T. Avidor-reiss and M. R. Leroux, Shared and distinct mechanisms of compartmentalized and cytosolic ciliogenesis, Curr. Biol, vol.25, pp.1143-1150, 2015.

T. Avidor-reiss, A. Khire, E. L. Fishman, and K. H. Jo, Atypical centrioles during sexual reproduction, Front. Cell Dev. Biol, vol.3, 2015.
DOI : 10.3389/fcell.2015.00021

URL : https://www.frontiersin.org/articles/10.3389/fcell.2015.00021/pdf

J. L. Badano, N. Mitsuma, P. L. Beales, and N. Katsanis, The ciliopathies: an emerging class of human genetic disorders, Annu. Rev. Genomics Hum. Genet, vol.7, pp.125-148, 2006.

K. Baker and P. L. Beales, Making sense of cilia in disease: the human ciliopathies, Am. J. Med. Genet. C. Semin. Med. Genet, vol.151, pp.281-295, 2009.

J. D. Baker, S. Adhikarakunnathu, and M. J. Kernan, Mechanosensorydefective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila, Development, vol.131, pp.3411-3422, 2004.

A. R. Barker, K. S. Renzaglia, K. Fry, and H. R. Dawe, Bioinformatic analysis of ciliary transition zone proteins reveals insights into the evolution of ciliopathy networks, BMC Genomics, vol.15, p.531, 2014.

M. L. Basiri, A. Ha, A. Chadha, N. M. Clark, A. Polyanovsky et al., A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids, Curr. Biol, vol.24, pp.2622-2631, 2014.

N. J. Bialas, P. N. Inglis, C. Li, J. F. Robinson, J. D. Parker et al., Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins, J. Cell Sci, vol.122, pp.611-624, 2009.

J. Bischof, M. Björklund, E. Furger, C. Schertel, J. Taipale et al., A versatile platform for creating a comprehensive UAS-ORFeome library in Drosophila, Development, vol.140, pp.2434-2442, 2013.

S. Blachon, X. Cai, K. A. Roberts, K. Yang, A. Polyanovsky et al., A proximal centriole-like structure is present in Drosophila spermatids and can serve as a model to study centriole duplication, Genetics, vol.182, pp.133-144, 2009.

C. Blaineau, M. Tessier, P. Dubessay, L. Tasse, L. Crobu et al., A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum, Curr. Biol, vol.17, pp.778-782, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00175468

J. M. Brown and G. B. Witman, Cilia and diseases, Bioscience, vol.64, pp.1126-1137, 2014.

M. C. Burke, F. Li, B. Cyge, T. Arashiro, H. M. Brechbuhl et al., Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation, J. Cell Biol, vol.207, pp.123-137, 2014.

Z. Carvalho-santos, P. Machado, I. Alvarez-martins, S. M. Gouveia, S. C. Jana et al., BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair, Dev. Cell, vol.23, pp.412-424, 2012.

X. Chamling, S. Seo, C. C. Searby, G. Kim, D. C. Slusarski et al., The centriolar satellite protein AZI1 interacts with BBS4 and regulates ciliary trafficking of the BBSome, PLoS Genet, vol.10, p.1004083, 2014.

K. Y. Chan and K. Ersfeld, The role of the Kinesin-13 family protein TbKif13-2 in flagellar length control of Trypanosoma brucei, 2010.

, Biochem. Parasitol, vol.174, pp.137-140

D. Chen and D. M. Mckearin, A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell, Development, vol.130, pp.1159-1170, 2003.

B. Chih, P. Liu, Y. Chinn, C. Chalouni, L. G. Komuves et al., A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain, Nat. Cell Biol, vol.14, pp.61-72, 2011.

P. G. Czarnecki and J. V. Shah, The ciliary transition zone: from morphology and molecules to medicine, Trends Cell Biol, vol.22, pp.201-210, 2012.

S. C. Dawson, M. S. Sagolla, J. J. Mancuso, D. J. Woessner, S. A. House et al., Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis, Eukaryot. Cell, vol.6, pp.2354-2364, 2007.

N. Delgehyr, H. Rangone, J. Fu, G. Mao, B. Tom et al., Klp10A, a microtubule-depolymerizing kinesin-13, cooperates with CP110 to control Drosophila centriole length, Curr. Biol, vol.22, pp.502-509, 2012.

S. Dunst, T. Kazimiers, F. Zadow, H. Jambor, A. Sagner et al., Endogenously tagged rab proteins: a resource to study membrane trafficking in Drosophila, Dev. Cell, vol.33, pp.351-365, 2015.

C. Enjolras, J. Thomas, B. Chhin, E. Cortier, J. L. Duteyrat et al., Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling, J. Cell Biol, vol.197, pp.313-325, 2012.
DOI : 10.1083/jcb.201109148

URL : https://hal.archives-ouvertes.fr/hal-00709925

L. Fabian and J. A. Brill, Drosophila spermiogenesis: big things come from little packages, Spermatogenesis, vol.2, pp.197-212, 2012.
DOI : 10.4161/spmg.21798

URL : https://www.tandfonline.com/doi/pdf/10.4161/spmg.21798?needAccess=true

A. Franz, H. Roque, S. Saurya, J. Dobbelaere, and J. W. Raff, CP110 exhibits novel regulatory activities during centriole assembly in Drosophila, J. Cell Biol, vol.203, pp.785-799, 2013.
DOI : 10.1083/jcb.201305109

URL : http://jcb.rupress.org/content/203/5/785.full.pdf

B. J. Galletta, R. X. Guillen, C. J. Fagerstrom, C. W. Brownlee, D. A. Lerit et al., Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies, Mol. Biol. Cell, vol.25, pp.2682-2694, 2014.
DOI : 10.1091/mbc.e13-10-0617

URL : https://doi.org/10.1091/mbc.e13-10-0617

F. R. Garcia-gonzalo, K. C. Corbit, M. S. Sirerol-piquer, G. Ramaswami, E. A. Otto et al., A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition, Nat. Genet, vol.43, pp.776-784, 2011.
DOI : 10.1038/ng.891

URL : http://europepmc.org/articles/pmc3145011?pdf=render

D. Gogendeau and R. Basto, Centrioles in flies: the exception to the rule? Semin, Cell Dev. Biol, vol.21, pp.163-173, 2010.

M. Gottardo, G. Callaini, and M. G. Riparbelli, The cilium-like region of the Drosophila spermatocyte: an emerging flagellum?, J. Cell Sci, vol.126, pp.5441-5452, 2013.

S. J. Gratz, F. P. Ukken, C. D. Rubinstein, G. Thiede, L. K. Donohue et al., Highly specific and efficient CRI SPR/Cas9-catalyzed homology-directed repair in Drosophila, Genetics, vol.196, pp.961-971, 2014.
DOI : 10.1534/genetics.113.160713

URL : http://www.genetics.org/content/196/4/961.full.pdf

E. A. Hall, M. Keighren, M. J. Ford, T. Davey, A. P. Jarman et al., Acute versus chronic loss of mammalian Azi1/Cep131 results in distinct ciliary phenotypes, PLoS Genet, vol.9, 2013.

Y. Han, B. H. Kwok, and M. J. Kernan, Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm, Curr. Biol, vol.13, pp.1679-1686, 2003.

Q. Hu and W. J. Nelson, Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment, Cytoskeleton (Hoboken), vol.68, pp.313-324, 2011.
DOI : 10.1002/cm.20514

URL : http://europepmc.org/articles/pmc3143192?pdf=render

Z. Hu, Y. Liang, D. Meng, L. Wang, and J. Pan, Microtubuledepolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella, International Review of Cell and Molecular Biology, pp.241-265, 2015.

J. Huang, W. Zhou, A. M. Watson, Y. Jan, and Y. Hong, Efficient endsout gene targeting in Drosophila, Genetics, vol.180, pp.703-707, 2008.

S. C. Jana, M. Bettencourt-dias, B. Durand, and T. L. Megraw, Drosophila melanogaster as a model for basal body research, Cilia, vol.5, p.22, 2016.
DOI : 10.1186/s13630-016-0041-5

URL : https://ciliajournal.biomedcentral.com/track/pdf/10.1186/s13630-016-0041-5

V. L. Jensen, C. Li, R. V. Bowie, L. Clarke, S. Mohan et al., Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance, EMBO J, vol.34, pp.2537-2556, 2015.

J. E. Klebba, D. W. Buster, A. L. Nguyen, S. Swatkoski, M. Gucek et al., Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron, Curr. Biol, vol.23, pp.2255-2261, 2013.
DOI : 10.1016/j.cub.2013.09.019

URL : https://doi.org/10.1016/j.cub.2013.09.019

T. Kobayashi, W. Y. Tsang, J. Li, W. Lane, and B. D. Dynlacht, Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis, Cell, vol.145, pp.914-925, 2011.
DOI : 10.1016/j.cell.2011.04.028

URL : https://doi.org/10.1016/j.cell.2011.04.028

S. Kondo and R. Ueda, Highly improved gene targeting by germlinespecific Cas9 expression in Drosophila, Genetics, vol.195, pp.715-721, 2013.
DOI : 10.1534/genetics.113.156737

URL : http://www.genetics.org/content/195/3/715.full.pdf

Y. L. Lee, J. Santé, C. J. Comerci, B. Cyge, L. F. Menezes et al., Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function, Mol. Biol. Cell, vol.25, pp.2919-2933, 2014.

C. Li, V. L. Jensen, K. Park, J. Kennedy, F. R. Garcia-gonzalo et al., MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone, PLoS Biol, vol.14, p.1002416, 2016.
DOI : 10.1371/journal.pbio.1002416

URL : https://hal.archives-ouvertes.fr/hal-01408619

L. Ma and A. P. Jarman, Dilatory is a Drosophila protein related to AZI1 (CEP131) that is located at the ciliary base and required for cilium formation, J. Cell Sci, vol.124, pp.2622-2630, 2011.

M. Martinez-campos, R. Basto, J. Baker, M. Kernan, and J. W. Raff, The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis, J. Cell Biol, vol.165, pp.673-683, 2004.

C. A. Moores and R. A. Milligan, Lucky 13-microtubule depolymerisation by kinesin-13 motors, J. Cell Sci, vol.119, pp.3905-3913, 2006.

T. Noguchi, M. Koizumi, and S. Hayashi, Sustained elongation of sperm tail promoted by local remodeling of giant mitochondria in Drosophila, 2011.

, Curr. Biol, vol.21, pp.805-814

D. M. Phillips, Insect sperm: their structure and morphogenesis, J. Cell Biol, vol.44, pp.243-277, 1970.

J. F. Reiter, O. E. Blacque, and M. R. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization, EMBO Rep, vol.13, pp.608-618, 2012.

M. G. Riparbelli, G. Callaini, and T. L. Megraw, Assembly and persistence of primary cilia in dividing Drosophila spermatocytes, Dev. Cell, vol.23, pp.425-432, 2012.

M. G. Riparbelli, O. A. Cabrera, G. Callaini, and T. L. Megraw, Unique properties of Drosophila spermatocyte primary cilia, Biol. Open, vol.2, pp.1137-1147, 2013.

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-mcclung, C. E. Walczak et al., Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase, Nature, vol.427, pp.364-370, 2004.

L. Sang, J. J. Miller, K. C. Corbit, R. H. Giles, M. J. Brauer et al., Mapping the NPHP-JBTSMKS protein network reveals ciliopathy disease genes and pathways, Cell, vol.145, pp.513-528, 2011.

R. Sarpal, S. V. Todi, E. Sivan-loukianova, S. Shirolikar, N. Subramanian et al., Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails, Curr. Biol, vol.13, pp.1687-1696, 2003.

C. Schouteden, D. Serwas, M. Palfy, and A. Dammermann, The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans, J. Cell Biol, vol.210, pp.35-44, 2015.

J. Shi, Y. Zhao, D. Galati, M. Winey, and M. W. Klymkowsky, Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression, Dev. Biol, vol.395, pp.287-298, 2014.

C. Sung and M. R. Leroux, The roles of evolutionarily conserved functional modules in cilia-related trafficking, Nat. Cell Biol, vol.15, pp.1387-1397, 2013.

K. Szymanska and C. A. Johnson, The transition zone: an essential functional compartment of cilia, Cilia. 1:10, 2012.

A. Tates, Cytodifferentiation during spermatogenesis in Drosophila melanogaster: an electron microscope study, pp.1-162, 1971.

K. K. Vasudevan, Y. Jiang, K. F. Lechtreck, Y. Kushida, L. M. Alford et al., Kinesin-13 regulates the quantity and quality of tubulin inside cilia, Mol. Biol. Cell, vol.26, pp.478-494, 2015.

J. Vieillard, J. Duteyrat, E. Cortier, and B. Durand, Imaging cilia in Drosophila melanogaster, Methods Cell Biol, vol.127, pp.279-302, 2015.

B. H. Villumsen, J. R. Danielsen, L. Povlsen, K. B. Sylvestersen, A. Merdes et al., A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis, EMBO J, vol.32, pp.3029-3040, 2013.

V. A. Voronina, K. Takemaru, P. Treuting, D. Love, B. R. Grubb et al., Inactivation of Chibby affects function of motile airway cilia, J. Cell Biol, vol.185, pp.225-233, 2009.

L. Wang, T. Piao, M. Cao, T. Qin, L. Huang et al., Flagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13, J. Cell Sci, vol.126, pp.1531-1540, 2013.

H. Wei, J. Rollins, L. Fabian, M. Hayes, G. Polevoy et al., Depletion of plasma membrane PtdIns(4,5)P2 reveals essential roles for phosphoinositides in flagellar biogenesis, J. Cell Sci, vol.121, pp.1076-1084, 2008.

C. L. Williams, C. Li, K. Kida, P. N. Inglis, S. Mohan et al., MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis, J. Cell Biol, vol.192, pp.1023-1041, 2011.

L. E. Yee, F. R. Garcia-gonzalo, R. V. Bowie, C. Li, J. K. Kennedy et al., Conserved genetic interactions between ciliopathy complexes cooperatively support ciliogenesis and ciliary signaling, PLoS Genet, vol.11, 2015.