B. Acciaio, M. Beiglböck, F. Penkner, W. Schachermayer, and J. Temme, A trajectorial interpretation of Doob's martingale inequalities, Ann. Appl. Probab, vol.23, issue.4, pp.1494-1505, 2013.
DOI : 10.1214/12-aap878

URL : https://doi.org/10.1214/12-aap878

B. Acciaio, M. Beiglböck, F. Penkner, and W. Schachermayer, A model-free version of the fundamental theorem of asset pricing and the super-replication theorem, Mathematical Finance, 2013.

L. Andersen and J. Andreasen, Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing, Review of Derivatives Research, vol.4, pp.231-262, 2000.
DOI : 10.2139/ssrn.171438

M. Avellaneda, A. Levy, and A. Parás, Pricing and hedging derivative securities in markets with uncertain volatilities, Applied Mathematical Finance, vol.2, issue.2, pp.73-88, 1985.
DOI : 10.1080/13504869500000005

L. Bachelier, Théorie de la spéculation, Ann. Sci. ´ Ecole Norm. Sup, vol.17, issue.3, pp.21-86, 1900.

E. Benhamou, E. Gobet, and M. Miri, Smart expansion and fast calibration for jump diffusions, Finance Stoch, vol.13, issue.4, pp.563-589, 2009.
DOI : 10.1007/s00780-009-0102-3

E. Benhamou, E. Gobet, and M. Miri, Expansion formulas for European options in a local volatility model, Int. J. Theor. Appl. Finance, vol.13, issue.4, pp.603-634, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00325939

Z. Yaacov, B. D. Bergman, Z. Grundy, and . Wiener, General properties of option prices, The Journal of Finance, issue.5, 1996.

S. Biagini, B. Bouchard, C. Kardaras, and M. Nutz, Robust Fundamental Theorem for Continuous Processes, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076062

K. Bichteler, Stochastic integration and L p-theory of semimartingales, Ann. Probab, vol.9, issue.1, pp.91-1798, 1981.

A. Bick and W. Willinger, Dynamic spanning without probabilities, Stochastic Process. Appl, vol.50, issue.2, pp.90128-90135, 1994.
DOI : 10.1016/0304-4149(94)90128-7

URL : https://doi.org/10.1016/0304-4149(94)90128-7

F. Black and M. Scholes, The pricing of options and corporate liabilities [reprint of, Financial risk measurement and management, vol.81, pp.637-654, 1973.

, Lib. Crit. Writ. Econ, pp.100-117, 2012.

B. Bouchard and M. Nutz, Arbitrage and Duality in Nondominated Discrete-Time Models, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00826045

M. Burzoni, M. Frittelli, and M. Maggis, Universal Arbitrage Aggregator in Discrete Time Markets under Uncertainty, 2015.

P. Carr and D. Madan, Option valuation using the fast Fourier transform, J. Comput. Finance, vol.2, issue.4, pp.61-73, 1999.

P. Carr, H. Geman, D. B. Madan, and M. Yor, From local volatility to local Lévy models, Quant. Finance, vol.4, issue.5, pp.581-588, 2004.

W. Cheng, N. Costanzino, J. Liechty, A. L. Mazzucato, and V. Nistor, Closed-form asymptotics and numerical approximations of 1D parabolic equations with applications to option pricing, J. Fin. Math, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01284880

R. Cont, Model uncertainty and its impact on the pricing of derivative instruments, Mathematical Finance, vol.16, issue.3, pp.519-547, 2006.
URL : https://hal.archives-ouvertes.fr/halshs-00002695

R. Cont, Functional Ito calculus and functional Kolmogorov equations. Lecture notes of the Barcelona Summer School on Stochastic Analysis, Centre de Recerca Matematica, 2012.
DOI : 10.1007/978-3-319-27128-6_8

URL : https://doi.org/10.1007/978-3-319-27128-6_8

R. Cont and D. Fournié, A functional extension of the Ito formula, Comptes Rendus
URL : https://hal.archives-ouvertes.fr/hal-00457533

, Mathématique Acad. Sci. Paris Ser. I, vol.348, pp.57-61, 2010.

R. Cont and D. Fournié, Change of variable formulas for non-anticipative functionals on path space, J. Funct. Anal, vol.259, issue.4, pp.1043-1072, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00471318

R. Cont and D. Fournié, Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab, vol.41, issue.1, pp.109-133, 2013.

R. Cont and L. Yi, Weak approximations for martingale representations, 2014.
DOI : 10.1016/j.spa.2015.10.002

URL : https://hal.archives-ouvertes.fr/hal-01396590

R. Cont, N. Lantos, and O. Pironneau, A reduced basis for option pricing, SIAM J. Financial Math, vol.2, pp.287-316, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00522410

F. Corielli, P. Foschi, and A. Pascucci, Parametrix approximation of diffusion transition densities, SIAM J. Financial Math, vol.1, pp.833-867, 2010.

A. Cosso, Viscosity solutions of path-dependent pdes and nonmarkovian forward-backward stochastic equations, 2013.

M. Davis, Mathematics of financial markets, Mathematics unlimited-2001 and beyond, pp.361-380, 2001.

F. Bruno-de, Sul significato soggettivo della probabilità. ? Fundamenta Mathematicae, vol.17, pp.298-329, 1931.

F. Bruno-de, La prévision : ses lois logiques, ses sources subjectives, Annales de l'institut Henri Poincaré, vol.7, pp.1-68, 1937.

F. Delbaen and W. Schachermayer, The fundamental theorem of asset pricing for unbounded stochastic processes, Math. Ann, vol.312, issue.2, pp.215-250, 1998.

F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann, vol.300, issue.3, pp.463-520, 1994.

F. Delbaen and W. Schachermayer, The mathematics of arbitrage, 2006.

M. Di, F. , and A. Pascucci, On the complete model with stochastic volatility by hobson and rogers, Proceedings: Mathematical, vol.460, pp.3327-3338, 2004.

M. Di, F. , and A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express, vol.3, pp.77-116, 2005.

R. M. Dudley and R. Norvai?a, Concrete functional calculus, Springer Monographs in Mathematics, 2011.

R. M. Dudley and R. Norvai?a, Differentiability of six operators on nonsmooth functions and p-variation, Lecture Notes in Mathematics, vol.1703, 1999.

B. Dupire and ;. Ssrn-preprint, Functional itô calculus, 2009.

I. Ekren, C. Keller, N. Touzi, and J. Zhang, On viscosity solutions of path dependent pdes, Ann. Probab, vol.42, issue.1, p.2014

I. Ekren, C. Keller, N. Touzi, and J. Zhang, Viscosity solutions of fully nonlinear parabolic path dependent pdes: Part i, 2014.

I. Ekren, C. Keller, N. Touzi, and J. Zhang, Viscosity solutions of fully nonlinear parabolic path dependent pdes: Part ii, 2014.

E. Ekström and J. Tysk, Boundary behaviour of densities for non-negative diffusions, 2011.

N. E. Karoui, S. Peng, and M. Quenez, Backward stochastic differential equations in finance, Math. Finance, vol.7, issue.1, pp.1-71, 1997.

N. E. Karoui, M. Jeanblanc-picqué, and S. E. Shreve, Robustness of the Black and Scholes formula, Math. Finance, vol.8, issue.2, pp.93-126, 1998.

F. Fang and C. W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, SIAM J. Sci. Comput, vol.31, issue.2, pp.826-848, 2008.

F. Flandoli and G. Zanco, An infinite-dimensional approach to path-dependent Kolmogorov's equations. ArXiv e-prints, 2013.

H. Föllmer, Calcul d'Itô sans probabilités, In Seminar on Probability, vol.850, pp.143-150, 1979.

H. Föllmer and A. , Schied. Probabilistic aspects of finance

, Bernoulli, vol.19, issue.4, pp.1306-1326, 2013.

P. Foschi, S. Pagliarani, and A. Pascucci, Black-Scholes formulae for Asian options in local volatility models. SSRN eLibrary, 2011.
DOI : 10.2139/ssrn.1898992

URL : http://amsacta.unibo.it/3091/1/Quaderni_2011_7_FoschiPagliaraniPascucci_Black-scholes.pdf

D. Fournié, Functional Ito calculus and applications, ProQuest LLC, 2010.

A. Friedman, Partial differential equations of parabolic type, 1964.

M. G. Garroni and J. Menaldi, Green functions for second order parabolic integro-differential problems, Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, vol.275

J. Gatheral, E. P. Hsu, P. Laurence, C. Ouyang, and T. Wang, Asymptotics of implied volatility in local volatility models, 2010.

P. S. Hagan and D. E. Woodward, Equivalent Black volatilities, Appl. Math. Finance, vol.6, issue.6, pp.147-159, 1999.
DOI : 10.1080/135048699334500

J. , M. Harrison, and D. M. Kreps, Martingales and arbitrage in multiperiod securities markets, J. Econom. Theory, vol.20, issue.3, pp.90043-90050, 1979.
DOI : 10.1016/0022-0531(79)90043-7

J. , M. Harrison, and S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Process. Appl, vol.11, issue.3, pp.90026-90026, 1981.

S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Finan. Stud, vol.6, pp.327-343, 1993.

D. G. Hobson, Volatility misspecification, option pricing and superreplication via coupling, Ann. Appl. Probab, vol.8, issue.1, pp.193-205, 1998.
DOI : 10.1214/aoap/1027961040

URL : https://doi.org/10.1214/aoap/1027961040

G. David, L. C. Hobson, and . Rogers, Complete models with stochastic volatility, Mathematical Finance, vol.8, issue.1, pp.27-48, 1998.

S. Howison, Matched asymptotic expansions in financial engineering, J. Engrg. Math, vol.53, issue.3-4, pp.385-406, 2005.
DOI : 10.1007/s10665-005-7716-z

URL : http://people.maths.ox.ac.uk/~howison/papers/lighthill.pdf

K. Itô and H. P. Mckean, Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, p.125, 1974.

J. E. Ingersoll, Theory of Financial Decision Making. Blackwell, p.377, 1987.

L. Rajeeva and . Karandikar, On pathwise stochastic integration, Stochastic Process. Appl, vol.57, issue.1, pp.11-18, 1995.

I. Karatzas and C. Kardaras, The numéraire portfolio in semimartingale financial models, Finance and Stochastics, vol.11, issue.4, pp.447-493, 2007.
DOI : 10.1007/s00780-007-0047-3

URL : http://arxiv.org/pdf/0803.1877

C. Kardaras, Finitely additive probabilities and the fundamental theorem of asset pricing, Contemporary quantitative finance, pp.19-34, 2010.
DOI : 10.1007/978-3-642-03479-4_2

URL : http://arxiv.org/pdf/0911.5503

F. Knight, Risk, uncertainty and profit, 1921.

. David-m-kreps, Arbitrage and equilibrium in economies with infinitely many commodities, Journal of Mathematical Economics, vol.8, issue.1, pp.15-35, 1981.

E. E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali, Rend. Circ. Mat. Palermo, vol.24, pp.275-317, 1907.
DOI : 10.1007/bf03015067

URL : https://zenodo.org/record/2415464/files/article.pdf

A. L. Lewis, A simple option formula for general jump-diffusion and other exponential L ? A c vy processes, 2001.

A. Lipton, The vol smile problem, vol.15, pp.61-65, 2002.

E. R. Love and L. C. Young, On Fractional Integration by Parts, Proc. London Math. Soc, issue.1, pp.1-35, 1938.

T. J. Lyons, Uncertain volatility and the risk-free synthesis of derivatives, Applied Mathematical Finance, vol.2, issue.2, pp.117-133, 1995.

D. Madan and E. Seneta, The variance gamma (VG) model for share market returns, Journal of Business, vol.63, pp.511-524, 1990.

P. Malliavin, Stochastic analysis, 1997.

C. Robert and . Merton, Theory of rational option pricing, Bell J. Econom. and Management Sci, vol.4, pp.141-183, 1973.

C. Robert and . Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ, vol.3, issue.1-2, pp.125-144, 1976.

M. A. Milevsky and S. E. Posner, Asian options, the sum of lognormals, and the reciprocal gamma distribution, The Journal of Financial and Quantitative Analysis, vol.33, issue.3, pp.409-422, 1998.

R. Norvai?a, Chain rules and p-variation, Studia Math, vol.149, issue.3, pp.197-238, 2002.

R. Norvai?a, Quadratic variation, p-variation and integration with applications to stock price modelling, 2001.

D. Nualart, Malliavin calculus and its applications, CBMS Regional Conference Series in Mathematics. CBMS, Washington, vol.110, 2009.
DOI : 10.1090/cbms/110

M. Nutz, Pathwise construction of stochastic integrals, Electron. Commun. Probab, vol.17, issue.24, 2012.

S. Pagliarani and A. Pascucci, Analytical approximation of the transition density in a local volatility model. Cent, Eur. J. Math, vol.10, issue.1, pp.250-270, 2012.

S. Pagliarani, A. Pascucci, and C. Riga, Adjoint expansions in local Lévy models, SIAM J. Financial Math, vol.4, issue.1, pp.265-296, 2013.

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett, vol.14, issue.1, pp.90082-90088, 1990.

E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, Stochastic partial differential equations and their applications (Charlotte, vol.176, 1991.

. Sci, , pp.200-217, 1992.

A. Pascucci, PDE and martingale methods in option pricing, 2011.

A. Pascucci, PDE and martingale methods in option pricing, Bocconi & Springer Series, vol.2

, , 2011.

S. Peng, Note on Viscosity Solution of Path-Dependent PDE and G-Martingales, 2012.

N. Perkowski, Studies of robustness in stochastic analysis and mathematical finance, 2013.

N. Perkowski and D. J. Prömel, Pathwise stochastic integrals for model free finance, ArXiv, 2014.

S. Raible, Lévy processes in finance: Theory, numerics, and empirical facts, 2000.

F. Riedel, Finance Without Probabilistic Prior Assumptions, 2011.

L. C. Rogers and Z. Shi, The value of an Asian option, J. Appl. Probab, vol.32, issue.4, pp.1077-1088, 1995.

. Stephen-a-ross, A simple approach to the valuation of risky streams, Journal of business, pp.453-475, 1978.

P. A. Samuelson, Using full duality to show that simultaneously additive direct and indirect utilities implies unitary price elasticity of demand, Econometrica, vol.33, pp.781-796, 1965.

W. Schachermayer, Fundamental Theorem of Asset Pricing, 2010.

J. Wiley, &. Sons, and . Ltd, , 2010.

A. Schied, Model-free CPPI, Journal of Economic Dynamics and Control, vol.40, issue.0, pp.84-94, 2014.

A. Schied and M. Stadje, Robustness of delta hedging for path-dependent options in local volatility models, J. Appl. Probab, vol.44, issue.4, pp.865-879, 2007.

D. Sondermann, Introduction to stochastic calculus for finance, Lecture Notes in Economics and Mathematical Systems, vol.579

. Springer-verlag, , 2006.

W. Daniel, S. R. Stroock, and . Srinivasa-varadhan, Multidimensional Diffusion Processes. A Series of Comprehensive Studies in Mathematics

. Springer-verlag, , 1979.

T. Tao, An introduction to measure theory, vol.126, 2011.

S. Murad, W. Taqqu, and . Willinger, The analysis of finite security markets using martingales, Advances in Applied Probability, pp.1-25, 1987.

V. Vovk, Continuous-time trading and the emergence of volatility, Electron. Commun. Probab, vol.13, pp.319-324, 2008.

V. Vovk, Ito calculus without probability in idealized financial markets, 2011.

V. Vovk, Rough paths in idealized financial markets, Lith. Math. J, vol.51, issue.2, pp.274-285, 2011.

V. Vovk, Continuous-time trading and the emergence of probability, Finance Stoch, vol.16, issue.4, pp.561-609, 2012.

M. Widdicks, P. W. Duck, A. D. Andricopoulos, and D. P. Newton, The Black-Scholes equation revisited: asymptotic expansions and singular perturbations, Math. Finance, vol.15, issue.2, pp.373-391, 2005.

W. Willinger and M. S. Taqqu, Pathwise stochastic integration and applications to the theory of continuous trading, Stochastic Process. Appl, vol.32, issue.2, pp.90079-90082, 1989.

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, The Annals of Mathematical Statistics, pp.1560-1564, 1965.

E. M. Wright, An inequality for convex functions, American Mathematical Monthly, pp.620-622, 1954.

G. Xu and H. Zheng, Basket options valuation for a local volatility jump-diffusion model with the asymptotic expansion method, Insurance Math. Econom, vol.47, issue.3, pp.415-422, 2010.

L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math, vol.67, issue.1, pp.251-282, 1936.


L. C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Ann, vol.115, issue.1, pp.581-612, 1938.