I. V. Méthode-de-criblage-Électrochimique and .. .. ,

V. .. Conclusions,

.. .. Chapitre,

I. , Expression et purification de la TK de E, vol.87

. , Dosage des protéines selon la méthode de Bradford

I. , Électrophorèse en conditions dénaturantes (SDS-PAGE)

. , 3.2. Mesure d'activité TK en présence d'alcool déshydrogénase

. , Préparation des plaques de criblages électrochimiques (PCE)

. , 2.2.b. Mesure de l'activité de la galactose oxydase de Dactylium dendroides (GAOx) par IPA

. , 3.b. Mesure de l'activité TK par oxydation de l'intermédiaire réactionnel, 106 ii) Mesure de la TK immobilisée dans les hydroxydes doubles lamellaires (HDL), p.106

. .. Criblage-de-la-chimiothèque-de-l'icbms,

V. E. ,

I. I. Détection-du-peroxyde-d'hydrogène and .. .. , 1.2. Optimisation de la détection de l'H2O2 par IPA

E. .. , 2.1. Optimisation de la détection de l'H2O2 par ECL

. , Autres méthodes permettant la détection de l'H2O2, Comparaison avec des systèmes ou des méthodes déjà existantes

I. Mesure-de-l'activité-gaox and E. .. ,

. , Comparaison avec une autre méthode : test colorimétrique

. Iv, Mesure de l'activité de la GAOx en présence d'un inhibiteur

V. Mesures and .. .. Le-système-bi-enzymatique, Activité de la GAOx@laponite en présence des substrats de la TK

. , Mesure de l'activité TK-GAOx par ECL

. , Chapitre IV : Identification d'inhibiteurs de la TK par oxydation d'un intermédiaire réactionnel

I. Mesure and . .. Ipa, Mesure de l'activité TK à l'aide d'électrode de carbone dopées au Bleu de Prusse .. 184 III.10. Reproductibilité sur la mesure d'activité

.. .. Iv.-criblage-d'inhibiteurs-de-la-transcétolase-d'e.coli, Validation de la preuve de concept avec des inhibiteurs connus de la TK

. , 3.2. Détermination des paramètres cinétiques en présence de I38-49

. , Détermination du mécanisme d'inhibition par résonnance magnétique nucléaire

V. .. Conclusions, ?cidTexte=LEGITEXT000006072665 &idArticle=LEGIARTI000006689867. 2. Classification internationale des maladies (CIM 10)-Organisation mondiale de la santé, Article L. 5111-1 du Code la Santé Publique, 2015.

I. Collins and P. Workman, New approaches to molecular cancer therapeutics, Nat. Chem. Biol, vol.2, issue.12, pp.689-700, 2006.

J. P. Hughes, S. S. Rees, S. B. Kalindjian, and K. L. Philpott, Principles of early drug discovery, Br. J. Pharmacol, vol.162, issue.6, pp.1239-1249, 2011.

S. Hoelder, P. A. Clarke, and P. Workman, Discovery of small molecule cancer drugs: Successes, challenges and opportunities, Mol. Oncol, vol.6, issue.2, pp.155-176, 2012.

M. E. Bunnage, Getting pharmaceutical R&D back on target, Nat. Chem. Biol, vol.7, issue.6, pp.335-339, 2011.

H. Chen, J. X. Yue, S. H. Yang, H. Ding, R. W. Zhao et al., Overexpression of transketolase-like gene 1 is associated with cell proliferation in uterine cervix cancer, J. Exp. Clin. Cancer Res, vol.28, p.43, 2009.

S. Li, S. Huang, and S. Peng, Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression, Int. J. Oncol, vol.27, pp.1329-1339, 2005.

J. M. Oh, F. Brichory, E. Puravs, R. Kuick, C. Wood et al., A database of protein expression in lung cancer, Proteomics, vol.1, issue.10, pp.1303-1319, 2001.

R. F. Butterworth, Thiamin deficiency and brain disorders, Nutr. Res. Rev, vol.16, issue.2, p.277, 2003.

A. D. Thomson, C. C. Cook, R. Touquet, and J. Henry, The Royal College of Physicians report on alcohol: guidelines for managing Wernicke's encephalopathy in the accident and Emergency Department, Alcohol Alcohol, vol.37, issue.6, pp.513-521, 2002.

J. W. Ironside, Review: Creutzfeldt-Jakob disease, Brain Pathol, vol.6, issue.4, pp.379-388, 1996.

V. Beringue, J. Deslys, K. T. Adjou, and D. Dormont, Central & Peripheral Nervous Systems Creutzfeldt-Jakob disease : therapeutic strategies Congo red, Expert Opin. Investig. Drugs, vol.6, issue.4, pp.345-348, 1997.

H. Xu, H. Y. Xu, M. Z. Lin, W. Wang, Z. M. Li et al., Learning the drug target-likeness of a protein, Proteomics, vol.7, issue.23, pp.4255-4263, 2007.

A. L. Hopkins, C. R. Groom, and . The-druggable-genome, Nat. Rev, vol.1, pp.727-730, 2002.

P. Imming, C. Sinning, and A. Meyer, Drugs, their targets and the nature and number of drug targets, Nat. Rev. Drug Discov, vol.5, issue.10, pp.821-834, 2006.

M. Rask-andersen, M. S. Almén, and H. B. Schiöth, Trends in the exploitation of novel drug targets, Nat. Rev. Drug Discov, vol.10, issue.8, pp.579-590, 2011.

Y. H. Li, Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics, Nucleic Acids Res, vol.46, pp.1121-1127, 2018.

C. Debouck and B. Metcalf, The impact of genomics on drug discovery, Annu. Rev. Pharmacol. Toxicol, vol.40, pp.193-208, 2000.

A. ?ali, 000 Protein Structures for the Biologist, Nat. Struct. Biol, vol.100, issue.12, pp.1029-1032, 1998.

A. Dove, Proteomics : translating genomics into products ? By cataloging the entire protein content of a cell , proteomics should not only, Nat. Biotechnol, vol.17, pp.233-236, 1999.

R. A. Spritz and B. G. Forget, The thalassemias: molecular mechanisms of Human Genetic Disease, Am. J. Hum. Genet, vol.35, pp.333-361, 1983.

F. Rahimov and L. M. Kunkel, Cellular and molecular mechanisms underlying muscular dystrophy, J. Cell Biol, vol.201, issue.4, pp.499-510, 2013.

Y. Yang, S. J. Adelstein, and A. I. Kassis, Target discovery from data mining approaches, Drug Discov. Today, vol.14, issue.3-4, pp.147-154, 2009.

L. Bertram and R. E. Tanzi, Thirty years of Alzheimer's disease genetics: The implications of systematic meta-analyses, Nat. Rev. Neurosci, vol.9, issue.10, pp.768-778, 2008.

D. Cronk, High-throughput screening. in Drug Discovery and Development: Technology in Transition, pp.95-117, 2013.

F. Wilde and A. Link, Advances in the design of a multipurpose fragment screening library, Expert Opin. Drug Discov, vol.8, issue.5, pp.597-606, 2013.

F. N. Edfeldt, R. H. Folmer, and A. L. Breeze, Fragment screening to predict druggability (ligandability) and lead discovery success, Drug Discov. Today, vol.16, issue.7-8, pp.284-287, 2011.

R. Campos-olivas, NMR screening and hit validation in fragment based drug discovery, Curr. Top. Med. Chem, vol.11, issue.1, pp.43-67, 2011.

A. Chavanieu and M. Pugnière, Developments in SPR Fragment Screening, Expert Opin. Drug Discov, vol.11, issue.5, pp.489-499, 2016.

Z. Chilingaryan, Z. Yin, and A. J. Oakley, Fragment-based screening by protein crystallography: Successes and pitfalls, Int. J. Mol. Sci, vol.13, issue.10, pp.12857-12879, 2012.

G. Schneider, Virtual screening: An endless staircase?, Nat. Rev. Drug Discov, vol.9, issue.4, pp.273-276, 2010.

M. F. Hibert and . French, European academic compound library initiative, Drug Discov. Today, vol.14, pp.723-725, 2009.

I. Akritopoulou-zanze and P. J. Hajduk, Kinase-targeted libraries: The design and synthesis of novel, potent, and selective kinase inhibitors, Drug Discov. Today, vol.14, pp.291-297, 2009.

A. Anderson and D. Wright, The Design and Docking of Virtual Compound Libraries to Structures of Drug Targets, Curr. Comput. Aided-Drug Des, vol.1, issue.1, pp.103-127, 2005.

R. D. Cramer, D. E. Patterson, R. D. Clark, F. Soltanshahi, and M. S. Lawless, Virtual compound libraries: A new approach to decision making in molecular discovery research, J. Chem. Inf. Comput. Sci, vol.38, issue.6, pp.1010-1023, 1998.

S. Ekins, J. D. Honeycutt, and J. T. Metz, Evolving molecules using multi-objective optimization: Applying to ADME/Tox, Drug Discov. Today, vol.15, pp.451-460, 2010.

H. Van-de-waterbeemd, D. A. Smith, K. Beaumont, and D. K. Walker, Property-based design: optimization of drug absorption and pharmacokinetics, J. Med. Chem, vol.44, issue.9, pp.1313-1333, 2001.

R. E. Hubbard, 3D structure and the drug-discovery process, Mol. Biosyst, vol.1, pp.391-406, 2005.

L. Peltason and J. Bajorath, Systematic computational analysis of structure activity relationships: concepts, challenges and recent advances, Future Med. Chem, vol.1, issue.3, pp.451-466, 2009.

A. K. Patidar, G. Selvam, M. Jeyakandan, A. K. Mobiya, A. Bagherwal et al., Lead Discovery and Lead Optimization : A Useful Strategy in Molecular Modification of Lead Compound in Analog Design, Int. J. Drug Des. Discov, vol.2, issue.2, pp.458-463, 2011.

A. J. Folkes, The Identification of 2-(1 H-Indazol-4-yl)-6-(4-methanesulfonylpiperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d ]pyrimidine (GDC-0941) as a Potent, Selective, Orally Bioavailable Inhibitor of Class I PI3 Kinase for the Treatment of Can, J. Med. Chem, vol.51, issue.18, pp.5522-5532, 2008.

F. I. Raynaud, Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941, Mol. Cancer Ther, vol.8, issue.7, pp.1725-1763, 2009.

D. Wang and A. Bakhai, Clinical Trials: A Practical Guide to Design, Analysis, and Reporting, 2006.

I. Kola and J. Landis, Can the pharmaceutical industry reduce attrition rates?, Nat. Rev. Drug Discov, vol.3, pp.1-5, 2004.

L. M. Mayr and P. Fuerst, The future of high-throughput screening, J. Biomol. Screen, vol.13, issue.6, pp.443-448, 2008.

J. G. Moffat, J. Rudolph, and D. Bailey, Phenotypic screening in cancer drug discoverypast, present and future, Nat. Rev. Drug Discov, vol.13, issue.8, pp.588-602, 2014.

H. Bisswanger, Enzyme assays, Perspect. Sci, vol.1, issue.1-6, pp.41-55, 2014.

W. R. Mcclure, A Kinetic Analysis of Coupled Enzyme Assays, Biochemistry, vol.8, issue.7, pp.2782-2786, 1969.

A. C. Storer and A. Cornish-bowden, The kinetics of coupled enzyme reactions. Applications to the assay of glucokinase, with glucose 6-phosphate dehydrogenase as coupling enzyme, Biochem. J, vol.141, issue.1, pp.205-209, 1974.

K. S. Schroeder and B. D. Neagle, FLIPR: A new instrument for accurate, High throughput optical screening, J. Biomol. Screen, vol.1, issue.2, pp.75-80, 1996.

J. E. González, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, Cell-based assays and instrumentation for screening ion-channel targets, Drug Discov. Today, vol.4, issue.9, pp.431-439, 1999.

F. Fan and K. V. Wood, Bioluminescent Assays for High-Throughput Screening, ASSAY Drug Dev. Technol, vol.5, issue.1, pp.127-136, 2007.

C. K. Jayawickreme and T. A. Kost, Gene expression systems in the development of highthroughput screens, Curr. Opin. Biotechnol, vol.8, issue.5, pp.629-634, 1997.

J. Hua, C. Sima, M. Cypert, G. C. Gooden, S. Shack et al., Tracking transcriptional activities with high-content epifluorescent imaging, J. Biomed. Opt, vol.17, issue.4, pp.1-15, 2012.

J. Seo, J. Y. Shin, J. Leijten, O. Jeon, G. Camci-unal et al., High-throughput approaches for screening and analysis of cell behaviors, Biomaterials, vol.153, pp.85-101, 2018.

O. Frey, P. M. Misun, D. A. Fluri, J. G. Hengstler, and A. Hierlemann, Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis, Nat. Commun, vol.5, pp.1-11, 2014.
DOI : 10.1038/ncomms5250

URL : https://www.nature.com/articles/ncomms5250.pdf

S. R. Khetani and S. N. Bhatia, Microscale culture of human liver cells for drug development, Nat. Biotechnol, vol.26, issue.1, pp.120-126, 2008.
DOI : 10.1038/nbt1361

M. Lee, R. A. Kumar, S. M. Sukumaran, M. G. Hogg, D. S. Clark et al., Three-dimensional cellular microarray for high-throughput toxicology assays, Proc. Natl. Acad. Sci, vol.105, issue.1, pp.59-63, 2008.
DOI : 10.1073/pnas.0708756105

URL : http://www.pnas.org/content/105/1/59.full.pdf

M. Lee, C. B. Park, J. S. Dordick, and D. S. Clark, Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses, Proc. Natl. Acad. Sci, vol.102, issue.4, pp.983-987, 2005.
DOI : 10.1073/pnas.0406755102

URL : http://www.pnas.org/content/102/4/983.full.pdf

S. N. Bailey, D. M. Sabatini, and B. R. Stockwell, From The Cover: Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens, Proc. Natl. Acad. Sci, vol.101, issue.46, pp.16144-16149, 2004.

J. Zhang, T. D. Chung, and K. R. Oldenburf, A simple statistical parameter for use in evaluation and validation of high throughput screening assays, J. Biomol. Screen, vol.4, issue.2, pp.67-73, 1999.

G. A. Holdgate, T. D. Meek, and R. L. Grimley, Mechanistic enzymology in drug discovery: A fresh perspective, Nat. Rev. Drug Discov, vol.17, issue.2, pp.115-132, 2018.
DOI : 10.1038/nrd.2017.219

H. Maeda, Assay of proteolytic enzymes by the fluorescence polarization technique, Anal. Biochem, vol.92, issue.1, pp.222-227, 1979.
DOI : 10.1016/0003-2697(79)90649-3

M. D. Hall, A. Yasgar, T. Peryea, J. C. Braisted, A. Jadhav et al., Fluorescence polarization assays in high-throughput screening and drug discovery: a review, Methods Appl. Fluoresc, vol.4, issue.2, pp.1-41, 2017.
DOI : 10.1088/2050-6120/4/2/022001

URL : http://europepmc.org/articles/pmc5563979?pdf=render

W. A. Lea and A. Simeonov, Fluorescence Polarization Assay. Expert Opin. Drug Discov, vol.6, issue.1, pp.17-32, 2012.

M. Meldal, I. Svendsen, K. Breddam, and F. I. Auzanneau, Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity, Proc. Natl. Acad. Sci, vol.91, issue.8, pp.3314-3318, 1994.

G. Zandonella, L. Haalck, F. Spener, K. Faber, F. Paltauf et al., Enantiomeric perylene-glycerolipids as fluorogenic substrates for a dual wavelength assay of lipase activity and stereoselectivity, Chirality, vol.8, issue.7, pp.481-89, 1996.

V. Boyer, S. Fort, T. P. Frandsen, M. Schülein, S. Cottaz et al., Chemoenzymatic synthesis of a bifunctionalized cellohexaoside as a specific substrate for the sensitive assay of cellulase by fluorescence quenching, Chem. Eur. J, vol.8, issue.6, pp.1389-1394, 2002.

S. M. Rodems, B. D. Hamman, C. Lin, J. Zhao, S. Shah et al., A FRET-based assay platform for ultra-high density drug screening of protein kinases and phosphatases, ASSAY Drug Dev. Technol, vol.1, issue.1, pp.9-19, 2002.

F. Degorce, HTRF: A Technology Tailored for Drug Discovery-A Review of Theoretical Aspects and Recent Applications, Curr. Chem. Genomics, vol.3, issue.1, pp.22-32, 2009.

C. Drexler and . Kinease, A new solution for screening serine-threonine kinases, Nat. Methods, vol.3, issue.6, pp.1-2, 2006.

H. Zegzouti, M. Zdanovskaia, K. Hsiao, S. A. Goueli, and . Adp-glo, A Bioluminescent and Homogeneous ADP Monitoring Assay for Kinases, vol.7, pp.560-572, 2009.

T. Xiao, R. Liu, C. G. Proud, and M. W. Wang, A high-throughput screening assay for eukaryotic elongation factor 2 kinase inhibitors, Acta Pharm. Sin. B, vol.6, issue.6, pp.557-563, 2016.

A. Baki, A. Bielik, L. Molnár, G. Szendrei, and G. M. Keserü, A High Throughput Luminescent Assay for Glycogen Synthase Kinase-3 ? Inhibitors, ASSAY Drug Dev. Technol, vol.5, issue.1, pp.75-84, 2007.

S. Wu and B. Lie, Application of SPA Assay in Drug Discovery, Biodrugs, vol.19, issue.6, pp.383-392, 2005.

E. Z. Baum, S. H. Johnston, G. A. Bebernitz, and Y. Gluzman, Development of a scintillation proximity assay for human cytomegalovirus protease using33phosphorous, Anal. Biochem, vol.237, issue.1, pp.129-134, 1996.

P. E. Brandish, C. S. Chiu, J. Schneeweis, N. J. Brandon, C. L. Leech et al., A cell-based ultra-high-throughput screening assay for identifying inhibitors of D-amino acid oxidase, J. Biomol. Screen, vol.11, issue.5, pp.481-487, 2006.

E. M. Bowers, Virtual ligand screening of the p300/CBP histone acetyltransferase: Identification of a selective small molecule inhibitor, Chem. Biol, vol.17, issue.5, pp.471-482, 2010.

Y. A. Muller, Y. Lindqvist, W. Furey, G. E. Schulz, F. Jordan et al., A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase, Structure, vol.1, issue.2, pp.95-103, 1993.

A. B. Kremer, R. M. Egan, and H. Z. Sable, The active site of transketolase. two arginine residues are essentiel for activity, Mol. Biol, vol.255, issue.6, pp.2405-2410, 1980.

K. G. Morris, M. E. Smith, N. J. Turner, M. D. Lilly, R. K. Mitra et al., Transketolase from Escherichia coli: A practical procedure for using the biocatalyst for asymmetric carbon-carbon bond synthesis, Tetrahedron Asymmetry, vol.7, issue.8, pp.2185-2188, 1996.

G. A. Sprenger, S. Ulrich, S. Gerda, and S. Hermann, Transketolase a of Escherichia coli K12, Eur. J. Biochem, vol.230, issue.2, pp.525-532, 1995.

J. Abdoul-zabar, I. Sorel, V. Hélaine, F. Charmantray, T. Devamani et al., Thermostable Transketolase from Geobacillus stearothermophilus: Characterization and Catalytic Properties, Adv. Synth. Catal, vol.355, issue.1, pp.116-128, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00790248

C. Demuynck, J. Bolte, L. Hecquet, and V. Dalmas, Enzyme-catalyzed synthesis of carbohydrates: synthetic potential of transketolase, Tetrahedron Lett, vol.32, issue.38, pp.5085-5088, 1991.

G. A. Sprenger and M. Pohl, Synthetic potential of thiamin diphosphate-dependent enzymes, J. Mol. Catal. B Enzym, vol.6, issue.3, pp.145-159, 1999.

B. T. Ziegler, A. Siraub, and F. Effenberger, Enzyme-Catalyzed Synthesis of 1Deoxymannojirimycin, 1-Deoxynojirimycin

, Angew. Chem. Int. Ed, vol.27, issue.5, pp.716-717, 1988.

D. C. Myles, P. J. Andrulis, and G. M. Whitesides, A transketolase-based synthesis of (+)exo-brevicomin, Tetrahedron Lett, vol.32, issue.37, pp.4835-4838, 1991.

C. Demuynck, J. Bolte, L. Hecquet, and H. Samaki, Enzymes as reagents in organic chemistry: transketolase-catalysed synthesis of d-[1,2-13C2]xylulose, Carbohydr. Res, vol.206, issue.1, pp.79-85, 1990.

L. Hecquet, J. Bolte, and C. Demuynck, Enzymatic synthesis of 'natural-labeled' 6-deoxy-Lsorbose precursor of an important food flavor, Tetrahedron, vol.52, issue.24, pp.8223-8232, 1996.

C. U. Ingram, M. Bommer, M. E. Smith, P. A. Dalby, J. M. Ward et al., One-Pot Synthesis of Amino-Alcohols Using a De-Novo Transketolase and bAlanine:Pyruvate Transaminase Pathway in Escherichia coli, Biotechnol. Bioeng, vol.96, pp.559-569, 2007.

M. Lorillière, M. De-sousa, F. Bruna, E. Heuson, T. Gefflaut et al., One-pot, two-step cascade synthesis of naturally rare L-erythro (3S,4S) ketoses by coupling a thermostable transaminase and transketolase, Green Chem, vol.19, issue.2, pp.425-435, 2017.

C. Zhou, T. Saravanan, M. Lorillière, D. Wei, F. Charmantray et al.,

, Aliphatic Aldehyde Acceptors with Either Improved or Reversed Stereoselectivity. ChemBioChem, vol.18, issue.5, pp.455-459, 2017.

J. Littlechild, N. Turner, G. Hobbs, M. Lilly, A. Rawas et al., Crystallization and preliminary X-ray crystallographic data with Escherichia coli transketolase, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.51, issue.6, pp.1074-1076, 1995.

M. Nikkola, Y. Lindqvist, and G. Schneider, Refined Structure of Transketolase from Saccharomyces cerevisiae at 2·0 Å Resolution, Journal of Molecular Biology, vol.238, issue.3, pp.387-404, 1994.

E. Fullam, F. Pojer, T. Bergfors, T. A. Jones, and S. T. Cole, Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme, Open Biol, vol.2, issue.1, pp.1-12, 2012.

S. Joshi, A. R. Singh, A. Kumar, P. C. Misra, M. I. Siddiqi et al., Molecular cloning and characterization of Plasmodium falciparum transketolase, Mol. Biochem. Parasitol, vol.160, issue.1, pp.32-41, 2008.

L. Mitschke, C. Parthier, K. Schröder-tittmann, J. Coy, S. Lüdtke et al., The crystal structure of human transketolase and new insights into its mode of action, J. Biol. Chem, vol.285, issue.41, pp.31559-31570, 2010.

G. Schneider and Y. Lindqvist, Crystallography and mutagenesis of transketolase: Mechanistic implications for enzymatic thiamin catalysis, Biochim. Biophys. Acta, vol.1385, issue.2, pp.387-398, 1998.

, RCSB Protein Data Bank-RCSB PDB-3OOY Structure summary

A. Ranoux, U. Hanefeld, and . Improving-transketolase, Top. Catal, vol.56, pp.750-764, 2013.

G. Schenk, R. G. Duggleby, and P. F. Nixon, Properties and functions of the thiamin diphosphate dependent enzyme transketolase, Int. J. Biochem. Cell Biol, vol.30, issue.12, pp.1297-1318, 1998.

O. Warburg, On the Origin of Cancer Cells, Science, vol.123, issue.3191, pp.309-314, 1956.

P. Jiang, W. Du, and M. Wu, Regulation of the pentose phosphate pathway in cancer, Protein Cell, vol.5, issue.8, pp.592-602, 2014.

K. C. Patra and N. Hay, The pentose phosphate pathway and cancer, Trends Biochem. Sci, vol.39, issue.8, pp.347-354, 2014.

C. Ricciardelli, N. A. Lokman, S. Cheruvu, I. A. Tan, M. P. Ween et al., Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation, Clin. Exp. Metastasis, vol.32, issue.5, pp.441-455, 2015.

L. G. Boros, P. W. Lee, J. L. Brandes, M. Cascante, P. Muscarella et al., Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: Is cancer a disease of cellular glucose metabolism?, Med. Hypotheses, vol.50, issue.1, pp.55-59, 1998.

L. G. Boros, J. Puigjaner, M. Cascante, W. P. Lee, J. L. Brandes et al., Oxythiamine and Dehydroepiandrosterone Inhibit the Nonoxidative Synthesis of Ribose and Tumor Cell Proliferation, Cancer Res, vol.57, pp.4242-4248, 1997.

S. Langbein, M. Zerilli, A. Zur-hausen, W. Staiger, K. Rensch-boschert et al., Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted, Br. J. Cancer, vol.94, issue.4, pp.578-585, 2006.

B. Raïs, B. Comin, J. Puigjaner, J. L. Brandes, E. Creppy et al., Oxythiamine and dehydroepiandrosterone induce a G 1 phase cycle arrest in Ehrlich ' s tumor cells through inhibition of the pentose cycle, FEBS Lett, vol.456, issue.1, pp.113-118, 1999.

L. G. Boros, S. Bassilian, S. Lim, and W. N. Lee, Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: A new mechanism of controlling tumor growth, Pancreas, vol.22, issue.1, pp.1-7, 2001.

L. G. Boros, J. L. Brandes, F. I. Yusuf, M. Cascante, R. D. Williams et al., Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: A possible mechanism of antitumor action, Med. Hypotheses, vol.50, issue.6, pp.501-506, 1998.

S. Zhang, J. H. Yang, C. K. Guo, and P. C. Cai, Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells, Cancer Lett, vol.253, issue.1, pp.108-114, 2007.

J. F. Coy, D. Dressler, J. Wilde, and P. Schubert, Mutations in the transketolase-like gene TKTL1: Clinical implications for neurodegenerative diseases, diabetes and cancer, Clin. Lab, vol.51, issue.5-6, pp.257-273, 2005.

I. M. Xu, R. K. Lai, S. Lin, A. P. Tse, D. K. Chiu et al., Transketolase counteracts oxidative stress to drive cancer development, Proc. Natl. Acad. Sci. U. S. A, vol.113, issue.6, pp.725-734, 2016.

M. T. Brinkman, M. R. Karagas, M. S. Zens, A. Schned, R. C. Reulen et al., Minerals and vitamins and the risk of bladder cancer: results from the New Hampshire Study, Cancer Causes Control, vol.21, issue.4, pp.609-619, 2010.

R. Kaaks, A. J. Tuyns, M. Haelterman, and E. Riboli, Nutrient intake patterns and gastric cancer risk: a case-control study in Belgium, Int. J. Cancer, vol.78, issue.4, pp.415-420, 1998.

H. Sanemori, Y. Egi, and T. Kawasaki, Pathway of thiamine pyrophosphate synthesis in Micrococcus denitrificans, J. Bacteriol, vol.126, issue.3, pp.1030-1036, 1976.

M. Hayashi and K. Nosaka, Characterization of Thiamin Phosphate Kinase in the Hyperthermophilic Archaeon Pyrobaculum calidifontis, J. Nutr. Sci. Vitaminol. (Tokyo), vol.61, pp.369-374, 2015.

J. P. Blass and G. E. Gibson, Abnormality of a thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome, N. Engl. J. Med, vol.297, issue.25, pp.1367-1370, 1977.

E. Isenberg-grzeda, H. E. Kutner, and S. E. Nicolson, Wernicke-Korsakoff-Syndrome: Under-Recognized and Under-Treated, Psychosomatics, vol.53, issue.6, pp.507-516, 2012.

M. W. Donnino, J. Vega, J. Miller, and M. Walsh, Myths and Misconceptions of Wernicke's Encephalopathy: What Every Emergency Physician Should Know, Ann. Emerg. Med, vol.50, issue.6, pp.715-721, 2007.

C. C. Cook, P. M. Hallwood, and A. D. Thomson, Vitamin Deficiency and Neuropsychiatric Syndromes in Alcohol Misuse, Alcohol Alcohol, vol.33, issue.4, pp.317-336, 1998.

F. Paoletti, A. Mocali, M. Marchi, S. Sorbi, and S. Piacentini, Occurence of Transketolase abnormalities in extracts of foreskin fibroblats from patient with Alzheimer's disease, Biochem. Biophys. Res. Commun, vol.172, issue.2, pp.396-401, 1990.

F. Paoletti and A. Mocali, Enhanced proteolytic activities in cultured fibroblasts of Alzheimer patients are revealed by peculiar transketolase alterations, J. Neurol. Sci, vol.105, issue.2, pp.211-216, 1991.

F. Paoletti, A. Mocali, and D. Tombaccini, Cysteine proteinases are responsible for characteristic transketolase alterations in Alzheimer fibroblasts, J. Cell. Physiol, vol.172, issue.1, pp.63-68, 1997.

, Paludisme-Organismation mondiale de la santé, 2017.

E. F. Roth, R. M. Ruprecht, S. Schulman, J. Vanderberg, and J. A. Olson, Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenasedeficient human erythrocytes infected with Plasmodium falciparum, J. Clin. Invest, vol.77, issue.4, pp.1129-1135, 1986.

H. Atamna, G. Pascarmona, and H. Ginsburg, Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites, Mol. Biochem. Parasitol, vol.67, issue.1, pp.79-89, 1994.

A. M. Hasan, H. M. Mazumder, S. A. Chowdhury, A. Datta, and A. M. Khan, Moleculardocking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment, Source Code Biol. Med, vol.10, issue.1, pp.1-14, 2015.

M. Sharma, K. Chauhan, S. S. Chauhan, A. Kumar, S. V. Singh et al., Synthesis of hybrid 4-anilinoquinoline triazines as potent antimalarial agents, their in silico modeling and bioevaluation as Plasmodium falciparumtransketolase and ?-hematin inhibitors, Med. Chem. Commun, vol.3, issue.1, pp.71-79, 2012.

, Tuberculose-Organisation mondiale de la santé, 2017.

C. Dye, Global Epidemiology of Tuberculosis, Lancet, vol.367, pp.938-940, 2006.

P. Glaziou, D. Falzon, K. Floyd, and M. Raviglione, Global epidemiology of tuberculosis, Semin. Respir. Crit. Care Med, vol.34, issue.1, pp.3-16, 2013.

S. T. Cole, Deciphering the biology of mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, pp.537-544, 1998.

H. N. Higgs and K. J. Peterson, Phylogenetic analysis of the formin homology 2 domain, Mol. Biol. Cell, vol.16, issue.1, pp.1-13, 2005.

I. Rosenkrands, A. King, K. Weldingh, M. Moniatte, E. Moertz et al., Towards the proteome of Mycobacterium tuberculosis, Electrophoresis, vol.21, issue.17, pp.3740-3756, 2000.

M. Brownlee, H. Vlassara, and A. Cerami, Nonenzymatic glycosylation and the pathogenesis of diabetic complications, Ann. Intern. Med, vol.101, issue.4, pp.527-537, 1984.

H. Hammes, X. Du, D. Edelstein, T. Taguchi, T. Matsumura et al., Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy, Nat. Med, vol.9, issue.3, pp.294-299, 2003.

G. A. Kochetov, A. E. Izotova, and L. E. Meshalkina, Inhibition of transketolase by analogues of the coenzyme, Biochem. Biophys. Res. Commun, vol.43, issue.5, pp.1198-1203, 1971.

A. Datta and E. Racker, Mechanism of action of transketolase, J. Biol. Chem, vol.236, issue.3, pp.617-623, 1961.

P. C. Heinrich, H. Steffen, P. Janser, and O. Wiss, Studies on the Reconstitution of Apotransketolase with Thiamine Pyrophosphate and Analogs of the Coenzyme, Eur. J. Biochem, vol.30, issue.3, pp.533-541, 1972.

R. Golbik, H. Neef, G. Hübner, S. König, B. Seliger et al., Function of the aminopyrimidine part in thiamine pyrophosphate enzymes, Bioorg. Chem, vol.19, issue.1, pp.10-17, 1991.

A. A. Thomas, Non-charged thiamine analogs as inhibitors of enzyme transketolase, Bioorg. Med. Chem. Lett, vol.18, issue.2, pp.509-512, 2008.

V. I. Bunik, A. Tylicki, and N. V. Lukashev, Thiamin diphosphate-dependent enzymes: From enzymology to metabolic regulation, drug design and disease models, FEBS J, vol.280, issue.24, pp.6412-6442, 2013.

A. A. Thomas, Synthesis, in vitro and in vivo activity of thiamine antagonist transketolase inhibitors, Bioorg. Med. Chem. Lett, vol.18, issue.6, pp.2206-2210, 2008.

Y. Huerou and . Le, Prodrug thiamine analogs as inhibitors of the enzyme transketolase, Bioorg. Med. Chem. Lett, vol.18, pp.505-508, 2008.

O. N. Solovjeva and G. A. Kochetov, Inhibition of transketolase by phydroxyphenylpyruvate, FEBS Lett, vol.462, pp.246-248, 1999.

N. Touisni, Développement de biocapteurs ampérométriques pour la détermination de l'activité de la transcétolase et pour la détection d'inhibiteurs de cette enzyme, 2013.

M. X. Du, J. Sim, L. Fang, Z. Yin, S. Koh et al., Identification of novel small-molecule inhibitors for human transketolase by highthroughput screening with fluorescent intensity (FLINT) assay, J. Biomol. Screen, vol.9, issue.5, pp.427-433, 2004.

C. Obiol-pardo, G. Alcarraz-vizan, M. Cascante, and J. Rubio-martinez, Diphenyl urea derivatives as inhibitors of transketolase: A structure-based virtual screening, PLoS One, vol.7, issue.3, pp.1-7, 2012.

S. Joshi, Identification of potential P. falciparum transketolase inhibitors: pharmacophore design, in silico screening and docking studies, J. Biophys. Chem, vol.1, issue.2, pp.96-104, 2010.

J. Abdoul-zabar, Etude de la transcétolase de Geobacillus stearothermophilus et modification de son énantiosélectivité par ingénierie enzymatique, 2014.

G. De-la-haba, I. G. Leder, and E. Racker, Crystalline transketolase from bakers' yeast: isolation and properties, J. Biol. Chem, vol.214, issue.1, pp.409-426, 1955.

C. Naula, V. P. Alibu, J. M. Brock, N. J. Veitch, R. J. Burchmore et al., A new erythrose 4-phosphate dehydrogenase coupled assay for transketolase, J. Biochem. Biophys. Methods, vol.70, issue.6, pp.1185-1187, 2008.

L. Hecquet, J. Bolte, and C. Demuynck, New Assays for Transketolase. Biosci. Biotechnol. Biochem, vol.57, issue.12, pp.2174-2176, 1993.

G. A. Kochetov, Determination of Transketolase activity via Ferricyanide Reduction, Methods Enzymol, vol.89, pp.43-44, 1982.

D. Yi, T. Devamani, J. Abdoul-zabar, F. Charmantray, V. Helaine et al., A pH-based high-throughput assay for transketolase: fingerprinting of substrate tolerance and quantitative kinetics, ChemBioChem, vol.13, issue.15, pp.2290-2300, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787216

M. E. Smith, U. Kaulmann, J. M. Ward, and H. C. Hailes, A colorimetric assay for screening transketolase activity, Bioorg. Med. Chem, vol.14, issue.20, pp.7062-7065, 2006.

A. Sevestre, V. Hélaine, G. Guyot, C. Martin, and L. Hecquet, A fluorogenic assay for transketolase from Saccharomyces cerevisiae, Tetrahedron Lett, vol.44, issue.4, pp.827-830, 2003.

R. K. Mitra and J. M. Woodley, A useful assay for transketolase in asymmetric syntheses, Biotechnol. Tech, vol.10, issue.3, pp.167-172, 1996.

O. J. Miller, E. G. Hibbert, C. U. Ingram, G. J. Lye, and P. A. Dalby, Optimisation and evaluation of a generic microplate-based HPLC screen for transketolase activity, Biotechnol. Lett, vol.29, issue.11, pp.1759-1770, 2007.

M. E. Smith, E. G. Hibbert, A. B. Jones, P. A. Dalby, and H. C. Hailes, Enhancing and Reversing the Stereoselectivity of Escherichia coli Transketolase via Single-Point Mutations, Adv. Synth. Catal, vol.350, pp.2631-2638, 2008.

A. Ranoux, I. W. Arends, and U. Hanefeld, Development of screening methods for transketolase activity and substrate scope, Tetrahedron Lett, vol.53, issue.7, pp.790-793, 2012.

. Sanchez-paniagua, M. Lopez, F. Charmantray, V. Helaine, L. Hecquet et al., Electrochemical detection of transketolase activity using a tyrosinase biosensor
URL : https://hal.archives-ouvertes.fr/hal-00530536

, Bioelectron, vol.26, issue.1, pp.139-143, 2010.

N. Touisni, F. Charmantray, V. Hélaine, L. Hecquet, and C. Mousty, An efficient amperometric transketolase assay: Towards inhibitor screening, Biosens. Bioelectron, vol.62, pp.90-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077362

C. Mousty, Biosensing applications of clay-modified electrodes: A review, Anal. Bioanal. Chem, vol.396, issue.1, pp.315-325, 2010.

C. Mousty and V. Prevot, Hybrid and biohybrid layered double hydroxides for electrochemical analysis, Anal. Bioanal. Chem, vol.405, issue.11, pp.3513-3523, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00806926

F. Charmantray, N. Touisni, L. Hecquet, and C. Mousty, Amperometric Biosensor Based on Galactose Oxidase Immobilized in Clay Matrix, Electroanalysis, vol.25, issue.3, pp.630-635, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00799835

F. Charmantray, N. Touisni, L. Hecquet, T. Noguer, and C. Mousty, Galactose Oxidase/Prussian Blue Based Biosensors, Electroanalysis, vol.27, issue.6, pp.1341-1344, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213418

M. Halma, B. Doumèche, L. Hecquet, V. Prévot, C. Mousty et al., Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate, Biosens. Bioelectron, vol.87, pp.850-857, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01411436

C. T. Minh, Les biocapteurs : principes, construction et applications, 1991.

L. Blum and P. Coulet, Biosensor principles and applications, Bioprocess Technol, vol.15, pp.1-344, 1991.

L. El-harrad, I. Bourais, H. Mohammadi, and A. Amine, Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications, Sensors, vol.18, issue.1, p.164, 2018.

A. Harper and M. R. Anderson, Electrochemical glucose sensors-developments using electrostatic assembly and carbon nanotubes for biosensor construction, Sensors, vol.10, issue.9, pp.8248-8274, 2010.

A. A. Karyakin, E. E. Karyakina, W. Schuhmann, and H. L. Schmidt, Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation, Electroanalysis, vol.11, issue.8, pp.553-557, 1999.

S. Abdellaoui, M. Bekhouche, A. Noiriel, R. Henkens, C. Bonaventura et al., Rapid electrochemical screening of NAD-dependent dehydrogenases in a 96well format, Chem. Commun, vol.49, issue.51, pp.5781-5784, 2013.

G. Freckmann, C. Schmid, K. Ruhland, A. Baumstark, and C. Haug, Integrated selfmonitoring of blood glucose system: Handling step analysis, J. Diabetes Sci. Technol, vol.6, issue.4, pp.938-946, 2012.

L. Asturias-arribas, A. Alonso-lomillo, M. Domínguez-renedo, O. Julia-arcosmartínez, and M. , Screen-printed biosensor based on the inhibition of the acetylcholinesterase activity for the determination of codeine, Talanta, vol.111, pp.8-12, 2013.

D. Du, S. Chen, J. Cai, and D. Song, Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles-chitosan sol-gel composite, J. Electroanal. Chem, vol.611, pp.60-66, 2007.

E. P. Medyantseva, R. M. Varlamova, D. A. Gimaletdinova, A. N. Fattakhova, and G. K. Budnikov, An amperometric monoamine oxidase biosensor for determining some antidepressants, J. Anal. Chem, vol.63, issue.3, pp.275-279, 2008.

L. El-harrad and A. Amine, Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants, Enzyme Microb. Technol, vol.85, pp.57-63, 2016.

N. A. Martinez, G. A. Messina, F. A. Bertolino, E. Salinas, and J. Raba, Screen-printed enzymatic biosensor modified with carbon nanotube for the methimazole determination in pharmaceuticals formulations, Sens. Actuators, B, vol.133, issue.1, pp.256-262, 2008.

H. Brisset, J. Briand, R. Barry-martinet, T. H. Duong, P. Frère et al., 96X Screen-Printed Gold Electrode Platform to Evaluate Electroactive Polymers as Marine Antifouling Coatings, Anal. Chem, vol.90, issue.8, pp.4978-4981, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01878537

S. Sakura, Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode, Anal. Chim. Acta, vol.262, issue.1, pp.49-57, 1992.

W. Miao and A. J. Bard, Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with, Anal. Chem, vol.76, issue.23, pp.7109-7113, 2005.

W. Zhan and A. J. Bard, Electrogenerated chemiluminescence. 83. Immunoassay of human C-reactive protein by using Ru(bpy)32+-encapsulated liposomes as labels, Anal. Chem, vol.79, issue.2, pp.459-463, 2007.

J. Zhang, H. Qi, Y. Li, J. Yang, Q. Gao et al., Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex, Anal. Chem, vol.80, issue.8, pp.2888-2894, 2008.

C. A. Marquette, A. Degiuli, and L. J. Blum, Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate, Biosens. Bioelectron, vol.19, issue.5, pp.433-439, 2003.

C. A. Marquette and L. J. Blum, Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples, Anal. Chim. Acta, vol.381, issue.1, pp.1-10, 1999.

A. F. Martin and T. A. Nieman, Chemiluminescence biosensors using tris(2,2'bipyridyl)rutheniu m (_11) and dehydrogenases immobilized in cation exchange polymers, Biosens. Bioelectron, vol.12, issue.6, pp.479-489, 1997.

V. C. Tsafack, C. A. Marquette, B. Leca, and L. J. Blum, An electrochemiluminescencebased fibre optic biosensor for choline flow injection analysis, Analyst, vol.125, issue.1, pp.151-155, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00401604

C. A. Marquette, S. Ravaud, and L. J. Blum, Luminol Electrochemiluminescence-Based Biosensor for Total Cholesterol Determination in Natural Samples, Anal. Lett, vol.33, issue.9, p.1779

J. E. Atwater, J. R. Akse, J. Dehart, R. R. Wheeler, P. O. Box et al., Enzymatic determination of ethanol using 'reagentless' electrocatalyzed luminol chemiluminescence, Anal. Lett, vol.30, issue.8, pp.1445-1453, 1997.

Z. Xu, Z. Guo, and S. Dong, Electrogenerated chemiluminescence biosensor with alcohol dehydrogenase and tris(2,2?-bipyridyl)ruthenium (II) immobilized in sol-gel hybrid material, Biosens. Bioelectron, vol.21, issue.3, pp.455-461, 2005.

L. Zhang, Z. Xu, and S. Dong, Electrogenerated chemiluminescence biosensor based on Ru(bpy)32+and dehydrogenase immobilized in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) composite material, Anal. Chim. Acta, vol.575, issue.1, pp.52-56, 2006.

K. Yokoyama, S. Sasaki, K. Ikebukuro, T. Takeuchi, I. Karube et al., Biosensing based on NADH detection coupled to electrogenerated chemiluminescence from ruthenium tris(2,2?-bipyridine), Talanta, vol.41, issue.6, pp.1035-1040, 1994.

R. Golla and R. Seethala, A sensitive, robust high-throughput electrochemiluminescence assay for rat insulin, J. Biomol. Screen, vol.9, issue.1, pp.62-70, 2004.

B. Prieto, D. Miguel, M. Costa, D. Coto, and F. V. Alvarez, New quantitative electrochemiluminescence method (ECLIA) for interleukin-6 (IL-6) measurement, Clin. Chem. Lab. Med, vol.48, issue.6, pp.835-838, 2010.

F. Manguso, R. Bennato, G. Lombardi, A. Viola, E. Riccio et al., Electrochemiluminescence immunoassay method underestimates cortisol suppression in ulcerative colitis patients treated with oral prednisone, World J. Gastroenterol, vol.20, issue.31, pp.10895-10899, 2014.

S. Abdellaoui, Déshydrogénase et laccase sur des surfaces redox : vers des applications en bioélectroniques, 2013.

M. Wojciechowski, R. Sundseth, M. Moreno, and R. Henkens, Multichannel Electrochemical Detection System for Quantitative Monitoring of PCR Amplification, Clin. Chem, vol.45, issue.9, pp.1690-1693, 1999.

S. Piermarini, L. Micheli, N. H. Ammida, G. Palleschi, and D. Moscone, Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1detection, Biosens. Bioelectron, vol.22, issue.7, pp.1434-1440, 2007.

D. Neagu, S. Perrino, L. Micheli, G. Palleschi, and D. Moscone, Aflatoxin M1determination and stability study in milk samples using a screen-printed 96-well electrochemical microplate, Int. Dairy J, vol.19, issue.12, pp.753-758, 2009.

S. Abdellaoui, A. Noiriel, R. Henkens, C. Bonaventura, L. J. Blum et al., A 96-well electrochemical method for the screening of enzymatic activities, Anal. Chem, vol.85, issue.7, pp.3690-3697, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917228

M. Dimanche-boitrel, S. Bach, C. Delehouze, P. Goekjian, and A. Comte, N1-and N7substituted sibiriline derivatives and their use as inhibitor of cellular necroptosis, PCT Int. Appl, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01545901

E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem, vol.101, pp.19-28, 1979.

A. Sassolas, L. J. Blum, and B. D. Leca-bouvier, New electrochemiluminescent biosensors combining polyluminol and an enzymatic matrix, Anal. Bioanal. Chem, vol.394, issue.4, pp.971-980, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00631209

K. Itaya, N. Shoji, and I. Uchida, Catalysis of the reduction of molecular oxygen to water at prussian blue modified electrodes, J. Am. Chem. Soc, vol.106, pp.3423-3429, 1984.

F. Ricci and G. Palleschi, Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes, Biosens. Bioelectron, vol.21, issue.3, pp.389-407, 2005.

B. Rungtaweevoranit, C. S. Diercks, M. J. Kalmutzki, and O. M. Yaghi, Spiers Memorial Lecture: Progress and prospects of reticular chemistry, Faraday Discuss, vol.201, pp.9-45, 2017.

K. E. Haapakka and J. J. Kankare, Application of the electrochemiluminescence of luminol to the determination of copper, Anal. Chim. Acta, vol.118, pp.333-340, 1980.

P. Kuzmi?, Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV proteinase, Anal. Biochem, vol.237, issue.2, pp.260-273, 1996.

B. Doumèche and L. J. Blum, NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt, Electrochem. commun, vol.12, issue.10, pp.1398-1402, 2010.

N. F. Zakharchuk, B. Meyer, H. Hennig, F. Scholz, A. Jaworksi et al., A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue, J. Electroanal. Chem, vol.398, pp.23-35, 1995.

D. Moscone, D. Ottavi, D. Compagnone, and G. Palleschi, Construction and Analytical Characterization of Prussian Blue-Based Carbon Paste Electrodes and Their Assembly as Oxidase Enzyme Sensors, Anal. Chem, vol.73, pp.2529-2535, 2001.

A. M. Friedman and J. W. Kennedy, The Self-diffusion Coefficients of Potassium, Cesium, Iodide and Chloride Ions in Aqueous Solutions, J. Am. Chem. Soc, vol.77, issue.17, pp.4499-4501, 1955.

B. Haghighi, H. Hamidi, and L. Gorton, Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode, Sens. Actuators, B, vol.147, issue.1, pp.270-276, 2010.

B. Leca and L. J. Blum, Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors, Analyst, vol.125, issue.5, pp.789-791, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00401641

J. P. Preston and T. A. Nieman, An electrogenerated chemiluminescence probe and its application utilizing tris(2,2?-bipyridyl)ruthenium(II) and luminol chemiluminescence without a flowing stream, Anal. Chem, vol.68, issue.6, pp.966-970, 1996.

B. D. Leca-bouvier, A. Sassolas, and L. J. Blum, Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers, Anal. Bioanal. Chem, vol.406, issue.23, pp.5657-5667, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01145487

E. Nossol and A. J. Zarbin, A Simple and Innovative Route to Prepare a Novel Carbon Nanotube/Prussian Blue Electrode and its Utilization as a Highly Sensitive H2O2Amperometric Sensor, Adv. Funct. Mater, vol.19, issue.24, pp.3980-3986, 2009.

J. Yang, N. Myoung, and H. Hong, Facile and controllable synthesis of Prussian blue on chitosan-functionalized graphene nanosheets for the electrochemical detection of hydrogen peroxide, Electrochim. Acta, vol.81, pp.37-43, 2012.

Y. Jiang, X. Zhang, C. Shan, S. Hua, Q. Zhang et al., Functionalization of graphene with electrodeposited Prussian blue towards amperometric sensing application, Talanta, vol.85, issue.1, pp.76-81, 2011.

M. P. O'halloran, M. Pravda, and G. G. Guilbault, Prussian Blue bulk modified screenprinted electrodes for H2O2 detection and for biosensors, Talanta, vol.55, pp.605-611, 2001.

Y. Zhang, X. Sun, L. Zhu, H. Shen, and N. Jia, Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode, Electrochim. Acta, vol.56, issue.3, pp.1239-1245, 2011.

A. A. Karyakin, E. A. Puganova, I. A. Budashov, I. N. Kurochkin, E. E. Karyakina et al., Prussian Blue Based Nanoelectrode Arrays for H2O2 Detection, Anal. Chem, vol.76, pp.474-478, 2004.

C. Aymard, C. Bonaventura, R. Henkens, C. Mousty, L. Hecquet et al., High-Throughput Electrochemical Screening Assay for Free and Immobilized Oxidases: Electrochemiluminescence and Intermittent Pulse Amperometry, ChemElectroChem, vol.4, issue.4, pp.957-966, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01546189

F. Yuan, L. Qi, T. H. Fereja, D. V. Snizhko, Z. Liu et al., Regenerable bipolar electrochemiluminescence device using glassy carbon bipolar electrode, stainless steel driving electrode and cold patch, Electrochim. Acta, vol.262, pp.182-186, 2018.

E. Fernández-laespada, J. L. Pérez-pavón, and B. Moreno-cordero, Electroluminescent detection of enzymatically generated hydrogen peroxide, Anal. Chim. Acta, vol.327, issue.3, pp.253-260, 1996.

X. Cheng, L. Challier, A. Etcheberry, V. Noël, and H. Perez, The ABTS-HRP system as an alternative method to RRDE for the determination of the selectivity of the oxygen reduction reaction, Int. J. Electrochem. Sci, vol.7, issue.7, pp.6247-6264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724256

I. Vieira, C. Da, and O. Fatibello-filho, Flow injection spectrophotometric determination of hydrogen peroxide using a crude extract of zucchini (Cucurbita pepo) as a source of peroxidase, Analyst, vol.123, issue.9, pp.1809-1812, 1998.

M. Onoda, T. Uchiyama, K. Mawatari, K. Kaneko, and K. Nakagomi, Simple and Rapid Determination of Hydrogen Peroxide Using Phosphine-based Fluorescent Reagents with Sodium Tungstate Dihydrate, Anal. Sci, vol.22, issue.6, pp.815-817, 2006.

Z. F. Zhang, H. Cui, C. Z. Lai, and L. J. Liu, Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications, Anal. Chem, vol.77, issue.10, pp.3324-3329, 2005.

C. A. Marquette and L. J. Blum, 3-Dichloro-5,5-dimethylhydantoin as triggering reagent for chemiluminescent biochip based on the luminol-H2O2 reaction, Anal. Lett, vol.1, issue.9, p.1697

C. Dodeigne, L. Thunus, and R. Lejeune, Chemiluminescence as a diagnostic tool. A review, Talanta, vol.51, issue.3, pp.415-439, 2000.

D. Schumacher, J. Vogel, and U. Lerche, Construction and applications of an enzyme electrode for determination of galactose and galactose-containing saccharides, Biosens. Bioelectron, vol.9, pp.85-90, 1994.

J. Tká?, M. Navrátil, E. ?turdík, and P. Gemeiner, Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor, Enzyme Microb. Technol, vol.28, pp.383-388, 2001.

E. E. Szabó, N. Adányi, and M. Váradi, Application of biosensor for monitoring galactose content, Biosens. Bioelectron, vol.11, issue.10, pp.1051-1058, 1996.

C. Mousty, Sensors and biosensors based on clay-modified electrodes-New trends, Appl. Clay Sci, vol.27, pp.159-177, 2004.

B. Ruzicka and E. Zaccarelli, A fresh look at the Laponite phase diagram, Soft Matter, vol.7, issue.4, p.1268, 2011.

J. M. Zen, A. S. Kumar, and H. W. Chen, Electrochemical formation of Prussian blue in natural iron-intercalated clay and cinder matrixes, Electroanalysis, vol.12, issue.7, pp.542-545, 2000.

R. Jin, L. Li, Y. Lian, X. Xu, and F. Zhao, Layered double hydroxide supported Prussian blue nanocomposites for electrocatalytic reduction of H2O2, Anal. Methods, vol.4, issue.9, p.2704, 2012.

M. J. Healy and P. Christen, Mechanistic Probes for Enzymatic Reactions. OxidationReduction Indicators as Oxidants of Intermediary Carbanions (Studies with Aldolase, Aspartate Aminotransferase, Pyruvate Decarboxylase, and 6-Phosphogluconate Dehydrogenase), Biochemistry, vol.12, issue.1, pp.35-41, 1973.

M. Zaib and M. M. Athar, Electrochemical evaluation of Phanerocheaete chrysosporium based carbon paste electrode with potassium ferricyanide redox system, Int. J. Electrochem. Sci, vol.10, issue.8, pp.6690-6702, 2015.

E. Niranjana, B. E. Kumara-swamy, R. Raghavendra-naik, B. S. Sherigara, and H. Jayadevappa, Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode: A cyclic voltammetric study, J. Electroanal. Chem, vol.631, issue.1-2, pp.1-9, 2009.

M. Pandurangachar, B. E. Kumara-swamy, B. N. Chandrashekar, O. Gilbert, S. Reddy et al., Electrochemical investigations of potassium ferricyanide and dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate modified carbon paste electrode: A cyclic voltammetric study, Int. J. Electrochem. Sci, vol.5, issue.8, pp.1187-1202, 2010.

G. Perenlei, T. W. Tee, N. A. Yusof, and G. J. Kheng, Voltammetric detection of potassium ferricyanide mediated by multi-walled carbon nanotube/titanium dioxide composite modified glassy carbon electrode, Int. J. Electrochem. Sci, vol.6, issue.2, pp.520-531, 2011.

C. M. Aymard, M. Halma, A. Comte, C. Mousty, V. Prevot et al., Innovative electrochemical screening allows to identify new transketolase inhibitors, Anal. Chem. acs.analchem, pp.8-01752, 2018.

N. Touisni, F. Charmantray, V. Helaine, C. Forano, L. Hecquet et al., Optimized immobilization of transketolase from E. coli in MgAl-layered double hydroxides, Colloids Surf. B, vol.112, pp.452-459, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00948890

T. Wood and S. Fletcher, The affinity chromatography of Transketolase, Biochim. Biophys. Acta, vol.527, pp.249-255, 1978.

L. E. Meshalkina and G. A. Kochetov, The functional identity of the active centers of transketolase, Biochim. Biophys. Acta, vol.571, pp.218-223, 1979.

S. Paul and J. Guin, Dioxygen-Mediated Decarbonylative C-H Alkylation of Heteroaromatic Bases with Aldehydes, Chem. Eur. J, vol.21, issue.49, pp.17618-17622, 2015.