, 2) Husimi Q-functions of the demon's memory after step AE for ? in = 0.25 and the system initially close to a) |gi, b) |ei and (c) a quantum superposition of |gi and |ei. From left to right, n = 0, 1, 2, 3, 4, 5. We deduce the demon's von Neumann entropy S D using the MaxLike method described in Sec. 7.2.5 to reconstruct the demon's density matrix ? D from the experimental measurements. We implement this procedure for four various initial states of the system: thermal equilibrium at T 0 S , initialized by a ?-pulse, in a superposed state and in a thermal state at T S hf S. We represent the demon's state by the magnitude of the density matrix coefficients in the Fock states basis |hm|? D |ni|

?. In, which is entropic and far from a coherent state when ? in = 0.25 as expected, contrast, when the system starts in |ei, the demon stays

, ? 5 s of ion milling at 35 and +35

, ? evaporation of the first Al layer at 30 : 35 nm at 1 nm/s

, ? static oxidation: 7 min at, vol.20

, ? titanium sweep to remove any trace of water adsorbed on the surfaces

, ? evaporation of the first Al layer at +30 : 100 nm at 1 nm/s

, ? capping oxidation: 5 min at 40 mBar

C. Cohen-tannoudji, J. Dupont-roc, and G. Grynberg, Atom-Photon Interactions, vol.18, p.139, 1998.

S. Gleyzes, Quantum jumps of light recording the birth and death of a photon in a cavity, Nature, vol.446, issue.2, pp.297-300, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00118324

D. Bouwmeester, Experimental quantum teleportation, Nature, vol.390, issue.2, pp.575-579, 1997.

B. Hensen, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature, vol.526, issue.2, pp.682-686, 2015.

J. Ren, Ground-to-satellite quantum teleportation, Nature, vol.549, issue.2, pp.70-73, 2017.

M. H. Devoret and J. M. Martinis, Implementing Qubits with Superconducting Integrated Circuits, Quantum Information Processing, vol.3, pp.163-203, 2004.

M. H. Devoret, J. M. Wallraff, and . Martinis, Superconducting Qubits: A Short Review, 2004.

J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature, vol.474, issue.2, pp.589-597, 2011.

M. H. Devoret and R. J. Schoelkopf, Superconducting Circuits for Quantum Information: An Outlook, Science, vol.339, pp.1169-1174, 2013.

P. W. Anderson and J. M. Rowell, Probable Observation of the Josephson Superconducting Tunneling Effect, Physical Review Letters, vol.10, pp.230-232, 1963.

M. Devoret, Introduction to quantum electromagnetic circuits, International journal of circuit theory and applications, vol.45, pp.897-934, 2017.

E. Flurin, The Josephson Mixer, a Swiss army knife for microwave quantum optics, Theses (Ecole Normale Supérieure, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00910066

H. Ibach and H. Lüth, Solid-State Physics, vol.100, 2009.

F. , Matter and Methods at Low Temperatures, 2007.

, Quantum Machines: Measurement and Control of Engineered Quantum Systems, Lecture notes of the les houches summer school, vol.96, p.608, 2011.

J. Koch, Charge-insensitive qubit design derived from the Cooper pair box, Physical Review A, vol.76, p.42319, 2007.

H. Paik, Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture, Physical Review Letters, vol.107, p.240501, 2011.

Y. Chen, Qubit Architecture with High Coherence and Fast Tunable Coupling, Physical Review Letters, vol.113, p.220502, 2014.

D. C. Mckay, Universal Gate for Fixed-Frequency Qubits via a Tunable Bus, Physical Review Applied, vol.6, p.64007, 2016.

V. Bouchiat, Quantum Coherence with a Single Cooper Pair, Physica Scripta, vol.76, 1998.

E. M. Purcell, Spontaneous Emission Probabilities at Radio Frequencies, Physical Review, vol.69, pp.839-839, 1995.

M. D. Reed, Fast reset and suppressing spontaneous emission of a superconducting qubit, Applied Physics Letters, vol.96, p.203110, 2010.

S. E. Nigg, Black-Box Superconducting Circuit Quantization, Physical Review Letters, vol.108, p.240502, 2012.

V. E. Manucharyan, Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets, Science, vol.326, pp.113-116, 2009.

V. E. Manucharyan, Superinductance, 2012.

Y. Lin, Demonstration of Protection of a Superconducting Qubit from Energy Decay, Physical Review Letters, vol.120, p.150503, 2018.

G. Catelani, Relaxation and frequency shifts induced by quasiparticles in superconducting qubits, Physical Review B, vol.84, p.97, 2011.

A. Kou, Simultaneous Monitoring of Fluxonium Qubits in a Waveguide, Physical Review Applied, vol.9, p.9, 2018.

U. Vool, Driving Forbidden Transitions in the Fluxonium Artificial Atom, Physical Review Applied, vol.9, p.9, 2018.

S. Haroche and J. Raimond, Exploring the Quantum, Oxford Graduated Text, vol.616, p.150, 2006.

A. A. Houck, Generating single microwave photons in a circuit, Nature, vol.449, pp.328-331, 2007.

O. Astafiev, Resonance Fluorescence of a Single Artificial Atom, Science, vol.327, pp.840-843, 2010.

A. A. Abdumalikov, Dynamics of Coherent and Incoherent Emission from an Artificial Atom in a 1D Space, Physical Review Letters, vol.107, p.43604, 2011.

P. Campagne-ibarcq, Measurement back action and feedback in superconducting circuits, Theses (Ecole Normale Supérieure (ENS), 2015) (Cited on pages 9, vol.48
URL : https://hal.archives-ouvertes.fr/tel-01248789

P. Campagne-ibarcq, Using Spontaneous Emission of a Qubit as a Resource for Feedback Control, Physical Review Letters, vol.117, p.60502, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01395591

P. Campagne-ibarcq, Observing Interferences between Past and Future Quantum States in Resonance Fluorescence, Physical Review Letters, vol.112, p.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00969895

C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Physical Review A, vol.31, pp.3761-3774, 1985.

E. Flurin, Superconducting quantum node for entanglement and storage of microwave radiation, Phys. Rev. Lett, vol.114, p.90503, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079032

H. Walther, Cavity quantum electrodynamics, Reports on Progress in Physics, vol.69, p.14, 2006.

A. Blais, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Physical Review A, vol.69, p.14, 2004.

S. Girvin, in Quantum machines: measurement and control of engineered quantum systems, lecture notes of the les houches summer school, vol.96, p.14, 2014.

W. Nagourney, J. Sandberg, and H. Dehmelt, Shelved optical electron amplifier: Observation of quantum jumps, Physical Review Letters, vol.56, pp.2797-2799, 1986.

H. J. Kimble, The quantum internet, Nature, vol.453, 2008.

J. I. Cirac, Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network, Physical Review Letters, vol.78, pp.3221-3224, 1997.

C. Wang, Surface participation and dielectric loss in superconducting qubits, Cited on pages 16, vol.107, p.99, 2015.

M. R. Otto, Low-temperature characterization of dielectric loss at microwave frequencies in aluminum oxide, vol.105, p.16, 2015.

I. M. Pop, Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles, Nature, vol.508, pp.369-372, 2014.

K. W. Murch, Cavity-Assisted Quantum Bath Engineering, Physical Review Letters, vol.109, p.16, 2012.

S. Shankar, Autonomously stabilized entanglement between two superconducting quantum bits, Nature, vol.504, p.16, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00924539

Z. Leghtas, Confining the state of light to a quantum manifold by engineered two-photon loss, Science, vol.347, pp.853-857, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240210

S. Touzard, Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation, Physical Review X, vol.8, p.21005, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01652771

J. C. Maxwell, Theory of Heat, vol.117, p.19

K. Maruyama, F. Nori, and V. Vedral, Colloquium : The physics of Maxwell's demon and information, Reviews of Modern Physics, vol.81, p.19, 2009.

W. H. Zurek, Maxwell's Demon, Szilard's Engine and Quantum Measurements, Frontiers of nonequilibrium statistical physics, vol.135, pp.151-161, 1986.

S. Lloyd, Quantum-mechanical Maxwell's demon, Physical Review A, vol.56, pp.3374-3382, 1997.

J. M. Parrondo and J. M. Horowitz, Viewpoint Maxwell ' s demon in the quantum world, Society, vol.13, p.19, 2011.

S. Kim, Quantum Szilard Engine, Physical Review Letters, vol.106, p.19, 2011.

R. Uzdin, A. Levy, and R. Kosloff, Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures, Physical Review X, vol.5, p.31044, 2015.

P. Campagne-ibarcq, Observing quantum state diffusion by heterodyne detection of fluorescence, Physical Review X, vol.6, pp.1-7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01264326

M. Naghiloo, Mapping quantum state dynamics in spontaneous emission, Nat Commun, vol.7, p.25, 2016.

A. O. Caldeira and A. J. Leggett, Influence of Dissipation on Quantum Tunneling in Macroscopic Systems, Physical Review Letters, vol.46, p.31, 1981.

M. A. Castellanos-beltran and K. W. Lehnert, Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator, Applied Physics Letters, vol.91, p.36, 2007.

M. Hatridge, Dispersive magnetometry with a quantum limited SQUID parametric amplifier, Physical Review B, vol.83, p.36, 2011.

J. Y. Mutus, Design and characterization of a lumped element singleended superconducting microwave parametric amplifier with on-chip flux bias line, Applied Physics Letters, vol.103, p.36, 2013.

T. Roy, Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product, Applied Physics Letters, vol.107, p.36, 2015.

N. , Phase-preserving amplification near the quantum limit with a Josephson ring modulator, Nature, vol.465, p.41, 2010.

E. Flurin, Generating Entangled Microwave Radiation Over Two Transmission Lines, Physical Review Letters, vol.109, p.183901, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00761350

B. Abdo, A. Kamal, and M. Devoret, Nondegenerate three-wave mixing with the Josephson ring modulator, Physical Review B, vol.87, p.36, 2013.

P. Campagne-ibarcq, Persistent Control of a Superconducting Qubit by Stroboscopic Measurement Feedback, Physical Review X, vol.3, p.36, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00910214

C. M. Caves, Quantum limits on noise in linear amplifiers, Physical Review D, vol.26, p.36, 1982.

K. O'brien, Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers, Physical Review Letters, vol.113, p.36, 2014.

C. Macklin, A near-quantum-limited Josephson traveling-wave parametric amplifier, Science, vol.350, p.36, 2015.

T. C. White, Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching, Applied Physics Letters, vol.106, p.36, 2015.

Y. Chen, Microwave Photon Counter Based on Josephson Junctions, Physical Review Letters, vol.107, p.36, 2011.

L. C. Govia, Theory of Josephson photomultipliers: Optimal working conditions and back action, Physical Review A, vol.86, p.36, 2012.

G. , Qubit readout with the Josephson Photomultiplier, vol.37, p.36, 2016.

S. Kono, Quantum non-demolition detection of an itinerant microwave photon, Nature Physics, vol.14, p.36, 2018.

J. Besse, Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons, Physical Review X, vol.8, p.36, 2018.

B. Royer, Itinerant Microwave Photon Detector, Physical Review Letters, vol.120, p.37, 2018.

J. Govenius, Microwave nanobolometer based on proximity Josephson junctions, Physical Review B, vol.90, p.37, 2014.

J. Govenius, Detection of Zeptojoule Microwave Pulses Using Electrothermal Feedback in Proximity-Induced Josephson Junctions, Physical Review Letters, vol.117, p.37, 2016.

S. Gasparinetti, Fast Electron Thermometry for Ultrasensitive Calorimetric Detection, Physical Review Applied, vol.3, p.37, 2015.

D. A. Steck, Quantum and Atom Optics, p.37, 2007.

K. Technologies, UXR1004A Infiniium UXR-Series Oscilloscope: 100 GHz, p.4

, Channels, vol.43, p.38

A. N. Korotkov, Quantum Bayesian Approach to circuit QED Measurement," in Quantum machines: measurement and control of engineered quantum systems, lecture notes of the les houches summer school, vol.96, pp.533-553, 2011.

B. Huard, Quantum information with superconducting circuits, p.41, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01011096

D. Markovic, Applications of the Josephson mixer : ultrastrong coupling, quantum node and injection locking in conversion, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01850229

B. Abdo, Full Coherent Frequency Conversion between Two Propagating Microwave Modes, Physical Review Letters, vol.110, p.173902, 2013.

C. Eichler, Experimental State Tomography of Itinerant Single Microwave Photons, Physical Review Letters, vol.106, p.220503, 2011.

C. Eichler, A. Bozyigit, and . Wallraff, Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors, Physical Review A, vol.86, p.32106, 2012.

M. S. Kim, Quasiprobability functions measured by photon statistics of amplified signal fields, Physical Review A, vol.56, p.47, 1997.

S. Boutin, Effect of Higher-Order Nonlinearities on Amplification and Squeezing in Josephson Parametric Amplifiers, Physical Review Applied, vol.8, p.47, 2017.

K. W. Murch, Observing single quantum trajectories of a superconducting quantum bit, Nature, vol.502, p.48, 2013.

K. L. Geerlings, Improving Coherence of Superconducting Qubits and Resonators, p.49, 2013.

F. Binder, Thermodynamics in the Quantum Regime-Recent Progress and Outlook, vol.57, pp.129-133, 2018.

I. Shomroni, All-optical routing of single photons by a one-atom switch controlled by a single photon, Science, vol.345, p.57, 2014.

T. Aoki, Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity, Physical Review Letters, vol.102, p.57, 2009.

I. Hoi, Demonstration of a Single-Photon Router in the Microwave Regime, Physical Review Letters, vol.107, p.57, 2011.

G. F. Timossi, Phase-Tunable Josephson Thermal Router, vol.18, p.57, 2018.

C. J. Axline, On-demand quantum state transfer and entanglement between remote microwave cavity memories, Nature Physics, vol.14, p.75, 2018.

P. Kurpiers, Deterministic quantum state transfer and remote entanglement using microwave photons, Nature, vol.558, p.75, 2018.

A. A. Clerk, Introduction to quantum noise, measurement, and amplification, Reviews of Modern Physics, vol.82, p.78, 2010.

M. R. Vissers, Reduced microwave loss in trenched superconducting coplanar waveguides, Applied Physics Letters, vol.100, p.79, 2012.

J. B. Chang, Improved superconducting qubit coherence using titanium nitride, Applied Physics Letters, vol.103, p.79, 2013.

G. Calusine, Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators, Applied Physics Letters, vol.112, p.79, 2018.

G. Ithier, Decoherence in a superconducting quantum bit circuit, Physical Review B, vol.72, p.93, 2005.

F. Yoshihara, Decoherence of flux qubits due to 1/f flux noise, Physical Review Letters, vol.97, p.93, 2006.

K. Kakuyanagi, Dephasing of a Superconducting Flux Qubit, Physical Review Letters, vol.98, p.93, 2007.

S. M. Anton, Pure dephasing in flux qubits due to flux noise with spectral density scaling as 1/f?, Physical Review B, vol.85, p.93, 2012.

S. Anton, Magnetic flux noise in SQUIDs and qubits, p.93, 2013.

S. Choi, Localization of Metal-Induced Gap States at the Metal-Insulator Interface: Origin of Flux Noise in SQUIDs and Superconducting Qubits, Physical Review Letters, vol.103, 2009.

S. M. Anton, Magnetic Flux Noise in dc SQUIDs: Temperature and Geometry Dependence, Physical Review Letters, vol.110, p.147002, 2013.

P. Kumar, Origin and Reduction of 1/f Magnetic Flux Noise in Superconducting Devices, Physical Review Applied, vol.6, p.41001, 2016.

K. Geerlings, Demonstrating a driven reset protocol for a superconducting qubit, Physical Review Letters, vol.110, pp.1-5, 2013.

P. Magnard, Fast and Unconditional All-Microwave Reset of a Superconducting Qubit, Physical Review Letters, vol.121, p.60502, 2018.

D. V. Nguyen, G. Catelani, and D. M. Basko, Dissipation in a superconducting artificial atom due to a single nonequilibrium quasiparticle, Physical Review B, vol.96, p.97, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02012847

U. Vool, Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations, Physical Review Letters, vol.113, p.98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099948

J. Wenner, Excitation of Superconducting Qubits from Hot Nonequilibrium Quasiparticles, Physical Review Letters, vol.110, p.99, 2013.

K. Serniak, Hot non-equilibrium quasiparticles in transmon qubits, vol.189, p.99, 2018.

J. M. Martinis, Decoherence in Josephson Qubits from Dielectric Loss, vol.95, p.99, 2005.

J. Aumentado, Nonequilibrium Quasiparticles and 2e Periodicity in SingleCooper-Pair Transistors, Physical Review Letters, vol.92, p.66802, 2004.

P. J. Visser, Number Fluctuations of Sparse Quasiparticles in a Superconductor, Physical Review Letters, vol.106, p.167004, 2011.

V. F. Maisi, Excitation of Single Quasiparticles in a Small Superconducting Al Island Connected to Normal-Metal Leads by Tunnel Junctions, Physical Review Letters, vol.111, p.147001, 2013.

X. Y. Jin, Thermal and Residual Excited-State Population in a 3D Transmon Qubit, Physical Review Letters, vol.100, 2015.

S. Gustavsson, Suppressing relaxation in superconducting qubits by quasiparticle pumping, Science, vol.100, 2016.

D. Ristè, Initialization by Measurement of a Superconducting Quantum Bit Circuit, Physical Review Letters, vol.109, p.106, 2012.

R. Lescanne, Dynamics of an off-resonantly pumped superconducting qubit in a cavity, vol.186, p.110, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01945882

R. Landauer, Irreversibility and Heat Generation in the Computing Process, IBM Journal of Research and Development, vol.5, pp.183-191, 1961.

C. H. Bennett, Notes on Landauer's principle, reversible computation, and Maxwell's Demon, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, vol.34, p.117, 2003.

C. H. Bennett, The thermodynamics of computation-a review, International Journal of Theoretical Physics, vol.21, pp.905-940, 1982.

S. Toyabe, Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality, Nature Physics, vol.6, p.117, 2010.

J. V. Koski, Experimental realization of a Szilard engine with a single electron, Proceedings of the National Academy of Sciences, vol.111, p.117, 2014.

J. V. Koski, Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon, Physical Review Letters, vol.113, p.117, 2014.

É. Roldán, Universal features in the energetics of symmetry breaking, Nature Physics, vol.10, p.117, 2014.

M. D. Vidrighin, Photonic Maxwell's Demon, Physical Review Letters, vol.116, p.117, 2016.

P. A. Camati, Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System, Physical Review Letters, vol.117, p.117, 2016.

Y. Masuyama, Information-to-work conversion by Maxwell's demon in a superconducting circuit quantum electrodynamical system, Nature Communications, vol.9, p.1291, 2018.

M. Naghiloo, Information Gain and Loss for a Quantum Maxwell's Demon, Physical Review Letters, vol.121, pp.134-136, 2018.

L. Szilard, Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen, Zeitschrift für Physik, vol.53, pp.840-856, 1929.

J. P. Pekola, D. S. Golubev, and D. V. Averin, Maxwell's demon based on a single qubit, Physical Review B, vol.93, p.123, 2016.

P. Kammerlander and J. Anders, Coherence and measurement in quantum thermodynamics, Scientific Reports, vol.6, p.124, 2016.

K. Korzekwa, The extraction of work from quantum coherence, New Journal of Physics, vol.18, p.124, 2016.

S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemporary Physics, vol.57, p.124, 2016.

S. An, Experimental test of the quantum Jarzynski equality with a trapped-ion system, Nature Physics, vol.11, pp.193-199, 2015.

A. Smith, Verification of the quantum nonequilibrium work relation in the presence of decoherence, New Journal of Physics, vol.20, p.13008, 2018.

J. V. Koski, On-Chip Maxwell's Demon as an Information-Powered Refrigerator, Physical Review Letters, vol.115, p.260602, 2015.

N. Cottet and B. Huard, Maxwell's demon in superconducting circuits, vol.147, p.165, 2018.

A. Roy and M. Devoret, Quantum-limited parametric amplification with Josephson circuits in the regime of pump depletion, Physical Review B, vol.98, p.126, 2018.

F. Mallet, Single-shot qubit readout in circuit quantum electrodynamics, Nature Physics, vol.5, p.126, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00440277

M. Hatridge, Quantum Back-Action of an Individual Variable-Strength Measurement, Science, vol.339, p.126, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845258

R. Vijay, Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback, Nature, vol.490, p.126, 2012.

S. J. Weber, Quantum trajectories of superconducting qubits, Comptes Rendus Physique, vol.17, p.126, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01366212

N. Cottet, Observing a quantum Maxwell demon at work, Proceedings of the National Academy of Sciences, vol.114, pp.136-140, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01626961

L. Szilard, On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings, Behavioral Science, vol.9, p.126, 1964.

G. Wendin, Quantum information processing with superconducting circuits: a review, Reports on Progress in Physics, vol.80, p.127, 2017.

. Zurek, Decoherence, einselection, and the quantum origins of the classical, Reviews of Modern Physics, vol.75, p.128, 2003.

P. Talkner, E. Lutz, and P. Hänggi, Fluctuation theorems: Work is not an observable, Physical Review E, vol.75, p.50102, 2007.

J. Kurchan, A Quantum Fluctuation Theorem, p.131, 2000.

H. Tasaki, Jarzynski Relations for Quantum Systems and Some Applications, p.131, 2000.

A. A. Clerk, Introduction to quantum noise, measurement, and amplification, Reviews of Modern Physics, vol.82, p.131, 2010.

K. Funo, Y. Watanabe, and M. Ueda, Integral quantum fluctuation theorems under measurement and feedback control, Physical Review E, vol.88, p.52121, 2013.

D. I. Schuster, Resolving photon number states in a superconducting circuit, Nature, vol.445, p.136, 2007.

G. Kirchmair, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature, vol.495, p.137, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845264

J. Z. Blumoff, Implementing and Characterizing Precise Multiqubit Measurements, Physical Review X, vol.6, p.138, 2016.

N. Roch, Widely Tunable, Nondegenerate Three-Wave Mixing Microwave Device Operating near the Quantum Limit, Physical Review Letters, vol.108, p.139, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700677

J. P. Pekola, Calorimetric measurement of work in a quantum system, New Journal of Physics, vol.15, p.115006, 2013.

H. Quan, Maxwell's Demon Assisted Thermodynamic Cycle in Superconducting Quantum Circuits, Physical Review Letters, vol.97, p.141, 2006.

A. O. Niskanen, J. P. Nakamura, and . Pekola, Information entropic superconducting microcooler, Phys. Rev. B, vol.76, p.141, 2007.

B. Karimi and J. P. Pekola, Otto refrigerator based on a superconducting qubit: Classical and quantum performance, Physical Review B, vol.94, p.141, 2016.

M. Campisi, J. Pekola, and R. Fazio, Feedback-controlled heat transport in quantum devices: theory and solid-state experimental proposal, New Journal of Physics, vol.19, p.141, 2017.

J. P. Pekola, Decoherence in Adiabatic Quantum Evolution: Application to Cooper Pair Pumping, Physical Review Letters, vol.105, p.143, 2010.

S. Hacohen-gourgy, Dynamics of simultaneously measured non-commuting observables, Nature, vol.538, p.143, 2016.

U. Vool, Continuous quantum nondemolition measurement of the transverse component of a qubit, Physical Review Letters, vol.117, p.143, 2016.

C. Elouard, Extracting Work from Quantum Measurement in Maxwell's Demon Engines, Physical Review Letters, vol.118, p.143, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01626962

A. Ronzani, Tunable photonic heat transport in a quantum heat valve, Nature Physics, p.143, 2018.

J. B. Brask, Autonomous quantum thermal machine for generating steady-state entanglement, New Journal of Physics, vol.17, p.144, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01253076

C. M. Caves, Quantum limits on phase-preserving linear amplifiers, Physical Review A, vol.86, p.145, 2012.

M. A. Castellanos-beltran and K. W. Lehnert, Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator, Applied Physics Letters, vol.91, p.145, 2007.

Q. Ficheux, Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing, Nature Communications, vol.9, p.145, 1926.
URL : https://hal.archives-ouvertes.fr/hal-01779089

J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Computer Physics Communications, vol.184, pp.1234-1240, 2013.

H. M. Wiseman, Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation, Physical Review A, vol.65, p.162, 2002.

P. Campagne-ibarcq, Observing Interferences between Past and Future Quantum States in Resonance Fluorescence, Physical Review Letters, vol.112, p.162, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00969895

P. Six, Quantum state tomography with noninstantaneous measurements, imperfections, and decoherence, Physical Review A, vol.93, p.162, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01395584

R. H. Dicke, Coherence in Spontaneous Radiation Processes, Physical Review, vol.93, p.164, 1954.

M. Dartiailh, Exopy: versatile data acquisition software for complex experiments, p.179

N. Didier, J. Bourassa, and A. Blais, Fast quantum non-demolition readout from longitudinal qubit-oscillator interaction, Phys. Rev. Lett, vol.115, p.203601, 2015.

J. Gambetta, Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect, Physical Review A, vol.77, p.186, 2008.

L. Verney, Strongly driven quantum Josephson circuits, p.186, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01945870

, Bluefors Cryogenics LD-Series Cryostats, p.189, 2018.

P. V. Klimov, Fluctuations of Energy-Relaxation Times in Superconducting Qubits, Physical Review Letters, p.189, 2018.

J. P. Martinez, A tunable Josephson platform to explore many-body quantum optics in circuit-QED, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02081315

R. Kuzmin, Analog simulations of quantum impurity physics with a highimpedance Josephson transmission line, Aps march meeting, 2017.