Sureau, and P. Labonte, Use of FDA approved therapeutics with hNTCP metabolic inhibitory properties to impair the HDV lifecycle, Antiviral Res, vol.106, pp.111-115, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01199003

C. Ko, W. J. Park, S. Park, S. Kim, M. P. Windisch et al., The FDA approved drug irbesartan inhibits

, HBV-infection in HepG2 cells stably expressing sodium taurocholate co-transporting polypeptide, Antivir Ther, 2015.

M. Kaneko, K. Watashi, S. Kamisuki, H. Matsunaga, M. Iwamoto et al., A Novel Tricyclic Polyketide, Vanitaracin A, Specifically Inhibits the Entry of Hepatitis B and D Viruses by Targeting Sodium Taurocholate Cotransporting Polypeptide, J Virol, vol.89, pp.11945-11953, 2015.

Z. Dong, S. Ekins, and J. E. Polli, Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP), Mol Pharm, vol.10, pp.1008-1019, 2013.

C. Ferrari, HBV and the immune response, Liver Int, vol.35, pp.121-128, 2015.

J. He, R. Hao, D. Liu, X. Liu, S. Wu et al., Inhibition of hepatitis B virus replication by activation of the cGAS-STING pathway, J Gen Virol, vol.97, pp.3368-3378, 2016.

Z. Q. Zou, L. Wang, K. Wang, and J. G. Yu, Innate immune targets of hepatitis B virus infection, World J Hepatol, vol.8, pp.716-725, 2016.

J. Wang, T. Shen, X. Huang, G. R. Kumar, X. Chen et al., Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound, J Hepatol, vol.65, pp.700-710, 2016.

J. Lupberger, M. B. Zeisel, F. Xiao, C. Thumann, I. Fofana et al., EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy, Nat Med, vol.17, pp.589-595, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00705829

S. K. Ladner, M. J. Otto, C. S. Barker, K. Zaifert, G. H. Wang et al., Inducible Expression of Human Hepatitis B Virus (HBV) in Stably Transfected Hepatoblastoma Cells: a Novel System for Screening Potential Inhibitors of HBV Replication, ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, issue.8, pp.1715-1720, 1997.

X. Cui, L. Luckenbaugh, V. Bruss, and J. Hu, Alteration of Mature Nucleocapsid and Enhancement of

, Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in CompleteVirion Formation, J Virol, vol.89, pp.10064-10072, 2015.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al.,

, RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.337, pp.816-821, 2012.

L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex Genome Engineering Using CRISPR/Cas Systems, Science, vol.339, pp.819-823, 2013.

N. E. Sanjana, O. Shalem, and F. Zhang, Improved vectors and genome-wide libraries for CRISPR screening, Nat Methods, vol.11, pp.783-784, 2014.

A. Laras, J. Koskinas, E. Dimou, A. Kostamena, and S. J. Hadziyannis, Intrahepatic levels and replicative activity of covalently closed circular hepatitis B virus DNA in chronically infected patients, Hepatology, vol.44, pp.694-702, 2006.

W. Gao and J. Hu, Formation of hepatitis B virus covalently closed circular DNA: removal of genomelinked protein, J Virol, vol.81, pp.6164-6174, 2007.

J. Lucifora, A. Salvetti, X. Marniquet, L. Mailly, B. Testoni et al., Detection of the hepatitis B virus (HBV) covalently-closed-circular DNA (cccDNA) in mice transduced with a recombinant AAV-HBV vector, Antiviral Res, vol.145, pp.14-19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01953660

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al.,

, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci U S A, vol.102, pp.15545-15550, 2005.

M. J. Farquhar, I. S. Humphreys, S. A. Rudge, G. K. Wilson, B. Bhattacharya et al.,

, Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication, J Hepatol, vol.66, pp.919-929, 2017.

D. B. Stetson and R. Medzhitov, Recognition of cytosolic DNA activates an IRF3-dependent innate immune response, Immunity, vol.24, pp.93-103, 2006.

F. Ma, B. Li, S. Y. Liu, S. S. Iyer, Y. Yu et al., Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS, J Immunol, vol.194, pp.1545-1554, 2015.

C. Hui, K. Lau, and G. K. , Immune system and hepatitis B virus infection, J Clin Virol, vol.34, pp.44-48, 2005.

T. Xia, H. Konno, J. Ahn, and G. N. Barber, Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis, Cell Rep, vol.14, pp.282-297, 2016.

H. Guo, D. Jiang, T. Zhou, A. Cuconati, T. M. Block et al.,

, Deproteinized Relaxed Circular DNA of Hepatitis B Virus: an Intermediate of Covalently Closed Circular DNA Formation, Journal of Virology, vol.81, pp.12472-12484, 2007.

M. M. Hu, C. Y. Liao, Q. Yang, X. Q. Xie, and H. B. Shu, Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5, J Exp Med, vol.214, pp.973-989, 2017.

Y. Cui, H. Yu, X. Zheng, R. Peng, Q. Wang et al., SENP7 Potentiates cGAS Activation by Relieving SUMO-Mediated Inhibition of Cytosolic DNA Sensing, PLoS Pathog, vol.13, p.1006156, 2017.

S. J. Kim, M. Khan, J. Quan, A. Till, S. Subramani et al., Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis, PLoS Pathog, vol.9, p.1003722, 2013.

X. Lahaye, T. Satoh, M. Gentili, S. Cerboni, C. Conrad et al., The capsids of
URL : https://hal.archives-ouvertes.fr/inserm-00959028

, HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells, Immunity, vol.39, pp.1132-1142, 2013.

G. Wu, B. Liu, Y. Zhang, J. Li, A. Arzumanyan et al., Preclinical characterization of GLS4, an inhibitor of hepatitis B virus core particle assembly, Antimicrob Agents Chemother, vol.57, pp.5344-5354, 2013.

N. Brezillon, M. N. Brunelle, H. Massinet, E. Giang, C. Lamant et al., Antiviral activity of Bay 41-4109 on hepatitis B virus in humanized Alb-uPA/SCID mice, PLoS One, vol.6, p.25096, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00782108

A. Bertoletti and C. Ferrari, Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection, Gut, vol.61, pp.1754-1764, 2012.

W. Li, D. Avey, B. Fu, J. J. Wu, S. Ma et al., Kaposi's Sarcoma-Associated Herpesvirus Inhibitor of cGAS (KicGAS), Encoded by ORF52, Is an Abundant Tegument Protein and Is Required for Production of Infectious Progeny Viruses, J Virol, vol.90, pp.5329-5342, 2016.

S. Aguirre, P. Luthra, M. T. Sanchez-aparicio, A. M. Maestre, J. Patel et al.,

, Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection, Nat Microbiol, vol.2, p.17037, 2017.

D. B. Stetson, J. S. Ko, T. Heidmann, and R. Medzhitov, Trex1 prevents cell-intrinsic initiation of autoimmunity, Cell, vol.134, pp.587-598, 2008.

X. Cheng, Y. Xia, E. Serti, P. D. Block, M. Chung et al., Hepatitis B virus

, Hepatitis B virus evades cGAS sensing by genome encapsidation and repression of cGAS effector function

$. Seung-ae-yim-;-2, R. Eloi, $. Verrier, *. , and L. Heydmann, Hussein El Saghire, vol.3, issue.2

F. Thomas, Nicolas Manel, vol.5, 2002.

, INSERM, Institut de recherche sur les maladies virales et hépatiques UMRS 1110, F-67000, vol.3

P. Hépato-digestif, Immunity and Cancer Department, vol.5

, Translational Neuro Psychiatric Genomics, Brigham and Women's Hospital, vol.6, p.75005

, *Corresponding authors: Prof. Thomas F. Baumert, MD, e-mail: thomas.baumert@unistra.fr

, PhD, e-mail: e.verrier@unistra.fr. Total character count: 3978 words (limit 4000)

, The Agency Nationale de Recherches sur le Sida et les Hepatitis Virales (ANRS, 2015/1099), the Foundation ARC pour la Recherche sur le Cancer

F. Région-d'alsace, The work has been published under the framework of the LABEX ANR10-LABX-0028_HEPSYS and benefits from funding from the state managed by the French National

A. Contribution, . Tfb-initiated-the-study, . Tfb, L. H. Say, L. M. Sd et al., TFB analyzed the data. PP provided liver resections for PHH isolation. NM and NP made substantive

H. B. El-serag, Epidemiology of viral hepatitis and hepatocellular carcinoma

, Gastroenterology, vol.142, issue.6, pp.1264-73, 2012.

C. Trepo, H. L. Chan, and A. Lok, Hepatitis B virus infection, Lancet, vol.384, issue.9959, pp.2053-63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00313741

M. B. Zeisel, J. Lucifora, and W. S. Mason, Towards an HBV cure: state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure, Gut, vol.64, issue.8, pp.1314-1340, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157784

B. Rehermann and M. Nascimbeni, Immunology of hepatitis B virus and hepatitis C virus infection, Nat Rev Immunol, vol.5, issue.3, pp.215-244, 2005.

M. Levrero, B. Testoni, and F. Zoulim, HBV cure: why, how, when?, Curr Opin Virol, vol.18, pp.135-178, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01797257

R. Gish, J. D. Jia, and S. Locarnini, Selection of chronic hepatitis B therapy with high barrier to resistance, Lancet Infect Dis, vol.12, issue.4, pp.341-53, 2012.

E. R. Verrier, C. C. Colpitts, and C. Sureau, Hepatitis B virus receptors and molecular drug targets, Hepatology international, vol.10, issue.4, pp.567-73, 2016.

A. Schmitz, A. Schwarz, and M. Foss, Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket, PLoS Pathog, vol.6, issue.1, p.1000741, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00522959

M. Nassal, Hepatitis B virus cccDNA-viral persistence reservoir and key obstacle for a cure of chronic hepatitis B, Gut, vol.64, issue.12, pp.1972-84, 2015.

H. L. Lu and F. Liao, Melanoma differentiation-associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication, J Immunol, vol.191, issue.6, pp.3264-76, 2013.

S. Sato, K. Li, and T. Kameyama, The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus, Immunity, vol.42, issue.1, pp.123-155, 2015.

S. Wieland, R. Thimme, and R. H. Purcell, Genomic analysis of the host response to hepatitis B virus infection, Proc Natl Acad Sci U S A, vol.101, issue.17, pp.6669-74, 2004.

S. F. Wieland and F. V. Chisari, Stealth and cunning: hepatitis B and hepatitis C viruses, J Virol, vol.145, issue.15, pp.9369-80, 2005.

S. P. Fletcher, D. J. Chin, and Y. Ji, Transcriptomic analysis of the woodchuck model of chronic hepatitis B, Hepatology, vol.56, issue.3, pp.820-850, 2012.

X. Cheng, Y. Xia, and E. Serti, Hepatitis B virus evades innate immunity of hepatocytes but activates macrophages during infection, Hepatology, 2017.

S. Luangsay, M. Gruffaz, and N. Isorce, Early inhibition of hepatocyte innate responses by hepatitis B virus, J Hepatol, vol.63, issue.6, pp.1314-1336, 2015.

C. Ferrari, HBV and the immune response, Liver international : official journal of the International Association for the Study of the Liver, vol.35, issue.1, pp.121-129, 2015.

A. Bertoletti and C. Ferrari, Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection, Gut, vol.61, issue.12, pp.1754-64, 2012.

Y. K. Chan and M. U. Gack, Viral evasion of intracellular DNA and RNA sensing, Nature reviews Microbiology, vol.14, issue.6, pp.360-73, 2016.

D. Gao, J. Wu, and Y. T. Wu, Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses, Science, vol.341, issue.6148, pp.903-909, 2013.

L. Sun, J. Wu, and F. Du, Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway, Science, vol.339, issue.6121, pp.786-91, 2013.

J. W. Schoggins, D. A. Macduff, and N. Imanaka, Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity, Nature, vol.505, issue.7485, pp.691-696, 2014.

T. S. Xiao and K. A. Fitzgerald, The cGAS-STING pathway for DNA sensing, Molecular cell, vol.51, issue.2, pp.135-144, 2013.

X. Zhang, H. Shi, and J. Wu, Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING, Molecular cell, vol.51, issue.2, pp.226-261, 2013.

J. Wu, L. Sun, and X. Chen, Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA, Science, vol.339, issue.6121, pp.826-856, 2013.

E. R. Verrier, C. C. Colpitts, and C. Schuster, Cell Culture Models for the Investigation of

, Hepatitis B and D Virus Infection, Viruses, vol.8, issue.9, 2016.

H. Yan, G. Zhong, and G. Xu, Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus, Elife, vol.1, p.49, 2012.

Y. Ni, F. A. Lempp, and S. Mehrle, Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes, Gastroenterology, vol.146, issue.4, pp.1070-83, 2014.

B. Israelow, C. M. Narbus, and M. Sourisseau, HepG2 cells mount an effective antiviral

J. Lupberger, M. B. Zeisel, and F. Xiao, EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy, Nat Med, vol.17, issue.5, pp.589-95, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00705829

E. R. Verrier, C. C. Colpitts, and C. Bach, A targeted functional RNAi screen uncovers

, Glypican 5 as an entry factor for hepatitis B and D viruses, Hepatology, vol.63, issue.1, pp.35-48, 2016.

S. K. Ladner, M. J. Otto, and C. S. Barker, Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication, Antimicrob Agents Chemother, vol.41, issue.8, pp.1715-1735, 1997.

N. E. Sanjana, O. Shalem, and F. Zhang, Improved vectors and genome-wide libraries for CRISPR screening, Nature methods, vol.11, issue.8, pp.783-787, 2014.

A. Laras, J. Koskinas, and E. Dimou, Intrahepatic levels and replicative activity of

J. Lucifora, A. Salvetti, and X. Marniquet, Detection of the hepatitis B virus (HBV)
URL : https://hal.archives-ouvertes.fr/hal-01953660

, covalently-closed-circular DNA (cccDNA) in mice transduced with a recombinant AAV-HBV vector

, Antiviral Res, vol.145, pp.14-19, 2017.

W. Gao and J. Hu, Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein, J Virol, vol.81, issue.12, pp.6164-74, 2007.

A. Subramanian, P. Tamayo, and V. K. Mootha, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci U S A, vol.102, issue.43, pp.15545-50, 2005.

M. J. Farquhar, I. S. Humphreys, and S. A. Rudge, Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication, J Hepatol, vol.66, issue.5, pp.919-948, 2017.

L. Mailly, F. Xiao, and J. Lupberger, Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody, Nat Biotechnol, vol.33, issue.5, pp.549-54, 2015.

S. Wieland, Z. Makowska, and B. Campana, Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver, Hepatology, vol.59, issue.6, pp.2121-2151, 2014.

M. L. Blondot, V. Bruss, and M. Kann, Intracellular transport and egress of hepatitis B virus, J Hepatol, vol.64, issue.1, pp.49-59, 2016.

H. Dansako, Y. Ueda, and N. Okumura, The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly, The FEBS journal, vol.283, issue.1, pp.144-56, 2016.

X. Cui, D. N. Clark, and K. Liu, Viral DNA-Dependent Induction of Innate Immune Response to Hepatitis B Virus in Immortalized Mouse Hepatocytes, J Virol, vol.90, issue.1, pp.486-96, 2015.

X. Cui, L. Luckenbaugh, and V. Bruss, Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation, J Virol, vol.89, pp.10064-72, 2015.

X. Lahaye, T. Satoh, and M. Gentili, The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells, Immunity, vol.39, issue.6, pp.1132-1174, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00959028

M. K. Thomsen, R. Nandakumar, and D. Stadler, Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection, Hepatology, vol.64, issue.3, pp.746-59, 2016.

J. He, R. Hao, and D. Liu, Inhibition of hepatitis B virus replication by activation of the cGAS-STING pathway, J Gen Virol, vol.97, issue.12, pp.3368-78, 2016.

J. J. Wu, W. Li, and Y. Shao, Inhibition of cGAS DNA Sensing by a, Herpesvirus Virion Protein. Cell host & microbe, vol.18, issue.3, pp.333-377, 2015.

W. Li, D. Avey, and B. Fu, Encoded by ORF52, Is an Abundant Tegument Protein and Is Required for Production of Infectious Progeny Viruses, J Virol, vol.90, issue.11, pp.5329-5371, 2016.

S. Yu, J. Chen, and M. Wu, Hepatitis B virus polymerase inhibits RIG-I-and Toll-like

D. Tbk1/ikkepsilon, Gen Virol, vol.91, pp.2080-90, 2010.

S. Aguirre, P. Luthra, and M. T. Sanchez-aparicio, Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection, Nature microbiology, vol.2, p.17037, 2017.

, days as described in the manuscript. 10 days after infection, cells were fixed and HBV infection was assessed by immunofluorescence as described [3] using an AF488-labelled anti-HBsAg antibody, vol.329, 1044.

J. Lucifora, A. Salvetti, and X. Marniquet, Detection of the hepatitis B virus (HBV) covalently closedcircular DNA (cccDNA) in mice transduced with a recombinant AAV-HBV vector, Antiviral Res, vol.145, pp.14-19, 2017.

J. W. Schoggins, D. A. Macduff, and N. Imanaka, Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity, Nature, vol.505, issue.7485, pp.691-696, 2014.

E. R. Verrier, C. C. Colpitts, and C. Bach, A targeted functional RNAi screen uncovers Glypican 5 as an entry factor for hepatitis B and D viruses, Hepatology, vol.63, issue.1, pp.35-48, 2016.