B. B. Damaskin and O. A. Petrii, Introduction to electrochemical kinetics. 2 nd edition-Moscow-Vysshaya Shkola Publishers

K. Krischer and E. R. Savinova, Fundamentals of Electrocatalysis // Handbook of Heterogeneous Catalysis, pp.1873-1958, 2008.

J. Tafel, Über die Polarisation bei kathodischer Wasserstoffentwicklung, Z. Phys. Chem. Z phys Chem

T. Erdey-gruz and M. Volmer, The theory of hydrogen overvoltage, Z. Phys. Chem, pp.203-213

T. Erdey-gruz and M. Volmer, Zur Frage der Wasserstoffüberspannung // Zeitschrift fur Phys. Chemie A

N. Kobosew and N. I. Nekrassow, Bildung freier wasserstoffatome bei kathodenpolarisation der metalle // Z. Electrochem.-1930, pp.529-544

J. Heyrovský, Researches with the dropping mercury cathode: Part I. General introduction // Recl. des Trav. Chim. des Pays-Bas.-1925.-V. 44.-I. 6, pp.488-495

J. Heyrovský and M. Shikata, Researches with the dropping mercury cathode: Part II. The Polarograph // Recl. des Trav. Chim. des Pays-Bas.-1925.-V. 44.-I. 6, pp.496-498

J. Heyrovský, Researches with the dropping mercury cathode: Part III. A Theory of Over-potential // Recl. des Trav. Chim. des Pays-Bas.-1925.-V. 44.-I. 6, pp.499-502

A. N. Frumkin, Comments to the Theory of Hydrogen Overpotential, Z. Phys. Chem, pp.116-118

A. N. Frumkin, Hydrogen Overpotential and the Double Layer Structure, Z. Phys. Chem, pp.121-123, 1933.

A. N. Frumkin, V. S. Bagotsky, Z. A. Ioffe, and B. N. Kabanov, // Kinetics of electrode processes, 1952.

B. E. Conway and M. Salomonl, Electrochemical reaction orders: Applications to the hydrogen-and oxygen-evolution reactions // Electrochim. Acta.-1964.-V. 9.-I. 12, pp.1599-1615

S. Trasatti, Electrocatalysis of Hydrogen Evolution: Progress in Cathode Activation // Advances in Electrochemical Science and Engineering, pp.1-85, 2008.

R. Notoya and A. Matsuda, Determination of the rate of the discharge step of hydrogen ion on a hydrogen-platinum electrode in aqueous solutions by the galvanostatic transient method, J. Phys. Chem, pp.5521-5523

A. Saraby-reintjes, The hydrogen evolution reaction under mixed kinetic control, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens, pp.3343-3355

J. Divisek, Determination of the kinetics of hydrogen evolution by analysis of the potential current and potential coverage curves, J. Electroanal. Chem, pp.615-632

S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals III. Electrolytic hydrogen evolution in acid solutions, J. Electroanal. Chem, pp.163-184, 1972.

P. Sabatier, Hydrogénations et déshydrogénations par catalyse // Berichte der Dtsch. Chem. Gesellschaft.-1911.-V. 44.-I. 3, 1984.

G. K. Boreskov, Heterogeneous catalysis. ?oscow: Nauka.-1986, vol.304

R. Parsons, The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen // Trans. Faraday Soc.-1958, pp.1053-1063

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen et al., Trends in the Exchange Current for Hydrogen Evolution, J. Electrochem. Soc

W. Sheng, M. N. Myint, J. G. Chen, and Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces, Energy Environ. Sci, pp.1509-1512, 2013.

E. Santos, P. Hindelang, P. Quaino, E. N. Schulz, G. Soldano et al., , pp.2274-2279

O. A. Petrii and G. A. Tsirlina, Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science // Electrochim. Acta.-1994.-V. 39.I. 11-12, pp.1739-1747

P. Quaino, F. Juarez, E. Santos, and W. Schmickler, Volcano plots in hydrogen electrocatalysis-uses and abuses, Beilstein J. Nanotechnol, pp.846-854, 2014.

J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. // Nat. Mater.-2006.-V. 5.-I. 11, pp.909-913

W. Sheng, A. P. Bivens, M. N. Myint, Z. Zhuang, R. V. Forest et al., Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes, / Energy Environ. Sci, pp.1719-1724, 2014.

M. M. Jak?i?, Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory, Int. J. Hydrogen Energy

K. C. Leonard and A. J. Bard, Pattern Recognition Correlating Materials Properties of the Elements to Their Kinetics for the Hydrogen Evolution Reaction

, Chem. Soc, pp.15885-15889

H. Kita, W. Kurisu-t-;-sheng, and H. A. Gasteiger, Shao-Horn Y. Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes, J. Res. Inst. Catalysis

J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism, Energy Environ. Sci, pp.2255-2260, 2014.

N. M. Markovi?, B. N. Grgur, and P. Ross, Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions, J. Phys. Chem. B, pp.5405-5413

P. J. Rheinlander, J. Herranz, J. Durst, and H. A. Gasteiger, Kinetics of the Hydrogen Oxidation/Evolution Reaction on Polycrystalline Platinum in Alkaline Electrolyte Reaction Order with Respect to Hydrogen Pressure, J. Electrochem. Soc

J. Zheng, W. Sheng, Z. Zhuang, B. Xu, and Y. Yan, Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy

W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen et al., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy, Nat. Commun

M. J. Van-der-niet, N. Garcia-araez, J. Hernandez, J. M. Feliu, and M. Koper, Water dissociation on well-defined platinum surfaces: The electrochemical perspective // Catal. Today.-2013.-V. 202.-I. 1, pp.105-113

D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, and N. M. Markovic, Design principles for hydrogen evolution reaction catalyst materials // Nano Energy, pp.29-36, 2016.

D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic et al., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption, Nat. Chem, pp.300-306, 2013.

Y. Wang, G. Wang, G. Li, B. Huang, J. Pan et al., Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?, Energy Environ. Sci, pp.177-181, 2015.

R. Rizo, E. Sitta, E. Herrero, V. Climent, and J. Feliu, Towards the understanding of the interfacial pH scale at Pt(111) electrodes // Electrochim. Acta.-2015, pp.138-145

R. Martínez-hincapié, P. Sebastián-pascual, V. Climent, and J. Feliu, Exploring the interfacial neutral pH region of Pt(111) electrodes, Electrochem. Commun, pp.62-64, 2015.

R. Subbaraman, D. Tripkovic, K. Chang, D. Strmcnik, A. P. Paulikas et al., ) hydr(oxy)oxide catalysts. // Nat. Mater.-2012.-V. 11.-I. 6, Trends in activity for the water electrolyser reactions on 3d M, pp.550-557

R. Subbaraman, D. Tripkovic, D. Strmcnik, K. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li +-Ni(OH)?-Pt interfaces

Z. Zeng, K. Chang, J. Kubal, N. M. Markovic, and J. Greeley, Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion // Nat. Energy, 17070.

I. Ledezma-yanez, W. D. Wallace, P. Sebastián-pascual, V. Climent, J. M. Feliu et al., Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes // Nat. Energy

D. Pletcher and X. Li, Prospects for alkaline zero gap water electrolysers for hydrogen production, Int. J. Hydrogen Energy, pp.15089-15104

N. V. Emelianova, Researches with the dropping mercury cathode: Part VII. Nickel and Cobalt // Recl. des Trav. Chim. des Pays-Bas.-1925.-V. 44.-I. 6, pp.528-548

P. Lukovtsev, S. Levina, and A. Frumkin,

A. Frumkin, Hydrogen overvoltage // Discuss. Faraday Soc.-1947, pp.57-67

A. Legran and S. Levina, Hydrogen overvoltage on Ni in acid solutions, Z. Phys. Chem, pp.211-216

B. E. Conway and P. L. Bourgault, The electrochemical behavior of the nickelnickel oxide electrode: part i. kinetics of self-discharge // Can, J. Chem, pp.292-307

P. L. Bourgault and B. E. Conway, The electrochemical behavior of the nickel oxide electrode: part ii. quasi-equilibrium behavior // Can, J. Chem, pp.1557-1575

B. E. Conway and P. L. Bourgault, Electrochemistry of the nickel oxide electrode: part iii. anodic polarization and self-discharge behavior // Can, J. Chem, pp.1690-1707

B. E. Conway and E. Gileadi, Electrochemistry of the nickel oxide electrode: part iv. electrochemical kinetic studies of reversible potentials as a function of degree of oxidation // Can, J. Chem, pp.1933-1942

B. E. Conway and M. Sattar, J. Electroanal. Chem. Interfacial Electrochem

B. E. Conway, M. A. Sattar, and D. Gilroy, Electrochemistry of the nickel-oxide electrode-V. Self-passivation effects in oxygen-evolution kinetics // Electrochim. Acta.-1969.-V. 14.-I. 8, pp.677-694

M. A. Sattar and B. E. Conway, Electrochemistry of the nickel-oxide electrode-VI. Surface oxidation of nickel anodes in alkaline solution // Electrochim. Acta.1969.-V. 14.-I. 8, pp.695-710

B. E. Conway, M. A. Sattar, and D. Gilroy, Electrochemistry of the nickel-oxide electrode-VII. Potentiostatic step method for study of adsorbed intermediates // Electrochim. Acta.-1969.-V. 14.-I. 8, pp.711-724

J. L. Weininger and M. W. Breiter, Effect of Crystal Structure on the Anodic Oxidation of Nickel, J. Electrochem. Soc

J. L. Weininger and M. W. Breiter, Hydrogen Evolution and Surface Oxidation of Nickel Electrodes in Alkaline Solution, J. Electrochem. Soc, pp.707-712

J. O. Bockris and E. C. Potter, The Mechanism of Hydrogen Evolution at Nickel Cathodes in Aqueous Solutions, J. Chem. Phys, vol.1952, issue.20, pp.614-628

D. S. Hall, C. Bock, and B. R. Macdougall, The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution, J. Electrochem. Soc

D. S. Hall, D. J. Lockwood, C. Bock, and B. R. Macdougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties, Proc. R. Soc. A Math. Phys. Eng. Sci, 2014.

M. Alsabet, M. Grden, and G. Jerkiewicz, Electrochemical Growth of Surface Oxides on Nickel. Part 1: Formation of ?-Ni(OH)2 in Relation to the Polarization Potential, Polarization Time, and Temperature // Electrocatalysis, 2011.

M. Alsabet, M. Grden, and G. Jerkiewicz, Electrochemical Growth of Surface Oxides on Nickel. Part 2: Formation of ?-Ni(OH)2 and NiO in Relation to the Polarization Potential, Polarization Time, and Temperature // Electrocatalysis.2013.-V. 5.-I. 2, pp.136-147

M. Alsabet, M. Grde?, and G. Jerkiewicz, Electrochemical Growth of Surface Oxides on Nickel. Part 3: Formation of ?-NiOOH in Relation to the Polarization Potential, Polarization Time, and Temperature // Electrocatalysis.-2014.-V. 6.-I. 1, pp.60-71

M. Grden, K. Klimek, and A. Czerwinski, A quartz crystal microbalance study on a metallic nickel electrode // J. Solid State Electrochem.-2004.-V. 8.-I. 6, pp.390-397

C. A. Melendres and M. Pankuch, On the composition of the passive film on nickel: a surface-enhanced Raman spectroelectrochemical study, J. Electroanal. Chem, pp.103-113

R. Simpraga and B. E. Conway, Realization of monolayer levels of surface oxidation of nickel by anodization at low temperatures, J. Electroanal. Chem, pp.341-357, 1990.

B. Beverskog and I. Puigdomenech, Revised Pourbaix diagrams for iron at 25300??C // Corrosion Science.-1996.-V. 38.-I. 12, pp.2121-2135

M. Grde? and K. Klimek, EQCM studies on oxidation of metallic nickel electrode in basic solutions, J. Electroanal. Chem, pp.122-131

B. E. Conway, B. Barnett, H. Angerstein-kozlowska, and B. V. Tilak, A surfaceelectrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals, J. Chem. Phys, 1990.

C. V. D'alkaine and M. A. Santanna, Passivating films on nickel in alkaline solutions I. General aspects of the Ni (II) region, J. Electroanal. Chem, pp.5-12, 1998.

R. S-?-impraga and B. E. Conway, Realization of monolayer levels of surface oxidation of nickel by anodization at low temperatures, J. Electroanal. Chem. Interfacial Electrochem, pp.341-357

A. Seyeux, V. Maurice, L. H. Klein, and P. Marcus, situ scanning tunnelling microscopic study of the initial stages of growth and of the structure of the passive film on Ni(111) in 1 mM NaOH(aq) // J. Solid State Electrochem.2005.-V. 9, pp.337-346

S. A. Machado and L. A. Avaca, The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption // Electrochim. Acta.-1994.-V. 39.-I. 10, pp.1385-1391

M. Nakamura, N. Ikemiya, A. Iwasaki, Y. Suzuki, and M. Ito, Surface structures at the initial stages in passive film formation on Ni(111) electrodes in acidic electrolytes, J. Electroanal. Chem, pp.385-391, 2004.

A. Seghiouer, J. Chevalet, A. Barhoun, and F. Lantelme, Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modelling, J. Electroanal. Chem, pp.113-123

W. Visscher and E. Barendrecht, Anodic oxide films of nickel in alkaline electrolyte // Surf. Sci.-1983.-V. 135.-I. 1-3, pp.436-452

B. Beden and A. Bewick, The anodic layer on nickel in alkaline solution: an investigation using in situ IR spectroscopy // Electrochim. Acta.-1988.-V. 33.-I. 11, pp.1695-1698

H. Hoppe and H. Strehblow, XPS and UPS examinations of the formation of passive layers on Ni in 1 M sodium hydroxide and 0.5 M sulphuric acid // Surf. Interface Anal.-1989, pp.121-131

W. Visscher and E. Barendrecht, Absorption of hydrogen in reduced nickel oxide, J. Appl. Electrochem, pp.269-274, 1980.

L. D. Burke and T. A. Twomey, Voltammetric behaviour of nickel in base with particular reference to thick oxide growth, J. Electroanal. Chem. Interfacial Electrochem, pp.101-119

B. Macdougall and M. Cohen, Anodic Oxidation of Nickel in Neutral Sulfate Solution, J. Electrochem. Soc, p.1152

R. S. Schrebler-guzmán, J. R. Vilche, and A. J. Arvía, The kinetics and mechanism of the nickel electrode-III. The potentiodynamic response of nickel electrodes in alkaline solutions in the potential region of Ni(OH)2 formation // Corros Sci

J. Desilvestro, Characterization of Redox States of Nickel Hydroxide Film Electrodes by In Situ Surface Raman Spectroscopy, J. Electrochem. Soc

S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, and D. Johnson, In situ studies of the oxidation of nickel electrodes in alkaline solution, J. Electroanal. Chem, pp.172-181, 2006.

G. P. Samoilov, E. I. Khrushcheva, N. A. Shumilova, and V. S. Bagotzky, The study of oxygen adsorption on Ni by electrochemical method // Kinetika i Kataliz.1973.-V. 15.-I. 5, pp.1235-1238

W. Visscher and E. Barendrecht, The anodic oxidation of nickel in alkaline solution // Electrochim. Acta.-1980.-V. 25.-I. 5, pp.651-655

N. A. Shumilova and V. S. Bagotzky, Oxygen ionization on nickel in alkaline solutions // Electrochim. Acta.-1968.-V. 13.-I. 3, pp.285-293

H. Bode, K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrodeI.Über das nickel (II)-hydroxidhydrat // Electrochim. Acta.-1966.-V. 11.-I. 8, pp.1079-1087

P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier et al., Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides, J. Power Sources, pp.229-255, 1982.

L. M. De-souza, F. P. Kong, F. R. Mclarnon, and R. H. Muller, Spectroscopic ellipsometry study of nickel oxidation in alkaline solution // Electrochim. Acta.1997.-V. 42.-I. 8, pp.1253-1267

R. S. Guzmán, J. R. Vilche, and A. J. Arvía, Non-equilibrium effects in the nickel hydroxide electrode, J. Appl. Electrochem, pp.183-189

M. Kim, A Study on the Phase Transformation of Electrochemically Precipitated Nickel Hydroxides Using an Electrochemical Quartz Crystal Microbalance, J. Electrochem. Soc

G. Meier, H. Vilche, J. R. Arvia, and A. J. , The influence of temperature on the current peak multiplicity related to the nickel hydroxide electrode, J. Appl. Electrochem, pp.611-621

B. J. Trzesniewski, Situ Observation of Active Oxygen Species in FeContaining Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity, J. Am. Chem. Soc, pp.15112-15121

C. Johnston and P. R. Graves, In situ Raman spectroscopy study of the nickel oxyhydroxide electrode (NOE) system // Appl. Spectrosc.-1990.-V. 44.-I. 1, pp.105-115

L. J. Oblonsky and T. M. Devine, Surface Enhanced Raman Spectra from the Films Formed on Nickel in the Passive and Transpassive Regions, J. Electrochem. Soc

B. S. Yeo and A. T. Bell, Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen, J. Phys. Chem. C

E. Gabaly, F. Mccarty, K. F. Bluhm, H. Mcdaniel, and A. , Oxidation stages of Ni electrodes in solid oxide fuel cell environments // Phys. Chem. Chem. Phys.2013.-V. 15.-I. 21, pp.8334-8341

D. S. Hall, D. J. Lockwood, S. Poirier, C. Bock, and B. R. Macdougall, Applications of in situ Raman spectroscopy for identifying nickel hydroxide materials and surface layers during chemical aging, ACS Appl. Mater. Interfaces, pp.3141-3149, 2014.

T. B. Flanagan and F. A. Lewis, Hydrogen absorption by palladium in aqueous solution, J. Chem. Soc., Faraday Trans

E. Wollan, J. Cable, and W. Koehler, The hydrogen atom positions in face centered cubic nickel hydride, J. Phys. Chem. Solids, pp.1141-1143

B. Baranowski, S. Majchrzak, and T. B. Flanagan, The volume increase of fcc metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents // J. Phys. F Met. Phys.-1971

T. Boniszewski and G. C. Smith, A note on nickel hydride, J. Phys. Chem. Solids, pp.115-118

D. M. Soares, O. Teschke, and I. Torriani, Hydride Effect on the Kinetics of the Hydrogen Evolution Reaction on Nickel Cathodes in Alkaline Media, J. Electrochem. Soc, pp.98-105

P. H. Holloway, Chemisorption and oxide formation on metals: Oxygen-nickel reaction, J. Vac. Sci, pp.653-659

V. Maurice, H. Talah, and P. Marcus, A scanning tunneling microscopy study of the structure of thin oxide films grown on Ni (111) single crystal surfaces by anodic polarization in acid electrolyte // Surf. Sci

E. S. Lambers, C. N. Dykstal, J. M. Seo, J. E. Rowe, and P. Holloway, Roomtemerature oxidation of Ni(110) at low and atmospheric oxygen pressures // Oxid. Met.-1996.-V. 45.-I. 3-4, pp.301-321

J. Kati?, M. Metiko?-hukovi?, R. Peter, and M. Petravi?, The electronic structure of the ?-Ni(OH)2 films: Influence on the production of the high-performance Nicatalyst surface, J. Power Sources, pp.421-428, 2015.

B. Macdougall, D. F. Mitchell, and M. J. Graham, Changes in Oxide Films on Nickel during Long-Term Passivation, J. Electrochem. Soc

D. Floner, C. Lamy, and J. Leger, Electrocatalytic oxidation of hydrogen on polycrystal and single-crystal nickel electrodes // Surf. Sci.-1990.-V. 234.-I. 1-2, pp.87-97

C. Hu and T. Wen, Effects of the nickel oxide on the hydrogen evolution and para-nitroaniline reduction at Ni-deposited graphite electrodes in NaOH // Electrochim. Acta.-1998.-V. 43.-I. 12-13, pp.1747-1756

A. G. Pshenichnikov, Electrocatalytic properties of nickel and nickel-based alloys // Mater. Chem. Phys.-1989.-V. 22.-I. 1-2, pp.121-148

K. Shervedani, R. Lasia, and A. , Evaluation of the surface roughness of microporous Ni-Zn-P electrodes by in situ methods, J. Appl. Electrochem, pp.979-986

M. Keddam, Transpassive Dissolution of Ni in Acidic Sulfate Media: A Kinetic Model, J. Electrochem. Soc

B. Beden, D. Floner, J. M. Léger, and C. Lamy, A voltammetric study of the formation on hydroxides and oxyhydroxides on nickel single crystal electrodes in contact with an alkaline solution // Surf. Sci.-1985.-V. 162.-I. 1-3, pp.822-829

P. Zoltowski, The capacity of monocrystalline nickel electrode in potassium hydroxide solution at low hydrogen overpotentials // Electrochim. Acta.-1993.-V. 38.-I. 14, pp.2129-2133

S. Trasatti and O. A. Petrii, Real surface area measurements in electrochemistry, J. Electroanal. Chem, pp.353-376

Z. Zhuang, S. A. Giles, J. Zheng, G. R. Jenness, S. Caratzoulas et al., Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte, Nat. Commun, p.10141, 2016.

M. Grde?, M. Alsabet, and G. Jerkiewicz, Surface science and electrochemical analysis of nickel foams, ACS Appl. Mater. Interfaces, pp.3012-3021

L. Bai, D. A. Harrington, and B. E. Conway, Behavior of overpotential-deposited species in Faradaic reactions-II. ac Impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes // Electrochim. Acta.-1987.V. 32.-I. 12, pp.1713-1731

A. Lasia and A. Rami, Kinetics of hydrogen evolution on nickel electrodes, J. Electroanal. Chem. Interfacial Electrochem, pp.123-141
DOI : 10.1016/0022-0728(90)87140-f

E. Navarro-flores, Z. Chong, and S. Omanovic, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium, J. Mol. Catal. A Chem, pp.179-197, 2005.

I. Herraiz-cardona, E. Ortega, and J. G. Antón, Pérez-Herranz V. Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits, Int. J. Hydrogen Energy, pp.9428-9438, 2011.

L. Chen and A. Lasia, Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes, J. Electrochem. Soc, pp.3321-3328

J. C. Ho and D. L. Piron, Active surface area in oxide electrodes by overpotential deposited oxygen species for the oxygen evolution reaction, J. Appl. Electrochem, pp.515-521, 1996.

C. C. Mccrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters et al., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, 2015.-V. 137.-I. 13, pp.4347-4357

X. Li, P. F. Liu, Z. Le, M. Y. Zu, Y. X. Yang et al., Enhancing alkaline hydrogen evolution reaction activity through Ni-Mn3O4 nanocomposites // Chem. Commun.-2016.-V. 52.-I. 69, pp.10566-10569
DOI : 10.1039/c6cc04141h

M. E. Lyons and M. P. Brandon, The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution, Int. J. Electrochem. Sci, pp.1386-1424, 2008.

D. S. Hall, C. Bock, and B. R. Macdougall, An Oxalate Method for Measuring the Surface Area of Nickel Electrodes, J. Electrochem. Soc

A. Mohsenzadeh, T. Richards, and K. Bolton, DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces // Surf. Sci.-2016, pp.53-63

J. Greeley and M. Mavrikakis, A first-principles study of surface and subsurface H on and in Ni(111): Diffusional properties and coverage-dependent behavior, Surf. Sci, pp.215-229, 2003.

T. Panczyk, P. Szabelski, and W. Rudzinski, Hydrogen adsorption on nickel (100) single-crystal face. A Monte Carlo study of the equilibrium and kinetics, J. Phys. Chem. B, pp.10986-10994, 2005.
DOI : 10.1021/jp047230a

A. K. Reddy, Preferred orientations in nickel electro-deposits: I. The mechanism of development of textures in nickel electrodeposits, J. Electroanal. Chem, pp.141-152

G. Kresse, Dissociation and sticking of H2 on the Ni(111), (100), and (110) substrate, Phys. Rev. B

K. Christmann, Adsorption of hydrogen on nickel single crystal surfaces, J. Chem. Phys

B. Bhatia and D. S. Sholl, Chemisorption and diffusion of hydrogen on surface and subsurface sites of flat and stepped nickel surfaces, J. Chem. Phys, pp.1-8

A. Winkler and K. D. Rendulic, Adsorption kinetics for, Surf. Sci, pp.19-31, 1982.

C. Taylor, R. G. Kelly, and M. Neurock, First-Principles Calculations of the Electrochemical Reactions of Water at an Immersed Ni(111)?H2O Interface, J. Electrochem. Soc

A. Mohsenzadeh, K. Bolton, and T. Richards, DFT study of the adsorption and dissociation of water on Ni(111), Ni(110) and Ni(100) surfaces, Surf. Sci, pp.1-10, 2014.

H. Seenivasan and A. K. Tiwari, Water adsorption and dissociation on Ni(110): How is it different from its close packed counterparts?, J. Chem. Phys
DOI : 10.1063/1.4873898

J. L. Fajín, M. N. Cordeiro, F. Illas, and J. R. Gomes, Descriptors controlling the catalytic activity of metallic surfaces toward water splitting // J. Catal.2010.-V. 276.-I. 1, pp.92-100

A. Herron, J. Scaranto, P. Ferrin, S. Li, and M. Mavrikakis, Trends in Formic Acid Decomposition on Model Transition Metal Surfaces : A Density Functional Theory study // ACS Catalysis, pp.4434-4445

B. Hammer, L. Hansen, and J. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals // Phys. Rev. B.-1999.-V. 59.-I. 11, pp.7413-7421

G. Kresse and J. Hafner, First-principles study of the adsorption of atomic H on Ni (111), (100) and (110) // Surf. Sci.-2000.-V. 459.-I. 3, pp.287-302

C. F. Gray, J. T. , H. Su, and J. Mcewen, Catalytic water dehydrogenation and formation on nickel: Dual path mechanism in high electric fields, J. Catal, pp.187-200, 2015.

J. Shan, J. F. Aarts, A. W. Kleyn, and L. B. Juurlink, The interaction of water with Ni(111) and H/Ni(111) studied by TPD and HREELS, Phys. Chem. Chem. Phys, pp.2227-2232, 2008.

H. Yang and J. Whitten, The adsorption of water and hydroxyl on Ni(111) // Surf. Sci.-1989.-V. 223.-I. 1-2, pp.131-150

Y. Huang, C. Ling, M. Jin, J. Du, T. Zhou et al., Water adsorption and dissociation on Ni surface: effects of steps, dopants, coverage and selfaggregation, Phys. Chem. Chem. Phys, pp.17804-17817, 2013.

J. Shan, J. F. Aarts, A. W. Kleyn, and L. B. Juurlink, Co-adsorption of water and hydrogen on Ni(111) // Phys. Chem. Chem. Phys.-2008.-V. 10.-I. 32, pp.4994-5003

S. Liu, T. Ishimoto, and M. Koyama, First-principles study of Oxygen Coverage Effect on Hydrogen Oxidation on Ni(111) Surface, Appl. Surf. Sci, pp.86-91, 2015.

M. Schulze, R. Reißner, K. Bolwin, and W. Kuch, Interaction of water with clean and oxygen precovered nickel surfaces, Fresenius. J. Anal. Chem, pp.661-665, 1995.

H. Yang, J. L. Whitten, . Adsorption, S. Coadsorption-of, and . Ni, 1997.-V. 370.-I. 2-3, Surf. Sci, issue.111, pp.136-154
URL : https://hal.archives-ouvertes.fr/hal-00303186

B. Xing, G. Wang, N. , O. , and S. ). , Insight into the general rule for the activation of the X-H bonds, Phys. Chem. Chem. Phys, pp.2621-2629, 2014.

H. Yang and J. Whitten, Energetics of hydroxyl and influence of coadsorbed oxygen on metal surfaces, J. Phys. Chem. B, pp.4090-4096

F. Safizadeh, E. Ghali, and G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions-A Review, Int. J. Hydrogen Energy, pp.256-274
DOI : 10.1016/j.ijhydene.2014.10.109

Y. Kiros, M. Majari, and T. A. Nissinen, Effect and characterization of dopants to Raney nickel for hydrogen oxidation, J. Alloys Compd, pp.279-285
DOI : 10.1016/s0925-8388(03)00346-3

L. Birry and A. Lasia, Studies of the Hydrogen Evolution Reaction on Raney Nickel-Molybdenum Electrodes, J. Appl. Electrochem, pp.735-749, 2004.

E. Endoh, H. Otouma, T. Morimoto, and Y. Oda, New Raney nickel compositecoated electrode for hydrogen evolution, Int. J. Hydrogen Energy, pp.473-479

M. K. Bates, Q. Jia, N. Ramaswamy, R. J. Allen, and S. Mukerjee, Composite Ni/NiOCr2O3 catalyst for alkaline hydrogen evolution reaction, J. Phys. Chem. C, pp.5467-5477
DOI : 10.1021/jp512311c

URL : http://europepmc.org/articles/pmc4501498?pdf=render

I. A. Raj and K. I. Vasu, Transition metal-based hydrogen electrodes in alkaline solution, J. Appl. Electrochem, pp.32-38
DOI : 10.1007/bf01012468

A. C. Makrides, Hydrogen Overpotential on Nickel in Alkaline Solution, J. Electrochem. Soc, pp.977-984

D. M. Doyle, G. Palumbo, K. T. Aust, A. M. El-sherik, and U. Erb, The influence of intercrystalline defects on hydrogen activity and transport in nickel // Acta Metall. Mater.-1995.-V. 43.-I. 8, pp.3027-3033

S. H. Ahn, S. J. Hwang, S. J. Yoo, I. Choi, H. Kim et al., Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis, J. Mater. Chem, pp.15153-15159

S. Maximovitch and R. Durand, Role of nickel oxidation in the electrocatalytic properties of nickel electrodes versus hydrogen reactions in KOH solutions, J. Electroanal. Chem. Interfacial Electrochem, pp.273-277

D. E. Hall, Plasma-sprayed nickel cathode coatings for hydrogen evolution in alkaline electrolytes, J. Appl. Electrochem, pp.107-115

C. A. Marozzi and A. C. Chialvo, Development of electrode morphologies of interest in electrocatalysis. Part 2: Hydrogen evolution reaction on macroporous nickel electrodes // Electrochim. Acta.-2001.-V. 46.-I. 6, pp.861-866

A. Gabler, C. I. Müller, T. Rauscher, M. Köhring, B. Kieback et al., Ultrashort pulse laser-structured nickel surfaces as hydrogen evolution electrodes for alkaline water electrolysis, Int. J. Hydrogen Energy, pp.10826-10833

J. K. Lee, Y. Yi, H. J. Lee, S. Uhm, and J. Lee, Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction // Catal. Today.-2009.-V. 146.-I. 1-2, pp.188-191

P. C. Chen, Y. M. Chang, P. W. Wu, and Y. F. Chiu, Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte, Int. J. Hydrogen Energy, pp.6596-6602

S. J. Ewing, R. Lan, X. X. Xu, and S. W. Tao, Synthesis of dendritic nano-sized nickel for use as anodematerial in an alkaline membrane fuel cell // Fuel Cells.-2010.-V. 10.-I. 1, pp.72-76

Y. Kuang, G. Feng, P. Li, Y. Bi, Y. Li et al., Single-Crystalline Ultrathin Nickel Nanosheets Array from in Situ Topotactic Reduction for Active and Stable Electrocatalysis, Angew. Chem. Int. Ed, pp.693-697, 2016.

H. Ogihara, M. Fujii, and T. Saji, Hydrogen evolution reaction (HER) over electroless-deposited nickel nanospike arrays // RSC Adv.-2014.-V. 4.-I. 102, pp.58660-58663

Y. Choquette, L. Brossard, and H. Ménard, In situ activation of the Raney-Ni composite-coated electrode for the hydrogen evolution reaction // Int. J. Hydrogen Energy.-1980.-V. 15.-I. 8, pp.551-555

C. Dyer, Improved cathodes for industrial electrolytic hydrogen production // Int. J. Hydrogen Energy.-1984.-V. 9.-I. 12, pp.993-995

O. Beeck, Catalysis and the Adsorption of Hydrogen on Metal Catalysts // Adv. Catal.-1950, pp.151-195

J. Wang, S. Mao, Z. Liu, Z. Wei, H. Wang et al., Dominating Role of Ni0 on the Interface of Ni/NiO for Enhanced Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces, pp.7139-7147

N. Danilovic, R. Subbaraman, D. Strmcnik, K. Chang, A. P. Paulikas et al., Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts, Angew. Chem. Int. Ed. Engl, pp.12495-12498

M. Gong, Z. Wu, M. Tsai, J. Zhou, M. Guan et al., Nat. Commun, p.4695, 2014.

M. Gong, Z. Wu, M. J. Kenney, R. Kapusta, S. Cowley et al., Blending Cr2O3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting // Angew. Chemie, pp.12157-12161

M. Gong, D. Wang, C. Chen, B. Hwang, and H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction // Nano Res, pp.28-46

Y. F. Xu, M. R. Gao, Y. R. Zheng, J. Jiang, and S. H. Yu, Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen, Angew. Chem. Int. Ed

X. Yan, L. Tian, and X. Chen, Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction, J. Power Sources, pp.336-343, 2015.

K. Zeng and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications // Prog, Energy Combust. Sci, pp.307-326

M. Bodner, A. Hofer, and V. Hacker, H2 generation from alkaline electrolyzer // Wiley Interdiscip

X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev, pp.5148-5180, 2015.

S. Lu and Z. Zhuang, Electrocatalysts for hydrogen oxidation and evolution reactions // Sci. China Mater.-2016.-V. 59.-I. 3, pp.217-238

W. Jenseit, A. Khalil, and H. Wendt, Material properties and processing in the production of fuel cell components: I. Hydrogen anodes from Raney nickel for lightweight alkaline fuel cells, J. Appl. Electrochem, pp.893-900

S. Tanaka, N. Hirose, T. Tanaki, and Y. H. Ogata, Effect of Ni-Al Precursor Alloy on the Catalytic Activity for a Raney-Ni Cathode, J. Electrochem. Soc, pp.2242-2245, 2000.

D. Giz, M. J. Machado, S. A. Avaca, L. A. Gonzalez, and E. R. , High area Ni-Zn and Ni-Co-Zn codeposits as hydrogen electrodes in alkaline solutions, J. Appl. Electrochem, pp.973-977

T. Kenjo, Chromium-Doped Raney Nickel Catalyst for Hydrogen Electrodes in Alkaline Fuel Cells, J. Electrochem. Soc, pp.383-386

M. H. Tang, C. Hahn, A. J. Klobuchar, J. W. Ng, J. Wellendorff et al., Nickel-silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte, Phys. Chem. Chem. Phys

M. E. Mert and G. Karda?, Electrocatalytic behaviour of NiBi coatings for hydrogen evolution reaction in alkaline medium, J. Alloys Compd, pp.9190-9194

M. P. Kaninski, V. M. Nikolic, G. S. Tasic, and Z. L. Rakocevic, Electrocatalytic activation of Ni electrode for hydrogen production by electrodeposition of Co and V species, Int. J. Hydrogen Energy, pp.703-709

C. Lupi, A. Dell'era, and M. Pasquali, Nickel-cobalt electrodeposited alloys for hydrogen evolution in alkaline media, Int. J. Hydrogen Energy, pp.2101-2106

K. Zeng and D. Zhang, Evaluating the effect of surface modifications on Ni based electrodes for alkaline water electrolysis // Fuel.-2014, pp.692-698

R. Solmaz, A. Döner, and G. Karda?, Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction // Electrochem. commun.-2008.-V. 10.-I. 12, 1909.

S. H. Ahn, H. H. Park, -. Choi, I. Yoo, S. J. Hwang et al., Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis, Int. J. Hydrogen Energy, pp.13493-13501

K. Ngamlerdpokin and N. Tantavichet, Electrodeposition of nickel-copper alloys to use as a cathode for hydrogen evolution in an alkaline media // Int. J. Hydrogen Energy.-2014.-V. 39.-I. 6, pp.2505-2515

A. E. Mauer, D. W. Kirk, and S. J. Thorpe, The role of iron in the prevention of nickel electrode deactivation in alkaline electrolysis // Electrochim. Acta.-2007.-V. 52.-I. 11, pp.3505-3509

R. Simpraga, In situ determination of the "real area factox" in H2 evolution electrocatalysis at porous Ni-Fe composite electrodes, J. Electroanal. Chem, pp.141-151, 1997.

D. E. Brown, M. N. Mahmood, A. K. Turner, S. M. Hall, and -. P. Fogarty, Low overvoltage electrocatalysts for hydrogen evolving electrodes, Int. J. Hydrogen Energy, pp.405-410, 1982.

B. E. Conway and L. Bai, H2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H, Int. J. Hydrogen Energy

J. Y. Huot, M. L. Trudeau, and R. Schulz, Low Hydrogen Overpotential Nanocrystalline Ni-Mo Cathodes for Alkaline Water Electrolysis, J. Electrochem. Soc, pp.1316-1321

L. B. Albertini, A. C. Angelo, and E. R. Gonzalez, A nickel molybdenite cathode for the hydrogen evolution reaction in alkaline media, J. Appl. Electrochem, pp.888-892

M. R. Gennero-de-chialvo and A. C. Chialvo, Hydrogen evolution reaction on smooth Ni(1?x)+Mo(x) alloys (0?x?0.25), J. Electroanal. Chem, pp.87-93

J. Jak?i?, M. Vojnovi?, and N. Krstaji?, Kinetic analysis of hydrogen evolution at NiMo alloy electrodes // Electrochim. Acta.-2000.-V. 45.-I. 25-26, pp.4151-4158

A. Kawashima, E. Akiyama, H. Habazaki, and K. Hashimoto, Characterization of sputter-deposited Ni-Mo and Ni-W alloy electrocatalysts for hydrogen evolution in alkaline solution, Mater. Sci. Eng., A, pp.905-909, 1997.

F. Paloukis, S. Zafeiratos, V. Drakopoulos, and S. G. Neophytides, Electronic structure modifications and HER of annealed electrodeposited Ni overlayers on Mo polycrystalline surface // Electrochim. Acta. 2008.-V. 53.-I. 27, pp.8015-8025

N. Krstajic, V. Jovic, L. Gajickrstajic, B. Jovic, A. Antozzi et al., Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution, Int. J. Hydrogen Energy, pp.3676-3687, 2008.

C. Sasaki, K. Ma, C. Frenkel, A. I. Marinkovic, N. Muckerman et al., Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets, Angew. Chem. Int. Ed. Engl, pp.6131-6135, 2012.

J. R. Mckone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, Ni-Mo nanopowders for efficient electrochemical hydrogen evolution // ACS Catal, pp.166-169

X. Tang, X. Li, Y. C. Lu, J. Zhuang, and L. , Noble fabrication of Ni-Mo cathode for alkaline water electrolysis and alkaline polymer electrolyte water electrolysis, Int. J. Hydrogen Energy, pp.3055-3060

L. Zhang, K. Xiong, Y. Nie, X. Wang, J. Liao et al., Sputtering nickelmolybdenum nanorods as an excellent hydrogen evolution reaction catalyst, J. Power Sources, pp.413-418, 2015.

M. Fang, W. Gao, G. Dong, Z. Xia, S. P. Yip et al., Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions // Nano Energy, pp.247-254

C. Fan, D. Piron, and M. Rojas, Polarization of cobalt-molybdenum and nickelmolybdenum hydrogen electrodes for alkaline fuel cells // Int. J. Hydrogen Energy.-1994.-V. 19.-I. 6, pp.529-533

I. Danaee and S. Noori, Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode, Int. J. Hydrogen Energy, pp.12102-12111

O. Aaboubi, A. Ali-omar, E. Dzoyem, J. Marthe, and M. Boudifa, Ni-Mn based alloys as versatile catalyst for different electrochemical reactions, J. Power Sources, pp.597-607, 2014.

E. A. Franceschini, G. I. Lacconi, and H. R. Corti, Kinetics of hydrogen evolution reaction on nickel modified by spontaneous Ru deposition: A rotating disk electrode and impedance spectroscopy approach, Int. J. Hydrogen Energy, pp.3326-3338, 2016.

B. M. Jovi?, U. ?. La?njevac, N. V. Krstaji?, and V. D. Jovi?, Ni-Sn coatings as cathodes for hydrogen evolution in alkaline solutions, Electrochim. Acta, pp.813-818, 2013.

K. Machida, M. Enyo, G. Adachi, and J. Shiokawa, The hydrogen electrode reaction characteristics of thin film electrodes of Ni-based hydrogen storage alloys // Electrochim. Acta.-1984.-V. 29.-I. 6, pp.807-815

J. Panek, A. Serek, A. Budniok, E. Rówinski, and E. ?agiewka, Ni + Ti composite layers as cathode materials for electrolytic hydrogen evolution, Int. J. Hydrogen Energy, pp.169-175

A. Kellenberger, N. Vaszilcsin, W. Brandl, and N. Duteanu, Kinetics of hydrogen evolution reaction on skeleton nickel and nickel-titanium electrodes obtained by thermal arc spraying technique, Int. J. Hydrogen Energy, pp.3258-3265

D. E. Brown, M. N. Mahmood, M. C. Man, and A. K. Turner, Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions // Electrochim. Acta.-1984.-V. 29.I. 11, pp.1551-1556

R. M. Abouatallah, D. W. Kirk, S. J. Thorpe, and J. W. Graydon, Reactivation of nickel cathodes by dissolved vanadium species during hydrogen evolution in alkaline media // Electrochim. Acta.-2001.-V. 47.-I. 4, pp.613-621

S. F. Lu, J. Pan, A. B. Huang, L. Zhuang, and J. Lu, Proc. Natl. Acad. Sci. U. S. A.-2008.-V. 105.-I. 52, pp.20611-20614

M. A. Oliver-tolentino, E. M. Arce-estrada, C. A. Cortés-escobedo, A. M. Bolarín-miro, F. Sánchez-de-jesús et al., Electrochemical behavior of NixW1?x materials as catalyst for hydrogen evolution reaction in alkaline media, J. Alloys Compd, pp.245-249

Q. Hu, G. Li, J. Pan, L. Tan, J. Lu et al., Alkaline polymer electrolyte fuel cell with Ni-based anode and Co-based cathode, Int. J. Hydrogen Energy, pp.16264-16268

S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa et al., Stable and inexpensive electrodes for the hydrogen evolution reaction, Int. J. Hydrogen Energy, pp.11484-11495

P. Salvi, P. Nelli, M. Villa, Y. Kiros, G. Zangari et al., Hydrogen evolution reaction in PTFE bonded Raney-Ni electrodes, Int. J. Hydrogen Energy, 2011.

Y. Choquette, Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite-Coated Electrode by AC Impedance Technique, J. Electrochem. Soc, pp.1723-1730

C. Lupi, A. Dell'era, and M. Pasquali, In situ activation with Mo of Ni-Co alloys for hydrogen evolution reaction, Int. J. Hydrogen Energy

G. S. Tasic, S. P. Maslovara, D. L. Zugic, A. D. Maksic, and M. P. Marceta-kaninski, Characterization of the Ni-Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis, Int. J. Hydrogen Energy, pp.11588-11595, 2011.

J. Huot and L. Brossard, Time dependence of the hydrogen discharge at 70°C on nickel cathodes, Int. J. Hydrogen Energy

X. Wang, R. Su, H. Aslan, J. Kibsgaard, S. Wendt et al., Tweaking the composition of NiMoZn alloy electrocatalyst for enhanced hydrogen evolution reaction performance // Nano Energy, pp.9-18

M. M. Jaksic, Hypo-hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions // Int. J. Hydrogen Energy.-2001.-V. 26.-I. 6, pp.559-578

E. A. Franceschini, G. I. Lacconi, and H. R. Corti, Kinetics of the hydrogen evolution on nickel in alkaline solution: new insight from rotating disk electrode and impedance spectroscopy analysis // Electrochim. Acta.-2015, pp.210-218

M. Bernardini, N. Comisso, G. Davolio, G. Mengoli, and L. Sinico, Formation of nickel hydrides by hydrogen evolution in alkaline media: effect of temperature, J. Electroanal. Chem, pp.205-219

H. E. Rommal and P. J. Morgan, The Role of Absorbed Hydrogen on the VoltageTime Behavior of Nickel Cathodes in Hydrogen Evolution, J. Electrochem. Soc

J. Huot, Hydrogen Evolution and Interface Phenomena on a Nickel Cathode in 30 w/o KOH, J. Electrochem. Soc, 1933.

H. E. Rommal, Time-Dependent Energy Efficiency Losses at Nickel Cathodes in Alkaline Water Electrolysis Systems, J. Electrochem. Soc, pp.325-329

B. E. Conway, Study of a Decomposing Hydride Phase at Nickel Cathodes by Measurement of Open-Circuit Potential Decay, J. Electrochem. Soc, pp.1825-1836

Z. Szklarska-smialowska and M. Smialowski, Electrochemical Study of the NickelHydrogen System, J. Electrochem. Soc

R. Solmaz, A. Döner, and G. Karda?, The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution, Int. J. Hydrogen Energy, pp.2089-2094

W. Hu and J. Lee, Electrocatalytic properties of Ti2Ni/Ni-Mo composite electrodes for hydrogen evolution reaction, Int. J. Hydrogen Energy, pp.253-257, 1998.

J. O. Bockris and B. E. Conway, Preparation and Maintenance of Electrodes in a Hydrogen Atmosphere, J. Sci. Instrum, pp.283-283

M. A. Devanathan and M. Selvaratnam, Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage // Trans, pp.1820-1831, 1960.

G. Kreysa and B. Håkansson, Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution, J. Electroanal. Chem. Interfacial Electrochem, pp.61-83, 1986.

G. Kreysa, B. Hakansson, and P. Ekdunge, Kinetic and Thermodynamic Analysis of Hydrogen Evolution At Nickel Electrodes // Electrochim. Acta.-1988.-V. 33.-I. 10, pp.1351-1357

M. Kibria, Electrochemical studies of a nickel electrode for the hydrogen evolution reaction, Int. J. Hydrogen Energy

J. P. Diard, B. Legorrec, and S. Maximovitch, Etude de l'activation du degagement d'hydrogene sur electrode d'oxyde de nickel par spectroscopie d'impedance // Electrochim. Acta.-1990.-V. 35.-I. 6, pp.1099-1108

B. E. Conway and L. Bai, Determination of the adsorption behaviour of "overpotential-deposited" hydrogen-atom species in the cathodic hydrogenevolution reaction by analysis of potential-relaxation transients, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, pp.1841-1862, 1985.

N. Krstaji?, M. Popovi?, B. Grgur, M. Vojnovi?, and D. ?epa, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution-Part I. The mechanism, J. Electroanal. Chem, pp.16-26

L. Angely, G. Bronoel, and G. Peslerbe, Relation between nickel crystalline structures and their electrocatalytic properties: Part III. Steady-state oxidoreduction characteristics of hydrogen on Ni, J. Electroanal. Chem. Interfacial Electrochem

B. E. Conway and G. Jerkiewicz, Thermodynamic and electrode kinetic factors in cathodic hydrogen sorption into metals and its relationship to hydrogen adsorption and poisoning, J. Electroanal. Chem, pp.47-66

P. Ekdunge, K. Jiittner, and G. Kreyso, Electrochemical Impedance Study on the Kinetics of Hydrogen Evolution at Amorphous Metals in Alkaline Solution.1991.-V. 138.-I. 9, pp.2660-2668

N. Krstaji?, M. Popovi?, B. Grgur, M. Vojnovi?, and D. ?epa, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution Part II. Effect of temperature, J. Electroanal. Chem, pp.27-35

J. Yeh, Atomic calculation of photoionization cross-sections and asymmetry parameters, AT&T Bell Laboratories, 1993.

J. Scherer, B. Ocko, and O. Magnussen, Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: an in situ STM, X-ray scattering, and electrochemical study // Electrochim. Acta.-2003.-V. 48.-I. 9, pp.1169-1191

M. C. Biesinger, B. P. Payne, L. W. Lau, A. Gerson, R. Smart et al., X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems // Surf. Interface Anal

M. A. Peck and M. A. Langell, Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS // Chem. Mater.2012.-V. 24.-I. 23, pp.4483-4490

B. P. Payne, M. C. Biesinger, and N. S. Mcintyre, The study of polycrystalline nickel metal oxidation by water vapour, J. Electron Spectros. Relat. Phenomena, pp.55-65

T. L. Barr and S. Sudipta, Nature of the use of adventitious carbon as a binding energy standard, J. Vac. Sci. Technol, pp.1239-1246

Z. Zhang, Y. Liu, Z. Huang, L. Ren, X. Qi et al., Facile hydrothermal synthesis of NiMoO4 @CoMoO4 hierarchical nanospheres for supercapacitor applications, Phys. Chem. Chem. Phys, pp.20795-20804, 2015.

J. Haetge, I. Djerdj, and T. Brezesinski, Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries, Chem. Commun, pp.6726-6728

D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell et al., Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2, J. Phys. Chem. C, pp.4636-4645

J. Baltrusaitis, B. Mendoza-sanchez, V. Fernandez, R. Veenstra, N. Dukstiene et al., Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model, Appl. Surf. Sci, pp.151-161, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01725863

J. Sarkany, On the use of the dynamic pulse method to measure metal surface areas // J. Catal.-1982.-V. 76.-I. 1, pp.75-83

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, vol.856

B. B. Damaskin, O. A. Petrii, G. A. Tsirlina, and . Electrochemistry,

D. R. Lide, CRC Handbook of chemistry and physics, vol.2475, 2003.

A. Bonnefont, Hydrogen electrooxidation on PdAu supported nanoparticles: An experimental RDE and kinetic modeling study // Catal. Today.-2013, pp.70-78

M. Salmeron and R. Schlogl, Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology, Surf. Sci. Rep, pp.169-199, 2008.

V. A. Saveleva, W. Li, W. Luo, S. Zafeiratos, C. Ulhaq-bouillet et al., Uncovering the Stabilization Mechanism in Bimetallic Ruthenium-Iridium Anodes for Proton Exchange Membrane Electrolyzers, J. Phys. Chem. Lett, pp.3240-3245, 2016.

O. Diaz-morales, F. Calle-vallejo, C. De-munck, and M. T. Koper, Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism, Chem. Sci

N. Kitakatsu, V. Maurice, C. Hinnen, and P. Marcus, Surface hydroxylation and local structure of NiO thin films formed on Ni(111) // Surf. Sci.-1998.-V. 407.-I. 1-3, pp.36-58

J. A. Medford, A. C. Johnston-peck, and J. Tracy, Nanostructural transformations during the reduction of hollow and porous nickel oxide nanoparticles. // Nanoscale.-2013.-V. 5.-I. 1, pp.155-159

V. A. Sadykov, S. F. Tikhov, S. V. Tsybulya, G. N. Kryukova, S. A. Veniaminov et al., Role of defect structure in structural sensitivity of the oxidation reactions catalyzed by dispersed transition metal oxides, J. Mol. Catal. A Chem

S. V. Tsybulya, G. N. Kryukova, S. N. Goncharova, A. N. Shmakov, and B. Balzhinimaev, Study of the Real Structure of Silver Supported Catalysts of Different Dispersity, J. Catal

A. G. Oshchepkov, A. N. Simonov, P. A. Simonov, A. N. Shmakov, N. A. Rudina et al., Interrelation between catalytic activity for oxygen electroreduction and structure of supported platinum, J. Electroanal. Chem, pp.34-42, 2014.

N. P. Lebedeva, M. T. Koper, J. M. Feliu, and R. A. Van-santen, Role of Crystalline Defects in Electrocatalysis: Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes, J. Phys. Chem. B, pp.12938-12947, 2002.

J. M. Sieben, Controlled size formation of electrodeposited Pt-Ru nanostructured catalysts using chelating compounds // Mater. Chem. Phys.-2011.-V. 128.I. 1-2, pp.243-249

O. V. Cherstiouk, A. N. Gavrilov, L. M. Plyasova, I. Molina, . Yu et al., Influence of structural defects on the electrocatalytic activity of platinum // J. Solid State Electrochem, pp.497-509, 2008.

K. S. Napolskii, P. J. Barczuk, S. Vassiliev, . Yu, A. G. Veresov et al., Templating of electrodeposited platinum group metals as a tool to control catalytic activity // Electrochim. Acta.-2007.-V. 52.-I. 28, pp.7910-7919

A. N. Simonov, O. V. Cherstiouk, S. Vassiliev, . Yu, V. I. Zaikovskii et al., Potentiostatic electrodeposition of Pt on GC and on HOPG at low loadings: Analysis of the deposition transients and the structure of Pt deposits // Electrochim, pp.279-289

B. Scharifker and G. Hills, Theoretical and experimental studies of multiple nucleation // Electrochim. Acta.-1983.-V. 28.-I. 7, pp.879-889

L. M. Plyasova, I. Molina, . Yu, A. N. Gavrilov, S. V. Cherepanova et al., Electrodeposited platinum revisited: Tuning nanostructure via the deposition potential // Electrochim. Acta.-2006.-V. 51.-I. 21, pp.4477-4488

L. M. Plyasova, I. Molina, . Yu, S. V. Cherepanova, N. A. Rudina et al., Disperse Electrolytic Platinum and Palladium Deposits of Submicron Thickness on Polycrystalline Supports: An Xray Diffractometry and Microscopy Study, Russ. J. Electrochem, pp.1116-1131

B. Hammer and J. Nørskov, Theoretical surface science and catalysis-calculations and concepts // Adv. Catal, pp.71-129

J. A. Linnekoski, A. O. Krause, J. Keskinen, J. Lamminen, and T. Anttila, Processing of Raney-Nickel Catalysts for Alkaline Fuel Cell Applications, J. Fuel Cell Sci. Technol, pp.45-48, 2007.

E. Santos, P. Quaino, P. F. Hindelang, and W. Schmickler, Hydrogen evolution on a pseudomorphic Cu-layer on Ni(111)-A theoretical study, J. Electroanal. Chem, pp.149-152

I. G. Medvedev, To a theory of electrocatalysis for the hydrogen evolution reaction: The hydrogen chemisorption energy on the transition metal alloys within the Anderson-Newns model, Russ. J. Electrochem, pp.1123-1131

M. J. Kelley and V. Ponec, Prog. Surf. Sci, pp.139-244

R. Domnick, G. Held, P. Witte, and H. Steinru?-ck, The transition from oxygen chemisorption to oxidation of ultra-thin Ni layers on Cu(111), J. Chem. Phys, 2001.

J. Zheng, S. Zhou, S. Gu, B. Xu, and Y. Yan, Size-Dependent Hydrogen Oxidation and Evolution Activities on Supported Palladium Nanoparticles in Acid and Base, J. Electrochem. Soc

. Références,

M. Watanabe and D. A. Tryk, Fuel Cells: An Overview with Emphasis on Polymer Electrolyte Fuel Cells // Electrochemical Science for a Sustainable Society, pp.51-94, 2017.

A. Lasia and A. Rami, Kinetics of Hydrogen Evolution on Nickel Electrodes, J. Electroanal. Chem. Interfacial Electrochem, vol.294, pp.123-141, 1990.

J. L. Weininger and M. W. Breiter, Hydrogen Evolution and Surface Oxidation of Nickel Electrodes in Alkaline Solution, J. Electrochem. Soc, vol.111, pp.707-712, 1964.

D. S. Hall, C. Bock, and B. R. Macdougall, The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution, J. Electrochem. Soc, p.160, 2013.

M. Alsabet, M. Grden, and G. Jerkiewicz, Electrochemical Growth of Surface Oxides on Nickel. Part 1: Formation of ?-Ni(OH)2 in Relation to the Polarization Potential, Polarization Time, and Temperature, Electrocatalysis, vol.2, pp.317-330, 2011.

D. Floner, C. Lamy, and J. Leger, Electrocatalytic Oxidation of Hydrogen on Polycrystal and Single-crystal Nickel Electrodes, Surf. Sci, vol.234, pp.87-97, 1990.

A. Mohsenzadeh, T. Richards, and K. Bolton, Ni(100) and Ni(110) Surfaces, DFT Study of the Water Gas Shift Reaction on Ni(111), vol.644, pp.53-63, 2016.

W. Sheng, M. Myint, J. G. Chen, and Y. Yan, Correlating the Hydrogen Evolution Reaction Activity in Alkaline Electrolytes with the Hydrogen Binding Energy on Monometallic Surfaces, Energy Environ. Sci, vol.6, pp.1509-1512, 2013.

S. Liu, T. Ishimoto, and M. Koyama, First-principles Study of Oxygen Coverage Effect on Hydrogen Oxidation on Ni(111) Surface, Appl. Surf. Sci, vol.333, pp.86-91, 2015.

F. Che, J. T. Gray, S. Ha, and J. Mcewen, Catalytic Water Dehydrogenation and Formation on Nickel: Dual Path Mechanism in High Electric Fields, J. Catal, vol.332, pp.187-200, 2015.

A. Kawashima, E. Akiyama, H. Habazaki, and K. Hashimoto, Characterization of Sputter-deposited Ni-Mo and Ni-W Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solution, Mater. Sci. Eng. A, pp.905-909, 1997.