?. G. Bosc, J. Boulicaut, C. Raïssi, and M. Kaytoue, Découverte de sous-groupes avec les arbres de recherche de

, 17èmes Journées Francophones Extraction et Gestion des Connaissances, vol.24, pp.273-284, 2017.

?. V. Codocedo, G. Bosc, M. Kaytoue, J. Boulicaut, and A. Napoli, A Proposition for Sequence Mining Using Pattern Structures, Formal Concept Analysis-14th International Conference, vol.10308, p.2017, 1316.
URL : https://hal.archives-ouvertes.fr/hal-01549107

?. G. Bosc, J. Golebiowski, M. Bensafi, C. Robardet, M. Plantevit et al., Local Subgroup Discovery for Eliciting and Understanding New Structure-Odor Relationships
URL : https://hal.archives-ouvertes.fr/hal-01346660

, Discovery Science-19th International Conference, vol.9956, pp.19-34, 2016.

?. G. Bosc, M. Plantevit, J. Boulicaut, M. Bensafi, and M. , Kaytoue: h(odor): Interactive Discovery of Hypotheses on the Structure-Odor

, Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2016, vol.9853, pp.17-21, 2016.

?. G. Bosc, M. Kaytoue, M. Plantevit, F. De-marchi, M. Bensafi et al., Boulicaut: Vers la découverte de modèles exceptionnels locaux : des règles descriptives liant les molécules à leurs odeurs, 15èmes Journées Francophones Extraction et Gestion des Connaissances, EGC, vol.26, pp.305-316, 2015.

?. G. Bosc, P. Tan, J. F. Boulicaut, C. Raissi, and M. , Kaytoue: A Pattern Mining Approach to Study Strategy Balance in RTS Games, IEEE Transactions on Computational Intelligence and AI in Games, vol.9, issue.2, pp.123-132

?. G. Bosc, M. Kaytoue, C. Raïssi, J. Boulicaut, and P. Tan, Mining Balanced Sequential Patterns in RTS Games
URL : https://hal.archives-ouvertes.fr/hal-01100933

, Including Prestigious Applications of Intelligent Systems, European Conference on Artificial Intelligence, vol.263, pp.975-976, 2014.

?. ,

?. Sm09_ea,

?. , , vol.506

?. Pdi-?-0, , vol.875

?. ,

B. Abramson, Expected-outcome: A general model of static evaluation, IEEE Trans. Pattern Anal. Mach. Intell, vol.12, issue.2, pp.182-193, 1990.

T. Abudawood and P. A. Flach, Evaluation measures for multi-class subgroup discovery, ECML/PKDD, Part I, pp.35-50, 2009.

C. C. Aggarwal, Data Mining-The Textbook, 2015.

R. Agrawal, T. Imielinski, and A. N. Swami, Mining association rules between sets of items in large databases, ACM SIGMOD, pp.207-216, 1993.

R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, VLDB, pp.487-499, 1994.

R. Agrawal and R. Srikant, Mining sequential patterns, IEEE ICDE, pp.3-14, 1995.

S. Andrews, A partial-closure canonicity test to increase the efficiency of cbo-type algorithms, ICCS, pp.37-50, 2014.

S. Andrews, A 'best-of-breed' approach for designing a fast algorithm for computing fixpoints of galois connections, Inf. Sci, vol.295, pp.633-649, 2015.

S. Arctander, Perfume and flavor materials of natural origin, vol.2, 1994.

M. Atzmueller and F. Lemmerich, VIKAMINE-open-source subgroup discovery, pattern mining, and analytics, ECML/PKDD, pp.842-845, 2012.

M. Atzmüller and F. Lemmerich, Fast subgroup discovery for continuous target concepts, ISMIS, pp.35-44, 2009.

M. Atzmüller and F. Puppe, SD-map-A fast algorithm for exhaustive subgroup discovery, PKDD, pp.6-17, 2006.

P. Auer, N. Cesa-bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, pp.235-256, 2002.

T. Bäck, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary computation. Release, vol.97, p.1, 1997.

S. D. Bay and M. J. Pazzani, Detecting group differences: Mining contrast sets, Data Min. Knowl. Discov, vol.5, issue.3, pp.213-246, 2001.

A. Belfodil, S. O. Kuznetsov, C. Robardet, and M. Kaytoue, Mining convex polygon patterns with formal concept analysis, IJCAI, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573841

A. Bendimerad, M. Plantevit, and C. Robardet, Unsupervised exceptional attributed subgraph mining in urban data, IEEE ICDM, pp.1-12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430622

P. Berkhin, A survey of clustering data mining techniques, Grouping Multidimensional Data-Recent Advances in Clustering, pp.25-71, 2006.

F. J. Berlanga, M. J. Del-jesús, P. González, F. Herrera, and M. Mesonero, Multiobjective evolutionary induction of subgroup discovery fuzzy rules: A case study in marketing, Advances in Data Mining, Applications in Medicine, Web Mining, Marketing, Image and Signal Mining, co-located with 6th Industrial Conference on Data Mining, pp.337-349, 2006.

M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis, Mining graph evolution rules, ECML/PKDD, Part I, pp.115-130, 2009.

J. Besson, C. Robardet, J. Boulicaut, and S. Rome, Constraint-based concept mining and its application to microarray data analysis, Intell. Data Anal, pp.59-82, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01535568

Y. Björnsson and H. Finnsson, Cadiaplayer: A simulation-based general game player, IEEE Trans. Comput. Intellig. and AI in Games, vol.1, issue.1, pp.4-15, 2009.

M. Boley, C. Lucchese, D. Paurat, and T. Gärtner, Direct local pattern sampling by efficient two-step random procedures, ACM SIGKDD, pp.582-590, 2011.

G. Bosc, J. Boulicaut, C. Raïssi, and M. Kaytoue, Découverte de sous-groupes avec les arbres de recherche de monte carlo, EGC, pp.23-37, 2017.

G. Bosc, J. Golebiowski, M. Bensafi, C. Robardet, M. Plantevit et al., Local subgroup discovery for eliciting and understanding new structure-odor relationships, DS, pp.19-34, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346660

G. Bosc, M. Kaytoue, M. Plantevit, F. D. Marchi, M. Bensafi et al., Vers la découverte de modèles exceptionnels locaux : des règles descriptives liant les molécules à leurs odeurs, EGC, pp.305-316, 2015.

G. Bosc, M. Kaytoue-uberall, C. Raïssi, and J. Boulicaut, Fouille de motifs séquentiels pour l'élicitation de stratégies à partir de traces d'interactions entre agents en compétition, EGC, pp.359-370, 2014.

G. Bosc, M. Kaytoue-uberall, C. Raïssi, J. Boulicaut, and P. Tan, Mining balanced sequential patterns in RTS games, ECAI, pp.975-976, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01100933

G. Bosc, M. Plantevit, J. Boulicaut, M. Bensafi, and M. Kaytoue, h(odor): Interactive discovery of hypotheses on the structure-odor relationship in neuroscience, Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD, Part III, pp.17-21, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346679

G. Bosc, C. Raïssi, J. Boulicaut, and M. Kaytoue, Any-time diverse subgroup discovery with monte carlo tree search. Major revision in Data Min, Knowl. Discov. journal, 2017.

G. Bosc, P. Tan, J. Boulicaut, C. Raïssi, and M. Kaytoue, A pattern mining approach to study strategy balance in RTS games, IEEE Trans. Comput. Intellig. and AI in Games, vol.9, issue.2, pp.123-132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01252728

J. F. Boulicaut, L. De-raedt, and H. Mannila, Constraint-Based Mining and Inductive Databases, vol.3848, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01613479

J. F. Boulicaut and B. Jeudy, Constraint-based data mining, Data Mining and Knowledge Discovery Handbook, pp.339-354, 2010.
URL : https://hal.archives-ouvertes.fr/ujm-00374308

R. J. Brachman and T. Anand, The process of knowledge discovery in databases, Advances in Knowledge Discovery and Data Mining, pp.37-57, 1996.

B. Bringmann and A. Zimmermann, One in a million: picking the right patterns, Knowl. Inf. Syst, vol.18, issue.1, pp.61-81, 2009.

C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling et al., A survey of monte carlo tree search methods, IEEE Trans. Comput. Intellig. and AI in Games, vol.4, issue.1, pp.1-43, 2012.

L. Buck and R. Axel, A novel multigene family may encode odorant receptors: a molecular basis for odor recognition, Cell, vol.65, issue.1, pp.175-187, 1991.

D. Burdick, M. Calimlim, and J. Gehrke, MAFIA: A maximal frequent itemset algorithm for transactional databases, ICDE, pp.443-452, 2001.

T. Calders, C. Rigotti, and J. Boulicaut, A survey on condensed representations for frequent sets, Constraint-Based Mining and Inductive Databases, European Workshop on Inductive Databases and Constraint Based Mining, pp.64-80, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01613469

C. J. Carmona, P. González, M. J. Del-jesús, and F. Herrera, NMEEF-SD: non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discovery, IEEE Trans. Fuzzy Systems, vol.18, issue.5, pp.958-970, 2010.

J. B. Castro, A. Ramanathan, and C. S. Chennubhotla, Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization, PLOS ONE, vol.8, issue.9, p.2013

T. Cazenave, Generalized rapid action value estimation, IJCAI, pp.754-760, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01436522

T. Cazenave and N. Jouandeau, On the parallelization of uct, proceedings of the Computer Games Workshop, pp.93-101, 2007.

L. Cerf, J. Besson, K. Nguyen, and J. Boulicaut, Closed and noise-tolerant patterns in n-ary relations, Data Min. Knowl. Discov, vol.26, issue.3, pp.574-619, 2013.

G. Chaslot, M. Winands, J. Uiterwijk, H. Van-den, B. Herik et al., Progressive strategies for monte-carlo tree search, JCIS, pp.655-661, 2007.

G. Chaslot, M. H. Winands, and H. J. Van-den-herik, Parallel monte-carlo tree search, CG, pp.60-71, 2008.
DOI : 10.1007/978-3-540-87608-3_6

V. Codocedo, G. Bosc, M. Kaytoue, J. Boulicaut, and A. Napoli, A proposition for sequence mining using pattern structures, vol.ICFCA, pp.106-121, 2017.
DOI : 10.1007/978-3-319-59271-8_7

URL : https://hal.archives-ouvertes.fr/hal-01549107

D. J. Cook and L. B. Holder, Mining graph data, 2006.

R. Coulom, Computing "elo ratings" of move patterns in the game of go, ICGA Journal, vol.30, issue.4, pp.198-208, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00149859

C. A. De-march, S. Ryu, G. Sicard, C. Moon, and J. Golebiowski, Structure-odour relationships reviewed in the postgenomic era, Flavour and Fragrance Journal, vol.30, issue.5, pp.342-361, 2015.

L. De-raedt, M. Jaeger, S. D. Lee, and H. Mannila, A theory of inductive query answering, IEEE ICDM, pp.123-130, 2002.

C. R. De-sá, W. Duivesteijn, C. Soares, and A. J. Knobbe, Exceptional preferences mining, DS, pp.3-18, 2016.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evolutionary Computation, vol.6, issue.2, pp.182-197, 2002.
DOI : 10.1109/4235.996017

M. J. Del-jesús, P. González, F. Herrera, and M. Mesonero, Evolutionary fuzzy rule induction process for subgroup discovery: A case study in marketing, IEEE Trans. Fuzzy Systems, vol.15, issue.4, pp.578-592, 2007.

C. Delasalle, C. A. De-march, U. J. Meierhenrich, H. Brevard, J. Golebiowski et al., Structure-odor relationships of semisynthetic ?-santalol analogs, Chemistry & Biodiversity, vol.11, issue.11, pp.1843-1860, 2014.
DOI : 10.1002/cbdv.201400082

G. Dong and J. Li, Efficient mining of emerging patterns: Discovering trends and differences, ACM SIGKDD, pp.43-52, 1999.
DOI : 10.1145/312129.312191

L. Downar and W. Duivesteijn, Exceptionally monotone models-the rank correlation model class for exceptional model mining, IEEE ICDM, pp.111-120, 2015.

W. Duivesteijn, A. Feelders, and A. J. Knobbe, Different slopes for different folks: mining for exceptional regression models with cook's distance, ACM SIGKDD, pp.868-876, 2012.

W. Duivesteijn, A. Feelders, and A. J. Knobbe, Exceptional model mining-supervised descriptive local pattern mining with complex target concepts, Data Min. Knowl. Discov, vol.30, issue.1, pp.47-98, 2016.

W. Duivesteijn and A. J. Knobbe, Exploiting false discoveries-statistical validation of patterns and quality measures in subgroup discovery, IEEE ICDM, pp.151-160, 2011.

W. Duivesteijn, A. J. Knobbe, A. Feelders, and M. Van-leeuwen, Subgroup discovery meets bayesian networks-an exceptional model mining approach, IEEE ICDM, pp.158-167, 2010.
DOI : 10.1109/icdm.2010.53

S. Dzeroski, B. Goethals, and P. Panov, Inductive Databases and Constraint-Based Data Mining, 2010.

V. Dzyuba and M. Van-leeuwen, Interactive discovery of interesting subgroup sets, IDA, pp.150-161, 2013.

V. Dzyuba, M. Van-leeuwen, S. Nijssen, and L. De-raedt, Interactive learning of pattern rankings, International Journal on Artificial Intelligence Tools, vol.23, issue.6, 2014.

A. K. , Dream olfaction prediction challenge, Sponsors: IFF, IBM Research, Sage Bionetworks and DREAM. URL: www.synapse.org/#!Synapse, p.2811262, 2015.

U. M. Fayyad and K. B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, IJCAI, pp.1022-1029, 1993.

U. M. Fayyad, G. Piatetsky-shapiro, and P. Smyth, From data mining to knowledge discovery: An overview, Advances in Knowledge Discovery and Data Mining, pp.1-34, 1996.

J. Fürnkranz, D. Gamberger, and N. Lavrac, Foundations of Rule Learning. Cognitive Technologies, 2012.

D. Gamberger and N. Lavrac, Expert-guided subgroup discovery: Methodology and application, J. Artif. Intell. Res, vol.17, pp.501-527, 2002.

B. Ganter and R. Wille, Formal concept analysis-mathematical foundations, 1999.

R. Gaudel and M. Sebag, Feature selection as a one-player game, IEEE ICDM, pp.359-366, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00484049

S. Gelly, A contribution to Reinforcement Learning; application to Computer-Go, 2007.

S. Gelly and D. Silver, Combining online and offline knowledge in UCT, ICML 2007, pp.273-280, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00164003

A. Giacometti, D. H. Li, P. Marcel, and A. Soulet, 20 years of pattern mining: a bibliometric survey, SIGKDD Explorations, vol.15, issue.1, pp.41-50, 2013.

K. Gouda and M. J. Zaki, Efficiently mining maximal frequent itemsets, IEEE ICDM, pp.163-170, 2001.

H. Grosskreutz and S. Rüping, On subgroup discovery in numerical domains, Data Min. Knowl. Discov, vol.19, issue.2, pp.210-226, 2009.

H. Grosskreutz, S. Rüping, and S. Wrobel, Tight optimistic estimates for fast subgroup discovery, ECML/PKDD, pp.440-456, 2008.

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

J. Han, H. Cheng, D. Xin, and X. Yan, Frequent pattern mining: current status and future directions, Data Min. Knowl. Discov, vol.15, issue.1, pp.55-86, 2007.

J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate generation, ACM SIGMOD, pp.1-12, 2000.

M. A. Hearst, Trends & controversies: Support vector machines, IEEE Intelligent Systems, vol.13, issue.4, pp.18-28, 1998.

D. P. Helmbold and A. Parker-wood, All-moves-as-first heuristics in monte-carlo go, ICAI, pp.605-610, 2009.

J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 1975.

B. Jeudy and J. Boulicaut, Optimization of association rule mining queries, Intell. Data Anal, pp.341-357, 2002.

P. Joussain, A. Chakirian, F. Kermen, C. Rouby, and M. Bensafi, Physicochemical influence on odor hedonics: Where does it occur first?, Communicative & integrative biology, vol.4, issue.5, pp.563-565, 2011.

K. Kaeppler and F. Mueller, Odor classification: a review of factors influencing perceptionbased odor arrangements. Chemical senses, vol.38, pp.189-209, 2013.

B. Kavsek, N. Lavrac, and V. Jovanoski, APRIORI-SD: adapting association rule learning to subgroup discovery, IDA, pp.230-241, 2003.

M. Kaytoue, S. O. Kuznetsov, and A. Napoli, Revisiting numerical pattern mining with formal concept analysis, IJCAI, pp.1342-1347, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00600222

M. Kaytoue, S. O. Kuznetsov, A. Napoli, and S. Duplessis, Mining gene expression data with pattern structures in formal concept analysis, Inf. Sci, vol.181, issue.10, 1989.
URL : https://hal.archives-ouvertes.fr/hal-00541100

M. Kaytoue, M. Plantevit, A. Zimmermann, A. Bendimerad, and C. Robardet, Exceptional contextual subgraph mining, Machine Learning, pp.1-41, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01488732

A. Keller, R. C. Gerkin, Y. Guan, A. Dhurandhar, G. Turu et al., Predicting human olfactory perception from chemical features of odor molecules, Science, vol.355, issue.6327, pp.820-826, 2017.

R. M. Khan, C. Luk, A. Flinker, A. Aggarwal, H. Lapid et al., Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world, The Journal of Neuroscience, vol.27, issue.37, pp.10015-10023, 2007.

W. Klösgen, Explora: A multipattern and multistrategy discovery assistant, Advances in Knowledge Discovery and Data Mining, pp.249-271, 1996.

W. Klösgen and M. May, Census data mining, an application, PKDD, pp.65-79, 2002.

L. Kocsis and C. Szepesvári, Bandit based monte-carlo planning, ECML, pp.282-293, 2006.

R. M. Konijn, W. Duivesteijn, M. Meeng, and A. J. Knobbe, Cost-based quality measures in subgroup discovery, J. Intell. Inf. Syst, vol.45, issue.3, pp.337-355, 2015.

P. Krajca, J. Outrata, and V. Vychodil, Advances in algorithms based on CbO, CLA, pp.325-337, 2010.

K. L. Kroeker, A new benchmark for artificial intelligence, Commun. ACM, vol.54, issue.8, pp.13-15, 2011.

S. O. Kuznetsov, A fast algorithm for computing all intersections of objects from an arbitrary semilattice. Nauchno-Tekhnicheskaya Informatsiya Seriya 2-Informatsionnye protsessy i sistemy, vol.2, pp.17-20, 1993.

S. O. Kuznetsov, A fast algorithm for computing all intersections of objects in a finite semilattice. Automatic Documentation and Mathematical Linguistics, vol.27, pp.400-412, 1993.

N. Lavrac, B. Cestnik, D. Gamberger, and P. A. Flach, Decision support through subgroup discovery: Three case studies and the lessons learned, Machine Learning, vol.57, pp.115-143, 2004.

N. Lavrac, P. A. Flach, and B. Zupan, Rule evaluation measures: A unifying view, ILP, pp.174-185, 1999.

Y. Lecun, Y. Bengio, and G. E. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

D. Leman, A. Feelders, and A. J. Knobbe, Exceptional model mining, ECML/PKDD, pp.1-16, 2008.

F. Lemmerich, M. Atzmueller, and F. Puppe, Fast exhaustive subgroup discovery with numerical target concepts, Data Min. Knowl. Discov, vol.30, issue.3, pp.711-762, 2016.
DOI : 10.1007/s10618-015-0436-8

F. Lemmerich, M. Becker, and M. Atzmueller, Generic pattern trees for exhaustive exceptional model mining, ECML PKDD, pp.277-292, 2012.
DOI : 10.1007/978-3-642-33486-3_18

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-642-33486-3_18.pdf

F. Lemmerich, M. Rohlfs, and M. Atzmüller, Fast discovery of relevant subgroup patterns, FLAIRS, pp.428-433, 2010.

B. T. Lowerre, The HARPY speech recognition system, 1976.
DOI : 10.1121/1.2003013

URL : https://asa.scitation.org/doi/pdf/10.1121/1.2003013

E. Loza-mencía and F. Janssen, Learning rules for multi-label classification: a stacking and a separate-and-conquer approach, Machine Learning, vol.105, pp.77-126, 2016.

J. M. Luna, J. R. Romero, C. Romero, and S. Ventura, Discovering subgroups by means of genetic programming, EuroGP, pp.121-132, 2013.
DOI : 10.1007/978-3-642-37207-0_11

H. Mannila and H. Toivonen, Levelwise search and borders of theories in knowledge discovery, Data Min. Knowl. Discov, vol.1, issue.3, pp.241-258, 1997.

M. Meeng, W. Duivesteijn, and A. J. Knobbe, Rocsearch-an roc-guided search strategy for subgroup discovery, IEEE ICDM, pp.704-712, 2014.
DOI : 10.1137/1.9781611973440.81

URL : http://ceur-ws.org/Vol-1226/paper29.pdf

U. J. Meierhenrich, J. Golebiowski, X. Fernandez, and D. Cabrol-bass, The molecular basis of olfactory chemoreception, Angewandte Chemie International Edition, vol.43, issue.47, pp.6410-6412, 2004.

S. Moens and M. Boley, Instant exceptional model mining using weighted controlled pattern sampling, IDA, pp.203-214, 2014.
DOI : 10.1007/978-3-319-12571-8_18

S. Morishita and J. Sese, Traversing itemset lattice with statistical metric pruning, ACM PODS, pp.226-236, 2000.
DOI : 10.1145/335168.335226

F. Moser, R. Colak, A. Rafiey, and M. Ester, Mining cohesive patterns from graphs with feature vectors, SIAM SDM, pp.593-604, 2009.
DOI : 10.1137/1.9781611972795.51

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611972795.51

M. Mueller, R. Rosales, H. Steck, S. Krishnan, B. Rao et al., Subgroup discovery for test selection: A novel approach and its application to breast cancer diagnosis, IDA, pp.119-130, 2009.

S. Nijssen and A. Zimmermann, Constraint-based pattern mining, Frequent Pattern Mining, pp.147-163, 2014.
DOI : 10.1007/978-3-319-07821-2_7

P. K. Novak, N. Lavrac, and G. I. Webb, Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining, Journal of Machine Learning Research, vol.10, pp.377-403, 2009.

V. Pachón, J. M. Vázquez, J. L. Domínguez, and M. J. López, Multi-objective evolutionary approach for subgroup discovery, Hybrid Artificial Intelligent Systems, pp.271-278, 2011.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Efficient mining of association rules using closed itemset lattices, Inf. Syst, vol.24, issue.1, pp.25-46, 1999.
DOI : 10.1016/s0306-4379(99)00003-4

J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen et al., Prefixspan: Mining sequential patterns by prefix-projected growth, IEEE ICDE, pp.215-224, 2001.

N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. F. Helm, Turning cartwheels: an alternating algorithm for mining redescriptions, ACM KDD, pp.266-275, 2004.

C. Robardet, Constraint-based pattern mining in dynamic graphs, IEEE ICDM, pp.950-955, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01437815

D. Rodríguez, R. Ruiz, J. C. Riquelme, and J. S. Aguilar-ruiz, Searching for rules to detect defective modules: A subgroup discovery approach, Inf. Sci, vol.191, pp.14-30, 2012.

S. J. Russell and P. Norvig, Artificial Intelligence-A Modern Approach (3. internat. ed.). Pearson Education, 2010.

S. R. Safavian and D. A. Landgrebe, A survey of decision tree classifier methodology, IEEE Trans. Systems, Man, and Cybernetics, vol.21, issue.3, pp.660-674, 1991.

M. P. Schadd, M. H. Winands, H. J. Van-den-herik, G. Chaslot, and J. W. Uiterwijk, Single-player monte-carlo tree search, CG, vol.5131, pp.1-12, 2008.
DOI : 10.1007/978-3-540-87608-3_1

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre et al.,

D. Hassabis, Mastering the game of go with deep neural networks and tree search, Nature, vol.529, issue.7587, pp.484-489, 2016.

A. Soulet, C. Raïssi, M. Plantevit, and B. Crémilleux, Mining dominant patterns in the sky, IEEE ICDM, pp.655-664, 2011.
DOI : 10.1109/icdm.2011.100

URL : https://hal.archives-ouvertes.fr/inria-00623566

G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal, Computing iceberg concept lattices with Titanic, Data Knowl. Eng, vol.42, issue.2, pp.189-222, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00578830

J. A. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural Processing Letters, vol.9, issue.3, pp.293-300, 1999.

P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, 2005.

G. Tsoumakas, I. Katakis, and I. P. Vlahavas, Mining multi-label data, Data Mining and Knowledge Discovery Handbook, pp.667-685, 2010.
DOI : 10.1007/978-0-387-09823-4_34

G. Tsoumakas, E. Spyromitros-xioufis, J. Vilcek, and I. Vlahavas, Mulan: A java library for multi-label learning, Journal of Machine Learning Research, vol.12, pp.2411-2414, 2011.

D. Van-der-merwe, S. A. Obiedkov, and D. G. Kourie, Addintent: A new incremental algorithm for constructing concept lattices, ICFCA, pp.372-385, 2004.

M. Van-leeuwen and E. Galbrun, Association discovery in two-view data, IEEE Trans. Knowl. Data Eng, vol.27, issue.12, pp.3190-3202, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01242988

M. Van-leeuwen and A. J. Knobbe, Non-redundant subgroup discovery in large and complex data, ECML/PKDD, pp.459-474, 2011.

M. Van-leeuwen and A. J. Knobbe, Diverse subgroup set discovery, Data Min. Knowl. Discov, vol.25, issue.2, pp.208-242, 2012.

M. Van-leeuwen and A. Ukkonen, Discovering skylines of subgroup sets, ECML/PKDD, pp.272-287, 2013.

I. H. Witten, F. Eibe, and M. A. Hall, Data mining: practical machine learning tools and techniques, 2011.

S. Wrobel, An algorithm for multi-relational discovery of subgroups, PKDD, pp.78-87, 1997.
DOI : 10.1007/3-540-63223-9_108

M. J. Zaki and C. Hsiao, CHARM: an efficient algorithm for closed itemset mining, SIAM SDM, pp.457-473, 2002.
DOI : 10.1137/1.9781611972726.27

M. J. Zaki and W. M. , Data Mining and Analysis: Fundamental Concepts and Algorithms, 2014.

E. Zitzler, M. Laumanns, and L. E. , Spea2: Improving the strength pareto evolutionary algorithm, Eurogen, vol.3242, pp.95-100, 2001.