R. E. Arndt, Cavitation in Fluid Machinery and Hydraulic Structures, Annu. Rev. Fluid Mech, vol.13, issue.1, pp.273-326, 1981.

F. R. Young, , 1999.

M. Dular and M. Petkov?ek, New insights into the Mechanisms of Cavitation Erosion, J. Phys. Conf. Ser, vol.656, issue.1, p.12046, 2015.

M. Hugens, Attempting to Render the Cause of That Odd Phaenomenon of the QuickSilvers Remaining Suspended Far above the Usual Height in the Torricellian Experiments, Philos. Trans. 1665-1678, vol.7, pp.5027-5030, 1672.

. Sir-isaac-newton and . Optics,

J. I. Thornycroft and S. W. Barnaby, Torpedo-boat destroyers. (including appendix and plate at back of volume), Minutes Proc. Inst, vol.122, pp.51-69, 1895.

C. E. Brennen, Cavitation and Bubble Dynamics, 1995.
DOI : 10.1017/cbo9781107338760

URL : https://authors.library.caltech.edu/25017/5/BUBBOOK.pdf

K. Yasui, Acoustic Cavitation, Acoustic Cavitation and Bubble Dynamics, pp.1-35, 2018.
DOI : 10.1007/978-3-319-68237-2_1

X. Luo, B. Ji, and Y. Tsujimoto, A review of cavitation in hydraulic machinery, J. Hydrodyn. Ser B, vol.28, issue.3, pp.335-358, 2016.

F. Grieser, Sonochemistry and the acoustic bubble, 2015.

B. Verhaagen and D. F. Rivas, Measuring cavitation and its cleaning effect, Ultrason. Sonochem, vol.29, pp.619-628, 2016.

L. A. Crum, Resource Paper: Sonoluminescence, J. Acoust. Soc. Am, vol.138, issue.4, pp.2181-2205, 2015.

S. I. Nikitenko and R. Pflieger, Toward a new paradigm for sonochemistry: Short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions, Ultrason. Sonochem, vol.35, pp.623-630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02114785

Z. Zhang, G. Wang, Y. Nie, and J. Ji, Hydrodynamic cavitation as an efficient method for the formation of sub-100nm O/W emulsions with high stability, Chin. J. Chem. Eng, vol.24, issue.10, pp.1477-1480, 2016.

B. Sajjadi, A. R. Aziz, and S. Ibrahim, Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics, Ultrason. Sonochem, vol.22, pp.463-473, 2015.

J. Kosel, I. Gutiérrez-aguirre, N. Ra?ki, T. Dreo, M. Ravnikar et al., Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation, Water Res, vol.124, pp.465-471, 2017.

A. ?arc, M. Oder, and M. Dular, Can rapid pressure decrease induced by supercavitation efficiently eradicate Legionella pneumophila bacteria?, Desalination Water Treat, vol.57, issue.5, pp.2184-2194, 2016.

M. G?gol, A. Przyjazny, and G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation-A Review, Chem. Eng. J, vol.338, 2018.

M. Dular, Use of hydrodynamic cavitation in (waste)water treatment, Ultrason. Sonochem, vol.29, pp.577-588, 2016.

E. P. Stride and C. C. Coussios, Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy, Proc. Inst. Mech. Eng, vol.224, issue.2, pp.171-191, 2010.

A. Vilagrosa, E. Chirino, J. J. Peguero-pina, T. S. Barigah, H. Cochard et al., Xylem Cavitation and Embolism in Plants Living in Water-Limited Ecosystems, Plant Responses to Drought Stress, pp.63-109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964859

S. N. Patek and R. L. Caldwell, Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus, J. Exp. Biol, vol.208, issue.19, pp.3655-3664, 2005.

G. Iosilevskii and D. Weihs, Speed limits on swimming of fishes and cetaceans, J. R. Soc. Interface, vol.5, issue.20, pp.329-338, 2008.

P. R. Gogate, Hydrodynamic Cavitation for Food and Water Processing, Food Bioprocess Technol, vol.4, issue.6, pp.996-1011, 2011.

R. Ciriminna, Beer produced via hydrodynamic cavitation retains higher amounts of xanthohumol and other hops prenylflavonoids, LWT, vol.91, pp.160-167, 2018.

G. Kuiper, Cavitation Research and Ship Propeller Design, Appl. Sci. Res, vol.58, issue.14, pp.33-50, 1997.

E. Alyanak, R. Grandhi, and R. Penmetsa, Optimum design of a supercavitating torpedo considering overall size, shape, and structural configuration, Int. J. Solids Struct, vol.43, issue.3, pp.642-657, 2006.

J. Yang, L. J. Zhou, Z. W. Wang, and F. L. Zhi, The effect of cavitation on the hydrofoil dynamic characteristics, IOP Conf. Ser. Mater. Sci. Eng, vol.52, issue.6, p.62018, 2013.

P. A. Carling, M. Perillo, J. Best, and M. H. Garcia, The bubble bursts for cavitation in natural rivers: laboratory experiments reveal minor role in bedrock erosion, Earth Surf. Process. Landf, vol.42, issue.9, pp.1308-1316, 2017.

K. S. Suslick, N. C. Eddingsaas, D. J. Flannigan, S. D. Hopkins, and H. Xu, Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe, Ultrason. Sonochem, vol.18, issue.4, pp.842-846, 2011.

D. J. Flannigan, S. D. Hopkins, C. G. Camara, S. J. Putterman, and K. S. Suslick, Measurement of Pressure and Density Inside a Single Sonoluminescing Bubble, Phys. Rev. Lett, vol.96, issue.20, p.204301, 2006.

R. P. Taleyarkhan, C. D. West, J. S. Cho, R. T. Lahey, R. I. Nigmatulin et al., Evidence for Nuclear Emissions During Acoustic Cavitation, Science, vol.295, issue.5561, pp.1868-1873, 2002.

C. G. Camara, S. D. Hopkins, K. S. Suslick, and S. J. Putterman, Upper Bound for Neutron Emission from Sonoluminescing Bubbles in Deuterated Acetone, Phys. Rev. Lett, vol.98, issue.6, p.64301, 2007.

B. Naranjo, Comment on 'Nuclear Emissions During Self-Nucleated Acoustic Cavitation, Phys. Rev. Lett, vol.97, issue.14, 2006.

J. P. Padilla-martinez, C. Berrospe-rodriguez, G. Aguilar, J. C. Ramirez-san-juan, and R. Ramos-garcia, Optic cavitation with CW lasers: A review, Phys. Fluids, vol.26, issue.12, p.122007, 2014.

M. Futakawa, T. Naoe, H. Kogawa, K. Haga, and K. Okita, Cavitation erosion induced by proton beam bombarding mercury target for high-power spallation neutron sources, Exp. Therm. Fluid Sci, vol.57, pp.365-370, 2014.

E. Herbert, S. Balibar, and F. Caupin, Cavitation pressure in water, Phys. Rev. E Stat. Nonlin. Soft Matter Phys, vol.74, issue.4, p.41603, 2006.
DOI : 10.1103/physreve.74.041603

Q. Zheng, D. J. Durben, G. H. Wolf, and C. A. Angell, Liquids at large negative pressures: water at the homogeneous nucleation limit, Science, vol.254, issue.5033, pp.829-832, 1991.

G. Pallares, M. A. Gonzalez, J. L. Abascal, C. Valeriani, and F. Caupin, Equation of state for water and its line of density maxima down to ?120 MPa, Phys. Chem. Chem. Phys, vol.18, issue.8, pp.5896-5900, 2016.

F. Caupin, Liquid-vapor interface, cavitation, and the phase diagram of water, Phys. Rev. E, vol.71, issue.5, p.51605, 2005.

V. Holten, Compressibility Anomalies in Stretched Water and Their Interplay with Density Anomalies, J. Phys. Chem. Lett, vol.8, issue.22, pp.5519-5522, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02289041

F. Caupin, Escaping the no man's land: Recent experiments on metastable liquid water, J. Non-Cryst. Solids, vol.407, pp.441-448, 2015.

G. Pallares, Anomalies in bulk supercooled water at negative pressure, Proc. Natl. Acad. Sci, vol.111, issue.22, pp.7936-7941, 2014.

N. Bruot and F. Caupin, Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation, Phys. Rev. Lett, vol.116, issue.5, 2016.

M. E. Azouzi, C. Ramboz, J. Lenain, and F. Caupin, A coherent picture of water at extreme negative pressure, Nat. Phys, vol.9, issue.1, pp.38-41, 2013.

K. A. Mørch, Reflections on cavitation nuclei in water, Phys. Fluids, vol.19, issue.7, p.72104, 2007.

K. A. Mørch, Cavitation Nuclei: Experiments and Theory, J. Hydrodyn. Ser B, vol.21, issue.2, pp.176-189, 2009.

K. A. Mørch, Cavitation inception from bubble nuclei, Interface Focus, vol.5, issue.5, 2015.

F. E. Fox and K. F. Herzfeld, Gas Bubbles with Organic Skin as Cavitation Nuclei, J. Acoust. Soc. Am, vol.26, issue.6, pp.984-989, 1954.

A. A. Atchley and A. Prosperetti, The crevice model of bubble nucleation, J. Acoust. Soc. Am, vol.86, issue.3, pp.1065-1084, 1989.

A. R. Klotz, Bubble dynamics in N dimensions, Phys. Fluids, vol.25, issue.8, p.82109, 2013.

W. Henry-besant, A treatise on hydrostatics and hydrodynamics, p.1859

G. K. Batchelor and F. R. London, An introduction to fluid dynamics, Q. J. R. Meteorol. Soc, vol.94, issue.401, pp.435-435, 1967.

&. Viii, On the pressure developed in a liquid during the collapse of a spherical cavity, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.34, issue.200, pp.94-98, 1917.

H. Poritsky, Proceedings of the first U.S. National Congress of Applied Mechanics: held at Illinois Institute of Technology, 1951.

E. A. Neppiras and B. E. Noltingk, Cavitation Produced by Ultrasonics: Theoretical Conditions for the Onset of Cavitation, Proc. Phys. Soc. Sect. B, vol.64, issue.12, p.1032, 1951.

B. E. Noltingk and E. A. Neppiras, Cavitation produced by Ultrasonics, Proc. Phys. Soc. Sect. B, vol.63, issue.9, p.674, 1950.

J. Franc and J. Michel, Fundamentals of cavitation, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00216178

T. G. Leighton, The Rayleigh-Plesset equation in terms of volume with explicit shear losses, Ultrasonics, vol.48, issue.2, pp.85-90, 2008.

J. Lam, J. Lombard, C. Dujardin, G. Ledoux, S. Merabia et al., Dynamical study of bubble expansion following laser ablation in liquids, Appl. Phys. Lett, vol.108, issue.7, p.74104, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02116697

V. H. Man, M. S. Li, P. Derreumaux, and P. H. Nguyen, Rayleigh-Plesset equation of the bubble stable cavitation in water: A nonequilibrium all-atom molecular dynamics simulation study, J. Chem. Phys, vol.148, issue.9, p.94505, 2018.

E. A. Hutli and M. S. Nedeljkovic, Frequency in Shedding/Discharging Cavitation Clouds Determined by Visualization of a Submerged Cavitating Jet, J. Fluids Eng, vol.130, issue.2, pp.21304-021304, 2008.

M. Farhat, A. Chakravarty, and J. E. Field, Luminescence from hydrodynamic cavitation, Proc. R. Soc. Math. Phys. Eng. Sci, vol.467, issue.2126, p.591, 2011.
DOI : 10.1098/rspa.2010.0134

URL : http://rspa.royalsocietypublishing.org/content/467/2126/591.full.pdf

S. Arrojo, C. Nerín, and Y. Benito, Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process, Ultrason. Sonochem, vol.14, issue.3, pp.343-349, 2007.
DOI : 10.1016/j.ultsonch.2006.06.007

Y. T. Didenko, W. B. Mcnamara-iii, and K. S. Suslick, Molecular emission from singlebubble sonoluminescence, Nature, vol.407, issue.6806, pp.877-879, 2000.
DOI : 10.1038/35038020

D. Lohse, M. P. Brenner, T. F. Dupont, S. Hilgenfeldt, and B. Johnston, Sonoluminescing Air Bubbles Rectify Argon, Phys. Rev. Lett, vol.78, issue.7, pp.1359-1362, 1997.

B. D. Storey and A. J. Szeri, Argon Rectification and the Cause of Light Emission in Single-Bubble Sonoluminescence, Phys. Rev. Lett, vol.88, issue.7, p.74301, 2002.

D. J. Flannigan and K. S. Suslick, Inertially confined plasma in an imploding bubble, Nat. Phys, vol.6, issue.8, pp.598-601, 2010.

F. R. Young, . Sonoluminescence, . Taylor, and . Francis, , 2004.

A. Bass, S. J. Ruuth, C. Camara, B. Merriman, and S. Putterman, Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble, Phys. Rev. Lett, vol.101, issue.23, p.234301, 2008.

K. S. Suslick and D. J. Flannigan, Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation, Annu. Rev. Phys. Chem, vol.59, issue.1, pp.659-683, 2008.

Y. T. Didenko, W. B. Mcnamara, and K. S. Suslick, Hot Spot Conditions during Cavitation in Water, J. Am. Chem. Soc, vol.121, issue.24, pp.5817-5818, 1999.

R. J. Wood, J. Lee, and M. J. Bussemaker, A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions, Ultrason. Sonochem, vol.38, pp.351-370, 2017.

K. S. Suslick, M. M. Mdleleni, and J. T. Ries, Chemistry Induced by Hydrodynamic Cavitation, J. Am. Chem. Soc, vol.119, issue.39, pp.9303-9304, 1997.

R. E. Apfel, Acoustic Cavitation, Methods in Experimental Physics, vol.19, pp.355-411, 1981.

J. Rooze, E. V. Rebrov, J. C. Schouten, and J. T. Keurentjes, Dissolved gas and ultrasonic cavitation-A review, Ultrason. Sonochem, vol.20, issue.1, pp.1-11, 2013.

S. Hiramatsu and Y. Watanabe, On the mechanism of relaxation oscillation in sonoluminescence, Electron. Commun. Jpn. Part III Fundam. Electron. Sci, vol.82, issue.2, pp.58-65, 1999.

B. Gielen, S. Marchal, J. Jordens, L. C. Thomassen, L. Braeken et al., Influence of dissolved gases on sonochemistry and sonoluminescence in a flow reactor, Ultrason. Sonochem, vol.31, pp.463-472, 2016.

C. Mishra and Y. Peles, Cavitation in flow through a micro-orifice inside a silicon microchannel, Phys. Fluids, vol.17, issue.1, p.13601, 2004.

Y. Peles, Cavitation in Microdomains, Encyclopedia of Microfluidics and, pp.197-201, 2008.

J. Judy, D. Maynes, and B. W. Webb, Characterization of frictional pressure drop for liquid flows through microchannels, Int. J. Heat Mass Transf, vol.45, issue.17, pp.3477-3489, 2002.

R. Baviere, F. Ayela, S. L. Person, and M. Favre-marinet, Experimental characterization of water flow through smooth rectangular microchannels, Phys. Fluids, vol.17, issue.9, p.98105, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00204661

Y. Peles and B. Schneider, Hydrodynamic Cavitation and Boiling in Refrigerant (R-123) Flow Inside Microchannels, pp.1323-1332, 2006.

G. S. Cole, R. P. Scaringe, R. P. Roth, and Y. Peles, System Evaluation of Cavitation Enhanced Heat Transfer in Microchannels, 2006.

C. Mishra and Y. Peles, Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel, Phys. Fluids, vol.17, issue.11, p.113602, 2005.

C. Mishra and Y. Peles, An experimental investigation of hydrodynamic cavitation in micro-Venturis, Phys. Fluids, vol.18, issue.10, p.103603, 2006.

C. Mishra and Y. Peles, Development of Cavitation in Refrigerant (R-123) Flow Inside Rudimentary Microfluidic Systems, J. Microelectromechanical Syst, vol.15, issue.5, pp.1319-1329, 2006.

C. Mishra and Y. Peles, Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel, Phys. Fluids, vol.17, issue.11, p.113602, 2005.

C. Mishra and Y. Peles, Size scale effects on cavitating flows through microorifices entrenched in rectangular microchannels, J. Microelectromechanical Syst, vol.14, issue.5, pp.987-999, 2005.

C. Mishra and Y. Peles, Cavitation in flow through a micro-orifice inside a silicon microchannel, Phys. Fluids, vol.17, issue.1, p.13601, 2004.

A. Nayebzadeh, Y. Wang, H. Tabkhi, J. Shin, and Y. Peles, Cavitation behind a circular micro pillar, Int. J. Multiph. Flow, vol.98, pp.67-78, 2018.
DOI : 10.1016/j.ijmultiphaseflow.2017.08.012

R. Singh and Y. Peles, The effects of fluid properties on cavitation in a micro domain, J. Micromechanics Microengineering, vol.19, issue.2, p.25009, 2009.

M. Medrano, P. J. Zermatten, C. Pellone, J. P. Franc, and F. Ayela, Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids, Phys. Fluids, vol.23, issue.12, p.127103, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00700348

F. Ayela, Experimental evidence of temperature gradients in cavitating microflows seeded with thermosensitive nanoprobes, Phys. Rev. E Stat. Nonlin. Soft Matter Phys, vol.88, issue.4, p.43016, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01935721

F. Ayela, Hydrodynamic Cavitation through 'Labs on a Chip': From Fundamentals to Applications, Oil Gas Sci. Technol.-Rev. D'IFP Energ. Nouv, vol.72, issue.4, p.19, 2017.
DOI : 10.2516/ogst/2017010

URL : https://hal.archives-ouvertes.fr/hal-01695295

M. Medrano, C. Pellone, P. J. Zermatten, and F. Ayela, Hydrodynamic cavitation in microsystems. II. Simulations and optical observations, Phys. Fluids, vol.24, issue.4, p.47101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700348

S. Mossaz, D. Colombet, and F. Ayela, Hydrodynamic cavitation of binary liquid mixtures in laminar and turbulent flow regimes, Exp. Therm. Fluid Sci, vol.80, pp.337-347, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01935734

D. Podbevsek, D. Colombet, G. Ledoux, and F. Ayela, Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels, Ultrason. Sonochem
URL : https://hal.archives-ouvertes.fr/hal-01935750

X. Qiu, W. Cherief, D. Colombet, and F. Ayela, A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation, J. Micromechanics Microengineering, vol.27, issue.4, p.47001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01935737

M. Ghorbani, A. Mohammadi, A. R. Motezakker, L. G. Villanueva, Y. Leblebici et al., Energy Harvesting in Microscale with Cavitating Flows, ACS Omega, vol.2, issue.10, pp.6870-6877, 2017.

M. Ghorbani, A. K. Sadaghiani, L. G. Villanueva, and A. Ko?ar, Hydrodynamic cavitation in microfluidic devices with roughened surfaces, J. Micromechanics Microengineering, vol.28, issue.7, p.75016, 2018.

M. Ghorbani, Biomedical device prototype based on small scale hydrodynamic cavitation, AIP Adv, vol.8, issue.3, p.35108, 2018.

J. Rooze, Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers, Microfluid. Nanofluidics, vol.12, issue.1-4, pp.499-508, 2012.

T. Gothsch, High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems, Microfluid. Nanofluidics, vol.18, issue.1, pp.121-130, 2015.

J. Kim, Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography, Nat. Nanotechnol, vol.12, issue.9, pp.914-919, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02104842

T. Stieger, H. Agha, M. Schoen, M. G. Mazza, and A. Sengupta, Hydrodynamic cavitation in Stokes flow of anisotropic fluids, Nat. Commun, vol.8, p.15550, 2017.

S. Prakash and S. Kumar, Fabrication of microchannels: A review , Fabrication of microchannels: A review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf, vol.229, issue.8, pp.1273-1288, 2015.

F. Laermer and A. Schilp, Method of anisotropically etching silicon, 1996.

S. Arrojo and Y. Benito, A theoretical study of hydrodynamic cavitation, Ultrason. Sonochem, vol.15, issue.3, pp.203-211, 2008.

G. G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Trans. Camb. Philos. Soc, vol.9, issue.8, p.1851

C. Lee, C. Chang, Y. Wang, and L. Fu, Microfluidic Mixing: A Review, Int. J. Mol. Sci, vol.12, issue.5, pp.3263-3287, 2011.
DOI : 10.3390/ijms12053263

URL : https://www.mdpi.com/1422-0067/12/5/3263/pdf

, Glossary of terms used in photochemistry, 2006.

E. Wiedemann, Ueber Fluorescenz und Phosphorescenz I. Abhandlung, Ann. Phys, vol.270, issue.7, pp.446-463

N. H. Bings, A. Bogaerts, and J. A. Broekaert, Atomic Spectroscopy: A Review, Anal. Chem, vol.82, issue.12, pp.4653-4681, 2010.
DOI : 10.1021/ac1010469

G. Peach and F. Schuller, The Pressure Broadening and Shift of Spectral Lines Produced in an Intense Monochromatic Radiation Field, AIP Conf. Proc, vol.874, issue.1, pp.178-178, 2006.

G. Peach, Unified theories of the pressure broadening and shift of spectral lines. I. General formulation for multipole interactions, J. Phys. B At. Mol. Phys, vol.17, issue.13, p.2599, 1984.

G. Ashkenazi and R. Kosloff, The Uncertainty Principle and Covalent Bonding, Chem. Educ, vol.11, pp.67-76, 2006.

P. D. Valeur and P. M. Berberan-santos, Molecular Fluorescence: Principles and Applications, Second Edition, vol.2012

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2006.

G. Arnaoutakis and D. Näther, Quenching of Fluorescence with Temperature, 2016.

X. Wang, O. S. Wolfbeis, and R. J. Meier, Luminescent probes and sensors for temperature, Chem. Soc. Rev, vol.42, issue.19, pp.7834-7869, 2013.
DOI : 10.1039/c3cs60102a

M. Dramicanin, Luminescence Thermometry: Methods, Materials, and Applications, 2018.

E. Homeyer, S. Pailhès, R. Debord, V. Jary, C. Dujardin et al., Diamond contactless micrometric temperature sensors, Appl. Phys. Lett, vol.106, issue.24, p.243502, 2015.
DOI : 10.1063/1.4921177

URL : https://hal.archives-ouvertes.fr/hal-02116698

Y. Egami, Development of fast response bi-luminophore pressure-sensitive paint by means of an inkjet printing technique, Meas. Sci. Technol, vol.26, issue.6, p.64004, 2015.

N. Banerjee, Y. Xie, S. Chalaseni, and C. H. Mastrangelo, Particle-based optical pressure sensors for 3D pressure mapping, Biomed. Microdevices, vol.17, issue.5, p.97, 2015.

N. Banerjee and C. H. Mastrangelo, Microballoon Pressure Sensors for Particle Imaging Manometry in Liquid and Gaseous Mediums, Analyst, vol.141, 2016.

N. Banerjee, Y. Xie, S. S. Pandey, and C. H. Mastrangelo, Pressure sensing in microfluidic environments with low-leakage microballoons, 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp.114-116, 2014.

H. Yamaoka, Ruby pressure scale in a low-temperature diamond anvil cell, J. Appl. Phys, vol.112, issue.12, p.124503, 2012.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, Pressure measurement made by the utilization of ruby sharp-line luminescence, Science, vol.176, issue.4032, pp.284-285, 1972.

C. Lavenn, Highly luminescent Au(I)-Thiolate coordination polymers, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01110695

C. Lavenn, Shedding light on an ultra-bright photoluminescent lamellar gold thiolate coordination polymer, Chem. Commun, vol.52, issue.58, pp.9063-9066, 2016.
DOI : 10.1039/c5cc10448c

URL : https://hal.archives-ouvertes.fr/hal-01358155

F. Baril-robert, M. A. Radtke, and C. Reber, Pressure-Dependent Luminescence Properties of Gold(I) and Silver(I) Dithiocarbamate Compounds, J. Phys. Chem. C, vol.116, issue.3, pp.2192-2197, 2012.

O. Veselska and A. Demessence, d10 coinage metal organic chalcogenolates: From oligomers to coordination polymers, Coord. Chem. Rev, 2017.
DOI : 10.1016/j.ccr.2017.08.014

URL : https://hal.archives-ouvertes.fr/hal-01688192

V. W. , -. Yam, V. K. Au, S. Y. , and -. Leung, Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes, Chem. Rev, vol.115, issue.15, pp.7589-7728, 2015.
DOI : 10.1021/acs.chemrev.5b00074

O. Veselska, Au(+I)(p-SPhCO 2 H)] n , for Ratiometric Temperature Sensing, J Mater Chem C, vol.5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01625644

J. Gao, X. Huang, H. Liu, F. Zan, and J. Ren, Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging, Langmuir, vol.28, issue.9, pp.4464-4471, 2012.

D. H. Brown and W. E. Smith, The chemistry of the gold drugs used in the treatment of rheumatoid arthritis, Chem. Soc. Rev, vol.9, issue.2, pp.217-240, 1980.

O. Veselska, D. Podbevsek, G. Ledoux, A. Fateeva, and A. Demessence, Intrinsic TripleEmitting 2D Copper Thiolate Coordination Polymer as a Ratiometric Thermometer Working over 400 K Range, Chem Commun, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01670523

O. Veselska, A. Demessence, N. Guillou, G. Ledoux, D. Podbevsek et al., Structural and photophysical studies of lamellar M(I)-thiophenolate coordination polymers (M = Au, Ag, Cu), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522575

C. Lavenn, Shedding light on an ultra-bright photoluminescent lamellar gold thiolate coordination polymer, Chem Commun, vol.52, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358155

A. Demessence, Luminescence switching upon thermally-induced solid-state amorphous-to-crystalline phase transition in gold(I)-thiophenolate coordination polymer, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165540

O. Veselska, New Lamellar Silver Thiolate Coordination Polymers with Tunable Photoluminescence Energies by Metal Substitution, Submitt. Inorg. Chem
URL : https://hal.archives-ouvertes.fr/hal-01990323

O. Veselska, Structural Diversity of Coordination Polymers Based on a Heterotopic Ligand: Cu(II)-Carboxylate vs Cu(I)-Thiolate, Inorg. Chem, vol.57, issue.5, pp.2736-2743, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01764052

S. Albahrani, Quantum dots to probe temperature and pressure in highly confined liquids, RSC Adv, vol.8, pp.22897-22908, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01832679

M. Martini, How Gold Particles Suppress Concentration Quenching of Fluorophores Encapsulated in Silica Beads, J. Phys. Chem. C, vol.113, issue.41, pp.17669-17677, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00529667

E. Marín, Characteristic dimensions for heat transfer, Lat.-Am. J. Phys. Educ, vol.4, 2010.

S. Mossaz, D. Colombet, G. Ledoux, and F. Ayela, Role of the thermal entrance length on the viscous heating in microchannels, Microfluid. Nanofluidics, vol.19, issue.6, pp.1325-1333, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01935730

R. Sekita, A. Watanabe, K. Hirata, and T. Imoto, Lessons learned from H-2 failure and enhancement of H-2A project, Acta Astronaut, vol.48, issue.5, pp.431-438, 2001.

J. Franc, C. Rebattet, and A. Coulon, An Experimental Investigation of Thermal Effects in a Cavitating Inducer, J. Fluids Eng, vol.126, issue.5, pp.716-723, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00216162

J. Hord, Cavitation in liquid cryogens. IV, Combined correlations for venturi, hydrofoil, ogives, and pumps, 1974.

S. Shi and G. Wang, Numerical calculation of thermal effect on cavitation in cryogenic fluids, Chin. J. Mech. Eng, vol.25, issue.6, pp.1176-1183, 2012.
DOI : 10.3901/cjme.2012.06.1176

M. Dular and O. Coutier-delgosha, Thermodynamic effects during growth and collapse of a single cavitation bubble, J. Fluid Mech, vol.736, pp.44-66, 2013.
DOI : 10.1017/jfm.2013.525

URL : https://sam.ensam.eu/bitstream/10985/10567/1/LML_JFM_2013_BAYEUL-LAINE.pdf

M. Petkov?ek and M. Dular, IR measurements of the thermodynamic effects in cavitating flow, Int. J. Heat Fluid Flow, vol.44, pp.756-763, 2013.

M. Petkov?ek and M. Dular, Observing the thermodynamic effects in cavitating flow by IR thermography, Exp. Therm. Fluid Sci, vol.88, pp.450-460, 2017.

N. Rimbert, G. Castanet, and D. Funfschilling, Measurement of thermal effects in a cavitating channel flow by 2cLIF, ICMF 2013 International Conference on Multiphase Flow, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01442134

A. Ewinger, G. Rinke, A. Urban, and S. Kerschbaum, In situ measurement of the temperature of water in microchannels using laser Raman spectroscopy, Chem. Eng. J, vol.223, pp.129-134, 2013.

H. Fujimori, M. Kakihana, K. Ioku, S. Goto, and M. Yoshimura, Advantage of anti-Stokes Raman scattering for high-temperature measurements, Appl. Phys. Lett, vol.79, issue.7, pp.937-939, 2001.

E. A. Pozzi, A. B. Zrimsek, C. M. Lethiec, G. C. Schatz, M. C. Hersam et al., Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry, J. Phys. Chem. C, vol.119, issue.36, pp.21116-21124, 2015.

R. J. Hall, J. A. Shirley, and A. C. Eckbreth, Coherent anti-Stokes Raman spectroscopy: spectra of water vapor in flames, Opt. Lett, vol.4, issue.3, pp.87-89, 1979.

R. J. Hall and J. A. Shirley, Coherent Anti-Stokes Raman Spectroscopy of Water Vapor for Combustion Diagnostics, Appl. Spectrosc, vol.37, issue.2, pp.196-202, 1983.

K. Niiyama, Y. Yoshida, S. Hasegawa, M. Watanabe, and M. Oike, Experimental Investigation of Thermodynamic Effect on Cavitation in Liquid Nitrogen, pp.153-157, 2012.

H. N. Mcmurray and B. P. Wilson, Mechanistic and Spatial Study of Ultrasonically Induced Luminol Chemiluminescence, J. Phys. Chem. A, vol.103, issue.20, pp.3955-3962, 1999.

P. Braeutigam, M. Franke, Z. Wu, and B. Ondruschka, Role of Different Parameters in the Optimization of Hydrodynamic Cavitation, Chem. Eng. Technol, vol.33, issue.6, pp.932-940, 2010.

K. Yasui, Bubble Dynamics, Acoustic Cavitation and Bubble Dynamics, pp.37-97, 2018.

B. P. Barber and S. J. Putterman, Observation of synchronous picosecond sonoluminescence, Nature, vol.352, issue.6333, pp.318-320, 1991.
DOI : 10.1038/352318a0

K. S. Suslick, Sonoluminescence and sonochemistry, Proc. IEEE Ultrason. Symp, vol.1, pp.523-532, 1997.
DOI : 10.1016/b0-12-227410-5/00953-4

Y. Shen, K. Yasui, Z. Sun, B. Mei, M. You et al., Study on the spatial distribution of the liquid temperature near a cavitation bubble wall, Ultrason. Sonochem, vol.29, pp.394-400, 2016.

D. G. Aseev and A. A. Batoeva, Effect of hydrodynamic cavitation on the rate of OHradical formation in the presence of hydrogen peroxide, Russ. J. Phys. Chem. A, vol.88, issue.1, pp.28-31, 2014.

K. Yasui, T. Tuziuti, and Y. Iida, Optimum bubble temperature for the sonochemical production of oxidants, Ultrasonics, vol.42, issue.1, pp.579-584, 2004.

K. Yasui, Unsolved Problems, Acoustic Cavitation and Bubble Dynamics, pp.99-124, 2018.

C. Dodeigne, L. Thunus, and R. Lejeune, Chemiluminescence as diagnostic tool. A review, Talanta, vol.51, issue.3, pp.415-439, 2000.

P. Khan, Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses, Appl. Biochem. Biotechnol, vol.173, issue.2, pp.333-355, 2014.

B. R. Radziszewski, Ueber einige phosphorescirende organische Körper, Berichte Dtsch. Chem. Ges, vol.10, issue.1, pp.321-322, 2006.

H. O. Albrecht, Über die Chemiluminescenz des Aminophthalsäurehydrazids, Z. Für Phys. Chem, vol.136, issue.1, pp.321-330, 1928.

T. A. Skripnikova, S. S. Lysova, Y. E. Zevatskii, L. V. Myznikov, S. V. Vorona et al., Physico-chemical properties of isomeric forms of luminol in aqueous solutions, J. Mol. Struct, vol.1154, pp.59-63, 2018.

R. Petre and G. Hubc?, A performing synthesis strategy of luminol, a standard chemiluminescent substance, UPB Sci. Bull. Ser. B Chem. Mater. Sci, vol.75, pp.23-34, 2013.

G. Merenyi and J. S. Lind, Role of a peroxide intermediate in the chemiluminescence of luminol. A mechanistic study, J. Am. Chem. Soc, vol.102, issue.18, pp.5830-5835, 1980.

G. Merényi, J. Lind, and T. E. Eriksen, Luminol chemiluminescence: chemistry, excitation, emitter, J. Biolumin. Chemilumin, vol.5, issue.1, pp.53-56, 1990.

D. L. Pavia, G. M. Lampman, G. S. Kriz, and R. G. Engel, Introduction to Organic Laboratory Techniques: A Small Scale Approach. Cengage Learning, 2005.

E. H. White and M. M. Bursey, Chemiluminescence of LUminol and Related Hydrazides: The Light Emission Step, J. Am. Chem. Soc, vol.86, issue.5, pp.941-942, 1964.

S. Li, Enhanced chemiluminescence of the luminol-AgNO3 system by Ag nanoparticles, Lumin. J. Biol. Chem. Lumin, vol.27, issue.3, pp.211-216, 2012.

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles, Light Sci. Appl, vol.5, issue.11, p.16164, 2016.

A. L. Lehninger, D. L. Nelson, M. M. Cox, and U. M. Cox, , 2005.

H. Cao, M. Wan, Y. Qiao, S. Zhang, and R. Li, Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2MHz focused ultrasound field, Ultrason. Sonochem, vol.19, issue.2, pp.257-263, 2012.

I. Akhatov, Dynamics of laser-induced cavitation bubbles, Exp. Therm. Fluid Sci, vol.26, issue.6, pp.731-737, 2002.

A. Chakravarty, T. Georghiou, T. E. Phillipson, and A. J. Walton, Stable sonoluminescence within a water hammer tube, Phys. Rev. E, vol.69, issue.6, p.66317, 2004.

C. Sun, E. Can, R. Dijkink, D. Lohse, and A. Prosperetti, Growth and collapse of a vapour bubble in a microtube: the role of thermal effects, J. Fluid Mech, vol.632, pp.5-16, 2009.

A. Kapahi, C. Hsiao, and G. L. Chahine, Shock-Induced Bubble Collapse versus Rayleigh Collapse, J. Phys. Conf. Ser, vol.656, issue.1, p.12128, 2015.

J. J. Shah, M. Gaitan, and J. Geist, Generalized Temperature Measurement Equations for Rhodamine B Dye Solution and Its Application to Microfluidics, Anal. Chem, vol.81, issue.19, pp.8260-8263, 2009.

X. Wang, J. Wang, P. Guo, W. Guo, and C. Wang, Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2, J. Hazard. Mater, vol.169, issue.1, pp.486-491, 2009.

T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media, J. Raman Spectrosc, vol.31, issue.8-9, pp.863-870, 2000.

A. V. Kargovsky, On temperature dependence of the valence band in the Raman spectrum of liquid water, Laser Phys. Lett, vol.3, issue.12, p.567, 2006.

W. B. Monosmith and G. E. Walrafen, Temperature dependence of the Raman OHstretching overtone from liquid water, J. Chem. Phys, vol.81, issue.2, pp.669-674, 1984.

C. Choe, J. Lademann, and M. E. Darvin, Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo, Analyst, vol.141, issue.22, pp.6329-6337, 2016.

H. Xu, C. Liu, Y. He, H. Tang, and Q. Wu, Study on the chemiluminescence resonance energy transfer between luminol and fluorescent dyes using a linear CCD spectrometer, J. Lumin, vol.130, issue.10, pp.1872-1879, 2010.

F. Ayela, Hydrodynamic Cavitation through 'Labs on a Chip': From Fundamentals to Applications, Oil Gas Sci. Technol.-Rev. D'IFP Energ. Nouv, vol.72, issue.4, p.19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695295

O. Veselska, Au(+I)(p-SPhCO 2 H)] n , for Ratiometric Temperature Sensing, J Mater Chem C, vol.5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01625644

O. Veselska, D. Podbevsek, G. Ledoux, A. Fateeva, and A. Demessence, Intrinsic TripleEmitting 2D Copper Thiolate Coordination Polymer as a Ratiometric Thermometer Working over 400 K Range, Chem Commun, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01670523

O. Veselska, A. Demessence, N. Guillou, G. Ledoux, D. Podbevsek et al., Structural and photophysical studies of lamellar M(I)-thiophenolate coordination polymers (M = Au, Ag, Cu), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522575

C. Lavenn, Shedding light on an ultra-bright photoluminescent lamellar gold thiolate coordination polymer, Chem Commun, vol.52, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358155

O. Veselska, New Lamellar Silver Thiolate Coordination Polymers with Tunable Photoluminescence Energies by Metal Substitution, Submitt. Inorg. Chem
URL : https://hal.archives-ouvertes.fr/hal-01990323

D. Podbevsek, D. Colombet, G. Ledoux, and F. Ayela, Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels, Ultrason. Sonochem, vol.43, pp.175-183, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01935750