T. Brokenshire, Wheat Debris as an Inoculum Source for Seedling Infection by Septoria tritici, Plant Pathology, vol.24, pp.202-207, 1975.

J. Brown, L. Chartrain, P. Lasserre-zuber, and C. Saintenac, Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding, Fungal Genet Biol, vol.79, pp.33-41, 2015.

T. Bruce, GM as a route for delivery of sustainable crop protection, J Exp Bot, vol.63, pp.537-541, 2012.

P. C. Brunner, S. Torriani, and D. Croll, Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen, Mol Biol Evol, vol.30, pp.1337-1347, 2013.

J. Butault, N. Delame, F. Jacquet, and G. Zardet, L'utilisation des pesticides en France : état des lieux et perspectives de réduction, alim'agri, 2012.

D. Chandler, A. S. Bailey, and G. M. Tatchell, The development, regulation and use of biopesticides for integrated pest management, Philos Trans R Soc Lond B Biol Sci, vol.366, 2011.

N. Chantret, J. Salse, and F. Sabot, Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops), The Plant Cell, vol.17, pp.1033-1045, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00964165

L. Chartrain, P. A. Brading, J. C. Makepeace, and J. Brown, Sources of resistance to septoria tritici blotch and implications for wheat breeding, Plant Pathology, vol.53, pp.454-460, 2004.

Z. Chen, J. Malamy, and J. Henning, Induction, modification, and transduction of the salicylic acid signal in plant defense responses, Proc Natl Acad Sci U S A, vol.92, pp.4134-4137, 1995.

Z. Chen, J. W. Ricigliano, and D. F. Klessig, Purification and characterization of a soluble salicylic acid-binding protein from tobacco, Proc Natl Acad Sci U S A, vol.90, pp.9533-9537, 1993.

P. Cheval, A. Siah, and M. Bomble, Evolution of QoI resistance of the wheat pathogen Zymoseptoria tritici in Northern France, Crop Protection, vol.92, pp.131-133, 2017.

O. Chtioui, Production sélective de lipopeptides par Bacillus subtilis en bioréacteur à disques tournants : thèse de doctorat. Lille, Université Lille I sciences et technologies, vol.196, 2011.

L. Cohen and Z. Eyal, The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici, Plant Pathology, vol.42, 1993.

, Conseil international des céréales, pp.487-513, 2018.

E. Coppin, R. Debuchy, S. Arnaise, and M. Picard, Mating types and sexual development in filamentous ascomycetes, Microbiol Mol Biol Rev, vol.61, pp.411-428, 1997.

, of systemic acquired resistance, activates gene expression and disease resistance in wheat, Plant Cell, vol.8, p.10

P. Goupil, R. Benouaret, and O. Charrier, Grape marc extract acts as elicitor of plant defence responses, Ecotoxicology, vol.21, pp.1541-1549, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964740

D. Guériaux and R. Tessier, La réduction de l'utilisation des produits phytopharmaceutiques, Alim'agri, 2018.

P. Halama and L. Lacoste, Déterminisme de la reproduction sexuée du Phaeosphaeria ( Leptosphaeria ) nodorum agent de la septoriose du blé. II. Action de la température et de la lumière, Canadian Journal of Botany, vol.70, pp.1563-1569, 1992.

K. E. Hammond-kosack and J. J. Rudd, Plant resistance signalling hijacked by a necrotrophic fungal pathogen, Plant Signal Behav, vol.3, pp.993-995, 2008.

H. Michele and C. , Septoria on cereals: a study of pathosystems, vol.353, 1999.

, New Phytologist, vol.145, pp.7-9

M. Heil, Trade-offs associated with induced resistance. In: Induced Resistance for Plant Defense, pp.171-192, 2014.

G. Henry, P. Thonart, and M. Ongena, Le biocontrôle pour la protection des cultures, 15 recommandations pour soutenir les technologies vertes, Biotechnol Agron Soc Environ Herth A, 2011.

A. Heydari and M. Pessarakli, A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists-SciAlert Responsive Version, vol.10, pp.273-290, 2010.

R. J. Hillocks, Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture, Crop Protection, vol.31, pp.85-93, 2012.

H. Hippchen, H. Schneider, and R. Schwingeler, Process for obtaining amino acids from the raw juices of sugar manufacture, 1978.

. Hunter and R. Coker, The teleomorph stage, Mycosphaerella graminicola, in epidemics of septoria tritici blotch on winter wheat in the UK, Plant Pathology, vol.48, pp.51-57, 1999.

P. Jacques, Surfactin and other lipopeptides from Bacillus spp, pp.57-92, 2011.

P. Jacques, F. Krier, J. Deravel, F. Coutte, M. Bechet et al., Les lipopeptides References Benouaret R, Goujon E, Goupil P, vol.89, pp.95-97, 2013.

A. W. Bown and B. J. Shelp, The Metabolism and Functions of [gamma]-Aminobutyric Acid, Plant Physiol, vol.115, pp.1-5, 1997.

P. Cheval, A. Siah, and M. Bomble, Evolution of QoI resistance of the wheat pathogen Zymoseptoria tritici in Northern France, Crop Protection, vol.92, pp.131-133, 2017.

H. Fones and S. Gurr, The impact of Septoria tritici Blotch disease on wheat: An EU perspective, Fungal Genet Biol, vol.79, pp.3-7, 2015.

C. Garcion, O. Lamotte, J. L. Cacas, and J. P. Métraux, Induced resistance for plant defence: A sustainable approach to crop protection, pp.106-136, 2014.

P. Goupil, R. Benouaret, and O. Charrier, Grape marc extract acts as elicitor of plant defence responses, Ecotoxicology, vol.21, pp.1541-1549, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964740

J. I. Harland, C. K. Jones, and C. Hufford, , vol.17, pp.443-363, 2007.

H. Fones and S. Gurr, The impact of Septoria tritici Blotch disease on wheat: An EU perspective, Fungal Genet. Biol, vol.79, pp.3-7, 2015.

S. F. Torriani, J. P. Melichar, C. Mills, N. Pain, H. Sierotzki et al., Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control, Fungal Genet. Biol, vol.79, pp.8-12, 2015.

B. A. Fraaije, H. J. Cools, J. Fountaine, D. J. Lovell, J. Motteram et al.,

A. , Role of ascospores in further spread of QoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola, Phytopathology, vol.95, pp.933-941, 2005.

C. L. Palmer and W. Skinner, Mycosphaerella graminicola: Latent infection, crop devastation and genomics, Mol. Plant Pathol, vol.3, pp.63-70, 2002.

G. Lemire, M. L. Nguyen, B. Fassotte, P. Du-jardin, F. Verheggen et al., Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review, Biotechnol. Agron. Soc. Environ, vol.20, pp.299-313, 2016.

M. Yusuf, S. Hayat, M. N. Alyemeni, Q. Fariduddin, and A. Ahmad, Salicylic Acid: Physiological Roles in Plants in SALICYLIC ACID, pp.15-30, 2013.

T. Gaffney, L. Friedrich, B. Vernooij, D. Negrotto, G. Nye et al., Requirement of salicylic Acid for the induction of systemic acquired resistance, Science, vol.261, pp.754-760, 1993.

L. Faize and M. Faize, Functional analogs of salicylic acid and their use in crop protection, Agronomy, vol.8, p.5, 2018.

J. Glazebrook, Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens, Annu. Rev. Phytopathol, vol.43, pp.205-227, 2005.

A. C. Vlot, D. M. Dempsey, and D. F. Klessig, Salicylic acid, a multifaceted hormone to combat disease, Annu. Rev. Phytopathol, vol.47, pp.177-206, 2009.

S. Molinari and E. Loffredo, The role of salicylic acid in defense response of tomato to rootknot nematodes, Physiol. Mol. Plant Pathol, vol.68, pp.69-78, 2006.

T. V. Pancheva, L. Popova, and A. N. Uzunova, Effects of salicylic acid on growth and photosynthesis in barley plants, J Plant Physiol, vol.149, pp.57-63, 1996.

A. N. Uzunova, L. Popova, F. Mauch, B. Mauch-mani, C. Gaille et al., Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase, Photosynthetica, vol.38, issue.2, pp.67-77, 2000.

A. R. War, M. G. Paulraj, M. Y. War, D. Ignacimuthu-s-;-durango, N. Pulgarin et al., Effect of Salicylic Acid and Structurally Related Compounds in the Accumulation of Phytoalexins in Cotyledons of Common Bean (Phaseolus vulgaris L.) Cultivars. Molecules, Cicer arietum L.). Plant Signal Behav, vol.6, issue.15, pp.179-200, 2007.

G. Lyon, Induced Resistance for Plant Defense: A Sustainable Approach to Crop Protection, pp.9-23, 2007.

Y. Bektas, T. Eulgem, T. Iwai, S. Seo, I. Mitsuhara et al., Probenazole-Induced Accumulation of Salicylic Acid Confers Resistance to Magnaporthe grisea in Adult Rice Plants, Plant Cell Physiol, vol.26, pp.915-924, 2007.

C. Tayeh, B. Randoux, N. Bourdon, and P. Reignault, Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew, J. Plant Physiol, vol.170, pp.1620-1629, 2013.

K. Li and E. Xu, The role and the mechanism of gamma-aminobutyric acid during central nervous system development, Neurosci. Bull, vol.24, pp.195-200, 2008.

B. J. Shelp, G. G. Bozzo, C. P. Trobacher, A. Zarei, K. L. Deyman et al., Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress, Plant Sci, vol.193, pp.130-135, 2012.

T. Saito, C. Matsukura, M. Sugiyama, A. Watahiki, I. Ohshima et al., Screening for ?-aminobutyric acid (GABA)-rich tomato varieties, J. Japan. Soc. Hort. Sci, vol.77, pp.242-250, 2008.

C. Yu, L. Zeng, K. Sheng, F. Chen, T. Zhou et al., Aminobutyric acid induces resistance against Penicillium expansum by priming of defense responses in pear fruit, Food Chem, vol.159, pp.29-37, 2015.

J. Yang, C. Sun, Y. Zhang, D. Fu, X. Zheng et al., Induced resistance in tomato fruit by ?-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata, Food Chem, vol.221, pp.1014-1016, 2016.

H. S. Seifi, K. Curvers, D. De-vleesschauwer, I. Delaere, A. Aziz et al.,

, Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea, New Phytol, vol.199, pp.490-504, 2013.

S. Schilling, I. Stenzel, A. Von-bohlen, M. Wermann, K. Schulz et al., Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions, Biol. Chem, vol.388, pp.145-153, 2007.

A. Siah, C. Deweer, F. Duyme, J. Sanssené, R. Durand et al., Siah A.; Deweer C.; Morand E.; Reignault P.; Halama P. Azoxystrobin resistance of French Mycosphaerella graminicola strains assessed by four in vitro bioassays and by screening of G143A substitution, Plant Pathol, vol.59, issue.31, pp.737-743, 2010.

M. Seki, M. Hatsuda, Y. Mori, S. Yoshida, S. Yamada et al., A Practical Synthesis of (+)-Biotin from L-Cysteine, Chem. Eur. J, vol.10, pp.6102-6110, 2004.

J. Nakamura, K. Asai, K. Nishida, and H. Sasaki, A novel prodrug of salicylic acid, salicylic acid-glutamic acid conjugate utilizing hydrolysis in rabbit intestinal microorganisms, Chem. Pharm. Bull, vol.40, pp.2164-2168, 1992.

S. Khalikov, . Kh, M. Kodirov, and S. V. Alieva, Synthesis and anti-inflammatory activity of acetylsalicylamino acids and peptides, Chem. Nat. Comp, vol.42, pp.204-207, 2006.

R. Sahli, C. Rivière, A. Siah, A. Smaoui, J. Samaillie et al., Biocontrol activity of effusol from Juncus maritimus extremophile plant against the wheat pathogen Zymoseptoria tritici, Environ. Sci. Pollut. Res, vol.2017, pp.1-9

S. Mejri, A. Siah, F. Coutte, M. Magnin-robert, B. Randoux et al., Essential oils, inorganic acids and potassium salts as control measures against the growth of tomato root rot pathogens in vitro, Environ. Sci. Pollut. Res, vol.2017, issue.37, pp.1507-1520, 2013.

S. Panahirad, F. Z. Nahandi, and R. Safaralizadeh, Alizadeh-Salteh, S. Postharvest control of Rhizopus stolonifer in peach (Prunus persica L. Batsch) fruits using salicylic acid, J. Food Saf, vol.32, pp.502-507, 2012.

M. Béchet, J. Castéra-guy, and J. Guez, Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis, Bioresour Technol, vol.145, 2013.

S. Chandler, N. Van-hese, and F. Coutte, Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice, Oryza sativa L.). Physiol Mol Plant Path, vol.91, pp.20-30, 2015.

X. H. Chen, A. Koumoutsi, and R. Scholz, Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens, J Biotechnol, vol.140, pp.27-37, 2009.

P. Cheval, A. Siah, and M. Bomble, Evolution of QoI resistance of the wheat pathogen Zymoseptoria tritici in Northern France, Crop Prot, vol.92, pp.131-133, 2017.

. Doi,

H. J. Cools and B. A. Fraaije, Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola, Pest Manag Sci, vol.64, pp.681-68, 2008.

F. Coutte, V. Leclère, and M. Béchet, Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives, J Appl Microbiol, vol.109, pp.480-491, 2010.

F. Coutte, D. Lecouturier, A. Yahia, and S. , Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor, Appl Microbiol Biotechnol, vol.87, pp.499-507, 2010.

F. Coutte, D. Lecouturier, and V. Leclère, New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor, Process Biochem, vol.48, pp.25-32, 2013.

C. Cowger, M. E. Hoffer, and C. C. Mundt, Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar, Plant Pathol, vol.49, 2000.

R. Dean, J. A. Van-kan, and Z. A. Pretorius, The Top 10 fungal pathogens in molecular plant pathology, Mol Plant Pathol, vol.13, 2012.

J. Deravel, S. Lemière, and F. Coutte, Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew, Appl Microbiol Biotechnol, vol.98, pp.6255-6264, 2014.

L. El-chartouni, B. Tisserant, and A. Siah, Genetic diversity and population structure in French populations of Mycosphaerella graminicola, Mycologia, vol.103, pp.764-774, 2011.

G. Farace, O. Fernandez, and L. Jacquens, Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine, Mol Plant Pathol, vol.16, pp.177-187, 2015.

H. Fones and S. Gurr, The impact of Septoria tritici Blotch disease on wheat: An EU perspective, Fungal Genet Biol, vol.79, pp.3-7, 2015.

S. B. Goodwin, M. Barek, S. B. Dhillon, and B. , Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis, PLOS Genetics, vol.7, 2011.

E. Goudemand, V. Laurent, and L. Duchalais, Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat, Triticum aestivum L.). Mol Breed, vol.32, pp.563-584, 2013.

Q. Guo, W. Dong, and S. Li, Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease, Microbiol Res, vol.169, pp.533-540, 2014.

I. W. Hamley, A. Dehsorkhi, and P. Jauregi, Self-assembly of three bacterially-derived bioactive lipopeptides, Soft Matter, vol.9, pp.9572-9578, 2013.

Q. Han, F. Wu, and X. Wang, The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity, Environ Microbiol, vol.17, pp.1166-1188, 2015.

G. Henry, M. Deleu, and J. E. , The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses, Cell Microbio, vol.13, pp.1824-1837, 2011.

P. Jacques, Surfactin and other lipopeptides from Bacillus spp, Soberon-Chavez G (ed) Biosurfactants microbiology monographs, vol.20, pp.57-91, 2011.
DOI : 10.1007/978-3-642-14490-5_3

P. Jauregi, F. Coutte, and L. Catiau, Micelle size characterization of lipopeptides produced by B. subtilis and their recovery by the two-step ultrafiltration process, Sep Purif Technol, vol.104, pp.175-182, 2013.

L. N. Jørgensen, M. S. Hovmøller, and J. G. Hansen, IPM strategies and their dilemmas including an introduction to www.eurowheat.org, J Integr Agric, vol.13, issue.13, pp.60646-60648, 2014.

J. E. Henry, G. Duby, and F. , Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis, Mol Plant Microbe Interact, vol.22, pp.456-468, 2009.

G. Kema, D. Z. Yu, F. Rijkenberg, M. W. Shaw, and R. P. Baayen, Histology of the pathogenesis of Mycosphaerella graminicola in wheat, Phytopath, vol.86, pp.777-786, 1996.

G. Kema, T. Van-der-lee, and O. Mendes, Large-scale gene discovery in the Septoria Tritici Blotch fungus Mycosphaerella graminicola with a focus on in planta expression, Mol Plant Microbe Interact, vol.21, 2008.

P. I. Kim, J. Ryu, and Y. H. Kim, Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides, J Microbiol Biotechnol, vol.20, pp.138-145, 2010.

V. Leclère, M. Béchet, and A. Adam, Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities, Appl Environ Microbiol, vol.71, pp.4577-4584, 2005.

S. Olson, An analysis of the biopesticide market now and where it is going, Outlooks on Pest Management, vol.26, pp.203-206, 2015.

M. Ongena and P. Jacques, Bacillus lipopeptides: versatile weapons for plant disease biocontrol, Trends Microbiol, vol.16, pp.115-125, 2008.

M. Ongena, J. E. Adam, and A. , Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants, Environ Microbiol, vol.9, 2007.

C. Palmer and W. Skinner, Mycosphaerella graminicola: latent infection, crop devastation and genomics, Molecular Plant Pathology, vol.3, 2002.

F. Perez-montaño, A. Villegas, C. Bellogín, and R. A. , Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production, Microbiol Res, vol.169, pp.325-336, 2014.

A. Ponomarenko, S. B. Goodwin, and G. H. Kema, Septoria tritici blotch (STB) of wheat, Plant Health Instructor, 2011.

J. M. Raaijmakers, I. De-bruijn, O. Nybroe, and M. Ongena, Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics, FEMS Microbiol Rev, vol.34, pp.1037-1062, 2010.

W. Ravensberg, Crop protection in 2030: towards a natural, efficient, safe and sustainable approach, International Symposium Swansea University, 2015.

D. Romero, A. De-vicente, and R. H. Rakotoaly, The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca, Mol Plant Microbe Interact, vol.20, pp.430-440, 2007.

C. Rückert, J. Blom, and X. Chen, Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42, J Biotechnol, vol.20, pp.78-85, 2011.

A. Siah, C. Deweer, and F. Duyme, Correlation of in planta endo-beta-1,4-xylanase activity with the necrotrophic phase of the hemibiotrophic fungus Mycosphaerella graminicola, Plant Pathol, vol.59, pp.661-670, 2010.

A. Siah, B. Tisserant, E. Chartouni, and L. , Mating type idiomorphs from a French population of the wheat pathogen Mycosphaerella graminicola: widespread equal distribution and low but distinct levels of molecular polymorphism, Fungal Biol, vol.114, 2010.

A. Siah, C. Deweer, and E. Morand, Azoxystrobin resistance of French Mycosphaerella graminicola strains assessed by four in vitro bioassays and by screening of G143A substitution, Crop Prot, vol.29, pp.737-743, 2010.

A. Siah, P. Reignault, and P. Halama, Genetic diversity of Mycosphaerella graminicola isolates from a single field, Commun Agric Appl Biol Sci, vol.78, pp.437-442, 2013.

A. Siah, B. Randoux, and M. Magnin-robert, Natural agents inducing plant resistance against diseases, Natural Antimicrobial Agents, Sustainable Development and Biodiversity series, 2017.

D. Stock and P. J. Holloway, Possible mechanisms for surfactant induced foliar uptake of agrochemicals, Pest Manag Sci, vol.38, pp.165-177, 1993.

M. Strieker, A. Tanovi?, and M. A. Marahiel, Nonribosomal peptide synthetases: structures and dynamics, Curr Opin Struct Biol, vol.20, 2010.

S. Torriani, J. Melichar, and C. Mills, Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control, Fungal Genet Biol, vol.79, 2015.

Y. Touré, M. Ongena, and P. Jacques, Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple, J Appl Microbiol, vol.96, pp.1151-1160, 2004.

C. Xun-chao, L. Hui, and X. Ya-rong, Study of endophytic Bacillus amyloliquefaciens CC09 and its antifungal cyclic lipopeptides, J Appl Bio. Biotechnol, 2013.

S. Yamamoto, S. Shiraishi, and S. Suzuki, Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?, Lett Appl Microbiol, vol.60, pp.325-336, 2015.

G. Y. Yu, J. B. Sinclair, and G. L. Hartman, Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani, Soil Biol Biochem, vol.34, 2002.

, 1.77 (m, 2H, CH2), 1.86-1.97 (m, 2H, CH2)

C. Nmr, MHz, CDCl3) ? ppm: 24.8 (CH2), 25.5 (CH2), 25.8 (CH2), 33.1 (2CH2), vol.35

, 47.5 (CH), 50.6 (CH3), 52.6 (CH3), vol.60

, Anal. calcd for C16H24N2O5

N. and 8. 6. , Found: C, 59.43; H, 7.69; N, 9

, Product M19: yellow oil, vol.10

, IR ? cm-1 : 2933, p.421, 1150.

H. Nmr-;-cauliez, P. Fasseur, D. Couturier, D. Bigo, B. Kolocouris et al., 400 MHz, CDCl3) ? ppm: 1.17-1.41 (m, 4H, 2CH2), 1.68-1.74 (m, 2H, CH2), 1.741.94 (m, 4H, 2CH2), p.1233, 1996.

B. Rigo, B. Erb, S. E. Ghammarti, P. Gautret, and D. Couturier, J. Heterocycl. Chem, p.1599, 1995.

D. Fasseur, B. Rigo, C. Leduc, P. Cauliez, and S. Defretin, J. Heterocycl. Chem, p.829, 1994.

M. Seki, M. Hatsuda, Y. Mori, S. Yoshida, S. Yamada et al., Chem. Eur. J, p.6102, 2004.

F. Xue and C. T. Seto, Org. Lett, p.12, 1936.

K. S. Kumar, A. Misra, T. I. Siddiqi, S. Srivastava, M. Jain et al., 456. mixture of 1 eq. of pyroglutamic acid (2) or 2-oxo-1,3thiazolidine-4-carboxylic acid (8), hexamethyldisilazane, HMDS (2 eq.), and saccharine cat. (1,1-dioxo-1,2-benzothiazol-3-one) (0.02 eq.) was heated at 120 °C under nitrogen atmosphere for 2 up to 6 hours. The excess of HMDS was then evaporated from medium, and dichloromethane (30 mL) was added, Eur. J. Med. Chem, vol.81, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01452717

. Bistrimethylsilylpyroglutamate, The general procedure was followed using pyroglutamic acid 2 (12.9 g, 100 mmol), saccharine (0.21 g, 1.9 mmol) and HMDS (32.24 g, 200 mmol) was heated at 120°C under nitrogen atmosphere for 2 hours. 1 H NMR (400 MHz, CDCl3) ? ppm: 0.23 (s, 9H, 3CH3), 0

, The general procedure was followed using L-2-thiazolidinone-4-carboxilic acid 8 (5 g, 34.0 mmol), 1,1-dioxo-1,2benzothiazol-3-one (saccharine) (0.18 g, 1.7 mmol) and HMDS, pp.3-4

H. Nmr, CDCl3) ? ppm: 0.30 (s, 9H, 3CH3), 0.32 (s, 9H, 3CH3), 3.53 (dd, MHz, issue.400

, treated with catalytic amount of N,N'-dimethylformamide (DMF, 100 µL). The mixture was refluxed for 3 h, then excess of thionyl chloride was removed under high vacuum. Upon cooling to rt, the residue was dissolved in dry dichloromethane CH2Cl2 (DCM) (25 mL) to give acid chloride 12

H. Nmr, 400 MHz, CDCl3) ? ppm: 2.34 (s, 3H, CH3), 7.16 (dd, J = 8.0, 1.0 Hz, 1H, CH, ArH), vol.7

, A stirred mixture of compounds (9 or 10) and 2-acetoxybenzoyl chloride (12) in refluxing DCM (30 mL) under nitrogen atmosphere for 24 up to 48 hours. Then solvolysis of the silyl ester was easily realized by stirring in methanol. The residue was partitioned between water and ethyl acetate. The 3-[2-(Acetyloxy)benzoyl]-2-oxo-1,3-thiazolidine-4-carboxylic acid (4). The general procedure was followed using compound 10 (4.5 g, 15.4 mmol), 2-acetoxybenzoyl chloride 12 (3.06 g, 15.4 mmol) in DCM (30 mL). The crude residue was purified by flash liquid chromatography on silica gel prepacked columns, eluting EtOAc/n-heptane 5:5 to generate pure product 4 as a white solid in 44 % yield; mp 153-155 °C

, SCH2CH), 4.30 (s, 1H, OH), 5.30 (dd, J = 8.3, 2.8 Hz, 1H, SCH2CH), 7.21 (d, J = 8.3 Hz, 1H, CH, ArH), 7.30 (t, J = 7.5 Hz, 1H, CH, ArH), 7.49-7.55 (m, 2H, 2CH, ArH). 13 C NMR (100 MHz, CDCl3) ? ppm: 20.3 (CH3), vol.1, p.30

B. Huang, D. Du, R. Zhang, X. Wu, Z. Xing et al.,

, Med. Chem. Lett, p.7330, 2012.

, Effet in vitro de l'acide pyroglutamique (PGA), l'acide salicylique (SA) ainsi que 5 molécules conjuguées à partir de SA et PGA sur le développement de, Z. tritici

. Mejri, Salicylic acid and pyroglutamic acid conjugated derivatives confer protection of bread wheat against Zymoseptoria tritici, Valorisation des travaux de la thèse : articles publiés, communications orales et posters Publications, 2018.

. Mejri, Les lipopeptides cycliques produits par Bacillus subtilis : méthode alternative pour lutter contre la septoriose du blé

, Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Mejri et al. (Environmental Science and Pollution Research, 2017.

, 70 th International Symposium on Crop Protection, 2018.

. Halama, Saccharin induces resistance in wheat against Zymoseptoria tritici

S. Mejri, A. Siah, F. Coutte, M. Magnin-robert, B. Randoux et al., Les lipopeptides cycliques produits par Bacillus subtilis : méthodes alternatives pour lutter contre la septoriose du blé, ères Biennales de l'Innovation Céréalière

. Colloque-en-environnement, ;. S. Santé, A. Mejri, F. Siah, M. Coutte et al., Les lipopeptides cycliques produits par Bacillus subtilis : des biofongicides prometteurs pour lutter contre la septoriose du blé

U. ). Florida, A. Mejri, A. Siah, B. Ghinet, C. Rigo et al., Sugar beet-derived products as inducers of bread wheat defenses against Zymoseptoria tritici, The American Phytopathological Society. APS Annual Meeting

S. Mejri, A. Siah, A. Ghinet, B. Rigo, C. Abuhaie et al., Sugar beet-derived products as inducers of bread wheat defenses against Zymoseptoria tritici, th International Symposium on Crop Protection

S. Mejri, A. Siah, F. Coutte, M. Magnin-robert, B. Randoux et al., th International Symposium on Septoria Diseases of Cereals

S. Mejri, A. Siah, and A. , Journées Jeunes Chercheurs Condorcet J2C2

B. Ghinet, C. Rigo, M. Abuhaie, B. Magnin-robert, P. Randoux et al.,

, Efficacité et modes d'action de stimulateurs de défense des plantes sur le pathosystème bléseptoriose

, Participation à l'animation de l'atelier de formation doctorale « Améliorer ses chances d'être publié