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devenir Enseignante-Chercheure ? Et pourquoi la cancérologie ?

Les victimes du cancer par Louise MBENGUE et Octavia CADASSOU

La cellule, constitue I'unité fondamentale de la vie, puisqu’elle porte en elle la molécule
d’ADN, qui est le support de I'information génétique nécessaire au développement et au

fonctionnement de tout organisme, mais aussi le support de I'hérédité.



Les trois niveaux d’organisation que sont la cellule, les tissus et les organes sont chacun
soumis a des contraintes provenant de leur milieu intérieur comme extérieur, et comme c’est
tres souvent le cas en biologie, tout est une question d’équilibre. De ce constat émerge la
notion d’homéostasie, fondement de la biologie moderne que I'on doit aux travaux de Claude
Bernard, médecin et physiologiste francais du XIX¢ siecle. A I’échelle de la cellule, ce concept
d’homéostasie se manifeste au travers de la régulation de la balance entre vie et mort
cellulaire. En effet dans un tissu sain, on compte autant de nouvelles cellules créées que de
cellules qui meurent. On estime que le nombre total de cellules présentes dans un corps
humain adulte est de I'ordre de 101 et c’est la rupture de cette homéostasie cellulaire qui va

conduire a I'apparition d’un cancer.

Le cancer fait partie de I'une des causes majeures de mortalité. Selon des données de
I'OMS, 8.2 millions de déces dans le monde étaient dus a des cancers en 2012. En France, en
2010, les tumeurs (tous types confondus) sont devenues la premiére cause de mortalité chez
les plus de 45 ans, place anciennement occupée par les maladies cardio-vasculaires. Toujours
selon des estimations provenant du GLOBOCAN PROJECT mené par I'lARC (International
Agency for Research on Cancer), une sous-agence de I'OMS, en 2012 le taux d’incidence des
cancers dans le monde était de 14.1 millions de cas. Cette méme année, on dénombrait pres
de 32.6 millions de personnes vivant avec un cancer, toujours a I’échelle mondiale. Face a de
tels chiffres, force est de constater qu’a I'heure actuelle le cancer continue a faire de

nombreuses victimes.

Puisque I'on parle de « victimes », il convient de définir ce terme qui constitue par ailleurs
le fil conducteur de notre sujet : une victime est définie comme étant une personne subissant
un dommage (qu’il soit corporel ou non), un abus, en somme les conséquences néfastes d’un
évenement extérieur. On trouve aussi cette définition donnée par le Larousse : « Qui est atteint

d'une maladie, d'un mal subit ».

Si par définition un malade est « une victime », ce terme peut étre étendu a d’autres,

comme nous le verrons par la suite. Mais qui sont ces « autres victimes » ?

Enfin, en dépit de ce qu’en disent les définitions, la place de I'Homme au sein de sa propre

maladie se résume-t-elle nécessairement a celle de victime ?



Le patient

Je souffre d’un cancer du sein. J’en souffre depuis qu’on me I’a diagnostiqué. La premiére
douleur ressentie a cause de ce cancer était morale. Je me considérais comme « bien
portante » avant que le verdict ne tombe. Et en quelques minutes, je suis passée de « bien
portante « » a « en sursis ». A ce moment-13, tout s’assombrit, on a I'impression d’étre passé
a cOté de sa vie et de s’éteindre tout doucement sans pouvoir rien y faire. L'impression de
faire son propre deuil. Mais aprés cette annonce, j'ai rapidement repris le dessus puisque
d’apres ce qu’on entend, le cancer du sein est le cancer le mieux soigné de nos jours. Je devrais
donc avoir toutes mes chances de rémission et ensuite, je reprendrai le cours de ma vie,
comme si rien ne s’était passé. Malheureusement pour moi, c’est un espoir qui s’est évaporé.
Mon cancer est plus agressif que ce a quoi les médecins s’attendaient. J’ai besoin d’une
mastectomie. En fait, pour survivre, je dois sacrifier ma féminité et le symbole de ma
maternité. Pour rester en vie, je dois renoncer a étre une femme ! Est-ce que cela vaut
vraiment le coup ? Et apres I'opération, je serai soumise a des chimiothérapies. Je vais perdre
mes cheveux et étre regardée de travers partout ol je passerai. Je vais étre affaiblie, fatiguée,
amaigrie. Souffrir de vomissements, autres troubles digestifs et peut étre méme perdre la
peau de mes mains et de mes pieds. Je vais souffrir de ne plus me sentir femme et je vais
souffrir a cause de la douleur. Je vous le redemande, est-ce que cela vaut vraiment le coup ?
Pour une simple éventuelle rémission ? Car je I'ai compris a présent, les médecins ne parlent
jamais de guérison mais bien de rémission. Pour étre claire, j'irai éventuellement mieux pour
guelgues temps mais la menace constante d’une rechute planera au-dessus de moi. Ma
maladie, c’est I'image de la mort autant a mes yeux qu’a ceux de toute la société. Bien sdr,
nous sommes tous condamnés a mourir. Mais la plupart des gens ont le luxe de se refuser ay
penser pour se cacher de cette peur de la mort qui est ancrée en chacun. Le cancer, lui, agit a
la maniere d’un catalyseur, en ce sens qu’il accélere la réaction dont le résultat est la prise de
conscience que notre propre finitude est inéluctable. Il me prive de cette naiveté. Il en prive
aussi tous ceux qui m’entourent et qui sont spectateurs de mon extinction progressive. Par

conséquent, pour s’en protéger, ils m’isolent. J'ai déja perdu des amis, je perdrai peut-étre



aussi mon travail, comme 19% des patients atteints de cancer. Je serai discriminée, méme si

certains essaient de faire en sorte que nous, les fameux « Cancéreux », soyons intégrés.

L'annonce de ma maladie ne m’a pas seulement dévastée moi. Elle a aussi choqué et
traumatisé mes proches. Eux aussi sont victimes de ma maladie. J’entends les pleurs étouffés
de ma fille le soir, je percois le désespoir dans le regard de mon époux. lIs essaient de faire
semblant, mais nos relations ont changé, ils se forcent a profiter de chague moment comme
s’il était le dernier mais ce n’est pas ce dont j’ai besoin. J'ai besoin que ma fille ne se sente pas
coupable de sortir un samedi soir avec ses amis plutét que de rester aupres de moi. Comme
tous ses amis, comme avant. C'est elle qui me materne et qui est aux petits soins. Mon époux
et elle sont devenus mes parents. Plus rien n’est a sa place. Je sens qu’ils ont peur. Peur de

me perdre, peur de ma mort. lls vivent dans la crainte, ils vivent mon cancer.

Le chercheur

Je me suis lancé dans la recherche pour qu’un jour on puisse guérir le cancer, par
solidarité. Je crois qu’on peut le faire, je crois qu’on en a les moyens. Avec toutes ces
technologies de plus en plus performantes et efficaces, avec les moyens que nous avons de
mettre en commun toutes nos connaissances et avec les nouvelles facons d’aborder la

maladie. Notre monde a toutes les cartes en mains, toutes les chances de notre coté.

Mon role en tant que chercheur est d’apporter ma pierre, ou peut-étre mon grain de
sable, a cet immense édifice qu’est la lutte contre le cancer. Ce n’est pas grand-chose pour
une vie entiére de travail mais les patients comptent sur moi. Sur mes succés, comme sur mes
échecs. Pour moi c’est ¢a étre chercheur. Mon objectif c’est d’obtenir des résultats fiables.
Quel gu’en soit le prix. Je manipule, re-manipule, pense et repense mon protocole, modifie et
nuance mes techniques pour étre toujours plus proche de la vérité. Sans jamais pouvoir
I'atteindre vraiment puisque tous les résultats sont biaisés. Je me bats contre le cancer. C’est
une vraie guerre que je mene contre lui. Je I'attaque a coups de pipetage, de dissections, de
colorations, de séquencages, de thérapies ciblées. Et il riposte sournoisement. Parfois, il
change ses stratégies de combat pour s’adapter a mes assauts pour me pousser a la

résignation, d’autres fois il me tend des leurres, me lance sur des mauvaises pistes.



Et méme plus loin : le cancer m’envahit. Non pas de la méme fagon que pour les patients,
il attaque au-dela de la matérialité de mon corps. Il se glisse parfois dans mes réves, par petites
touches, son ombre me menace dans chacun de mes gestes quotidiens. J'ai parfois la
sensation qu’il est tapi dans 'ombre en train de m’observer et a I'affut de la moindre erreur
de réplication au sein de mes cellules, de la cigarette ou de la minute d’exposition au soleil en
trop pour m’achever et prendre I'emprise de mon corps. Et moi, je le surveille. Il est partout :
dans mon environnement, dans mon subconscient, dans mon travail. Il ne me quitte pas. C'est

une obsession. C’est une paranoia. C’est une maladie.

Finalement, il persiste et cette lutte, je ne la gagnerai pas. En effet, je m’éteindrai avant
lui. Je serai mort avant que le cancer ne disparaisse et il aura immiscé dans la vie une angoisse
constante, j’en suis conscient. Mais je veux des résultats. Je veux apporter mon grain de sable
pour qu’un jour on puisse le vaincre. Et finalement ma vocation va au-dela de la solidarité.
Elle releve de 'ordre du sacrifice. Je dois me rendre a I'évidence, accepter I'inacceptable : je
fais au mieux mais les patients continuent de mourir. Car la mort est une fatalité dont on ne

peut, en dépit de tous ces efforts, s’affranchir en aucun cas.

La cellule saine

Je suis une cellule tout a fait normale. Je suis soumise a toutes les régulations de mon
environnement. Je me suis toujours soumise aux regles de la biologie, aux regles de la vie.
J'assure mes fonctions selon les besoins de mes voisines et méme de tout I'organisme. Je suis

née pour cela.

Et comme tout ce qui vit, je suis vouée a mourir un jour. Vous appelez cela le cycle de
la vie, je I'appelle 'homéostasie. Je I'accepte, on ne peut pas étre éternel. Pour le bon
fonctionnement d’un tout, il faut savoir laisser sa place. Vous, étres humains, le savez bien :
ne pas laisser sa place, c’est devenir un fardeau. Vous le dites si bien : « il faut savoir laisser
son poste et partir a la retraite pour garder une société dynamique, laisser leur chance aux
jeunes ». Mon malheur, c’est que je suis située a proximité de cellules qui se sont dressées
contre cette logique qui pourtant équilibre le monde depuis toujours. Elles n’obéissent a
aucune regle, vivent égoistement. Elles prennent ce dont elles ont besoin pour s’auto-suffire.

Elles veulent s’abroger de I'organisme, le renient. Pourtant, nous disposons d’assez pour faire



vivre tout le monde, pour que chacune d’entre nous puisse s’accomplir. Tout est fait pour que

nous ayons toutes juste ce qu’il faut d’oxygene, de chaines carbonées, d’ions.

Mais ces cellules sont atteintes de la folie des grandeurs. Elles nous forcent a la
restriction, nous vouent a la pénurie. Elles se servent dans ce qui aurait d{ étre nos ressources,
ne nous donnent rien en retour, nous regardent nous affaiblir en mettant au point les
stratégies qu’elles adopteront quand les temps deviendront difficiles pour elles. Sans chercher
a se restreindre pour justement éviter cette catastrophe. Elles condamnent I'organisme au
chaos. Quelles naives ! Elles imaginent qu’elles survivront a leur hote, qu’elles trouveront un

moyen de vivre sans |'organisme.

Mais elles se trompent. Elles mourront. Ce ne sont que des cellules, elles ne se suffiront
jamais a elles-mémes. Elles ne peuvent survivre que si nous sommes la, si elles peuvent tirer
profit de nous. Si nous ne sommes plus la, elles n’ont plus rien. Je suis en sursis. Je vous en
prie, ne devenez pas tumoraux vous aussi, ne devenez pas des cancers. Vous |I'Occident, vous
qui sucez avidement les ressources de la Terre, qui épuisez tout ce qui est précieux au
détriment des plus démunis. Vous qui n’avez plus de scrupules a vivre dans I'opulence, a ne

penser qu’a votre propre intérét, a gagner pour posséder plus.

Conclusion : Se replacer en tant qu’Homme au centre de sa pathologie

Aujourd’hui, on peut dire que la Science est a chacun d’entre nous ce que Dieu est a
un croyant. C'est vrai, la science moderne parce qu’elle cherche a tout prix a vouloir tout

expliquer, se veut omnisciente, omnipotente.

En réalité, I'essence méme de toute science réside dans sa capacité a reconnaitre ses
limites et a se réfuter elle-méme, ce qu’elle tend parfois a oublier. En effet, le probleme de la
science actuelle est qu’elle est fondamentalement objectaliste. De ce fait découle la vision du
corps mécanique, et c’est bien la le probleme : 'Homme est loin d’étre une machine et le
considérer comme tel serait trés réducteur. C'est pourtant ce que font la science et en

particulier la médecine dont I'objet est le symptéme.



On peut alors se demander, comment la médecine peut-elle prétendre soigner si elle ne
considere pas I’'Homme dans son entiereté ? La réponse est tres simple : la médecine soigne
le symptome et avec lui la maladie, mais n’est-il pas envisageable qu’en réalité elle se trompe ?
Et si le symptoéme était la maladie elle-méme, manifestation de la souffrance qui sommeille
en chacun d’entre nous ? Il s’agit peut-étre la de la question que nous devrions nous poser
guand survient une maladie aussi grave que le cancer. Loin de la vision visant a diaboliser la
maladie ou encore a la considérer comme « un accident », il ne semble pas impossible que
nous devrions en fait allez explorer au plus profond de nous-méme, afin de répondre a cette

interrogation au premier abord banale : « Pourquoi moi ? ».

La réalité c’est qu’avoir un cancer ne fait pas de nous une victime pour autant, le cancer
est peut-étre simplement le reflet de la vérité qui se cache en chacun d’entre nous. Si nous
sommes victimes ce n’est pas du fait de la pathologie, mais a cause de notre propre

aveuglement.

C’est en cela que la science se veut toute puissante : elle tente de s’arroger de notre
propre vérité. Mais nous ne devons pas la laisser faire, il nous faut nous replacer en tant que
sujet et non en tant qu’objet, au centre de notre maladie, car pour reprendre ces mots tres
célébres de Descartes c’est bien parce que nous pensons, que nous sommes. Nous sommes
Hommes, dotés d’un corps et d’'une ame qui selon I’hylémorphisme d’Aristote ne sont pas
dissociables. Bien que cette idée soit discutable (preuve en est Platon défendait la thése
inverse), ce qui est intéressant, c’est la notion d’unité du vivant qui lui est sous-jacente :
I'Homme et la Nature sont faits de la méme matiére, ils ne sont pas déconnectés I'un de
I'autre. Tout comme la cellule qui interagit avec son milieu interne et son milieu externe, il
existe une dialectique entre notre environnement externe et notre environnement interne. ||
n’est donc pas dénué de sens de penser que la pathologie pourrait étre la manifestation

physique de cette dialectique.

Justement, puisque I'on parle de « sens » il se trouve que la vie n’en est elle-méme pas
dénuée, c’est pourquoi se questionner sur le sens méme que peut avoir une pathologie, sa
pathologie, est tout a fait justifié. Et si la pathologie a un sens, alors on pourrait lui attribuer
celui de la nécessité du Mal pour accéder a la connaissance, comme le soutient Goethe dans

son Faust.
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Avoir un cancer, en dépit du traumatisme qu’il cause, peut s’avérer dans certain cas
« formateur », en permettant une remise en question sur sa vie, ses actes quotidiens, afin de

les appréhender différemment.
Ainsi, voici ce qu’écrit Fritz Zorn dans Mars, son essai autobiographique :

« Je ne veux pas prétendre ainsi que le cancer soit une maladie qui vous apporte
beaucoup de joie. Cependant, du fait que la joie n'est pas une des principales caractéristiques
de ma vie, une comparaison attentive m'améne a conclure que depuis que je suis malade, je

vais beaucoup mieux qu'autrefois, avant de tomber malade. »

Dans cet ouvrage Fritz Zorn, alors agé de 32 ans seulement et atteint d’'un cancer dont il
se sait condamné, décrit sa vie : de ses parents névrosés en passant par son incapacité a
communiqguer avec le monde. Il confirme cette idée selon laquelle, la perte de dialectique des
cellules cancéreuses avec leur environnement pourrait étre le reflet de notre propre perte de
dialectique aussi bien le monde qu’avec nous-mémes. La est peut-étre la clé : il y a nécessité
de rétablir le dialogue, en commencant par écouter ce que la maladie a a nous apprendre sur

nous-mémes.

Mais ce n’est pas chose facile, car notre facon de penser la maladie est culturellement
ancrée en nous. Ce qu’il faudrait ce n’est non pas une révolution, mais plutét une évolution
de la Science qui ne serait pas sans rappeler celle qui a eu lieu au cours du Siecle des Lumieres,
siecle au cours duquel est d’ailleurs née la science moderne. Replacer I’'Homme au centre de
la connaissance, telle était la devise sous les Lumiéres, mais c’est désormais une place occupée
par la science. A l'instar de la cellule cancéreuse et du patient, peut-étre les biosciences ont-
elles aussi perdu leur capacité a dialoguer, notamment avec les autres sciences et en
particulier les sciences humaines. Or la compréhension des pathologies humaines passe par
une meilleure compréhension de I'Homme, et ce pas uniquement d’un point de vue

anatomique.

Alors pourquoi pas une anthropologie du cancer ?
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Ce travail nous a permis a Louise et moi-méme de se souvenir que derriere les études en
laboratoire de recherche ou en clinique, au-dela des politiques et courses aux publications, il
y a un enjeu réel et noble: 'Humain. Et toutes deux, nous nourrissons |'espoir que la
recherche en soit constamment consciente, qu’elle soit désintéressée et que son seul objectif
soit d’aider un ou des Humains atteints d’un mal. A I'issue de notre master, chacune a choisi
une voie différente pour apporter son support a la lutte collective contre le cancer. Pour moi,
ce sera (je I'espere) par la recherche, pour ses nouvelles idées, pour la beauté de sa rigueur,
pour sa persévérance optimiste et créative, pour son dévouement. Mais ce sera aussi par
I’enseignement, pour susciter de nouvelles vocations, pour transmette cet optimisme et que

cet élan perdure.
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Résumé

Les nucléotides jouent un réle majeur dans une pléiade de processus biologiques comme
la composition des acides nucléiques, la signalisation, ou la régulation de la balance
énergétique. Les nucléotides extracellulaires exercent également des fonctions biologiques.
Par conséquent, des dérégulations des pools de nucléotides impactent I’'homéostasie de
multiples facons, par exemple en promouvant l'instabilité génétique ou un environnement
immunosuppresseur. Or, ces parametres font partie des « Hallmarks du Cancer » décrits par
Hanahan et Weinberg. Ces observations confirment I'éventualité d’un role clé des nucléotides

dans le cadre du cancer.

cN-1l et CD73 sont des 5’-nucléotidases impliquées respectivement dans les métabolismes
nucléotidiques intra- et extracellulaire. Elles sont de nouvelles cibles thérapeutiques en
oncologie. Cependant, leurs roles dans la biologie de la cellule cancéreuse, ou le possible
impact de leur utilisation en tant que cible thérapeutique sur le comportement des cellules
tumorales sont peu connus. Considérant I'implication de ces enzymes dans les métabolismes
nucléotidiques, nous avons enquété sur les modifications de l'agressivité de la cellule
cancéreuse ou sur sa capacité a interagir avec son microenvironnement, dans le cas d’une
invalidation ou une diminution d’expression de cN-Il et/ou CD73. cN-Il semble donc impliquée
dans l'adaptabilité métabolique et la combinaison des invalidations de cN-Il et CD73 est
associée a une modification d’expression d’enzymes du métabolisme du glucose. CD73 peut
aussi moduler I'expression de génes de la migration cellulaire. cN-Il est impliquée dans la
migration cellulaire, via I'axe COX-2/PGE2, et dans la sensibilité a des agents modulant ce
parameétre. Ces caractéristiques sont plus marquées en association avec une invalidation de
CD73. Ici, cN-1l et CD73 ne semblent pas jouer de réle dans la prolifération ou le dialogue avec

une sous-population de cellule de I'immunité innée.
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Summary

Nucleotides play a major role in nucleic acids constitution and are involved in various cell
phenomena. Indeed, intracellular ATP, GTP, AMP, GMP and their cyclic forms are components
of cell signaling and define the energetic balance. Extracellularly, they also play multiple roles.
Thus, when nucleotide pools are deregulated various processes are impacted. For example, a
low availability of nucleotides supports genetic instability and aberrant levels of extracellular
adenosine can lead to an immunosuppressive microenvironment. Interestingly, the cited
parameters are among the Cancer Hallmarks described by Hanahan and Weinberg. These

observations confirm the possibility of a key role of these molecules in this pathology.

cN-Il and CD73 are 5’-nucleotidases, involved in intra- and extracellular nucleotide
metabolism respectively and have been identified as possible targets for new anti-cancer
therapies. Nevertheless, very little is known about their biological roles on cancer cells and
what parameters of cell biology could be impacted by such strategies. Considering the
involvement of these purines in cell metabolism, we wondered what changes a decrease in
cN-Il and/orCD73 expressions or their silencing could trigger in cancer cells as well as in the

interplay with their microenvironment.

We studied cancer cell aggressiveness and the interplay with innate immune cells under
cN-1l and CD73 modulations. We observed that cN-Il is involved in metabolic adaptability. The
association of cN-lIl and CD73 invalidations results in glucose-metabolism-related gene
modifications. CD73 can regulate migration-related genes expression but does not affect the
process. cN-Il is also involved in cell migration, via the COX-2/PGE2 axis. Again, these
characteristics are accentuated when associated with CD73 deficiency. Here, cN-Il and CD73
do not seem to be involved in cancer cell proliferation or in their interplay with a subset of

innate immune cells.
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Glossary

2DG: 2-deoxyglucose

5-FU:5-Fluoro-Uracil

ADA: adenosine deaminase

ADCC: antibody-driven cell cytotoxicity
ADK: adenosine kinase

ADORA: adenosine receptor

ADP: adenosine 5'-diphosphate

AK: adenylate kinase

AMP: adenosine 5'-monophosphate
AMPK: AMP-dependent protein kinase
ATP: adenosine 5'-triphosphate

Bcl: B-cell lymphoma

CD73: 5'-ecto nucleotidase

CFSE: carboxyfluorescein diacetate succinimidyl ester
cN-Il: cytosolic 5' -nucleotidase

CNT: concentrative nucleoside transporter
COX-2: cyclooxygenase 2

DNA: deoxyribonucleic acid

EMT: epithelial to mesenchymal transition
ENT: equilibrative nucleoside transporter
FAK : focal-adhesion kinase

G6PDH: glucose-6-phosphate dehydrogenase
GPCR: G protein-coupled receptor

GPI : Glycosylphosphatidylinositol



HIF-1: hypoxia induced factor 1

IAP: inhibitor of apoptosis protein

IFN: interferon

IL: interleukine

MMP: matrix metalloproteinase

NAD: nicotinamide adenine dinucleotide
NADPH: nicotinamide adenine dinucleotide phosphate
NK: natural killer lymphocyte

PGE2: prostaglandin E2

PKA: protein kinase A

PKC: protein kinase C

PLC : phospholipase C

PNP: purine nucleoside phosphorylase
ROS: reactive oxygen species

SAM: S-adenosyl-methionine

SAH: S-adenosyl-homocysteine

SAHH: SAH hydrolase

TAM: tumor-associated macrophage
TAN: tumor-associated neutrophil

TGF : transforming growth factor

TIMP: inhibitor of matrix metalloproteinase
TNF : transforming growth factor

VEGF: vascular-endothelial growth factor
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General introduction

Introduction: Nucleotides and nucleosides in cell biology

Nucleotides are mono-, di- or triphosphorylated nucleosides. Nucleosides consist of a
nitrogenous base that can be a purine, a pyrimidine or a pyridine, and a sugar moiety, which
is a ribose or a deoxyribose (Figure 1). These molecules are widely studied in various biological

and chemical domains, mainly because their polymerization constitute nucleic acids.

H H
\‘N/
H
‘l" H
W= 'l’ —0——CH, Adenine
o {nitrogenous bhase)
Phosphate group H
H
OH H
Pentose
| ]
Adenosine
‘ {nucleoside) ,
Adenosine
monophosphate
{nucleotide)

Figure 1: Adenine nucleosides and nucleotides structure. Nucleosides consist of a
nucleobase associated with a sugar (ribose or deoxyribose). They can be mono-, di- or tri-

phosphorylated to form nucleotides.

In addition to playing a major role in nucleic acids constitution, nucleotides are involved
in various cell phenomena. Indeed, intracellular ATP, GTP, AMP, GMP and their cyclic forms
are major secondary messengers in cell signaling as they play a role in the cascades

downstream various receptors like GPCR (G protein-coupled receptors). As ATP is the main
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energy source in cells, it and its derivatives (ADP and AMP) also define the energetic balance
in cells. This reflects the cellular activity together with the efficiency of energy-producing
pathways such as mitochondrial respiration or glycolysis. Nucleotides enter in the composition
of co-factors (like NAD or coenzyme A) and biosynthetic intermediates. Extracellular
nucleotides also play multiple roles in biology, and particularly in immune modulations or
angiogenesis (Allard et al., 2014; Du et al., 2015; Ernens et al., 2015). Consequently, when
nucleotide pools are deregulated, because of abnormal nucleotide release by damaged cells
(therapy (Schneider et al., 2015)) or abnormal extracellular catabolism (overexpression of
nucleotidases), various processes are impacted. For example, a low availability of nucleotides
in newly transformed cells supports genetic instability (Bester et al., 2011), and aberrant levels
of extracellular adenosine can lead to an immunosuppressive microenvironment, favoring
cancer progression (Stagg and Smyth, 2010) Interestingly, the cited parameters are among the
Cancer Hallmarks described by Hanahan and Weinberg in their seminal reviews (Hanahan and
Weinberg, 2011). These observations confirm the possibility of a key role of these molecules
in this pathology. Thus, hereafter, we will present purine metabolism with a particular focus
on adenosine and its biological functions in cancer to introduce the lector to the aim of our

project.

Nucleotides are divided into two families, purines and pyrimidines, differing by the nature
of the nucleobase. Distinct pathways allow purines and pyrimidines formation. Nucleotide
metabolism combines anabolic and catabolic processes (Figure 2) to constitute and maintain
homeostatic pools. In this project, we will focus on purines and more precisely adenine
derivatives. The following paragraph will then present purine synthesis pathways to

understand how intracellular pools can be generated.
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Small Precursors  Pre-existing nucleotide

(sugar + glutamine)
) components ) excretion
(nitrogenous base + sugar; nucleotides)

DE NOVO SALVAGE \ /

SYNTHESIS PATHWAY /\

NUCLEOTIDE
CATABOLISM

Nucleotidases
Deaminases
Oxidases

Figure 2: Nucleotide metabolism: Cells have two ways to constitute their nucleotide pools
that are de novo synthesis and salvage pathway. Nucleotide degradation is realized by various

enzymes. The subsequent products are then re-used for recycling or excreted.

Purine synthesis

Purines can be synthesized from two connected pathways: de novo synthesis that uses
small precursors, and salvage pathway by which new nucleotides are generated from the
degradation of previous ones. As de novo synthesis has a high energy cost, most cells usually

recycle their nucleotides.

De novo synthesis

De novo synthesis mostly happens in the liver and consumes energy (under the form of
ATP or GTP) and ends in the formation of AMP and GMP ribonucleotides via IMP (Figure 3).
The latter are then converted into ribonucleotides by phosphorylations. Deoxyribonucleotides

are generated from their dephosphorylated forms for DNA synthesis.
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Both purine and pyrimidine synthesis require a common sugar precursor which is PRPP
(5-phosphoribosyl-1-pyrophosphate). PRPP formation requires a ribose-5-phosphate
molecule, that originates form the pentose phosphate pathway, rendering this metabolic way
essential for nucleotide synthesis. Ribose-5-phosphate is activated by the ATP-consuming

enzymes PRPP synthases to form the nucleotides precursor.

PRPP

+ —
: 29
glutamine T 3

oa
o 3
— S 0
2 =
2 8
o
: e

Inosine monophosphate
(IMP) ‘h

-
=3
! I -5
o 3
ADP GDP o8
® 5

- S

ATP GTP

Figure 3: De novo purine synthesis, a multi-step pathway. De novo purine synthesis

consists of two major phases: the common core (IMP formation) and the transformation (AMP

and GMP generation).

The first part of the purine de novo synthesis, or common core uses the phosphorylated
sugar PRPP and glutamine as first metabolic precursors allows to obtain IMP. This purine
consists of a hypoxanthine base with a ribose and one phosphate group. A cascade of ten

enzymatic reactions are necessary to form IMP (Figure 4 and Table 1).

23



0 PRPP synthase o ADP + Pi
HO-P-O-CH, _O.
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Figure 4: Common core of purine sunthesis: IMP generation. PPi =inorgaanic
pyrophosphate; THF=  tetrahydrofolate;  5-PRA=5-phospho-68-Dribosylamine;  GAR=
glycinamine  ribonucleotide;,  FGAR=  formylglycinamine  ribonucleotide; = FGAM=
formylglycinamidine  ribonucleotide; AIR=  amino-imidazole ribonucleotide;  CAIR=
carboxyamino-imidazole ribonucleotide; SAICAR= amino-imidazo succinylcarboxamide
ribonucleotide; AICAR= amino-imidazo carboxamide ribonucleotide; FAICAR= formamino-

imidazo carboxamide ribonucleotide.
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Enzyme

Reaction

Glutamine phosphoribosylpyrophosphate
amidotransferase =GPAT

Step 1: Use of PRPP and glutamine as
substrates

5’-phosphoribosylglycinamide transformylase =
GART (or AIR synthase= AIRS). Trifunctional enzyme

Step 2: ATP-consuming step
Step 3: tetrahydrofolate production
Step 5: ATP-consuming step

carboxylase = AIRC). Dual enzymatic activity

Phosphoribosylformlglycinamidine  synthase = | Step 4: Use of glutamine as substrate in an
PFAS ATP-consuming reaction
Phosphoribosylaminoimidazole- Step 6: Use of CO; as substrate
succinocarboxamide synthase= PAICS (or AIR | Step 7: Use of aspartate in an ATP-consuming

reaction

Adenylosuccinate lyase =ADSL

Step 8: Fumarate production

AICA transformylase= ATIC. Dual enzymatic activity

Step 9: tetrahydrofolate production

Step 10: IMP formation
Table 1: Common core enzymes and major steps of IMP formation

IMP is then converted into AMP or GMP in a phase called transformation phase. There
are two separated branches leading to adenosine and guanosine derivatives. These two
branches mutually regulate as AMP synthesis is stimulated by GTP and requires energy from

its hydrolysis, and vice versa.

For AMP production, two enzymes are required: ADSS (adenylosuccinate synthetase) and
ADSL (adenoylosuccinate lyase). GTP regulates AMP production as is provides energy to ADSS
to convert IMP and aspartate into adenylosuccinate. GMP production also happens in two
steps, with two different enzymes: IMPDH (IMP dehydrogenase) and XMP-glutamine
amidotransferase. It requires water, glutamine and ATP as a source of energy for the second
enzyme. Thus, AMP and GMP synthesis pathways regulate each other, insuring a balanced
production of these two purines. At the same time, these nucleotides exert a negative

feedback on their own generation (Figure 3).

Once formed, AMP and GMP can further be phosphorylated by nucleoside
monophosphate and nucleoside diphosphate kinases to form the di- and triphosohorylated

pools.

Deoxyribonucleotides that enter in the composition of DNA are then formed from the
corresponding ribonucleotide pools. RNR (ribonucleotide reductase) is the reducting enzyme
complex that converts purine and pyrimidine NDPs into dNDPs. RNR complex consists of two
subunits: RRM1 (ribonucleotide-diphosphate reductase large subunit) associated in tetramers

with RRM2 (ribonucleotide-diphosphate reductase small subunit) and necessitates NADPH to
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function. Owing to its function, RNR is crucial to maintain the balance between ribo- and
deoxyribonucleotides in one hand, and the balance between the different
deoxyribonucleotides in the other hand. Thus RNR is finely regulated by diverse mechanisms

as reviewed in (Guarino et al., 2014).

De novo purine synthesis is regulated at several levels. The PRPP precursor production
can be inhibited by ADP and GDP that exert an inhibition of phosphoribosyl pyrophosphate
synthetase (Smith et al., 1994) (which role is to generate PRPP). The final products AMP and
GMP also exert a negative feedback on their own formation, through inhibition of GPAT, the
first enzyme of the common core. There also is an interplay between the purinosome enzymes
(involved in purine formation) and deaminases and nucleotidases that participate in their

catabolism (see following section).

Salvage pathway

The salvage pathway consists in recycling preexisting nucleobases or nucleosides
produced from the degradation of nucleic acids or nucleotides. Consequently, nucleotide

degradation can be considered as a part of the salvage pathway.

To be degraded into uric acid which can be excreted, AMP and GMP undergo a series of
dephosphorylations, deaminations, phosphorolyses and oxidations (Figure 5). Several
enzymes are involved, allowing nucleoside as well as nucleotide catabolism. During this
catabolic process, free PRPP and nucleobases are released and can be recycled and
reassembled. APRT (adenine phosphoribosyltransferase) and HGPRT (hypoxanthine-guanine
phosphoribosylransferase) are respectively responsible for adenine and
guanine/hypoxanthine reassembly with PRPP (Berg et al., 2002). The formed AMP and GMP

can then be further phosphorylated.

Purine degradation can also free nucleosides such as adenosine, guanosine or inosine,

that can be rephosphorylated by enzymes like adenosine kinase (ADK).
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2) Cytosolic nucleotidase Il (cN-I1)
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Deaminases

4) Adenosine monophosphate deaminase (AMPDA)
5) Adenosine deaminase (ADA)
6) Guanine deaminase

Phosphorylases
7) Purine nucleoside phosphorylase (PNP)
8) Methylthicadenosine phosphorylase (MTAP)
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9) Xanthine oxidoreductase
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10) GMP reductase (GMPR)
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11) IMP dehydrogenase (IMPDH)
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— NUCLEOSIDES

— NUCLEOBASES

SALVAGE ENZYMES

Phosphoribosyl transferases

12) Adenine phosphoribosyl transferase (APRT)
13) Hypoxanthine/guanine phosphoribosyl
transferase (HGPRT)

Kinases

14) Adenosine kinase (ADK)
15) Guanosine kinase
Synthetase

16) GMP synthetase (GMPS)

Figure 5: Purine catabolism and salvage. AMP, GMP and IMP catabolism provide precursors

that can be converted to reform nucleotide pools. The stars indicate reactions that have been

demonstrated as realizable but might not occur at relevant rates in vivo, due to the presence

of substrates with higher affinities for the enzyme.

De novo synthesis, nucleotide catabolism and salvage pathway are intimately related in

organisms. Indeed, the nucleotides that are formed in the liver need to be dephosphorylated

or cleaved into the corresponding nucleobase or nucleoside and PRPP to be transported. Then,

in distant organs, they will be reconstituted mostly using the salvage pathway.
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Adenosine metabolism

After these general comments on purine metabolism, we will now focus on adenosine

fates in cell biology (its conversion and biological functions), and the involved molecules.

Extracellular adenosine generation

Extracellular adenosine is mostly generated from the degradation of extracellular ATP
that comes from cell lysis or secretion. Its catabolism is ensured by CD39 and CD73. These
enzymes are ecto-nucleotidases respectively catalyzing the degradation of ATP and ADP into
AMP and AMP into adenosine. Subsequently, the newly formed adenosine can have three
fates: (i) degradation into inosine by adenosine deaminase (ADA), (ii) internalization through
specific nucleoside receptors, or (iii) interaction with the specific receptors ADORA. These

processes will be detailed in the following sections.

Intracellular adenosine generation and fates

Intracellular adenosine can form from the breakdown of AMP by cytosolic 5'-
nucleotidases, similarly with its extracellular production by CD73. It can also originate from
the transmethylation pathway. The latter relies on SAM (S-adenosyl-methionine) that is the
main methyl donor in the organism and it participates in processes such as epigenetic
regulations (by CpG methylations) or posts transcriptional modifications. During the methyl
transfer by methyl transferases, SAM is converted into SAH (S-adenosyl-homocysteine) which
is then hydrolyzed by SAHH (SAH hydrolase) into homocysteine and adenosine. Reversely,
adenosine can reform SAH by association with homocysteine. These reactions are regulated

by intracellular adenosine levels (Boison, 2016).

When present in the cytosol, adenosine can be transported to the extracellular space but
the major fraction is rapidly phosphorylated to form ATP (Li et al., 2013) and during this
process, AMP and ADP can also be generated. Adenosine kinase (ADK) and adenylate kinases
are the major enzymes involved in adenosine phosphorylation. ADK is expressed in the
cytosol, at the cell membrane, and can be released in the interstitial space. It has a higher

affinity for adenosine than its degrading enzyme, ADA (adenosine deaminase), suggesting that
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it is responsible for adenosine clearance in physiologic conditions, when adenosine
concentrations are low, whereas ADA’s role would be more important when adenosine

concentrations are higher (Boison et al., 2010).

Adenosine degradation into inosine and its fate

Adenosine does not accumulate inside or outside the cells and has a very short half-life
time, due to the fact that it is rapidly catabolized as mentioned previously. The nucleoside is
first irreversibly deaminated into inosine by adenosine deaminase (ADA). Subsequently,
inosine is reversibly degraded by a purine nucleoside phosphorylase (PNP) to form
hypoxanthine, its corresponding nucleobase and PRPP or its precursor ribose-1-phosphate.
Adenosine is believed to be circulating at less than 0.1 pg/mL in the blood (Ramakers et al.,
2011; Traut, 1994). If its half-life time has been estimated to be 10 seconds in human blood
(Moser et al., 1989), it is more difficult to estimate in vitro as it depends on the ADA availability
in the culture conditions. ADA is present in the cytosol as well as at cell membrane, complexed
with CD26 (Kameoka et al., 1993), and is responsible for both adenosine and deoxyadenosine
degradations. Due to its activity, this enzyme indirectly regulates the adenosinergic signaling,
by modulating the interaction between adenosine and its receptors. In addition to degrading
adenosine, ADA is able to bind the receptors, changing their conformation and facilitating the

signaling triggered by adenosine (Ciruela et al., 1996; Gracia et al., 2008, 2013).

Other enzymes such as PNP (purine nucleoside phosphorylase) and MTAP
(methylthioadenosine phosphorylase) could participate in adenosine degradation by
contenting it into adenine but these reactions are more likely not to occur in vivo due to the
availability of substrates with higher affinity (Stoeckler et al., 1997; Toorchen and Miller,
1991).

Inosine results from the rapid degradation of adenosine and is more stable and abundant
in the microenvironment than its precursor (Bell et al., 1998; John W. Phillis et al., 1987). This
nucleoside is known to interact with adenosine receptors (ADORA) (Welihinda et al., 2016,
2018), and to exert immunomodulatory functions (Haskd et al., 2000; da Rocha Lapa et al.,
2013). As for adenosine, inosine can be internalized trough nucleoside transporters, and found

in the cytosol. Its intracellular function are not precisely known but it is believed that it could
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strengthen intracellular adenosine roles (Collis et al., 1986). Moreover, the cytosolic 5’-
nucleotidase cN-Il has a phosphotransferase activity that allows the conversion of inosine into

IMP, that can then be converted into AMP and GMP (Worku and Newby, 1982) .

Internalization by nucleoside transporters

Intracellular adenosine can originate from extracellular adenosine or from intracellular
degradation of adenine nucleotides. The proportion of extracellular adenosine that is not
degraded is rapidly internalized through nucleoside transporters. There are two families of
nucleoside transporters, which can favor adenosine uptake: the ENT (equilibrative nucleoside
transporters) and the CNT (concentrative nucleoside transporters) (Figure 6). The CNT family
counts three members of cation-coupled channels (CNT1-3) that all can co-transport
adenosine. They display a higher affinity for adenosine than the ENT and lead to adenosine
flux against its concentration gradient. They are also involved in nucleoside-analogs transport

(Young, 2016).

The ENT family counts four members (ENT1-4). Unlike CNTs, ENTs allow a bidirectional
adenosine transport. As for the CNT family members, the specificity for the transported
nucleosides varies between the four ENTs. ENT1 and -2 are the best described equilibrative
transporters and considered as facilitated diffusion systems. ENT-3 and -4 on the other hand
are cation-dependent transporters and are sensitive to the environing pH. ENT-3 has the
particularity to be located at intracellular membranes, ensuring adenosine translocation
between different cellular compartments (Young et al., 2008, 2013). Some equilibrative
transporters can ensure nucleobases transport. ENTs are regulated by various mechanisms, in
particular downstream the ADORA signaling, by PKA and PKC that can phosphorylate the
transporters and affect their function and cellular localization (Hughes et al., 2015; Young et
al., 2013). Hypoxia also negatively regulates ENT expression via HIF-1 (hypoxia-induced factor

1) that interacts with SLC29 genes promotors (Eltzschig et al., 2005).
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Figure 6: Concentrative and equilibrative nucleotide transporters specificity towards
natural purine and pyrimidine nucleosides. All known nucleoside transporters can transport

adenosine.

Thanks to their function, nucleoside transporters allow adenosine to enter the cell to be
metabolized and play diverse roles on cell biology. Furthermore, ENTs and CNTs activities
participate in the control of the extracellular adenosine available to interact with the ADORAs.
Thus, adenosine transporters can be considered as true modulators of the adenosine

signaling.

Extracellular adenosine fates

ADORA receptors

Extracellular adenosine can act as a signaling molecule. Adenosine interacts with four
types of specific P1-receptors named ADORA: A1, A2A, A2B and A3 (Figure 8). All of them
belong to the G protein-coupled receptor (GPCR) family and are involved in various
physiological phenomena such as sleep, neural or cardiac functions. These receptors are
expressed all over the body with higher expression levels in some organs, according to their
type. They also vary by their affinity with adenosine: A1 and A2A are high affinity receptors

(nanomolar) whereas A2B and A3 are low affinity receptors (micromolar).
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Al receptor
A1l receptor is mainly expressed in brain, eye, atria and adrenal gland but is also found at

lower levels in skeletal muscle, liver, kidney, adipose tissue, salivary glands, colon, testes,
esophagus and antrum (Fredholm et al., 2000). Al is coupled to G, or Gj proteins. Its activation
inhibits adenylate cyclase activity, leading to a decrease of cytoplasmic cAMP (cyclic AMP)
concentration, and activates phospholipase C (PLC), thus increasing cytoplasmic inositol-1,4,5-
trisphosphate (IP3) and calcium concentrations (Chen et al., 2013). This receptor has a high

affinity for adenosine and can also interact and respond to AMP (Rittiner et al., 2012).

A2A receptor
The cells that express the most this receptor are leukocytes, platelets, splenocytes,

thymus cells and some GABAergic neurons. On immune cells, A2A is the main way by which
adenosine exerts its anti-inflammatory effects (Fishman et al., 2009). As A2A is coupled to Gs
or G proteins, its interaction with adenosine leads to activation of the adenylate

cyclase/cAMP/PKA (protein kinase A) axis.

AZ2B receptor
A2B receptor is widely expressed in organs and particularly on caecum, colon and bladder

cells. This receptor is often overexpressed in tumors, compared to normal tissue (Mousavi et
al., 2015; Zhou et al., 2017). This overexpression is believed to be due to hypoxic environment
(Kong et al., 2006). A2B is the adenosine receptor that has the lowest affinity for its natural
substrate, thus, in physiological conditions, this receptor is not activated. A2B is coupled to Gs

or Gq proteins that allow PKA activation and increased intracellular Ca%* concentrations.

A3 receptor
A3 receptor is preferentially expressed in the liver but is often overexpressed in cancer

cells lines and patient samples (Madi et al., 2004). A3 is mainly coupled to Go or Gj proteins,
thus leading to adenylate cyclase inhibition and intracellular Ca?* release. G4 coupling also
sustains high cytosolic Ca?* concentrations and inositol-3-phosphate production. A3

transcription is favored by NFkB.
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Figure 7: (Tsuchiya and Nishizaki, 2015): Adenosine receptors and their downstream
canonical pathways. PLC = phospholipase C, IP3= inositol 1,4,5 triphosphate, DG=
diacylglycerol, PKA= protein kinase A, PKC= protein kinase C.

In cancer, Al tends to have antitumor effects, in contrast to A2A that mediates pro-
tumoral processes, mainly through immune system regulations. The roles of A2B and A3
remain controversial, according to the studied models. Interestingly, in tumor
microenvironment, and in particular under hypoxic conditions, extracellular adenosine levels
are elevated, which favors the low-affinity A2B receptor activation. This suggest that this
receptor could play specific roles in cancer. As many other GPCR, ADORA can interact with
alternative pathways such as MAP kinases (Crespo et al., 1994; Goldsmith and Dhanasekaran,
2007), PI3K/AKT (Murga et al., 1998) or GSK3f3/B-catenin pathways. In the tumoral context,
ADORA receptors are the main intermediates for adenosine effects. For example, immune-
suppressive effects are observed downstream A2A receptor activation by mechanisms
involving PKA and subsequent NFkB translocation inhibition that results in an overall reduction
of pro-inflammatory cytokines production (Campo et al., 2012). It is however difficult to
conclude or predict the overall effect of the stimulation of ADORA in cancer cells. Indeed, due
to the differences in expression and affinity, and the multiple steps leading to PKA and PKC
activation or inhibition, the effect of adenosine on a cell will depend on all these parameters

as well as redundant signaling pathways.

The combination of adenosine receptors in cancer cells and in surrounding cells makes it

difficult to conclude on their involvement in cancer progression. For example, when they are
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co-expressed, A2A and A2B can associate in complexes where A2B inhibits A2A downstream

cascade (Hinz et al., 2018).

Interplay between adenosine metabolism and signaling

Owing to the multiplicity of enzymes involved in adenosine metabolism, its extracellular and
intracellular levels can be regulated more or less directly by several intermediates. A2A
activation by extracellular adenosine enhances CD73 expression that is mediated by MAPK
activation in colorectal cancer. Consequently, adenosine accumulates in the tumor
microenvironment due to an increased production (Yu et al., 2018). Vannoni and colleagues
observed that ADA and ADK, which participate in lowering the intra- and extracellular levels
of adenosine, display higher activities in tumor tissues as compared to non-cancerous tissues.
This observation was interpreted as a strategy to counterbalance the cytotoxic effects of
adenosine on cancer cells (Vannoni et al., 2004). (Vannoni et al., 2004). Nevertheless, their
inhibition leads to cell death, probably due to adenosine accumulation and reinforcement of
its pro-apoptitic effects (see following paragraph). Thus in cancers, both adenosine synthesis
and conversion are enhanced but end in an overall increase in adenosine concentrations.
Consequently, to favor malignant cell elimination by the immune system or adenosine-
induced death respectively, both processes could be relevant as targets, to deregulate the

balance cancer cells rely on.

Physiological parameters can also impact adenosine concentrations. It is the case for hypoxia.
Indeed, under hypoxic conditions, CD39 and CD73 expressions are increased (Hatfield et al.,
2014; Synnestvedt et al., 2002), leading to a higher production of extracellular adenosine. This
phenomenon is accompanied with a downregulation of adenosine-converting enzymes such
as adenosine kinase and adenosine deaminase. (Decking et al., 1997; Fishman et al., 2009).
Low oxygen availability also increases adenosine receptors expression in tumors, while
repressing its transporters expression (Eltzschig et al., 2005; Kong et al., 2006). Hypoxia
thereby results in an extracellular adenosine accumulation and amplification of ADORA-

mediated effects.
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To conclude this section, Figure 8 presents a summary of adenosine metabolism.
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Figure 8: Intracellular and extracellular adenosine metabolism. Extracellular adenosine is
mainly produced from ATP degradation. It can then be degraded, internalized or interact with
specific receptors: ADORA. Intracellularly, adenosine is re-phosphorylated or degraded.

Intracellular adenosine can be produced from adenine nucleotide catabolism or from th

transmethylation pathway.

Adenosine in biology: roles

Adenosine plays various roles in biology. Cells can use adenosine as a precursor for
nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide phosphate
(NADPH) and S-adenosyl methionine (SAM), via adenine nucleotide (ATP) use. Independently
from the functions ensured by these derivatives, adenosine itself can act as a signaling
molecule to play a role in multiple biological processes. For example, it is involved in neural

and cardiac activity modulations (Borycz et al.; Butler et al.; Headrick et al., 2011; Quarta et
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al.), and related pathologies like schizophrenia or migraine (Rial et al., 2014). Hereafter, we

will focus on the impact of adenosine on cellular functions that can modify cancer cell biology.

Immune escape

In tumors, the immune system plays a central role in the control of cancer cell
proliferation and is also responsible for immunoediting. These processes involve innate and
adaptive immune cells. Adenosine is widely known as an immunomodulator because of its
inhibiting role on effector T cells and its ability to orientate myeloid cells differentiation.
Therefore, adenosine-mediated immune regulations are among the most relevant parameters
to study in oncology (Young et al., 2014). As immune cells express adenosine receptors, most

adenosine immunomodulating effects are mediated by ADORA signaling.

Innate immune cells

NK cells
Natural killer (NK) lymphocytes are described as the most competent cells for tumor

immune surveillance. They recognize and eliminate “abnormal cells” through the
perforin/granzyme or Fas/Fas-L systems. NK cells also participate in anti-tumor responses in
established tumors, notably by cooperating with other immune cells (Deauvieau et al., 2014).
In addition to their cytotoxic functions toward cancer cells, they secrete pro-inflammatory
cytokines such as IFNy and TNFa to recruit other immune cells. These lymphocytes express
the A2A and A3 receptors whose activations are associated with less efficient NK cells
maturation and proliferation, reduced cytotoxic functions and cytokine production (Baginska
et al., 2013; Young et al., 2018). All these parameters render the NK cells less operative to
control tumor initiation. Adenosine-mediated NK inhibition also promotes metastases

occurrence (Beavis et al., 2013; Qin et al., 2014).

Macrophages
Macrophages are innate immune cells that are often recruited in tumors. In this case, they

are called TAMs (tumor associated macrophages). Macrophages are antigen-presenting cells
and digest apoptotic bodies from dead cancer cells in order to present peptides to the
adaptative immune cells and generate a tumor-specific response. They also secrete
inflammatory cytokines to support other immune functions. However, in the macrophage

tumor infiltrate, two distinct subsets are identifiable: the “classically activated” anti-tumoral
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M1 macrophages and “alternatively activated” pro-tumoral M2 macrophages. Most TAMs

have a M2-like phenotype.

M1 macrophages secrete inflammatory cytokines and favor Thl (cytotoxic) and Th17
responses, supporting direct and indirect anti-tumor responses. This branch of macrophage
differentiation can be induced by purine signaling, and more precisely by the activation of the
ATP receptor P2Y,R (Eun et al., 2014). Subsequently, the cells express the inducible nitric oxide
synthase (iNOs) that metabolizes L-arginine to NO and is a marker of M1 lineage. On the
contrary, M2 are believed to rather be pro-tumoral cells. Indeed, they secrete pro-angiogenic
and pro-metastatic factors such as cytokines and matrix metalloproteinases, resulting in a
microenvironment that supports cancer cell growth and metastatic processes (Condeelis and
Pollard, 2006; Lewis and Pollard, 2006). M2 macrophages can be divided into four subsets:
M2a, M2b, M2c and M2d. They have distinct markers and can be generated from different
stimuli. Adenosine induces the M2d lineage and participate in increasing arginase 1
expression, that is a M2-marker (Csdka et al., 2012; Ferrante and Leibovich, 2012; Ferrante et
al., 2013) . Moreover, adenosine favors the secretion of pro-angiogenic molecules (VEGF and
matrix-remodeling proteins) (Ernens et al., 2010) while impeding the production of pro-

inflammatory factors by M1 (Haskd et al., 1996).

An antigen presenting cell-dependent isoform of ADA (ADA2) is also involved in monocyte
differentiation toward macrophages or dendritic cells in vitro, and indirectly favors T-cell
proliferation (Zavialov et al., 2010). These processes involve the secrection of this enzyme and
its interaction with a specific receptor. Nevertheless, it is not obvious that adenosine itself is
involved in these phenomena, as ADA2 exerts its deaminase activity in an acidic an
inflammatory context (Zavialov and Engstrém, 2005). The role of ADA2 on the tumor immune

microenvironment remains to be better understood.

Neutrophils
Similarly as for macrophages, neutrophils are recruited to tumors and are associated with

cancer cells. These tumor-associated neutrophils (TANs) can also adopt a pro- or an antitumor
phenotype and impact tumor initiation, progression, or associated mechanisms. For example,
N1 anti-tumoral neutrophils favor cancer cell death by a direct process or involving other

immune cells (Mensurado et al., 2018; Zivkovic et al., 2007). N2 play their pro-tumoral role by
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producing pro-angiogenic molecules such as VEGF or matrix modifying enzymes (Piccard et

al., 2012) or can facilitate metastases (Wculek and Malanchi, 2015).

Adenosine binds the ADORA receptors present on neutrophils to regulate their function
in a concentration-dependent manner. Indeed, low adenosine concentrations favor
phagocytosis whereas elevated levels of extracellular adenosine impair this process (Barletta
et al., 2012). At low physiological concentrations, adenosine favors neutrophils chemotaxis
and recruitment but A2A stimulation with high concentrations of adenosine reduces ROS
(reactive oxygen species) production (Bednarska et al., 2014; Fredholm et al., 1996) and thus
the cytotoxicity toward tumor cells. In the context of cancer, extracellular adenosine levels
increase, again favoring anti-inflammatory mechanisms and attenuating the anti-tumor

response.

Dendritic cells
Dendritic cells are professional APCs. After their maturation, they overexpress major

histocompatibility complex (MHC) molecules and co-stimulation molecules (CD80/86) that

activate T lymphocytes, to generate an adaptive immune response.

Pro-inflammatory cytokines support T-cell differentiation for them to acquire their
effective functions. In addition to reducing the production of these cytokines by dendritic cells
(Challier et al., 2013; Schnurr et al., 2004), adenosine induces the production of pro-angiogenic
and tolerogenic cytokines (Novitskiy et al., 2008). Moreover, dendritic cells that maturate
under adenosine stimulation are not able to efficiently activate T lymphocytes (Challier et al.,

2013).

Adaptive immune cells

In the tumor microenvironment, CD4+ and CD8+ T lymphocytes are crucial to drive anti-
tumor immunity and kill cancer cells, respectively. These lymphocytes express Al, A2A and
A2B adenosine receptors that mediate the nucleoside-induced effect. Adenosine can be
considered a negative regulator for T cells as it inhibits their functions at different levels. First
of all, adenosine signaling reduces T cell survival by impeding pro-survival signals (mediated

by the IL7/IL7R axis), thus reducing the availability of cells that could fight the tumor (Cekic et
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al., 2013). Moreover, extracellular adenosine interferes with T cells activation. Indeed, it can
impede the activating phosphorylations downstream TCR/CD3 interaction with MHC/peptide
complexes, impeding T cells activation levels (Hoskin et al., 2008). It also inhibits pro-
inflammatory cytokines production (Lappas et al., 2005; Raskovalova et al., 2007) and T cell
proliferation (Hoskin et al.) by diverse mechanisms, among which the negative regulation of
IL-2 cascade (Butler et al.; Zhang et al., 2004) . Extracellular adenosine also alters cytotoxic
functions of CD8+ lymphocytes by inhibiting their adhesion to target cells (MacKenzie et al.,
1994, 2002) and interfering with cytotoxic-granule molecules production and excretion

(Hoskin et al.; Raskovalova et al., 2007).

The interactions between B cells and adenosine are less known. A subset of CD39 and
CD73 co-expressing B cells can release and produce adenosine from ATP. Then this adenosine
can act in an autocrine or paracrine way. Adenosine production seems to be interrelated with
commutation switch recombination in B cells (Schena et al., 2013). Conversely, the CD73
inhibitor APCP enhanced anti-tumor responses through mechanisms involving

immunoglobulin-producing B cells (Forte et al., 2012).

Adenosine can also impact immune cells differentiation. For example, it promotes
regulatory T cells lineage (Linden and Cekic, 2012), thus indirectly favoring the inhibition of

the anti-tumor adaptive response.

All together, these observations designate adenosine as a factor that strongly promotes

immune escape and thereby promotes cancer progression (Kaku et al., 2014) (Figure 9).
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Figure 9: Adenosine and immune cells in the tumor microenvironment. High
concentrations of adenosine impact innate and adaptive cells and result in an overall pro-
tumoral behavior of immune cells. Adapted from “Targeting cancer-derived adenosine: New
therapeutic approaches. (Young et al., 2014)

Cell proliferation and DNA stability

Nucleotide pools

Cells need to incorporate dNTPs to replicate their DNA. Deoxynucleotide pools imbalance
thus increases the risk of mistakes in DNA synthesis, and favors genome instability (Bester et
al., 2011; Kunz et al.,, 1994). As mentioned earlier, these dNTP pools originate from their
corresponding ribonucleotides. Thus, to keep dNTP pools balanced, it is necessary to maintain
the homeostasis in the activity of enzymes involved in their conversion and their degradation

(Menezes et al., 2012; Rampazzo et al., 2010).

Adenosine and cell proliferation

Multiple roles of adenosine on cell proliferation have been described. Depending on the
studied cell type and the nucleoside concentration among other factors, it can be either pro
or anti-proliferative (Aghaei et al., 2011; Ethier and Dobson, 1997). These effects are either

mediated by cellular uptake and subsequent metabolism of adenosine in the cells (Brown et
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al., 2000), or through the ADORA signaling. Indeed, the activation of A1, A2A, A2B or A3
receptors on cancer cells can lead to signaling cascades that modulate cell proliferation
(Fernandez-Gallardo et al., 2016; Gessi et al.,, 2017). Whether each receptor is rather
associated with pro- or anti-proliferative effects remains in debate and seems to be cell or
tissue specific. Some other studies suggest that adenosine internalization and receptor-

independent mechanisms also play a role in cell proliferation (Brown et al., 2000).

These effects of adenosine on cell proliferation opens to the possibility to use adenosine
metabolism-related enzymes modulators, in order to decrease in vivo tumor growth. For
example, Nakajima et al. used an ADA inhibitor, to accumulate adenosine and this reduces

tumorigenicity in mice (Nakajima et al., 2015).

Adenosine induced cell death

Adenosine inhibitory effects on cell proliferation are often associated with apoptotic
effects. High concentrations of adenosine trigger cell death in several cancer cell lines, through
intrinsic or extrinsic mechanisms. The extrinsic pathways involve the ADORA receptors and
their downstream cascades whereas the intrinsic ones depend on adenosine internalization
and, most of the time, its conversion into AMP (Tanaka et al., 1994; Tsuchiya and Nishizaki,

2015).

Intrinsic effects have been identified thanks to the fact that inhibiting nucleoside
transporters reduces adenosine-induced cell death, meaning that the nucleoside can trigger
apoptosis through its intracellular fates. Several studies showed that phosphorylation of
adenosine into AMP is necessary to induce cell death(Li et al., 2013; Nogi et al., 2012; Schrier
et al., 2001; Wakade et al., 1995; Yang et al., 2007). Indeed, when it is internalized and
converted by adenosine kinase, the generated AMP can activate AMPK-dependent kinase
(AMPK), reinforcing the intrinsic activation of apoptosis that is activated downstream this
sensor (Mello et al., 2014, Saitoh et al., 2004; Yang et al., 2011a). Indeed, different caspase-
activating mechanisms were identified following adenosine internalization. For example, in
the hepatocarcinoma Huh-7 cell line, activation of caspase 8 was induced by downregulation

of its inhibitor c-FLIP ((FADD)-like interleukin-1B-converting enzyme inhibitory protein)(Yang
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et al., 2007). Adenosine is also able to modify the expression of apoptosis modulators such as
DIABLO-S, Bcl-XL, IAP2 and IAP3, leading to caspase-9-independent caspase-3 activation in
Huh-7 hepatoma cells (Yang et al., 2010).

In different models, adenosine is described as triggering apoptosis in a caspase-
independent way, by upregulating an apoptosis-inducing factor-homologous mitochondrion-
associated inducer of death (AMID) in the nucleus (Yang et al., 2007, 2011b, 2011b). Also, in
mesothelioma, adenosine upregulates p53 expression, triggering caspase-dependent or -

independent cell death (Nogi et al., 2012)

Several teams described cytotoxic effects of adenosine that were mediated by ADORAs
only, or in association with the intrinsic pathways, and thereby modulated by ligands to these
receptors. The A3 receptor is the one that displays pro-apoptotic activity in a wider range of
cells. It can trigger cell death in mesothelioma, lung, hepatocellular, breast, thyroid and colon
cancer cell lines (Kanno et al., 2012a, 2012b). A1 and A2A (Hardie et al., 2012; Merighi et al.,
2002) have also been identified as participating in this process. Downstream their activation,
ADORA can activate caspases (Kamiya et al., 2012) or generate cell death through caspase-

independent (Kanno et al., 2012a, 2012b; Nogi et al., 2012) processes like AMID accumulation.

Energetic status and metabolism

Intracellular adenosine is mostly phosphorylated to corresponding nucleotides. The
generation of di- or tri-phosphorylated nucleotides may have an impact on the energetic
balance defined as [(ATP+ 1/2.ADP)/(ATP+ADP+AMP)] (Atkinson, 1968). Downstream, the
global cell metabolism can change by influencing the activation status of AMP-dependent
protein kinase (AMPK). Indeed, the latter is a key enzyme that allows cells to switch between
anabolic and catabolic metabolisms according to the energetic status, particularly when ATP
levels are low and AMP levels are high (Hardie et al., 2012). Under these conditions, AMPK will
facilitate the activation of catabolic pathways such as autophagy, lipid B-oxidation or glycolysis
that provide cells with macromolecules to ensure their growth while saving energy. On the

contrary, anabolic high-energy consuming processes such as protein synthesis are
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downregulated by AMPK. Thus, adenosine, through AMP and AMPK, is a potential regulator

of major cellular metabolisms.

Migration and invasion

Extracellular adenosine plays a role in cell migration and invasion. Indeed, this purine
nucleoside acts in an autocrine/paracrine way and is able to trigger cytoskeleton

reorganization, thus indirectly impacting cell motility capabilities (Abbracchio et al., 1997).

It has been shown that cancer cell migration could be reduced with low micromolar to
low millimolar concentrations of adenosine and involving all the ADORA receptors. According
to the cell type and the concentrations used, receptor-dependent and receptor-independent
mechanisms can be involved (Virtanen et al., 2014). Various signaling pathway can impact cell
migration but not all of them can be affected by adenosine. For example, CD44 and FAK are
known to be pro-migration molecules. Nevertheless, in PC3 cancer cells, adenosine can slow
migration and invasion down without affecting these molecules (Virtanen et al., 2014). On the
contrary, in other cancer cell lines, adenosine can interact with several migration and EMT-
related pathways (Martinez-Ramirez et al., 2017) like in glioblastoma in which adenosine
exposure is associated with the reduction of the pro-migration MMP-9 gelatinase expression

and overall activity by modulating the ERK/AKT pathway (Gessi et al., 2010).

Conversely, other studies suggest a pro-migration receptor-mediated effect on adenosine
(Fernandez-Gallardo et al., 2016; Schneider et al., 2015). Therefore, the nucleoside effects on
cell migration can be cell-dependent. Virtanen et al. mentioned in their work that adenosine
signaling tends to stimulate pro-migration behavior but the sub localization of migration-
related molecules to determine the leading edge of the cells is important to induce cell

movement.
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Nucleosides and cancer therapies

Nucleotide analogs are common as chemotherapeutical agents used against cancer.
These drugs are in competition with endogenous nucleotides to be incorporated in neo-
synthesized DNA during cell proliferation. Nucleotide analogs such as 5-FU (5-Fluoro-
Uracil) are synthesized under an unphosphorylated form, they need the target cell
machinery to get tri-phosphorylated and be incorporated in neo-synthesized DNA.
Other mechanisms are also involved in their toxicity. For example, 5-FU interfere with
pyrimidine metabolism by inhibiting thymidylate synthase. Considering the importance
of modifying nucleoside analogs for their incorporation in DNA , nucleotidases (Sk
tadanowski, 2013) and nucleoside transporters (Koczor et al., 2012) play crucial roles in
their metabolism and efficiency. Consequently, efforts are made to target these
molecules to optimize treatment responses, as it is the case for the cytosolic 5'-
nucleotidase cN-Il (see following section). Other purine metabolism-related enzymes
are also explored in therapy. For example, a PNP-Annexin-V fusion protein is explored
for its ability to enhance the conversion of chemotherapeutical agents into cytotoxic
metabolites, specifically in cancer cells (Krais et al., 2013). RNR is often overexpressed in cancers

and confers resistance to treatments. It is thus targeted by chemotherapeutical agents, to

impede these effects (Aye et al., 2015).

Owing to its multiple roles in cancer biology, adenosine metabolism is widely
studied for innovative therapies. The following table (Table 2) shows some of the
promising adenosine-metabolism-targeting molecules and their interest. This includes
for example CD73-targeting and ADORA-targeting therapies. These strategies aim to
inhibit tumor CD73 activity or adenosine receptors activation with antagonist antibodies
or small molecules. Consequently, less adenosine is produced in the tumor
microenvironment, or its interaction with the receptors on immune cells is reduced thus

favoring immune anti-tumor responses.

CD73-targeting strategies can be coupled with CD39-inhibiting agents. Indeed, this
allows to block an upstream step of adenosine production, which is ATP degradation

into AMP. Although current CD73-targeting therapies mostly focus on inhibiting its
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enzymatic activity, it is also relevant to develop strategies that could also limit its pro-

tumoral non-enzymatic functions.

MEDI9447 or Oleclumab is a monoclonal antibody targeting CD73. It is a CD73 non-
competitive inhibitor that is able to target the membrane-anchored and soluble forms
of the enzyme by maintaining it under an inactive conformation (Geoghegan et al.,
2016). This antibody showed the ability to reduce AMP hydrolyze in vitro and an
antitumor activity in vivo (Hay et al., 2016). These promising preliminary data lead to
ongoing clinical studies to test MEDI9447 toxicity and efficiency alone, or in association
with other therapies in cancer. Other antibodies or small molecules are currently being
developed, in silico, in vitro and in vivo, as it is the case for sulfonic acid compounds /
pyrazolopyridines/benzofuropyrimidines, or the AD2 monoclonal antibody (Igbal et al.,

2013; Miliutina et al., 2018; Rahimova et al., 2018; Terp et al., 2013).

PFB-509 (a monoclonal antibody) and CPI-444 (a small molecule) are A2A receptor
inhibitors that aim to reduce adenosine-induced immune suppression in the tumor
microenvironment by binding the receptor on immune cells. These compounds were
able to restore T cell and NK cell activities while reducing metastases occurrence,
sensitizing cancer cells to immune checkpoint inhibitors and improving survival in mouse
models. Both therapies are currently being tested in clinical trials with the aim to
combine their use with immune checkpoint inhibitors (Emens et al., 2017; Leone et al.,
2018; Mediavilla-Varela et al., 2017). As A2B receptor activation is strongly involved in
immune suppression in cancers, efforts are made to generate A2B inhibitors as well as

A2A/A2B dual antagonists (Galezowski et al., 2018).
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Target

Strategy

molecule

references

CD73

Reduce tumor CD73-
mediated extracellular
adenosine generation,
mostly to restore a
context that favors
immune cells anticancer

functions

APCP and derivates

(Bhattarai et al., 2015)

Anti-CD73 monoclonal
antibodies (MEDI9447;

AD2 monoclonal

(Geoghegan et al., 2016;
Hay et al., 2016)

Clinical trials ID:

antibody) NCT02503774,
NCT03381274,
NCT03267589
(Terp et al., 2013)
Sulfonic acid (Igbal et al., 2013)
compounds

Pyrazolopyridines and

benzofuropyridines

(Miliutina et al., 2018)

A2 adenosine

receptors

Inhibit A2A and A2B
signaling in immune cells
to restore their

antitumor functions

A2A receptor
antagonists (PBF-509,
CPI-444, AB928)

(Allard et al., 2016)
PFB-509 clinical trial ID:
NCT02403193
(Mediavilla-Varela et al.,

2017)

CPI-444 clinical trial ID:
NCT02655822;
NCT03454451;
NCT03337

98 (Emens et al., 2017;
Leone et al., 2018)

AB928: (Walters et al.,
2017)

Dual A2A and A2B

antagonists

(Galezowski et al., 2018;
Vijayan et al., 2017)

A2B antagonist
PSB1115

(lannone et al., 2013;

Mittal et al., 2016)

Table 2: Non-exhaustive list of therapeutic adenosine-targeting strategies. Ongoing

studies aim to reduce extracellular adenosine in tumors or to block its cellular effect on
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ADORA. The adenosine-metabolism targeting molecules are tested alone or in
combination with other treatments such as immune checkpoint inhibitors.

5’-nucleotidases cN-Il and CD73

5’-nucleotidases participate in nucleotide catabolism by converting mono-
phosphorylated nucleotides into their corresponding nucleoside (Zimmermann, 1992). Thus,
they regulate nucleotide/nucleoside pools in the cells. There are seven human 5’-
nucleotidases that vary by their substrate and tissue specificities. Six of the known 5’-
nucleotidases are intracellular (cN-1A, cN-IB, cN-II, cN-Ill, cdN and mdN) and one is anchored
to the membrane by a GPI (glycosylphosphatidylinositol) anchor and can be liberated in the
interstitial space (CD73). Due to their proven roles in cancer, we are interested in cN-Il and

CD73.

cN-|I

cN-Il is encoded by NT5C2 gene situated on chromosome 10 and is highly conserved
among species (Cividini et al., 2015a). It is one of the five cytosolic (but not mitochondrial) 5’-
nucleotidases and has a phosphatase and a purine-specific-phosphotransferase activity. It
differs from its counterparts because of its preferential substrates. cN-I preferentially
dephosphorylate AMP, cN-lll has UMP ad CMP pyrimidines as substrates and cdN is
deoxyribonucleotides-specific, whereas cN-Il has a higher affinity for IMP and GMP (Bianchi
and Spychala, 2003; Ipata and Balestri, 2013; Zimmermann, 1992). Nevertheless, the latter
can also metabolize AMP with a lower activity. ATP, other tri-phosphorylated purines and
inosine are major positive regulators of cN-Il. In rat and bovine cells, it has been demonstrated

that the energy charge can also stimulate its activity (Pesi et al., 1994).

The physiological roles of this enzyme are not fully understood yet, but it has been
demonstrated that cN-Il is involved in the maintenance of the balance in intracellular purine
pools (Allegrini et al., 2013; Cividini et al., 2015b), impacting the energy status and
consequently AMPK activation, as demonstrated in skeletal muscle (Kulkarni et al., 2011;

Kviklyte et al., 2017).
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cN-Il also participates in cancer cell biology. In a study from Filoni and colleagues, cN-II
downregulation was associated with enhanced cell death (Filoni et al., 2011) and another
study highlighted a link between cN-Il activity and astrocytoma cells survival (Careddu et al.,
2008). This enzyme has also been associated with cell proliferation in ADF cell line (Cividini et
al., 2015c). cN-Il has the ability to interact with other intracellular proteins as exemplified by
the inflammasome protein IPAF (NRLC4), suggesting further roles for this protein, potentially

independent from its enzymatic activities (Cividini et al., 2015a).

In cancer, cN-ll is involved in prodrugs metabolism. More specifically, its
phosphotransferase activity can help to activate nucleoside analogs for them to be
incorporated to DNA. On the contrary, its phosphatase activity can dephosphorylate the
chemotherapeutic agents, rendering them nontoxic for the cancer cell (Jordheim et al., 2006,
2015; Mazzon et al., 2003). Consistently, mutations associated with increased enzymatic
activity of cN-Il have been associated with bad response to nucleobase-analogue-based
treatment or rapid relapse in ALL (acute lymphoblastic leukemia) (Meyer et al., 2013a, 2013b;
Tzoneva et al., 2013), and patients with high cN-Il expression levels show a worse prognosis
than those with lower expression levels when treated with nucleoside analogues (Galmarini
et al., 2001). Therefore, as cN-Il can represent an interesting target in anti-cancer therapies,
efforts are made in the direction to finding inhibitors for this enzyme (Gallier et al., 2011;
Jordheim et al.,, 2013; Marton et al., 2015). As its high activity and high expression are
associated with bad prognosis in acute myeloid leukemia and chronic lymphocytic leukemia,

the innovative strategies would aim to inhibit is activity.

CD73

CD73 is encoded by NT5E gene located on chromosome 6 and is a GPI
(glycosylphosphatidyl inositol)-anchored enzyme that exposes its catalytic site outside the
cytoplasm. It is mostly located at lipid rafts, associated as homodimers (Bianchi and Spychala,
2003). CD73 is a key enzyme of extracellular purine catabolism due to its hydrolase activity
that allows the conversion of mono-phosphorylated nucleotides such as AMP, IMP or NMN

into their corresponding nucleosides.
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It is common that ovarian, breast (Wang et al., 2008), bladder, thyroid, esophageal, head
and neck squamous carcinoma (Ren et al., 2016), prostate, melanoma, glioma glioblastoma
and leukemic cells over express or present a high CD73 activity. CD73 expression can be
induced in already established tumors and promote a more aggressive phenotype (Monteiro
et al., 2018; Reinhardt et al., 2017). Indeed, hypoxia is one of the major parameters that
promote this ecto-5'-nucleotidase expression and neoangiogenesis, which is a way to
correlate CD73 with bad prognosis (Ren et al., 2016). In addition, the subsequent higher
overall CD73 activity increases extracellular adenosine concentrations leading to the
enhancement of its pro-tumoral effects (described in previous sections). Moreover, enzymatic
activity-independent functions of CD73 have been described in cancer (Gao et al., 2017). For
example, it was shown that CD73 expression was associated with enhanced migration and
proliferation. This phenomenon was not reversed by using enzymatic inhibitors of CD73,
indicating alternative ways for this protein to favor cancer progression, independently from
adenosine production. These alternative ways involved overexpression of growth factors

receptors (EGFR) or growth factors (VEGF).

Considering these effects, it can be considered that CD73 controls tumor progression and
immune escape, making it a relevant target for therapeutic strategies. Consistently, many
studies aim to find and evaluate molecules and antibodies targeting CD73 activity. Most of
them focus on re-establishing an anti-tumor immune response. Therefore, these studies
sometimes combine anti-CD73 strategies and block the ADORA signaling in immune cells to

inhibit overall adenosine effects in the tumor.

Aims of the PhD project

cN-Il and CD73 have been identified as possible targets for new anti-cancer therapies.
Nevertheless, very little is known about the biological roles of cN-Il and what parameters of
cell biology could be impacted by such strategies. In parallel to the development of inhibitors,
we are interested in increasing the knowledge about the roles of this enzyme in cancer. As cN-
Il activity impacts intracellular adenine nucleosides/nucleotides pools (Tzoneva et al., 2018)

and considering the involvement of these purines in cell metabolism, we wondered what

49



changes a decrease in cN-Il expression or its silencing could trigger in cancer cells as well as in

the microenvironment.

Similarly, although CD73 is widely studied in cancer because it favors immune escape by
producing adenosine, little is known about its role on cancer cells themselves. CD73
participates in the regulation of extracellular adenine nucleosides/nucleotides pools. As these
molecules are able to be translocated toward the intracellular compartment, we can wonder

about the consequences on the cell biology as well as on the intracellular nucleotide pools.

Thus, the aims of our current project were to (i) Increase knowledge about cN-Il and CD73
in cancer cell biology, in physiological conditions and nucleotide stress, (ii) Understand the
ability of cancer cells to modify their microenvironment through nucleotides and according to
cN-Il and CD73 expressions. Here, we more precisely focused on cancer cells metabolic

plasticity, migration and their possible interplay with the innate immune microenvironment.
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Part I: cN-Il, CD73 and metabolic adaptability of cancer cells

The cytosolic 5-nucleotidase cN-Il lowers the adaptability to glucose
deprivation in human breast cancer cells

The first work concerned the investigation of the roles of cN-Il in metabolic adaptability.
To do so, we generated models in which the cytosolic 5’'-nucleotidase expression was
decreased with stable transfection of shRNA-encoding plasmids. We then evaluated the
impact on glucose metabolism and ROS defense. The results are presented in the following

article, published in Oncotarget in 2017 (Bricard et al., 2017)
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ABSTRACT

The cytosolic 5'-nucleotidase cN-II is a highly conserved enzyme implicated in
nucleotide metabolism. Based on recent observations suggesting additional roles not
directly associated to its enzymatic activity, we studied human cancer cell models with
basal or decreased cN-II expression. We developed cancer cells with stable inhibition
of cN-II expression by transfection of shRNA-coding plasmids, and studied their
biology. We show that human breast cancer cells MDA-MB-231 with decreased cN-II
expression better adapt to the disappearance of glucose in growth medium under
normoxic conditions than cells with a baseline expression level. This is associated
with enhanced in vivo growth and a lower content of ROS in cells cultivated in absence
of glucose due to more efficient mechanisms of elimination of ROS. Conversely,
cells with low cN-II expression are more sensitive to glucose deprivation in hypoxic
conditions. Overall, our results show that cN-II regulates the cellular response to
glucose deprivation through a mechanism related to ROS metabolism and defence.

INTRODUCTION

The hallmarks of cancer include genome instability
and mutations, leading to deregulated energetic
homeostasis, sustained proliferative signaling and escape
from immune surveillance [1]. These major characteristics
are all influenced by nucleoside metabolism as shown
by: i) increased rate of genomic modifications when
nucleotide pools are deregulated [2], ii) the important role
of nucleotide derivatives as sources of energy for the cell
and intracellular signaling effectors, and iii) the tumor-
and immuno-modulating roles of adenosine and ATP [3,
4]. Therefore, nucleotide metabolism has become a subject

of major interest in cancer research and constitutes a
potential target for anticancer therapy.

5’-nucleotidases are involved nucleotide
metabolism by  dephosphorylating  nucleoside
monophosphates into nucleosides and inorganic phosphate.
There are today eight different human 5’-nucleotidases
described, and they differ by their subcellular localization,
substrate affinities and regulatory mechanisms [5, 6]. The
cytosolic enzyme cN-II has a preference for IMP and
GMP and has also been described as being capable of
phosphorylating nucleosides through a phosphotransferase
activity [7]. We have previously shown that this enzyme
is involved in the sensitivity of cancer cells to nucleoside

in
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analogue-based chemotherapy [8. 9], and developed
and studied enzymatic inhibitors [10-14]. The clinical
relevance of this approach has been confirmed by the
observation of hyperactive cN-II mutants in relapsed
pediatric acute lymphoblastic leukemia patients associated
with a resistance to purine analogues |15, 16]. However,
very little is known about the overall physiological role
of e¢N-I1 in cells, and especially in cancer cells from
solid tumors. Transient inhibition of its expression in
neuroblastoma cells by siRNA indicated a role in cell
survival as this was associated with induction of apoptosis
[17], whereas a similar decrease in skeletal muscle cells
induced activation of AMPK (which regulates lipid and
glucose metabolism) as well as modified lipid metabolism
and glucose transport [18]. In addition, stable up- or down-
regulation of ¢N-I1 expression in various cancer cells has
shown its implication in cell proliferation even though this
is not the case for all cell lines [9, 19, 20]. Finally, the
recently demonstrated interaction between ¢N-I1 and the
inflammasome-protein NLRC4/Ipaf suggests other and
still unknown properties of this enzyme in cell biology
that could be independent of its enzymatic activity [21].

In this study, we show that ¢N-II decreases the
capacity to manage intracellular levels of reactive oxygen
species (ROS), suggesting an important role of this protein
in cell biology.

RESULTS

Transfected cells have decreased eN-11
expression and enzymatic activity

The pScN-II cell models used in this study have
previously been shown to have decreased cN-1I protein
expression [19]. This modification in protein expression
was associated with a 1.3-2.2-fold decrease in specific
enzymatic activity in all cell lines. Indeed, the specific
enzymatic activity {(nmol of inosine produced by minute
per milligram of protein) in presence of ATP was 2.49 =
0.20 for MDA-MB-231-pScont vs. 1.15 £ 0.04 for MDA-
MB-231-pScN-II; 5.49 + 0.75 for HCT-116-pScont vs.
2.89 £ 0.50 for HCT-116-pScN-1I: 1.85 + 0.25 for NCI-
H292-pScont vs. 1.46 £ 0.16 for NCI-H292-pScN-II; 1.98
+ (.14 for MIA PaCa-2-pScont vs. 1.33 + 0.02 for MIA
PaCa-2-pSeN-I1.

Decreased eN-11 expression is associated with
enhanced in vive xenograft growth

Initial experiments of in vitro proliferation of the
transfected models by CFSE titration did not show any
differences between pScont and pScN-II cells [19]. We
here continued the characterization with the evaluation of
tumor growth in scid mice after the injection of 5 million
cells subcutaneously. As indicated in Figure 1, the growth
of pSeN-II cells was consistently more rapid than for

pScont cells in the four different models evaluated. This
difference was modest and statistically significant for MIA
PaCa-2 cells at day 27, suggesting that stably reduced
content of ¢N-II in these cell models can favor tumor
growth. Whereas tumors with NCI-H292, MIA PaCA-2
and HCT-116 cells reached a volume of approximately
1000 mm* after 28 days, MDA-MB-231 cells grew more
slowly.

pSeN-II cells have modified in vitro growth as
compared to pScont cells

To investigate the proliferation and behavior of the
transfected cells in vitro, we performed long-term cell
culture with real-time assessment of proliferation and
adherence capacity using the xCELLigence technology.
In these experiments, the cell culture media was not
changed during the culture. As indicated in Figure 2 for
MDA-MB-231 cells, there is a clear shift in the cell index
appearing after approximately 7 days of culture in media
containing initially 25 mM glucose. These variations in
growth curves are much less pronounced for pScN-11 cells
as compared to pScont cells, indicating a major difference
in the behavior between the two cell lines in response to
the modifications appearing at this moment. When the
initial concentrations of glucose in the media were lower,
the same event appeared earlier (5 days with 10 mM, 4
days with 5 mM) and was always less pronounced for
pScN-II cells. This suggested that the shift in cell index
was associated with the disappearance of glucose in the
culture medium. No interpretable growth curves were
obtained with long term culture of any of the other cell
models probably due to the rapid growth of these cells,
and thus no glucose-dependent variations were observed.
We therefore focused most of the further experiments on
the MDA-MB-231 cell model.

Decreased cN-11 expression does not modify
glucose uptake or lactate secretion in vitro

As the MDA-MB-231-pScont and -pScN-II cells
displayed different behavior in terms of cell index that
was dependent on initial glucose concentration, we
compared the glucose uptake and associated lactate
secretion between the two cell models. When cells were
seeded at the same ratio of cells/volume of media as
in previous experiments and with 10 mM glucose, the
glucose disappeared from the medium after 6 days of
culture both for pScN-II and pScont cells (Figure 3). No
notable differences in extracellular glucose concentration
(reflecting glucose uptake) or in extracellular lactate
concentrations  (reflecting lactate secretion) were
observed between the two cell lines when the cell
number, as determined by direct counting, was taken
into account. This suggested that the difference in cell
behavior observed in Figure 2 was rather due to the
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Figure 1: /n vivo tumorigenesis of MDA-MB-231 (A), HCT-116 (B), NCI-H292 (C) and MIA PaCa-2 (D) pScont (m) and pScN-I1 cells
(®). Tumor volumes are mean values from 3 mice per group and error bars are standard deviation. **: p<0.005 with Student’s #-test.
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ability of the different cells to adapt to culture media
without glucose rather than to their use of glucose. In
addition, as extracellular lactate levels reached 20 mM
for an initial concentration of 10 mM glucose, it seems
that the cells metabolized glucose preferentially through
glycolysis rather than through oxidative phosphorylation.

60

pScN-II cells have lower content of ROS during
long-term in vitro growth

When glucose is completely consumed, cells have
to switch their metabolism towards the use of extracellular
lactate as a carbon source or to beta-oxidation of fatty
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Figure 2: Long term in vitro cell growth of MDA-MB-231-pScont (m) and -pScN-11 (e) cells in presence of 25 mM (A), 10 mM (B) or 5
mM (C) glucose. Cells were seeded at 3000 cells per well in a final volume of 250 pl. Graphs show the normalized cell index during time

(normalized on 5 hours).
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acids. Glutamine is another potential substrate but is highly
unstable under our experimental conditions and is rapidly
cleared from the culture medium. Lactate is transformed
into pyruvate and acetyl-CoA while fatty acids release
acetyl-CoA, which is further processed through the
tricarboxylic acid cycle and oxidative phosphorylation in
the mitochondrion. It has been shown that ROS-induced
activation of AMPK further induces activation of pyruvate

g 8

Cell number (x10,000)
[
8

o

dehydrogenase kinase (PDK) and phosphorylation of
pyruvate dehydrogenase (PDH) that stimulates lactate
processing [22], and that AMPK stimulates beta-oxidation
by ACC phosphorylation [23]. We propose that MDA-
MB-231-pScN-II cells are more prone to perform this
shift from glucose metabolism to lactate metabolism or to
beta-oxidation. However, the oxidative phosphorylation is
reported to be associated with enhanced levels of reactive
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Figure 3: Cell number (A), glucose (B) and lactate (C) concentration in media during long term in vifro culture of MDA-MB-231-pScont
(m) and -pScN-11 (@) cells. Cells were seeded in 6-well plates (90 000 cells per plate) in media containing 10 mM glucose. Values are mean
results of duplicates from a representative experiment and error bars are standard deviation.
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oxygen species [24], which would rather be detrimental
than beneficial for pScN-11 cells. We therefore evaluated
ROS levels in cells during cell culture simulating the
conditions used during xCELLigence experiments. As
shown in Figure 4A-4C, the ROS level increased in MDA-
MB-231-pScont cells some days after the disappearance of
glucose in the cell culture media (approximately when cell
growth reaches a plateau), whereas ROS levels remained
lower in pScN-II cells. The increase in ROS levels was
associated with enhanced cell death as determined by
Annexin V/PI staining, and both phenomena were delayed
when glucose deprivation was avoided by adding 5 mM
glucose to the media twice a week. A similar decrease in
the ROS content was obtained by N-acetylcysteine instead
of glucose during the experiment (data not shown). The
influence of glucose starvation on ROS accumulation
was confirmed in a 3-day experiment where pScont cells
cultivated in absence of glucose accumulated much more
ROS than pScN-II cells (Figure 4D). The replacement
of glucose by galactose, which forces cells to perform

35
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oxidative phosphorylation, yielded similar results as for
cells without glucose. Similar experiments performed on
NCI-H292, MIA PaCa-2 and HCT-116 cell models did not
show any differences between pScont and pSeN-II cells
(data not shown).

Cells with low ¢N-11 expression are sensitive to
combined hypoxia and glucose deprivation

We further performed xCELLigence experiments
in hypoxic conditions (1% O,), and observed that pScN-
II cells were clearly more sensitive and died earlier than
pScont cells (Figure 5). The time of cell death was here
also dependent on the initial concentration of glucose in
the culture medium suggesting that tolerance to reduced
glucose was different under normoxic and hypoxic
conditions.

If the difference observed in cell survival in hypoxic
conditions is due to a difference in remaining oxidative
phosphorylation, the cells could have been expected to
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Figure 5: /n virro cell growth of MDA-MB-231-pScont (m) and -pScN-11 (e) cells in hypoxic (1% O,) conditions in presence of 10 mM
(A)or 5 mM (B) glucose. Cells were seeded at 3000 cells per well in a final volume of 250 pl. Graphs show the normalized cell index during

time (normalized on 5 hours).
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display different sensitivities to inhibitors of oxidative
phosphorylation. This was however not the case in our
MDA-MB-231 models, as the percentage of dead cells
was similar in pScN-II cells as compared to pScont
cells after 48 hour exposures to 5 or 50 uM rotenone, a
mitochondrial complex I inhibitor (Figure 6A).

Finally, we evaluated the ROS content in pScont
cells and pScN-II cells cultured in hypoxic conditions
with or without glucose. We observed similar results as
in normoxia, i.e. pScont cells accumulating higher levels
of ROS than pScN-II cells in absence of glucose, and
lower ROS contents for both cell lines when glucose was
added to the medium during cell growth (Figure 6B).
These results are consistent with the fact that pScN-II
cells would have a lower induction of hypoxia-inducible

100
80

60

Living cells

40

20

10 B

Relative MFI H2DCF-DA

factor-1 (HIF-1) as this is dependent both on hypoxia and
on ROS content [25, 26]. Indeed, if pScN-II cells have
less ROS in hypoxic conditions, they would have a lower
induction of HIF-1, and thus a worse adaptability to the
hypoxic condition as compared to pScont cells.

c¢N-1I downregulated cells have a better defense
against ROS

As ROS levels were higher in pScont cells despite an
apparently similar glucose consumption and metabolism,
we assumed that the antioxidative defense mechanisms
could be more abundant or more efficient in pSceN-II cells.
We first quantified the relative gene expression of NAD(P)
H quinone dehydrogenase 1 (NQOI), thioredoxin-2

Rotenone (uM)

Figure 6: (A) Percentage of living MDA-MB-231-pScont (black bars) and -pScN-II (grey bars) cells incubated alone or in presence
of indicated concentrations of rotenone and menadione. Cells were seeded in 6-well plates at 200 000 cells per well in 3 mL of culture
media, and living cells are AnnexinV and propidium iodide negative. Results are mean values and error bars are standard deviation of three
independent experiments. (B) Relative ROS content in MDA-MB-231-pScont (m) and -pScN-II (e) cells incubated with | mM glucose
(filled lines) or without glucose (dotted lines) in hypoxic conditions (1% O,). Results are expressed as relative to MF1 on day | for pScont
cells incubated with glucose. Cells were seeded at 200 000 cells per well in 6-well plates with 3 mL culture media. Results are mean values
and error bars are standard deviations of four independent experiments. Means were compared with Student’s 7-test and differences were
statistically significant at day 3 between pScont and pScN-II without glucose, and at day 4 between pScont and pScN-11 with | mM glucose.
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(TXN2), superoxide dismutase 1 and 2 (SOD/ and SOD2)
and glutathione S-transferase n (GSTPI). As shown in
Figure 7A, these genes were expressed either at the same
level or slightly less in pScN-II cells when cultured in
presence of glucose. However, after 5 hours of culture in
absence of glucose, these genes were all found to be more
expressed in pScN-II cells as compared to pScont cells.
Similar results were obtained when cells were exposed
to the positive control menadione, a well-described ROS
and anti-ROS defense inducer. This is in line with our
hypothesis that pScN-II cells have a better overall capacity
to respond to ROS after glucose deprivation.

This increase in gene expression was confirmed at
the protein level for TXN2 but not for GSTPI after an
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8 hour incubation in the absence of glucose (Figure 7B).
Indeed, still no difference was observed when cells were
cultured in presence of glucose, but TXN2 expression
increased 2-fold in pScN-II cells cultured in absence
of glucose. Again, similar results were obtained with
exposure to menadione.

¢N-II downregulation increases the autophagy
flux

Autophagy can be induced by energy deprivation,
and contributes to the regeneration of ATP and other
nutrients in the cells. Therefore, autophagy could also
explain the metabolic advantages of pScN-II cells as

MGlc+ ®Glc- OMena

NQO1 TXN2 SOD1 SOD2 GSTPINQO1 TXN2 SOD1 SOD2 GSTP

15 kDa

pScN-I1

Mena ah Maona 8h

GSTP/actin
-
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Gle+ Mena ds

Fi igure 7: (A) Relative gene expression of anti-ROS genes in MDA-MB-231-pScont (left) and -pScN-II (right) cells incubated in presence
(black bars) or in absence (grey bars) of 25 mM glucose, or in presence of glucose and 20 uM menadione (white bars) for 5 hours. Results
are expressed as mean values of two independent experiments using pScont cells in presence of glucose as reference, and error bars are
standard deviation. (B and C) Protein expression of TXN-2 (B, size 12 kDa) and GSTPI (C, size 24 kDa) and beta-actin (size 42 kDa)
in MDA-MB-231-pScont and -pScN-II cells cultured in presence (Gle +) or absence (Gle -) of glucose or in presence of glucose and 20
uM menadione (Mena) for 8 hours. The gels show results from a representative experiment and for the quantification, all samples were
standardized to the ratio of protein/actin in pScont cells with glucose. The graph shows the mean values + standard deviation of the
quantification of bands obtained in three independent experiments. Means were compared with Student’s r-test but not found statistically

significantly different.
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compared to pScont cells. We investigated whether
autophagy markers were differentially expressed between
the two cell lines. As shown in Figure 8, pScN-II cells had
higher expression of LC3-I1, a marker for autophagy flux,
than pScont cells when cultured in normal culture media.
As expected, its expression increased after incubation with
25 mM of 2-deoxyglucose for 16 hours in pScont cells
whereas this was not the case in pScN-II cells suggesting
that the autophagy flux was already at its highest level
in the basal conditions. It is however unclear whether
autophagy is involved in the differences observed in
hypoxic conditions.

DISCUSSION

During our work on ¢N-II over the last 15 years,
several observations have suggested that this enzyme
might play major roles in human cells, independently
from its activity in purine metabolism and sensitivity to
nucleoside analogues [27]. First, transient inhibition by

siRNA or by enzymatic inhibitors induce cell death in
certain cancer cell models [12, 17]. Second, modulation
of ¢N-II expression was associated with variations in
cell growth rate and intracellular energy charge [20, 28].
Third, the highly conserved structure of ¢N-1I among
species, which is not limited to active and regulatory
sites, suggested interactions with other cellular proteins
[21]. Using our stable cell models for decreased cN-
Il expression, we here show consistent results on the
implication of this enzyme in the regulation of cellular
defense to oxidative stress.

Our results from the in vivo experiments show that
the decrease of ¢N-II expression favors tumor growth.
This is to our knowledge the first published data on tumor
growth of cells with modified ¢N-II expression. However,
this is not consistent with the previously reported results
showing no difference in in vitro proliferation on these
same cell lines [19] or decreased in vitro cell growth in a
neuroblastoma model [20]. Enhanced tumor growth in vivo
is thus not simply explained by enhanced proliferation of
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Figure 8: Protein expression of LC3-11 (size 17 kDa) and beta-actin (size 42 kDa) in MDA-MB-231-pScont and -pScN-
11 cells cultured in normal media or exposed 16 hours to 2-deoxyglucose. The gel shows result from a representative experiment
and the graph shows the mean values + standard deviation of the quantification of bands obtained in four independent experiments.

*: p<0.005 with Student’s 7-test.
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the cell lines in short term in vitro cultures. This ditference
in in vivo growth was however at least partially explained
by our long term in vitro cell growth experiments. Our
xCELLigence experiments were performed without
renewal of culture media, and we showed that glucose
was a limiting factor in this culture, since the differences
in growth curves were observed earlier when cells were
seeded in lower glucose concentrations (Figure 2). As this
was not due to a difference in the glucose consumption
between our cell lines, we proposed that the cN-II
downregulation had induced a better capacity to respond
to this low glucose environment. This could indeed be the
case in the tumors as both cell lines grow similarly in the
beginning, but diverge once they have reached a certain
volume, eventually corresponding to a stage at which
the tumor is poorly irrigated and the microenvironment
is depleted of certain metabolites. However, such tumors
would also be rather hypoxic. and thus more prone to cell
death as suggested by our in vitre data. Unfortunately, due
to technical issues, we were not able to obtain interpretable
results on the xCELLigence apparatus for the glucose-
dependency of NCI-H292, MIA-PaCa 2 and HCT-116
cells.

We also showed that the ROS content was much
higher in control cells than in pScN-1I cells when cells
lacked glucose in the media either after long term culture
or by incubating them directly without glucose. ROS-
production by NADPH oxidase and mitochondrion has
been shown to be induced by glucose deprivation in cancer
cells and associated to subsequent cell death [29]. As, in
our model, the highest ROS content was associated with
a higher cell death, we conclude that this ROS content
can directly explain the observed differences in cell
death between our two cell lines. Furthermore, pScN-1I
cells displayed a better defense against ROS with both
an enhanced induction of TXN2-expression and more
autophagy.

One explanation to the observed glucose-
deprivation-related differences between MDA-MB-231-
pScont and -pScN-II cells could be the action of ¢cN-1I on
metabolites of nicotinamide adenine dinucleotide (NAD).
Indeed, it has been shown first in yeasts [30] and later in
humans [31] that the mononucleotides of nicotinamide
{NMN) and nicotinic acid (NAMN) are substrates for
both eytosolic pyrimidine preferring 5°-nucleotidase
(human cN-III and yeast Sdtl) and the purine preferring
5'-nucleotidase (human cN-1I and yeast Isnl). Thus, it is
possible that eN-11 expressing cells have overall a lower
level of NAD and its reduced form NADH (and thus of
NADP) due to a higher degradation of their precursors,
and consequently a poorer defense towards ROS that
are produced in the presence of low glucose. The recent
observation of an association between oxidative stress and
an IMP/GMP-preferring 5"-nucleotidase (y&rC) in Bacillus
subtilis, strengthens this hypothesis [32].

When cells were grown under hypoxic conditions,
the decrease of cN-1I expression was shown to be
associated with a higher sensitivity to the disappearance of
glucose in the media. This could be explained by a higher
ROS content in these cells. Indeed, it has been proposed
that in hypoxic conditions, the ROS production is higher
in cells with high NADH level [33]. This would again
increase the glucose consumption by regulating GLUT-4
expression on the cell membrane as described in skeletal
muscle cells [34]. This would be consistent with our
hypothesis stating that pScN-11 cells have a higher level
of NADH because of a lower catabolism of its precursors.
However, this was not the case in our ROS content
quantification assays in cells grown in hypoxic conditions,
suggesting another and vet unknown mechanism for this
increased sensitivity to low glucose concentrations in
hypoxia. It has been shown in a particular model that
concomitant hypoxia and low glucose induced unfolded
protein response [35]. This could indeed be the case
also in our models, but additional experiments would be
needed to confirm this.

The fact that pScN-II cells do not accumulate more
ROS than pScont cells in hypoxic conditions whereas
they die earlier (as shown by xCELLigence experiments
in hypoxic conditions), could indicate that in normoxic
conditions, a difference in ROS content is involved in the
differential behavior between the two cell lines, whereas
in hypoxic conditions, this difference is ROS-independent.
We showed here that the pSeN-II cells have a better
overall anti-ROS defense, with a particular involvement
of thioredoxin 2 and autophagy. The detailed mechanism
by which these cells acquire this phenotype is not yet
understood, but we believe that cells with downregulated
cN-1I expression will adapt through an increase of
phosphorylated nicotinamide derivatives or through an
adapted kinetics in AMPK activation. Ongoing studies
should help us decipher this particular mechanism. Our
results might have clinical relevance in settings where
cancer patients are treated with metabolic inhibitors
targeting directly or indirectly glucose metabolism.
Indeed, such therapeutic approaches will be more efficient
on cancer cells expressing high levels of ¢N-1I than on
cells with low levels of cN-Il, making this protein a
potential marker for response to treatment as already
described in other clinical settings [8].

MATERIALS AND METHODS

Cells and culture

In this study we used human cancer cell lines from
lung (NCI-H292), pancreas (MIA PaCa-2), colon (HCT-
116) and breast (MDA-MB-231). Cells were transfected
to express either a shRNA against eN-I1 (pScN-II cells) or
control shRNA (pScont). General cell culture conditions
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and the development of transfected cell lines have been
previously described [9, 19].

cN-II activity assessment

cN-II activity in transfected models was assessed
using a validated non-radioactive method of liquid
chromatography coupled to a tandem mass spectrometry
as described elsewhere [9].

In vivo tumor growth

Female severe combined immunodeficiency CB17
mice (2-4 months old, approximately 20 g, Charles
River, L’ Arbresle, France) were injected with indicated
amount of cells subcutancously on day 1. Tumor size
was measured twice a week and mice were euthanized
when the tumor volume was >1500 mm’. The protocol
for experiments in mice was approved by the University
of Lyon Animal Ethics Committee. Mean tumor volumes
were compared with Student’s r-test.

Cell proliferation and adherence

The xCELLigence system (ACEA Biosciences)
was used to concomitantly determine cell proliferation
and adherence in real-time analysis. Cells were seeded
(3000 cells per well, 250 pl of media) in 16-wells E-plates
as indicated by the manufacturer and the cell index was
recorded every 15 minutes for 24 hours then every 30
minutes up to 20 days. Cell proliferation and survival were
also assessed by direct counting of cells both adhered to
the flask and in the cell culture media using a Cellometer
Auto T4 (Nexcelom Bioscience).

Quantification of glucose and lactate in cell
media

Cells were seeded in 6-well plates (90 000 cells per
plate) in media containing 10 mM glucose and incubated
at 37 °C for indicated times. At each time point, cells
were trypsinized and counted, and the supernatant was
recovered for dosage of glucose and lactate. Glucose
was quantified by the measurement of NADPH produced
during enzymatic reactions, and lactate by its conversion
to pyruvate and hydrogen peroxide followed by
the conversion of ABTS into a chromogen as described
carlier [36].

Cell survival assay

Cell survival was assessed by the quantification
of Annexin V / propidium iodide negative cells on a
FACScalibur flow cytometer using Annexin-V-FLUO
Staining kit (Roche) as indicated by the manufacturer
and after culture in indicated conditions. Adherent

and spontaneously detached cells were pooled for this
analysis.

Quantification of intracellular reactive oxygen
species

The content of reactive oxygen species (ROS)
in cells was determined using an oxidation sensitive
fluorescent dye (H,DCFDA, Life Technologies). Cells
were cultured as indicated and for ROS quantification,
cells were washed with PBS, incubated 30 minutes at 37
°C with 5 uM H DCFDA, washed twice with PBS and
incubated with complete media for 10 minutes at 37 °C.
Finally, cells were washed twice with PBS, trypsinized,
centrifuged (5 minutes, 300 g) and resuspended in 200
pl PBS. ROS were measured by flow cytometry on a
FACScalibur (_,_: 490/ 530 nm) and compared to the
autofluorescence of cells incubated with PBS instead of
H,DCFDA.

Western blot analyses

Proteins were extracted from cell pellets with cold
RIPA buffer (20 mM Tris-HCI pH 7.5, 150 mM NaCl, 1%
Triton X-100, 1% sodium deoxycholate, ] M DTT, 1 M
NaF, protease inhibitor cocktail, phosphatase inhibitors
buffer and 100 mM sodium orthovanadate) or buffer A (20
mM Tris-HCI pH 6.8, 1 mM MgCl,, 2 mM EGTA, 0.5%
NP40, 2% protease inhibitor cocktail) on ice for 60 (RIPA)
or 15 (buffer A) minutes followed by centrifugation (15
minutes, 12 000 g, 4 °C). Proteins were separated by SDS-
PAGE and transferred onto nitrocellulose membrane using
the iBlot* system (Life Technologies). Membranes were
incubated with specific antibodies for LC3-11 (NB100-
2220, 1/500; Novus Biologicals), GSTP1 (A5691, 1/500;
NeoBioLab), TXN2 (A6782, 1/500; NeoBioLab) and
beta-actin (clone AC-15, 1/5000; Sigma) and anti-murine
antibody (IRDye” 800CW, 1/5000; LI-COR Biosciences)
or anti-rabbit antibody (IRDye® 680, 1/5000; LI-COR
Biosciences), and protein expression was visualized using
the Odyssey infrared system (LI-COR Biosciences).
Bands were quantified using the Odyssey system, and the
results are presented as ratio of the expression of proteins
of interest to beta-actin expression.

Quantitative RT-PCR

Total RNA was extracted from cells using RNeasy
mini kit (Qiagen) as described by the manufacturer.
Reverse transcription was performed with Moloney
leukemia virus reverse transcriptase and quantitative PCR
on a LightCycler thermal cycler (Roche) in the following
conditions: 5 minutes initial denaturation at 95 °C follow
by 40 cycles of 10 seconds at 95 °C, 10 seconds at 60
°C and 10 seconds at 72 °C and terminated by a melting
curve from 70 °C to 95 °C. Primers were: NQO1 forward:
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5"-ATGTATGACAAAGGACCCTTCC-3"; NQOI reverse
5'-TCCCTTGCAGAGAGTACATGG-3"; TXN forward
5-TTACAGCCGCTCGTCAGA-3"; TXN  reverse
5'-AAGGCTTCCTGAAAAGCAGTC-3"; SODI forward
5'-TCATCAATTTCGAGCAGAAGG-3"; SODI1 reverse
5'-GCAGGCCTTCAGTCAGTCC-3"; SOD2 forward
5-AAGTACCAGGAGGCGTTGG-3"; SOD2  reverse
5'-TGAACTTCAGTGCAGGCTGA-3"; GSTP1 forward
5'-GGCAACTGAAGCCTTTTGAG-3" and GSTPI
reverse 5'-GGCTAGGACCTCATGGATCA-3". Relative
quantification was calculated using the AACT-method and
human ribosomal 285 RNA as reference gene.

Autophagy flux assessment

Cells (3.10° per dish) were plated in 10 em culture
dishes and exposed or not to 25 mM 2-deoxyglucose
(Sigma) for 16 hours before cells were subjected to protein
extraction and Western blot analysis as indicated above.

Abbreviations

pScN-1I:  pSuperior-cN-1I; pScont: pSuperior-
control; ROS: reactive oxygen species; NQO1: NAD(P)H
quinone dehydrogenase 1; TXN2: thioredoxin-2; SODI:
superoxide dismutase 1; SOD2: superoxide dismutase 2;
GSTP1: glutathione S-transferase .
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cN-Il and CD73 in global cell metabolism

In continuation with this work, we wanted to further understand the roles of 5’-nucleotidases
in cancer cell metabolic plasticity by comparing and combining modulation of both cN-Il and
CD73. This would indeed give us particularly interesting models to study the interplay between
intracellular and extracellular nucleotide pools and the role of cN-Il and CD73 in this
phenomenon. To do so, we used MDA-MB-231, human triple negative breast cancer cells and
decreased cN-Il and/or CD73 expressions with stable shRNAs. These models were used to

identify possible metabolic parameter that could be co-regulated by cN-Il and CD73.

Material and methods

Cell transfection

Wild type MDA-MB-231 cells were transfected with pSuperior.Neo or pSuperior.Puro
containing a coding sequence for shRNAs targeting either CD73 or cN-Il RNA or a non-targeting
control shRNA (see sequences hereafter). Each cell line received two pSuperior plasmids,
conferring a double resistance to geneticin (0.8 mg/mL) and puromycin (0.5 pug/mL). We
generated four models: cN-11"8"CD73Meh (that contains two control shRNAs), cN-IIMehCD73low
(with one control shRNA sequence and one targeting CD73), cN-11'"“CD73"&" (with one control
shRNA sequence and one targeting cN-Il) and cN-1I""“CD73"°" (with one shRNA sequence

targeting cN-Il and one targeting CD73).

Plasmid sequence for cN-Il shRNA: The target sequences are underlined (oligomers were
purchased from Dharmacon):

5-GATCCCCAACCTCTTGGTCTGTGCACATTTCAAGAGAATGTGCACAGACCAAGAGGTTTTTTTGGAAA-3

5-TCGATTTCCAAAAAAACCTCTTGGTCTGTGCACATTCTCTTGAAATGTGCACAGACCAAGAGGTTGGG-3

Plasmid sequence for CD73 shRNA: The target sequences are underlined (oligomers were
purchased from Dharmacon):

5’-GATCCCCGCCACTAGCATCTCAAATATTCAAGAGATATTTGAGATGCTAGTGGCTTTTTA-3’
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5-TCGATAAAAAGCCACTAGCATCTCAAATATCTCTTGAATATTTGAGATGCTAGTGGCGGG-3’

Plasmid sequence for scrambled shRNA (oligomers were purchased from Dharmacon):
5’-GATCCCCAACCTCTTGGTCTGTGCACATTTCAAGAGAATGTGCACAGACCAAGAGGTTTTTTTGGAAA-3’
5’-TCGATTTCCAAAAAAACCTCTTGGTCTGTGCACATTCTCTTGAAATGTGCACAGACCAAGAGGTTGGG-3’

CD73 activity evaluation

MDA-MB-231 cells were plated on day 1 in 24 well plates (2.10° cells per well) with 1 mL
of complete culture medium. On day 2, the medium was removed, and the cells were washed
twice with 1 mL of phosphate free buffer, pH7,4 (2 mM MgCl,, 120 mM NacCl, 5 mM KCl, 10
mM glucose, 20 mM HEPES buffer pH 7,4 in H,0). Then, MDA-MB-231 were incubated with
500 pL of phosphate free buffer or of phosphate free buffer + 1 mM AMP or phosphate free
buffer or of phosphate free buffer + 1 mM AMP+ 30 uM APCP for 30 minutes at 37 °C, 5% CO..
Pi (inorganic phosphate) production was revealed by allowing 80 uL of supernatant to react
with 20 pL of Working reagent from Genesaur kit (Bioassay) systems for 30 minutes at room
temperature. Absorbance was read at 595 and 690 nm. The experiment was performed with

biological triplicate and technical duplicates.

For radioactive adenosine production from AMP, we incubated our models with
radioactive labeled [3H] AMP (400 uM) for 30 minutes. Then, cell supernatant was collected
and underwent a thin layer chromatography to separate nucleotide derivatives (ATP, ADP,
AMP, adenosine, inosine, hypoxanthine). The extracellular radioactive adenosine fraction was

guantified as a CD73 activity indicator.

Extracellular [’H] adenosine follow-up

We incubated our models with radioactive labeled [*H] adenosine (25 uM) for one hour.
Then the medium was removed and the cells washed and lysed. We realized a thin layer
chromatography with the obtained lysates to separate and quantify nucleotide derivatives

(ATP, ADP, AMP, adenosine, inosine, hypoxanthine).
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Anoikis resistance assessment

Cells (1.10° per well in 6 well plates) were seeded in Corning® Costar® Ultra-Low
Attachment culture dishes, not to allow them to adhere. After 24 hours, they were

harvested, and cell death was measured with annexin-V/PI labelling and flow cytometry.

Other experiments

The material and methods for other experiments are described in part Il.

Results

Characterization of cell models

cN-Il and CD73 expression and activity

The cN-Il targeting shRNA sequence almost completely abolished the cytosolic 5'-
nucleotidase expression at the mRNA and protein level, but the CD73-targeting sequence only
resulted in a slight diminution of CD73 surface expression (Figure 10 and 11). Therefore, to
fully validate this model, we tested CD73 activity in these cells with two techniques. A
malachite green assay allowed us to indirectly measure CD73 activity by evaluating inorganic
phosphate production, from AMP dephosphorylation. cN-1I"8"CD73heh and cN-II'**"CD73"ieh
cells were able to produce high quantities of inorganic phosphate when incubated with AMP,
whereas cN-IIM8"CD73/°% and cN-II'"“CD73"" cells produced 25 to 30% less inorganic
phosphate in the same conditions (Figure 12-A). This production was reversed if the cells were
co-incubated with the CD73 inhibitor APCP, indicating that this phosphate production
originates from CD73 activity. Using tritium (°H) labelled AMP, we also directly measured
adenosine production from AMP by these cells. The cells that received the CD73-targettinng

mRNA produced only 40 to 50 % of the adenosine that was produced by cN-I1"8"CD73"h and
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cN-Il'>wCD73Meh cells, confirming that the slight decrease in surface CD73 expression in our

models was enough to decrease the overall enzyme activity (Figure 12-B).

Thus, we used these models to study the roles of cN-Il and CD73 in cell biology and its

metabolic plasticity.
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Roles of cN-Il and CD73 in extracellular adenosine intracellular fates

As indicated in the introduction, extracellular adenosine can interact with surface
receptors or be internalized through nucleoside transporters. In the cytoplasm, the nucleoside
is either re-phosphorylated to form adenine nucleotides or degraded into inosine and
hypoxanthine. Here we were interested in how adenosine was intracellularly metabolized,
according to cN-lIl and CD73 expressions. To study possible differences in adenosine
metabolism between our models, they were incubated with 25 uM extracellular radioactively
labelled adenosine for one hour. Then, we collected intracellular lysates to separate and
guantify the adenosine derivatives in our four cell lines. intracellular radioactive ATP, ADP,
AMP, adenosine, inosine and hypoxanthine were quantified (Figure 13). We did not notice any
differences in the quantity of total intracellular labelled adenosine derivatives, suggesting that
the same amount of extracellular adenosine was internalized in all the models (Figure 13-A).
Thus, cN-1l and CD73 are not involved in adenosine transport modulations. Therefore, we can
hypothesize that these two 5‘-nucleotidases do not regulate nucleoside transporters
expression or activity in MDA-MB-231 cells. This should be confirmed by comparing ENT and

CNT expression patterns in these models.

Once in the cytoplasm, most of the internalized adenosine was re-phosphorylated,
essentially to form ATP (60 to 80% of radioactive pools corresponded to the ATP fraction).
When cN-II expression was downregulated, radioactive AMP and ADP tended to be more
important than in cN-IIM8"CD73Meh cells, but the difference was not statistically significant
(Figure 13-B). Thus, extracellular adenosine does not seem to be differently metabolized

according to cN-Il or CD73 expressions.
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Cell proliferation under a metabolic stress

We evaluated the cell proliferation rates of our models under a metabolic stress. cN-II
and CD73 downregulations did not impact cell proliferation in classic culture conditions
(Figure 14). We then inhibited cell glycolysis with 25 mM 2DG (2-deoxyglucose), as a
competitor with glucose for this pathway, or autophagy with 30 uM chloroquine, that impedes
autophagosome and lysosome fusion. 2DG and chloroquine decreased cell proliferation rate
in all our models. cN-11"8"CD73"ie" cells seemed to be slightly less sensitive to 2GD than the
others. Nevertheless, no significant difference was observed according to cN-Il or CD73
expression levels. cN-11"8"CD73'" cell proliferation was more sensitive to chloroquine than the
others. Surprisingly, this increased sensitivity was not present in cN-“CD73'°% cells. This
suggests that CD73 downregulation alone can render the cells more dependent on autophagy
to provide macromolecules to grow, but this could be rescued by cN-ll downregulation.

Interestingly, cN-Il downregulation alone does not seem to impact this parameter.
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Figure 14: Cell proliferation was monitored with a CFSE assay, over 4 days, in classic
culture conditions (A) or in presence of 2DG (2-deoxyglucose, 25 mM) as a glycolysis inhibitor

or chloroquine (30 uM) as an autophagy inhibitor.
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Cell death induction by metabolic modulators

In order to study the roles of cN-Il and CD73 in cell adaptability to metabolic stress, we
incubated our four models with metabolic drugs. We also used MDA-MB-231 in which cN-II
and/or CD73 expressions were invalidated with a knockout realized thanks to the CRISPR/Cas9
technique (These models are described in Part Il and the submitted article). We thus obtained
four more models: cN-1I*/CD73* cells (expressing both cN-Il and CD73), cN-1I*/CD73" cells
(expressing cN-Il but not CD73), cN-1I"/CD73* (deficient for cN-Il but not for CD73) and cN-II
/CD73" (deficient for both cN-Il and CD73).

We used 2DG, chloroquine and etomoxir to respectively inhibit glycolysis, autophagy and
lipid B-oxidation, that are catabolic pathways. These metabolic pathways allow the cells to
provide macromolecules under nutrient deprivation, by degrading and recycling pre-existing
components of the cells, thus allowing growth while saving energy. After 48 hours of
incubation with the MDA-MB-231, 2DG and chloroquine but not etomoxir tended to generate
cell death in all models, but the differences with the control condition were never statistically
significant (Figure 15-A and B). It suggests that MDA-MB-231 do not rely on one metabolic
pathway but they can switch between these cells metabolism, according to their needs.
Moreover, no difference was observed between the cell lines, according to cN-Il and CD73
expressions, meaning that cN-Il and CD73 do not modify cell dependence to catabolic
pathways. However, when the cells were simultaneously incubated with the three inhibitors,
cN-Il and CD73 down regulations seemed to favor survival. This was not observed in the
models with 5’-nucleotidases silencing. We then inhibited oxidative phosphorylation with
rotenone in the knockout models, again no modification in cell survival was observed (Figure
15-C). Thus, these metastatic cells seem to be able to switch between catabolic strategies and
oxidative phosphorylation, according to the pressure they undergo. cN-Il and CD73 do not

seem to play a role in this metabolic adaptability.
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cytometry analysis. Bars represent the means of 5 independent experiments. *** =p< 0.001
with a Student’s t-test, in comparison with the cN-II'/CD73* cell line. In (C), cells with cN-II
and/or CD73 invalidation were incubated with rotenone (30uM) and their survival was

evaluated after 48 hours. Bars represent the man of technical duplicates of one experiment.

Glucose metabolism-related enzymes

We then investigated the mRNA expression of glucose metabolism-related enzymes in
the knockout models (Figure 16). Hexokinases phosphorylate glucose to activate it and render
it available for catabolism. These enzymes thus indirectly reflect glucose availability for cells.
In the cell, glucose can be metabolized into pyruvate for glycolysis or serve as a substrate for

the pentose phosphate pathway.

In our models, hexokinase IV (also known as glucokinase) was expressed at higher levels
in cN-1I/CD73 cells than in the other models (3.5-fold higher expression in cN-II"/CD73
compared to cN-1I*/CD73" cells). We observed that glucose-6-phosphate dehydrogenase
(G6PDH) and glucose-6-phosphate isomerase that participate in the pentose phosphate
pathway and glycolysis respectively, are differentially expressed in cN-1I"/CD73" cells compared
to the others (1.7-fold higher expression in cN-1I'//CD73  compared to cN-II*/CD73"* cells for
glucose-6-phosphate isomerase and G6PDH was 1.9-fold less expressed in cN-1I"/CD73 than in
cN-11*/CD73" cells).
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Autophagy flux

We assessed autophagy activation in our models containing shRNAs and in our models
with cN-Il and/or CD73 knock outs, by evaluating the expression levels of LC3-II (microtubule-
associated protein 1A/1B-light chain 3). LC3 undergoes a conjugation to
phosphatidylethanolamine to form LC3-Il that is incorporated in autophagosome membrane.
LC3-Il is thus widely used as an autophagy marker (Tanida et al., 2008). In MDA-MB-231, cN-II
downregulation or deficiency was associated with a slightly enhanced autophagy flux,
reflected by a higher LC3-Il expression than their cN-lI-highly-expressing counterparts (Figure
17), similarly as what was observed in our previous study (Bricard et al., 2017). In the absence
of glucose, the contrast between cN-Il expressing and cN-Il deficient cell is even more marked.

Indeed, glucose deprivation activates autophagy in a more efficient way when cN-Il is absent.

This suggests that when the cytosolic 5’-nucleotidase is not expressed in the cells, they

might be more sensitive to metabolic changes that favor autophagy induction.
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Figure 17: Cells were incubated or not with 2DG (25 mM) (A); or without glucose, in
presence or not of chloroquine (30 uM), and their autophagy flux was assessed by evaluating

LC3-Il expression by western blot after 24 hours.

Dependency on glucose for cell survival

Considering the high expression levels of hexokinase IV in cN-II"/CD73 cells and the
differential autophagy levels between the models, we assessed their glucose dependency. We
cultured the cells in glucose-free medium and cell survival was assessed after 48 hours.
Glucose deprivation tended to slightly trigger cell death, but this was statistically significant
only when CD73 was not expressed in the cells, suggesting that MDA-MB-231 can rely on
metabolic pathways that are not glucose-dependent to keep on surviving, and CD73

expression could interfere with this plasticity.

As cN-lI-deficient cells present a higher autophagy flux than their cN-Il-proficient
counterparts, we assessed their sensitivity to chloroquine, an autophagy inhibitor, in the
presence or absence of glucose. After a 48-hour exposure to chloroquine, in the presence of
glucose, we observed more cell death than in control conditions, but the difference induced
by chloroquine was not statistically significant. As mentioned earlier, glucose deprivation
generated cell death in a statistically significant manner and promoted autophagy induction
in cN-ll-deficient cells, but the addition of chloroquine did not enhance glucose deprivation-
induced cell death in any of the tested models. Thus, although cN-ll-deficient cells display
higher autophagy rates, they do not seem to need this process for survival, in presence or

absence of glucose.
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Figure 18: Cells with cN-Il and/or CD73 invalidation were cultured in presence or absence
of glucose (25 mM), in presence or not of chloroquine (30 uM). Their survival was assessed
after 48 hours. Mean of 4 independent experiments are represented + sd. * = p> 0.05 with

Student’s t test in comparison with the condition with glucose only.

Anoikis resistance

Anoikis is a type of cell death generated when the cells are not allowed to interact with
an extracellular matrix. To detach from the original tumor and form metastases, cancer cells
need to resist anoikis. Such ability requires major metabolic changes (Caneba et al., 2012; Lu
et al., 2015). Due to their metastatic phenotype, MDA-MB-231 can survive when they are not
allowed to adhere, compared with non-metastatic cell lines. In order to investigate to what
extent cN-Il and CD73 can be involved in anoikis resistance, we cultured our cell models in low
adhesion culture plates for 24 h. Their survival was then assessed with an Annexin-V/PI

staining.

In the models that under-expressed CD73 by shRNA transfection, cells tended to survive
better than those with unmodified CD73 expression levels (Figure 19-A). Nevertheless, the
observed difference was not significant. Interestingly, complete knock out of CD73 was not
associated with a better survival (Figure 19-B). On the contrary, we observed that neither
CD73 or cN-Il complete knock out was associated with an accentuated anoikis resistance.
These results indicate that the metabolic pathways that are regulated by cN-Il and/or CD73

do not interfere with those that are required for anoikis resistance.
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Discussion

So far, our models allowed us to observe some differences in metabolic plasticity that
depend on cN-Il or cN-Il and CD73 expression. Nevertheless, these trends do not seem to
affect cancer cell survival or proliferation. At this point, it is thus difficult to confirm whether
cN-1l and CD73 represent relevant targets to deregulate cancer cell metabolism and favor cell

death. The experiments we performed revealed a link between cN-Il and autophagy. This
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could be due to an imbalance in intracellular nucleotide pools, caused by the absence of the
enzyme. Indeed, as cN-lIl modulates intracellular nucleotide pools, variations in its overall
activity could impact these nucleotide pools and thus the energy charge (Cividini et al., 2015c).
As a result, this can end in AMPK activation and modulations of downstream pathways (such
as autophagy). Autophagy is not only a recycling but also a clearance pathway, that favors
intracellular ROS elimination. Therefore, to better understand how autophagy overactivation
could benefit cN-ll-deficient cells, it is necessary to study AMPK activation and ROS managing
in our models. To study this question, it is also important to keep in mind that the chemical
autophagy inhibitor, chloroquine can affect various factors in cells. Thus, silencing autophagy-

related genes can be a more relevant and specific strategy in this context.

We observed that cN-1I/CD73 cells express high levels of hexokinase IV and glucose-6-
phosphate isomerase mRNAs, contrary to GGPDH mRNA. This could be the reflection of an
enhanced glucose entry in these cells, in response to ATP deprivation and aiming to enhance
the glycolytic flux to provide energy. Although these observations suggest that cN-1I"//CD73"
cells might use the glycolytic pathway better than the other models, further experiments are
needed to know if these differences are functional. Indeed, it could be interesting to assess
hexokinase |, Il and Il expressions in these models, to measure glucose consumption and to
evaluate if cN-Il and CD73 expression are associated with any differences in glucose
transporters. Combined with the study of specific metabolites of glycolysis and pentose-
phosphate pathways, this could help us to better understand the glucose metabolism-related
enzymes expression variation we observed. Indeed, because of is numerous levels of
regulation, glucose-6-phosphate dehydrogenase expression is not enough to reflect the
pentose phosphate pathway activation. In the cells, this enzyme can be monomeric and latent
or dimeric and active. Glucose-6-phosphate dehydrogenase activity is also negatively
regulated by NADPH, the product of the reaction catalyzed by this enzyme (Au et al., 2000). In
addition, is has been described that cN-Il can metabolize NAD-related nucleotides (Kulikova
et al., 2015). We can then imagine that this function interacts with AMP dephosphorylation to
impact global cell metabolism. Very interestingly, G6PDH expression and activity can be
regulated by cAMP, that is generated downstream adenosine signaling, confirming the
necessity to measure extracellular adenosine pools variations according to cN-Il and CD73

expressions.
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When we assessed anoikis resistance in the metastatic cell line MDA-MB-231, we
observed that these cells survive well when they don’t adhere to the culture dishes in an
optimal way, and we did not observe any striking role for cN-Il or CD73 in this characteristic.
Nevertheless, this does not exclude a role for these enzymes in the acquisition of anoikis
resistance. Indeed, with their metastatic phenotype, MDA-MB-231 might not be as sensitive
to metabolic changes involved in anoikis resistance as non-metastatic models. During our
work on cell migration, we noticed that cN-ll-deficiency was associated with TIMP-1
downregulation (see part lll). Ricca and colleagues demonstrated that TIMP-1 expression is
associated with anoikis resistance acquirement during melanoma genesis (Ricca et al., 2009).
This observation confirms that anoikis resistance study might be more relevant in non-
metastatic models, to establish a possible link with cN-Il and /or CD73. Thus, it would be
interesting to repeat this assay in non-metastatic models. Also, Lu and colleagues
demonstrated that ROS favor anoikis resistance (Lu et al., 2015). As we previously showed,
decreased cN-Il expression is associated with a better cellular equipment against ROS
accumulation. Considering these points, it remains relevant to expect cN-Il expression to

impact anoikis resistance.
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Part II: cN-Il, CD73 and cancer cell migration

In cancer, enhanced migration is one of the parameters that promotes metastases
occurrence, and thus participates in cancer aggressiveness. Considering that adenosine can
affect cell migration in several cancer cell lines, we wanted to evaluate a possible role for cN-

Il and CD73 in this process, in MDA-MB-231.

We realized preliminary assays on MDA-MB-231 cells with cN-Il and/or CD73
downregulation, in classic culture conditions or in presence of AMP (1 mM) (Figure 20). These
experiments revealed that cN-11'"“CD73"e&" and cN-I1'"“CD73'"% cells migrated faster than the
models with high cN-Il expression, suggesting that this enzyme could negatively regulate
migration in this cell line. In cN-1I"8"CD73Me" cells, exposure to AMP (1 mM) reduced cell

migration. We then hypothesized that extracellular nucleotide stress can also impact and
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Figure 20: Cell migration in MDA-MB-231 with decreased cN-Il and/or CD73 expressions
(A), or in presence of extracellular AMP (B). The wound was created with an insert that was
present in culture dishes until the cells become confluent. Then the insert was removed, and
the medium replaced. We monitored wound healing by taking pictures of the wound twice a
day (0, 5, 24 and 29 hours after insert removal).
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We further continued to explore this migration using the knock-out models for cN-Il and
CD73. This work corresponds to the major part of this PhD as to a manuscript submitted for

publication. | therefore present this part with the submitted paper (see following pages).
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Abstract
Purine metabolism involves various intracellular and extracellular enzymes including cN-

Il and CD73 that dephosphorylate intracellular and extracellular nucleoside monophosphates
into their corresponding nucleosides. Given nucleotide and nucleoside trafficking and their
roles in cell biology, it is possible that cN-Il and CD73 are involved together in processes that
regulate cancer cell aggressiveness. We abolished cN-Il and/or CD73 expression in the triple
negative human breast cancer cells MDA-MB-231, using the CRISPR/Cas9 technique, and
evaluated the impact of knock-out of cN-lIl and CD73 on intracellular nucleotide pools,
nucleotide metabolism-related gene expression and cell migration under an extracellular
nucleotide stress. Intracellular nucleotide contents were altered in the modified cell models
both at the basal level and after exposure to adenosine or AMP, in particular for the
intracellular contents of AMP, adenosine, IMP and inosine. Altered cN-Il and CD73 contents
were also associated with modifications in cell migration, and we show that decreased TIMP-
2 expression, increased expression of MMP-2 and MMP-9, as well as an increase in the COX-
2/PGE2/Akt pathway, are involved in this process. Our results show new and important roles
of cN-Il and CD73 in cancer cell biology and provide insight into the interactions between
different intracellular pathways. These observations are expected to be associated to the

interplay between intracellular and extracellular nucleotide metabolisms and contents.
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Introduction
The purine nucleoside adenosine and its phosphorylated metabolites play major roles in

human physiological and pathological conditions. Within a tumor, ATP can for example
stimulate the anti-tumoral response of the infiltrated immune system as well as inhibit the
growth of cancer cells, whereas adenosine inhibits the immune system and induces apoptotic
cell death of cancer cells at higher concentrations (1). These effects are somewhat tissue- and
cell-specific and depend on the cellular expression of ATP (P2) and adenosine (P1, ADORA)
receptors, as well as the associated intracellular signal transduction machinery. Adenosine can

also enter the cell and exert its biological properties after phosphorylation to AMP or ATP (2).

As effects of adenosine are dependent on its concentration, the expression and activities
of purine metabolism enzymes within the tumor are expected to play a role cellular processes.
In the extracellular compartment, adenosine is produced from the degradation of ATP by the
subsequent actions of CD39 and CD73 (3). It can thereafter either interact with its receptors,
enter the cell through nucleoside transporters or be transformed to inosine by adenosine
deaminase (ADA) (3). Intracellularly, adenosine, that can either come from the extracellular
compartment or the hydrolysis of intracellular AMP or S-adenosyl-methionine, is rapidly
phosphorylated to AMP by adenosine kinase (ADK), and thereafter to ADP and ATP.
Intracellular purine metabolism involves a number of enzymes including ADA and nucleotide

degrading enzymes such as cN-1 and cN-II (2).

Several of the aforem{Citation}entioned proteins have gained increased attention over
the last decade, and we are particularly interested in the 5’-nucleotidases CD73 (NT5E) and
cN-Il (NT5C2). The latter is an IMP/GMP-preferring enzyme for which a phosphotransferase
activity has also been described (4), and both enzymes have demonstrated roles in cancer
biology. Indeed, the proliferation of astrocytoma cells (ADF) was increased in case of enhanced
cN-Il expression (5) whereas its down-regulation did not influence the proliferation of other
cell lines of various origins transfected with cN-ll-targeting shRNA (6,7). However, in the breast
cancer cell line MDA-MB-231, downregulation of cN-Il by stable shRNA was associated with
an increased adaptability to glucose starvation, indicating an important role in cancer cell
biology (8). cN-Il is also involved in the response to cancer treatments (5,7,9). Concerning
CD73, the modulation of its activity by enzymatic inhibitors or of its expression level in cancer

cells, has allowed to show its involvement in cell proliferation (10-12), cell migration (13,14)
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and sensitivity to radiation based or targeted cancer treatments (15,16). Both cN-Il (17) and

CD73 (18-20) are currently considered as potential targets in oncology.

In the current work, we studied the implication of CD73 and cN-Il in breast cancer cell
biology using an original set of MDA-MB-231 cell models expressing both CD73 and cN-Il, only
CD73 or cN-ll or none of these. In addition to the study of the models in classical cell culture
conditions, we evaluated their response to high concentrations of AMP and adenosine that

correspond to those which can be observed in case of extracellular nucleotide stress.

Material and methods

Cell culture and transfection
Human triple negative breast cancer cell line MDA-MB-231 was obtained from ATCC and

cultivated in RMPI medium (Roswell Park Memorial Institute, RPMI 1640, Gibco)
supplemented with bovin fetal serum and penicillin/streptomycin (Thermofisher Scientific).
Cells were routinely tested for Mycoplasma every two weeks. CD73 and/or cNIl knockout
MDA-MB-231 cells were generated using CRISPR/Cas9 technology. Oligonucleotides were
inserted into pLentiCRISPRv2-blast or pLentiCRISPRv2-puro plasmids (Addgene) using BsmBI
(ThermoFisher-Fermentas). Virus were produced using HEK 293T cells and a 24-hours
incubation and used for the infection of cells, and stable models were selected with puromycin
and/or blasticidine. Target RNA sequences for CD73 and cN-ll plasmids were: 5’-
CCACTAGCATCTCAAATATC-3" and 5’- CTCCGTCTTTGACACACTGTA-3’ respectively. Cells were
cultured in complete Roswell Park Memorial Institute (RPMI 1640, Gibco) medium
supplemented with 10% (v/v) fetal bovine serum (FBS), and Fungizone (2 pug/mL), 100 U/mL
penicillin, 100 mg/mL streptomycin on collagen-coated flasks in a humidified atmosphere

containing 5% CO, at 37 °C.

Protein expression
Cells (0.5-1.10° per flask) were seeded and allowed to adhere before exposed to

experimental conditions for indicated times. Cells were then rinsed with PBS and lysed with
RIPA buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate,
1 M DTT, 1 M NaF, protease inhibitor cocktail, phosphatase inhibitors buffer and 100 mM

sodium orthovanadate). After centrifugation (15 minutes, 12,000 g, 4 °C), the supernatant was
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collected and proteins (60 pg per condition) were separated by electrophoresis and
transferred to a nitrocellulose membrane with the iBlot™2. TBS or PBS Odyssey Blocking buffer
were used to block the membranes and dilute the primary antibodies, and PBS or TBS to rinse
the membranes and dilute the secondary antibodies. The following antibodies were used:
anti-cN-Il (H00022978-M02, Novus Biologicals: 1/500), anti-pAkt (4060, Cell Signaling: 1/500),
anti-Akt (5239, Cell Signaling: 1/500), anti-COX-2 (12282S, Cell Signaling: 1/500), anti-actin
(A5441, Sigma: 1/5000), anti-murine antibody (IRDye® 800CW, 1/5000; LI-COR Biosciences) or
anti-rabbit antibody (IRDye® 680, 1/5000; LI-COR Biosciences). Protein expression was

visualized using the Odyssey infrared system (LI-COR Biosciences).

Surface CD73 and CD44 expression were evaluated by flow cytometry using anti CD73
FITC-labeled (561245, BD Biosciences: 1:100) and anti CD44 APC-labeled (A10193, BD
Biosciences: 1/100) antibodies. Cells were harvested, pelleted and washed in PBS before a 30-
minute staining with the antibodies or control isotypes (IgG1 FITC-labeled: 555748, BD
Biosciences: 1:100 and IgG1 APC-labeled: 555751, BD Biosciences: 1:100).

Gene expression
The mRNA extraction was performed on pellets of 108 cells using the Qiagen column

extraction kit, following the manufacturer’s protocol. One microgram of mRNA was used for
reverse transcription with M-MLV reverse transcriptase (InVitrogen). The cDNA was then
diluted, and relative gene expression was determined by PCR in a final volume of 5 pL with
Takyon NO ROX SYBR Mmix dTTP blue mix (Eurogentec). Runs were performed on a Lightcycler
(LC480, Roche Life Science). Quantification was performed by the AACT method using 28S
MRNA expression as a housekeeping gene. Primers used for each gene are indicated in

supplemental table 1.

Intracellular nucleotides

Cells (2.10° per flask in 25 mm? flasks) were seeded, adhered for 24 hours and incubated
1 hour in presence or absence of 400 or 1600 uM adenosine (Sigma) or AMP (Adenosine 5'-
monophosphate sodium salt, Sigma). Then, cells were rinsed three times with cold PBS and

nucleotides were extracted with a cold mixture of methanol/water (70/30, v/v). Extracted
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nucleosides and nucleotides were quantified using a validated on-line extraction coupled with
LC-MS/MS method as described elsewhere (21). The nucleotide content of each sample was
calculated as the peak area of the compound of interest divided by the peak area of the
corresponding internal standard, further divided by the number of cells as determined in a
flask containing cells cultured under the same conditions. For each nucleoside and nucleotide,
internal standards were corresponding labelled nucleotides except for IMP for which we used

GTP.

Proliferation assay
Cells were trypsinized and rinsed with PBS to be stained with a solution containing 10 uM

Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) in PBS-0.1% BSA. After labeling, the
cells were rinsed with culture medium and seeded in 6-well plates (200,000 cells/well) and
allowed to adhere before being exposed to adenosine or AMP. Cells from one well were
scratched for every time point, to evaluate CFSE fluorescence by flow cytometry on the BD

FACSCalibur.

Cell survival
Cells (50,000 per well in 24 well-plates) were cultured in presence or absence of the

indicated compounds. At indicated times, cells were trypsinized, washed and stained with an
anti-Annexin V-FITC labeled antibody and propidium iodide, from the Annexin-V FLUOS kit
(11 988 549 001, Roche). The associated fluorescence was measured by flow cytometry on the
BD LSR-Il Flow Cytometer. Annexin-V and/or Pl-positive cells were considered as dead or dying

cells.

Cell migration
Cells (50,000 per well) were seeded in an ImageLock 96-well plate (Essen BioScience) and

cultured to confluence. A wound was generated, using a Woundmaker 96 (Essen BioSCience).
The cells were then rinsed with PBS and incubated under the indicated conditions. The wound

closure was monitored every 2 hours with the IncuCyte® device.
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PGE2 quantification

Cells (500,000 per well) were seeded and allowed to adhere before being exposed to fresh

culture medium with or without 15 uM arachidonic acid (Abcam). PGE2 quantification was
performed on cells supernatants after a 24-hour incubation, using the Parameter™

Prostaglandin E; assay from R&D Systems®, according to the manufacturer’s protocol.

Statistical analysis

The statistical analysis was performed using unpaired Student’s t-test with Microsoft

Excel. p < 0.05 was considered statistically significant.
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Results

Characterization of cell models
Using the CRISPR/Cas9 technique, we abolished cN-Il and/or CD73 expressions in the

triple-negative breast cancer cells MDA-MB-231. These were validated for their cN-Il and CD73
protein expression and hereafter referred to as cN-II"/CD73* cells (expressing both cN-Il and
CD73), cN-II*/CD73" cells (expressing cN-Il but not CD73), cN-II/CD73" (deficient for cN-Il but
not for CD73) and cN-II"/CD73" (deficient for both cN-Il and CD73) (Figure X). We determined
the expression profiles of selected genes coding adenosine receptors or proteins involved in
purine metabolism (Table 1). Among the notable differences, we observed a 6-8-fold decrease
in the expression of adenosine receptor Al in cells without cN-Il, a 11-fold increase of ADSL in
cN-II*/CD73 cells as well as a 1.5-1.7-fold increase in SAMHD1 in cN-ll negative cells as

compared to their respective controls.
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Figure 1. Characterization of cell models. (A): The CD73 and/or cN-Il knockout of MDA-

MB-231 cells were obtained by using CRISPR/Cas9 technology as described in material and

methods. (B): cN-Il expression in the different cell models as determined by Western blot.

Representative image of 3 similar Western blots. (C): CD73 expression in the different cell

models as determined by flow cytometry. The image is representative of 4 analyses.

Gene cN-II*/CD73* cN-1I*/CD73" cN-1I/CD73* cN-1I'/CD73"
Al 0.74 +£0.19 0.98 +0.13 0.12 £0.03 *** | 0.16 £ 0.07 ***
A2A 0.84 +0.17 0.78 +0.04 0.69+£0.22 0.78 £0.34
A2B 5.40+3.93 5.92 +4.08 9.58 +6.51 6.37 +3.26
ADA 0.85+0.12 0.90 + 0.06 0.72+£0.12 1.19+0.11 **
AdK 0.97 £0.09 1.03+0.10 0.88+0.12 0.82+0.07 *
AMPD3 1.14 +0.26 1.21+0.27 1.56 +0.36 1.55+0.28
ADSL 0.95+0.04 11.01+0.02 * 0.85+0.07 0.92 £0.10
ENT-1 1.94 +0.68 2.02 +£0.82 1.59+0.98 1.61+0.47
dCTPPP1 1.06 £0.11 1.10+£0.10 1.14 £ 0.06 1.35+0.20 *
GMPR 1.12 £0.08 1.57 £0.02 *** 0.82 £0.1 ** 1.09+0.20
GMPS 1.11+£0.10 1.37+0.17 * 1.16 £0.11 1.12+£0.15
IMPDH1 1.12+0.13 1.24+£0.10 1.16 £0.22 1.46 £0.48
IMPDH2 1.13+0.18 1.16 £ 0.09 1.03 £0.06 1.01 +0.09
ITPA 0.96 £ 0.04 1.06+0.17 1.18+0.24 1.59+0.21 ***
PNP 1.05+0.14 0.72 £0.06 ** 1.19+0.21 1.55+0.26 *
PPAT 2.13+0.79 1.72+0.41 2.19+0.40 2.40+0.64
RRM1 1.19+0.17 1.12+0.44 0.87 £0.60 0.92+0.76
SAMHD1 1.43+0.36 1.61 +0.15 2.10+0.24 * 2.70£0.36 **

Table 1. mRNA expression of nucleotide metabolism-related genes and ADORA receptors.

The mRNA expressions of nucleotide metabolism-related genes and ADORA receptors were

assessed in the four models. Values are means * standard deviation of four independent

experiments, performed in triplicate. * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 using

Students t-test in comparison with the corresponding cN-II'/CD73* cell line. See legend of

supplemental table 1 for gene names.
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Extracellular adenosine affects cell proliferation and survival,

independently from cN-Il and CD73 expression levels
Considering the involvement of nucleotide pools in cell biology, we investigated whether

cN-Il and/or CD73 invalidation impacted cell proliferation and viability. Under classical culture
conditions, these knockouts did not impact cell proliferation. As showed in figure 2A, CSFE
intensity decreased to 23.5-25.4% of the initial value after 3 days for all the cell lines. In
addition, cell viability did not vary between the cells lines after 72 h in culture (16.2 £+ 7.9%
annexin-V positive cells for cN-II"/CD73*, versus 17.6 + 3.5%, 15.7 + 8.0% and 16.7 + 8.3% for
cN-II"/CD73*, cN-1I*/CD73 and cN-1I"/CD73 respectively) (Figure 2B). These results indicate
that cN-1l and CD73 are not involved in cell proliferation or survival in these cells under these

conditions.

As cN-Il and CD73 are involved in nucleotide metabolism, we investigated to what extent
these enzymes could modify cellular response to an extracellular nucleotide stress. To do so,
we exposed the cells to high concentrations of AMP or adenosine (1600 uM) and evaluated
their survival after 48 hours. AMP exposure resulted in a strong increase of Annexin-V cells in
CD73-expressing cells (from 16.2 £ 7.9% annexin-V positive cells to 41.6 + 12.2% for cN-
[I/CD73%, and from 15.7 + 8.0% to 32.2 + 10.4% for cN-II"/CD73"* cells). This AMP-induced cell
death was totally inhibited by the CD73 inhibitor APCP (adenosine 5'-(a,B-
methylene)diphosphate), indicating that CD73 activity, and thus adenosine generation, is
required for this effect in these models. Interestingly, cN-1I"/CD73" cells also showed a slight
sensitivity to AMP (27.8 + 4.2% vs 16.7 + 8.3% for cN-II*/CD73*, p<0.05), and this was
insensitive to APCP. Overall, exposure to adenosine induced cell death in all cell models. This
effect was not significantly different according to cN-Il or CD73 expressions, suggesting that
these 5’-nucleotidases do not modulate cell survival in the presence of high concentrations of
adenosine. When the cells were incubated with adenosine and A2A and A2B antagonists, we
did not observe any rescue. Thus, A2A and A2B receptors do not appear to mediate adenosine-

induced cell death.

Similarly, we evaluated cell proliferation in the presence of initial high concentrations of
AMP or adenosine (Figure 2A). The two purines slowed proliferation down, but adenosine had
a stronger effect than AMP (p<0.05 for adenosine, p>0.05 for AMP). Indeed, in presence of

this nucleotide, CFSE intensity after 3 days reached 34.9-43.0 % of the initial value, versus
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23.5-25.4% without adenosine. Here again, no difference was observed according to cN-Il and

CD73 expression between our cell lines.

These results show that an extracellular nucleotide stress can affect cell proliferation and

cell survival, independently from cN-Il or CD73.

cN-II*/CD73* cN-1I*/CD73-

CFSE intensity
CFSE intensity

time (days) time (days)

cN-II-/CD73* cN-II-/CD73"

CFSE intensity

time (days)
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30 ~

%Annexin-V positive cells

0 L S B i ! .
cN-11+/CD73+ cN-11+/CD73- cN-1I-/CD73+ cN-lI-/CD73-

Figure 2. Cell proliferation (A) and survival (B) of cell models. For cell proliferation (A),
MDA-MB-231 were stained with CFSE to monitor cell proliferation over 4 days by flow
cytometry in the presence or not of 1600 uM adenosine (eeeee) or AMP (- - - - - ). The graphs

show mean values of 4 independent experiments and error bars are standard deviations. * = p
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<0.05; *** = p < 0.005 using Students t-test for comparison between adenosine and the control
condition. (B): Cell death was evaluated for the four cell models in presence or not of adenosine
(1600 uM), AMP (1600 uM) or in presence of a combination of AMP (1600 uM) + APCP (100
uM) or adenosine (1600 uM) + the A2A antagonist ZM 241385 (100 nM) + the A2B antagonist
PSB 1115 (10 uM). APCP alone did not trigger any cell death. The graphs show mean values of
5 independent experiments and error bars are standard deviations. * = p < 0.05; ** = p < 0.01

using Students t-test in comparison with the control condition.

Intracellular nucleotide pools in cell models

As indicated in the introduction, both cN-Il and CD73 are expected to regulate
intracellular nucleotide pools. We measured the pools, with a particular interest in purines, in
the four models both under baseline conditions and after 1 hour exposure to 400 or 1600 uM
adenosine or AMP (Figure 3 and table S1). Exposure to 2-deoxyglucose was used as a control
condition inducing major modifications in NTP content. Both ATP and AMP were more
abundant in cN-1I/CD73* and cN-II"/CD73 cells (1.4-1.6-fold) and unmodified in cN-II*/CD73"
cells as compared to control cells, whereas adenosine and inosine were decreased in both
models lacking CD73 (1.4-3.2-fold) and increased in cN-1I/CD73* cells (4.6- and 2.1-fold,
respectively). Finally, IMP was decreased in cN-II"/CD73"* (3.4-fold) and increased in cN-II
/CD73 cells (5.7-fold). After exposure to adenosine or AMP, control cells had increased
content of ATP, AMP, inosine and adenosine. In modified cells, the most striking modifications
were the increases of AMP and adenosine in cN-11/CD73* cells and of IMP in cN-1I-/CD73" cells.
The lack of precision in samples exposed to adenosine or AMP resides in the important matrix

effect during the LC-MS/MS analysis.
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Figure 3. Relative content of intracellular adenosine, inosine, AMP and IMP in the studied
cell models, cN-1I'/CD73* in white, cN-1I"/CD73" in bright grey, cN-II/CD73" in dark grey and
cN-II/CD73 in black. Nucleotides and nucleosides were quantified as indicated in material and
methods and are expressed as mean values of the ratios of the surface of the compound of
interest / surface of internal standard. The results where further normalized for one million
cells and expressed as relative content as compared to unexposed cN-II'/CD73* cells in each
experiment. Values shown are from three independent experiments. For complete data, see
supplemental table 2. . * = p < 0.05,** = p < 0.01, in comparison with the control cell line, # =

p <0.05; ##=p <0.01; ### = p < 0.001 in comparison with the control condition..
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cN-Il expression and extracellular adenosine modulate cell migration

Cell migration was determined by a wound healing assay and monitored by the IncuCyte®
device (Figure 4A). Under normal cell culture conditions, reduced cN-Il expression was
associated with enhanced migration (Figure 4B). Indeed, 10 hours after injury, the wound
confluence reached 70 to 77% confluence for cN-1I"/CD73* and cN-1I"/CD73" cells, whereas it
was only 49 to 50% in cN-1I*/CD73 and cN-II*/CD73" cells. We also monitored cell migration in
the presence of high initial concentrations of AMP. In cN-II"/CD73* cells and cN-II/CD73" cells,
AMP delayed migration. This effect was reversed by co-incubation with APCP, suggesting that
its conversion into adenosine might be necessary to impact this biological process. When we
realized this assay in the presence of high initial concentrations of adenosine, the nucleoside
reduced cell migration in all our cell models, confirming the importance of adenosine
production to affect migration (Figure 4C). Interestingly, we observed that cell migration was
more affected by adenosine in cN-Il-deficient cells when we compared them to their cN-II-
proficient counterparts (A wound confluence = 9.9 £ 3.6 in cN-II*/CD73" cells versus 36.5 +
14.8 in cN-II"/CD73* cells and A wound confluence = 13.0 £ 2.9 in cN-II*/CD73 cells versus 29.5
+ 12.3 in cN-II'/CD73 cells) (Figure 4D). Again, we observed that AMP could also impact
migration in cN-1I"/CD73" cells, suggesting a CD73-independent AMP effect. The observed
effects were not due to adenosine or AMP-induced cell death as these purines do not

significantly affect cell survival at early times (Figure S1).
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Figure 4. Cell migration of studied cell models. Cell migration assay was performed as
indicated in material and methods and in (A). (B): Images of cell confluence just after (Oh) and
10h after injury (left panel), and the quantification of confluence at 10h after injury (right
panel). Graphs are mean values of 4 independent experiments performed in triplicate, and
error bars are standard deviation. * = p < 0.05 using Students t-test in comparison with the cN-
II'/CD73* cells. (C): Effect of adenosine (light curves) as compared to unexposed cells (dark
curves) over 16 hours after injury. Graphs show mean values of 4 independent experiments
performed in triplicate, and error bars are standard deviation. * = p < 0.05; ** = p < 0.01 using
Students t-test in comparison with the control conditions 16 hours after injury. (D):

Quantification of the effect of adenosine on cell migration. A wound confluence was calculated
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10 hours after injury. For each cell line we used A wound confluence = | % wound confluence
control - % wound confluence qdenosine|. Graphs show mean values of 4 independent experiments
performed in triplicate, and error bars are standard deviation. * = p < 0.05 using Students t-

test in comparison with the corresponding cN-lI-proficient cell line.

cN-Il knock-out is associated with migration-related molecular

modifications
In order to find molecular modifications explaining the differences in cell migration

between the cN-lI-deficient and cN-Il-proficient cells, we studied the gene expression of the
migration-related genes TIMP-1, TIMP-2, MMP-2 and MMP-9. In accordance with the
migration experiments, at the mRNA level, cN-II-proficient cells expressed high levels of TIMP-
2, but not TIMP-1, when compared to their cN-ll-deficient counterparts (Figure 5A). Indeed,
cN-1l knock out was accompanied with a reduction of 34.0 % and 47.9 % of TIMP-2 mRNA
expression for cN-II"/CD73* and cN-II/CD73" respectively. MMP-2 and MMP-9 were more
expressed in the CD73-deficient cells but did not vary according to cN-Il expression. This MMP

upregulation was not associated with any significant modification in cell migration.

CD44 is a glycoprotein that promotes migration in cancer cells, in association with MMPs
(22). Thus, we determined its expression at the surface of our cell models and observed that
cN-ll-deficient cells express more CD44 than their cN-llI-proficient counterparts (Figure 5B).
CD73 deficiency is also associated with CD44 overexpression as the pro-migration glycoprotein
is more expressed on CD73-deficient cells than on their CD73-proficient counterparts.
Nevertheless, cN-11"/CD73" cells expressed more CD44 than and cN-1I"/CD73* cells but this was
not associated with a better migration. This suggests that high CD44 expression is not
sufficient to mediate migration enhancement in these models, similarly as for MMP-2 and

MMP-9 mRNA expressions.
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Figure 5. Expression of migration-related proteins in cell models. (A): mMRNA expression of
TIMP-1, TIMP-2, MMP-2 and MMP-9. Graphs are mean values of at least three independent
experiments performed in triplicate and error bars are standard deviation. * = p < 0.05; **=p
< 0.01 using Students t-test in comparison with the corresponding cN-II-proficient cell line. # =
p < 0.05; ## = p < 0.01 using Students t-test in comparison with the corresponding CD73-
proficient cell line. (B): CD44 protein expression at cell surface was evaluated by flow cytometry
as indicated in material and methods. Autofluorescence is similar for all models and we used

cN-II'/CD73* to represent autofluorescence in the figure.

cN-Il modulates the COX-2/PGE2/Akt axis

COX-2 is involved in breast cancer cell lines migration (23-25) and TIMP-2 expression as

well as cell migration can be regulated by the COX-2/PGE2/Akt axis (26). Indeed,
cyclooxygenase 2 (COX-2) participates in prostaglandin E2 (PGE2) production from arachidonic
acid in cells. The latter can bind surface G-protein-coupled receptors, leading to the activating
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phosphorylation of Akt thus promoting cell migration and regulating gene expression.

Therefore, we investigated the involvement of this axis in our models.

cN-Il deficiency was associated with a drastically increased COX-2 expression both at the
MRNA and protein levels (Figure 6A and B). This was accompanied with a higher PGE2
secretion in the cell supernatants (Figure 6C). Interestingly, CD73 silencing alone was not
associated with any significant changes but when associated with cN-Il silencing in MDA-MB-
231 cN-II"/CD73;, it accentuated COX-2 expression (25.2-fold mRNA expression in cN-1I//CD73*
and 55.2-fold in cN-II"/CD73", as compared to cN-II*/CD73*) and PGE2 production.

In the presence of the COX-2 inhibitor celecoxib, cell migration tended to slow down in
the four cell lines (cN-11*/CD73* cells were limited to 19.5 + 9.4% wound confluence after 10
hours, cN-11"/CD73 to 21.1 + 11.7% wound confluence, cN-lI"/CD73* to 30.6 + 8.7% wound
confluence and cN-I1I'/CD73" to 31.2 + 14.5% wound confluence under 60 uM celecoxib
exposure) (Figures 6D and E). On the contrary, arachidonic acid-induced PGE2 production
slightly enhanced cell migration in cN-II-proficient models, thus confirming that COX-2 activity
indeed is involved in this process in these models. Interestingly and similarly as for adenosine,
celecoxib was able to more efficiently reduce cell migration in the cN-lI-deficient cells, and
particularly when it was associated with a CD73-deficiency. Consistently, arachidonic acid
enhanced migration less efficiently in cN-Il deficient cells, suggesting that cN-Il can be involved

in COX-2/PGE2 pathway modulations of cell migration.

AKT activation occurs downstream of prostaglandin receptor activation and is known to
promote cell migration (27-30). Therefore, we evaluated its phosphorylation status, and
observed that cN-lI-negative cells, and particularly cN-1I"/CD73" cells showed a stronger basal
activation of AKT (Figure 6F). In addition, incubation of the cells with 1600 uM adenosine for
1 hour reduced both COX-2 expression and AKT phosphorylation, which could explain its
impact on cell migration. Taken together, these results suggest that the COX-2/PGE2/AKT axis

is reinforced when cN-Il is not expressed, and that adenosine can inhibit this axis.
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to adenosine (1600 uM). In (A), graphs are mean values of four independent experiments
performed in triplicate and error bars are standard deviation, and (B) shows a representative
image of 3 experiments. * = p < 0.05 and *** = p < 0.001 using Students t-test in comparison
with the corresponding cN-Il-proficient cell line. PGE2 secretion (C) was quantified in cell
supernatants after a 24-hour stimulation with arachidonic acid (15 uM). Graphs are mean
values of three independent experiments performed in triplicate and error bars are standard
deviation. * = p < 0.05 using Students t-test in comparison with the corresponding cN-II'/CD73*
cell line. (D): Wound healing curves of cells exposed or not to celecoxib 60 uM or arachidonic
acid (30 uM). Graphs are mean values of three independent experiments performed in
triplicate and error bars are standard deviation. (E): quantification of the effect of celecoxib
and arachidonic acid on cell migration 10 hours after injury. For each cell line and each
condition, we used A wound confluence = | % wound confluence control - % wound confluence
celecoxib or arachidonic acid |. Graphs are mean values of four independent experiments performed in
triplicate and error bars are standard deviation * = p < 0.05 using Students t-test in comparison
with the corresponding cN-Il-proficient cell line. (F): AKT expression and phosphorylation in

cells exposed or not to adenosine (1600 uM, 1 hour).
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Discussion
In this study, we established new cell models that allow a better understanding of the role

of 5’-nucleotidases in cancer cell biology. We showed that in the triple negative human breast
cancer cell line MDA-MB-231, cN-Il and CD73 are not necessary for cell proliferation or survival
in optimal conditions or under a nucleotide stress. We also confirmed that adenosine impacts
cancer cell biology. In the tumor microenvironment, extracellular adenosine concentrations
increase because of the inflammatory environment and damaged cells. In this case, the
concentrations can reach the micromolar range whereas it is in the nanomolar range under
physiological conditions (31). It is then rapidly degraded by ADA or internalized by the
nucleoside transporters. Because of its very short half-life time, we worked with very elevated
initial concentrations of adenosine (1600 puM), but these experimental conditions do not allow
us to know what concentrations of adenosine remain in the medium at the time points we
studied. Although considered as pro-tumoral due to its immunomodulatory effects, we
confirmed that adenosine also affects cancer cells themselves by slowing their proliferation
and migration down and triggering cell death when it is present at very high concentrations,
as suggested in previous studies (32,33). Nevertheless, cN-lIl and CD73 do not seem to be

involved in these effects.

Little is known about the intracellular nucleoside and nucleotide pools in cells with
modified expression of cN-Il and CD73. In non-cancerous cells, the overexpression of cN-Il was
shown to only slightly decrease the NTP (34—36). No major differences were observed in stably
transfected cells with cN-Il targeting shRNA in four different models (6), and to our knowledge,
no similar data exist for CD73-modified cancer cells. In our models, ATP was increased when
either or both cN-Il and CD73 were knocked out. We also observed increased IMP and
decreased inosine in cN-1I"/CD73" cells, consistent with the fact that these cells will degrade
less IMP into inosine. Whether these differences in nucleotide pools have a role in the

phenotypic differences observed between our cell models remains unclear.

Previous studies suggested that CD73 is involved in cancer cell migration by adenosine-
dependent and by adenosine-independent mechanisms. Our results support the predominant
importance of this nucleoside in MDA-MB-231 cells, as adenosine could affect cell migration
independently from CD73 expression. cN-1I"/CD73" cell migration and survival were also

sensitive to AMP, independently from its conversion to adenosine. This could be the result of
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a direct effect of the nucleotide on these cells. Indeed, it has been described that the
adenosine receptor Al can be activated by AMP (37) and can mediate cell death (38). In our
models, Al seems to be downregulated in cN-1I/CD73" cells at the mRNA level and might not
be responsible for this effect. To our knowledge, other enzymes such as prostatic acid
phosphatase can hydrolyze AMP, independently from CD73 and mediate cell death by
generating adenosine (3). Thus, their expression could be studied in cN-II/CD73" cells

compared to the other models.

Metalloproteinases 2 and 9 are gelatinases that are highly expressed in MDA-MB-231 and
regulate cell migration. Their activity depends on their regulators TIMP-1 and TIMP-2. High
TIMPs expression being associated with low MMP maturation and reduced migration, and low
TIMPs expression with enhanced MMP activity and migration (26), we evaluated their
expression level in our models. We observed higher levels of MMP-2 and MMP-9 mRNA
expression under CD73 knockout. This phenomenon is possibly related to purine-dependent
signaling. Indeed, by degrading AMP, CD73 promotes high concentrations of adenosine which
reduce AKT activation. Downstream of AKT, different gene expressions, including MMPs, are
enhanced (39-41). Thus, in the absence of CD73, we expected reduced pools of adenosine,
leading to a better AKT phosphorylation and a higher expression of MMPs, consistently with
previous studies that show an inhibiting effect of adenosine on MMPs expression (42,43).
However, our experiments did not reveal any detectable difference in AKT activation or in
migration in the absence of CD73 alone. Notably, in association with cN-II deficiency this AKT
activation was more striking. This suggests that MMP-2 and MMP-9 expression modulation
upon CD73 silencing is not sufficient to significantly impact cell migration but these alterations
interact with cN-ll-relative modifications to accentuate the pro-migration phenotype induced

by cN-Il silencing.

Similarly, COX-2 expression can also be promoted by AKT activation (44,45) and regulated
by adenine nucleotides/nucleosides. Lin et al. showed that ATP promotes COX-2 expression
through NADHP oxidase activity and an increase in ROS production (44,46). The triphosphate
nucleotide and adenosine tend to have opposite effects on cells and consistently with this
notion, in our models, the latter triggered a lower AKT activation and a lower COX-2

expression.
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Furthermore, in the models we generated, cN-Il repression was associated with an
enhanced constitutive AKT activation that can mediate the observed COX-2 expression. As
mentioned above, cN-Il can impact intracellular nucleotide pools and its knock-out could lead
to an accumulation of nucleotides and a decrease of adenosine levels in the cytoplasm. As
adenosine is transferred to the extracellular space through nucleoside transporters, this
decrease can also impact extracellular adenosine pools thus resulting in a weaker activation
of ADORA receptors, which is not intuitively in accordance with the observed increase in AKT-
activation in our models. Nevertheless, we must also consider the expression and activation
state of the four PGE2 receptors (EP1, EP2, EP3 and EP4 receptors) on our models. Indeed,
these receptors also belong to the GPCR family and are expressed in MDA-MB-231 cells (47).
These receptors share intracellular mediators with ADORA signaling involving cAMP
generation and Akt activation. Simultaneous activation of these pathways can thus lead to
different cellular responses according to the panel of receptors expressed on the cells. In
addition, our team previously demonstrated that cN-Il downregulation with stable shRNAs is
accompanied with lower ROS contents (8). If a complete knockout of this 5’-nucleotidase
impacts the cellular ROS contents, that should also act towards a downregulation of COX-2.
Adenosine also has dual roles on phospholipase A2 expression and activity, which releases
arachidonic acid, the PGE2 precursor (48,49), thus revealing another link between nucleotide
metabolism and COX-2/PGE2 axis. Further studies are needed to decipher whether COX-2 is
directly impacted by cN-Il and nucleotide metabolism. A recent study demonstrated that cN-
Il interacts with cytoplasmic proteins, opening the possibility of enzymatic activity-
independent effect of the cytosolic 5'-nuceotidase. Indeed, cN-Il interacts with the
inflammasome protein Ipaf, through its leucin-rich region (LRR) (50), and the absence of this
interaction could result in Ipaf oligomerization and thus inflammation. Other members of the
inflammasome such as NLRP3 also contain a LLR region and could interact with cN-Il, and
NLRP3 has been described as regulating COX-2 expression and PGE2 production (51). With a
similar mechanism as for Ipaf, an interaction between cN-Il and NLRP3 could consequently

impact COX-2 expression as observed in our models.

We showed that the COX-2/PGE2/AKT axis is involved in MDA-MB-231 cell migration and
that this axis is reinforced when cN-Il is absent. Indeed, the COX-2 inhibitor celecoxib reduced

cell migration and, inversely, stimulating PGE2 production with arachidonic acid enhanced cell
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migration. Nevertheless, cN-II-deficient cells are more sensitive to these effects than their cN-
lI-proficient counterparts. These observations suggest that cN-Il could play a role in migration
regulation. The way cN-Il is involved in cell sensitivity to agents that can impact on cell

migration remains to be studied.

In conclusion, the generation of cN-Il and/or CD73 knockout cells provides new tools that
will serve to better understand nucleotide metabolism in cancer, and more precisely, the
possible interaction between intra- and extracellular compartments of purines. Indeed, until
recently, these compartments have been studied independently and in various pathologies,
whereas we know that both direct (nucleoside and nucleotide transports) and indirect
(transcriptional regulation through receptors) interplays exist. The model characterization
provides further arguments to consider these 5’-nucleotidases as targets to disturb cancer cell

biology and reduce their aggressiveness.
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Figure S1. Cell death after a 10-hour exposure to adenosine (1600 uM) or AMP (1600 uM).
Cell death was assessed by flow cytometry with Annexin-V and Pl labelling. Graphs are mean
values of three independent experiments performed in duplicate and error bars are standard

deviation. Students t-test was used to compare exposed cells to controls. NS: p>0.05.
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Gene Forward primer (5°-3’) Reverse primer (5’-3’)

28S CGATCCATCATCCGCAATG AGCCAAGCTCAGCGCAAC
COX-2 TTATCTACACGGCCCCCTCC CCAGGGCACGATGAAGTCAC
MMP-2 CCCATGAAGCCCTGTTCACC CGGTCGTAGTCCTCAGTGGT
MMP-9 GGAGGCGCTCATGTACCCTA GGACCATAGAGGTGCCGGAT
TIMP-1 GCTGGAAAACTGCAGGATGGA | GTCCGTCCACAAGCAATGAGT
TIMP-2 TTATCTACACGGCCCCCTCC CCAGGGCACGATGAAGTCAC
Al GAGCCGGAGGACTATGAGC CCTGGAAAGCTGAGATGGAG
A2A TCTTCAGTCTCCTGGCCATC TCCAACCTAGCATGGGAGTC
A2B CTCCATCTTCAGCCTTCTGG CATGCACAGGTAACCAGCAC
ADA AGCCCAAAGTAGAACTGCAT CAAACTTGGCCAGGAAGTCT
ADK TCACCCAAGGGAGAGATGAC | ATAGTGGCCAGCACGGATAC
AMPD3 CACATCCTGGCTCTCATCAC GGATGTGTGTGTCCACCTTT
ADSL ACAGCTACCGCTCACCTCTT GCCGCCATGTCCGGAATTTA
ENT-1 GCTGGGTCTGACCGTTGTAT CTGTACAGGGTGCATGATGG
dCTPP1 AAATGGACATCAACCGGCGA AGTCACAGGGAATGTCCGCA
GMPR ACGGAGTGTGCTGGAGAAGT | CCTCCTGCGTGCTTGTTCAT
GMPS AAGGTTGTGGCACGTTCTGG AGGGTGGAACTGTGCTCCAT
IMPDH1 | GCCCTAGATTGGACCTCGCT ATCAGGTAGTCCGCCATGCT
IMPDH 2 | GAGGCAATGTGGTCACTGCT GATGGAGCCACTTCCCATGC
ITPA TCCCCGGCCCCTACATAAAG GCTGACTTGTCCTCGAACCC
PNP TGAAATCCCCAACTTTCCCC AATGTCACCTTCCAGAGTGGG
PPAT ATCACACAAGGGAATGGGTC ACAGACCAATACCATG ACGC
RRM1 GCAGCTGAGAGAGGTGCTTT | CAGGATCCACACATCAGACA
SAMHD1 | CCCAAAGTTTGCTCGACGTGA | TGCATTCCATAATCCATGTTG
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Supplemental table 1. Primers for gene expression analysis.

COX-2: cyclooxygenase 2; MMP-2: matrix metalloproteinase 2; MMP-9 : matrix
metalloproteinase 9,; TIMP-1: tissue inhibitor of metalloproteinases 1, TIMP-2 : tissue
inhibitor of metalloproteinases 2; A1: adenosine receptor 1; A2A: adenosine receptor 2A; A2B:
adenosine receptor 2B; ADA: adenosine deaminase; ADK: adenosine kinase; AMPD3: AMP
(adenosine monophosphate) deaminase 3; ADSL: adenylosuccinate lyase; ENT-1: equilibrative
nucleoside transporter 1; dCTPP1: dCTP (deoxycytidine triphosphate) pyrophosphatase 1;
GMPR: GMP (guanosine monophosphate) reductase; GMPS: GMP synthetase; IMPDH 1: IMP
(inosine monophosphate) dehydrogenase 1; IMPDH 2: IMP (inosine monophosphate)
dehydrogenase 2; ITPA: Inosine triphosphate pyrophosphatase; PNP: purine nucleoside
phosphorylase; PPAT: amidophosphoribosyltransferase; RRM1: ribonucleoside-diphosphate

reductase large subunit; SAMHD1: deoxynucleoside triphosphate triphosphohydrolase
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Part Ill: tumor cN-Il and CD73 roles in the interplay with NK cells.

Material and methods

NK lymphocytes and MDA-MB-231 co-culture

NK cells were maintained in culture in RMPI medium, supplemented with bovine

fetal serum, penicillin/streptomycin and I1L-2(100 Ul/mL).

For survival and spontaneous cytotoxicity assessments, NK cells were stained with
PKH26 red, a fluorescent marker. We cultured them with MDA-MB-231 in RMPI
medium, supplemented with bovine fetal serum and penicillin/streptomycin. NK and
MDA-MB-231 cells survival was evaluated by flow cytometry, with an Annexin-V

labeling. The PKH26 red labelling allowed to discriminate the two populations.

Antibody-driven cell cytotoxicity assessment

We tested NK cells ADCC, targeting RL cells (Non-Hodgkin’s lymphoma CD20
positive cell line as target cells) in the presence or absence of MDA-MB-231. The target
cell cytoplasm was marked with calcein a luminescent marker. We then incubated the
target cells with the effector NK in a medium containing 10 mg/mL Rituximab for 4
hours. The cells were present at the following ratio 2:1 (effector:target), in the presence
or not of MDA-MB-231 expressing or not cN-Il and CD73. Calcein release was then
measured as a marker of target cells lysis. The experiment comprised a negative control,
without Rituximab, to take in account the antibody-independent calcein release in our

analysis.

Extracellular purine nucleotides regulate immune cells biology by directly interacting with

the specific receptors expressed on their surface. Therefore, purine metabolism is widely
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studied for new therapies in oncology, in order to promote immune cells activation and tumor-
specific responses. Nevertheless, little is known about how cancer cells can impact the
immune system under a nucleotide stress. We showed that nucleotide stress can modify cell
biology and gene expression. Our study on cell migration revealed that there is a link between
nucleotide metabolism actors and secreted factors. Thus, we can hypothesize that nucleotide
stress or nucleotide metabolism-related enzymes can alter cancer cells secretome, thus
orientating immune cells fate. Here, we investigated whether our cell models can impact NK

lymphocytes survival and function.

NK cells participate in antitumor responses by direct cytotoxicity (perforine/granzyme or
TRAIL/TRAIL-receptor systems), or indirectly by promoting anti-tumor responses through
cytokine production mainly. In the tumor context, they are often inhibited and therapeutic
strategies aim to reactivate them to improve treatment efficiency (Li and Sun, 2018). They are
also implicated in the antitumor activity of monoclonal antibodies via the antibody-dependent
cell cytotoxicity (ADCC), in which an antibody linked to an antigen on the cancer cell can

activate NK cells through interaction with FcR.

Results

Effect of cancer cells on NK survival

NK cells need to be supplied with IL-2 to be maintained in culture. Considering this point,
we evaluated their survival in co-culture with MDA-MB-231 without any additional IL-2
addition, in order not to impact the breast cancer cells biology and evaluate NK cells survival,
independently from what is triggered by IL-2 absence. A preliminary experiment allowed us to
observe that IL-2 deprivation does not impact NK cells survival at early times (Figure 21).
Consequently, we measured NK survival in presence of MDA-MB-231 before 24 hours of

culture.
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Figure 21: NK cells survival was assessed after 24, 48 or 72 hours in culture with or
without IL-2. Bars represent means # sd of 2 independent experiments.

MDA-MB-231 have a protective effect on NK cells. Indeed, the latter survive better when
they are in presence of the triple negative breast cancer cells than when they are cultured
alone (Figure 22). This effect is not dependent on cN-Il or CD73 expressions but is related to
the proportion of MDA-MB-231 versus NK cells. Indeed, the less the malignant cells are
present, the more this effect seems to be marked, confirming the possibility of a complex
interplay between these two cell types. This ratio-dependent effect could also be due to the

ability of MDA-MB-231 to secrete IL-2 (Yiu and Toker, 2006).
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Figure: NK cells survival was assessed after 4 or 24 hours in co-culture with different
ratios of MDA-MB-231 expressing or not cN-Il and CD73.Ratios are noted as NK:MDA-MB-
231 Bars represent mean #sd. * = p < 0.05; ** = p < 0.01 and *** = p < 0.005 with a Student’s
t test, in comparison with NK cells alone. For cN-II/CD73" cells, n=2

Effect of cancer cells on NK cells cytotoxic functions

Oppositely to the protective effect of MDA-MB-231 on NK lymphocytes, when they are in
sufficient ratio, NK cells display a slight spontaneous toxicity toward breast cancer cells (Figure
23). Interestingly, it seems to affect them more when cN-Il is absent, indicating that cN-1l might
play a role in cancer cell vulnerability (from 14.9 + 7.3% dead cells, without NK to 18.9 + 10.0
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% dead cells in presence of NK in cN-11*/CD73* cells versus 17.0 = 7.7% dead cells, without NK
t0 28.6 +9.28 % dead cells in presence of NK in cN-1I"//CD73* cells; and from 18.0 + 10.5% dead
cells, without NK to 20.0 + 7.2 % dead cells in presence of NK in cN-II*/CD73 cells versus 18.5
+ 8.7% dead cells, without NK to 27.9 + 11.9 % dead cells in presence of NK in cN-1I"/CD73"

cells.
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Figure 23: MDA-MB-231 cells survival was assessed after 24 hours in co-culture with NK
cells. Different ratios were used and noted as NK:MDA-MB-231 Bars represent mean #sd. * =
p <0.05; ** =p <0.01 and *** = p < 0.005 with a Student’s t test, in comparison with NK cells
alone. For cN-1I/CD73" cells, n=2

We assessed MDA-MB-231 ability to modifiy NK cell ADCC (antibody dependent cytotoxic
activity). We used CD20-expressing RL malignant cells as targets. In the presence of rituximab,
an anti-CD20 antibody, NK cells were able to induce RL lysis. However, in presence of MDA-
MB-231, this ADCC was almost 50% less efficient (57.5% cell lysis in absence of MDA-MB-231
versus 26.8%, 32.4%, 28.1% and 32.9% in coincubation with cN-1I*/CD73*, cN-I1*/CD73", cN-II
/CD73* and cN-1I"/CD73" cells repectively). No significant difference was noticed according to
cN-Il and CD73 expression in the breast cancer cells. Thus, MDA-MB-231 reduce NK cells
cytotoxicity but this phenomenon is not dependent on cN-Il or CD73 expression. To decipher
whether this effect was mediated by a secreted factor, we incubated NK cells in MDA-MB-231
supernatants to assess their cytotoxic activity. Here, no reduction of ADCC was observed, and
consistently wih the previous observation, this was true independently from cN-Il and CD73

expressions on MDA-MB-231. Thus, these triple-negative breast cancer cells are able to
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diminish NK cell cytotoxicity by a process that does not invove a secreted factor or cN-Il and

CD73 in the conditions we tested.
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Figure 24: NK cells ADCC on RL cells was assessed in presence of MDA-MB-231
expressing or not cN-Il and/or CD73 (A), or in these cells’ supernatant (B). Bars represent

mean of 3 independent experiments #sd. * = p < 0.05.
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Discussion

Here, we showed that MDA-MB-231 can modulate NK cells survival and functions. In the
conditions we tested, we could not observe any involvement of cN-Il and CD73 in these
processes. It is not clear whether the protective effect of MDA-MB-231 is mediated by

secreted factors or if it requires a direct contact between the two cell types.

Nevertheless, we previously demonstrated that cN-Il expression can modulate secreted
factors production such as PGE2 (see Part Il). Previous studies demonstrated that NK cells
express PGE2 receptors and that this prostaglandin reduced NK functions in breast cancers
(Holt et al.,, 2011, 2012). Thus, in experimental conditions that would allow an optimal
interaction between these innate immune cells and our models, we could observe cN-II
dependent effects on NK cells. Moreover, these lymphocytes express adenosine receptors at
their surface. Consequently, if cN-ll and CD73 expressions on tumor cells impact
microenvironment adenosine pools, it constitutes another way by which NK lymphocytes can

be affected by tumor cells, by mechanisms involving nucleotide metabolism.

Here, we started to study the interplay between cancer cells and its immune
microenvironment by focusing on the signals sent by tumor cells and how these signals can be
modulated by cN-Il and CD73 expressions. This strategy represents a tool to predict immune

cell behavior according to the biological characteristic of cancer cells within the tumor.

Further in vitro studies are needed to quantify polarizing cytokine production by tumor
cells to determine if they favor the constitution of an immunotolerant microenvironment. For
example, TGFB and IFN-B are interesting to quantify as they orientate neutrophils polarization
toward a pro- or anti-tumor phenotype (Fridlender et al., 2009). PGE2 and IFNy play similar

roles for macrophage polarization (Ferrante and Leibovich, 2012).

We also need to generate immunocompetent in vivo models to study the effects of a
paracrine interplay between cancer and NK cells. Histological studies will allow us to identify
what immune cells are recruited in tumors with versus without cN-Il or CD73 expressions. To

go further, ex vivo experiments can help to evaluate how their function is impacted.
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Upcoming experiments aim to focus on neutrophils and macrophages, in a similar way as
we did for NK cells. By evaluating their survival and function (phagocytosis mainly), in
proximity with tumor cells with altered cN-Il and CD73 expressions will provide preliminary

data for in vivo analyses of these immune cells in the tumor infiltrate.

General discussion and perspectives

Metabolism and migration

We showed that cN-Il downregulation or suppression can be associated with metabolic
changes. More precisely, cells without cN-Il have modified glucose metabolism-related
enzyme expression and we suggest that it could be accompanied with modified glucose
uptake, lactate production and medium acidification, even though it is not the case shRNA-
mediated cN-Il down-regulation (Bricard et al., 2017). Such modifications can represent an
interesting link between metabolic adaptability and cell migration. Indeed, lactate can act as
a signaling molecule and trigger hypoxia-induced factor 1 (HIF-1) expression. The latter can
induce CD73 and pro-migration molecules expression such as MMPs (Baumann et al., 2009;
Goetze et al,, 2011; Guedes et al., 2016; Kato et al.). Thus, in our models, it is relevant to
evaluate migration, CD73 and MMPs expression and sensitivity to lactate and to associate this
with an evaluation of lactate production according to cN-ll and CD73 expressions. This axis
could complete the PGE2/COX-2 axis that is involved in migration in our cell lines, as we

demonstrated.

Moreover, glucose-6-phosphate isomerase mMRNA expression is increased under
simultaneous invalidation of cN-Il and CD73. This glycolysis enzyme can be secreted in cancers,
and act as a pro-migration autocrine factor (Ahmad et al., 2011; Funasaka et al., 2009) by
stimulating the expression of pro-migration factors such as IL-8 (Araki et al., 2009). This
particularity could also represent a link between metabolic regulations and migration. Indeed,
glucose-6-phosphate isomerase overexpression correlates with increased cell migration. It
should be reminded that cN-1I"/CD73" cells and cN-11/CD73* cell both display enhanced motility
abilities, but this is accentuated in the cN-II"/CD73™ model. By its interaction with migration
pathways, glucose-6-phosphate isomerase overexpression could participate in this difference.

We also need to further investigate the activation state of pentose phosphate pathway in our
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models and in non-metastatic cell lines with suppressed cN-1l and/or CD73 expression, as the
non-oxidative branch activation of this pathway is considered as a characteristic of metastatic
tumors. Other metabolic pathway can also interact with migration processes and therefore

could be related with cN-Il expression (Han et al., 2013).

To go further in metabolic studies, we realized an analysis of intracellular metabolites in
our models expressing or deficient for cN-Il and/or CD73, in basal conditions or under a
nucleotide stress (high adenosine or AMP concentrations). The analysis of these data is
currently ongoing and will hopefully provide us new insights to unravel the involvement of 5°-

nucleotidases in global cell metabolism.

Migration and immunity

We mentioned the importance of quantifying cytokine secretion by our models, to
evaluate what signals the cancer cell sends to its immune microenvironment, according to its
cN-Il or CD73 status. Among these cytokines, several can impact cancer cell migration. It is the
case for PGE2 in our cN-Il-deficient models, and that was shown to reduce cytotoxic functions
and phagocytosis while favoring cancer cell migration (Kalinski, 2012). TGFB is another
example of cytokine that can orientate immune cells polarization, as it favors the
differentiation of tumor-associated neutrophils toward their pro-tumoral phenotype, N2
(Fridlender et al., 2009), and influences on cell migration according to the context (Matise et
al., 2012; Zhao et al., 2018). In response to these signals, immune cells not only modify their
function but also acquire the ability to modify the extracellular matrix, which potentially
facilitates tumor cell migration. Consequently, it is interesting to study the interaction
between these pathways in immunocompetent mice with cN-Il or CD73-expressing tumors.
To so do, we plan to invalidate cN-Il and/or CD73 in 4T1 cells that are murine breast cancer
cells. We will then develop corresponding tumors in BALB/c immunocompetent mice in order
to analyze if the immune infiltrate varies according to the models. From these, we will be able
or determine whether cN-Il and CD73 expressions in tumor cells makes immune cells
secretome vary or if the secreted cytokines belong to different phenotypes or activation

states. Among the secreted factors, it will be important to focus on matrix-remodeling
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proteins in order to initiate histological analysis of tumors to evaluate to what extent the

matrix could favor or not tumor spreading.

Tumor 5’-nucleotidases and adipose tissue

Similarly to immune cells, adipose tissue is a major component of microenvironment.
Indeed, adipose tissue favors tumor aggressiveness by diverse processes. For example, it
provides energy for cancer cells by modifying their metabolism (Nieman et al., 2011), or
protects them from therapeutic agents (Duong et al., 2015). Little is known about the direct
link between white adipose tissue and nucleotides/nucleosides but it has been described that
brown and beige adipose tissue are sensitive to adenosine signaling (Gnad et al., 2014; Rines
et al., 2015). In mouse adipose tissue, it has been described that adenosine impacts adipocytes
metabolism by interfering with lipolysis. (Johansson et al., 2008). Such interactions can alter
the interplay between adipocytes and cancer cells in a way that could render cancer cells more
vulnerable. Moreover, adipose tissue metabolism can indirectly be impacted by extracellular
adenosine, via immune cells (Cséka et al., 2014). Thus, because of these interplays, studying
the roles of tumor cN-Il and CD73 in the relationship between tumor cell and adipose tissue is

a major parameter to focus on.

In our team a project focuses on the protective effect of adipocytes on cancer cells toward
chemotherapies (Duong et al., 2017). Therefore, we possess in vivo and in vitro tools to study
the interaction between adipose tissue and cancer cells. For example, we could assess
whether differentiated adipocytes still display these protective properties in presence (or
after an exposure) to an extracellular nucleotide stress. Moreover, the roles of cN-Il and CD73

in this adipocyte-induced resistance could be investigated thanks to our models.
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General conclusion

This project allowed us to increase our knowledge about the roles of 5’-nucleotidases and
particularly cN-Il in cancer cell biology. Indeed, we showed how they can be involved in
processes that impact cancer cell aggressiveness and plasticity. So far, we have focused on
one cancer cell line (MDA-MB-231, which is a metastatic breast cancer cell line) that allowed
us to reveal these new roles for cN-Il and CD73. Nevertheless, in a different model, we might
observe different behaviors as both adenosine receptors and nucleotide pools regulations
might be different. In order to answer this, we already engineered cN-Il and CD73 knockout in
NCI-H292, a lung adenocarcinoma cell line with a less metastatic phenotype than MDA-MB-
231, and we are currently using these models to investigate the same points that we did with
MDA-MB-231 (PhD project of MZ Raza). Also, to confirm our data about cN-Il involvement in
metabolic adaptability and migration, we will re-express cN-Il in our cN-ll-deficient models
using a plasmid coding a cN-Il sequence insensitive to the guide RNA. In addition, these two
5’-nucleotidases could also be involved in tumor initiation or cell transformation. Thus, further
studies based on non-cancerous cells and non-metastatic cells are needed to complete the
knowledge about cN-Il and CD73 in cancer. This work confirmed the relevance of emerging
strategies to target nucleotide metabolism in cancer therapy, but such models will help to
better understand at what point of cancer development they can be the most relevant, and
to refine the future therapeutic strategies to avoid selection pressure that favor relapses in

patients.

We also confirmed an important role of extracellular nucleotide pools on cell behavior,
by altering it with high concentrations of adenosine or AMP. To obtain more precise
information and potentially more physiologically relevant conditions, we are trying to use a
pump-based system allowing to control or have a constant concentration in extracellular
purines. Also, the quantification of extracellular nucleotides and nucleosides in cell culture
experiments will have a major importance for the understanding of the interplay between
extracellular and intracellular nucleotide metabolisms and pools. The set-up of a UHPLC-based

technique for this is ongoing in our laboratory.

From the observations we made, new perspectives arise to better understand cN-Il, CD73

and nucleotide metabolism in cancer cells, and ongoing research should allow answering
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these questions. To open the field, we realized a RNA sequencing and relative quantification
in our models. The resulting analysis will reveal other genes and pathways that can be

modified by cN-1l and CD73 and thereby can be relevant subject for future studies.
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