J. Veizer, Y. Godderis, and L. M. François, Evidence for decoupling of atmospheric CO 2 and global climate during the Phanerozoic eon, Nature, vol.408, pp.698-701, 2000.

J. B. Jaffrés, G. A. Shields, and K. Wallmann, The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years, Earth Sci. Rev, vol.83, pp.83-122, 2007.

J. F. Kasting and S. Ono, Palaeoclimates: the first two billion years, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.361, pp.917-929, 2006.

C. Lécuyer and P. Allemand, Modelling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the ? 18 O of marine sediments, Geochim. Cosmochim. Acta, vol.63, pp.351-361, 1999.

J. Veizer and A. Prokoph, Temperatures and oxygen isotopic composition of Phanerozoic oceans, Earth Sci. Rev, vol.146, pp.92-104, 2015.

R. Tartèse, M. Chaussidon, A. Gurenko, F. Delarue, and F. Robert, Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants, Geochem. Perspect. Lett, vol.3, pp.55-65, 2017.

F. Robert and M. Chaussidon, A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts, Nature, vol.443, pp.969-972, 2006.

K. Muehlenbachs and R. N. Clayton, Oxygen isotope composition of the oceanic crust and its bearing on seawater, J. Geophys. Res, vol.81, pp.4365-4369, 1976.

R. T. Gregory and H. P. Taylor, An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for ? 18 O buffering of the oceans by deep (5 km) seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res. Solid Earth, vol.86, pp.2737-2755, 1981.

E. C. Pope, D. K. Bird, and M. T. Rosing, Isotope composition and volume of Earth's early oceans, Proc. Natl Acad. Sci. USA, vol.109, pp.4371-4376, 2012.

M. Leblanc, Ophiolites Précambriennes et Gites Arséniés De Cobalt, Bou Azzer-Maroc, 1975.

G. J. Walsh, Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, Precambrian Res, vol.216, pp.23-62, 2012.

J. L. Bodinier, C. Dupuy, and J. Dostal, Geochemistry of Precambrian ophiolites from Bou Azzer, vol.87, pp.43-50, 1984.

D. D. Naidoo, S. H. Bloomer, A. Saquaque, and K. Hefferan, Geochemistry and significance of metavolcanic rocks from the Bou Azzer-El Graara ophiolite (Morocco), Precambrian Res, vol.53, pp.79-97, 1991.

F. Hodel, Neoproterozoic Serpentinites: A Window on the Oceanic Lithosphere Associated With the Rodinia Break-Up, 2017.

A. Triantafyllou, Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex, Precambrian Res, vol.304, pp.39-63, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737911

H. A. Gahlan, Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, J. African Earth Sci, vol.46, pp.318-330, 2006.

F. Hodel, Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Precambrian Res, vol.300, pp.151-167, 2017.

E. Douville, The rainbow vent fluids (36°14?N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids, Chem. Geol, vol.184, pp.37-48, 2002.

P. R. Craddock, Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins, Geochim. Cosmochim. Acta, vol.74, pp.5494-5513, 2010.

H. Paulick, Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15° 20?N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments, Chem. Geol, vol.234, pp.179-210, 2006.

N. Augustin, Alteration at the ultramafic-hosted Logatchev hydrothermal field: constraints from trace element and Sr-O isotope data, Geochemistry, Geophys. Geosystems, vol.13, pp.0-07, 2012.

A. F. Marques, F. Barriga, V. Chavagnac, and Y. Fouquet, Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge, Miner. Depos, vol.41, pp.52-67, 2006.

M. Andreani, Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14?N), Geochem. Geophys. Geosystems, vol.15, pp.3543-3571, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115281

G. Klinkhammer, H. Elderfield, J. Edmond, and A. Mitra, Geochemical implications of rare earth element patterns in hydrothermal fluids from midocean ridges, Geochim. Cosmochim. Acta, vol.58, pp.5105-5113, 1994.

R. H. James, H. Elderfield, and M. R. Palmer, The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic ridge, Geochim. Cosmochim. Acta, vol.59, pp.651-659, 1995.

E. Douville, Yttrium and rare earth elements in fluids from various deepsea hydrothermal systems, Geochim. Cosmochim. Acta, vol.63, pp.627-643, 1999.

Y. Niu, Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges, J. Petrol, vol.45, pp.2423-2458, 2004.

C. You, P. Castillo, J. Gieskes, and L. Chan, Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones, Earth. Planet. Sci. Lett, vol.140, pp.41-52, 1996.

T. Oberthür, Hercynian age of the colbalt-nickel-arsenide-(gold) ores, Bou Azzer, Econ. Geol, vol.104, pp.1065-1079, 2009.

B. Debret and . Serpentinites, Vecteurs des Circulations Fluides et des Transferts Chimiques de L'Océanisation à la Subduction: Exemple Dans les Alpes Occidentales, 2013.

A. F. Marques, F. J. Barriga, and S. D. Scott, Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides, Mar. Geol, vol.245, pp.20-39, 2007.

I. Fanlo, F. Gervilla, V. Colás, and I. Subías, Zn-, Mn-and Co-rich chromian spinels from the Bou-Azzer mining district (Morocco): constraints on their relationship with the mineralizing process, Ore Geol. Rev, vol.71, pp.82-98, 2015.

S. Schwartz, Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites, Lithos, vol.178, pp.197-210, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02108626

B. W. Evans, The serpentinite multisystem revisited: chrysotile is metastable, Int. Geol. Rev, vol.46, pp.479-506, 2004.

P. Lanari, T. Wagner, and O. Vidal, A thermodynamic model for ditrioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al 2 O 3-SiO 2-H 2 O: applications to P-T sections and geothermometry, Contrib. Mineral. Petrol, vol.167, p.968, 2014.

O. Vidal, T. Parra, and F. Trotet, A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600 °C, 1 to 25 kb range, Am. J. Sci, vol.301, pp.557-592, 2001.

V. De-andrade, O. Vidal, E. Lewin, P. O'brien, and P. Agard, Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples, J. Metamorph. Geol, vol.24, pp.655-668, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00139644

S. Block, Petrological and geochronological constraints on lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton, J. Metamorph. Geol, vol.33, pp.463-494, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221349

J. Ganne, Statistical petrology reveals a link between supercontinents cycle and mantle global climate, Am. Mineral, vol.101, pp.2768-2773, 2016.

V. K. Purtov, V. V. Kholodnov, V. N. Anfilogov, and G. S. Nechkin, The role of chlorine in the formation of magnetite skarns, Int. Geol. Rev, vol.31, pp.63-71, 1989.

J. B. Fein, J. J. Hemley, W. M. Angelo, A. Komninou, and D. A. Sverjensky, Experimental study of iron-chloride complexing in hydrothermal fluids, Geochim. Cosmochim. Acta, vol.56, pp.3179-3190, 1992.

M. J. Kalczynski and A. E. Gates, Hydrothermal alteration, mass transfer and magnetite mineralization in dextral shear zones, Ore Geol. Rev, vol.61, pp.226-247, 2014.

Y. Zheng and K. Simon, Oxygen isotope fractionation in hematite and magnetite: a theoretical calculation and application to geothermometry of metamorphic iron-formations, Eur. J. Mineral, vol.3, pp.877-886, 1991.

P. Jean-baptiste, J. L. Charlou, and M. Stievenard, Oxygen isotope study of midocean ridge hydrothermal fluids: Implication for the oxygen-18 budget of the oceans, Geochim. Cosmochim. Acta, vol.61, pp.2669-2677, 1997.

W. Bach and S. E. Humphris, Relationship between the Sr and O isotope compositions of hydrothermal fluids and the spreading and magma-supply rates at oceanic spreading centers, Geology, vol.27, p.1067, 1999.

E. P. Reeves, Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Geochim. Cosmochim. Acta, vol.75, pp.1088-1123, 2011.

R. H. James, Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre, Geochim. Cosmochim. Acta, vol.139, pp.47-71, 2014.

S. J. Carpenter, & Lohmann, K. C. ? 18 O and ? 13 C values of modern brachiopod shells, Geochim. Cosmochim. Acta, vol.59, pp.3749-3764, 1995.

N. Lhomme, G. K. Clarke, and C. Ritz, Global budget of water isotopes inferred from polar ice sheets, Geophys. Res. Lett, vol.32, p.20502, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00374638

J. Veizer and J. Hoefs, The nature of 18 O/ 16 O and 13 C/ 12 C secular trends in sedimentary carbonate rocks, Geochim. Cosmochim. Acta, vol.40, pp.1387-1395, 1976.

L. P. Knauth and D. R. Lowe, Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts, Earth. Planet. Sci. Lett, vol.41, pp.209-222, 1978.

K. Wallmann, The geological water cycle and the evolution of marine ? 18 O values, Geochim. Cosmochim. Acta, vol.65, pp.2469-2485, 2001.

A. Prokoph, G. A. Shields, and J. Veizer, Compilation and time-series analysis of a marine carbonate ? 18 O, ? 13 C, 87 Sr/ 86 Sr and ? 34 S database through Earth history, Earth Sci. Rev, vol.87, pp.113-133, 2008.

R. E. Blake, S. J. Chang, and A. Lepland, Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean, Nature, vol.464, pp.1029-1032, 2010.

D. R. Cole, An experimental and theoretical determination of oxygen isotope fractionation in the system magnetite-H 2 O from 300 to 800 °C, Geochim. Cosmochim. Acta, vol.68, pp.3569-3585, 2004.

S. M. Fortier, Determination of the magnetite-water equilibrium oxygen isotope fractionation factor at 350 °C: A comparison of ion microprobe and laser fluorination techniques, Geochim. Cosmochim. Acta, vol.59, pp.3871-3875, 1995.

J. Carignan, P. Hild, G. Mevelle, J. Morel, D. ;. Yeghicheyan et al., Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical referencematerials BR, Geoanal. Res, vol.25, pp.187-198, 2001.

D. A. Ionov, L. Savoyant, and C. Dupuy, Application of the ICP-MS technique to trace element analysis of peridotites and their minerals, Geostand. Geoanal. Res, vol.16, pp.311-315, 1992.

M. Godard, D. Jousselin, and J. Bodinier, Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite, Earth. Planet. Sci. Lett, vol.180, pp.133-148, 2000.

M. Godard, Y. Lagabrielle, O. Alard, and J. Harvey, Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge, Earth Planet Sci. Lett, vol.267, pp.410-425, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00412001

J. Kodolányi, T. Pettke, C. Spandler, B. S. Kamber, and K. Gméling, Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones, J. Petrol, vol.53, pp.235-270, 2012.

I. J. Parkinson and J. A. Pearce, Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting, J. Petrol, vol.39, pp.1577-1618, 1998.

I. P. Savov, J. G. Ryan, M. Antonio, K. Kelley, and P. Mattie, Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones, Geochem. Geophys. Geosyst, vol.6, pp.4-15, 2005.

I. P. Savov, J. G. Ryan, M. Antonio, and P. Fryer, Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc, J. Geophys. Res, vol.112, p.9205, 2007.

J. A. Barrat, Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes, Geochim. Cosmochim. Acta, vol.83, pp.79-92, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00670053

, Supplementary References 1. Zheng, Y.theoretical calculation and application to geothermometry of metamorphic iron-formations

, Eur. J. Mineral, vol.3, pp.877-886, 1991.

P. Jean-baptiste, J. L. Charlou, and M. Stievenard, Oxygen isotope study of mid-ocean ridge hydrothermal fluids: Implication for the oxygen-18 budget of the oceans

, Cosmochim. Acta, vol.61, pp.2669-2677, 1997.

W. Bach and S. E. Humphris, Relationship between the Sr and O isotope compositions of hydrothermal fluids and the spreading and magma-supply rates at oceanic spreading centers, Geology, vol.27, p.1067, 1999.

E. P. Reeves, Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields

, Cosmochim. Acta, vol.75, pp.1088-1123, 2011.

R. H. James, Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre, Geochim. Cosmochim. Acta, vol.139, pp.47-71, 2014.

D. R. Cole, An experimental and theoretical determination of oxygen isotope fractionation in the system magnetite-H2O from 300 to 800°C, Geochim. Cosmochim. Acta, vol.68, pp.3569-3585, 2004.

S. M. Fortier, Determination of the magnetite-water equilibrium oxygen isotope fractionation factor at 350°C: A comparison of ion microprobe and laser fluorination techniques, Geochim. Cosmochim. Acta, vol.59, pp.3871-3875, 1995.

. Jagoutz, Most serpentinite samples from the three ultramafic units plot slightly under the terrestrial array, the MgO/SiO2 versus, 1979.

. Bach, This feature for fully serpentinized rocks is commonly explained either by Mg loss during low temperature seafloor alteration (Snow and Dick, 1995; Niu, 2004) or by Si addition during serpentinization involving Si-rich hydrothermal fluids, Al2O3/SiO2 diagram (Fig. 7)

. Paulick, , 2006.

. Malvoisin, , 2015.

, Nevertheless, theses alteration features are not significant in the serpentinites studied here and therefore the MgO and SiO2 concentrations can be used to infer the fertility of their protoliths. Serpentinites from Serra do Tapa and Morro do Agostinho display Al2O3/SiO2

. Jagoutz, Data for passive margin peridotites are from Seifert and Brunotte, MgO/SiO2 vs. Al2O3/SiO2 ratios for the Araguaia Belt serpentinites. Mantle array is from, vol.7, 1979.

. Data and . Ishii, , 1992.

. , Les unités ophiolitiques de l'Araguaia Belt (Brésil)

, Concerning mafic rocks, diabase pockets from Serra do Quatipuru present similar to lower SiO2

%. , , pp.83-84

, %) and present higher LOI values than Serra do Tapa pillow lavas (4.30-5.68 vs, vol.2, pp.27-29

%. ,

, characteristic of depleted residual peridotite. Their ?REE content are comprised between 0.05 and 4.38 ppm. Serpentinites after harzburgites from Serra do Tapa exhibit REE, HFSE and other incompatible elements such as Ti contents similar to abyssal peridotites and serpentinites sampled worldwide (Fig. 9a, b). Setting aside sample QT71 that is highly enriched, ?REE varies from 0, Whole-rock trace element concentrations Serpentinites from the Araguaia Belt display REE concentrations well below chondritic values (Fig. 9

A. H. Ahmed, Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: A possible recycled upper mantle lithosphere, Precambrian Res, vol.233, pp.173-192, 2013.

F. F. Almeida, Y. Hasui, B. B. De-brito-neves, and R. A. Fuck, Brazilian structural provinces: An introduction, Earth-Science Reviews, vol.17, pp.1-29, 1981.

F. F. Almeida, F. J. Ferreira, C. D. Carneiro, and F. L. Stefani, Aspectos evolutiovos da geossutura Tocantins-Araguaia. Anais do XXXIV Congresso Brasileiro de Geologia, 1986.

C. J. Alvarenga, C. A. Moura, P. S. Gorayeb, and F. A. Abreu, Paraguay and Araguaia Belts, 2000.

M. Andreani, J. Escartin, A. Delacour, B. Ildefonse, M. Godard et al., Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14?N), Geochemistry, Geophys. Geosystems, vol.15, pp.3543-3571, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115281

S. Arai, Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites, J. Volcanol. Geotherm. Res, vol.59, pp.279-293, 1994.

S. Arai and K. Matsukage, Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine-type podiform chromitites, Lithos, vol.43, issue.1, pp.1-14, 1998.

S. Arai and M. Miura, Podiform chromitites do form beneath mid-ocean ridges, Lithos, vol.232, pp.143-149, 2015.

S. H. Arcanjo, F. A. Abreu, and C. A. Moura, Geologic evolution of basement sequences of Araguaia Belt at Paraíso do Tocantins, Brazil. Braz, J. Geol, vol.43, issue.3, pp.501-51, 2013.

N. Augustin, H. Paulick, K. S. Lackschewitz, A. Eisenhauer, D. Garbe-schönberg et al., Alteration at the ultramafic-hosted Logatchev hydrothermal field: Constraints from trace element and Sr-O isotope data, Geochemistry, Geophys. Geosystems, vol.13, 2012.

W. Bach, C. J. Garrido, H. Paulick, J. Harvey, and M. Rosner, Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N, Geochemistry, Geophys. Geosystems, vol.5, 2004.

S. J. Barnes, Chromite in Komatiites, II. Modification during Greenschist to MidAmphibolite Facies Metamorphism, J. Petrol, vol.41, pp.387-409, 2000.

J. A. Barrat, B. Zanda, F. Moynier, C. Bollinger, C. Liorzou et al., Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes, Geochim. Cosmochim. Acta, vol.83, pp.79-92, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00670053

J. Bodinier and M. Godard, Orogenic, Ophiolitic, and Abyssal Peridotites, Treatise on Geochemistry, pp.1-73, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00407944

C. Boschi, E. Bonatti, M. Ligi, D. Brunelli, A. Cipriani et al., Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11° N, Lithos, vol.178, pp.3-23, 2013.

C. Boschi, A. Dini, G. Früh-green, and D. Kelley, Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30 N): insights from B and Sr isotope data, 2008.

D. Brunelli, M. Seyler, A. Cipriani, L. Ottolini, and E. Bonatti, Discontinuous Melt Extraction and Weak Refertilization of Mantle Peridotites at the Vema Lithospheric Section (Mid-Atlantic Ridge), J. Petrol, vol.47, pp.745-771, 2006.

E. Cannaò, S. Scambelluri, S. Agostini, S. Tonarini, and M. Godard, Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study, Geochim. Cosmochim. Acta, vol.190, pp.115-133, 2016.

J. Carignan, P. Hild, G. Mevelle, J. Morel, D. ;. Yeghicheyan et al., Routine Analyses of Trace Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, Geoanalytical Res, vol.25, pp.187-198, 2001.

J. F. Casey, Comparison of major and trace element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the mark region of the Mid-Atlantic Ridge, Proc. Ocean Drill. Program, Sci. Results, vol.153, 1997.

L. Chen, F. Chu, J. Zhu, Y. Dong, X. Yu et al., Major and trace elements of abyssal peridotites: evidence for melt refertilization beneath the ultraslowspreading Southwest Indian Ridge (53° E segment), Int. Geol. Rev, vol.57, pp.1715-1734, 2015.

R. G. Coleman and T. E. Keith, A Chemical Study of Serpentinization-Burro Mountain, California. J. Petrol, vol.12, pp.311-328, 1971.

R. Dall'agnol, O. T. Rämö, M. S. Magalhães, and M. J. Macambira, Petrology of the anorogenic, oxidized Jamon and Musa granites. Amazonian craton: implications for the genesis of Proterozoic A-type granites, Lithos, vol.46, pp.431-462, 1999.

R. Dall'agnol, N. P. Teixeira, O. T. Rämö, C. A. Moura, M. J. Macambira et al., Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil. Lithos, vol.80, pp.101-129, 2005.

M. C. Daly, V. Andrade, C. A. Barousse, R. Costa, K. Mcdowell et al., Brasiliano crustal structure and the tectonic setting of the Parnaíba basin of NE Brazil: Results of a deep seismic reflection profile, Tectonics, vol.33, pp.2102-2120, 2014.

B. Debret, Serpentinites, vecteurs des circulations fluides et des transferts chimiques de l'océanisation à la subduction : exemple dans les Alpes occidentales, 2013.

B. Debret, M. Andreani, M. Godard, C. Nicollet, S. Schwartz et al., Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif, Chem. Geol, vol.357, pp.117-133, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00937661

F. Deschamps, M. Godard, S. Guillot, and K. Hattori, Geochemistry of subduction zone serpentinites: A review, Lithos, vol.178, pp.96-127, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903601

A. H. Dijkstra, D. S. Sergeev, C. Spandler, T. Pettke, T. Meisel et al., Highly Refractory Peridotites on Macquarie Island and the Case for Anciently Depleted Domains in the Earth's Mantle, J. Petrol, vol.51, pp.469-493, 2009.

G. T. Droop, A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag, vol.51, pp.431-435, 1987.

J. Escuder-viruete, A. Pérez-estaún, D. Weis, and R. Friedman, Geochemical characteristics of the Río Verde Complex, Central Hispaniola: Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc, Lithos, vol.114, pp.168-185, 2010.

J. Escuder-viruete, A. Díaz-de-neira, P. P. Hernáiz-huerta, J. Monthel, J. G. Senz et al., Magmatic relationships and ages of Caribbean Island arc tholeiites, boninites and related felsic rocks, Lithos, vol.90, pp.161-186, 2006.

B. W. Evans, The Serpentinite Multisystem Revisited: Chrysotile Is Metastable, 2004.

, Geol. Rev, vol.46, pp.479-506

S. Fretzdorff, R. A. Livermore, C. W. Devey, P. T. Leat, and P. Stoffers, Petrogenesis of the Back-arc East Scotia Ridge, South Atlantic Ocean, J. Petrol, vol.43, pp.1435-1467, 2002.

H. Furnes, M. De-wit, and Y. Dilek, Four billion years of ophiolites reveal secular trends in oceanic crust formation, Geosci. Front, vol.5, pp.571-603, 2014.

H. Furnes, Y. Dilek, and M. De-wit, Precambrian greenstone sequences represent different ophiolite types, Gondwana Research, vol.27, pp.649-685, 2015.

G. M. Gibson, D. C. Champion, and T. R. Ireland, Preservation of a fragmented late Neoproterozoic-earliest Cambrian hyper-extended continental-margin sequence in the Australian Delamerian Orogen, Geological Society, vol.413, pp.269-299, 2015.

M. Godard, J. Bodinier, G. Vasseur, M. Godard, D. Jousselin et al., Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: A chromatographic approach, Earth Planet. Sci. Lett, vol.133, pp.133-148, 1995.

M. Godard, Y. Lagabrielle, O. Alard, and J. Harvey, Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge, Earth and Planetary Science Letters, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00412001

J. M. González-jiménez, T. Kerestedjian, J. A. Fernández, and F. G. Linares, Metamorphism on Chromite Ores from the Dobromirtsi Ultramafic Massif, Geol. Acta, vol.7, pp.413-429, 2009.

P. S. Gorayeb, Corpos serpentiníticos da Faixa Araguaia na região de AraguacemaPequizeiro-Conceição do Araguaia (Goiás-Pará), Rev. Bras. Geociências, vol.19, pp.51-62, 1989.

T. .. Green, J. .. Blundy, J. Adam, and G. Yaxley, SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200°C, Lithos, vol.53, pp.165-187, 2000.

S. Guillot, S. Schwartz, B. Reynard, P. Agard, and C. Prigent, Tectonic significance of serpentinites, Tectonophysics, vol.646, pp.1-19, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02107594

S. R. Hart and A. Zindler, In search of a bulk-Earth composition, Chem. Geol, vol.57, pp.247-267, 1986.

B. Harte, R. H. Hunter, and P. D. Kinny, Melting and melt movement in the Earth-Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci, vol.342, 1993.

J. Harvey, A. Gannoun, K. W. Burton, N. W. Rogers, O. Alard et al., Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge, Earth and Planetary Science Letters, 2006.

J. Harvey, I. P. Savov, S. Agostini, R. A. Cliff, and R. Walshaw, Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, Geochim. Cosmochim. Acta, vol.209, pp.30-48, 2014.

Y. Hasui, F. A. Abreu, and J. M. Silva, Estratigrafia da faixa de dobramentos ParaguaiAraguaia no centro-norte do Brasil, Bol. IG, vol.8, pp.107-117, 1977.

F. Hodel, M. Macouin, A. Triantafyllou, J. Carlut, J. Berger et al., Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Clrich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Precambrian Res, vol.300, 2017.

F. Hodel, R. I. Trindade, M. Macouin, A. Triantafyllou, J. Ganne et al., Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater, Nature Communications, vol.9, 1453.

A. W. Hofmann, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett, vol.90, pp.297-314, 1988.

L. J. Hopkinson, S. Dee, and C. A. Boulter, Moving reactive interfaces and fractal carbonate replacement patterns in serpentinites: evidence from the southern Iberia Abyssal Plain, Mineral. Mag, vol.64, pp.791-800, 2000.

D. A. Ionov, L. Savoyant, and C. Dupuy, Application of the ICP-MS technique to trace element analysis of peridotites and their minerals, Geostand. Geoanalytical Res, vol.16, pp.311-315, 1992.

T. Ishii, P. T. Robinson, H. Maekawa, and R. Fiske, Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogasawara-Mariana Forearc, Proceedings of the Ocean Drilling Program, 125 Scientific Results, vol.125, pp.445-486, 1992.

K. Iyer, H. Austrheim, T. John, and B. Jamtveit, Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway. Chem. Geol, vol.249, pp.66-90, 2008.

E. Jagoutz, H. Palme, H. Baddenhausen, K. Blum, M. Cendales et al., The abundance of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules, Proc. Lunar Planet. Sci. Conf, vol.10, pp.2031-2050, 1979.

D. R. Janecky and W. E. Seyfried, Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry, 1986.

, Geochim. Cosmochim. Acta, vol.50, issue.86, p.90311

P. B. Kelemen, G. M. Yogodzinski, and D. W. Scholl, Along-strike variation in the Aleutian island arc: Genesis of high Mg# andesite and implications for continental crust, Inside The Subduction Factory, vol.138, pp.223-276, 2003.

F. Klein and T. M. Mccollom, From serpentinization to carbonation: New insights from a CO2 injection experiment, Earth Planet. Sci. Lett, vol.379, pp.137-145, 2013.

J. Kodolányi, T. Pettke, C. Spandler, B. S. Kamber, and K. Gméling, Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones, J. Petrol, vol.53, pp.235-270, 2012.

T. Kogiso, Y. Tatsumi, and S. Nakano, Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts, Earth Planet. Sci. Lett, 1997.

B. Kotschoubey, B. Hieronymus, and C. A. Albuquerque, Disrupted peridotites and basalts from the Neoproterozoic Araguaia Belt (northern Brazil): Remnants of a poorly evolved oceanic crust?, J. South Am. Earth Sci, vol.20, pp.211-230, 2005.

B. Kotschoubey, B. Hieronymus, O. B. Rodrigues, and R. T. Amaral, Prováveis testemunhos de um complexo ofiolítico pouco evoluído e desmembrado, in: Congresso Brasileiro de Geologia 39, 1996.

T. M. Kusky, B. F. Windley, I. Safonova, K. Wakita, J. Wakabayashi et al., Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion, Gondwana Research, vol.24, pp.501-547, 2013.

R. Lafay, F. Deschamps, S. Schwartz, S. Guillot, M. Godard et al., High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps, Chem. Geol, vol.343, pp.38-54, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996839

Z. Li, D. A. Evans, and G. P. Halverson, Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland, 2013.

. Geol, , vol.294, pp.219-232

Z. X. Li, S. V. Bogdanov, A. S. Collins, A. Davidson, B. De-waele et al., Assembly, configuration, and break-up history of Rodinia: A synthesis, Precambrian Res, vol.160, pp.179-210, 2008.

B. Malvoisin, Mass transfer in the oceanic lithosphere, Serpentinization is not isochemical. Earth Planet. Sci. Lett, vol.430, pp.75-85, 2015.

C. Marchesi, C. J. Garrido, M. Godard, F. Belley, and E. Ferré, Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia), Chem. Geol, vol.266, pp.171-186, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429333

C. Marchesi, C. J. Garrido, M. Godard, J. A. Proenza, F. Gervilla et al., Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba), Contrib. to Mineral. Petrol, vol.151, pp.717-736, 2006.

W. F. Mcdonough and S. Sun, The composition of the Earth, Chem. Geol, vol.120, pp.223-253, 1995.

M. Mellini, C. Rumori, and C. Viti, Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of "ferritchromit" rims and chlorite aureoles, Contrib. to Mineral. Petrol, vol.149, pp.266-275, 2005.

F. Mendonça, Serra do Tapa e Vale dos Sonhos: mineralização de níquel laterítico associada a complexos ofiolíticos Pré Cambrianos da Faixa de Dobramentos Araguaia-Pará, 2013.

A. S. Merdith, A. S. Collins, S. E. Williams, S. Pisarevsky, J. D. Foden et al., A fullplate global reconstruction of the Neoproterozoic, Gondwana Research, vol.50, pp.84-134, 2017.

C. Mével, Serpentinization of abyssal peridotites at mid-ocean ridges, Comptes Rendus Geosci, vol.335, pp.825-852, 2003.

L. Miyagawa, J. P. De, P. S. Gorayeb, and S. De, Basaltos almofadados da Suíte Ofiolítica Morro do Agostinho: registros de fundo oceânico na porção centro-oeste do Cinturão Araguaia, 2013.

, Geol. USP. Série Científica, vol.13, pp.111-124

A. Miyashiro, F. Shido, and M. Ewing, Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24° and 30° North Latitude, Contrib. to Mineral. Petrol, vol.23, pp.117-127, 1969.

C. A. Moura and H. E. Gaudette, Zircon Ages of Basement Orthogneisses from the Northern Segment of the Araguaia Belt, Brazil. Basement Tectonics, vol.13, pp.155-178, 1999.

C. A. Moura and H. E. Gaudette, Evidence of Brasilianno/Panafrican deformation in the Araguaia Belt : implication for Gondwana evolution, Rev. Bras. Geociencias, vol.23, pp.117-123, 1993.

C. A. Moura, B. L. Pinheiro, A. C. Nogueira, P. S. Gorayeb, and M. A. Galarza, Sedimentary provenance and palaeoenvironment of the Baixo Araguaia Supergroup: constraints on the palaeogeographical evolution of the Araguaia Belt and assembly of West Gondwana, vol.294, 2008.

O. Müntener and G. Manatschal, High degrees of melt extraction recorded by spinel harzburgite of the Newfoundland margin: The role of inheritance and consequences for the evolution of the southern North Atlantic, Earth and Planetary Science Letters, 2006.

O. Müntener, G. Manatschal, L. Desmurs, and T. Pettke, Plagioclase Peridotites in OceanContinent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere, J. Petrol, vol.51, pp.255-294, 2010.

O. Navon and E. Stolper, Geochemical Consequences of Melt Percolation: The Upper Mantle as a Chromatographic Column, J. Geol, vol.95, pp.285-307, 1987.

Y. Niu, Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath MidOcean Ridges, J. Petrol, vol.45, 2004.

Y. Niu and R. Hékinian, Spreading-rate dependence of the extent of mantle melting beneath ocean ridges-ProQuest, Nature, vol.385, pp.326-329, 1997.

D. S. O'hanley, Serpentinite: Record of Tectonic and Petrologic History, 1996.

D. C. Oliveira, R. Dall'agnol, C. E. Barros, and M. A. Oliveira, Geology, geochemistry and magmatic evolution of the Paleoproterozoic, anorogenic oxidized A-type Redenção granite of the Jamon Suite, eastern Amazon Craton, Brazil, Canadian Mineralogist, vol.47, issue.6, pp.1441-1468, 2009.

L. Ottolini, B. Le-fèvre, and R. Vannucci, Direct assessment of mantle boron and lithium contents and distribution by SIMS analyses of peridotite minerals, Earth Planet. Sci. Lett, vol.228, pp.19-36, 2004.

S. Pabst, T. Zack, I. P. Savov, T. Ludwig, D. Rost et al., Evidence for boron incorporation into the serpentine crystal structure, Am. Mineral, vol.96, pp.1112-1119, 2011.

M. A. Paixão, , 2009.

M. A. Paixão, A. A. Nilson, and E. L. Dantas, The Neoproterozoic Quatipuru ophiolite and the Araguaia fold belt, central-northern Brazil, compared with correlatives in NW Africa, vol.294, 2008.

J. L. Palandri and M. H. Reed, Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation, Geochim. Cosmochim. Acta, vol.68, pp.1115-1133, 2004.

I. J. Parkinson and J. A. Pearce, Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting, J. Petrol, vol.39, pp.1577-1618, 1998.

H. Paulick, W. Bach, M. Godard, J. C. De-hoog, G. Suhr et al., Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20?N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments, Chem. Geol, vol.234, pp.179-210, 2006.

J. A. Pearce, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, vol.100, pp.14-48, 2008.

J. A. Pearce, P. F. Barker, S. J. Edwards, I. J. Parkinson, and P. T. Leat, Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib. to Mineral. Petrol, vol.139, pp.36-53, 2000.

J. A. Pearce, R. J. Stern, S. H. Bloomer, and P. Fryer, Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components, 2005.

G. Geochemistry, , vol.6

D. W. Peate, J. A. Pearce, C. J. Hawkesworth, H. Colley, C. M. Edwards et al., Geochemical Variations in Vanuatu Arc Lavas: the Role of Subducted Material and a Variable Mantle Wedge Composition, J. Petrol, vol.38, pp.1331-1358, 1997.

S. Rouméjon and M. Cannat, Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation, Geochemistry, Geophys. Geosystems, vol.15, pp.2354-2379, 2014.

S. Rouméjon, M. Cannat, P. Agrinier, M. Godard, and M. Andreani, Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge, pp.62-65, 2015.

, J. Petrol, vol.56, pp.703-734

B. M. Saumur and K. Hattori, Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio, Mineral. Mag, vol.77, 2013.

I. P. Savov, J. G. Ryan, M. Antonio, and P. Fryer, Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc, J. Geophys. Res, vol.112, p.9205, 2007.

I. P. Savov, J. G. Ryan, M. Antonio, K. Kelley, and P. Mattie, Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones. Geochemistry, Geophys. Geosystems, vol.6, 2005.

S. Schwartz, R. Lafay, B. Debret, C. Nicollet, P. Lanari et al., Pressuretemperature estimates of the lizardite/antigorite transition in high pressure serpentinites, Lithos, vol.178, pp.197-210, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02108626

K. Seifert and D. Brunotte, Geochemistry of serpentinized mantle peridotite from site 897 in the Iberia abyssal plain, Proc. Ocean Drill. Program, Sci. Results, vol.149, 1996.

M. Seyler, M. Cannat, and C. Mével, Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E), 2003.
URL : https://hal.archives-ouvertes.fr/insu-01830158

, Geochemistry, Geophys. Geosystems, vol.4

M. Seyler, J. Lorand, H. J. Dick, and M. Drouin, Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20¢N: ODP Hole 1274A. Contrib Miner, Pet, vol.153, pp.303-319, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00404655

J. W. Shervais, Ti-V plots and the petrogenesis of modern and ophiolitic lavas, Earth Planet. Sci. Lett, vol.59, pp.101-118, 1982.

R. Shinjo, S. Chung, Y. Kato, and M. Kimura, Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin, J. Geophys. Res. Solid Earth, vol.104, pp.10591-10608, 1999.

J. E. Snow and H. J. Dick, Pervasive magnesium loss by marine weathering of peridotite, 1995.

, Geochim. Cosmochim. Acta, vol.59, pp.4219-4235

G. Suhr, Melt Migration under Oceanic Ridges: Inferences from Reactive Transport Modelling of Upper Mantle Hosted Dunites, J. Petrol, vol.40, pp.575-599, 1999.

C. Sun and Y. Liang, An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites, 2014.

. Geol, , vol.372, pp.80-91

S. Sun and W. F. Mcdonough, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, p.42, 1989.

E. Takazawa, F. A. Frey, N. Shimizu, M. Obata, and J. L. Bodinier, Geochemical evidence for melt migration and reaction in the upper mantle, Nature, vol.359, pp.55-58, 1992.

L. Tian, P. R. Castillo, J. W. Hawkins, D. R. Hilton, B. B. Hanan et al., Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle, J. Volcanol. Geotherm. Res, vol.178, pp.657-670, 2008.

P. Ulmer, Partial melting in the mantle wedge-the role of H2O in the genesis of mantle-derived "arc-related, magmas. Phys. Earth Planet. Inter, vol.127, pp.215-232, 2001.

I. Uysal, E. Y. Ersoy, Y. Dilek, M. Escayola, E. Sar?fak?o?lu et al., Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia-Turkey. Gondwana Research, vol.27, pp.594-611, 2015.

E. Van-achterbergh, C. G. Ryan, S. E. Jackson, and W. L. Griffin, Data reduction software for LA-ICP-MS: appendix, Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, pp.239-243, 2001.

G. Vasseur, J. Vernieres, and J. Bodiner, Modelling of Trace Element Transfer between Mantle Melt and Heterogranular Peridotite Matrix, J. Petrol. Special_Volume, pp.41-54, 1991.

J. Vernières, M. Godard, and J. Bodinier, A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth's upper mantle, 1997.

, J. Geophys. Res. Solid Earth, vol.102, pp.24771-24784

F. Vils, L. Pelletier, A. Kalt, O. Müntener, and T. Ludwig, The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere, Geochim. Cosmochim. Acta, vol.72, pp.5475-5504, 2008.

J. M. Warren, Global variations in abyssal peridotite compositions, Lithos, vol.248, issue.251, pp.193-219, 2016.
DOI : 10.1016/j.lithos.2015.12.023

URL : https://doi.org/10.1016/j.lithos.2015.12.023

J. M. Warren and N. Shimizu, Cryptic Variations in Abyssal Peridotite Compositions: Evidence for Shallow-level Melt Infiltration in the Oceanic Lithosphere, J. Petrol, vol.51, pp.395-423, 2010.

R. K. Workman and S. R. Hart, Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett, vol.231, pp.53-72, 2005.

C. You, P. Castillo, J. Gieskes, and L. Chan, Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones, 1996.

C. Zhang, C. Liu, F. Wu, W. Ji, T. Liu et al., Ultra-refractory mantle domains in the Luqu ophiolite (Tibet): Petrology and tectonic setting, Lithos, vol.286, issue.287, pp.252-263, 2017.
DOI : 10.1016/j.lithos.2017.05.021

S. Zhang, R. Wu, and Y. Zheng, Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen, Precambrian Res, pp.45-64, 2012.

A. A. ,

T. A. Abrajano, N. C. Sturchio, B. M. Kennedy, G. L. Lyon, K. Muehlenbachs et al., Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines: Applied Geochemistry, issue.5, pp.625-630, 1990.

M. Ader, P. Sansjofre, G. P. Halverson, V. Busigny, R. I. Trindade et al., Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective: Earth and Planetary Science Letters, vol.396, pp.1-13, 2014.

H. Admou, Structuration de la paléo suture ophiolitique panafricaine de Bou AzzerSiroua, Faculté des Sciences, 2000.

H. Admou, J. , and T. , Discovery of a fossil oceanic hydrothermal system in the Late Precambrian Khzama ophiolite (Siroua massif, Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science, pp.335-340, 1998.

H. Admou, P. Razin, E. Egal, N. Youbi, A. Soulaimani et al., Notice explicative de la Carte géologiques du Maroc (1/50 000), feuille Aït Ahmane: Notes et Mémoires du service Géologique du Maroc, p.p. carte, 2013.

A. Agranier, C. A. Lee, Z. A. Li, and W. P. Leeman, Fluid-mobile element budgets in serpentinized oceanic lithospheric mantle: Insights from B, As, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, Chemical Geology, vol.245, pp.230-241, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00238500

G. Agricola, De re metallica, 1556.

P. Agrinier, C. , and M. , Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge (23°N), 1997.

A. H. Ahmed, Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: A possible recycled upper mantle lithosphere: Precambrian Research, vol.233, pp.173-192, 2013.

A. H. Ahmed, S. Arai, Y. M. Abdel-aziz, M. Ikenne, R. et al., Platinum-group elements distribution and spinel composition in podiform chromitites and associated rocks from the upper mantle section of the Neoproterozoic Bou Azzer ophiolite, Journal of African Earth Sciences, vol.55, pp.92-104, 2009.

H. Ahmed, S. Arai, Y. M. Abdel-aziz, R. , and A. , Spinel composition as a petrogenetic indicator of the mantle section in the Neoproterozoic Bou Azzer ophiolite, p.138, 2005.

A. H. Ahmed and A. A. Surour, Fluid-related modifications of Cr-spinel and olivine from ophiolitic peridotites by contact metamorphism of granitic intrusions in the Ablah area, Journal of Asian Earth Sciences, p.533, 2016.

A. Malek, H. A. Gasquet, D. Bertrand, J. M. Leterrier, and J. , Géochronologie U-Pb sur zircon de granitoïdes éburnéens et panafricains dans les boutonnières protérozoïques d'Igherm, du Kerdous et du Bas Drâa, vol.327, pp.819-826, 1998.

D. E. Allen and W. E. Seyfried, REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure: Geochimica et Cosmochimica Acta, v. 69, pp.675-683, 2005.

S. Allerton and M. A. Tivey, Magnetic polarity structure of the lower oceanic crust: Geophysical Research Letters, vol.28, pp.423-426, 2001.

J. C. Alt and W. C. Shanks, Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling: Geochimica et Cosmochimica Acta, v. 67, pp.641-653, 2003.

C. J. Alvarenga, C. A. Moura, P. S. Gorayeb, and F. A. Abreu, , 2000.

J. J. Álvaro, F. Bellido, D. Gasquet, M. F. Pereira, C. Quesada et al., Diachronism in the late Neoproterozoic-Cambrian arc-rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa-Morena Zone, Journal of African Earth Sciences, vol.98, pp.113-132, 2014.

D. L. Anderson, Hotspots, polar wander, Mesozoic convection and the geoid: Nature, v, vol.297, pp.391-393, 1982.

M. Andreani, Les microstructures de deformation des serpentines et la partition sismique-asismique: exemple de la Californie, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00006458

M. Andreani, J. Escartin, A. Delacour, B. Ildefonse, M. Godard et al., Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14?N): Geochemistry, Geophysics, Geosystems, v. 15, pp.3543-3571, 2014.

M. Andreani, M. Godard, and C. Mével, LA-(HR-)ICPMS study of serpentinites from ODP Site 920 (23°N MAR): insights on transfers and trace element distribution during serpentinization, GGeophysical Research EGU2009, 2009.

M. Andreani, C. Mével, A. Boullier, and J. Escartín, Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites: Geochemistry, Geophysics, Geosystems, 2007.

. Anonyme, Penrose field conference on ophiolites, Geotimes, 1972.

P. Y. Antonio, M. S. D'agrella-filho, R. I. Trindade, A. Nédélec, D. C. De-oliveira et al., Turmoil before the boring billion: Paleomagnetism of the 1880-1860 Ma Uatumã event in the Amazonian craton: Gondwana Research, vol.49, pp.106-129, 2017.

S. Arai, Chemistry of chromian spinel in volcanic rocks a potential guide to magma chemistry: Mineralogical Magazine, 1992.

S. Arai, Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites: Journal of Volcanology and Geothermal Research, vol.59, pp.90083-90086, 1994.

T. Arnold, T. Zorn, G. Bernhard, N. , and H. , Sorption of uranium(VI) onto phyllite: Chemical Geology, vol.151, pp.129-141, 1998.

P. D. Asimow and C. H. Langmuir, The importance of water to oceanic mantle melting regimes: Nature, v. 421, pp.815-820, 2003.

N. Augustin, H. Paulick, K. S. Lackschewitz, A. Eisenhauer, D. Garbe-schönberg et al., Alteration at the ultramafic-hosted Logatchev hydrothermal field: Constraints from trace element and Sr-O isotope data: Geochemistry, Geophysics, Geosystems, 2012.

F. Aumento and H. Loubat, Serpentinized Ultramafic Intrusions, Canadian Journal of Earth Sciences, issue.8, pp.631-663, 1971.

A. Auzende, Evolution des microstructures des serpentinites en contexte convergent: effet du degré de métamorphisme et de la déformation, 2003.

A. Auzende, B. Devouard, S. E. Guillot, I. Daniel, A. Baronnet et al., Serpentinites from Central Cuba: petrology and HRTEM study, vol.14, pp.905-914, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00406654

B. B. ,

W. Bach, B. Peucker-ehrenbrink, S. R. Hart, and J. S. Blusztajn, Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B-Implications for seawater-crust exchange budgets and Sr-and Pb-isotopic evolution of the mantle: Geochemistry, Geophysics, Geosystems, vol.4, 2003.

W. Bach, C. J. Garrido, H. Paulick, J. Harvey, and M. Rosner, Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N, Geochemistry, Geophys. Geosystems, vol.5, 2004.

G. J. Baldwin, T. F. Nägler, N. D. Greber, E. C. Turner, and B. S. Kamber, Mo isotopic composition of the mid-Neoproterozoic ocean: An iron formation perspective: Precambrian Research, vol.230, pp.168-178, 2013.

M. Barazangi and B. Isacks, Lateral variations of seismic-wave attenuation in the upper mantle above the inclined earthquake zone of the Tonga Island Arc: Deep anomaly in the upper mantle, Journal of Geophysical Research, vol.76, pp.8493-8516, 1971.

P. Barbey, F. Oberli, J. P. Burg, H. Nachit, J. Pons et al., The Palaeoproterozoic in western Anti-Atlas (Morocco): a clarification, J. African Earth Sci, vol.39, pp.239-245, 2004.

S. J. Barnes, Chromite in Komatiites, II. Modification during Greenschist to MidAmphibolite Facies Metamorphism, Journal of Petrology, vol.41, pp.387-409, 2000.

S. J. Barnes and P. L. Roeder, The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks, Journal of Petrology, vol.42, pp.2279-2302, 2001.

J. D. Barnes and Z. D. Sharp, Achlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: Insights into the serpentinization process: Chemical Geology, vol.228, pp.246-265, 2006.

J. D. Barnes, Z. D. Sharp, and T. P. Fischer, Chlorine isotope variations across the IzuBonin-Mariana arc: Geology, v. 36, p.883, 2008.

A. Baronnet, D. , and B. , Topology and crystal growth of natural chrysotile and polygonal serpentine, Journal of Crystal Growth, vol.166, pp.952-960, 1996.

A. Baronnet, M. Mellini, D. , and B. , Sectors in polygonal serpentine. A model based on dislocations: Physics and Chemistry of Minerals, vol.21, pp.330-343, 1994.
DOI : 10.1007/bf00202098

J. A. Barrat, B. Zanda, F. Moynier, C. Bollinger, C. Liorzou et al., Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes: Geochimica et Cosmochimica Acta, vol.83, pp.79-92, 2012.

F. Barriga, Y. Fouquet, A. Almeida, and M. Biscoito, Discovery of the Saldanha hydrothermal field on the FAMOUS segment of the MAR, Eos Trans. Am. Geophys, vol.36, issue.30, 1998.

M. G. Barth, P. R. Mason, G. R. Davies, and M. R. Drury, The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge, Lithos, vol.100, pp.234-254, 2008.

B. N. Batuyev, A. G. Krotov, V. F. Markov, G. A. Cherkashev, S. G. Krasnov et al., Massive sulfide deposits discovered and sampled at 14°45' N, Bridg. Newslett, vol.6, pp.6-10, 1994.

J. Beard and L. Hopkinson, Site 1068 (Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry, Journal of Geophysical Research, vol.173, 2000.

A. Bekker, H. Holland, P. Wang, I. Rumble, and D. , Dating the rise of atmospheric oxygen: Nature, v, vol.427, p.117, 2004.

A. Bekker, J. F. Slack, N. Planavsky, B. Krapez, A. Hofmann et al., Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes: Economic Geology, v. 105, pp.467-508, 2010.

S. Belkacim, D. Gasquet, J. P. Liégeois, S. Arai, H. A. Gahlan et al., The Ediacaran volcanic rocks and associated mafic dykes of the Ouarzazate Group, Clinopyroxene composition, whole-rock geochemistry and Sr-Nd isotopes constraints from the Ouzellarh-Siroua salient, vol.127, pp.113-135, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01898441

V. Beltenev, V. Ivanov, and I. Rozhdestvenskaya, A new hydrothermal field at 13 30? N on the Mid-Atlantic Ridge: InterRidge News, 2007.

S. Bengtson and Y. Zhao, Predatorial Borings in Late Precambrian Mineralized Exoskeletons: Science, v. 257, pp.367-369, 1992.

E. H. Beraaouz, M. Ikenne, A. Mortaji, A. Madi, M. Lahmam et al., ): evidence of adakitic magmatism in an arc segment at the NW edge of the WestAfrican craton, Journal of African Earth Sciences, pp.285-293, 2004.

R. G. Berman, M. Engi, H. J. Greenwood, and T. H. Brown, Derivation of InternallyConsistent Thermodynamic Data by the Technique of Mathematical Programming: a Review with Application the System MgO-SiO2-H2O, Journal of Petrology, vol.27, pp.1331-1364, 1986.

M. E. Berndt, D. E. Allen, and W. E. Seyfried, Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar: Geology, v. 24, p.351, 1996.

R. A. Berner, The Phanerozoic Carbon Cycle: CO2 and O2, 2004.

M. Bizimis, V. J. Salters, and E. Bonatti, Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs, Chemical Geology, vol.165, pp.67-85, 2000.

O. Blein, T. Baudin, P. Chèvremont, A. Soulaimani, H. Admou et al., Geochronological constraints on the polycyclic magmatism in the Bou Azzer-El Graara inlier, vol.99, pp.287-306, 2014.
URL : https://hal.archives-ouvertes.fr/halsde-01022911

J. L. Bodinier, C. Dupuy, and J. Dostal, Geochemistry of Precambrian ophiolites from Bou Azzer, vol.87, pp.43-50, 1984.

J. Bodinier, G. , and M. , Orogenic, Ophiolitic, and Abyssal Peridotites, Treatise on Geochemistry, pp.1-73, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00407944

J. L. Bodinier, G. Vasseur, J. Vernières, C. Dupuy, and J. Fabries, Mechanisms of Mantle Metasomatism: Geochemical Evidence from the Lherz Orogenic Peridotite, Journal of Petrology, vol.31, pp.597-628, 1990.

Y. A. Bogdanov, A. M. Sagalevitch, E. S. Chernyaev, A. M. Ashadze, E. G. Gurvich et al., A study of the hydrothermal field at 14°45' N on the Mid-Atlantic Ridge using the, submersibles. Bridg. Newslett, vol.9, pp.9-13, 1995.

S. Bohn, S. Douady, C. , and Y. , Four Sided Domains in Hierarchical Space Dividing Patterns: Physical Review Letters, vol.94, p.54503, 2005.

S. Bohn, L. Pauchard, C. , and Y. , Hierarchical crack pattern as formed by successive domain divisions, Physical Review E, p.46214, 2005.

G. Boillot, S. Grimaud, A. Mauffret, D. Mougenot, J. Kornprobst et al., Ocean-continent boundary off the Iberian margin: A serpentinite diapir west of the Galicia Bank: Earth and Planetary Science Letters, vol.48, pp.23-34, 1980.

E. Bonatti, J. Lawrence, and N. Morandi, Serpentinization of oceanic peridotites: temperature dependence of mineralogy and boron content: Earth and Planetary Science Letters, 1984.

E. Bonatti, G. Ottonello, and P. R. Hamlyn, Peridotites from the Island of Zabargad, Journal of Geophysical Research, p.599, 1986.

D. Bonnemains, J. Carlut, J. Escartín, C. Mével, M. Andreani et al., Magnetic signatures of serpentinization at ophiolite complexes: Geochemistry, Geophysics, Geosystems, vol.17, pp.2969-2986, 2016.

C. Boschi, E. Bonatti, M. Ligi, D. Brunelli, A. Cipriani et al., Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11° N: Lithos, v, vol.178, pp.3-23, 2013.

C. Boschi, A. Dini, G. Früh-green, K. , and D. , Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30 N): insights from B and Sr isotope data, 2008.

K. Bose and J. Ganguly, Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes: Earth and Planetary Science Letters, vol.136, pp.109-121, 1995.

M. G. Bostock, R. D. Hyndman, S. Rondenay, and S. M. Peacockk, An inverted continental Moho and serpentinization of the forearc mantle: Nature, v. 417, pp.536-538, 2002.

F. Boudier, A. Baronnet, M. , and D. , Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite, Journal of Petrology, vol.51, pp.495-512, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00456061

F. Boudier, N. , and A. , Fusion partielle gabbroïque dans la lherzolite de Lanzo (Alpes piémontaises): Schweizerische Mineralogische und Petrographische, 1972.

F. Boudier, N. , and A. , Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments: Earth and Planetat T Science Letters, p.76, 1985.

F. Boudier, N. , and A. , Nature of the Moho Transition Zone in the Oman Ophiolite, Journal of Petrology, vol.36, pp.777-796, 1995.

R. Bousquet, R. El-mamoun, O. Saddiqi, B. Goffé, A. Möller et al., Mélanges and ophiolites during the Pan-African orogeny: the case of the Bou-Azzer ophiolite suite, vol.297, pp.233-247, 2008.

A. Bouvier, E. Deloule, and N. Métrich, Fluid Inputs to Magma Sources of St. Vincent and Grenada (Lesser Antilles): New Insights from Trace Elements in Olivine-hosted Melt Inclusions, Journal of Petrology, vol.51, pp.1597-1615, 2010.

N. Bowen and O. Tuttle, The system MgO-SiO 2-H 2 O, 1949.

F. Bowyer, R. A. Wood, and S. W. Poulton, Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective: Geobiology, v. 15, pp.516-551, 2017.

H. Brasse, G. Kapinos, L. Mütschard, G. E. Alvarado, T. Worzewski et al., Deep electrical resistivity structure of northwestern Costa Rica: Geophysical Research Letters, vol.36, 2009.

M. G. Braun and P. B. Kelemen, Dunite distribution in the Oman Ophiolite: Implications for melt flux through porous dunite conduits: Geochemistry, Geophysics, Geosystems, pp.1-21, 2002.

J. J. Brocks, G. A. Logan, R. Buick, and R. E. Summons, Archean Molecular Fossils and the Early Rise of Eukaryotes: Sciences, v. 285, pp.1033-1036, 1999.

B. Bühn, I. G. Stanistreet, and M. Okrusch, Late Proterozoic outer shelf manganese and iron deposits at Otjosondu (Namibia) related to the Damaran oceanic opening: Economic Geology, vol.87, 1992.

K. Burgath, V. Marchig, and K. Mussallam, Data report : Mineralogical, structural, and chemical variability of mantle sections from holes 920B and 920D, Proceedings of the Ocean Drilling Program, 1997.

R. F. Butler, Paleomagnetism : magnetic domains to geologic terranes, vol.319, 1992.

C. C. ,

W. E. Cameron, Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus: Contributions to Mineralogy and Petrology, vol.89, pp.239-255, 1985.

I. H. Campbell, A. , and M. C. , Formation of supercontinents linked to increases in atmospheric oxygen, Nature Geoscience, issue.1, pp.554-558, 2008.

D. Canfield, A new model for Proterozoic ocean chemistry: Nature, v, vol.396, pp.450-453, 1998.

D. E. Canfield, S. W. Poulton, A. H. Knoll, G. M. Narbonne, G. Ross et al., Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry: Science, v, p.321, 2008.
DOI : 10.1126/science.1154499

D. E. Canfield, S. W. Poulton, and G. M. Narbonne, Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life: Science, v, p.315, 2007.

D. E. Canfield, T. , and A. , Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies: Nature, v, vol.382, pp.127-132, 1996.

J. R. Cann, New Model for the Structure of the Ocean Crust: Nature, v. 226, pp.83-127, 1970.

M. Cannat, Emplacement of mantle rocks in the seafloor at mid-ocean ridges, Journal of Geophysical Research, vol.98, pp.4163-4172, 1993.

M. Cannat, C. Mevel, M. Maia, C. Deplus, C. Durand et al., Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°-24°N), Geology, issue.23, pp.49-52, 1995.

M. Cannat, How thick is the magmatic crust at slow spreading oceanic ridges, Journal of Geophysical Research: Solid Earth, vol.101, pp.2847-2857, 1996.

M. Cannat, D. Sauter, V. Mendel, E. Ruellan, K. Okino et al., Modes of seafloor generation at a melt-poor ultraslow-spreading ridge: Geology, 2006.

M. Cannat, F. Fontaine, and J. Escartín, Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges, pp.241-264, 2010.
DOI : 10.1029/2008gm000760

J. Carignan, P. Hild, G. Mevelle, J. Morel, D. ;. Yeghicheyan et al., Routine Analyses of Trace Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, Geoanalytical Res, vol.25, pp.187-198, 2001.

R. L. Carlson, The abundance of ultramafic rocks in Atlantic Ocean crust, Geophysical Journal International, v, vol.144, pp.37-48, 2001.

L. J. Caruso and J. V. Chernosky, The stability of lizardite: The Canadian Mineralogist, p.17, 1979.

A. Chabane, Les roches vertes du Protérozoïque Supérieur de Khzama (Siroua, AntiAtlas, Maroc), 1991.

F. Chalot-prat, D. Gasquet, J. Roger, B. Hassenforder, P. Chevremont et al., Mémoire explicatif, carte géol. Maroc (1/50000), Feuille Sidi Bou'addi. Notes et Mémoires Serv. Géol. Maroc, vol.415, 2001.

J. A. Chapman and J. Zussman, Further electron optical observations on crystals of antigorite: Acta Crystallographica, vol.12, pp.550-552, 1959.

J. .. Charlou, J. .. Donval, Y. Fouquet, P. Jean-baptiste, and N. Holm, Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14?N, MAR): Chemical Geology, vol.191, pp.345-359, 2002.

J. L. Charlou, J. P. Donval, C. Konn, H. Ondréas, Y. Fouquet et al., High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge, pp.265-296, 2010.

L. Chen, F. Chu, J. Zhu, Y. Dong, X. Yu et al., Major and trace elements of abyssal peridotites: evidence for melt refertilization beneath the ultraslowspreading Southwest Indian Ridge (53° E segment): International Geology Review, vol.57, pp.1715-1734, 2015.

U. V. Chhaya, B. S. Trivedi, and R. G. Kulkarni, Magnetic properties of the mixed spinel NiAl2xCrxFe2?3xO4: Physica B: Condensed Matter, vol.262, pp.5-12, 1999.

S. H. Choi, J. W. Shervais, and S. B. Mukasa, Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California: Contributions to Mineralogy and Petrology, v, vol.156, pp.551-576, 2008.

G. Choubert, Histoire géologique du Précambrien de l, Notes Mém. Serv. Géol. Maroc, pp.164-352, 1963.

G. Choubert, F. Muret, and A. , Livret guide de I'excursion Anti-Atlas occidental et central. Colloque int, Précambrien: Notes Mém. Serv. Géol. Maroc, p.259, 1970.

N. Christensen, Ophiolites, seismic velocities and oceanic crustal structure: Tectonophysics, p.47, 1978.
DOI : 10.1016/0040-1951(78)90155-5

D. H. Christensen and L. J. Ruff, SEISMIC COUPLING AND OUTER RISE EARTHQUAKES: Journal of Geophysical Research: Solid Earth, issue.93, pp.13421-13444, 1988.

N. Chumakov, Climates and climate zonality of the Vendian: geological evidence, 2007.

, The Rise and Fall of the Ediacaran Biota, vol.286, pp.15-26

J. Ciazela, J. Koepke, H. J. Dick, and A. Muszynski, , 2015.

E. C. Clites, M. L. Droser, and J. G. Gehling, The advent of hard-part structural support among the Ediacara biota: Ediacaran harbinger of a Cambrian mode of body construction: Geology, v, vol.40, pp.307-310, 2012.

P. A. Cohen, J. W. Schopf, N. J. Butterfield, A. B. Kudryavtsev, and F. A. Macdonald, Phosphate biomineralization in mid-Neoproterozoic protists: Goelogy, v. 39, p, pp.539-542, 2011.

R. G. Coleman, Ophiolites : Ancient Oceanic Lithosphere?, vol.229, 1977.

R. G. Coleman, Plate tectonic emplacement of upper mantle peridotites along continental edges, Journal of Geophysical Research, vol.76, pp.1212-1222, 1971.

R. Coleman, Serpentinites, rodingites, and tectonic inclusions in Alpine-type mountain chains, 1963.

R. G. Coleman, K. , and T. E. , A Chemical Study of Serpentinization-Burro Mountain, vol.12, pp.311-328, 1971.

G. M. Cox, G. P. Halverson, R. K. Stevenson, M. Vokaty, A. Poirier et al., Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth: Earth and Planetary Science Letters, vol.446, pp.89-99, 2016.

P. R. Craddock, W. Bach, J. S. Seewald, O. J. Rouxel, E. Reeves et al., Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins: Geochimica et Cosmochimica Acta, vol.74, pp.5494-5513, 2010.

A. R. Crawford and B. Daily, Probable Non-synchroneity of Late Precambrian Glaciations: Nature, v. 230, pp.111-112, 1971.

B. A. Cressey, Electron microscopy of serpentine textures: Canadian Mineralogist, vol.17, pp.741-756, 1979.

B. A. Cressey and J. Zussman, Electron microscopic studies of serpentinites: Canadbn Mineraloglst, v. 14, pp.307-313, 1976.

A. Delacour, G. L. Früh-green, and S. M. Bernasconi, Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309): Geochimica et Cosmochimica Acta, pp.5111-5127, 2008.

F. Deschamps, Caractérisation in situ des serpentines en contexte de subduction: De la nature à l'expérience, 2010.

F. Deschamps, M. Godard, S. Guillot, C. Chauvel, M. Andreani et al., Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic: Chemical Geology, pp.93-117, 2012.

F. Deschamps, M. Godard, S. Guillot, and K. Hattori, Geochemistry of subduction zone serpentinites: A review: Lithos, v. 178, pp.96-127, 2013.

F. Deschamps, S. Guillot, M. Godard, M. Andreani, and K. Hattori, Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments: Terra Nova, pp.171-178, 2011.

F. Deschamps, S. Guillot, M. Godard, C. Chauvel, M. Andreani et al., In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones: Chemical Geology, vol.269, pp.262-277, 2010.

J. Dewey and J. Bird, Origin and emplacement of the ophiolite suite: Appalachian ophiolites in, Journal of Geophysical Research, vol.76, p.21202121, 1971.

H. J. Dick, , 1977.

I. , The effect on mineral composition and its consequence for geobarometry and geothermometry, American Journal of Science, vol.277, pp.801-832

H. J. Dick and T. Bullen, Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas: Contributions to Mineralogy and Petrology, vol.86, pp.54-76, 1984.

H. J. Dick, R. L. Fisher, and W. B. Bryan, Mineralogic variability of the uppermost mantle along mid-ocean ridges: Earth and Planetary Science Letters, v. 69, pp.88-106, 1984.

H. J. Dick, J. Lin, and H. Schouten, An ultraslow-spreading class of ocean ridge: Nature, v. 426, pp.405-412, 2003.

H. J. Dick, C. J. Lissenberg, W. , and J. M. , Mantle Melting, Melt Transport, and Delivery Beneath a Slow-Spreading Ridge: The Paleo-MAR from 23°15'N to 23°45, vol.51, pp.425-467, 2010.

Y. Dilek, Ophiolite pulses, mantle plumes and orogeny, vol.218, pp.9-19, 2003.

Y. Dilek and M. F. Flower, Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, p.218, 2003.

Y. Dilek and H. Furnes, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere, pp.387-411, 2011.

Y. Dilek, R. , and P. T. , Ophiolites in Earth history: introduction, p.218, 2003.

B. Domenichini, K. Amilain-basset, and S. Bourgeois, Dynamic segregation during ferrite oxidation revealed by XPS: Surface and Interface Analysis, vol.34, pp.527-530, 2002.

B. Domenichini, P. Perriat, J. Merle, K. Basset, N. Guigue-millot et al., Dynamic segregation phenomena during oxidation of titanium ferrites, Journal of Materials Chemistry, issue.9, pp.1179-1183, 1999.

Y. Donnadieu, Y. Goddéris, G. Ramstein, A. Nédélec, and J. Meert, A "snowball Earth" climate triggered by continental break-up through changes in runoff: Nature, v. 428, pp.303-306, 2004.

E. Douville, P. Bienvenu, J. L. Charlou, J. P. Donval, Y. Fouquet et al., Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems, Geochimica et Cosmochimica Acta, vol.63, pp.627-643, 1999.

E. Douville, J. L. Charlou, E. H. Oelkers, P. Bienvenu, C. F. Colon et al., The rainbow vent fluids (36°14'N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids: Chemical geology, vol.184, pp.37-48, 2002.

G. T. Droop, A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag, vol.51, pp.431-435, 1987.

M. Drouin, Imprégnation magmatique de la lithosphère océanique : étude microstrucurale et géochimique de séries gabbroïques forées à la dorsale Médio-Atlantique: Montpellier 2, 2008.

L. Dubertret, Géologie des roches vertes du nord-ouest de la Syrie et du Hatay (Turquie): Sequanian stromatoporoids from South-West Arabia: Mus, Nat. Hist. nat. Paris, Notes Mém. Moyen Orient, pp.6-179, 1953.

V. Dubois-cote, R. Hebert, C. Dupuis, C. Wang, Y. Li et al., Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet, Chem. Geol, vol.214, pp.265-286, 2005.

D. J. Dunlop, Determination of domain structure in igneous rocks by alternating field and other methods: Earth and Planetary Science Letters, vol.63, pp.353-367, 1983.

D. J. Dunlop, Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data, Journal of Geophysical Research, vol.107, p.2056, 2002.

D. J. Dunlop, Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils, Journal of Geophysical Research, vol.107, p.2057, 2002.

D. J. Dunlop and O. Özdemir, Rock magnetism : fundamentals and frontiers, vol.573, 1997.

J. Dyment, J. Arkani-hamed, G. , and A. , Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: insights from the shape of the anomalies, Geophysical Journal International, v, vol.129, pp.691-701, 1997.

E. E. ,

R. Egli, VARIFORC: An optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams: Global and Planetary Change, vol.110, pp.302-320, 2013.

J. M. Eiler, A. Crawford, T. Elliott, K. A. Farley, J. W. Valley et al., Oxygen Isotope Geochemistry of Oceanic-Arc Lavas, J. Petrol, vol.41, pp.229-256, 2000.

J. M. Eiler, P. Schiano, J. W. Valley, N. T. Kita, and E. M. Stolper, Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle, Geochemistry, Geophys. Geosystems, vol.8, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00328972

S. Eittreim and J. Ewing, Vema fracture zone transform fault: Geology, p.555, 1975.

A. El-bahat, M. Ikenne, U. Söderlund, B. Cousens, N. Youbi et al., UPb baddeleyite ages and geochemistry of dolerite dykes in the Bas Drâa Inlier of the Anti-Atlas of Morocco: Newly identified 1380 Ma event in the West African Craton, Lithos, vol.174, pp.85-98, 2013.

A. El-boukhari, A. Chabane, G. Rocci, and J. L. Tnae, ) a marginal sea and transform fault system, Upper Proterozoic ophiolites of the Siroua Massif, vol.14, pp.67-80, 1992.

H. Elderfield and A. Schultz, Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean: Annual Review of Earth and Planetary Sciences, vol.24, pp.191-224, 1996.

H. El-hadi, J. F. Simancas, D. Martínez-poyatos, A. Azor, A. Tahiri et al., Structural and geochronological constraints on the evolution of the Bou Azzer Neoproterozoic ophiolite, vol.182, pp.1-14, 2010.

N. Ennih and J. P. Liégeois, The boundaries of the West African craton, with special reference to the basement of the Moroccan metacratonic, vol.297, pp.1-17, 2008.

J. Escartín, G. Hirth, and B. Evans, Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges: Earth and Planetary Science Letters, 1997.

J. Escartín, C. Mével, C. J. Macleod, and A. M. Mccaig, Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45?N: Geochemistry, Geophysics, Geosystems, vol.4, 2003.

J. Escartín and J. P. Canales, Detachments in oceanic lithosphere: Deformation, magmatism, fluid flow, and ecosystems, Eos Trans. AGU, vol.92, issue.4, p.31, 2011.

J. Escuder-viruete, A. Pérez-estaún, D. Weis, and R. Friedman, Geochemical characteristics of the Río Verde Complex, Central Hispaniola: Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc: Lithos, v. 114, pp.168-185, 2010.

J. Escuder-viruete, A. Díaz-de-neira, P. P. Hernáiz-huerta, J. Monthel, J. G. Senz et al., Magmatic relationships and ages of Caribbean Island arc tholeiites, boninites and related felsic rocks, Lithos, v, vol.90, pp.161-186, 2006.

B. W. Evans, Control of the Products of Serpentinization by the Fe 2+ Mg À1 Exchange Potential of Olivine and Orthopyroxene, Journal of Petrology, vol.49, pp.1873-1887, 2008.

B. W. Evans, Lizardite versus antigorite serpentinite: Magnetite, hydrogen, and life(?): Geology, v. 38, pp.879-882, 2010.

M. E. Evans, Single-domain particles and TRM in rocks: Earth Sciences Geophysics, pp.139-148, 1972.

D. A. Evans, Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox, pp.347-433, 2000.

B. W. Evans, The Serpentinite Multisystem Revisited: Chrysotile Is Metastable: International Geology Review, vol.46, pp.479-506, 2004.

B. W. Evans, K. Hattori, and A. Baronnet, Serpentinite: What, Why, Where? Elements, v. 9, 2013.

B. W. Evans, W. Johannes, H. Oterdoom, and V. Trommsdorf, Stability of chrysotile and antigorite in the serpentine multisystem: Schweizerische Mineralogische und Petrographische Mitteilungen, vol.56, pp.79-93, 1976.

D. A. Evans, Z. X. Li, M. , and J. B. , Four-dimensional context of Earth's supercontinents, p.424, 2016.

D. A. Evans and T. D. Raub, Neoproterozoic glacial palaeolatitudes: a global update, p.36, 2011.

C. Evrard, Processus métallogéniques associés aux interactions hydrothermales entre l'eau de mer et les roches ultrabasiques du manteau, 2012.

J. Farquhar, H. Bao, and M. Thiemens, Atmospheric Influence of Earth's Earliest Sulfur Cycle: Science, v. 289, pp.756-758, 2000.

A. Fekkak, A. Pouclet, H. Ouguir, H. Ouazzani, L. Badra et al., Géochimie et signification géotectonique des volcanites du Cryogénien inférieur du Saghro, vol.14, pp.373-385, 2001.

D. A. Fike, J. P. Grotzinger, L. M. Pratt, and R. E. Summons, Atmospheric Influence of Earth's Earliest Sulfur Cycle: Nature, v. 444, pp.744-747, 2006.

T. P. Fischer, M. , and B. , Volatile abundances in the sub-arc mantle: insights from volcanic and hydrothermal gas discharges: Journal of Volcanology and Geothermal Research, v. 140, pp.205-216, 2005.

M. Flower, Ophiolite Concept and the Evolution of Geological Thought, p.504, 2003.

E. Font, A. Nédélec, R. I. Trindade, and C. Moreau, Fast or slow melting of the Marinoan snowball Earth? The cap dolostone record: Palaeogeography, Palaeoclimatology, Palaeoecology , v. 295, pp.215-225, 2010.

Y. Fouquet, P. Cambon, J. Etoubleau, J. Charlou, H. Ondréas et al., Geodiversity of Hydrothermal Processes Along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: a New Type Of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit, pp.321-367, 2010.

J. M. Franklin, H. L. Gibson, I. R. Jonasson, and A. G. Galley, Volcanogenic massive sulfide deposits: ECONOMIC GEOLOGY 100TH ANNIVERSARY VOLUME, pp.523-560, 2005.

R. Frei, C. Gaucher, S. W. Poulton, and D. E. Canfield, Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes: Nature, v. 461, pp.250-253, 2009.

S. Fretzdorff, R. A. Livermore, C. W. Devey, P. T. Leat, and P. Stoffers, Journal of Petrology, vol.43, pp.1435-1467, 2002.

B. R. Frost and J. S. Beard, On Silica Activity and Serpentinization: Journal of Petrology, vol.48, pp.1351-1368, 2007.

B. R. Frost, K. A. Evans, S. M. Swapp, J. S. Beard, and F. E. Mothersole, The process of serpentinization in dunite from New Caledonia: Lithos, v, vol.178, pp.24-39, 2013.

G. L. Früh-green, D. S. Kelley, S. M. Bernasconi, J. A. Karson, K. A. Ludwig et al., 000 Years of Hydrothermal Activity at the Lost City Vent Field: Science, v, vol.30, p.301, 2003.

P. Fryer, C. G. Wheat, and M. J. Mottl, Mariana blueschist mud volcanism: Implications for conditions within the subduction zone: Geology, v, vol.27, p.103, 1999.

M. Fujii, K. Okino, H. Sato, K. Nakamura, T. Sato et al., Variation in magnetic properties of serpentinized peridotites exposed on the Yokoniwa Rise, Central Indian Ridge: Insights into the role of magnetite in serpentinization: Geochemistry, Geophysics, Geosystems, vol.17, pp.5024-5035, 2016.

M. Fujii, K. Okino, T. Sato, H. Sato, and K. Nakamura, Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge, 2016.

H. Furnes, Y. Dilek, and M. De-wit, Precambrian greenstone sequences represent different ophiolite types: Gondwana Research, v, vol.27, pp.649-685, 2015.
DOI : 10.1016/j.gr.2013.06.004

H. Furnes, M. De-wit, and Y. Dilek, Four billion years of ophiolites reveal secular trends in oceanic crust formation: Geoscience Frontiers, pp.571-603, 2014.

H. Furnes, M. De-wit, H. Staudigel, M. Rosing, and K. Muehlenbachs, A Vestige of Earth's Oldest Ophiolite: Science, v, p.315, 2007.

Y. Furukawa, Depth of the decoupling plate interface and thermal structure under arcs, Journal of Geophysical Research: Solid Earth, vol.98, 1993.

H. A. Gahlan, S. Arai, A. H. Ahmed, Y. Ishida, Y. M. Abdel-aziz et al., Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Journal of African Earth Sciences, vol.46, pp.318-330, 2006.

F. Gaillard, B. Scaillet, and N. T. Arndt, Atmospheric oxygenation caused by a change in volcanic degassing pressure: Nature, v. 478, pp.229-232, 2011.

D. G. Gallo, P. J. Fox, and K. C. Macdonald, A Sea Beam investigation of the Clipperton Transform Fault: The morphotectonic expression of a fast slipping transform boundary, Journal of Geophysical Research: Solid Earth, vol.91, pp.3455-3467, 1986.

D. Gasquet, N. Ennih, J. Liégeois, A. Soulaimani, M. et al., The Pan-African Belt, Continental Evolution: The Geology of Morocco, pp.33-64, 2008.
DOI : 10.1007/978-3-540-77076-3_2

URL : https://hal.archives-ouvertes.fr/halsde-00341623

D. Gasquet, G. Levresse, A. Cheilletz, M. R. Azizi-samir, and A. Mouttaqi, Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the PrecambrianCambrian transition: Precambrian Research, pp.157-182, 2005.

D. Gasquet, P. Chevremont, T. Baudin, . Chalot-pratf, C. Guerrot et al., Polycyclic magmatism in the Tagragra d'Akka and Kerdous-Tafeltast inliers, J. African Earth Sci, vol.39, pp.267-275, 2004.

J. Gattacceca, P. Rochette, F. Lagroix, P. Mathé, and B. Zanda, Low temperature magnetic transition of chromite in ordinary chondrites, Geophysical Research Letters, p.38, 2011.
URL : https://hal.archives-ouvertes.fr/insu-01311073

C. Gaucher, A. N. Sial, G. P. Halverson, and H. E. Frimmel, The Neoproterozoic and Cambrian: A Time of Upheavals, Extremes and Innovations, Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A focus On South Western Gondwana.: Developments in Precambrian Geology, pp.3-11, 2009.

J. S. Gee, K. , and D. V. , Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale, Treatise on Geophysics, pp.455-507, 2007.

A. U. Gehring, H. Fisher, M. Louvel, K. Kunze, and P. G. Weidler, High temperature stability of natural maghemite: a magnetic and spectroscopic study, Geophysical Journal International, v, vol.179, pp.1361-1371, 2009.

C. R. German, L. M. Parson, . Heat-scientific, . Team, C. R. German et al., Hydrothermal exploration near the Azores Triple Junction: tectonic control of venting at slow-spreading ridges? Earth and Planetary Science Letters, vol.138, pp.93-104, 1996.

T. M. Gernon, T. K. Hincks, T. Tyrrell, E. J. Rohling, P. et al., Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup, Nature Geoscience, vol.9, pp.242-248, 2016.
DOI : 10.1038/ngeo2632

URL : https://eprints.soton.ac.uk/386413/1/snowball-NG-gernon-final.pdf

T. Gerya, Precambrian geodynamics: Concepts and models: Gondwana Research, vol.25, pp.442-463, 2014.
DOI : 10.1016/j.gr.2012.11.008

T. V. Gerya, B. Stöckhert, and A. L. Perchuk, Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation: Tectonics, v. 21, pp.6-7, 2002.

M. Godard, J. Bodinier, and G. Vasseur, Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: A chromatographic approach: Earth and Planetary Science Letters, vol.133, pp.449-461, 1995.

M. Godard, D. Jousselin, and J. Bodinier, Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite: Earth and Planetary Science Letters, vol.180, pp.133-148, 2000.

M. Godard, Y. Lagabrielle, O. Alard, H. , J. Gold et al., Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, MidAtlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge, pp.420-423, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00412001

J. M. González-jiménez, T. Kerestedjian, J. A. Fernández, and F. G. Linares, Metamorphism on Chromite Ores from the Dobromirtsi Ultramafic Massif, pp.413-429, 2009.

P. S. Gorayeb, Corpos serpentiníticos da Faixa Araguaia na região de AraguacemaPequizeiro-Conceição do Araguaia, Revista Brasiliera de Geociências, vol.19, pp.51-62, 1989.

W. Gorczyk, S. Guillot, T. V. Gerya, and K. Hattori, Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles: Geophysical Research Letters, vol.34, p.21309, 2007.

D. R. Gray, D. A. Foster, J. G. Meert, B. D. Goscombe, R. Armstrong et al., A Damara orogen perspective on the assembly of southwestern Gondwana, p.294, 2008.

D. H. Green and A. E. Ringwood, The genesis of basaltic magmas: Contributions to Mineralogy and Petrology, v. 15, pp.103-190, 1967.

R. T. Gregory, T. , and H. P. , An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for ? 18 O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges, Journal of Geophysical Research: Solid Earth, vol.86, pp.2737-2755, 1981.

B. Grobéty, Polytypes and higher-order structures of antigorite: A TEM study, American Mineralogist, 2003.

C. Groppo, C. Rinaudo, S. Cairo, D. Gastaldi, C. et al., Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics, European Journal of Mineralogy, 2006.

G. Gruau, J. Bernard-griffiths, and C. Lécuyer, The origin of U-shaped rare earth patterns in ophiolite peridotites: assessing the role of secondary alteration and melt/rock reaction, Geochim. Cosmochim. Acta, vol.62, pp.3545-3560, 1998.

S. Guillot, K. Hattori, P. Agard, S. Schwartz, and O. Vidal, Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review, pp.175-205, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00411149

S. Guillot, K. H. Hattori, and J. Sigoyer, Mantle wedge serpentinization and exhumation of eclogites: Insights from eastern Ladakh, 2000.

S. Guillot, K. H. Hattori, J. De-sigoyer, T. Nägler, A. et al., Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites: Earth and Planetary Science Letters, vol.193, pp.115-127, 2001.

S. Guillot, S. Schwartz, B. Reynard, P. Agard, P. et al., Tectonic significance of serpentinites: Tectonophysics, v. 646, pp.1-19, 2015.

G. P. Halverson, P. F. Hoffman, D. P. Schrag, A. C. Maloof, R. et al., Toward a Neoproterozoic composite carbon-isotope record, vol.117, p.1181, 2005.

W. B. Harland, Critical evidence for a great infra-Cambrian glaciation: Geologische Rundschau, vol.54, pp.45-61, 1964.

R. J. Harrison and J. M. Feinberg, FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing: Geochemistry, Geophysics, Geosystems, 2008.

S. R. Hart and A. Zindler, In search of a bulk-Earth composition, Chem. Geol, vol.57, pp.247-267, 1986.

J. Harvey, I. P. Savov, S. Agostini, R. A. Cliff, and R. Walshaw, Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, Geochimica et Cosmochimica Acta, vol.209, pp.30-48, 2014.

K. H. Hattori, G. , and S. , Geochemical character of serpentinites associated with high-to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones: Geochemistry, 2007.

K. H. Hattori, G. , and S. , Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge: Geology, v. 31, p.525, 2003.

C. J. Hawkesworth, K. Gallagher, J. M. Hergt, and F. Mcdermott, Melting and melt movement in the Earth-Trace element fractionation processes in the generation of island arc basalts, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p.342, 1993.

C. Hawkesworth, P. Cawood, D. , and B. , Continental growth and the crustal record: Tectonophysics, v. 609, pp.651-660, 2013.

C. J. Hawkesworth, B. Dhuime, A. B. Pietranik, P. A. Cawood, A. I. Kemp et al., The generation and evolution of the continental crust, Journal of the Geological Society, p.167, 2010.

C. J. Hawkesworth, K. Gallagher, J. M. Hergt, and F. Mcdermott, Mantle and Slab Contributions in ARC Magmas: Annual Review of Earth and Planetary Sciences, v. 21, pp.175-204, 1993.

C. J. Hawkesworth, J. M. Hergt, R. M. Ellam, and F. Mcdermott, The behaviour and influence of fluids in subduction zones-Element fluxes associated with subduction related magmatism, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p.335, 1991.

C. J. Hawkesworth, J. M. Hergt, F. Mcdermott, and R. M. Ellam, Destructive margin magmatism and the contributions from the mantle wedge and subducted crust, Australian Journal of Earth Sciences, vol.38, pp.577-594, 1991.

R. Hebert, A. C. Adamson, and S. C. Komor, Metamorphic petrology of ODP Leg 109, Hole 670A, serpentinized peridotites: Serpentinization processes at a slow spreading ridge environment, Proceedings of the Ocean Drilling Program, pp.103-113, 1990.

R. Hébert, K. Gueddari, M. R. Laflèche, M. Beslier, and V. Gardien, Petrology and geochemistry of exhumed peridotites and gabbros at non-volcanic margins: ODP Leg 173 West Iberia ocena-continent transition zone, 2001.

K. P. Hefferan, H. Admou, R. Hilal, J. A. Karson, A. Saquaque et al., Proterozoic blueschist-bearing mélange in the, vol.118, pp.179-194, 2002.

K. P. Hefferan, H. Admou, J. A. Karson, and A. Saquaque, Anti-Atlas (Morocco) role in Neoproterozoic Western Gondwana reconstruction: Precambrian Research, pp.89-96, 2000.

K. Hefferan, A. Soulaimani, S. D. Samson, H. Admou, J. Inglis et al., A reconsideration of Pan African orogenic cycle in the Anti-Atlas Mountains, vol.98, pp.34-46, 2014.

J. Hermann, O. Müntener, and M. Scambelluri, The importance of serpentinite mylonites for subduction and exhumation of oceanic crust: Tectonophysics, v, vol.327, pp.225-238, 2000.

C. Herzberg, Geodynamic Information in Peridotite Petrology, Journal of Petrology, vol.45, pp.2507-2530, 2004.

D. Heslop, M. J. Dekkers, P. P. Kruiver, and I. H. Van-oorschot, Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm, Geophysical Journal International, v, vol.148, pp.58-64, 2002.

H. H. Hess, History of ocean basins, Petrologic Studies, pp.599-620, 1962.

N. Hilairet, B. Reynard, Y. Wang, I. Daniel, S. Merkel et al., High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction: Science, 2007.

L. Hir, G. Donnadieu, Y. Goddéris, Y. T. Pierrehumbertr, G. P. Halverson et al., The snowball Earth aftermath: Exploring the limits of continental weathering processes: Earth and Planetary Science Letters, vol.277, pp.453-463, 2009.

M. M. Hirschmann, P. D. Asimow, M. S. Ghiorso, and E. M. Stolper, Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. III. Controls on Isobaric Melt Production and the Effect of Water on Melt Production, Références bibliographiques, vol.40, pp.831-851, 1999.

F. Hodel, M. Macouin, A. Triantafyllou, J. Carlut, J. Berger et al., Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, p.300, 2017.

F. Hodel, R. I. Trindade, M. Macouin, A. Triantafyllou, J. Ganne et al., Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater, Nature Communications, vol.9, 1453.

P. F. Hoffman, K. G. Lamothe, S. J. Lobianco, M. S. Hodgskiss, E. J. Bellefroid et al., Sedimentary depocenters on Snowball Earth: Case studies from the Sturtian Chuos Formation in northern Namibia: Geosphere, v, pp.811-837, 2017.

P. F. Hoffman and D. P. Schrag, The snowball Earth hypothesis: testing the limits of global change: Terra Nova, v. 14, pp.129-155, 2002.

A. W. Hofmann, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett, vol.90, pp.297-314, 1988.

H. D. Holland, The chemical evolution of the atmosphere and oceans, 1984.

H. D. Holland, The oxygenation of the atmosphere and oceans, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.361, pp.903-915, 2006.

H. D. Holland, Volcanic gases, black smokers, and the great oxidation event: Geochimica et Cosmochimica Acta, v. 66, pp.3811-3826, 2002.
DOI : 10.1016/s0016-7037(02)00950-x

L. J. Hopkinson, S. Dee, and C. A. Boulter, Moving reactive interfaces and fractal carbonate replacement patterns in serpentinites: evidence from the southern Iberia Abyssal Plain: Mineralogical Magazine, vol.64, pp.791-800, 2000.

H. Horen, M. Soubrand, J. Kierczak, E. Joussein, and C. Néel, Magnetic characterization of ferrichromite in soils developed on serpentinites under temperate climate: Geoderma, v. 235, pp.83-89, 2014.

D. L. Huston, S. Pehrsson, B. M. Eglington, and K. Zaw, The Geology and Metallogeny of Volcanic-Hosted Massive Sulfide Deposits: Variations through Geologic Time and with Tectonic Setting: Economic Geology, p.105, 2010.

W. T. Hyde, T. J. Crowley, S. K. Baum, and W. R. Peltier, Neoproterozoic "snowball Earth" simulations with a coupled climate/ice-sheet model.: Nature, v. 405, pp.425-434, 2000.

R. D. Hyndman and S. M. Peacock, Serpentinization of the forearc mantle: Earth and Planetary Science Letters, v. 212, pp.417-432, 2003.

I. I. ,

M. Ikenne, U. Söderlund, R. E. Ernst, C. Pin, N. Youbi et al., A c. 1710 Ma mafic sill emplaced into a quartzite and calcareous series from Ighrem, Evidence that the Taghdout passive margin sedimentary group is nearly 1 Ga older than previously thought, vol.127, pp.62-76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01864017

B. Ildefonse, D. K. Blackman, B. E. John, Y. Ohara, D. J. Miller et al., Oceanic core complexes and crustal accretion at slow-spreading ridges: Geology, v, vol.35, p.623, 2007.

J. D. Inglis, R. S. D'lemos, S. D. Samson, A. , and H. , Geochronological Constraints on Late Precambrian Intrusion, Metamorphism, and Tectonism in the AntiAtlas Mountains, vol.113, pp.439-450, 2005.

J. D. Inglis, J. S. Maclean, S. D. Samson, R. S. D'lemos, H. Admou et al., A precise U-Pb zircon age for the Bleïda granodiorite, implications for the timing of deformation and terrane assembly in the eastern, pp.277-283, 2004.

D. A. Ionov, L. Savoyant, and C. Dupuy, Application of the ICP-MS technique to trace element analysis of peridotites and their minerals, Geostand. Geoanalytical Res, vol.16, pp.311-315, 1992.

T. Ishii, P. T. Robinson, H. Maekawa, F. , and R. , Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogasawara-Mariana Forearc, Proceedings of the Ocean Drilling Program, 125 Scientific Results, vol.125, pp.445-486, 1992.

A. E. Isley, A. , and D. H. , Plume-related mafic volcanism and the deposition of banded iron formation, Journal of Geophysical Research: Solid Earth, vol.104, pp.15461-15477, 1999.

K. Iyer, H. Austrheim, T. John, J. , and B. , Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway: Chemical Geology, v. 249, pp.66-90, 2008.

E. Jagoutz, H. Palme, H. Baddenhausen, K. Blum, M. Cendales et al., The abundance of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules, Proc. Lunar Planet. Sci. Conf, vol.10, pp.2031-2050, 1979.

A. Jambon, B. Déruelle, G. Dreibus, and F. Pineau, Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle: Chemical Geology, vol.126, pp.101-117, 1995.

R. H. James, H. Elderfield, P. , and M. R. , The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic ridge: Geochimica et Cosmochimica Acta, v. 59, pp.651-659, 1995.

D. R. Janecky and W. E. Seyfried, Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry: Geochimica et Cosmochimica Acta, vol.50, pp.1357-1378, 1986.

K. T. Johnson, H. J. Dick, and N. Shimizu, Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites, Journal of Geophysical Research, vol.95, p.2661, 1990.

D. S. Jones, Cracking the Neoproterozoic atmosphere: Geology, v. 44, pp.687-688, 2016.

K. K. ,

M. K?dzia?ko-hofmokl, K. Delura, P. Bylina, M. Jele?ska, and J. Kruczyk, Mineralogy and magnetism of Fe-Cr spinel series minerals from podiform chromitites and dunites from T?pad?a (Sudetic ophiolite, SW Poland) and their relationship to palaeomagnetic results of the dunites, Geophysical Journal International, v, vol.175, pp.885-900, 2008.

M. K?dzia?ko-hofmokl, M. Jele?ska, K. Delura, and P. Bylina, Magnetic mineralogy and paleomagnetism of serpentinized ultramafic rocks from the Braszowice-Brze?nica fragment of Sudetic paleozoic ophiolite: Acta Geophysica, pp.269-299, 2010.

V. S. Kamenetsky, A. J. Crawford, S. Eggins, M. , and R. , Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components: Earth and Planetary Science Letters, vol.151, pp.205-223, 1997.

J. A. Karhu and H. D. Holland, Carbon isotopes and the rise of atmospheric oxygen: Geology, v. 24, pp.867-870, 1996.

J. A. Karson, Tectonics of slow spreanding ridges: Oceanus, Woods Hole Ocean. Instit., v, vol.34, pp.51-59, 1992.

A. J. Kaufman, F. A. Corsetti, and M. A. Varni, The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Chemical Geology, vol.237, pp.47-63, 2007.

H. Kawakatsu and S. Watada, Seismic Evidence for Deep-Water Transportation in the Mantle: Science, v. 316, pp.1468-1471, 2007.

P. B. Kelemen, Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite, Journal of Petrology, vol.31, pp.51-98, 1990.

P. B. Kelemen, H. J. Dick, and J. E. Quick, Formation of harzburgite by pervasive melt/rock reaction in the upper mantle: Nature, v, vol.358, pp.635-641, 1992.

P. B. Kelemen and G. Hirth, Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation: Earth and Planetary Science Letters, pp.81-89, 2012.

P. B. Kelemen, E. Kikawa, D. J. Miller, and S. Party, Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, Proceedings of the Ocean Drilling Program, pp.1-33, 2007.

P. B. Kelemen, E. Kikawa, D. J. Miller, and S. Scientists, Proceedings of Ocean Drilling Program, vol.209, 2004.

P. B. Kelemen, N. Shimizu, and J. M. Salters, Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels: Nature, v, vol.375, pp.747-753, 1995.

D. Kelley, J. Karson, D. Blackman, and G. Fruh-green, An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N: Nature, 2001.

D. S. Kelley, J. A. Karson, G. L. Früh-green, D. R. Yoerger, T. M. Shank et al., A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field: Science, v, p.307, 2005.

L. H. Kellogg, B. H. Hager, and R. D. Van-der-hilst, , 1999.

M. J. Kennedy, Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, d13C excursions, and carbonate precipitation, Journal of sedimentary Research, 1996.

H. Keppler, Constraints from partitioning experiments on the composition of subductionzone fluids: Nature, v. 380, pp.237-240, 1996.

D. Kerrick, Serpentinite Seduction: Science, v. 298, 2002.

E. Khain, The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions: Precambrian Research, vol.122, pp.329-358, 2003.

J. F. Kirschvink, The Proterozoic biosphere : a multidisciplinary study, 1992.

. Klein, , vol.1348

F. Klein and W. Bach, Fe-Ni-Co-O-S Phase Relations in Peridotite-Seawater Interactions, Journal of Petrology, vol.50, pp.37-59, 2009.

F. Klein, W. Bach, S. E. Humphris, W. Kahl, N. Jöns et al., Magnetite in seafloor serpentinite-Some like it hot: Geology, p.42, 2014.

F. Klein, W. Bach, N. Jöns, T. Mccollom, B. Moskowitz et al., Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge: Geochimica et Cosmochimica Acta, vol.73, pp.6868-6893, 2009.

C. Klein and C. S. Hurlbut, Manual of mineralogy, 1993.

F. Klein and T. M. Mccollom, From serpentinization to carbonation: New insights from a CO2 injection experiment: Earth and Planetary Science Letters, vol.379, pp.137-145, 2013.

G. .. Klinkhammer, H. Elderfield, J. .. Edmond, M. , and A. , Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges: Geochimica et Cosmochimica Acta, vol.58, pp.90297-90303, 1994.

A. H. Knoll, The early evolution of eukaryotes: a geological perspective: Science, v. 256, p.622, 1992.

J. Kodolányi, T. Pettke, C. Spandler, B. S. Kamber, G. et al., Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones, vol.53, pp.235-270, 2012.

T. Kogiso, Y. Tatsumi, and S. Nakano, Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts: Earth and Planetary Science Letters, 1997.

B. Kotschoubey, B. Hieronymus, A. , and C. A. , Disrupted peridotites and basalts from the Neoproterozoic Araguaia belt (northern Brazil): Remnants of a poorly evolved oceanic crust, Journal of South American Earth Sciences, vol.20, pp.211-230, 2005.

D. Kouyaté, U. Söderlund, N. Youbi, R. Ernst, A. Hafid et al., U-Pb baddeleyite and zircon ages of 2040 Ma, 1650 Ma and 885 Ma on dolerites in the West African Craton (Anti-Atlas inliers): Possible links to break-up of Precambrian supercontinents, Lithos, vol.174, pp.71-84, 2013.

E. Krawczyk-bärsch, T. Arnold, H. Reuther, F. Brandt, D. Bosbach et al., Formation of secondary Fe-oxyhydroxide phases during the dissolution of chlorite-effects on uranium sorption: Applied Geochemistry, vol.19, pp.1403-1412, 2004.

A. Kröner, Non-synchroneity of late Precambrian glaciations in Africa, J. Geol., v, vol.85, pp.289-300, 1977.

P. P. Kruiver, M. J. Dekkers, and D. Heslop, Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation: Earth and Planetary Science Letters, vol.189, pp.269-276, 2001.

L. R. Kump, The rise of atmospheric oxygen: Nature, v, p.451, 2008.

L. R. Kump and W. E. Seyfried, Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers, 2005.

G. Kunze, Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung für die weitere Serpentin-Forschung: Fortschr. Mineral., v. 39, p, pp.206-324, 1961.

G. Kunze, Die gewellte Struktur des Antigorits. II: Zeitschrift für Kristallographie, vol.110, pp.282-320, 1958.

L. L. ,

R. Lafay, F. Deschamps, S. Schwartz, S. Guillot, M. Godard et al., High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps: Chemical Geology, vol.343, pp.38-54, 2013.

J. Lameyre, Roches et minéraux : matériaux de la terre et témoins de son histoire, 1986.

D. Laporte, C. Rapaille, and A. Provost, Wetting Angles, Equilibrium Melt Geometry, and the Permeability Threshold of Partially Molten Crustal Protoliths, pp.31-54, 1997.

M. Leblanc, The Late Proterozoic Ophiolites of Bou Azzer (Morocco): Evidence for Pan-African Plate Tectonics: Developments in Precambrian Geology, pp.435-451, 1981.

M. Leblanc, Ophiolites précambriennes et gites arséniés de Cobalt, 1975.

G. Lecointre, L. Guyader, and H. , The tree of life: a phylogenetic classification, 2006.

C. Lécuyer, A. , and P. , Modelling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the ?18O of marine sediments: Geochimica et Cosmochimica Acta, vol.63, pp.351-361, 1999.

D. Lenaz, H. Skogby, F. Princivalle, and U. Helenius, Structural changes and valence states in the MgCr2O4-FeCr2O4 solid solution series: Physics and Chemistry of Minerals, v. 31, pp.633-642, 2004.

T. M. Lenton, R. A. Boyle, S. W. Poulton, G. A. Shields-zhou, and N. J. Butterfield, Coevolution of eukaryotes and ocean oxygenation in the Neoproterozoic era, Nature Geoscience, issue.7, pp.257-265, 2014.

L. Voyer, M. Rose-koga, E. F. Shimizu, N. Grove, T. L. Schiano et al., Two Contrasting H2O-rich Components in Primary Melt Inclusions from Mount Shasta, Journal of Petrology, vol.51, pp.1571-1595, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530972

Y. Li, A brief discussion on the mean oceanic residence time of elements: Geochimica et Cosmochimica Acta, 1982.

Z. X. Li, S. V. Bogdanov, A. S. Collins, A. Davidson, B. De-waele et al., Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, vol.160, pp.179-210, 2008.

Z. Li, D. A. Evans, and G. P. Halverson, Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland: Sedimentary Geology, Références bibliographiques, vol.294, pp.219-232, 2013.

Z. .. Li, X. H. Li, P. D. Kinny, W. , and J. , The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, v. 173, pp.171-181, 1999.

X. Liang, Y. Zhong, A. Zhu, H. He, P. Yuan et al., The valence and site occupancy of substituting metals in magnetite spinel structure Fe3?xMxO4 (M = Cr, Mn, Co and Ni) and their influence on thermal stability: An XANES and TG-DSC investigation: Solid State Sciences, vol.15, pp.115-122, 2013.

J. G. Liou, B. R. Hacker, and R. Y. Zhang, , 2000.

A. G. Liu, C. G. Kenchington, M. , and E. G. , Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota: Gondwana Research, v, vol.27, pp.1355-1380, 2015.

L. Longming, L. Shoufa, X. Guangfu, J. Yang, J. et al., First Direct Evidence of Pan-African Orogeny Associated with Gondwana Assembly in the Cathaysia Block of Southern China, Nature, Scientific Reports, issue.7, 2017.

G. D. Love, E. Grosjean, C. Stalvies, D. A. Fike, J. P. Grotzinger et al., , pp.718-721, 2009.

J. E. Lupton, Hydrothermal Plumes: Near and Far Field, pp.317-346, 1995.
DOI : 10.1029/gm091p0317

T. W. Lyons, C. T. Reinhard, and N. J. Planavsky, The rise of oxygen in Earth's early ocean and atmosphere: Nature, v, vol.506, pp.307-315, 2014.

M. M. ,

K. C. Macdonald, D. S. Scheirer, C. , and S. M. , Mid-Ocean Ridges: Discontinuities, Segments and Giant Cracks: Science, v. 253, pp.986-994, 1991.

F. A. Macdonald, M. D. Schmitz, J. L. Crowley, C. F. Roots, D. S. Jones et al., , 2010.

F. A. Macdonald and R. Wordsworth, Initiation of Snowball Earth with volcanic sulfur aerosol emissions: Geophysical Research Letters, vol.44, pp.1938-1946, 2017.

B. A. Macgabhann, Age constraints on Precambrian glaciations and the subdivision of Neoproterozoic time: IUGS Ediacaran Subcommission Circular, 2005.

M. Macouin, D. Roques, S. Rousse, J. Ganne, Y. Denèle et al., Is the Neoproterozoic oxygen burst a supercontinent legacy? Frontiers in Earth Science, Références bibliographiques, p.44, 2015.

M. Maffione, A. Morris, O. Plümper, and D. J. Van-hinsbergen, Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes: Geochemistry, Geophysics, Geosystems, vol.15, pp.923-944, 2014.

A. Malthe-sørenssen, B. Jamtveit, and P. Meakin, Fracture Patterns Generated by Diffusion Controlled Volume Changing Reactions: Physical Review Letters, p.245501, 2006.

M. G. Malusà, R. Polino, A. C. Feroni, A. Ellero, G. Ottria et al., Post-Variscan tectonics in eastern Anti-Atlas, vol.19, pp.481-489, 2007.

B. Malvoisin, Conditions réductrices associées à la serpentinisation : suivi magnétique de l'hydratation de l'olivine de San Carlos, étude de cas naturels et application à la production industrielle d, vol.2, 2013.

B. Malvoisin, Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical: Earth and Planetary Science Letters, vol.430, pp.75-85, 2015.

B. Malvoisin, J. Carlut, and F. Brunet, Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments, Journal of Geophysical Research: Solid Earth, 2012.
URL : https://hal.archives-ouvertes.fr/insu-01571081

G. Manatschal and O. Müntener, A type sequence across an ancient magma-poor ocean-continent transition: the example of the western Alpine Tethys ophiolites: Tectonophysics, v. 473, pp.4-19, 2009.

C. Marcaillou, M. Muñoz, O. Vidal, T. Parra, and M. Harfouche, Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar: Earth and Planetary Science Letters, v. 303, pp.281-290, 2011.
DOI : 10.1016/j.epsl.2011.01.006

C. Marcaillou, Serpentinisation et production d'hydrogène en contexte de dorsale lente : approche expérimentale et numérique, 2011.

C. Marchesi, C. J. Garrido, M. Godard, F. Belley, and E. Ferré, Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia), Chem. Geol, vol.266, pp.171-186, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429333

C. Marchesi, C. J. Garrido, M. Godard, J. A. Proenza, F. Gervilla et al., Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba), Contrib. to Mineral. Petrol, vol.151, pp.717-736, 2006.

A. F. Marques, F. Barriga, V. Chavagnac, and Y. Fouquet, Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge: Mineralium Deposita, v. 41, pp.52-67, 2006.

A. F. Marques, F. J. Barriga, and S. D. Scott, Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides: Marine Geology, vol.245, pp.20-39, 2007.

A. P. Martin, D. J. Condon, A. R. Prave, L. , and A. , A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion: EarthScience Reviews, vol.127, pp.242-261, 2013.

C. Martin, K. E. Flores, and G. E. Harlow, Boron isotopic discrimination for subductionrelated serpentinites: Geology, p.44, 2016.

B. Martin and W. S. Fyfe, Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization: Chemical Geology, pp.185-202, 1970.

M. W. Martin, D. V. Grazhdankin, S. A. Bowring, D. A. Evans, M. A. Fedonkin et al., Age of Neoproterozoic Bilatarian Body and Trace Fossils, Implications for Metazoan Evolution: Science, v. 288, pp.841-845, 2000.

S. S. Martí-nez, R. Arenas, J. Fernández-suárez, and T. E. Jeffries, From Rodinia to Pangaea: ophiolites from NW Iberia as witness for a long-lived continental margin, vol.327, pp.317-341, 2009.

T. Matsuno, N. Seama, R. L. Evans, A. D. Chave, K. Baba et al., Upper mantle electrical resistivity structure beneath the central Mariana subduction system, Geochemistry Geophysics Geosystems, p.9003, 2010.

D. Mawson, The Elatina glaciation, Trans. R. Soc. S. Aust, vol.73, pp.117-121, 1949.

D. P. Maxbauer, J. M. Feinberg, and D. L. Fox, MAX UnMix: A web application for unmixing magnetic coercivity distributions: Computers & Geosciences, v. 95, pp.140-145, 2016.

I. Mayergoyz, Mathematical models of hysteresis, IEEE Transactions on Magnetics, vol.22, pp.603-608, 1986.

T. M. Mccollom and J. S. Seewald, A reassessment of the potential for reduction of dissolved CO 2 to hydrocarbons during serpentinization of olivine: Geochimica et Cosmochimica Acta, v. 65, pp.3769-3778, 2001.

M. T. Mcculloch and J. A. Gamble, Geochemical and geodynamical constraints on subduction zone magmatism: Earth and Planetary Science Letters, vol.102, pp.358-374, 1991.

W. F. Mcdonough and S. Sun, The composition of the Earth: Chemical Geology, v. 120, pp.223-253, 1995.

M. W. Mcelhinny, J. W. Giddings, and B. J. Embleton, Palaeomagnetic results and late Precambrian glaciations: Nature, v. 248, pp.557-561, 1974.

D. Mckenzie and M. J. Bickle, The Volume and Composition of Melt Generated by Extension of the Lithosphere, Journal of Petrology, vol.29, pp.625-679, 1988.

M. Mcmenamin and D. Mcmenamin, The emergence of animals: The Cambrian Breakthrough, 1990.

B. Melchert, C. Devey, G. , and C. , First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, 2008.

M. Mellini, The crystal structure of lizardite 1T: hydrogen bon{s and polytypism: American Mineralogist, vol.67, pp.587-59, 1982.

M. Mellini, C. Rumori, and C. Viti, Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of "ferritchromit" rims and chlorite aureoles: Contributions to Mineralogy and Petrology, v. 149, pp.266-275, 2005.

M. Mellini, V. Trommsdorff, C. , and R. , Antigorite polysomatism: behaviour during progressive metamorphism: Contributions to Mineralogy and Petrology, v. 97, pp.147-155, 1987.

M. Mellini and P. F. Zanazzi, Crystal structures of lizardite-l T and lizardite-2Hl from, pp.943-948, 1987.

N. Métrich and C. W. Mandeville, , 2010.

C. Mével, Serpentinization of abyssal peridotites at mid-ocean ridges: Comptes Rendus Geoscience, vol.335, pp.825-852, 2003.

C. Mével and C. Stamoudi, Hydrothermal alteration of the upper-mantle section at Hess Deep: Proceedings of the Ocean Drilling Program, 1996.

A. P. Middleton and E. J. Whittaker, The structure of Povlen-type chrysotile: Canadian Mineralogist, vol.14, pp.301-306, 1976.

T. A. Minshull, Geophysical characterisation of the ocean-continent transition at magmapoor rifted margins: Comptes Rendus Geoscience, vol.341, pp.382-393, 2009.

Y. Missenard, H. Zeyen, D. Frizon-de-lamotte, P. Leturmy, C. Petit et al., Crustal versus asthenospheric origin of relief of the, p.111, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092374

A. Miyashiro, The Troodos ophiolitic complex was probably formed in an island arc: Earth and Planetary Science Letters, v. 19, pp.218-224, 1973.

A. Miyashiro, F. Shido, and M. Ewing, Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24° and 30° North Latitude: Contributions to Mineralogy and Petrology, pp.117-127, 1969.

P. Molnar and J. Oliver, Lateral variations of attenuation in the upper mantle and discontinuities in the lithosphere, Journal of Geophysical Research, vol.74, pp.2648-2682, 1969.

J. B. Moody, An experimental study on the serpentinization of iron-bearing olivines: The Canadian Mineralogist, 1976.

D. E. Moore and D. A. Lockner, Comparative Deformation Behavior of Minerals in Serpentinized Ultramafic Rock: Application to the Slab-Mantle Interface in Subduction Zones: International Geology Review, v. 49, pp.401-415, 2007.

T. Morishita, K. Hara, K. Nakamura, T. Sawaguchi, A. Tamura et al., Igneous, Alteration and Exhumation Processes Recorded in Abyssal Peridotites and Related Fault Rocks from an Oceanic Core Complex along the Central Indian Ridge, Journal of Petrology, vol.50, pp.1299-1325, 2009.

C. A. Moura and H. E. Gaudette, Evidence of Brasilianno/Panafrican deformation in the Araguaia belt : implication for Gondwana evolution: Revista Brasileira de Geociencias, pp.117-123, 1993.

C. A. Moura and H. E. Gaudette, Zircon Ages of Basement Orthogneisses from the Northern Segment of the Araguaia Belt, Brazil: Basement Tectonics, vol.13, pp.155-178, 1999.

C. A. Moura, B. L. Pinheiro, A. C. Nogueira, P. S. Gorayeb, and M. A. Galarza, Sedimentary provenance and palaeoenvironment of the Baixo Araguaia Supergroup: constraints on the palaeogeographical evolution of the Araguaia Belt and assembly of West Gondwana, p.294, 2008.

R. D. Müller, M. Sdrolias, C. Gaina, and W. R. Roest, Age, spreading rates, and spreading asymmetry of the world's ocean crust: Geochemistry, Geophysics, Geosystems, 2008.

O. Müntener, G. Manatschal, L. Desmurs, P. , and T. , Plagioclase Peridotites in Ocean-Continent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere, Journal of Petrology, vol.51, pp.255-294, 2010.

J. D. Myers, B. D. Marsh, and A. K. Sinha, Strontium isotopic and selected trace element variations between two Aleutian volcanic centers (Adak and Atka): implications for the development of arc volcanic plumbing systems: Contributions to Mineralogy and Petrology, vol.91, pp.221-234, 1985.

D. D. Naidoo, S. H. Bloomer, A. Saquaque, and K. Hefferan, Geochemistry and significance of metavolcanic rocks from the Bou Azzer-El Graara ophiolite (Morocco): Precambrian research, vol.53, pp.79-97, 1991.

R. D. Nance, T. R. Worsley, and J. B. Moody, The Supercontinent Cycle: Scientific American, v. 259, pp.72-79, 1988.

O. Navon and E. Stolper, Geochemical Consequences of Melt Percolation: The Upper Mantle as a Chromatographic Column, The Journal of Geology, vol.95, pp.285-307, 1987.

K. A. Nazarova, Serpentinized peridotites as a possible source for oceanic magnetic anomalies: Marine Geophysical Researches, vol.16, pp.455-462, 1994.

C. Neal and G. Stanger, Hydrogen generation from mantle source rocks in Oman: Earth and Planetary Science Letters, v. 66, pp.315-320, 1983.

A. Nicolas, Structures of ophiolites and dynamics of oceanic lithosphere, vol.367, 1989.

Y. Niu, Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath MidOcean Ridges, Journal of Petrology, p.45, 2004.

Y. Niu, Mantle Melting and Melt Extraction Processes beneath Ocean Ridges: Evidence from Abyssal Peridotites, Journal of Petrology, vol.38, pp.1047-1074, 1997.

A. C. Nogueira, C. Riccomini, A. N. Sial, C. A. Moura, and T. R. Fairchild, Softsediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse, pp.613-616, 2003.

O. O. ,

D. O'hanley, Fault-related phenomena associated with hydration and serpentine recrystallization during serpentinization: Canadian Mineralogist, pp.21-35, 1991.

D. S. O'hanley, Serpentinite: Record of Tectonic and Petrologic History: 277 p, 1996.

D. S. O'hanley, Solution to the volume problem in serpentinization: Geology, 1992.

D. S. O'hanley and F. J. Wicks, Conditions of formation of lizardite, chrysotile and antigorite, The Canadian Mineralogist, p.33, 1995.

L. M. Och and G. A. Shields-zhou, The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling: Earth-Science Reviews, vol.110, pp.26-57, 2012.

J. G. Ogg, G. Ogg, and F. M. Gradstein, , 2016.

Y. Ohara, The Godzilla Megamullion, the largest oceanic core complex on the earth: a historical review: Island Arc, v. 25, pp.193-208, 2016.

T. Ohtsuka, K. Kubo, and N. Sato, Raman spectroscopy of thin corrosion films on iron at 100 to 150 C in air, 1986.

N. Olivier and M. Boyet, Rare earth and trace elements of microbialites in Upper Jurassic coral-and sponge-microbialite reefs: Chemical Geology, vol.230, pp.105-123, 2006.

H. Ondréas, M. Cannat, Y. Fouquet, N. , and A. , Geological context and vents morphology of the ultramafic-hosted Ashadze hydrothermal areas, 2012.

G. Geochemistry and . Geosystems, , vol.13

B. Orberger, N. Metrich, M. Mosbah, C. Mével, and Y. Fouquet, Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.158, pp.575-581, 1999.

O. Oufi, M. Cannat, and H. Horen, Magnetic properties of variably serpentinized abyssal peridotites, Journal of Geophysical Research, vol.107, p.2095, 2002.
URL : https://hal.archives-ouvertes.fr/insu-02177970

Ö. Özdemir and S. Banerjee, High temperature stability of maghemite (?Fe2O3): Geophysical Research Letters, 1984.

P. P. ,

S. Pabst, T. Zack, I. P. Savov, T. Ludwig, D. Rost et al., Evidence for boron incorporation into the serpentine crystal structure, American Mineralogist, vol.96, pp.1112-1119, 2011.

M. A. Paixão, Complexo ofiolítico Quatipuru, 2009.

M. A. Paixão, A. A. Nilson, and E. L. Dantas, The Neoproterozoic Quatipuru ophiolite and the Araguaia fold belt, central-northern Brazil, compared with correlatives in NW Africa, p.294, 2008.

J. L. Palandri, R. , and M. H. , Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation: Geochimica et Cosmochimica Acta, v. 68, pp.1115-1133, 2004.

I. J. Parkinson, P. , and J. A. , Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting, Journal of Petrology, pp.1577-1618, 1998.

S. W. Parman, G. , and T. L. , Harzburgite melting with and without H2O: Experimental data and predictive modeling, Journal of Geophysical Research: Solid Earth, v, vol.109, 2004.

B. Parsons, Causes and consequences of the relation between area and age of the ocean floor, Journal of Geophysical Research: Solid Earth, vol.87, pp.289-302, 1982.

H. Paulick, W. Bach, M. Godard, J. C. De-hoog, G. Suhr et al., Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20?N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments: Chemical Geology, vol.234, pp.179-210, 2006.

L. Pauling, The structures of chlorites: Proceedings of National Academy of Sciences, pp.578-582, 1930.

J. A. Pearce, Trace element characteristics of lavas from destructive plate boundaries, pp.526-547, 1982.

J. A. Pearce, P. F. Barker, S. J. Edwards, I. J. Parkinson, and P. T. Leat, Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic: Contributions to Mineralogy and Petrology, vol.139, pp.36-53, 2000.

J. A. Pearce and J. R. Cann, Tectonic setting of basic volcanic rocks determined using trace element analyses: Earth and Planetary Science Letters, v. 19, pp.290-300, 1973.

J. A. Pearce and J. R. Cannn, Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y: Earth and Planetary Science Letters, vol.12, pp.339-349, 1971.

J. A. Pearce, S. H. Van-der-lan, R. J. Arculus, B. J. Murton, T. Ishii et al., Boninite and harzburgites leg125 (Bonin-Marianna forearc): a case study of magma genesis during the initial stages of subduction, Proc. ODP Sci. Res., v, vol.125, pp.623-659, 1992.

J. A. Pearce, S. J. Lippard, and S. Roberts, Characteristics and tectonic significance of supra-subduction zone ophiolites, p.16, 1984.

J. A. Pearce and D. W. Peate, Tectonic Implications of the Composition of Volcanic ARC Magmas: Annual Review of Earth and Planetary Sciences, pp.251-285, 1995.

J. A. Pearce and R. J. Stern, Origin of back-arc basin magmas: Trace element and isotope perspectives, pp.63-86, 2006.

J. A. Pearce, R. J. Stern, S. H. Bloomer, and P. Fryer, Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components: Geochemistry, 2005.

D. W. Peate, J. A. Pearce, C. J. Hawkesworth, H. Colley, C. M. Edwards et al., Geochemical Variations in Vanuatu Arc Lavas: the Role of Subducted Material and a Variable Mantle Wedge Composition, Journal of Petrology, vol.38, pp.1331-1358, 1997.

E. Pecoits, K. O. Konhauser, N. R. Aubet, L. M. Heaman, G. Veroslavsky et al., Bilaterian Burrows and Grazing Behavior at 585 Million Years Ago: Science, v, vol.336, pp.1693-1696, 2012.

A. M. Penny, R. Wood, A. Curtis, F. Bowyer, R. Tostevin et al., Ediacaran metazoan reefs from the Nama Group, Namibia: Science , v, vol.344, pp.1504-1506, 2014.

G. Péron-pinvidic and G. Manatschal, The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view, International Journal of Earth Sciences, vol.98, pp.1581-1597, 2009.

J. Perrillat, I. Daniel, K. Koga, B. Reynard, H. Cardon et al., Kinetics of antigorite dehydration: A real-time X-ray diffraction study: Earth and Planetary Science Letters, v. 236, pp.899-913, 2005.

C. Peters and R. Thompson, Magnetic identification of selected natural iron oxides and sulphides, Journal of Magnetism and Magnetic Materials, v, vol.183, pp.365-374, 1998.

J. R. Petriglieri, E. Salvioli-mariani, L. Mantovani, M. Tribaudino, P. P. Lottici et al., Micro-Raman mapping of the polymorphs of serpentine, Journal of Raman Spectroscopy, vol.46, pp.953-958, 2015.

E. Petrovský and A. Kapi?ka, On determination of the Curie point from thermomagnetic curves, J. Geophys. Res. Solid Earth, vol.111, 2006.

J. D. Piper, G. E. Beckmann, and J. P. Badham, Palaeomagnetic Evidence for a Proterozoic Super-Continent: Philosophical Transactions of the, Royal Society of London. Series A, Mathematical and Physical Sciences, vol.280, pp.469-490, 1976.

C. Pirard, J. Hermann, and H. S. Neill, Petrology and Geochemistry of the CrustMantle Boundary in a Nascent Arc, Journal of Petrology, vol.54, pp.1759-1792, 2013.

N. J. Planavsky, P. Mcgoldrick, C. T. Scott, C. Li, C. T. Reinhard et al., Widespread iron-rich conditions in the midProterozoic ocean: Nature, v, vol.477, pp.448-451, 2011.

T. Plank, Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents, Journal of Petrology, vol.46, pp.921-944, 2005.

T. Plank, K. A. Kelley, R. W. Murray, and L. Q. Stern, Chemical composition of sediments subducting at the Izu-Bonin trench: Geochemistry, 2007.

T. Plank and C. H. Langmuir, Effects of the melting regime on the composition of the oceanic crust, Journal of Geophysical Research, p.19749, 1992.

T. Plank and C. H. Langmuir, The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, vol.145, pp.325-394, 1998.

T. Plank and C. H. Langmuir, Tracing trace elements from sediment input to volcanic output at subduction zones: Nature, v, vol.362, pp.163-165, 1993.

T. Plank and J. N. Ludden, Geochemistry of sediments in the Argo abyssal plain at Site 765: A continental margin reference section for sediment recycling in subduction zones, Proceedings of the Ocean Drilling Program, Scientific results, p.123, 1992.

O. Plumper, A. Royne, and A. Magraso, The interface-scale mechanism of reaction-induced fracturing during serpentinization: Geology, v. 40, pp.1103-1106, 2012.

R. A. Pockalny, R. S. Detrick, and P. J. Fox, Morphology and tectonics of the Kane Transform from Sea Beam bathymetry data, Journal of Geophysical Research, issue.93, p.3179, 1988.

E. C. Pope, D. K. Bird, and M. T. Rosing, Isotope composition and volume of Earth's early oceans, Proceedings of the National Academy of Sciences, vol.109, pp.4371-4376, 2012.

A. Pouclet, A. Aarab, A. Fekkak, and M. Benharref, Geodynamic evolution of the northwestern Paleo-Gondwanan margin in the Moroccan Atlas at the Precambrian-Cambrian boundary, pp.27-60, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00376112

S. W. Poulton, R. Guilbaud, N. J. Butterfield, M. Zhu, and G. A. Shields-zhou, A global transition to ferruginous conditions in the early Neoproterozoic oceans, Nature Geoscience, issue.8, pp.466-470, 2015.

A. Prinzhofer, A. , and C. J. , Residual peridotites and the mechanisms of partial melting: Earth and Planetary Science Letters, vol.74, pp.251-265, 1985.

G. Proskurowski, M. D. Lilley, J. S. Seewald, G. L. Früh-green, E. J. Olson et al., Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field: Science, v. 319. R R, 2008.

R. W. Raitt, The crustal rocks: The Sea, pp.84-102, 1963.

C. Ranero, A. Villaseñor, J. P. Morgan, W. , and W. , Relationship between bendfaulting at trenches and intermediate-depth seismicity: Geochemistry, Geophysics, Geosystems, 2005.

R. J. Reeder, M. .. Nugent, G. M. Lamble, M. C. Tait, and D. E. , Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies, Environ. Sci. Technol., v, vol.34, pp.638-644, 2000.

M. Renard, Y. Lagabrielle, E. Martin, D. Rafélis, and M. , , 2015.

B. Reynard, Serpentine in active subduction zones: Lithos, v. 178, pp.171-185, 2013.

B. Reynard, N. Hilairet, E. Balan, and M. Lazzeri, Elasticity of serpentines and extensive serpentinization in subduction zones, Geophysical Research Letters, p.34, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172479

B. Reynard, K. Mibe, B. De-moortèle, and . Van, Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones: Earth and Planetary Science Letters, v, vol.307, pp.387-394, 2011.

A. J. Ridgwell, M. J. Kennedy, C. , and K. , Carbonate Deposition, Climate Stability, and Neoproterozoic Ice Ages: Science, 2003.

M. Robbins, G. K. Wertheim, R. C. Sherwood, and D. N. Buchanan, Magnetic properties and site distributions in the system FeCr2O4-Fe3O4(Fe2+Cr2?xFex3+O4, vol.32, pp.80412-80414, 1971.

A. P. Roberts, C. R. Pike, and K. L. Verosub, First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, Journal of Geophysical Research: Solid Earth, vol.105, pp.28461-28475, 2000.

P. T. Robinson, W. G. Melson, T. O'hearn, and H. Schmincke, Geology, issue.11, p.400, 1983.

W. P. De-roever, Sind die alpinotypen Peridotiimassen vielleicht tektonisch verfrachtete Bruchstücke der Peridotitschale ?, Geol. Rundschau., v, vol.46, pp.137-146, 1957.

R. E. Rosensweig, Directions in ferrohydrodynamics, Journal of Applied Physics, vol.57, pp.4259-4264, 1985.

S. Rouméjon, C. , and M. , Serpentinization of mantle-derived peridotites at midocean ridges: Mesh texture development in the context of tectonic exhumation: Geochemistry, Geophysics, Geosystems, v. 15, pp.2354-2379, 2014.

S. Rouméjon, M. Cannat, P. Agrinier, M. Godard, A. et al., Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge, p.62, 2015.

E. , Journal of Petrology, vol.56, pp.703-734

P. Routhier, Vulcano-plutons sous-marins du cortège ophiolitique, vol.222, pp.192-194, 1946.

C. Rumori, M. Mellini, and C. Viti, IntroductionOriented, non-topotactic olivine ? serpentine replacement in mesh-textured, serpentinized peridotites, Eur. J. Mineral., v, vol.16, pp.731-741, 2004.

S. K. Runcorn, Towards a Theory of Continental Drift: Nature, v. 193, pp.311-314, 1962.

M. J. Russell, A. J. Hall, M. , and W. , Serpentinization as a source of energy at the origin of life: Geobiology, v. 8, pp.355-371, 2010.

R. O. Sack and M. S. Ghiorso, An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels: Contributions to Mineralogy and Petrology, vol.106, pp.474-505, 1991.

S. K. Sahoo, N. J. Planavsky, G. Jiang, B. Kendall, J. D. Owens et al., Oceanic oxygenation events in the anoxic Ediacaran ocean: Geobiology, v. 14, pp.457-468, 2016.

S. K. Sahoo, N. J. Planavsky, B. Kendall, X. Wang, X. Shi et al., Ocean oxygenation in the wake of the Marinoan glaciation: Nature, v. 489, pp.546-549, 2012.

V. J. Salters and A. Stracke, Composition of the depleted mantle: Geochemistry, Geophysics, Geosystems, 2004.

S. D. Samson, J. D. Inglis, R. S. D'lemos, H. Admou, J. Blichert-toft et al., Geochronological, geochemical, and Nd-Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, vol.135, pp.133-147, 2004.

M. Santosh, S. Maruyama, Y. Sawaki, and J. G. Meert, The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth: Gondwana Research, vol.25, pp.945-965, 2014.

A. Saquaque, H. Admou, J. Karson, K. Hefferan, and I. Reuber, Precambrian accretionary tectonics in the Bou Azzer-El Graara region, Geology, vol.17, p.1107, 1989.

B. M. Saumur and K. Hattori, Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio, p.77, 2013.

D. Sauter, M. Cannat, S. Rouméjon, M. Andreani, D. Birot et al., Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years, Nature Geoscience, vol.6, pp.314-320, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00809312

I. P. Savov, J. G. Ryan, M. Antonio, and P. Fryer, Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc, Journal of Geophysical Research, vol.112, p.9205, 2007.

I. P. Savov, J. G. Ryan, M. Antonio, K. Kelley, M. et al., Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones: Geochemistry, Geophysics, Geosystems, 2005.

M. Scambelluri, P. Bottazzi, V. Trommsdorff, R. Vannucci, J. Hermann et al., Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle: Earth and Planetary Science Letters, v. 192, pp.457-470, 2001.

M. Scambelluri, J. Fiebig, N. Malaspina, O. Müntener, P. et al., Serpentinite Subduction: Implications for Fluid Processes and Trace-Element Recycling: International Geology Review, vol.46, pp.595-613, 2004.

M. Scambelluri, O. Müntener, J. Hermann, G. B. Piccardo, and V. Trommsdorff, Subduction of water into the mantle: History of an Alpine peridotite: Geology, p.459, 1995.

M. Scambelluri, P. , and P. , Deep fluids in subduction zones: Lithos, v. 55, pp.213-227, 2001.

M. Scambelluri, E. Rampone, and G. B. Piccardo, Fluid and Element Cycling in Subducted Serpentinite: a Trace-Element Study of the Erro-Tobbio High-Pressure Ultramafites, Journal of Petrology, vol.42, pp.55-67, 2001.

K. Schmidt, A. Koschinsky, D. Garbe-schönberg, L. M. De-carvalho, and R. Seifert, Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation: Chemical Geology, vol.242, pp.1-21, 2007.

M. W. Schmidt, P. , and S. , Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation: Earth and Planetary Science Letters, v. 163, pp.361-379, 1998.

H. Schouten, K. D. Klitgord, and J. A. Whitehead, Segmentation of mid-ocean ridges: Nature, v. 317, pp.225-229, 1985.

T. Schoeder, M. J. Cheadle, H. Dick, U. Faul, J. F. Casey et al., Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge: A structural synthesis of ODP Leg 209, Geochemistry, Geophysics, Geosystems, vol.8, pp.1525-2027, 2007.

S. Schwartz, P. Allemand, G. , and S. , Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif, Tectonophysics, v, vol.342, pp.193-206, 2001.

S. Schwartz, R. Lafay, B. Debret, C. Nicollet, P. Lanari et al., Pressuretemperature estimates of the lizardite/antigorite transition in high pressure serpentinites: Lithos, v. 178, Références bibliographiques, pp.197-210, 2013.

C. Scott, T. W. Lyons, A. Bekker, Y. Shen, S. W. Poulton et al., Tracing the stepwise oxygenation of the Proterozoic ocean: Nature, v, vol.452, pp.456-459, 2008.

K. Seifert and D. Brunotte, Geochemistry of serpentinized mantle peridotite from site 897 in the Iberia abyssal plain, Proceedings of the Ocean Drilling Program, 1996.

W. E. Seyfried, D. I. Foustoukos, and Q. Fu, Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200°C, 500bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges: Geochimica et Cosmochimica Acta, vol.71, pp.3872-3886, 2007.

W. E. Seyfried, N. J. Pester, K. Ding, and M. Rough, Vent fluid chemistry of the Rainbow hydrothermal system (36°N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes: Geochimica et Cosmochimica Acta, vol.75, pp.1574-1593, 2011.

M. Seyler and E. Bonatti, Regional-scale melt-rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic Ocean): Earth and Planetary Science Letters, v. 146, pp.273-287, 1997.

B. Sherwood-lollar, S. K. Frape, S. M. Weise, P. Fritz, S. A. Macko et al., Abiogenic methanogenesis in crystalline rocks: Geochimica et Cosmochimica Acta, vol.57, pp.90610-90619, 1993.

R. Shinjo, S. Chung, Y. Kato, and M. Kimura, Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin, Journal of Geophysical Research: Solid Earth, vol.104, pp.10591-10608, 1999.

J. M. Sinton and R. S. Detrick, Mid-ocean ridge magma chambers, Journal of Geophysical Research, p.197, 1992.

A. D. Skelton and J. W. Valley, The relative timing of serpentinisation and mantle exhumation at the ocean-continent transition, Iberia: constraints from oxygen isotopes: Earth and Planetary Science Letters, v. 178, pp.327-338, 2000.

E. Smith and G. Dent, The Raman Experiment-Raman Instrumentation, Sample Presentation, Data Handling and Practical Aspects of Interpretation, in Modern Raman Spectroscopy-A Practical Approach, pp.23-70, 2005.

J. E. Snow, D. , and H. J. , Pervasive magnesium loss by marine weathering of peridotite: Geochimica et Cosmochimica Acta, vol.59, pp.4219-4235, 1995.

A. Soulaimani, M. Jaffal, L. Maacha, A. Kchikach, A. Najine et al., Modélisation magnétique de la suture ophiolitique de Bou Azzer-El Graara, 2006.

, Implications sur la reconstitution géodynamique panafricaine, Comptes Rendus Geosci, vol.338, pp.153-160

M. Sousa, F. Tourinho, R. , and J. , Use of Raman micro-spectroscopy in the characterization of MIIFe2O4 (M= Fe, Zn) electric double layer ferrofluids: Journal of Raman, 2000.

W. Soyer and M. Unsworth, Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: Implications for the distribution of fluids: Geology, v, vol.34, p.53, 2006.

G. H. Spence, D. P. Le-heron, and I. J. Fairchild, Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era: Sedimentology, v. 63, pp.253-306, 2016.

A. M. Spencer and M. O. Spencer, The Late Precambrian/Lower Cambrian Bonahaven Dolomite of Islay and its stromatolites, Scottish Journal of Geology, issue.8, pp.269-282, 1972.

G. E. Spinnler, HRTEM study of antigorite, pyroxene-serpentine reactions and chlorite, 1985.

J. J. Standish and K. W. Sims, Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge, Nature Geoscience, vol.3, pp.286-292, 2010.

G. Steinmann, Die ophiolitischen Zonen in den mediterranean Kettengebirgen, 1927.

C. Rendu, Congrès Géologique International, pp.637-667

C. J. Stephens, Heterogeneity of oceanic peridotite from the Western Canyon Wall at MARK : Results from Site, Proceedings of the Ocean Drilling Program. Scientific results, vol.920, pp.285-303, 1997.

R. J. Stern, Subduction zones: Reviews of Geophysics, vol.40, p.1012, 2002.

R. J. Stern and S. H. Bloomer, Subduction zone infancy: Examples from the Eocene IzuBonin-Mariana and Jurassic California arcs: GSA Bulletin, 1992.

S. M. Straub, L. , and G. D. , The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones: Geochimica et Cosmochimica Acta, vol.67, pp.4179-4203, 2003.

A. M. Stueber, W. H. Huang, and W. D. Johns, Chlorine and fluorine abundances in ultramafic rocks: Geochimica et Cosmochimica Acta, vol.32, pp.353-358, 1968.

D. Sumner, J. Kirschvink, R. , and B. , Soft-sediment paleomagnetic fold tests of late Precambrian glaciogenic sediments: Eos, v. 68, p.1251, 1987.

E. Sutra and G. Manatschal, How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin: Geology, v. 40, pp.139-142, 2012.

D. T. Symons and M. T. Cioppa, Crossover plots: A useful method for plotting SIRM data in paleomagnetism: Geophysical Research Letters, v, vol.27, pp.1779-1782, 2000.

F. Szitkar, J. Dyment, Y. Fouquet, C. Honsho, and H. Horen, The magnetic signature of ultramafic-hosted hydrothermal sites: Geology, v. 42, pp.715-718, 2014.

F. Szitkar, M. A. Tivey, D. S. Kelley, J. A. Karson, G. L. Früh-green et al., Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site, 2017.

T. T. ,

E. Takazawa, F. A. Frey, N. Shimizu, M. Obata, and J. L. Bodinier, Geochemical evidence for melt migration and reaction in the upper mantle: Nature, v. 359, pp.55-58, 1992.

Y. Tatsumi, Formation of the volcanic front in subduction zones: Geophysical Research Letters, vol.13, pp.717-720, 1986.

Y. Tatsumi, M. Sakuyama, H. Fukuyama, and I. Kushiro, Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones, Journal of Geophysical Research: Solid Earth, vol.88, pp.5815-5825, 1983.

R. J. Thomas, L. P. Chevallier, P. G. Gresse, R. E. Harmer, B. M. Eglington et al., Precambrian evolution of the Sirwa Window, vol.118, pp.1-57, 2002.

R. J. Thomas, A. Fekkak, N. Ennih, E. Errami, S. C. Loughlin et al., A new lithostratigraphic framework for the Anti-Atlas Orogen, pp.217-226, 2004.

L. Tian, P. R. Castillo, J. W. Hawkins, D. R. Hilton, B. B. Hanan et al., Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle, Journal of Volcanology and Geothermal Research, vol.178, pp.657-670, 2008.

F. Tilmann, E. Flueh, L. Planert, T. Reston, W. et al., Microearthquake seismicity of the Mid-Atlantic Ridge at 5°S: A view of tectonic extension, Journal of Geophysical Research: Solid Earth, v, vol.109, 2004.

P. B. Toft, J. Arkani-hamed, and S. E. Haggerty, The effects of serpentinization on density and magnetic susceptibility: a petrophysical model: Physics of the Earth and Planetary Interiors, v. 65, pp.90082-90091, 1990.

E. Tohver, . S. D'agrella-filhom, and R. I. Trindade, Paleomagnetic record of Africa and South America for the 1200-500 Ma interval, and evaluation of Rodinia and Gondwana assemblies: Precambrian Research, vol.147, pp.193-222, 2006.

D. R. Toomey, S. C. Solomon, and G. M. Purdy, Microearthquakes beneath Median Valley of Mid-Atlantic Ridge near 23°N: Tomography and tectonics, Journal of Geophysical Research, issue.93, p.9093, 1988.

T. H. Torsvik, The Rodinia Jigsaw Puzzle: Science, v, p.300, 2003.

T. H. Torsvik, L. M. Carter, L. D. Ashwal, S. K. Bhushan, M. K. Pandit et al., Rodinia refined or obscured: palaeomagnetism of the Malani igneous suite, vol.108, pp.319-333, 2001.

A. Triantafyllou, Géodynamique d'un système d'arc océanique néoprotérozoïque de l'anti-atlas marocain ; contribution à la résolution du paradoxe de la croissance continentale, 2016.

A. Triantafyllou, J. Berger, J. Baele, H. Diot, N. Ennih et al., The Tachakoucht-Iriri-Tourtit arc complex, Neoproterozoic records of polyphased subduction-accretion dynamics during the Pan-African orogeny, vol.96, pp.81-103, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01825275

R. I. Trindade and M. Macouin, Palaeolatitude of glacial deposits and palaeogeography of Neoproterozoic ice ages: Comptes Rendus Geoscience, vol.339, pp.200-211, 2007.

V. Trommsdorff, V. L. Sánchez-vizcaíno, M. T. Gómez-pugnaire, and O. Müntener, High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, Contributions to Mineralogy and Petrology, vol.132, pp.139-148, 1998.

B. E. Tucholke, J. Lin, and M. C. Kleinrock, Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge, Journal of Geophysical Research: Solid Earth, issue.103, pp.9857-9866, 1998.

B. E. Tucholke, D. S. Sawyer, and J. Sibuet, Breakup of the Newfoundland-Iberia rift, 2007.

S. Uehara and H. Shirozu, Variations in chemical composition and structural properties of antigorites, vol.12, pp.299-318, 1985.

P. Ulmer and V. Trommsdorff, Serpentine Stability to Mantle Depths and SubductionRelated Magmatism: Source: Science, New Series J. F. Bonaparte, in Actas II Cong. Arg. Pal. Bioestr. Buenos Aires Buenos Aires J. F, pp.858-861, 1995.

M. Ulrich, Péridotites et serpentinites du complexe ophiolitique de la, 2010.

M. Ulrich, C. Picard, S. Guillot, C. Chauvel, D. Cluzel et al., Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite: Lithos, v. 115, pp.223-236, 2010.

I. Uysal, E. Y. Ersoy, Y. Dilek, M. Escayola, E. Sar?fak?o?lu et al., Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, vol.27, pp.594-611, 2015.

I. Uysal, E. Y. Ersoy, Y. Dilek, A. Kapsiotis, and E. Sar?fak?o?lu, Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the Références bibliographiques heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey: Lithos, v. 246, pp.228-245, 2016.

?. Uysal, E. Y. Ersoy, O. Karsl?, Y. Dilek, M. B. Sad?klar et al., Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope systematics: Lithos, v, vol.132, pp.50-69, 2012.

V. V. ,

G. Vasseur, J. Vernieres, and J. Bodiner, Modelling of Trace Element Transfer between Mantle Melt and Heterogranular Peridotite Matrix, Journal of Petrology, pp.41-54, 1991.

A. P. Vaughan and J. H. Scarrow, Ophiolite obduction pulses as a proxy indicator of superplume events? Earth and Planetary Science Letters, vol.213, pp.407-416, 2003.

J. Vernières, M. Godard, and J. Bodinier, A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth's upper mantle, Journal of Geophysical Research: Solid Earth, vol.102, pp.24771-24784, 1997.

F. Vils, O. Müntener, A. Kalt, L. , and T. , Implications of the serpentine phase transition on the behaviour of beryllium and lithium-boron of subducted ultramafic rocks: Geochimica et Cosmochimica Acta, vol.75, pp.1249-1271, 2011.

F. Vils, L. Pelletier, A. Kalt, O. Müntener, L. et al., The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere: Geochimica et Cosmochimica Acta, pp.5475-5504, 2008.

C. Viti and M. Mellini, Mesh textures and bastites in the Elba retrograde serpentinites, European Journal of Mineralogy, p.10, 1998.

C. Viti, M. Mellini, and C. Rumori, Exsolution and hydration of pyroxenes from partially serpentinized harzburgites, Mineral. Mag, vol.69, pp.491-508, 2005.

N. Von-bargen and H. S. Waff, Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures, Journal of Geophysical Research, vol.91, p.9261, 1986.

H. S. Waff and J. R. Bulau, Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions, Journal of Geophysical Research, vol.84, p.6109, 1979.

P. J. Wallace, Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data: Journal of Volcanology and Geothermal Research, vol.140, pp.217-240, 2005.

G. J. Walsh, F. Benziane, J. N. Aleinikoff, R. W. Harrison, A. Yazidi et al., Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, vol.216, pp.23-62, 2012.

P. E. Wannamaker, T. G. Caldwell, G. R. Jiracek, V. Maris, G. J. Hill et al., Fluid and deformation regime of an advancing subduction system at, Nature, vol.460, pp.733-736, 2009.

J. M. Warren, Global variations in abyssal peridotite compositions: Lithos, v. 248-251, pp.193-219, 2016.

J. M. Warren and N. Shimizu, Cryptic Variations in Abyssal Peridotite Compositions: Evidence for Shallow-level Melt Infiltration in the Oceanic Lithosphere, J. Petrol, vol.51, pp.395-423, 2010.

C. Werner and J. Pilot, Data report: Geochemistry and mineral chemistryof ultramafic rocks from the Kane area (MARK), Proceedings of the Ocean Drilling Program, 1997.

D. L. Whitney, C. Teyssier, P. F. Rey, and W. R. Buck, Continental and oceanic core complexes, America Bulletin, vol.125, pp.273-298, 2013.

E. J. Whittaker, The structure of chrysotile, Acta Crystallographica, issue.6, pp.747-748, 1953.

F. J. Wicks and D. S. Hanley, Serpentine minerals; structures and petrology: Reviews in Mineralogy and Geochemistry, p.19, 1988.

F. J. Wicks and E. J. Whittaker, A reappraisal of the structures of the serpentine minerals: The Canadian Mineralogist, p.13, 1975.

F. J. Wicks and E. J. Whittaker, Serpentine textures and serpentinization: Canadian Mincralogist, vol.15, pp.459-488, 1977.

G. .. Williams, Sedimentology, stable-isotope chemistry and paleoenvironment of dolostones capping late Precambrian glacial sequences in Australia, J. Geol. Soc. Australia., v, vol.26, pp.377-386, 1979.

H. Williams, P. F. Hoffman, J. F. Lewry, J. W. Monger, and T. Rivers, Anatomy of North America: thematic geologic portrayals of the continent: Tectonophysics, v. 187, pp.117-134, 1991.

G. Williams and P. Schmidt, Proterozoic equatorial glaciation: Has "Snowball Earth" a snowball's chance? The Australian Geologist, vol.117, pp.21-25, 2000.

J. T. Wilson, Did the Atlantic Close and then Re-Open? Nature, v. 211, pp.676-681, 1966.

J. T. Wilson, The Development and Structure of the Crust, The Earth as a Planet, pp.138-214, 1954.

J. P. Wilson, J. P. Grotzinger, W. W. Fischer, K. P. Hand, S. Jensen et al., Deep-water incised valley deposits at the Ediacaran-Cambrian boundary in southern Namibia contain abundant Treptichnus pedum: Palaios, v, vol.27, pp.252-273, 2012.

R. Wood, A. Y. Ivantsov, and A. Y. Zhuravlev, First macrobiota biomineralization was environmentally triggered, Proceedings of the Royal Society B: Biological Sciences, p.284, 2017.

R. K. Workman, H. , and S. R. , Major and trace element composition of the depleted MORB mantle (DMM): Earth and Planetary Science Letters, vol.231, pp.53-72, 2005.

T. R. Worsley, D. Nance, and J. B. Moody, Global tectonics and eustasy for the past 2 billion years: Marine Geology, vol.58, pp.373-400, 1984.

B. Wunder, F. Deschamps, A. Watenphul, S. Guillot, A. Meixner et al., The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation: Contributions to Mineralogy and Petrology, vol.159, pp.781-790, 2010.

B. Wunder and W. Schreyer, Antigorite: High-pressure stability in the system MgOSiO2-H2O (MSH): Lithos, v. 41, pp.213-227, 1997.

B. Wunder, R. Wirth, and M. Gottschalk, Antigorite: Pressure and temperature dependence of polysomatism and water content, European Journal of Mineralogy, vol.13, pp.485-495, 2001.

X. X. ,

S. Xiao, Y. Zhang, and A. H. Knoll, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite: Nature, v. 391, pp.553-558, 1998.

K. Yada, Study of chrysotile asbestos by a high resolution electron microscope: Acta Crystallographica, pp.704-707, 1967.

K. Yada, Study of microstructure of chrysotile asbestos by high-resolution electron microscopy: Acta Crystallographica Section A, v, vol.27, pp.659-664, 1971.

A. S. Yakubchuk, A. M. Nikishin, and A. Ishiwatari, Proceedings of the 29th International Geological Congress, pp.273-286, 1994.

C. You, P. Castillo, J. Gieskes, C. , and L. , Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones, 1996.

X. Yuan, Z. Chen, S. Xiao, C. Zhou, and H. Hua, An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes: Nature, v, vol.470, pp.390-393, 2011.

Z. Z. ,

S. Zhang, R. Wu, and Y. Zheng, Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen: Precambrian Research, pp.45-64, 2012.

S. E. Ziemniak and R. A. Castelli, Immiscibility in the Fe3O4-FeCr2O4 spinel binary, Journal of Physics and Chemistry of Solids, vol.64, pp.2081-2091, 2003.

J. Zussman, G. W. Brindley, and J. J. Comer, Electron diffraction studies of serpentine minerals, American Mineralogist, pp.666-670, 1957.

A. , et de péridotites et serpentinites associées à des marges passives (Seifert & Brunotte, p.47, 1996.

. Paulick, Concentrations en REE pour une compilation (réalisée dans le cadre de ce travail) de péridotites et serpentinites abyssales, Figure I, vol.25, 2004.

C. , Les valeurs de normalisation à la chondrite sont issues de Barrat et al. (2012). (b) Diagramme binaire représentant le Cr#, et de péridotites et serpentinites associées à des zones de subduction, plus précisément du coin mantellique, 1992.

. Parkinson-&-pearce, La flèche noire correspond à la tendance d'évolution de ces deux paramètres géochimiques au cours de la fusion partielle (Arai, 1994). La source DMM est issue de Workman & Hart, p.48, 1998.