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Résumé

Cette thèse porte sur la physique statistique des systèmes hors d’équilibre maintenus
dans un état stationnaire. Plus spécifiquement, ce travail s’intéresse à des quantités
macroscopiques conservées (le volume, la masse, etc.) qui peuvent être échangées
entre plusieurs systèmes hors d’équilibre en contact. Cette mise en contact d’un ou
plusieurs systèmes est une situation fondamentale en thermodynamique classique des
systèmes à l’équilibre, en ce qu’elle permet de définir la notion de paramètre thermody-
namique conjugué comme la température, la pression, le potentiel chimique, etc., qui
dérivent d’un même potentiel thermodynamique. Dans les systèmes hors d’équilibre
stationnaires, l’existence de tels paramètres conjugués dérivant d’un potentiel thermo-
dynamique (énergie libre) demeure une question ouverte.

En se focalisant sur la situation du contact entre deux systèmes stochastiques hors
d’équilibre quelconques de particules sur réseau dans des états homogènes, nous mon-
trons l’existence d’une fonction de grande déviation attachée aux densités globales des
deux systèmes, lorsque la fréquence d’échange de particules entre ces derniers est faible.
Cette fonction de grandes déviations hors d’équilibre, analogue de l’énergie libre, vérifie
une équation dite de Hamilton-Jacobi. Nous identifions les conditions naturelles pour
lesquelles la fonction de grandes déviations est additive, menant ainsi à la définition
de potentiels chimiques hors-équilibre. Néanmoins, nous montrons que ceux-ci dépen-
dent de façon générique de la dynamique au contact et ne vérifient donc pas d’équation
d’état. En l’absence de bilan détaillé macroscopique, l’équation de Hamilton-Jacobi est
beaucoup plus difficile à résoudre. Une analyse perturbative par rapport aux forçages
hors-équilibres permet de se convaincre que l’additivité est génériquement brisée dès
les premiers ordres de perturbation en l’absence de bilan détaillé. Au-delà de la pro-
priété d’additivité, cette fonction de grandes déviations peut être liée dans un certain
nombre de cas au travail exercé par un potentiel extérieur à travers une relation de
type second principe de la thermodynamique. Nous discutons également différentes
façons d’y avoir accès expérimentalement.

Fort de cette analyse théorique générale, nous illustrons celle-ci sur des systèmes
stochastiques sur réseau classiques (Zero Range Process et Driven Lattice Gases) ainsi
que sur un modèle de transport de masse original, exactement soluble. Nous appliquons
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également notre analyse sur des systèmes de particules auto-propulsées indépendantes.
Dans chaque cas, l’importance du contact est alors pleinement révélée, en accord avec
la littérature récente, que ce soit au niveau de la dynamique elle-même ou de la position
de ce dernier vis à vis des systèmes.
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Summary

This thesis deals with the statistical physics of out-of-equilibrium systems maintained
in a steady state. More specifically, this work focuses on macroscopic conserved quan-
tities (volume, mass, etc.) that can be exchanged between several out-of-equilibrium
systems brought into contact. The contact between two systems is a fundamental
situation in classical thermodynamics of equilibrium systems, since it allows one to
define the notion of intensive thermodynamic parameters such as temperature, pres-
sure, chemical potential, etc., derived from the same thermodynamic potential. For
non-equilibrium steady state systems, the general existence of such intensive parame-
ters remains an open issue.

By focusing on the contact situation between two out-of-equilibrium stochastic
systems on lattice in homogeneous states, we show the existence of a large deviation
function attached to the overall densities of both systems, when the frequency of
particle exchange between them is low. This large deviations function, analogous to
a free energy, satisfies a so-called Hamilton-Jacobi equation. We identify the natural
conditions for which the large deviation function is additive, leading to the definition of
non-equilibrium chemical potentials. Nevertheless, we show that the latter generically
depends on the contact dynamics and therefore do not obey any equation of state.
In the absence of a macroscopic detailed balance, the Hamilton-Jacobi equation is
much more difficult to solve. A perturbative analysis with respect to the driving
forces allows one to show that additivity is generically broken. Beyond this additivity
property, this large deviations function can – under certain assumptions – be related to
the work applied by an external potential through a generalisation of the second law.
We also discuss different ways to get access experimentally to this out-of-equilibrium
free energy.

Based on this general theoretical analysis, we eventually provide several illustra-
tions on standard stochastic lattice models (Zero Range Process and Driven Lattice
gases in particular) as well as a detailed analysis of an original, exactly solvable, mass
transport model. Standard models of independent self-propelled particles are also dis-
cussed. The importance of the contact is eventually fully revealed, in agreement with
recent literature, either in terms of the dynamics at contact itself or because of its
position with respect to both systems.
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CHAPTER 1

General introduction

1.1 Thermodynamics, non-equilibrium systems and
large deviations

Let us consider a cup of hot coffee closed with a lid in order to prevent evaporation.
If you leave this cup of coffee on your desk and come back an hour later, you will
eventually find a cold coffee whose temperature is the same as the room’s temperature.

Consider now a bicycle pump that you want to test, to be sure it is not leaking.
For this, you obstruct the valve and push the piston to compress the air inside, and
stay like this for a certain time. Then, if you stop to hold the piston, the latter will
move until the air in the pump gets the same pressure as the air in the room.

Eventually, take a glass of water and let a drop of blue ink fall in the water. After
a while, you can witness that all the water is blue and that the ink has diffused across
the whole glass.

All these everyday life experiments have in common to be instances of irreversible
phenomena: nobody has ever witnessed a spontaneous warming of the coffee after the
latter has been cooled, or has ever witnessed a spontaneous compression of the air
inside the pump, or, eventually, has ever witnessed a spontaneous formation of a drop
of ink after the latter has diffused throughout the liquid.

In order to grasp these irreversible phenomena and to use the mechanical force
that they can produce1, physicists of the XIXth century have developed a general the-
ory, namely Thermodynamics [Callen, 1998]. Thermodynamics deals with equilibrium

1For instance, you could heat the air inside the pump by putting it in contact with the hot coffee,
in order to move the piston by using the work produced by the expansion of the hot air; or you could
build a selective elastic membrane, permeable to the water but not to the ink, separating the glass
of water into two parts: in diffusing, the ink will apply an extra force on the membrane that prevent
its diffusion.

1



Chapter 1. General introduction

states and transitions that lead an initial equilibrium state to another equilibrium
state. Equilibrium states are not clearly defined at this stage, but they can be easily
imagined: they correspond to dead calm bodies which do not contain any current.
In our example about coffee for instance, initial equilibrium states are the hot coffee
initially in its thermos flask and the air that is at a different temperature. When the
coffee is poured in the cup and thus brought in contact with air, both systems change
their state to eventually reach a new equilibrium state where they both are at the same
temperature. The first step was to recognise that equilibrium bodies can be charac-
terised by a few macroscopic observables, that mainly are energy (E), volume (V) and
mass (N) (or number of molecules) and that the latter quantities are conserved. This
was pretty obvious for the volume and the mass but it was only after series of system-
atic experimental and theoretical work that energy was recognised to be conserved and
could be exchanged between body either through work or heat flow. Coming back to
our examples, the transformation of their state is precisely understood as an exchange
of these quantities. For the coffee, clearly its volume and its mass have not changed.
Only its energy has changed and has been transfered to the surrounding air. For the
air in the pump, its mass has stayed the same, but not its volume, nor its energy.
Eventually, the case of ink is a bit more challenging. One can isolate – by thought – a
certain volume which initially contains all the ink molecules and which does not move
in time. While diffusing, the quantity of ink inside this fixed volume decreases until the
density becomes the same inside the fixed volume as outside. This fictitious volume
stayed nevertheless, by definition, fixed, and the energy of the ink molecules is also
the same (if one assumes that their concentration is sufficiently small). The second
step – which in fact started before historically – was to grasp all these different types
of irreversibility introduced in our three different examples into a unique, although
quite abstract, framework: that is to say the necessary increase of entropy during a
thermodynamic evolution of an isolated system. This entropy, generally called S, is
attached to every homogeneous system, already fully characterised by its energy, its
volume and its mass. S is then a function of the system’s state (E, V,N). One of the
most important property of entropy is that it is additive, meaning that if system A has
an entropy SA and state B has an other SB, the assembly made of both systems has
then an entropy equal to SA +SB. Let us come back to our first example about coffee
to illustrate the second law. Initially, the coffee and the air in the room are separated.
Their entropy is initially Sc(Eini

c , Vc, Nc) + Sa(Eini
a , Va, Na), where c refers to “coffee”

and a to “air”. When everything reaches its final equilibrium state, the second law
states that the final state is the one for which the entropy is maximal – given the
constraints applied on the system – (since it can only increase during the evolution
and must stop at some point). The final entropy Sc(Efin

c , Vc, Nc) + Sa(Efin
a , Va, Na) is

2



1.1. Thermodynamics, non-equilibrium systems and large deviations

thus maximal when Efin
a and Efin

c are such that2

∂Sc
∂Ec

(Efin
c , Vc, Nc) = ∂Sa

∂Ea
(Efin

a , Va, Na) . (1.1)

But what quantities are equal when the final equilibrium state is reached? The tem-
perature of course: the abstract quantity T−1 = ∂S/∂E has indeed been recognised
as the inverse of the temperature T . The same analysis could have been done for the
other two examples and one would have found that in the final state, the derivatives
of the entropy with respect to the volumes or with respect to the numbers of parti-
cles should equalise. The former derivatives have been recognised as the pressure P
divided by the temperature T and the latter as the chemical potential µ divided by
the temperature T .

Even if this will be refined henceforth, the general issue to which the present work
aims at contributing has been expounded above and can be summarised like this: is
there a thermodynamic structure for out-of-equilibrium systems in a steady state?
Or more precisely: is there a function of state variables that plays a
role analogous to the entropy and which is additive? Can one attach
to conserved quantities intensive parameters like pressure or chemical
potentials that equalise when two non-equilibrium systems are brought
into contact?

1.1.1 Non-equilibrium systems: brief panorama

Before going further, however, we need to specify what these non-equilibrium systems
in a steady state are. We have already given a picture of an equilibrium state. Without
wishing to be pejorative, equilibrium state can be characterised by their tranquillity:
they are dead calm and do not contain any global current. In contrast, non-equilibrium
states can be considered at first sight as states that do display currents (in configuration
space, not directly observable in all cases). These currents appear because of a lack of
equilibrium between different systems. They always corresponds to relaxation toward
an equilibrium state. For lots of systems, this relaxation is generally quite fast3 and
one is just interested in the initial and final equilibrium states. This is the subject
matter of equilibrium thermodynamics. But sometimes this relaxation is quite long
and becomes the topics of interest. The diversity of non-equilibrium situations is very
large but one can classify them in basically three types.

2The extremal point is characterised by the vanishing of the derivative of the entropy with respect
to, say, Ea since Ec is automatically known by the energy conservation: Ec = Etot − Ea.

3Recall for example the cup of coffee in which you put a little piece of sugar. If you stir it to help
the dissolution of the sugar, you do not have to wait for long time in order to the coffee returns to
its equilibrium state.
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Chapter 1. General introduction

• With this relaxation process in mind, the most natural example is an isolated
system which is relaxing toward its equilibrium state. When the latter is very
frustrated, the relaxation phenomenon may be very slow and, at our human time
scale, one can only witness the transient state. This is the large topic of glassy
behaviours, whose main illustration is the window glass for instance.

• However, the most common way to be out of equilibrium is certainly the situation
in which the system of interest, say water, is brought into contact with two heat
baths at different temperatures, like for instance when this water is in a pot
which is heated at the bottom and in contact with the cooler air at the top. The
driving force can be also in bulk as for instance in a copper electric wire where
electrons are driven by an applied electric field. All these cases can also be seen
as very slow transient phenomena: the water in contact with two heat baths
is actually only the medium through which the warm heat bath cools itself by
discharging its energy into the cold heat bath. As experienced with the coffee,
the heat current will end up vanishing when both heat baths will reach the same
temperature. But if the latter are very big, this globally transient phenomenon
may actually becomes a steady-state phenomenon for a significant time during
which the temperatures of both heat baths do not change significantly. Non-
equilibrium systems belonging to this category are generally referred to as non-
equilibrium systems in a steady state.

• Eventually, a third kind of out of equilibrium systems are those for which the
driving force takes place at the level of the particles composing the system. A
striking example which has attracted a lot of attention recently, is the emerging
field of active matter. Here each unit – which are already quite complicated in
themselves – experiences its own driving force generally produced by an internal
transfer of energy, often from chemical to mechanical.

Clearly, all these phenomena are very diverse and it appears hopeless to describe
them in a unified framework as the equilibrium one. Hence, it seems sound to look at
simple situations where the non-equilibrium systems at stake can be described by few
quantities at a macroscopic level. Following this approach, we will focus in this thesis
on non-equilibrium steady-state systems, mostly driven by non-conservative uniform
external forces. Even in the presence of long-range correlations, these systems may
remain uniform as equilibrium systems in certain situations. If so, one can expect to
describe them at a macroscopic level by few global quantities only. In a second step,
we will also consider active particle systems in their steady homogeneous phase.

Furthermore, an important feature of these steady-state systems is that there is
necessary a driving force that brings energy (work) into the system and a dissipation
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mechanism that removes energy (heat) in order to sustain a global balance, necessary
to achieve a steady state.

1.1.2 A phenomenological approach?

As for thermodynamics, one could try to build a phenomenological framework to
describe and predict transformations of these non-equilibrium states. For instance, let
us come back to the heat flow across the water. For a fixed temperature difference
between the two heat baths, the water is crossed by a certain heat current. If the
temperature of the warm bath is raised, one eventually gets another – stronger –
current and one may ask: what is the supplemental heat absorbed by the water during
the transient process between the initial and the final steady state?

To build such a phenomenological framework, similar to the thermodynamics, for
non-equilibrium systems in a steady-state, was the purpose of two important works of
Oono & Paniconi [Oono and Paniconi, 1998] and then Sasa & Tasaki [Sasa and Tasaki,
2006]. One of the main outcome of these works was to recognise, based on very general
hypotheses, the main quantities necessary to describe non-equilibrium uniform steady
states. Contrary to equilibrium systems, energy is no longer a good parameter since
it is only fixed in average by the environment of the system. Also, in addition to
volume and mass (or particles number) which are still conserved, non-equilibrium
states display currents that need to be taken into account through a specific out of
equilibrium variable. They also gave operational definitions of generalised intensive
parameters such as pressure and chemical potentials, with which one can build a
generalised entropy function – or rather a free energy in this case, since energy is not
conserved.

Nevertheless, exactly in the same way as classical thermodynamics relied on many
experimental studies to be justified, such a phenomenological framework finds its ul-
timate justifications from careful and systematic experiments and does not contain in
itself its domain of application [Sekimoto, 2010, Chapter 2] and [Callen, 1998; Kubo,
1968]. Also, one should emphasise the fact that this phenomenological approach only
deals with global quantities without taking into account their fluctuations. The latter
can however be crucial to understand some phenomena as for instance the adiabatic
piston problem4, needless to say that they naturally appear in small systems.

4The adiabatic piston problem, presented in [Feynman et al., 2011; Fruleux et al., 2012; Gruber
et al., 2004; Sekimoto et al., 2013], corresponds to the situation where two gases, initially at different
temperatures and different pressures, are enclosed in a container and separated by a mobile piston,
assumed adiabatic. When the latter is released, the piston moves because of the pressure difference.
But even if mechanical equilibrium is reached, temperatures are in general still different since the
piston does not allow the heat to flow across itself and classical thermodynamic is not sufficient to
predict the final state. Nevertheless, in a real situation with a massive – but not infinitely massive with
respect to particles mass – piston, it is observed that gases eventually (after a long time compared to
the relaxation times of gases in both systems) achieve the same temperature. It has been recognised
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Eventually, the range of prediction of this phenomenological approach is only op-
erational. It says nothing about the quantities involved, in particular about their
connection with the microscopic components of the systems at stake. This is already
the case for equilibrium thermodynamics which says nothing about the temperature
or the chemical potential concepts, except that they equalise in equilibrium and they
can be both understood – by construction – as first derivatives of a single function,
the entropy, whose meaning is only operational and conceptual as it summarised in
only one quantity so many irreversible phenomena. Because of its operational feature,
the thermodynamic approach says nothing about equations of states, which relates
thermodynamic parameters between them. For instance, the ideal gas law was inde-
pendently discovered in an empirical way before the birth of thermodynamics.

All these comments do not intend to criticise the thermodynamic approach which
is of course very predictive and very robust. They rather aim at emphasising that
the core of a thermodynamic approach is empirical and that the latter can only be
justified through experiments. In parallel to these essential empirical studies, it is also
instructive to examine theoretically macroscopic features of simple models, well defined
microscopically. Besides, the history of thermodynamics and statistical mechanics
actually shows similar studies: the study of the kinetic theory of gases (actually the
seed of the statistical mechanics) was revived by Clausius, the inventor of the entropy,
leading to the great achievements of Maxwell and Boltzmann (see [Barberousse, 2002]
for a short historical account of statistical mechanics).

1.1.3 Our approach: mesoscopic stochastic systems

It is now time to refine the issue that will be addressed in this thesis. Indeed, as
mentioned above, the main question is to define an entropy function (or equivalently
at this stage, a free energy function) that would describe the macroscopic state of
large homogeneous non-equilibrium systems. In equilibrium, this entropy function is
additive when two systems (with short-ranged interactions) are brought into contact
and together with the conservation of quantities at stake (energy, number of parti-
cles, volume, etc.), the extremalisation of the thermodynamic potential leads to the
equalisation of intensive thermodynamic parameters (temperatures, chemical poten-
tials, pressures, etc.). Is this still valid for uniform non-equilibrium systems in a
steady-state?

To address this question, we will mainly focus on simple stochastic Markov sys-

quite recently [Fruleux et al., 2012; Gruber et al., 2004; Sekimoto et al., 2013] that the well defined
equilibrium state, for which all intensive parameters are equal, is indeed reached because of the finite
but non-zero asymmetric fluctuations of the massive piston that transfers energy from the hot to the
cold gas. Even if the example of the adiabatic piston is maybe too academic, it is a situation where
classical thermodynamics does not allow to conclude and for which fluctuations, no matter how small,
are necessary to predict the ultimate physical stationary state.
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tems composed of microscopic particles. The main idea underlying the modelling of
non-equilibrium systems by stochastic Markov models is to describe the system at
a mesoscopic level. Certainly, starting from the microscopic Hamiltonian dynamics
would be the best. But except for particular very simple situations, it is often impos-
sible to deal with it. This is so because of the non-conservative forces that are often
involved, but also because of the contact with at least one heat bath, that is necessary
to absorb the energy supplied by the external forces. Hence, an intermediate way to
proceed is to imagine mesoscopic models – virtually obtained by space-time coarse-
graining over the true microscopic dynamics – that describe the average dynamics as
well as fluctuations around the law of large number.

To be specific, let us discuss very briefly the paradigm of such a mesoscopic de-
scription : the Langevin dynamics of colloids immersed in a solvent [Oono, 2017; Reif,
2009]. Because of the large – but finite – mass and size difference between the colloids
and the solvent’s particles, the typical space-time scale along which colloids move is
much larger than the one of the solvent’s particles. Hence, at the colloid time-scale,
an infinitesimal move corresponds to a huge number (at microscopic space-time scale)
of collisions with the solvent’s molecule: if the space-time scale separation were in-
finite, the law of large number would exactly apply and colloids would not move at
all. However, since the latter is large but finite, the law of large number needs to be
completed by fluctuations that can be modelled as a Gaussian white noise in many
cases. Of course, one needs some additional information to make the link with the
underlying microscopic mechanics. In this case, this is done by relating the variance
of the noise to the temperature of the solvent, which characterised the velocity distri-
bution of the solvent’s molecules. We will see that for more general Markov stochastic
processes, there exists a general condition, namely the local detailed balance condition,
which allows one to relate the prescribed noise to a physical description. This will be
detailed in the first chapter.

Coming back to our main question, one should directly discard as of now the possi-
bility to define a non-equilibrium temperature [Casas-Vázquez and Jou, 2003; Cuglian-
dolo, 2011; Martens et al., 2009; Palacci et al., 2010] in this way: for non-equilibrium
stochastic Markov systems in contact, energy is not conserved since systems of in-
terest is exchange energy between them but also with their respective heat baths (if
different). Nevertheless, the total number of particles or the volume are still con-
served and it remains sound to ask if generalised intensive parameter can be defined
to characterise the balance (and the unbalance) of such conserved quantities.

The pressure, which is the conjugate intensive parameter associated with the vol-
ume, has always a mechanical definition as it can be derived as a force per unit area
exerted on a wall. Nevertheless, the definition of a chemical potential seems to be
more delicate to consider generically otherwise than by considering the latter as the
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conjugate quantity associated with the number of particles. For this reason, we will
mostly focus our attention to the notion of chemical potential in this thesis.

In the last decades, several series of studies on stochastic Markov models focusing
on thermodynamic issues, and particularly on intensive thermodynamic parameters,
have been conducted. In particular, two of them are of particular importance for the
issue we want to address:

• The first has been conducted on mass transport models and driven lattice gases,
which are lattice models where particles locally jump from site to site accord-
ing to a Poisson process. The main theoretical contributions on this subject
contains: [Hayashi and Sasa, 2003; Sasa and Tasaki, 2006] on the KLS model ;
[Bertin et al., 2006, 2007] was a theoretical study on the Zero Range Process, an
exactly solvable non-equilibrium mass transport model, whose stationary micro-
scopic distribution completely factorises and thus allows one to define chemical
potentials using the same procedure as for equilibrium statistical mechanics. The
latter contribution was recently extended to a specific class of short-ranged cor-
related non-equilibrium systems by [Chatterjee et al., 2015]. The other relevant
studies have essentially consisted in numerical simulations on the KLS models
[Pradhan et al., 2010, 2011] as well as other driven lattice gases with exclusion
[Dickman, 2014, 2016; Dickman and Motai, 2014].

• The second series of study is concerned by active matter models in continuous
space and more specifically self-propelled particles like Active Brownian Parti-
cles and Run-&-Tumble Particles [Fodor and Marchetti, 2018; Marchetti et al.,
2013]. In particular, the question of the definition of the pressure has been ad-
dressed quite extensively in recent work [Fily et al., 2017; Solon, Fily, Baskaran,
Cates, Kafri, Kardar and Tailleur, 2015; Solon, Stenhammar, Wittkowski, Kar-
dar, Kafri, Cates and Tailleur, 2015; Speck and Jack, 2016; Takatori et al., 2014;
Winkler et al., 2015].

The purpose of the present work will be mainly to extend and discuss in a more
systematic way the first series of studies on lattice Markov models. In particular,
the main results of our work will be to define in an unambiguous and general way
a thermodynamic potential from which chemical potential could emerge. We will
then address briefly the definition of chemical potentials for (almost) homogeneous
self-propelled independent particles models.
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1.1.4 From the mesoscopic modelling to thermodynamics: large
deviations

Eventually, we present here the main tool that we will use to address the questions
introduced above, namely the Large Deviations formalism [Ellis, 2007; Freidlin and
Wentzell, 1998; Graham, 1987; Oono, 1989; Sasa, 2012; Touchette, 2009]. The latter
is particularly suited to study macroscopic variables at the thermodynamic limit. For
instance, let us consider the main quantity of interest in our study, namely the total
number of particles NΛ within a given macroscopic domain Λ.

First, when the thermodynamic limit is actually taken, one expects the law of large
number to hold. Indeed, for the stochastic models mentioned above, the number of
particles is a stochastic variable which thus fluctuates as long as particles enter and
leave the domain Λ. If one now looks at the empirical density ρΛ = NΛ/|Λ| (|Λ|
refers to the volume of the domain Λ) which is an intensive stochastic variable, one
expects that ρΛ → 〈ρ〉 when |Λ| → ∞ in probability, where 〈ρ〉 is the average value
of the density inside the domain Λ. Interestingly, this law of large numbers can be
heuristically rephrased in terms of probability distributions. Indeed, this law states
that the probability distribution of the stochastic variable ρΛ narrows toward a Dirac
delta distribution centred around its mean value 〈ρ〉.

But how can one refine this law and describe fluctuations around the mean value?
A first answer is given by the Central Limit Theorem which deals with Gaussian
fluctuations around the mean. However, it turns out that a more natural extension,
directly related to the singular limit toward the Dirac delta (i.e. the Law of Large
Numbers), is provided by the Large Deviations Principle. To illustrate this framework
on a simple situation – but relevant for our concern –, let us consider the canonical
situation of two systems A and B, in contact in equilibrium, maintained at the same
temperature, that can exchange particles across their contact area. According to
statistical mechanics [Reif, 2009], the probability to have NA particles in A (or rather
a density ρA) and NB particles in B (or rather a density ρB in B), knowing that
N = NA +NB is kept fixed, reads

PV (ρA, ρB) = e−β[VAfA(ρA)+VBfB(ρB)]

ZV (ρ̄) (1.2)

where Vk is the volume of region k, fk is the free energy of region k (k = A,B), and
Z(ρ̄) is the partition function of the whole system, which normalises the probability
distribution (ρ̄ = N/V , V = VA + VB). This equality can be easily derived from
the Gibbs-Maxwell-Boltzmann probability distribution of the micro-states, providing
that the interaction energy between the two regions A and B remains local and thus
negligible with respect to bulk energies of each systems. Let us now examine this
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distribution (1.2) when Vk →∞. Indeed, Z(ρ̄) can be computed using the asymptotic
saddle-point approximation:

Z(ρ̄) ∼ e−β[VAfA(ρ∗A)+VBfB(ρ∗B)] , (1.3)

where ρ∗k are such that f ′A(ρ∗A) = f ′B(ρ∗B). Bringing all the quantities together, one can
see that the main contribution of the distribution PV (ρA, ρB) when Vk are very large
reads

P (ρA|ρ̄) ∼ e−βV I(ρA|ρ̄) (1.4)

with

I(ρA|ρ̄) = γA (fA(ρA)− fA(ρ∗A)) + γB (fB(ρB)− fB(ρ∗B)) ,

where γk = Vk/V the relative size of volume k (k = A,B) with respect to the whole
volume.

Equation (1.4) is what one calls a large deviation principle associated with the
stochastic variable ρA (ρB is in fact known as soon as ρA is because of mass conser-
vation) and I(ρA|ρ̄) is called a large deviation function or large deviation rate. When
V → ∞ (with γA, γB fixed) one can notice that the distribution is more and more
peaked around the value for which I(ρA|ρ̄) is minimal and thus equates to 0. Accord-
ing to (1.4), this point that minimises I(ρA|ρ̄) is ρ∗A = 〈ρA〉 for which f ′A(ρ∗A) = f ′B(ρ∗B),
which have been recognised to be the chemical potentials of systems A and B that
equalise at the thermodynamic limit.

Hence, the large deviation framework allows one to derive variational principles
(or minimisation principle, of the free energy here) that are useful to characterise
the average value around which the probability distribution narrows. Since the large
deviation function I is additive, i.e. that it is a sum of a contribution depending
on A and another depending on B, the minimisation procedure allows one to define
chemical potentials that equalise in the stationary state.

The link between equilibrium thermodynamics and equilibrium statistical physics
can in fact be rationalised through this large deviation formalism [Ellis, 2007; Touchette,
2009, 2015]. It thus appears quite promising to try to derive a thermodynamic for-
malism for stochastic non-equilibrium systems.

1.2 Outline

The main purpose of this thesis is to extend and rationalise the first series of studies
mentioned at the end of subsection 1.1.3, centred around the definition of chemical
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potentials and the zeroth law for non-equilibrium systems in steady-state. This first
chapter (chapter 2) is then devoted to the presentation of a formal general framework –
asymptotically valid when the relaxation time-scales inside the bulks of both systems
are much larger than the typical time-scale to exchange a particle across contact –
to study the large deviation function associated with the probability distribution of
densities ρA and ρB of two uniform non-equilibrium mass transport or lattice gas
models (which belong to the general class of jump Poisson processes).

The chapter 3 is the core of this thesis. Using the general framework expounded
in the first chapter, we propose a general condition in order to obtain an additive
large deviation function of densities as in equilibrium (see equation (1.4)). Under this
additivity property, generalised non-equilibrium chemical potentials can be defined.
We discuss their relation with equilibrium chemical potentials as well as prospective
chemical potentials attached to the virtually separated systems. Eventually, the ther-
modynamic meaning of the large deviation function (and possibly its related chemical
potentials) is investigated. We show that for certain rule of transition rates, the large
deviation function of the densities play a role of a free energy since it obeys a second
law with respect to the work supplied by the variation of external potentials. We close
this chapter by providing some methods to measure either the large deviation function
or its associated chemical potentials. In particular, we inspect the particular case of
the contact between a non-equilibrium system and a reservoir of particles (which can
be at or out of equilibrium).

After the abstract and general studies of chapters 2 and 3 comes applications to
specific mass transport and lattice gas models. A short review of the pioneering work
of [Bertin et al., 2006, 2007] is illustrated on the Zero Range Process. Nevertheless,
the stationary distribution of the latter is invariant with respect to a variation of the
applied driving force. Hence, the driving force dependence on the large deviation func-
tion cannot be studied. In order to overcome this situation, we present an original mass
transport model, exactly solvable, which displays a dependence on the external drive
(more details are available in appendix C). Extensive studies on chemical potentials
and their generic dependence on the dynamic at contact are expounded, together with
some numerical simulation results. Then, to go beyond these exact solvable models
and explore systems with dimension greater than one, we discuss the main relevant
papers of the literature, using our unifying framework developed in chapters 2 and 3.
Eventually, we briefly tackle the question of the contact in the Macroscopic Fluctu-
ation Theory framework [Bertini et al., 2015a]: we show that the effects observed in
previous microscopic models cannot be restored by this general mesoscopic theory.

As for the last chapter 5, it moves to continuous space models and more specif-
ically to colloids and self-propelled particles which have recently attracted a lot of
attention. These works correspond to the second series of studies mentioned above
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(see the end of subsection 1.1.3). We study in particular independent particles, either
externally driven (colloids) or self-propelled (Run-&-Tumble and Active Brownian par-
ticles), which are brought into contact with a permeable membrane or more generically
with a high energy barrier. Eventually, a general conclusion and some perspectives
are given.
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CHAPTER 2

General framework: contact in the
thermodynamic limit

This introductory chapter aims at introducing the main objects of this thesis, on the
simple stochastic framework of driven lattice gas or mass transport models that both
belong to the realm of Markov jump processes which obey local detailed balance. We
will consider the situation where two such systems are brought into contact and thus
reach a new steady state, in a similar way as previous studies available in the literature
[Bertin et al., 2007; Dickman, 2014; Dickman and Motai, 2014; Hayashi and Sasa, 2003;
Pradhan et al., 2010, 2011; Sasa and Tasaki, 2006]. An important assumption necessary
for our framework to hold will be a time-scale separation between the exchange of
particles at contact and the bulk dynamics within the systems, as already advocated
in [Sasa and Tasaki, 2006, Appendix B.]. This limitation may appear quite restrictive
but is actually physically motivated if one imagines the contact as a high energy barrier
that particles have to cross (see [Sasa and Tasaki, 2006]). We will nevertheless consider
more general contact types that could be relevant, still in this vanishing exchange rate
limit at contact (compared to the bulk rates).

The main achievement of this chapter is the introduction of the large deviations
function I(ρA, ρB|ρ̄) associated with the global densities ρA and ρB of the two systems
in contact (called A and B). The latter is considered as a solution of what one may
call an Hamilton-Jacobi equation for Markov jump processes. This results are not new
([Kubo et al., 1973; Maes and Netočný, 2007] and [Ge and Qian, 2017] for a recent
survey with emphasis on chemical reactions) but seem to have received – as far as
the author knows – little attention for the study of macroscopic phenomena in simple
lattice gases and other mass transport model.

The last part of the chapter is devoted to the different available ways to solve
the Hamilton-Jacobi equation and then find its solution I(ρA, ρB|ρ̄). In particular, we
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highlight the important situation of the detailed balance (at a macroscopic level, which
will be detailed henceforth), as well as its natural link with time-reversal symmetry. We
conclude by presenting a general perturbation method to solve the Hamilton-Jacobi
equation, that mimics the one presented in [Bouchet et al., 2016] in the context of
diffusive systems. Here again, we emphasise that the ideas presented in this chapter
are not new [Bertini et al., 2015a; Ge and Qian, 2017; Kaiser et al., 2018] – even if its
presentation may have its part of originality in the specific setting considered here.

2.1 Definition of the dynamics

We begin with the general definition of the models that will be considered in this
thesis. Stochastic lattice gases and mass transport models are formally continuous
time stochastic Markovian systems defined on lattice [Liggett, 2012; Spitzer, 1970]
composed of interacting particles that jump from site to site, see figure 2.1. Particles
are assumed to be indistinguishable and thus one can describe microscopic state or
configuration by the occupation number in each site x of the lattice as shown on figure
2.1.

To visualise the dynamics, let us consider the most simple model of this kind,
namely a single particle performing a random walk in one dimension. The particle
is assumed to start at site, say, x0, at time t = 0. The particle will stay at site x0

for a random time drawn in an exponential distribution before jumping instantly to
the left (x0 − 1) or the right (x0 + 1) with equal probability (in the absence of any
bias). Then, the particle stays at its new location for another random time drawn in
the same exponential distribution before jumping to another site, etc. When several
particles, interacting with each other, are present, the average waiting time to jump
that controls the exponential distribution of jump times at each occupied site, as
well as the probability to jump to an other site, generally depend on the occupation
numbers of neighbouring sites (local configurations). In the framework of interacting
Markov systems, this is generally summarised in the local configuration dependence of
the transition rates, since the latter completely describe the dynamics sketched above
[Spitzer, 1970].

Examples of such mass transport models are: the well known Asymmetric Simple
Exclusion Process (ASEP) as well as its variant [Derrida, 1998, 2007; Spitzer, 1970],
the Katz-Lebowitz-Spohn (KLS) model [Katz et al., 1984; Zia, 2010], the Zero Range
Process [Evans and Hanney, 2005; Levine et al., 2005] as well as its numerous variants
[Evans et al., 2004, 2006a,b; Zia et al., 2004], etc.

For one system, we note Λ ⊂ Zd the space grid (d being the space dimension), V =
|Λ| the number of sites, N the number of particles and C = {nx}x∈Λ a configuration of
the system, nx ∈ J0, nmaxK being the number of particles at site x (nmax can be finite
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or infinite). If nx is generically an integer for most models, one will also consider in
the following continuous masses for which nx ≥ 0 is real. We point out that periodic
boundary conditions are assumed at least in the driving direction (detailed are given
below).

The dynamics is entirely prescribed by the transition rates T (C ′|C) to jump from
a configuration C to an other one C ′. For instance, for stochastic lattice gases, C ′

corresponds to a single move of one particles from its former site to its new site. As
these simple models intend to be mesoscopic modellings of the dynamics of particles,
one imposes the local detailed balance [Katz et al., 1984; Maes, 2003; Maes and Netočnỳ,
2003] condition which restricts the class of systems that can be modelled by Markov
processes. It states that

T (C ′|C)
T (C|C ′) = exp [−β (E(C ′)− E(C)−W (C, C ′))] (2.1)

where E(C) is the energy of the configuration C and W (C, C ′) refers to the non-
conservative work associated with the driving. Physically, this assumption is remi-
niscent of the contact between the particles and the heat bath producing the noise
which is such that the latter stays in equilibrium at inverse temperature β (see intro-
duction of [Wynants, 2010]).

The energy E is generically prescribed by a given interacting potential sometimes
supplemented by an external potential. The non-conservative work W depends on the
driving but we will mostly consider a constant driving force f for which

W (C, C ′) = f · j(C, C ′),

j(C, C ′) being the total current flowing in the system for the transition C → C ′ (the
latter is thus generally localised if only one particle jumps at a time). We note that
explicit functional form of transition rates T is not completely specified by the local
detailed balance property. We will consider in specific examples below some common
choices obeying local detailed balance such as the exponential rule, the Kawasaki rule,
the Metropolis rule or the Sasa-Tasaki rule (defined in chapter 3) [Tasaki, 2004].

2.2 Putting two systems into contact

2.2.1 Definition of the microscopic dynamics

We define in this subsection the contact dynamics between two systems A and B

defined by their own Hamiltonians EA(CA), EB(CB) and their own driving force fA,
fB. One calls Λk the space grid of system k, Vk = |Λk| the number of sites of system
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Figure 2.1 – Sketch of a one dimensional mass transport model on lattice. Sites x ∈ Λ
are occupied by nx particles. For most models, the dynamics is asynchronous, meaning
that only one particle is moving during a transition. That being said, synchronous
dynamics for which all sites are updated at each transition can be also considered.
Even if the latter does not concern driven lattice gases, it has been investigated in
generalisation of the Zero Range Processes. This is also the natural dynamics of
Probabilistic Cellular Automata [Lebowitz et al., 1990].

k and Nk = N (Ck) the actual number of particles in system k, k = A,B. One sets
γA = VA/V and γB = VB/V (γA + γB = 1) the relative sizes of system A and B with
respect to the total volume of A∪B which reads V = VA +VB. The contact dynamics
is defined through a transition rate Tc(C ′A, C ′B|CA, CB) obeying local detailed balance
as well. The total number of particles N = N (CA) +N (CB) is assumed to be fixed.

As already mentioned in the general introduction, our main goal is to investigate
the situation of two uniform non-equilibrium systems in contact. Since we have chosen
to look at the simple situation of externally driven systems for which periodic boundary
conditions along the driving forces are necessary, the natural contact geometry one can
think of is the one sketched in figure 2.2 that shows a contact orthogonal to the driving
forces fA and fB. Hence, microscopic transition rates at contact, Tc, are thus assumed
not to depend on driving forces fA, fB. The case with an additional dependence on
the forcing at contact will be briefly discussed later (see subsection 3.1.3).

Remark: there is an effect! Since we will not consider particular examples before
chapter 4, we shall not prolong the suspense and hence point out that even if the
contact is perpendicular to both driving forces, the stationary densities in the two
systems A and B are indeed observed to be significantly affected by the drives (see
numeral simulation results of section 4.2 or detailed numerical investigations of R.
Dickman in [Dickman, 2014; Dickman and Motai, 2014]).

The dynamics of the whole system composed of systems A and B is thus pre-
scribed by transition rates in the bulk as well as the contact ones. The stochastic
process is a Poisson Markov jump process and the probability to observe a configura-
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2.2. Putting two systems into contact

tion C = (CA, CB) at time t, Pt(C), obeys the following master equation

dPt
dt (CA, CB) =

∑
C′A 6=CA

TA(CA|C ′A)Pt(C ′A, CB)− λA(CA)Pt(CA, CB) (2.2)

+
∑
C′B 6=CB

TB(CB|C ′B)Pt(CA, C ′B)− λB(CB)Pt(CA, CB)

+
∑
C′A 6=CA
C′B 6=CB

Tc(CA, CB|C ′A, C ′B)Pt(C ′A, C ′B)− λc(CA, CB)Pt(CA, CB) .

with λk(C) = ∑
C′ 6=C Tk(C ′|C) the escape rates associated with the configuration C,

k = A, B or c. The subscripts A and B stands for the bulks of both systems A and B
whereas the subscript c is referring to the contact (i.e. transitions (CA, CB)→ (C ′A, C ′B)
that corresponds to exchange of particles between A and B).

Figure 2.2 – Picture of the two particle models on lattice brought into contact. The
latter is generally localised but one does not restrict its extension at this stage. As long
as the exchange rates at contact are small, all sites of each systems can be connected
(in a supplemental dimension)

2.2.2 Coarse-grained dynamics of the densities

Our goal is to compute the stationary distribution of the number of particles in each
systems, knowing the total number of particles N = NA+NB or rather the density ρ̄ =
γAρA+γBρB. If microscopic detailed balance holds, one can solve straightforwardly the
stationary master equation (2.2) and thus derive directly the distribution of densities
ρA, ρB in each systems. However, since both systems are out-of-equilibrium, detailed
balance does not hold. The strategy is then to derive an evolution equation on the
probability distribution on ρA (ρB = γ−1

B (ρ̄− γAρA)) as we will see henceforth.
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Chapter 2. General framework: contact in the thermodynamic limit

Proceeding straightforwardly, one can easily derive an evolution equation on
Pt(ρA|ρ̄), Pt(ρA|ρ̄) being the probability to observe a density ρA = NA/VA (and
ρB = γ−1

B (ρ̄ − γAρA) since mass is conserved), by summing over all the micro-states
C = (CA, CB) that give the actual density in (2.2). Since the dynamics in the bulks of
A and B conserve the number of particles in each system, the coarse-grained master
equation over (ρA, ρB) only involves the dynamics at contact encoded in Tc. It yields

dPt
dt (ρA|ρ̄) =

∑
ρ′A 6=ρA

πρ̄, t(ρA|ρ′A)Pt(ρ′A|ρ̄)− πρ̄, t(ρ′A|ρA)Pt(ρA|ρ̄) . (2.3)

πρ̄, t(ρ′A|ρA) refers to the coarse-grained transition rate associated with the coarse-
grained transition ρA → ρ′A , ρ′A = ρA −∆NA/VA. It reads

πρ̄, t(ρ′A|ρA) =
∑

C′A∈E
VA
∆NA

(ρA)

C′B∈E
VB
−∆NA

(ρB)

∑
CA∈E

VA
0 (ρA)

CB∈E
VB
0 (ρB)

Tc(C ′A, C ′B|CA, CB)Pt(CA, CB|ρA, ρ̄) . (2.4)

with EV∆N(ρ) = {C |N (C) = ρV + ∆N}, the set of configurations that contains exactly
ρV + ∆N particles.

The knowledge of the coarse-grained transition rates thus rests upon the knowledge
of the conditional probability distributions Pt(CA, CB|ρA, ρ̄) whose coupled evolutions
can be obtained from the microscopic dynamics (2.2). Of course, this series of equa-
tions is completely equivalent to the microscopic one and this approach would be a
deadlock without further approximations.

Let us stop here for a moment, in order to discuss physically the situation. Contrary
to the equilibrium situation for which detailed balance holds and all currents between
every transitions C → C ′ vanish, non-equilibrium systems host non-vanishing currents.
Hence, when systems A and B are brought into contact, the global balance of currents
of the configurations C have to adjust to a new balance which takes into account the
currents at contact.

One cannot avoid in general that the perturbation at contact remains local. In
particular, long-range correlations along the flux are ubiquitous in non-equilibrium
systems [Bertini et al., 2007; Dorfman et al., 1994; Garrido et al., 1990; Spohn, 1983]
and local perturbation may produce long-range effect [Maes et al., 2009] thus leading
to a strong coupling between systems. Clearly, one would not expect any additivity
property to hold if such a strong coupling were present. The two systems in contact
would be rather a non-homogeneous global system built upon the two initially isolated
systems.

Even if these long-range effects are less expected to happen when the contact is
local and the extension in the directions perpendicular to the driving forces are large
enough, this coupling remains too difficult to be studied in a general setting. Following
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2.2. Putting two systems into contact

the phenomenological study of [Sasa and Tasaki, 2006], as well as their detailed study
on the KLS model [Hayashi and Sasa, 2003; Sasa and Tasaki, 2006], we will then
focus on the simpler situation for which the transition rates at contact are very small
compared to the bulk ones. We will see that this limiting case is also the more likely
to enable a thermodynamic structure since the stationary probability density happens
to be almost factorised.

Eventually, this vanishing exchange rates limit at contact is also quite likely to be
realised in physical experiment. Indeed, this could be realised – for the exchange of
particles – by any system that displays a high energy barrier compared to the typical
energy barrier in systems A and B. One can think for instance of a porous membrane
whose pores exert a repulsive interaction that needs to be overcome. But beyond this
case of an high energy barrier – which led Sasa & Tasaki to propose their transition
rates that will be discussed henceforth –, one can also imagine that the small-rate limit
can be achieved by low frequency openings of a gate without any repulsive or attractive
force exerted by the membrane itself. In the latter case, the particles that jump from
one system to the other may feel forces applied by the particles belonging to the other
system when the gate is open. Eventually, in the same spirit of the gate dynamics,
low frequency can be achieved by a strong conformation selection1 of particles without
any additional forces performed by pores.

To summarise this physical discussion, the low frequency exchange limit can be
reached either by a high energy barrier that screens the interactions between both
systems at contact, or by a low opening rate of a gate or strong conformation selection
of particles that decreases the attempt rate of jumps without screening the interactions
between systems in contact. Whatever the situation, one will consider in the following
that the rates at contact are very small compared to the bulk ones. One will thus
enforce explicitly this low frequency by introducing a small parameter ε� 1 in front
of the transition rates at contact: Tc(C ′|C)→ εTc(C ′|C). It is thus natural to introduce
the re-scaled time τ = εt for the dynamics over the number of particles NA. Note that
we keep writing Pτ (ρA|ρ̄) and πρ̄, τ for the re-scaled function but not for the microscopic
distribution Pt(CA, CB|ρA, ρ̄). That being said, one obtains

πρ̄, τ (ρ′A|ρA) =
∑

C′A∈E
VA
∆NA

(ρA)

C′B∈E
VB
−∆NA

(ρB)

∑
CA∈E

VA
0 (ρA)

CB∈E
VB
0 (ρB)

Tc(C ′A, C ′B|CA, CB)Pε−1τ (CA, CB|ρA, ρ̄) . (2.5)

Before looking at a more rigorous treatment, one can already guess heuristically

1For instance, particles could have a specific shape or a marker that would be rejected by the
pores of the membrane if they do not appear with the suited position, or the marker activated, etc.
If one does not follow these extra degrees of freedom assumed to be stochastic too, averaging over
them should give this selective behaviour
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Chapter 2. General framework: contact in the thermodynamic limit

what happens when ε → 0. We introduce τ−1
b the typical rate at which bulks evolve.

According to our assumption, the typical rate at contact reads τ−1
c = ετ−1

b . For ε
small enough, τc can become very large compared to the largest relaxation time of the
bulk dynamics. Hence, jumps of particles between A and B are typically spaced out
from a very large time interval τc during which bulk dynamics is mostly drawn from
its stationary state (since one assumes that it has relaxed very quickly to its steady
state). At a resolution time of order τc (very large compared to the bulk time τb) –
which can be achieved by averaging the signal in time (filtering) over a typical time
large compared to τc –, the coarse-grained transition rate reads

πρ̄(ρ′A|ρA) =
∑
C′A ,C

′
B

∑
CA ,CB

Tc(C ′A, C ′B|CA, CB)P (CA, CB|ρA, ρ̄) . (2.6)

At zeroth order in ε, the stationary distribution P (CA, CB|ρA, ρ̄) = P (CA, CB) is the
stationary solution of the master equation (2.2) with ε = 0. It is equal to the stationary
distribution one would reach if the systems were completely isolated from each other,
which is completely factorised: P (CA, CB|ρA, ρ̄) = PA(CA|ρA)PB(CB|ρB).

Remark: about the finite ε case. The ε→ 0 limit ensures that the typical time
between two exchange of particles between systems in contact is very large compared
to the typical time for both systems to relax to their respective stationary states. For
finite ε such that the typical exchange time is of order of the time for both systems to
relax to their respective steady state, one can intuitively guess that an approximate
Markovian description of the dynamics upon densities will involve relaxation modes of
the bulk dynamics [Wang et al., 2016a,b]. This much more complicated situation will
not be considered in this thesis and is postponed for future works.

Remark: breaking of the detailed balance at microscopic level. One will
have the opportunity to come back to this point latter, but let us make one important
comment at this stage. Indeed, we can note heuristically that in the vanishing rate
limit, one may avoid the “equilibration” at contact. Since the stationary distribution
P (Ck|ρk) (k = A, B) is generally different from the equilibrium one when driving
forces are turned on, one can expect a breaking of detailed balance for the microscopic
transitions involved in the exchange of particles. Yet, we will see thereafter that this
allows a null current of particles at contact.

Along with the precedent remark on the finite ε situation, one can expect that
increasing ε may reduce the breaking of the detailed balance at contact. Indeed, in
the ε→∞ limit case, the sites connected through the contact reach equilibrium very
quickly whereas the remaining part evolves very slowly. It is difficult to discuss the
situation in a general way since it strongly depends on the specific interactions between
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2.2. Putting two systems into contact

sites at contact but one can imagine that approaching this limit may allow a better
balance of the currents at contact since transition rates at contact are assumed to be
the same as in equilibrium. This effect will be discussed in section 4.3.3 regarding
the numerical simulations performed by R. Dickman in [Dickman, 2014; Dickman and
Motai, 2014].

2.2.3 Time-scale separation in the weak contact limit: multi-
scale analysis

Even if the heuristic discussion above might be sufficient at an intuitive level – at
least for the expression of the final coarse-grained transition rate – we propose here
to look in more details into the multi-scale analysis of the problem. Even if we will
stop at the first non-trivial order in ε, such an approach can be extended in principle
beyond this order. To do so, we first lighten notations and rewrite the master equation
describing the probability distribution of configurations of the two coupled systems in
vector notations:

d|Pt〉
dt =Wb|Pt〉+ εWc|Pt〉 (2.7)

where Wb and Wc are respectively the evolution matrices associated with the bulk
transition rates Tb(C|C ′) = TA(CA|CA′)δCB ,C′B + TB(CB|CB ′)δCA,C′A and the contact tran-
sition rates Tc(C|C ′). |Pt〉 is the vector whose coordinates are Pt(C) = 〈C|Pt〉, 〈C| being
the row vector associated with the configuration C (full of 0 except at the configuration
label C for which it is equal to 1).

In order to get the solution of this master equation (2.7) in the weak contact limit
ε→ 0, one can perform a perturbative expansion

|Pt〉 = |P (0)
t 〉+ ε|P (1)

t 〉+O(ε2) . (2.8)

The master equations at each order read

O(ε0) : d|P (0)
t 〉

dt =Wb|P (0)
t 〉 (2.9)

O(ε1) : d|P (1)
t 〉

dt =Wb|P (1)
t 〉+Wc|P (0)

t 〉 ,

whose formal solutions are

|P (0)
t 〉 = etWb|P0〉 (2.10)

|P (1)
t 〉 =

∫ t

0
ds e(t−s)WbWce

sWb|P0〉 ,

initial conditions being |Pt=0〉 = |P0〉 with |P0〉 ∼ O(ε0). The initial condition is quite
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Chapter 2. General framework: contact in the thermodynamic limit

arbitrary and can always be decomposed as

|P0〉 =
∑
ρA

P0(ρA)|SS, ρA〉b +
∑
ρA

|T0, ρA〉b (2.11)

where |SS, ρA〉b is a short notation for a stationary solution of the bulk dynamics
with densities ρA and ρB chosen initially: 〈C|SS, ρA〉b = PA(CA|ρA)PB(CB|ρB) for
any C = (CA, CB) such that N (CA) = ρAVA and N (CB) = ρBVB = N − ρAVA. As one
notices, we will omit the fixed total density ρ̄ in order to lighten notations. Technically,
|SS, ρA〉b is a right eigenvector ofWb associated with the eigenvalue 0. As for |T0, ρA〉b,
it refers to a transient part that will vanish at large time (limt→∞ e

tWb|T0, ρA〉b = 0).
Eventually, P0(ρA) is a weight to start with densities ρA, ρB in the steady states of A
and B.

Inserting |P0〉 in equations (2.10), one obtains

|P (0)
t 〉 =

∑
ρA

P0(ρA)|SS, ρA〉b +
∑
ρA

etWb |T0, ρA〉b (2.12)

|P (1)
t 〉 = t

∑
ρA,ρ

′
A

P0(ρA) b〈−, ρ′A|Wc |SS, ρA〉b |SS, ρ′A〉b

+
∑
ρA

P0(ρA)
∫ t

0
ds e(t−s)Wb|RSS, ρA〉b

+
∑
ρA

∫ t

0
ds e(t−s)WbWce

sWb|T0, ρA〉b

where one has used Wc|SS, ρA〉b = ∑
ρ′A b〈−, ρA|Wc|SS, ρA〉b |SS, ρ′A〉b + |RSS, ρA〉b,

|RSS, ρA〉b being the transient component (with respect to the bulk dynamics) and
b〈−, ρA| being the left eigenvector of Wb for fixed densities ρA, ρB with eigenvalue 0.
One has b〈−, ρA|C〉 = 1 if NA(C) = VAρA and b〈−, ρA|C〉 = 0 otherwise.

The second and the third term of |P (1)
t 〉 in equation (2.12) converge when t→∞

but the first, proportional to t, is clearly a secular term which breaks the validity of the
perturbation expansion as soon as εt ∼ O(1): for t ∼ O(ε−1), ε|P (1)

t 〉 becomes of the
same order as |P (0)

t 〉 and the expansion is no more uniform [Bender and Orszag, 1999;
Nayfeh, 2008]. Such discrepancy is the consequence of the fact that the perturbation
series is slowly convergent and that all terms are needed to obtain a bounded result
for any time t. In order to regularise the perturbation series for large time, one can
use the fact that the initial condition cannot be observed when t is large [Chen et al.,
1994, 1996; Oono, 2012]: one can take advantage of it to renormalise the series.

In order to perform this procedure, one introduces an arbitrary time t̃ which will
be the new initial time: t = (t − t̃) + t̃. Absorbing the term proportional to εt̃ of
the secular term in the coefficients P0(ρA), which leads to a renormalised term Pt̃(ρA),
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2.2. Putting two systems into contact

allows us to write the solution |Pt〉 (equation (2.8)) as

|Pt〉 =
∑
ρA

Pt̃(ρA)|SS, ρA〉b +
∑
ρA

etWb |T0, ρA〉b (2.13)

+ ε(t− t̃)
∑
ρA,ρ

′
A

Pt̃(ρA) b〈−, ρ′A|Wc |SS, ρA〉b |SS, ρ′A〉b

+ εRt +O(ε2)

where Rt refers to non-secular terms at order O(ε1) in equation (2.8). The secular
term ∝ ε(t − t̃) can now be deleted by a suitable choice of Pt̃. Indeed, decomposing
Pt̃ = Pt + (t − t̃)∂Pεt/∂t + o

(
(t− t̃)

)
in equation (2.13), one observes that – after a

projection on b〈−, ρA| – the secular term of order ε(t− t̃) can be removed if Pt satisfies

dPt(ρA)
dt = ε

∑
ρ′A

π(ρA|ρ′A)Pt(ρ′A)− π(ρ′A|ρA)Pt(ρA) (2.14)

where one has introduced, similarly with notations of the previous section,

b〈−, ρ′A|Wc |SS, ρA〉b = π(ρ′A|ρA)− λ(ρA)δρA, ρ′A , (2.15)

with ρ′A = ρA + ∆NA/VA, π(ρ′A|ρA) being the transition rate associated with the
transition from ρA to ρ′A (π(ρA, ρA) = 0) and λ(ρA) = ∑

ρ′A
π(ρ′A|ρA), the escape rate.

Eventually, the final regularised solution reads then

|Pt〉 =
∑
ρA

Pεt(ρA)|SS, ρA〉b +
∑
ρA

etWb|T0, ρA〉b (2.16)

+O(ε) .

where the probability distribution Pτ (ρA) obeys the coarse-grained master equation
(2.14):

dPτ
dτ (ρA) =

∑
ρ′A

π(ρA|ρ′A)Pτ (ρ′A)− π(ρ′A|ρA)Pτ (ρA) , (2.17)

with τ = εt, the relevant slow time associated with the dynamics of the number of
particles.

For large time compared to the relaxation time of the bulk dynamics, the stationary
solution limt→∞ |Pt〉 = |P 〉 reads, for all configurations C,

P (C) = P (ρA|ρ̄)PA(CA|ρA)PB(CB|ρB) +O(ε) , (2.18)

with P (ρA|ρ̄) the stationary solution2 of equation (2.17).
2The dependence with respect to the total density has been reintegrated to not forget that P

describes the density ρA in A as well as in B, with ρB = γ−1
B (ρ̄− γAρA).
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Chapter 2. General framework: contact in the thermodynamic limit

Expression of the coarse-grained transition rates. As we will very often con-
sider coarse-grained transition rates π(ρ′A|ρA) in the following, we repeat here their
expression with explicit notations:

π(ρ′A|ρA) =
∑

C′A∈E
VA
∆NA

(ρA)

C′B∈E
VB
−∆NA

(ρB)

∑
CA∈E

VA
0 (ρA)

CB∈E
VB
0 (ρB)

Tc(C ′A, C ′B|CA, CB)PA(CA|ρA)PB(CB|ρB) , (2.19)

with Pk(Ck|ρk) the stationary density of the isolated system k.

2.3 Large deviations analysis of the density dynam-
ics

The time-scale separation being settled, one is interested in the thermodynamic limit
for which volumes and particle numbers tend to infinity, with fixed densities.

2.3.1 Volume dependence of the macroscopic transition rates
at contact

Until now, all the expressions of the coarse-grained transition rates π, probability
distribution Pt and so on have been computed – even if it has not been specified
explicitly – at fixed volume VA, VB. Hence, let us first shed light on the volume
dependence of the transition rates π(ρ′A|ρA) involved in the master equation ruling the
dynamics of the densities (2.17). We will also take advantage of this clarification to
write properly the explicit system B dependence of the quantities at stake.

π(ρ′A|ρA) corresponds to the transition rates associated with the following transition

ρA = NA

VA
→ ρ′A = NA + ∆NA

VA
(2.20)

ρB = NB

VB
→ ρ′B = NB −∆NA

VB
.

In all this work we will naturally assume that the number of particles that can be
exchanged per unit time (during a transition) is bounded and does not scale with the
volume of the system. We will then call

π(ρ′A|ρA) ≡ ν(V )ϕV (ρA, ρB; ∆NA) (2.21)

where we have explicitly introduced the ρB dependence as well as the volume V which
refers to the potential volume dependence of the transition rate (according to notations
introduced before, VA = γAV and VB = γBV , with γA, γB that are hidden since they
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2.3. Large deviations analysis of the density dynamics

are kept finite at the thermodynamic limit). The V -dependence of the transition rate
is potentially twofold. The first contribution, encoded in the factor ν(V ) corresponds
to the contact area and how it grows as V → ∞. The second which will have to be
considered case by case may appear through the stationary probability distribution
Pk(Ck|ρk) (k = A,B) as a possible finite-size effect. If the number of sites that connect
both systems is fixed, then ϕV is not proportional to V and ν(V ) = ν. The remaining
V -dependence in ϕV is expected to vanish as V → ∞ so that limV→∞ ϕV exists. In
this case, the dynamics in large system size is slower than the one at small system size:
this V dependence will have to be absorbed in the time scale. However, if the contact
area grows with volumes, the frequency factor ν(V ) is expected to be proportional to
V α, α 6 1 (for instance, if the contact is proportional to the external surface, α = d/2,
d being the space dimension), in addition to potential finite-size contributions. This
V dependence will be discussed explicitly with specific systems in chapter 4 but we
make the assumption here that beyond the factor ν(V ), limV→∞ ϕV is well defined.

2.3.2 Evolution equation of the large deviations function of
densities

The study of thermodynamic limit V → ∞ for a jump stochastic processes might
remind one of the so-called expansion of the Master equation popularised by Van
Kampen in his seminal book [Van Kampen, 1992]. Nevertheless, as stressed in the
introduction, a thermodynamic analysis based on stochastic dynamics needs large de-
viations analysis that is not captured by the Van Kampen expansion (at least if one
stops the expansion at a finite order). Even if we are not interested in rare events per
se, the large deviations framework is the relevant one to study the dominant extensive
contribution to the probability distribution of density ρA (and ρB), exactly as it is for
the equilibrium statistical mechanics (see for instance [Touchette, 2009]). One should
note that this large deviations analysis, on the same kind of Master equations con-
sidered by Van Kampen, was first considered – with a somewhat different emphasis –
in [Kubo et al., 1973] (see also [Maes and Netočný, 2007]). Also, even if the work
presented here as been developed independently, we should mention the recent study
of Ge & Qian [Ge and Qian, 2017] which deals with the same kind of large deviations
analysis in the context of chemical reactions.

The simplest way (even though not rigorous) to look at a large deviations scaling
is to introduce the large deviations ansatz directly in the master equation (2.17). To
treat systems A and B on the same footing, we introduce

Pt(ρA|ρ̄) = Pt(ρA, ρB|ρ̄) � e−V It(ρA,ρB |ρ̄) , (2.22)
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where � refers to a logarithmic equivalence3 for large V = VA + VB. It yields

V
dIt
dt (ρA, ρB|ρ̄)

= ν(V )
∑

∆NA
ϕV (ρA, ρB; ∆NA)

[
exp

{
∆NA

(
γ−1
A

∂It
∂ρA
− γ−1

B

∂It
∂ρB

)}
− 1

]

+O(V −1)

After re-scaling the time t into ν(V )V −1t, one obtains at the lowest order in V the
following equation over It:

dIt
dt (ρA, ρB|ρ̄) =

∑
∆NA

ϕ(ρA, ρB; ∆NA)
[
exp

{
∆NA

(
γ−1
A

∂It
∂ρA
− γ−1

B

∂It
∂ρB

)}
− 1

]
,

(2.23)
with ϕ = limV→∞ ϕV . The latter equation generally bears the name of a Hamilton-
Jacobi equation by analogy to the classical mechanics since the stationary large devi-
ations function I(ρA, ρB|ρ̄) can be interpreted as the weight (also called action) of the
most probable trajectory {ρA(s), ρB(s)}s=ts=0 starting at the stationary point (ρ∗A, ρ∗B) of
the dynamics and ending at the desired point (ρA, ρB) at time t. We will briefly come
back to this kind of trajectory/path analysis in the following (see section 2.4.4) but
one can as of now consult [Maes and Netočný, 2007] for a short presentation.

The large deviations function allows one to have access to rare events i.e. to
deviations of densities of order O(V 0). But it can also be seen as an extension of
the law of large numbers as it gives the rate at which the stochastic variable ρA

approaches its average (or formally, in other words, how the probability distribution
P (ρA|ρ̄) contracts into a Dirac measure centred around the average density). One
can thus use it to characterise also the stationary state in a variational way since
by definition the stationary state belongs to the set of the most probable values of
the densities. According to (2.22), the latter can be seen as the set of points which
correspond to minima of the large deviations function I(ρA, ρB|ρ̄). In the absence of
first order phase transition, the large deviations function I is expected to be convex
and to display only a single minimum characterised by the vanishing of the derivative
of I [Ellis, 2007; Touchette, 2009].

Eventually, we mention that the derivation of the Hamilton-Jacobi equation for
more than two systems in contact is available in appendix B.

Notation: implicit ρB dependence. The introduction at this point of the explicit
ρB-dependence allows one to see more clearly the dependence in the relative sizes of
the systems as well as the parallel with the situation at equilibrium that we remind one

3Precisely, It = limV→∞ ln(Pt)/V .
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2.3. Large deviations analysis of the density dynamics

of here very briefly. Indeed, at equilibrium, the large deviations function I is closely
linked to the free energies of both systems, up to a temperature factor β, as already
discussed in the general introduction (see equation (1.4)). One has

Ieq(ρA, ρB|ρ̄) = βγA [fA(ρA)− fA(ρ∗A)] + βγB [fB(ρB)− fB(ρ∗B)] , (2.24)

where fk refers to the equilibrium free energies per unit of volume of system k and
ρ∗k the most probable density of system k (which corresponds to the average density).
The most probable densities are fixed by the vanishing of the derivative of I which
reads f ′A(ρ∗A) = f ′B(ρ∗B) (or, in other words, that chemical potentials defined as the
derivative of the free energies, are equal).

Nevertheless, in order to lighten notations, we will come back from now on to our
former convention and omit the ρB dependence – which will be implicitly assumed
through mass conservation – and simply write

It(ρA|ρ̄) = γ−1
A It(ρA, ρB|ρ̄) (2.25)

This implies
I ′t(ρA|ρ̄) = γ−1

A

∂It
∂ρA
− γ−1

B

∂It
∂ρB

, (2.26)

where the ′ symbol indicates a derivative with respect to ρA. In this way,

Pt(ρA|ρ̄) � e−VAIt(ρA|ρ̄) . (2.27)

With this new notation, the Hamilton-Jacobi equation (2.23) simply reads

dIt
dt (ρA|ρ̄) =

∑
∆NA 6=0

ϕ(ρA; ∆NA)
[
e∆NAI′t(ρA|ρ̄) − 1

]
. (2.28)

The stationary solution I = limt→∞ It thus obeys

∑
∆NA 6=0

ϕ(ρA; ∆NA)
[
e∆NAI′(ρA|ρ̄) − 1

]
= 0 . (2.29)

This translation being made, we will come back to the explicit notation I(ρA, ρB|ρ̄)
each time we will need to take into account the explicit dependence in system B.

2.3.3 Stationary state: link between the vanishing of I(ρA|ρ̄)
and the current J(ρA)

One can wonder naturally why we have not mentioned the current of particles until
now. Indeed, the stationary state of the system at the average level is very natu-
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Chapter 2. General framework: contact in the thermodynamic limit

rally defined by the vanishing of the particle current J(ρ∗A) = 0 through the contact.
The latter deterministic current is defined in the infinite volume limit through the
deterministic relaxation equation of the density ρA (see [Van Kampen, 1992, chapter
X])

dρA(t)
dt = J(ρA(t)) =

∑
∆NA

ϕ(ρA,∆NA) ∆NA . (2.30)

Of course, the description of the stationary state as the minimum of a large deviations
function ρ∗A must agree with the vanishing of the current at the same density ρ∗A.
Formally, one must have

I ′(ρ∗A|ρ̄) = 0 ⇐⇒ J(ρ∗A) = 0

This relationship is known for a long time (see [Ge and Qian, 2017] for a recent account)
but we show it here succintly for completness. To prove this equivalence, we can use
the stationary Hamilton-Jacobi equation (2.29) evaluated along the deterministic path
obeying (2.30). Indeed, for ρA(t) solution of (2.30), one has

dI(ρA(t)|ρ̄)
dt = J(ρA(t))I ′(ρA(t)|ρ̄) (2.31)

=
∑

∆NA 6=0
ϕ(ρA(t),∆NA)∆NAI

′(ρA(t)|ρ̄) .

One should stress that I(ρA(t)) 6= It(ρA) here. I(ρA) is the stationary large deviations
function, solution of (2.29). But since the inequality ex − 1 > x holds for all x with
equality only when x = 0, ∆NAI

′(ρA(t)|ρ̄) 6 e∆NAI′(ρA(t)|ρ̄) − 1, the last equality in
(2.31) yields

dI(ρA(t)|ρ̄)
dt 6

∑
∆NA

ϕ(ρA(t),∆NA)
(
e∆NAI′(ρA(t)|ρ̄) − 1

)
= 0 (2.32)

since the last term is the left-hand side term of the Hamilton-Jacobi equation (2.29). As
a corollary, we have demonstrated that the stationary large deviations function I(ρA|ρ̄)
plays the role of a Lyapunov function for the macroscopic dynamics. The equality
stands if and only if I ′(ρA(t)|ρ̄) = 0. Thus, if J(ρA) = 0 then dI(ρA(t)|ρ̄)/dt = 0 and
the system is at the minimum of I characterised by I ′ = 0.

Conversely, taking the derivative with respect to ρA of the stationary Hamilton-
Jacobi equation (2.29) leads to

0 =
∑

∆NA

dϕ
dρA

(ρA,∆NA)
(
e∆NAI′(ρA|ρ̄) − 1

)
+ I ′′(ρA|ρ̄)

∑
∆NA

ϕ(ρA,∆NA) ∆NA e
∆NAI′(ρA|ρ̄) . (2.33)
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At the stationary point ρ∗A for which I ′(ρ∗A|ρ̄) = 0, the last equation reads

J(ρ∗A)I ′′(ρ∗A) = 0 (2.34)

Then, if I ′′(ρ∗A|ρ̄) 6= 0, one sees that I ′(ρ∗A|ρ̄) = 0 implies that J(ρ∗A) = 0. We recognise
here a stability condition needed to assert the vanishing of the current. In fact, one
even needs I ′′ > 0 in order to guarantee the convexity of the stationary large deviations
function.

Our purpose in the remaining part of this chapter and in the next one is to study the
stationary properties of our contact set-up through this large deviations rate function
I = limt→∞ It. A central issue that will be the core of the second chapter is to know
when the large deviations function I is additive as in the equilibrium situation (2.24)
and if this allows one to define proper chemical potentials. The remaining part of the
present chapter is devoted to the different available ways to solve the Hamilton-Jacobi
equation (2.29) and then to obtain the stationary large deviations function I(ρA|ρ̄)
that enables one to predict the stationary densities as well as their fluctuations when
the volume is large but not infinite.

2.4 Macroscopic detailed balance

2.4.1 Formal approach

To start at a formal level, one can notice that the Hamilton-Jacobi equation (2.29)
can be easily solved if each term under the rearranged sum cancels one by one for any
ρA:

∑
∆NA 6=0

ϕ(ρA,∆NA)
[
e∆NAI′(ρA|ρ̄) − 1

]
=

∑
∆NA 6=0

[
ϕ(ρA,∆NA)e∆NAI′(ρA|ρ̄) − ϕ(ρA,−∆NA)

]
︸ ︷︷ ︸

=0 if detailed balance

= 0 .

One gets a generalised detailed balance condition, that we will callmacroscopic detailed
balance in the following. It reads

I ′(ρA|ρ̄) = 1
∆NA

ln ϕ(ρA,−∆NA)
ϕ(ρA,∆NA) . (2.35)

Importantly, one can note that for most lattice gas models – that deal with the
dynamics of particles on lattice in continuous time – (and potentially more realistic
systems) only one particle can be exchanged per unit time. Thus ∆NA = ±1 at most
and one can easily check that the macroscopic detailed balance condition is always
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Chapter 2. General framework: contact in the thermodynamic limit

verified. However, for more general situations where max(∆NA) ≥ 2 (or even when
∆NA is continuous), this condition is not at all guaranteed. In the remaining part of
this section we discuss on a physical ground how one can see whether this condition
holds or not.

In subsections 2.4.2, 2.4.3 and 2.4.4, our purpose is to discuss what this condition
means at a more physical level. We will in particular suggest experimental way to see
whether it does hold or not.

2.4.2 Time-reversal symmetry and adjoint process

Without surprise, one can easily see that this macroscopic detailed balance condition
is reminiscent of a global time-reversal symmetry. Indeed, the usual detailed balance
is another way to name the equality, for all trajectories, of the probability to observe
a certain trajectory with the probability to observe the exact time-reversed trajectory.
In particular, the time-reversal symmetry for a two-time infinitesimal trajectory (on
the time interval [t, t+ dt]) of the density ρA(t) reads

P (ρ′A, t+ dt; ρA, t) = P (ρA, t+ dt; ρ′A, t) (2.36)
π(ρ′A|ρA)P (ρA|ρ̄) = π(ρA|ρ′A)P (ρ′A|ρ̄) .

Thus, if P (ρA|ρ̄) ∼ e−VAI(ρA|ρ̄), and recalling that ρ′A = ρA + ∆NA/VA, one gets at
leading order in VA the macroscopic detailed balance (2.35).

Now that the importance of this time-reversal symmetry has been recognised, we
would like to investigate in more details the structure of the coarse-grained transition
rates as well as some of its consequences, in particular fluctuations and relaxation
paths (that will be defined henceforth). Several new notations will be introduced in
the following.

In order to analyse the time-reversibility of the dynamics and its consequences on
the large deviations function, it is helpful to introduce what one can call the corre-
sponding adjoint process. Writing ω = {ρA(t)}0≤t≤T a trajectory, Rω = {ρA(T −
t)}0≤t≤T its time-reversed counterpart and PP (ω) the probability density to observe
the trajectory ω along the bare process with the stationary distribution P (ρA|ρ̄) as the
initial distribution, the adjoint process can be characterised by its trajectory proba-
bility density P†P (ω) which is defined to be

P†P (ω) = PP (Rω) . (2.37)

Thus, this new stochastic process is simply built from the sampling of the time-
reversed trajectory of the bare process. By definition, the dynamics is time-reversible
if P†P (ω) = PP (ω), i.e. if the adjoint and the bare process are the same. The intro-
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2.4. Macroscopic detailed balance

duction of the adjoint process may appear quite formal but the reader can just see it
as a way to compare the probability of trajectories with respect to their time-reversed
counterparts.

For a two-time trajectory, equation (2.37) gives

ϕ†V (ρA,∆NA) = ϕV (ρA + ∆NA
VA

,−∆NA)×
P (ρA + ∆NA

VA
|ρ̄)

P (ρA|ρ̄) .

The adjoint process is defined by the transition rates ϕ†V given by equation (2.38) and
has the same stationary distribution as the bare process.

That being said, it is simpler to discuss the meaning of the adjoint process and to
express the macroscopic detailed balance condition by decomposing transition rates in
terms of force and activity [Maes et al., 2008; Maes and Netočný, 2008]. Furthermore,
this decomposition will be extensively used in the next chapter, when we will discuss
the second law 3.3

2.4.3 Analysis in terms of force and activity

Each transition rate ϕV (ρA,∆NA) can indeed be decomposed as

ϕV (ρA,∆NA) = aV (ρA,∆NA)e
1
2FV (ρA,∆NA) (2.38)

where

FV (ρA,∆NA) = ln ϕV (ρA,∆NA)
ϕV (ρA + ∆NA

VA
,−∆NA)

(2.39)

aV (ρA,∆NA) =
√
ϕV (ρA,∆NA)ϕV (ρA + ∆NA

VA
,−∆NA) .

FV (ρA,∆NA) is interpreted as a bias or a generalised force and is anti-symmetric with
respect to the transition ρA → ρA+∆NA/VA: FV (ρA,∆NA) = −FV (ρA+ ∆NA

VA
,−∆NA).

As for aV (ρA,∆NA) = aV (ρA+ ∆NA
VA

,−∆NA), it is generally refered as an activity. One
should stress that this decomposition is just a more physical – and practical – rewriting
of the coarse-grained transition rates ϕV and has nothing to do with the adjoint process
for the moment.

In the thermodynamic limit, when V →∞, expressions converge in

F (ρA,∆NA) = ln ϕ(ρA,∆NA)
ϕ(ρA,−∆NA) = −F (ρA,−∆NA) (2.40)

a(ρA,∆NA) =
√
ϕ(ρA,∆NA)ϕ(ρA,−∆NA) = a(ρA,−∆NA) .

The exact same decomposition can be done on the adjoint process defined by its
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Chapter 2. General framework: contact in the thermodynamic limit

transition rates π†V . Comparing πV and π†V , one verifies that

F †V (ρA,∆NA) = −FV (ρA,∆NA) + 2 ln
P (ρA + ∆NA

VA
)

P (ρA) (2.41)

a†V (ρA,∆NA) = aV (ρA,∆NA) ,

which, at large deviations level, leads to

F †(ρA,∆NA) = −F (ρA,∆NA)− 2I ′(ρA|ρ̄) (2.42)
a†(ρA,∆NA) = a(ρA,∆NA) ,

One can thus see the interest of all this rewriting of transition rates. Now, the asym-
metry between the bare and the adjoint processes can be simply measured through
the difference between FV and F †V . To measure their distance, it is thus interesting to
introduce a symmetric and an anti-symmetric forces

F
(S)
V (ρA,∆NA) = FV (ρA,∆NA) + F †V (ρA,∆NA)

2 = ln
P (ρA + ∆NA

VA
)

P (ρA) (2.43)

−−−→
V→∞

F (S)(ρA,∆NA) = −I ′(ρA|ρ̄)∆NA

F
(A)
V (ρA,∆NA) = FV (ρA,∆NA)− F †V (ρA,∆NA)

2

= FV (ρA,∆NA)− ln
P (ρA + ∆NA

VA
)

P (ρA)
−−−→
V→∞

F (A)(ρA,∆NA) = F (ρA,∆NA) + I ′(ρA|ρ̄)∆NA .

This kind of decomposition are not new in the literature. What has been expounded
above was in fact inspired by [Kurchan, 1998] or more recently by [Bertini et al., 2015a]
in the context of the Macroscopic Fluctuation Theory which deals with the diffusive
dynamics of a conserved field quantity. It is sometimes referred to as the transverse
decomposition in the context of small noise limit of diffusive systems [Bouchet et al.,
2016; Graham, 1995]. Nevertheless, to the knowledge of the author, this decomposition
in terms of symmetric and anti-symmetric forces is more original in the context of large
deviations of Poisson processes. One should however note the very recent work of [Jack
et al., 2017; Kaiser et al., 2018] which discusses a very similar decomposition in the
context of Markov chains, even though with a different emphasis.

Interpretation of the macroscopic detailed balance in terms of force. Along
with this definitions, one can notice that the formal macroscopic detailed balance
(2.35) turns into F (A)(ρA,∆NA) = 0, since, by definition of F (ρA,∆NA) (2.40), the
macroscopic detailed balance (2.35) reads I ′(ρA|ρ̄)∆NA = −F (ρA,∆NA). In this case,
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2.4. Macroscopic detailed balance

the derivative of the large deviations function of the densities simply reads I ′(ρA) =
−∆N−1

A F (ρA,∆NA).
Until now, we just have recognised that the formal detailed balance condition (2.35)

was simply the translation at a large deviations level of a time-reversal symmetry of the
underlying process. As a consequence, we have introduced – in line with the studies
on macroscopic fluctuation theory [Bertini et al., 2015a] – an equivalent but more
physical decomposition of transition rates, more suitable to express the macroscopic
detailed balance condition. As we will see, the above formulation will be useful for the
thermodynamic investigations that will be performed in the next chapter.

However, until now, the only way one has to see if macroscopic detailed balance
holds is to check directly, knowing the form of the transition rates ϕ(ρA,∆NA), if
−∆N−1

A F (ρA,∆NA) is independent of ∆NA and if the resulting function of ρA is a
well-defined derivative of a large deviations function I (it should always increase to get
a convex large deviations function I for instance). Since the measure of the transition
rates is not easy in realistic systems, we would like to lay out in the following another
way to assess the macroscopic detailed balance applicable at large deviations level.

2.4.4 Large deviations analysis of density trajectories

When the volumes increase, fluctuations of the densities are naturally tightened. If
one starts at a density ρA(0) = ρA 6= ρ∗A (ρ∗A being the most probable density) and lets
the system evolves for a time t, it turns out that the probability to observe a certain
trajectory ending at ρA(t) = ρ∗A condenses around the most probable trajectory which
simply follows the deterministic relaxation dynamics. By contrast, the time-reversed
trajectory starting at the most probable density ρ∗A and ending at a point ρA can
only be realised at the expense of a noise contribution. However its probability to
be observed condenses as well around a certain trajectory which follows a so-called
fluctuation dynamics (see for instance the introduction of [Bouchet et al., 2016]). When
detailed balance holds, it will be shown in the following that both – relaxation and
fluctuation – most probable trajectories are the same, albeit travelling in opposite
direction. Conversely, when macroscopic detailed balance is broken, both trajectories
differ.

Although it may be delicate to measure such fluctuation path in realistic systems
(since such fluctuations are rare at the thermodynamic limit), such an effect can be
considered as a signature of the breaking of detailed balance that can probably be
more easily observed than the non-linearity in the amount of particle exchanged in the
force (2.40).

The probability density PρA(ω) of a trajectory starting at a density ρA can be
written in the form of a Martin-Siggia-Rose-Janssen-De Dominicis (MSRJD) path
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integral (see [De Dominicis, 1978; Janssen, 1976] in the context of diffusive systems).
Path integrals for Poisson processes have often been considered in line with the Doi-
Peliti formalism [Peliti, 1985; Weber and Frey, 2017]. We do not want to enter into
these discussions here and we will adopt a formal approach advocated in [Andreanov
et al., 2006; Lefevre and Biroli, 2007; Thompson et al., 2011] for Poisson processes
(with the slight difference that ours is treated at large deviations level):

PρA(ω) �
∫
Dθ e

−VA
t∫

0
ds [θ(s)ρ̇A(s)−H(ρA(s),θ(s))]

, (2.44)

where
H(ρA, θ) =

∑
∆NA

ϕ(ρA,∆NA)
(
eθ∆NA − 1

)
. (2.45)

The term S(ω) =
∫ t

0 ds [θ(s)ρ̇A(s)−H(ρA(s), θ(s))] in the exponential in (2.44) is
generally referred to as the action of the path ω in the statistical physics literature
[Andreanov et al., 2006; Bouchet et al., 2016; Cardy, 1999; Freidlin and Wentzell, 1998;
Lefevre and Biroli, 2007; Peliti, 1985], by analogy with analytical mechanics and with
its use in Feynman’s quantum path integral. Pursuing the mechanical analogy, the
function H refers to the Hamiltonian of the stochastic process [Andreanov et al., 2006;
Lefevre and Biroli, 2007]. The presence of an exponential of the response function
θ(s) in the action is a signature of the underlying Poisson process. By contrast, the
classical gaussian noise path integral related to diffusive processes only involves terms
up to quadratic order in the response function θ(s).

Let us now consider the probability to reach a density ρ′A at large time t, knowing
that one starts at ρA at time 0. This conditional probability reads

P (ρ′A, t|ρA, 0) =
∫
DρAPρA(ω)δ (ω(t)− ρ′A) . (2.46)

At the thermodynamic limit, only trajectories following the so-called instanton equa-
tions (which minimise the action) matters at the leading order in the volume V [Bertini
et al., 2015a; Bouchet et al., 2016; Freidlin and Wentzell, 1998; Tailleur et al., 2007,
2008]. They are formally the same as the Hamilton equations and read

dρA
dt = ∂H(ρA(t), θ(t))

∂θ
(2.47)

=
∑

∆NA
∆NAϕ(ρA(t),∆NA)eθ(t)∆NA

dθ
dt = −∂H(ρA(t), θ(t))

∂ρA
(2.48)

=
∑

∆NA

∂ϕ(ρA(t),∆NA)
∂ρA

(
eθ(t)∆NA − 1

)
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which must be supplemented by appropriate boundary conditions, ρA at time 0 and
ρ′A at time t. If the final point ρ′A is equal to the most probable one ρ∗A and the
initial density ρA is a less probable density, one can show that the associated instanton
trajectory is simply a relaxation dynamics for which the response field θ(t) is uniformly
vanishing. Intuitively, θ(s) can be interpreted as a deterministic force that skews the
dynamics4 in order to make the targeted trajectory the most probable in this biased
dynamics whereas this trajectory may be rare in the natural, unbiased, dynamics. So
to speak, the presence of θ(t) indicates the need of a work from the noise (physically
performed by a thermostat) to explore the targeted region in phase space. With
this interpretation in mind, one can understand quite intuitively that the relaxation
dynamics (which does not need noise in a sense) is realised for θ(t) = 0.

In the opposite case, to realise the time-reversed path that leads to ρA 6= ρ∗A starting
from the stationary state of the system (i.e. the most probable density ρ∗A), the system
needs work (or rather heat) from the noise. Since this trajectory starts at the final
point and ends at the initial point of a relaxation dynamics, it should belong to the
set of time-reversed trajectories that realise the relaxation. The latter trajectories
correspond to those of the adjoint dynamics and it can be shown [Bertini et al., 2015a;
Bouchet et al., 2016] that the most probable trajectory that connects ρ∗A to ρA matches
the most probable trajectory of the adjoint dynamics which corresponds to the bare
dynamics biased by θ(t) = I ′(ρA|ρ̄) for all t.

According to the Hamilton equations (2.47), the relaxation dynamics thus reads

dρA
dt (t) = J(ρA(t)) = ∂H

∂θ
(ρA(t), 0) (2.49)

=
∑

∆NA
∆NAϕ(ρA(t),∆NA) ,

with ρA(0) = ρA 6= ρ∗A and ρA(t) = ρ∗A. As for the fluctuation dynamics, it obeys the
equation

dρA
dt (t) = J†(ρA(t)) = ∂H

∂θ
(ρA(t), I ′(ρA)) (2.50)

=
∑

∆NA
∆NAϕ

†(ρA(t),∆NA) ,

with ρA(0) = ρ∗A and ρA(t) = ρA 6= ρ∗A.
If macroscopic detailed balance holds, J = J† and one can see that the relaxation

path and the fluctuation path are the same, modulo time-reversal. However, when
they are different, i.e. when macroscopic detailed balance does not hold, the paths
are different. Even if the observation of such fluctuations is certainly difficult in real
experiment, this symmetry – or its absence – should be observed if resolution and data

4Formally it is a Lagrange multiplier.
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amount are sufficient enough. As shown in the appendix A, the current can be also
expressed in terms of symmetric and anti-symmetric forces. The vanishing of F (A)

leads to the equalisation of J and J†.

Summary of the conditions to get the macroscopic detailed balance. The
macroscopic detailed balance condition (2.35) is thus related to the time-reversibility
of the dynamics at a large deviations level. Such time-reversibility can be observed
theoretically and, possibly experimentally, at several equivalent but different levels

• The vanishing of the anti-symmetric force of the coarse-grained transition rates5:
F (A) = 0.

• The time-reversal symmetry of the relaxation and the fluctuation paths dynam-
ics.

2.4.5 Relationship with microscopic detailed balance

As already mentioned at the end of section 2.2, one should notice that the macroscopic
detailed balance relation can a priori hold without requiring that the microscopic,
local, detailed balance holds as well. Indeed, the ratio between the probability to
observe a transition C = (CA, CB) → C ′ = (C ′A, C ′B) involving an exchange of particle
between A and B, and its time-reversal counterpart reads

lim
dt→0

P (C ′, t+ dt; C, t)
P (C, t+ dt; C ′, t) = P (C)Tc(C ′|C)

P (C ′)Tc(C|C ′)
6= 1 (2.51)

since P (C) 6= Peq(C) in general.
Of course, if the probabilities to observe microscopic transitions involving a positive

transfer of particles from A to B is always greater than those to transfer of particles
from B to A, and such that this is the case for any densities allowed by the constraints
(hard repulsion between particles for instance), it will happen a net transfer from A to
B until the system reaches the bound enforced by the constraints, if any. Otherwise,
even with a net circulation (i.e. a non-vanishing current) between the microscopic
configurations at contact, it is perfectly possible to obtain a balance of densities

These remarks are here to emphasise that microscopic and macroscopic detailed
balance are only partially related and that the first can be broken without breaking
the second. A detailed study of these loops of configurations should be performed in
order to assess if indeed a macroscopic detailed balance holds or not but it seems to
be very difficult to establish a general result, for a general contact dynamics. The only
statement that can be certain is the propagation of microscopic detailed balance to
the macroscopic level: this is nothing but the equilibrium situation.

5It is shown in appendix A that F (A) is related to the so-called house-keeping entropy production.

36



2.5. Breaking of macroscopic detailed balance: perturbation expansion

2.5 Breaking of macroscopic detailed balance: per-
turbation expansion

When macroscopic detailed balance does not hold, one has to come back to the com-
plete Hamilton-Jacobi equation (2.29) whose solution is I(ρA|ρ̄). In our setting we are
focused on exchanges of particles, that is a discrete quantity. One has seen in sec-
tion 2.4 that when only one particle can be exchanged, the dynamics necessary obeys
macroscopic detailed balance. But if one can exchange more than one particle at a
time by some participation mechanism at contact, macroscopic detailed balance may
not hold. This is also the case when the exchanged (conserved) quantity is continuous,
like volume for instance. We will see explicit examples in chapter 4.

For convenience, we use in this section the Hamilton-Jacobi equation formulated in
terms of forces and activity (see section 2.4.3 and equation (2.55) below). In the case
where one can only exchange two particles at most (∆NA = ±1, ±2), the Hamilton-
Jacobi equation is a polynomial equation in eI′(ρA|ρ̄) of order 4 whose solution is already
not simple. Beyond, for more than two particles exchanged and generally for a contin-
uous quantity, there is no general way to solve exactly the Hamilton-Jacobi equation.
One must then perform a perturbation expansion around some known reference solu-
tion, generally taken to be a solution verifying macroscopic detailed balance. Such a
detailed balance solution always exists, at least in our set up: the equilibrium situation
plays this role.

2.5.1 Perturbative expansion

Our following perturbation expansion is greatly inspired by a discussion performed –
with much more details – for diffusive systems in the weak noise limit in the recent
article [Bouchet et al., 2016]. Our rigour requirements are much weaker and we will
stay at a formal level. More details that are directly importable from the diffusive
framework can be found in this article [Bouchet et al., 2016].

We start with a description of our notations. We call ξ the parameter which
characterises the “distance” between the solution I(DB)(ρA) = I(0)(ρA) (we omit the
ρ̄-dependence here, to lighten notations) that verifies the macroscopic detailed balance
and the one we are looking for, I(ρA). We set

I(ρA) =
∑
n>0

ξn I(n)(ρA) (2.52)

F (ρA,∆NA) =
∑
n>0

ξn F (n)(ρA,∆NA) (2.53)

a(ρA,∆NA) =
∑
n>0

ξn a(n)(ρA,∆NA) (2.54)
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where F (0)(ρA,∆NA) = −∆NAI
′(ρA) according to macroscopic detailed balance.

Since we would like to perform this perturbation expansion in terms of F , a and
I(ρA) – which happens to be easier to handle –, we write here the Hamilton-Jacobi
equation (2.23) in terms of the latter quantities:

∑
∆NA>0

sinh (I ′(ρA)∆NA) a(ρA,∆NA) sinh (F (ρA,∆NA) + I ′(ρA)∆NA) = 0 . (2.55)

Performing the expansion order by order gives

• O(ξ0):
I(0) ′(ρA) = − 1

∆NA

F (0)(ρA,∆NA) = F (0)(ρA,−1) , (2.56)

according to detailed balance.

• O(ξ1):

I(1) ′(ρA)J (0)(ρA) (2.57)
= −

∑
∆NA>0

a(0)(ρA,∆NA) sinh
(
I(0) ′(ρA)∆NA

)
F (1)(ρA,∆NA) ,

with J (0)(ρA) = 2∑∆NA ∆NA a
(0)(ρA,∆NA) sinh(F (0)(ρA,∆NA)), the macroscopic

current of the dynamics at order O(ξ0).

• O(ξ2):

I(2) ′(ρA)J (0)(ρA) = (2.58)
−
∑

∆NA>0
a(0)(ρA,∆NA) sinh

(
I(0) ′(ρA)∆NA

)
F (2)(ρA,∆NA)

−
∑

∆NA>0

(
F (1)(ρA,∆NA) + I(1) ′(ρA)∆NA

)
×
[
a(0)(ρA,∆NA) cosh

(
I(0) ′(ρA)∆NA

)
I(1) ′(ρA)∆NA

+a(1)(ρA,∆NA) sinh
(
I(0) ′∆NA

)]

• O(ξ3): . . .

One notices that the perturbation expansion expresses itself as

I(k) ′(ρA)J (0)(ρA) = F (k)
[
I(0), I(1), . . . , I(k−1)

]
(ρA(t)) k > 1 . (2.59)

which allows one to compute I(k) iteratively by integrating I(k) ′ along the fluctuation
paths of the reference dynamics (for ξ = 0) since

dI(k)(ρA(t)) = I(k) ′(ρA(t))J† (0)(ρA(t))dt
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2.5. Breaking of macroscopic detailed balance: perturbation expansion

for ρA(t) a solution of ρ̇A = J† (0)(ρA(t)) and because J† (0)(ρA) = J (0)(ρA) when
detailed balance holds. Performing the integration along the fluctuating path starting
from the stationary point ρ∗ (0)

A at t = 0 of the reference dynamics and ending at a
point ρA at t→∞, one obtains

I(k)(ρA) = C(k) +
∞∫
0

dt F (k)
[
I(0), . . . , I(k−1)

]
(ρA(t)) , (2.60)

where C(k) = I(k)(ρ∗ (0)
A ) is an unknown constant to be determined. A simple way to

compute this constant is to remember that the stationary point ρ∗ (ξ)
A of the perturbed

dynamics verifies I(ξ)(ρ∗ (ξ)
A ) = 0. The stationary point ρ∗ (ξ)

A itself can be computed by
looking for the stationary solution of the macroscopic dynamics

J (ξ)(ρ∗ (ξ)
A ) = 0 , (2.61)

which allows one to look for ρ∗ (ξ)
A as ρ∗ (ξ)

A = ∑
n>0 ξ

nρ
∗ (n)
A . Then, Taylor expanding

I(ξ)(ρ∗ (ξ)
A ) = 0 allows us to express C(k) = I(k)

SS (ρ∗ (0)
A ) as function of ρ∗ (0)

A , the coeffi-
cients ρ∗ (n)

A of the Taylor expansion of ρ∗ (ξ)
A , the functions I(n)(ρA) and their derivatives

for n < k.

2.5.2 Conclusion on this perturbation expansion

Such formal expansion have been sketched here to show how one can try to solve the
general Hamilton-Jacobi equation in case of the dynamics of the density ρA would not
obey detailed balance. We will use the first order of this expansion in chapter 3 when
we will discuss the additivity property of the large deviations function I when the
latter does not verify macroscopic detailed balance.

39



Chapter 2. General framework: contact in the thermodynamic limit

40



CHAPTER 3

Additivity property of the large deviations
function

The purpose of this whole chapter is to address the issue of the additivity of the
large deviations function I(ρA|ρ̄) defined in the chapter 2 for two systems in contact.
This additivity condition is very reminiscent to the additivity of the free energy for
equilibrium systems interacting through short-ranged potential, reminded in equation
(2.24). It reads

I(ρA, ρB|ρ̄) ≡ γAI(ρA|ρ̄) = γAIA(ρA) + γBIB(ρB) (3.1)

where ρB = γ−1
B (ρ − γAρA). If such additivity condition holds, the derivative of the

large deviations function reads

I ′(ρA|ρ̄) = I ′A(ρA)− I ′B(ρB) , (3.2)

and the steady-state densities ρ∗A and ρ∗B satisfies I ′A(ρ∗A) = I ′B(ρ∗B). Hence it offers
the possibility to attach to each system a quantity, I ′k(ρk) (k = A ,B) – rather noted
µk(ρk) henceforth – that will be called generalised chemical potential at contact.

Contrary to what one may think intuitively in the vanishing exchange rate limit
at contact, it is not always guaranteed that this condition holds in any circumstances.
Besides, even when it holds we will see that the so-called generalised chemical potential
I ′k(ρk) strongly depends on local properties at contact and thus cannot be utterly
associated with the isolated systems (in other words, the present chemical potentials
do not verify any bulk equation of state). We thus confirm and significantly extend
preliminary results obtained by S.-I. Sasa, K. Hayashi and H. Tasaki [Hayashi and
Sasa, 2003; Sasa and Tasaki, 2006] on the KLS model, although the latter was not
recognised as resulting from a large deviations analysis.
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Chapter 3. Additivity property of the large deviations function

On another hand, we explore the thermodynamic meaning of this large deviations
function (being additive or not). In particular, we show that for a certain class of
transition rates, the large deviations function I verifies a second law with respect to
the work supplied by uniform external potentials applied on each systems A and B.
Here again, our derivation, albeit – up to our knowledge – original in this context, is
greatly inspired by the work of [Bertini et al., 2015a,b, 2012, 2013]. We then discuss
the particular case when one of the system, say B, is very large compared to the
other and plays the role of a reservoir. Eventually, we close this chapter by discussing
different possible experimental ways to measure this large deviations function, at least
for a certain range of densities.

The two first sections of this chapter have been subject to a recently published
letter [Guioth and Bertin, 2018].

3.1 Additive case

First, we identify sufficient conditions in order for the large deviations function I(ρA|ρ̄)
to be additive. Then, assuming that the additivity condition holds, we discuss expres-
sions and properties of the chemical potentials thus defined. In particular, we make
connection with chemical potentials of isolated systems and discuss the zeroth law of
thermodynamics.

3.1.1 Chemical potential of systems in contact

Factorisation condition of the contact dynamics

When macroscopic detailed balance (2.35) holds, the additivity property of the large
deviations function I(ρA|ρ̄) should be directly related to the coarse-grained transition
rates ϕ. It appears as a matter of fact that if each transition rate factorises as

ϕ(ρA,∆NA) = ν0φA(ρA,∆NA)φB(ρB,∆NB) (3.3)

with ∆NB = −∆NA and ν0 an arbitrary common frequency scale, the macroscopic
detailed balance (2.35) enables one to split the derivative of the large deviations func-
tion into two contributions that respectively depend on each systems k = A, B. It
reads

I ′(ρA|ρ̄) = µcont
A (ρA)− µcont

B (ρB) (3.4)

with the chemical potentials

µcont
k (ρk) ≡ ln φk(ρk,−1)

φk(ρk, 1) (3.5)
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3.1. Additive case

with k = A,B. One notes that we have set |∆NA| = 1 since the large deviations
function I(ρA|ρ̄) given by the macroscopic detailed balance condition (2.35) does not
depend on ∆NA. At the most probable values of the densities ρ∗A, ρ∗B – around which
the probability density P (ρA|ρ̄) is more and more peaked when system sizes increase –,
I ′(ρ∗A|ρ̄) = 0, resulting in the equalisation of the chemical potentials:

µcont
A (ρ∗A) = µcont

B (ρ∗B) . (3.6)

One can wonder where the factorisation assumption (3.3) of the coarse-grained
transition rates does come from. According to the microscopic expression of coarse-
grained transition rates (2.19), an answer should without doubt be sought in the
microscopic transition rates’ expression Tc.

A remark on fugacity and its stochastic interpretation at equilibrium. At
equilibrium, one often introduces the notion of fugacity which corresponds to the expo-
nential of the chemical potential: ζ = eµ. As recalled in a footnote of [Sekimoto, 2010,
p. 77], the fugacity is interpreted as the “probability to escape” of a randomly chosen
particle. Let us interpret our expression (3.5) is that respect. Indeed, the framework
developed here is indeed still valid to describe equilibrium situations for which the
drives are null. At equilibrium, the coarse-grained transition rates are simply averages
over the canonical probability distributions for the given densities ρA, ρB. Exactly as
for the present non-equilibrium situation, the expressions of equilibrium coarse-grained
transition rates strongly depend on the choice of the microscopic dynamics at contact
which does not necessarily factorise as in (3.3). If this is so, it appears difficult to
interpret the exponentials of the chemical potentials as a “a probability to escape”.
The hint resides in the microscopic detailed balance condition.

Indeed, as one will be able to see it henceforth, it turns out that as long as the
microscopic detailed balance holds with respect to the same equilibrium distribution,
the ratio ϕ(ρA,−1)/ϕ(ρA,+1) is invariant with respect to any changes of the dynamics
at contact. Hence, the equilibrium chemical potentials (3.5) can be computed with
the help of any transition rates satisfying microscopic detailed balance. In particular,
Arrhenius-like transition rates for which an exchange of one particle from A to B only
depends on A and symmetrically, an exchange from B to A only depends on B would
be completely acceptable (see Sasa-Tasaki rule (3.11) below). In that case,

ϕ(ρA,−1) = ν0φA(ρA,−1) and ϕ(ρA,+1) = ν0φB(ρB,−1) (3.7)

that gives
µeq
k (ρk) = lnφk(ρk,−1) , (3.8)
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which can thus be interpreted as the logarithm of a “probability (per unit time) to
escape” from the system k, knowing that the density is ρk, according to (3.7).

That being said, the absence of the microscopic detailed balance for our out-of-
equilibrium set up is thus expected to break this escape probability interpretation for
transition rates different from the one just expounded above.

Microscopic transition rates: factorisation condition

As shown in section 2.2.3, the transition rates ϕ(ρA,∆NA) are averages of the mi-
croscopic transition rates over the product of stationary distributions of the isolated
systems. One then can observe that a sufficient condition is simply that the micro-
scopic transition rates factorise in a similar way as the macroscopic ones

Tc(C ′A, C ′B|CA, CB) = ν0θA(CA, C ′A)θB(CB, C ′B) . (3.9)

At this stage this condition is quite abstract and the reader might expect some
physical motivations. Local detailed balance assumption, discussed in the introduc-
tion, imposes a constraint on the ratio between transition rates of a transition C → C ′

and its time-reversed counterpart C ′ → C: the logarithm of the latter ratio is related
to (β times) the work supplied by the environment (from operator and heat bath)
to make the transition. But, as already seen, the local detailed balance hypothesis
does not entirely define transition rates and we will assume more generally that the
latter only depends on (β times) the work necessary to make the transition. One notes
that this assumption is consistent with most of the common choices of transition rates
present in the literature [Katz et al., 1984; Tasaki, 2004]. It reads:

Tc(C ′|C) = τ (βW (C, C ′)) (3.10)
= τ

(
βWA(CA, C ′A) + βWB(CB, C ′B) + βW int

AB(CA, C ′A ; CB, C ′B)
)
,

with W (C, C ′) the supplied work which has been split in several contributions which
depend on systems A and B as well as their interactions. According to the local
detailed balance condition, the function τ(x) should satisfy τ(x) = exτ(−x). Clearly,
the presence of the interaction term which mixes A and B configurations does not allow
the above factorisation property to hold in general. One should thus assume that the
latter is negligible with respect to the other contributions. Among the classical choices
that satisfy local detailed balance (e.g. the exponential rule, the metropolis rule, the
Kawasaki/heat-bath rule and the Sasa-Tasaki rule, etc.), only two of them verify the
factorisation condition (3.9).
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Sasa-Tasaki dynamics. The first one, discussed in [Sasa and Tasaki, 2006, Ap-
pendix B], will be called the Sasa-Tasaki rule1. This rule is claimed to model a high
energy barrier separating systems A and B. If the energy barrier is very high, the
work necessary to make a transition of one particle from system A to system B only
involves a change of energy in system A due to interactions with other particle as well
as work to climb the barrier. However, once the particles is at the top of the barrier,
there is no more cost to overcome to go down to B. In short, one gets an Arrhenius
expression of the transition rates. They read

Tc(C ′A, C ′B|CA, CB) = ε

e
−β∆EA if ∆NA = −1
e−β∆EB if ∆NA = +1

, (3.11)

∆Ek = Ek(C ′k) − Ek(Ck) and ∆NA = N (C ′A) − N (CA), k = A, B, EA,B being the
respective energies of systems A and B. We point out that mass conservation N (C ′A)−
N (CA) = −(N (C ′B) − N (CB)) is implicitly enforced in Eq. (3.11). Also, ε = e−β∆V

where ∆V is the height of the energy barrier separating A and B. When the barrier
is very high, ε� 1 and one gets a natural realisation of the slow frequency exchange
limit as already devised in the first chapter (see section 2.2).

Exponential rule. Eventually, another classic rule for which the factorisation con-
dition holds is when τ(x) = e

x
2 . It reads

Tc(C ′A, C ′B|CA, CB) = ε e−
β
2 ∆EAe−

β
2 ∆EB , (3.12)

where one has used the same notations as for the Sasa-Tasaki dynamics. The latter
could be relevant in the case when interactions between A and B are negligible com-
pared to the interactions within each system but when the weak contact is generated
by a conformation selection or a small frequency openings of a gate but not by any
high energy barrier as explained in the first chapter 2.

Even if these two cases appear to be the most common transition rates that satisfy
the factorisation property (3.9), one could certainly imagine other rules that might be
relevant. That being said, we will nevertheless discuss the implication of the factorisa-
tion property (3.9) in its general formulation without any reference to a specific choice,
unless mentioned otherwise. Specific instances of transition rates will be encountered
in chapter 4.

1Nevertheless, this choice of dynamics has been considered for long time. According to [Sekimoto,
2010, p. 112], the latter has already been considered in [Bergmann and Lebowitz, 1955; Lebowitz
and Bergmann, 1957].
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3.1.2 Relationships between chemical potentials of systems in
contact and of isolated systems

We expound here the relationships between the chemical potentials of systems in
contact (see equation (3.5)) and those of isolated systems.

First, one can notice that when macroscopic detailed balance condition (2.35) as
well as the factorisation condition (3.9) hold, it is sufficient to compute quantities for
∆NA = ±1 only since

I ′(ρA|ρ̄) = 1
∆NA

ln ϕ(ρA,−∆NA)
ϕ(ρA,∆NA) = ln ϕ(ρA,−1)

ϕ(ρA,+1)

= ln φA(ρA,−1)
φA(ρA,+1) − ln φB(ρB,−1)

φB(ρB,+1)

Assuming a factorisation of the transition rates at the microscopic level as in
equation (3.9), the macroscopic transition rates factorise as in (3.3) with the factors
φk = limVk→∞ φVk, k that stem from the finite volume exact expression which reads

φVk, k(ρk,±1) =
∑

C′k∈E
Vk
±1(ρk)

Ck∈E
Vk
0 (ρk)

θk(C ′k, Ck)PVk(Ck|ρk) . (3.13)

One recalls that EVk∆N(ρk) = {Ck | N (Ck) = ρkVk + ∆Nk} is the set of configurations Ck
that exactly contain ρkVk + ∆Nk particles.

Also, in the absence of any direct interaction energy between A and B, the micro-
scopic detailed balance reads, in terms of θk factors,

∏
k=A,B

θk(C ′k, Ck) =
∏

k=A,B
e−β∆Ek(C′k,Ck)θk(Ck, C ′k) (3.14)

with ∆Ek(C ′k, Ck) = Ek(C ′k)− Ek(Ck). Hence, it still holds for each isolated factor θk

θk(C ′k, Ck) = e−β(Ek(C′k)−Ek(Ck))θk(Ck, C ′k) . (3.15)

In order to get a more insightful expression for µcont
k = ln [φk(ρk,−1)/φk(ρk,+1)],

one should relate φk(ρk,−1) to φk(ρk,+1). According to the equation (3.13),
φVk, k(−1, ρk + 1

Vk
) reads

φVk, k(−1, ρk + 1
Vk

) =
∑

Ck∈E
Vk
+1(ρk)

C′k∈E
Vk
0 (ρk)

θk(C ′k, Ck)PVk
(
Ck
∣∣∣ρk + 1

Vk

)
. (3.16)

Using the microscopic detailed balance relation (3.15) and changing Ck into C ′k and
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vice versa, one can write

φVk, k(−1, ρk + 1
Vk

) =
∑

Ck∈E
Vk
0 (ρk)

C′k∈E
Vk
+1(ρk)

θk(C ′k, Ck)eβ(Ek(C′k)−Ek(Ck)) (3.17)

×
PVk

(
C ′k
∣∣∣ρk + 1

Vk

)
PVk (Ck|ρk)

× PVk (Ck|ρk) .

To go further, one should now insert expressions of the stationary probability
distributions of system k = A, B before taking the infinite volume limit. Even if
this is a definitely prominent fact, one should stress that the stationary probability
distribution of the isolated system k is quite difficult to compute in general. Several
examples will be discussed in chapters 4 and 5 but we would like now to keep a
broad perspective and to consider general links between chemical potentials of isolated
systems.

The first idea, quite natural, is to express the out-of-equilibrium stationary distri-
bution PVk(Ck|ρk) as an expansion with respect to the equilibrium distribution. This
approach is particularly suited when the non-equilibrium systems are close to equilib-
rium. Such expansion of the stationary probability was first introduced by McLennan
[McLennan Jr, 1959; Zubarev, 1974] and has been revived quite recently with signifi-
cant development by [Colangeli et al., 2011; Komatsu and Nakagawa, 2008; Komatsu
et al., 2008, 2009, 2015, 2010; Maes and Netočnỳ, 2010; Maes et al., 2008]. Since equi-
librium is considered as the reference process here, one naturally gets a connection
with equilibrium chemical potentials of isolated systems.

The second perspective aims at making a link with proper out-of-equilibrium chem-
ical potentials attached to isolated systems only. We should stress that one does not
know how to define in a general way any genuine out of equilibrium partition function
from which a non-equilibrium chemical potential could be derived. Nonetheless, we
will see in chapter 4 that a so-called non-equilibrium partition function can be explic-
itly computed for specific mass transport models on lattice. Broadly speaking, one
expects to be able to define chemical potentials attached to isolated systems when
static stationary spatial correlations are short-ranged, leading to an asymptotic fac-
torisation of the steady state probability distribution of the number of particles (or
mass) in macroscopic sub-parts of the system. This is indeed the case for the Zero
Range Process [Evans and Hanney, 2005; Evans et al., 2004, 2006b] or some generalised
mass transport models that will be encountered in chapter 4. However, when long-
range static correlations are present – for a broad range of external parameters as it is
generically the case for non-equilibrium systems [Bertini et al., 2007; Dorfman et al.,
1994; Garrido et al., 1990; Spohn, 1983], or maybe near a second order phase transition
– the stationary probability distribution no longer factorises and one cannot apply the
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previous procedure to define a chemical potential attached to an isolated system. As
we will see, one can nevertheless try to renormalise the perturbative expansion with
respect to equilibrium in order to obtain a non-equilibrium partition function.

Relation between µcont and µ eq

If one takes the equilibrium state as the reference, PVk, k(Ck) can be obtained from a
perturbative expansion with respect to the equilibrium distribution. This idea was
first the one of McLennan [McLennan Jr, 1959] who computed corrections due to the
driving force up to first order. Based on this idea to compute perturbatively the
non-equilibrium stationary distribution, extensive developments, based on dynamical
fluctuations studies, have been performed recently [Colangeli et al., 2011; Komatsu
and Nakagawa, 2008; Komatsu et al., 2008, 2009, 2010; Maes and Netočnỳ, 2010;
Maes et al., 2008]. Without more details, one can generally write

PVk, k(Ck) = 1
Zeq
k

e−βEk(Ck)+Υeq
k

(Ck) , (3.18)

which defines the supplemental term Υeq
k (Ck) that accounts for the non-equilibrium

correction to the Gibbs-Maxwell-Boltzmann equilibrium probability distribution. In-
troducing this ansatz into Eq. (3.17) leads to

φVk, k(ρk + 1
Vk
,−1) = Zeq

k (ρk)
Zeq
k

(
ρk + 1

Vk

) ∑
Ck, C′k

θk(C ′k, Ck)eΥeq
k

(C′k)−Υeq
k

(Ck)PVk, k (Ck|ρk) . (3.19)

Thus, at the thermodynamic limit Vk →∞,

φk(ρk,−1) = eµ
eq
k

(ρk) lim
Vk→∞

∑
C′k∈E+1(ρk)
C∈E0(ρk)

θ(C ′k, Ck)eΥeq
k

(C′k)−Υeq
k

(Ck)PVk, k(Ck|ρk) . (3.20)

As for φk(ρk,+1), one obtains

φk(ρk,+1) = lim
Vk→∞

∑
Ck∈E0(ρk)
C′k∈E+1(ρk)

θk(C ′k, Ck)PVk, k(Ck|ρk) . (3.21)

One then notices that φk(ρk,−1) can be related to a biased transition rate factor.
Indeed,

φk(ρk,−1) = eµ
eq
k

(ρk)φk,∆Υeq
k

(ρk,+1) , (3.22)

with φk,∆Υeq
k

(ρA,+1) the analogue of φk(ρA,+1) where θk(C ′k, Ck) has been biased by
∆Υeq

k = Υeq
k (C ′k)−Υeq

k (Ck), leading to θk(C ′k, Ck)eΥeq
k

(C′k)−Υeq
k

(Ck).
Eventually, according to equation. (3.5) and (3.22), the chemical potential at con-
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tact µcont
k reads

µcont
k (ρk) = µeq

k (ρk) + ln
φk,∆Υeq

k
(ρk,+1)

φk(ρk,+1) , (3.23)

where ln[φk,∆Υeq
k

(ρk,+1)/φk(ρk,+1)] can be interpreted as an excess chemical potential
with respect to the equilibrium one.

One recovers µcont = µeq when the excess non-equilibrium term Υeq
k (Ck) is vanish-

ing. This is of course the case if the systems at stake are at equilibrium: our expression
is thus consistent with the equilibrium situation. But one can also find µcont = µeq

when the stationary distribution of the non-equilibrium isolated systems does not dif-
fer from the equilibrium one. Even if such a dependence is expected to be generic
[Colangeli et al., 2011; Maes et al., 2009], one can nevertheless find full-fledged non-
equilibrium systems whose stationary solution is not affected at all by the driving (and
is thus equal to the equilibrium one). This is for instance the case for the Asymmetric
Simple Exclusion Process (ASEP) on a ring in one dimension [Derrida, 1998]. For
these latter non-equilibrium systems, no shift in stationary densities is expected to be
observed when the drives are switched on.

Relation between µcont and µiso

Rather than taking equilibrium as the reference situation, one can consider also the
out-of-equilibrium state on its own. Indeed, even if a general procedure to define a
non-equilibrium free energy is not yet established, one can sometimes – but rarely
– directly compute the non-equilibrium stationary distribution which brings directly
an “out-of-equilibrium partition function” different from the equilibrium one. Some
examples are the Zero Range Process and its extensions [Evans and Hanney, 2005;
Evans et al., 2004, 2006b; Levine et al., 2005; Zia et al., 2004], the Simple Exclusion
Processes [Derrida, 1998, 2007], etc. We will provide an extensive study of an original
solvable model in the next chapter 4.

To our knowledge, it does not exist any consensus on a general definition of a
genuine non-equilibrium partition function Zk(ρ) for any general system. As already
pointed out, however, when correlations are short-ranged — which is a non-generic
situation when a system is driven by permanent non-conservative forces —, such a
non-equilibrium partition function can be computed by cutting the isolated system
into a small, local, macroscopic part, the rest acting as a reservoir. In this case, the
stationary probability distribution of the configurations C` of this local part is given
by

P `
k(C`k) = Fk(C`k)eµ

iso
k (ρk)N (C`k) , (3.24)

with Fk the non-equilibrium weight. The chemical potential µiso
k defined in that respect

is thus associated with the control of mass inside the isolated system k.
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In any case, we will postulate in the following, without proof, that the stationary
distribution Pk of the whole system k can be written as

PVk, k(Ck|ρk) = 1
ZNeq
k (ρk)

e−βEk(Ck)+ΥNeq
k

(Ck) , (3.25)

where ZNeq
k (ρk) refers to a non-equilibrium partition function of system k, different

from the equilibrium one. As observed in a simple but non-trivial non-equilibrium
mass transport model [Guioth and Bertin, 2017], a potential non-equilibrium partition
function could be defined such that ∂ZNeq

k /∂f is equal to β times the average (both
in space and in probability) current, as one would expect for a generalisation from
the equilibrium non-equilibrium free energy (see [Sasa and Tasaki, 2006] for a very
detailed discussion on the phenomenological definition of a genuine non-equilibrium
free energy). One notices that this expression of the stationary probability distribution
can then be obtained from the perturbative expansion (3.18) simply by introducing the
term e−βσ in (3.25) where σ refers (up to a multiplicative constant length that one takes
to be equal to the lattice spacing) to the entropy production equals to f ·J when f , the
non-conservative force, is homogeneous along the system and J is the average current.
In this case, ΥNeq

k = Υeq
k + βσ. We refer the reader to the appendix C for a detailed

example of such expression. Assuming that the non-equilibrium partition function
ZNeq
k (ρk) obeys a large deviations principle with respect to ρk at the thermodynamic

limit, the same calculation as in the subsection 3.1.2 leads to

φk(ρk,−1) = eµ
iso
k (ρk) lim

Vk→∞

∑
C′k∈E

Vk
+1(ρk)

C∈EVk0 (ρk)

θ(C ′k, Ck)eΥNeq
k

(C′k)−ΥNeq
k

(Ck)PVk, k(Ck|ρk) , (3.26)

which itself gives

µcont
k (ρk) = µiso

k (ρk) + ln
φk,∆ΥNeq

k
(ρk,+1)

φk(ρk,+1) . (3.27)

This expression is almost identical to the previous one (3.23) for which the reference
situation was the equilibrium. Different normalisation of the stationary probability
distribution can thus lead to different chemical potentials in excess with respect to the
chosen reference configuration.

Contact dependence of the excess chemical potential

In every case, one sees that the chemical potential at contact µcont
k (ρk) is equal to a

chemical potential related to the isolated system (either the equilibrium one or the
stationary non-equilibrium one) and an excess chemical potential which generically
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reads
ηk(ρk) = ln φk,∆Υk(ρk,+1)

φk(ρk,+1) . (3.28)

The excess chemical potential ηk clearly depends on ∆Υk that has to be different from
0 to get ηk non-vanishing.

We should however recognise that one cannot avoid any generic dependence of
θk(C ′k, Ck) in the expression of ηk as long as the steady-state measure of isolated systems
are affected by the drives. That is to say, the details of the contact (which involves
activity (symmetric part) and force/bias (anti-symmetric part) of the contact) do
contribute to the chemical potential µcont

k . We will extensively study this dependence
on specific situations in the next chapters but one cannot exclude as of now that
the chemical potential at contact µcont

k may depend on the specificity of the contact
dynamics, beyond the specificities of stationary probability distributions of the isolated
systems.

Eventually, since long-range correlations are ubiquitous in non-equilibrium systems
and have been questioned several times in the literature which has considered the
question of the contact [Chatterjee et al., 2015; Pradhan et al., 2010, 2011; Sasa and
Tasaki, 2006], we propose a brief comment about their potential impact on our set-up.

Effect of long-range correlations?

Long-range correlations are ubiquitous in non-equilibrium systems [Bertini et al., 2007;
Dorfman et al., 1994; Garrido et al., 1990; Spohn, 1983]. If the usual observable is the
static (or equal time) two-point correlation function, such a weak decay transfers itself
to the stationary probability distribution. Indeed, as discussed in [Derrida, 2007], this
can be seen easily by considering the following cumulant generating function defined
as

G({αx}x∈Λ) = ln
〈
e
∑

x∈Λ αxηx
〉

= ln
∑

{ηx}x∈Λ

1
Z
e
∑

x∈Λ αxηx−βH({ηx}x∈Λ)+Υ({ηx}x∈Λ) , (3.29)

where H is the energy of the configuration C = {ηx}x∈Λ and Υ({ηx}x∈Λ) is the non-
equilibrium part either from the McLennan approach (3.18) or from Eq. (3.25). Taking
derivatives with respect to αx in (3.29) at α = 0 leads to

ρx = 〈ηx〉 = ∂G
∂αx

∣∣∣∣∣
α=0

(3.30)

Cx,y = 〈ηxηy〉 − 〈ηx〉 〈ηy〉 = ∂2G
∂αx∂αy

∣∣∣∣∣
α=0

, (3.31)
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higher order derivatives being related to higher order correlation functions. Put an-
other way, expanding G with respect to αx leads to

G({αx}) =
∑
x∈Λ

αxρx + 1
2
∑
x∈Λ
y∈Λ

αxαyCx,y + . . . (3.32)

Non-local contributions in G({αx}) appear when the correlation function Cx,y does
not decay fast enough. Typically, ∀x, ∑y∈ΛCx,y should be of order O(|Λ|0): this
includes weak long-range correlations but also short-range correlations leading to local
contributions in G({αx}).

Clearly, the potential non-locality of G is inherited from the non-locality of the
stationary distribution function. For short-range interactions, the energy E is a local
function, meaning that it can be written as E({ηx}x∈Λ) = ∑

x∈Λ ε(ηx, {ηy}y∈Vx), Vx
being a local neighbourhood of site x. Except for long-range interactions — present
in gravitational systems for instance — that we will not consider here, this will always
be assumed. Away from second order phase transition, the non-local contribution is
only present in Υ which intervenes in the excess chemical potential (3.28).

If such long-range correlations are present, the coarse-grained transition rates po-
tentially depend on the fluctuations quite far from the contact area (if the latter is
localised). However, this presence does not break the validity of the expression (3.28)
as long as we consider the vanishing transition rates limit at contact. One should note
however that the relaxation dynamics in bulk systems might be much slower than the
equilibrium relaxation (outside any phase transition) in this situation of long-range
correlations. In real situations (either experimental or numerical) for which the pa-
rameter that controls the rates at contact, ε, is small but finite, one has to pay attention
that ε is sufficiently small to keep two well-separated time scales between bulk and
contact dynamics. If this is so, our framework remains valid even when long-range
correlations are present.

Otherwise, if ε is not sufficiently small, one can expect that in the presence of such
long-range correlations, local perturbations due to small but finite exchange rates at
contact, may significantly modify the stationary states of each systems in contact on
length scales much larger than the contact area [Maes et al., 2009]. In this case,
thinking of two well-defined systems in contact may not be relevant anymore and one
may prefer to consider one, big, inhomogeneous system instead. If this big picture is
correct, it would be worth having detailed studies of such an effect on simple models.
This is however beyond the scope of the work presented here.
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3.1. Additive case

3.1.3 What if the contact dynamics involves an additional
work or depends on the drives?

Until now, we have considered a contact orthogonal to the non-conservative driv-
ing forces, leading to transition rates at contact independent of the driving forces of
systems A and B and verifying detailed balance with respect to the equilibrium distri-
butions. One can nevertheless wonder what happens when microscopic transition rates
at contact do depend on the driving forces or when there is an extra-work performed
at contact. In that respect, if one assumes that transition rates at contact obey a local
detailed balance with extra work in addition to the local energy difference present at
equilibrium, the same reasoning still applies. Let us discuss it in more details.

We assume that the microscopic transition rates at contact, Tc(C ′|C) obey local
detailed balance with additional work wcont(C, C ′) that can depend on the driving
forces themselves. We consider also a possible extra-influence of the driving forces on
the symmetric part of the transition rates a(C, C ′). One then obtains

Tc(C ′|C) = aNeq(C, C ′)e−
β
2 (E(C′)−E(C)−wcont(C,C′)) . (3.33)

Assuming that both the factorisation condition (3.9) and macroscopic detailed balance
hold, the same calculation presented in last subsection 3.1.2, valid at the vanishing
exchange rate limit, leads to

µcont
k (ρk) ≡ ln φk(ρk,−1)

φk(ρk,+1) = µk(ρk) + ln
φk,∆Υk+wcont

k
(ρk,+1)

φk(ρk,+1) . (3.34)

Not surprisingly, one can see that the excess chemical potential due to the additional
work wcont

k adds to the out-of-equilibrium term ∆Υk (that appears as the breaking term
of the detailed balance at micro-scale when P (Ck|ρ̄k) is different from the equilibrium
distribution).

It may happen that the presence of the additional work wcont to realise the transi-
tion C → C ′ could break the factorisation property. If this is so, one has to come back
to the global expression of the derivative of the large deviations function which would
thus be non-additive. For situations when this extra-work is only exerted through the
contact by external agents and thus is not a function of energies or applied work in
each systems – in short, when wcont depends neither on A nor on B –, one can notice
that the splitting into two contributions to get the factorisation property could still be
made, even though perhaps in a quite arbitrary way, by considering the work needed
to move particles from A to B and conversely to move a particle from B to A.
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Figure 3.1 – Sketch of ion pump in a cell membrane (lipid bilayer). The ion pump
is a protein attached to the membrane that can exert a work Wc on a ion to counter-
balance the the natural diffusion (entropic flux).

Remark: in equilibrium. Even in equilibrium, the case where the microscopic
transition rates involve an extra-work is quite interesting. In particular, this situation
happens in biological systems and more specifically in cells. Indeed, let us consider two
compartments separated by a membrane punctured by channels that allow the transfer
of particles (ions here) from one side to another (see figure 3.1. Two type of channels
have been observed [Gadsby, 2009; Siwy and Fulińński, 2002]. The first type concerns
passive channel (called ion channel) that let the ions follow the local electro-chemical
potential gradient (which basically embeds, if one neglects interactions between ions,
simple diffusion and possible complex electric potential across the membrane). But, in
several situations, it is observed that the transfer of particles is not passive and does not
follow the electro-chemical potential gradient. At a microscopic level, this is due to the
fact that the channel is active and consumes metabolic energy to transport ions. These
are usually referred to as ion transporters or ion pumps. Thus, this active transport
involves an extra work wcont which is localised in the channel. If the frequency of
exchange is very small and if one takes for reference an equilibrium situation where in
each system k the stationary probability distribution reads P eq

k (Ck|ρk) = e−βEk(Ck)/Zeq
k ,

one obtains
µcont
k (ρk) = µeq

k (ρk) + ln
φk,wcont

k
(ρk,+1)

φk(ρk,+1) , (3.35)

if both macroscopic detailed balance and factorisation conditions hold. In the case
where the active transports is switch off, wcont

k vanishes, and one recovers the passive
equilibrium potentials µeq

k (ρk).

3.1.4 About the Zeroth law of thermodynamics

We have provided detailed expressions and some properties of the chemical potentials
at contact in last subsections. We would like now to go beyond definitions and explore
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3.1. Additive case

Figure 3.2 – Sketch of the Zeroth law procedure. It asks if systems A and B are
in equilibrium with each other when their are separately both in equilibrium with a
third system C. This law is fundamental in the equilibrium realm since it ensures the
universality of the intensive thermodynamic parameter (such as temperature, pressure,
chemical potential, etc).

their thermodynamic meaning. If one follows the phenomenology of thermodynamics,
chemical potentials are very intricately linked with the zeroth law. What happens for
our non-equilibrium set-up?

The zeroth law is indeed at the heart of equilibrium thermodynamics and deals
with the issue of the contact between equilibrium systems. People generally refer to
it as the transitivity property of equilibrium states, meaning that if two systems A
and B are in equilibrium with a third one C, then they are in equilibrium with each
other (a sketch of this procedure is drawn in figure 3.2). If it holds, it can serve as an
operational definition of the existence of intensive thermodynamic parameters related
to exchange of conserved quantities through the contact, like temperature (for the
exchange of energy), pressure (for the exchange of volume) or chemical potentials (for
the exchange of particles), that equalise when systems are in equilibrium with each
other.

For contact between non-equilibrium driven systems in steady-state, one has seen
the importance of the contact dynamics as it exerts a strong influence on the station-
ary densities in each system. In certain situations when macroscopic detailed balance
holds and when macroscopic transition rates factorise, one can define intensive ther-
modynamic parameters, namely chemical potentials, that are associated with each
systems and equalise when the stationary state is reached. However, this does not
necessarily lead to the zeroth law as stated above since the chemical potential defined
here may depend on the specificity of the contact between systems. For instance, if
A and B are separately in contact with C through different contact dynamics, it is
not at all guaranteed that the final stationary states of A and B (in contact with C)
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can still be stationary states – or say differently, the final states of A and B coexist –
when A and B are now brought into contact through a certain contact dynamics. This
issue has been addressed in different papers [Chatterjee et al., 2015; Dickman, 2016;
Pradhan et al., 2010] and a more detailed discussion will be given later in chapter 4,
section 4.3.1.

That being said, in the case when chemical potentials at contact can be defined,
one can tune the contact so that the macroscopic transition rates factorise in terms
made of the φk and then attach to each system k its macroscopic transition rates
φk(ρk,∆Nk). One will thus get a class of systems that satisfy the zeroth law with
respect to each other. Physically speaking, it corresponds to virtually associate one
half of the contact to each isolated system in order for its chemical potential to become
its chemical potential at contact µcont

k . This procedure is however very sensitive to the
choice of the contact dynamics which thus needs to be measured in details.

In brief, the zeroth law of thermodynamics in our non-equilibrium situations is not
expected to hold in full generality. Nonetheless, when additivity of the large deviations
function holds it is formally possible to attach to each systems its chemical potential
at contact. Yet, such chemical potential does generically depend on the local contact
dynamics and thus cannot be assigned to the separated systems but only to the systems
as well as part of the contact – that hence need to be attached to the system. This is
reminiscent to the fact that chemical potential at contact do not generally obey any
equation of state involving only bulk quantities as an equilibrium system does.

3.2 Non-additive case: general results

Before going further in thermodynamic considerations, we take a short break here
and turn now to the general case for which the large deviations function I(ρA|ρ̄) is
not additive. As already seen in the previous section, the additivity property is a
necessary consequence of two properties: the macroscopic detailed balance (2.35) and
a factorisation condition on the macroscopic transition rates (3.3). We will thus see
in this section that there are two main ways to break this additivity condition: either
by breaking the factorisation condition on the transition rates or by breaking the
macroscopic detailed balance itself.

3.2.1 Macroscopic detailed balance with non-factorised con-
tact dynamics

When macroscopic transition rates ϕ(ρA,∆NA) are not factorised into two parts, there
is no reason that one can define in a general way chemical potentials at contact attached
to systems A and B. If macroscopic detailed balance (2.35) still holds, the large
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deviations function of the density reads

I ′(ρA) = ln ϕ(ρA,−1)
ϕ(ρA,+1) (3.36)

where ϕ(ρA,±1) 6= φA(ρA,±1)φB(ρB,∓1). This condition is in general reminiscent of
the non-factorisation of the transition rate at contact Tc(C ′|C) itself. This can be the
case because of direct interaction between A and B or because of a non-factorisation of
the activity ac(C, C ′) of the transition rates Tc, as it is always the case for the Heat-bath
rule or the Metropolis rule for instance.

A calculation very similar to the one made for the factorisation case leads in this
situation to the following expression of the large deviations function I ′

I ′(ρA|ρ̄) = µ(A)(ρA)− µ(B)(ρB) + ln ϕ∆Υ(A)+∆Υ(B)(ρA,+1)
ϕ(ρA,+1) , (3.37)

where ϕ∆Υ refers to the macroscopic transition rate (2.19) where the microscopic tran-
sition rate Tc has been tilted by e∆ΥA+∆ΥB . Even if the contribution of the stationary
distributions of each system is still factorised, the ϕ∆Υ(A)+∆Υ(B)/ϕ has no reason to do
so since Tc does not factorise. Explicit examples will be given in chapter 4.

3.2.2 Absence of macroscopic detailed balance

If this time macroscopic detailed balance breaks, it appears to be much more difficult
to solve the Hamilton-Jacobi equation (2.23) in order to obtain I(ρA|ρ̄). One has seen
in the first chapter a general way to proceed, which essentially consists in performing
a perturbative expansion with respect to a reference situation, assumed to satisfy the
macroscopic detailed balance. At first order in the perturbation, the derivative of the
large deviations function reads

I ′(ρA|ρ̄) = I(0) ′(ρA|ρ̄) + ξI(1) ′(ρA|ρ̄) +O(ξ2) . (3.38)

Let us assume that at ξ = 0, both systems are at equilibrium and that their driving
forces increase together with ξ, albeit potentially at different rates. One thus has
I(0)′ = µeq

A − µ
eq
B . Let us assume now that the macroscopic transition rates completely

factorise at each order in ξ. Contrary to what is expounded in 2.5, it is easier to
formulate things in terms of transition rates ϕ(ρA,∆NA) directly. I(1) ′(ρA|ρ̄) reads

I(1) ′(ρA|ρ̄) =
∑

∆NA 6=0 ϕ
(1)(ρA,∆NA)

(
eI

(0) ′(ρA|ρ̄)∆NA − 1
)

∑
∆NA 6=0 ϕ(0)(ρA,∆NA)∆NA

. (3.39)
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Hence, even if ϕ(1)(ρA,∆NA) and ϕ(0)(ρA,∆NA) factorise as in (3.3), it is not expected
that this factorisation property still holds for the large deviations function I(ρA|ρ̄),
even at the first order beyond the equilibrium situation for which the large deviations
function is additive.

Explicit examples of this lack of additivity when macroscopic detailed balance
breaks will be discussed in chapter 4. We shall now explore in more details the relation
between external potentials and the large deviations function I(ρA|ρ̄), or the chemical
potentials if they are well defined.

3.3 Chemical Potential and external potential

In order to progress in our understanding of the thermodynamic properties of chemical
potentials at contact and more generally to the large deviations function of densities,
we would like now to investigate the relations between chemical potentials and uniform
external potentials that can be applied over each sub-systems. Our main motivations
are

• Quite importantly, first, such external potential difference can be a way to probe
rare events of the unperturbed stationary dynamics and thus allows one to have
access experimentally to the large deviations function, exactly as in equilibrium
(see [Touchette, 2009]).

• It is also a natural thermodynamic transformation that has its own interest. We
will in particular show henceforth that, similarly to other analysis for diffusing
systems at hydrodynamic space-time scale [Bertini et al., 2002, 2015a], the large
deviations function I(ρA|ρ̄) obeys a second law, meaning that the average work
provided by the evolution of the external potential difference is always larger or
equal to the difference of the large deviations function between the final and the
initial stationary state. In that respect, the large deviations function I(ρA|ρ̄)
plays the role of a non-equilibrium free energy.

Let us in the first place remind the situation at equilibrium. The balance of mass
between two systems in contact, controlled by the chemical potentials of each system,
can be biased by uniform external potentials. Indeed, adding a potential U(x) = UA

for all x ∈ ΛA and U(x) = UB for all x ∈ ΛB leads to a balance of mass governed
by the equalisation of generalised chemical potentials — sometimes called electro-
chemical potentials — µeq

k + Uk, k = A, B. Furthermore, when an operator changes
∆U = UA − UB over time, the latter applies a work on the system which brings the
densities to a new equilibrium at the end of the transformation. If the transformation is
quasi-static, i.e. the transformation speed is infinitely slow, then the average supplied
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Figure 3.3 – Uniform external potentials UA and UB apply on each systems A and
B.

work is equal to the difference in the free energy of the whole system. Otherwise, the
average supplied work is greater than the difference of free energies. This is what the
second law states.

How does this external potential enter our non-equilibrium framework? Of course,
applying such uniform piecewise external potential over the two systems in contact tilts
the dynamics only at the interface between systems A and B, that is at the contact. If
transition rates at contact reads Tc(C ′|C) = τ(β(E(C ′)−E(C)) as assumed previously
(see equation (3.10)), the tilted transition rates T∆U

c read

T∆U
c (C ′A, C ′B|CA, CB) = τ [β (EA(C ′A)− EA(CA) + EB(C ′B)− EB(CB) (3.40)

+∆U(N (C ′A)−N (CA))] ,

with τ is a priori an arbitrary function that must satisfy τ(x) = τ(−x)ex according to
the local detailed balance. One should notice that this kind of bias is of the same kind
of the general extra-work tilting consider in section 3.1.3. The only difference is that
it derives here explicitly from a potential and is thus compatible with equilibrium, in
the sens that microscopic detailed balance holds if both systems are undriven.

Before going into details, one should also remark the particularity of our framework,
that is to say the vanishing exchange rate at contact. It clearly conditions the response
of the system to a perturbation by external potentials: as long as the force generated
by ∆U does not increase the microscopic rate T∆U

c such that it is no longer of order
O(ε1), i.e. that ∆U doesn’t scale with ε, the response will be slow. In the vanishing
exchanged rate limit, we have seen in 2.2.3 that the systems evolve in a quasi-static
way, going back to their steady states after each (rare) exchange. We will assume here
that the presence of ∆U will not change this property and that the time variations of
∆U are at the same time scale as the density dynamics (which is slow compared to
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the bulk dynamics).
Let us now put this discussion into equations. First, we specify the protocol that

the operator performs to go from the initial value ∆Ui and ∆Uf : ∀ s ∈ [0, 1], one
defines the function ∆Us such that ∆U0 = ∆Ui and ∆U1 = ∆Uf . Assuming that
the total real time to apply this transformation is T , the instantaneous macroscopic
transition rate ϕ∆U

V, τ reads

ϕ∆U
V, τ = ϕV (∆U( τ

T
); ρ,∆N) (3.41)

for all τ ∈ [0, T ]. Depending on the context and our need of explicit notation, we
will use both notations. The biased transition rates ϕV (∆U, ρ,∆N) are average of the
tilted microscopic transition rates T (∆U)

c with respect to the stationary microscopic
distribution of the isolated systems, as in (2.19). Since external potentials are uniform
over both sub-systems, the bulk transition rates are not perturbed by their presence
and the stationary distribution of isolated systems Pk(Ck|ρk) are the same as in the
absence of any external potential tilting.

As we will see henceforth, a crucial property is how the coarse-grained transition
rates depend on the external potential difference, and especially its associated force
F∆U
V (ρA,∆NA) defined in equation (2.40). According to the definition (2.19) of the

coarse-grained transition rates, one has

ϕ∆U
V (ρA,∆NA) =

∑
C′A∈E

VA
∆NA

(ρA)

C′B∈E
VB
−∆NA

(ρB)

∑
CA∈E

VA
0 (ρA)

CB∈E
VB
0 (ρB)

T∆U
c (C ′A, C ′B|CA, CB)PVA(CA|ρA)PVB(CB|ρB) .

(3.42)
The bias or generalised force associated with this coarse-grained transition rate reads,
at the thermodynamic limit,

F∆U(ρA,∆NA) = F (∆U ; ρA,∆NA) ≡ ln ϕ∆U(ρA,∆NA)
ϕ∆U(ρA,−∆NA) (3.43)

At equilibrium, the force F∆U(ρA,∆NA) would read − (µeq
A (ρA)− µeq

B (ρB) + ∆U) ∆NA

and thus, the force would be linear in ∆U . But out of equilibrium, it is not at all
obvious that such a linearity in the force still holds. As it can be seen in the micro-
scopic definition of the tilted coarse-grained transition rate (3.42), this is naturally a
consequence of the choice of T∆U

c . This led us to consider two classes of transition
rates.

1. The first one is the one for which the coarse-grained generalised force (3.43) is
linear in ∆U . Hence, the coarse-grained transition rate reads

ϕ(∆U ; ρA,∆NA) = a∆U(ρA,∆NA)e
1
2 (F (ρA,∆NA)−β∆U∆NA) , (3.44)
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with F (ρA,∆NA) the force in the absence of any tilting, which thus does not
depend on the external potentials Uk, k = A, B. Interestingly, both the Sasa-
Tasaki rule (3.11) and the classical exponential rule (3.12) belong to this class.

2. The second one allows a more complex dependence in ∆U . It reads, in full
generality,

ϕ(∆U ; ρA,∆NA) = a∆U(ρA,∆NA)e
1
2F (∆U ;ρA,∆NA) , (3.45)

where the force F (∆U ; ρA,∆NA) is not linear in ∆U . This is for instance the
case for other rules, different from the Sasa-Tasaki and the exponential ones,
such as the metropolis rule or the heat-bath (or Kawasaki) rule.

In both classes, one eventually introduces the macroscopic current JV (∆U, ρ) as-
sociated with the dynamics in presence of a time-dependent bias ∆U( τ

T
). It reads

JV (∆U, ρA) =
∑

∆NA
∆NA ϕV (∆U ; ρA,∆NA) . (3.46)

The most probable relaxation path (which coincides with the average one at the ther-
modynamic limit) in the presence of a time-dependent forcing thus follows the relax-
ation dynamics

dρA(t)
dt = J(∆U ; ρA(t)) , (3.47)

with J = limV→∞ JV .
Notations being settled, one can enter the heart of this section which is the study

of the work supplied by the protocol ∆Us for s ∈ [0, 1]. The infinitesimal (stochastic)
work supplied by the external operator with the potential difference ∆U(s) between a
time τ and τ + dτ reads

δ̂W τ = −∆U( τ
T

)(NA(Cτ+dτ )−NA(Cτ )) . (3.48)

But the stochastic variable NA(Cτ ) follows a Poisson process2 whose conditionally
averaged infinitesimal increments read

〈NA(Cτ+dτ )−NA(Cτ )|NA(Cτ ) = NA〉 =
∑

∆NA 6=0
ϕV (∆U( τ

T
); ρA,∆NA)∆NA . (3.49)

2More precisely, one should write the following equation

δ̂W τ = −
∑

∆NA 6=0

∆U( τT )∆NAY∆NA

[
ϕV (∆U( τT ); ρ̂A(τ),∆NA)dτ

]
,

with Y∆NA
[u] is a stochastic Poisson variable of parameter u: Prob(Y∆N [u] = k) = uke−u/k! for

k ∈ N. See for instance the presentation of Kurtz in [Kurtz, 1971, 1978].
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Thus, the average infinitesimal work reads
〈
δ̂W

〉
τ

= δWτ = −
∑

∆NA 6=0

∑
ρA

∆U( τ
T

)∆NAϕV (∆U( τ
T

); ρA,∆NA)P∆U
V, τ (ρA|ρ̄)dτ ,

(3.50)
which at large deviations level leads to the following integral work

W[0,T ] =
∫ T

0
δWτ = −

∫ T

0

∑
∆NA 6=0

∆U( τ
T

)∆NAϕ(∆U( τ
T

); ρA(τ),∆NA)dτ , (3.51)

where ρA(τ) is the solution of the macroscopic equation ρ̇A(τ) = J(∆U( τ
T

); ρA(τ)),
as well as the minimum (saddle-point) of the large deviations function Iτ (∆U( τ

T
), ρA)

associated with the distribution P∆U
V, τ (ρA) when V →∞.

In order to be perfectly clear when later on taking the quasi-static limit T → ∞,
it is fruitful to change variable from τ to s = τ/T . In this case,

W[0,T ] = −T
∫ 1

0
ds

∑
∆NA 6=0

∆U(s)∆NAϕ(∆U(s); ρ(T )
A (s); ∆NA) , (3.52)

where ρ(T )
A (s) = ρA(sT ).

On this basis, our aim is to connect the supplied work W[0,T ] with the large de-
viations function I(ρA|ρ̄) of the unperturbed dynamics. Although different in several
aspects, one can achieve this goal by following the strategy developed by [Bertini et al.,
2015a,b, 2012, 2013] in the context of the Macroscopic Fluctuation Theory3. In our
setting, the main idea is to replace ∆U(s)∆NA in the expression of the work (3.52)
by the generalised forces F (ρA,∆NA) and F (∆U ; ρA,∆NA). As discussed previously,
F (∆U ; ρA,∆NA) can be either linear in ∆U or not. It is thus interesting to isolate
this linear dependence by introducing

FNL(∆U ; ρA,∆NA) = F (∆U ; ρA,∆NA) + β∆U∆NA . (3.53)

The two classes introduced in (3.44) (3.45) thus differ in the ∆U dependence of
FNL(∆U ; ρA,∆NA): for the first class, FNL(∆U ; ρA,∆NA) is independent of ∆U and
is equal to F (ρA,∆NA), the force associated with the unbiased transition rates. As
for the second class, FNL(∆U ; ρA,∆NA) does depend on ∆U .

In both cases, one can write −∆U∆NA = F (∆U ; ρA,∆NA)− FNL(∆U ; ρA,∆NA)

3Even if the frameworks are different, the kind of decomposition we will encounter dates back
to the pionneering works of Oono & Paniconi, later developed by Sasa & Hatano, Sasa & Tasaki,
[Hatano and Sasa, 2001; Oono and Paniconi, 1998; Sasa and Tasaki, 2006].
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3.3. Chemical Potential and external potential

and the supplied work (3.52) reads

βW[0,T ] = T
∫ 1

0
ds

∑
∆NA 6=0

[
F (∆U(s); ρ(T )

A (s),∆NA)− FNL(∆U(s); ρ(T )
A (s),∆NA)

]
× ϕ(∆U(s); ρ(T )

A (s); ∆NA) . (3.54)

Some work is still needed to make the connection with the large deviations function
of the unperturbed dynamics I(ρA|ρ̄). Nevertheless, one already expects that if the
properties FNL(∆U ; ρA,∆NA = F (ρA,∆NA) and the macroscopic detailed balance
both hold, FNL will be equal to F (ρA,∆NA) = −I ′(ρA|ρ̄)∆NA which may be a good
departure to connect the work with the large deviations function mentioned above.
Hence, we first consider this simple case for which a second law holds before briefly
moving toward the more complex case for which FNL is genuinely non-linear in ∆U ,
and thus different from the unperturbed dynamic force F .

3.3.1 Linear tilting in the coarse-grained transition rates

We start with the first class of dynamics for which FNL(∆U ; ρA,∆NA) = F (ρA,∆NA)
is independent of ∆U . Then, the average work reads

βW[0,T ] = T
∫ 1

0
ds

∑
∆NA 6=0

[
F (∆U(s); ρ(T )

A (s),∆NA)− F (ρ(T )
A (s),∆NA)

]
× ϕ(∆U(s); ρ(T )

A (s); ∆NA) . (3.55)

As suggested just above, one can glimpse a connection with the large deviations func-
tion by remembering now the symmetric and anti-symmetric decomposition of the
forces F . Indeed, according to (2.43), one can decompose F into F (S) + F (A) with

F (S)(ρA,∆NA) = −I ′(ρA|ρ̄)∆NA (3.56)
F (A)(ρA,∆NA) = F (ρA,∆NA)− F (S)(ρA,∆NA) .

A natural decomposition follows in the same way for the perturbed process by intro-
ducing the associated adjoint dynamics. However, since transition rates depend on
time4 through the perturbation ∆U(τ/T ), the stationary dynamics is not very well
defined. The natural way to proceed is rather to define an adjoint process for each
dynamics with a fixed value of the tilting ∆U . It will help to measure the lack of
quasi-staticity of the perturbed dynamics, i.e. how far the state of the perturbed
systems is from the instantaneous stationary point ρ∗∆U

A of the perturbed dynamics
at time τ for which ∆U(τ/T ) = ∆U . Reproducing the argument outlined in section

4Technically speaking, one sometimes says that the process is not autonomous.
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Chapter 3. Additivity property of the large deviations function

2.4.3, one can thus introduce

F (S)(∆U ; ρA,∆NA) = −I ′∆U(ρA|ρ̄)∆NA (3.57)
F (A)(∆U ; ρA,∆NA) = F (∆U ; ρA,∆NA)− F (S)(∆U ; ρA,∆NA) ,

with I ′∆U(ρA|ρ̄) the large deviations function associated with the dynamics at fixed
value of the external potentials difference ∆U .

Using the above decomposition, the work (3.55) reads now

βW[0,T ] = T
∫ 1

0
ds

(
I ′(ρ(T )

A (s)|ρ̄)− I ′∆U(s)(ρ
(T )
A (s)|ρ̄)

)
J(∆U(s); ρ(T )(s)) (3.58)

+ T
∫ 1

0
ds

∑
∆NA 6=0

[
F (A)(∆U(s); ρ(T )

A (s),∆NA)− F (A)(ρ(T )
A (s),∆NA)

]
× ϕ(∆U(s); ρ(T )

A (s),∆NA) .

As we have seen in 2.4.3, the presence of the second term on the right hand side is
related to the breaking of time-reversal symmetry or, to put it another way, to the
non-vanishing entropy production as shown in appendix A. Thus, it will disappear if
macroscopic detailed balance holds.

Let us focus for the moment to the first term involving I ′∆U(ρA|ρ̄)) and I ′(ρA|ρ̄).
First, one immediately notices that the first term under the integral is a total derivative
in time since ρ(T )

A (s) obeys the equation (3.47). The second term is however not a total
time derivative since I ′∆U(s) depends on time. The term in which I ′∆U is involved can
be seen as the large deviations contribution to what can be called the free energy
dissipation rate (see [Ge and Qian, 2017]):

Ḟdiss(∆U ; ρA) ≡ −I ′∆U(ρA|ρ̄)J(∆U ; ρA) . (3.59)

which happens to be always positive [Ge and Qian, 2017].

Then, the first term in (3.58) reads

[
I(ρ(T )

A (1)|ρ̄)− I(ρ(T )
A (0)|ρ̄)

]
+ T

∫ 1

0
ds Ḟdiss(∆U(s), ρ(T )

A (s)) . (3.60)

A partial conclusion of our analysis at this stage already allows one to write the
second law when macroscopic detailed balance holds. Indeed, if so, FA = 0 and one
gets

βW[0,T ] =
[
I(ρ(T )

A (1)|ρ̄)− I(ρ(T )
A (0)|ρ̄)

]
+ T

∫ 1

0
ds Ḟdiss(∆U(s), ρ(T )

A (s) (3.61)

>
[
I(ρ(T )

A (1)|ρ̄)− I(ρ(T )
A (0)|ρ̄)

]
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3.3. Chemical Potential and external potential

since the last term is positive. One would expect that the last term vanishes in the
quasi-static limit when T →∞. Nevertheless, it does not appear completely obvious.
To solve this issue, one should look at a perturbative analysis with respect to the small
parameter T−1. This is the subject of the next paragraph.

Quasistatic limit and corrections. We analyse what happens when the protocol
∆U(s) is very slow, i.e when T → ∞. ρ

(T )
A (s) is solution of the time-dependent

macroscopic dynamics

1
T

dρ(T )
A

ds (s) = J(∆U(s); ρ(T )
A (s)) . (3.62)

Looking for a perturbative solution of the form

ρ
(T )
A (s) = ρ

(0)
A (s) + 1

T
ρ

(1)
A (s) +O(T−2) (3.63)

gives

J(∆U(s); ρ(0)
A (s)) = 0 =⇒ ρ

(0)
A (s) = ρ

∗∆U(s)
A (3.64)

dρ(0)
A (s)
ds = ρ

(1)
A (s) ∂J

∂ρA
(∆U(s), ρ(0)

A (s)) (3.65)

=⇒ ρ
(1)
A (s) = dρ(0)

A (s)
ds

(
∂J

∂ρA

)−1

. (3.66)

Injecting this expansion in the last term involving Ḟdiss in equation (3.60) gives, at
first order in T−1:
∫ 1

0
ds Ḟdiss(∆U(s), ρ(T )

A (s)) = 1
T

∫ 1

0
ds ρ(1)

A (s)∂Ḟdiss

∂ρ
(∆U(s), ρ(0)

A ) +O(T−2) (3.67)

One has used the fact that Ḟdiss(∆U(s); ρ(0)
A (s)) = 0 since ρ(0)

A (s) = ρ
∗∆U(s)
A and that

I ′∆U(s) vanishes at this point.

Eventually, one gets for the first term of (3.60)

[
I(ρ(T )

A (1)|ρ̄)− I(ρ(T )
A (0)|ρ̄)

]
+
∫ 1

0
ds Ḟdiss(∆U(s), ρ(T )

A (s))

−−−→
T→∞

I(ρ(T )
A (1)|ρ̄)− I(ρ(T )

A (0)|ρ̄) . (3.68)

We have thus demonstrated that the last term of the first equality of (3.61) vanishes
at the quasi-static limit.
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Chapter 3. Additivity property of the large deviations function

A second law when macroscopic detailed balance holds

We have already seen that the large deviations function β−1I(ρA|ρ̄) plays the role of
a non-equilibrium free energy function and satisfies the second law:

W[0,T ] > β−1I(ρ(T )
A (1)|ρ̄)− β−1I(ρ(T )

A (0)|ρ̄) . (3.69)

As a by-product of our analysis, one has derived, when detailed balance holds, that

I ′∆U(ρA|ρ̄) = I ′(ρA|ρ̄) + β∆U . (3.70)

This simply comes from the decomposition of the forces (3.56), (3.57) for F (A) = 0
(since macroscopic detailed balance holds), as well as the hypothesis that F (∆U ; ρA,∆NA)
is linear in ∆U . Evaluating this expression at ρA = ρ∗∆U

A , i.e at the stationary state
of the dynamics with a presence of a fixed tilt ∆U , cancels I∆U(ρA|ρ̄) and one obtains

I ′(ρ∗∆U
A |ρ̄) + β∆U = 0 . (3.71)

If, in addition to macroscopic detailed balance, additivity holds, the above relation
implies the relation postulated on phenomenological grounds by Sasa and Tasaki in
their seminal paper [Sasa and Tasaki, 2006] that relates chemical potentials at contact
and external potentials

µcont
A (ρ∗∆U

A ) + βUA = µcont
B (ρ∗∆U

B ) + βUB . (3.72)

This relation can be used to measure the chemical potentials of, say system A, as we
will see in a next section devoted to the possible experimental way of measuring the
large deviations I(ρA|ρ̄).

When macroscopic detailed balance does not hold

When macroscopic detailed balance does not hold, the supplied work W[0,T ] (3.58)
involves house-keeping [Ge and Qian, 2017; Hatano and Sasa, 2001; Oono and Paniconi,
1998] terms that do not vanish, even at the quasi-static limit. They read, according
to (3.58),

T
∫ 1

0
ds

∑
∆NA 6=0

[
F (A)(∆U(s); ρ(T )

A (s),∆NA)− F (A)(ρ(T )
A (s),∆NA)

]
ϕ(∆U(s); ρ(T )

A (s),∆NA) . (3.73)

Before going further, one should make an important remark. Indeed, it would be
tempting to try to assert a relation between F (A)(∆U ; ρA,∆NA) and F (A)(ρA,∆NA)
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3.3. Chemical Potential and external potential

when F is linear in ∆U . Nevertheless, this cannot be done since we do not know
a priori the dependence in ∆U of I ′∆U . The latter can be determined in general
by the Hamilton-Jacobi equation (2.23) of the tilted dynamics. But when macro-
scopic detailed balance is broken, it is not obvious that the large deviations function
stays linear in ∆U , even when F (∆U ; ρA,∆NA) is linear in ∆U and the activity
a∆U(ρA,∆NA) = a(ρA,∆NA) does not depend on ∆U . This can be guessed by a
perturbation calculation from the Hamilton-Jacobi (2.23) for small ∆U : the term of
order ∆U2 has no reason to vanish.

That being said, the presence of these terms (3.73) – that are sometimes referred
to as house-keeping entropy productions (see appendix C and [Ge and Qian, 2017;
Hatano and Sasa, 2001; Oono and Paniconi, 1998]) – cannot be avoided even at the
quasi-static limit and have to be subtracted in order to have access to the work W[0,T ].
If one knows by another mean the large deviations function (see next section about the
possible experimental measures of the large deviations I(ρA|ρ̄)), a measure of the work
could thus be another possibility to assess the presence of a non-zero anti-symmetric
force and thus the breaking of the macroscopic detailed balance.

3.3.2 Non-linear bias in the force

We now discuss very briefly the case for which the force F (∆U, ρA,∆NA) is non-
linear in ∆U . Basically, the same calculation as for the linear case still holds but
now F (ρA,∆U) should be replaced by FNL(∆U ; ρA,∆NA) as written in (3.55). As-
suming the simple case, i.e. the case for which macroscopic detailed balance holds
for both dynamics defined by the two forces F (∆U ; ρA,∆NA) = −I ′∆U(ρA|ρ̄)∆NA,
FNL(∆U ; ρA,∆NA) = −INL∆U

′(ρA|ρ̄)∆NA, and for the same activity a∆U(ρA,∆NA),
one gets in the quasi-static limit,

βW[0,T ] = −
∫ 1

0
ds INL ′∆U(s)(ρ

(T )
A (s)|ρ̄)ρ̇(T )

A (s) , (3.74)

where ρ(T )
A (s) is the trajectory followed by the perturbed dynamics. Since INL∆U

′ does
depend on ∆U , one does not recognise in general a total time derivative and it seems
that there does not exist any second law for this non-linear ∆U dependence in the
force F (∆U, ρA,∆NA).

3.3.3 Conclusion on the second law

This rather long discussion aimed at looking for a second law in which the large devi-
ations function of the densities I(ρA|ρ̄) would play the role of a non-equilibrium free
energy. We have found that it is indeed the case if the force F (∆U, ρA,∆NA) reads
F (ρA,∆NA) + β∆U∆NA and if macroscopic detailed balance holds. If the latter con-
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straint does not hold, we have seen that new terms involving the anti-symmetric part
of the forces F should be considered. Eventually, if the tilted force F (∆U, ρA,∆NA)
involves non-linear contributions of ∆U , it has been sketched that one cannot expect
a second law involving the unperturbed large deviations function I(ρA|ρ̄). This thus
questioned the physical meaning of transition rates that would not lead to a linear
dependence in ∆U , but this issue will not be treated here and is postponed for future
work.

3.4 Contact with a reservoir

We have discussed with some details the general situation where two different systems,
whose size ratio γA = 1− γB is arbitrary but finite, are in contact. We would like here
to investigate the situation where one of the two systems, say B, is infinitely large
compared to the other and plays the role of a reservoir of particles. It corresponds to
taking the limit γA → 0 (and γB → 1).

Indeed, we have seen that for finite γA, the stationary large deviations function of
the density ρA is solution of the Hamilton-Jacobi equation which involves macroscopic
transition rates ϕ(ρA; ∆NA). The transition rates do not depend explicitly on the
volumes of systems A and B which means that I ′(ρA|ρ̄) is independent of γA. The
only dependence on the size ratio γA is hidden in I ′(ρA|ρ̄) through ρB = γ−1

B (ρ̄−γAρA).
As a consequence, when γA → 0, ρB → ρ̄ which simply means that when B becomes
very large compared to A, the difference of mass is such that B does not see its
density changed by any exchange of particles of the order of magnitude of the number
of particles that A contains.

At the vanishing exchange rate limit, the global stationary probability distribution
(2.18) reads, when γA → 0

P (CA, CB) ∼ e−VAI(ρA|ρ̄)PA(CA|ρA)PB(CB|ρ̄) , (3.75)

where ρAVA = N (CA) and ρ̄VB = N (CB). Summing over CB at fixed CA and inserting
PA(CA|ρA) = FA(CA)/ZA(ρA) with FA(CA) = e−βH(CA)+υ(CA) the out-of-equilibrium
weight of the non-equilibrium stationary measure of the isolated system A (see section
3.1.2), the stationary probability distribution of system A in contact with B is thus
given by

P (CA) ∼ FA(CA)eVA(−I(ρA|ρ̄)+ψA(ρA)) , (3.76)

where ψA(ρA) = limVA→∞
1
VA

lnZA(ρA). This expression can be read as a generalised
grand-canonical distribution. Nevertheless, as one can see in (3.76), the term in the
exponential that would be the chemical potential of the reservoir times the number of
particles in A if one were at equilibrium is generally very different. Indeed, one can
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see that
ν(ρA) = ψA(ρA)− I(ρA|ρ̄) (3.77)

is generally not linear in ρA. When I is additive, I ′(ρA|ρ̄) = µcont
A (ρA)−µcont

B (ρB), and
ν reads

ν(ρA) = µcont
B (ρ̄)ρA −

∫ ρA

ρ∗A

dρ
[
µcont
A (ρ)− µiso

A (ρ)
]
, (3.78)

where µiso
A = dψA/dρA. One gets a contribution similar to the equilibrium grand-

canonical distribution, namely µcont
B ρA, but the supplemental term is in general still

nonlinear in ρA and thus cannot be interpreted as a meaningful correction to the
chemical potential of the reservoir: standard grand-canonical mass fluctuations no
longer hold in this setting.

To conclude this section, one would like to discuss the notion of ensemble equiv-
alence in our setting. Even if the mass fluctuation term ν(ρA) is not linear in A,
the microscopic fluctuations of the configurations CA are the same as in the isolated
systems as long as the slow exchange limit holds (see (3.75)). Thus, the observed
fluctuations of an isolated system A containing a fixed number of particles N = VAρA

can be reproduced in the "grand-canonical" ensemble – i.e. with a reservoir – at the
thermodynamic limit if I(ρA|ρ̄) has its minimum at the same target density as the
isolated system. In this sense, the vanishing exchange rate at contact guarantees a
certain notion of equivalence between ensemble. However, as for the differences be-
tween internal fluctuations of mass and global fluctuations of mass (when the system
of interest is brought into contact with a reservoir of particles), one can see that the
fluctuations are very different if the chemical potential at contact is different from the
one attached to the isolated system – when the latter can be defined, i.e. generally
when there is not any long-ranged correlations inside the system. This later case –
which in short reproduces the equilibrium situation – will be discussed in more details
in 4.3.2.

3.5 Measure of the large deviations function

An essential issue about the chemical potentials we defined in this out-of-equilibrium
context —when they exist!— is our ability to measure them. We briefly discuss here
several ways to perform such a measurement. Similarly to the situation at equilibrium,
one can think about:

1. putting the system of interest in contact with a “thermometer” whose chemical
potential at contact is known. Of course, in our non-equilibrium situation, the
property of the contact are important and need to be taken into account when
the measure is performed.
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2. measuring the stationary densities to get access to the derivative of the large
deviations I by biasing the dynamics (with external potentials for instance).

3. measuring the supplied work associated with a given protocol, starting from a
known configuration of densities.

Even if our focus will be on the situation for which chemical potentials can be defined,
the last two measurement allow us to access the large deviations function in general,
additive or not.

3.5.1 Contact with a thermometer

The first natural way one may think of to measure the chemical potential of a system
is to put it in contact with a very small known system whose density can be easily
measured and thus be calibrated. This situation is exactly the reversed one of the set-
up where the system of interest is put in contact with a reservoir. Here, the system
of interest, says A, plays the role of the reservoir and the thermometer, says B, is the
“small system”. This corresponds to the limit γA → 1 (thus γB → 0) which intuitively
means that the density of system A does not change in this asymptotic limit: the
thermometer does not perturb the system of interest. As long as chemical potentials
at contact can be defined, i.e. that detailed balance and factorisation of transition
rates hold, they equalise at the stationary state, leading to

µcont
A (ρ̄) = µcont

therm(ρtherm) . (3.79)

Thermometer at equilibrium. A particular case is when the thermometer is itself
an equilibrium system. Hence, µcont

therm = µeq
therm. The equality (3.79) above does depend

on the specificity of the contact only through θA, the factor that depends on system A,
involved in the microscopic transition rates Tc. Anyhow, one has to pay attention to
the contact design which needs to produce factorised transition rates at contact. This
natural way to measure intensive thermodynamic parameters was the one advocated
on a phenomenological ground by [Sasa and Tasaki, 2006].

3.5.2 Biasing the dynamics

Another natural and interesting way to have access to the large deviations function I,
already considered in the last section 3.3 by using external potential (see also [Sasa
and Tasaki, 2006] for a phenomenological account), is to bias the dynamics to explore
rare events of the unbiased dynamics. In contrast with section3.3, we would like to
emphasise here the connections between a general bias (which can be different from
an external potential difference) and the large deviations function I.
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Considering the generating moment function

Z(λ) =
〈
eλVAρA

〉
SS

=
∑
ρA

P (ρA|ρ̄)eλV ρ � eVA infρA (λρA−I(ρA|ρ̄)) (3.80)

and its associated large deviations rate

χ(λ) = lim
VA→∞

1
VA

lnZ(λ) = λρ∗A(λ)− I(ρ∗A(λ)|ρ̄) , (3.81)

where ρ∗(λ) = mathrmargmaxρA(λρA − I(ρA|ρ̄))). This means that ρ∗A(λ) is the
solution, supposed unique in the absence of phase transition, of the equation

λ = I ′(ρ∗A(λ)|ρ̄) . (3.82)

Hence, if one knows the bias λ and is able to measure ρ∗A by an other mean, the
value of the derivative of the large deviations function is straightforward according to
(3.82).

But naturally, equation (3.82) is just formal and with no use if the tilting λVAρA
cannot be implemented physically in a real experiment. In section 3.3.1 which has
discussed a generalised form of the second law in our specific context, we have seen
that biasing the macroscopic transition rates with λ = β∆U such that the tilted
force F (∆U ; ρA,∆NA) reads F (ρA,∆NA)− β∆U and assuming macroscopic detailed
balance, led to a tilt β∆U of the large deviations function such that β∆U = I ′(ρ∗∆U

A |ρ̄).

Is it the case for a different modification of the transition rates or without detailed
balance? To discuss generally this issue, one considers macroscopic transition rates
ϕ(λ; ρA,∆NA) that depend on an extra-parameter λ that can be controlled by an
external operator. λ is a generic name and may be an external potential difference
applied on each part of the whole system, or even the driving force applied on one or
both systems, etc. We choose λ such that ϕ(λ = 0; ρA,∆NA) = ϕ(ρA,∆NA).

To capture the change induced by such an external parameter on the large devia-
tions function, one can look at its derivative with respect to λ. To be clear, a tilt λ
acts linearly as in (3.82) if and only if ∂I ′/∂λ is a constant, say5 −K. In general, one
can compute ∂I ′/∂λ directly from the Hamilton-Jacobi equation (2.23) of the modified
dynamics ∑

∆NA 6=0
ϕ(λ; ρA,∆NA)

(
eI
′(λ;ρA|ρ̄)∆NA − 1

)
= 0 . (3.83)

5In this circumstances, by integration, I ′(λ; ρA|ρ̄) = I ′(ρA|ρ̄) −Kλ. Evaluating the last equality
at ρ = ρ∗λA which is the saddle-point associated with the modified dynamics with λ, one obtains
I ′(ρ∗λA |ρ̄) = Kλ.
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Taking the derivative of (3.83) with respect to λ gives

∂I ′

∂λ
=
(
J†(λ; ρA)

)−1
 ∑

∆NA 6=0

∂ϕ

∂λ
(λ; ρA; ∆NA)

(
eI
′(λ;ρA|ρ̄)∆NA − 1

) . (3.84)

The right hand side of the last equation is not constant in general. When
ϕ(λ; ρA,∆NA) = ϕ(ρA,∆NA)e

λ
2 ∆NA , the latter equation (3.84) reads

∂I ′

∂λ
= −J(λ; ρA) + J†(λ; ρA)

2 J†(λ; ρA) . (3.85)

Of course, when macroscopic detailed balance holds, J = J† and ∂I ′/∂λ = −1.
One thus eventually notices that the effect of an external parameter λ leads gener-

ally to a perturbation of I which is not linear in λ. Even when the perturbation only
changes the “force” F (ρ; ∆NA) and not the activity of the macroscopic transition rate,
the perturbation is quite complex. The only case for which a linear perturbation holds
is when detailed balance holds. Hence, measuring the derivative of the large deviations
through the perturbation λ is not always an easy task and generally imposes to possess
additional information on its response (see (3.84)).

3.5.3 Work measure

As discussed in section 3.3, when macroscopic detailed balance holds as well as fac-
torisation of transition rates, one can have access to rare events of the unperturbed
dynamics by applying uniform external potentials over each sub-systems. By mea-
suring the supplied work necessary to reach in a quasi-static way a certain stationary
state, one can have access to the value of the large deviations function for this new
stationary state. According to (3.69), one obtains in the quasi-static limit

W[0,T ] = β−1
(
I(ρ(f)

A |ρ̄)− I(ρ(i)
A |ρ̄)

)
= β−1I(ρ(f)

A |ρ̄) , (3.86)

if ρ(i)
A is chosen to be the stationary state of the unperturbed dynamics.
One can also remark that a similar measurement can be performed when macro-

scopic detailed balance does not hold, if one knows by another mean the anti-symmetric
term (3.73) (related to the house-keeping entropy production) that hence needs to be
removed to get access to the large deviations function I(ρA|ρ̄).

3.5.4 Conclusion on the measurement procedures

One notices that the measure of the work in the quasi-static limit, as well as the
measure of the derivative of the large deviations function through the tilting expounded
in 3.5.2, allows one only to measure the whole large deviations function or its derivative
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and not chemical potentials directly. Nevertheless, if the latter is additive and known
for every accessible densities ρA, ρB, the two contributions (3.1) can be isolated if one
of them is known, for instance if one of the system is at equilibrium.
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CHAPTER 4

Lattice models in contact

In this chapter, we investigate the framework proposed in the last chapters 2, 3 on
specific lattice models in contact. Examples considers are mostly classic models in the
literature [Evans and Hanney, 2005; Katz et al., 1984; Liggett, 2012; Spitzer, 1970; Zia,
2010]. We begin (section 4.1) with a short review of previous studies on two Zero Range
Processes (ZRP) in contact [Bertin et al., 2006, 2007]. This exactly solvable system is
one of the few non-equilibrium examples that reproduces an equilibrium-like situation.
Nevertheless, this model has the drawback that its stationary probability distribution
does not depend on the driving force1 and thus does not enable one to observe a gen-
uine difference between chemical potential at contact, µcont, and chemical potential of
the isolated system µiso (see 3.1.2). This is also the case for other, well-known, simple
lattice models uniformly driven on a ring, such as the Asymmetric Simple Exclusion
Model (ASEP) for instance [Derrida, 1998], for which the stationary probability dis-
tribution is outright the equilibrium one. For this reason, we have imagined, with Éric
Bertin, an original mass transport model, exactly solvable, which displays a generic
dependence of the external driving (also the latter acts a bit differently than a simple
uniform driving field). A short presentation of this original model (more details can
be found in [Guioth and Bertin, 2017], which is reproduced in appendix C as well
as an extensive study of the contact between two of such systems is the subject of
the second section (section 4.2). We provide also some numerical simulations that
confirms the suitability of the theoretical framework expounded in the first chapters
2 and 3. Then, moving (section 4.3) to space dimensions larger that one, we interpret
the most relevant numerical results available in the literature in light with our analysis
developed in chapters 2 and 3. The latter would need detailed numerical simulations
to be completely validated (since exact solutions of the models considered are not
available) but we believe that the analysis available here already gives an interesting

1At least for a simple tilting as the one considered in (4.8).
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new insight of the available literature on the subject matter. Eventually, we change
scale and propose in the last section (section 4.4) a short presentation of the contact
between two non-equilibrium systems described by the quite recent Macroscopic Fluc-
tuation Theory (MFT) [Bertini et al., 2002, 2015a]. The latter finds a natural place
here since it was imagined on the basis of studies on driven lattice gases and other
lattice models. We will nevertheless see that MFT does not account for the effect
observed in microscopic stochastic models since it is actually a framework that deals
with weakly driven systems and assumed a local equilibrium hypothesis.

4.1 Case of the Zero Range Process (ZRP)

Figure 4.1 – Sketch of a Zero Range Process.

The contact between two non-equilibrium systems has first been investigated on
a theoretical side by a work on Intensive Thermodynamic Parameters (ITP) [Bertin
et al., 2006, 2007; Martens and Bertin, 2011]. The authors considered the particular
case of the Zero Range Process (ZRP) that presents a very simple factorised structure.
We review principal results of this model in this section.

The ZRP belongs to the general category of mass transport models on lattice
[Evans and Hanney, 2005; Evans et al., 2004, 2006b; Levine et al., 2005; Zia et al.,
2004]. Many different versions of the ZRP2 exist but we will consider here a model
very close to the original model introduced by Spitzer [Spitzer, 1970] which involves
discrete masses in one dimension. Each site i ∈ J1, |Λ|K is occupied by a mass ni ∈ N.
Several update rules are possible but one distinguishes in general a parallel dynamics
for which all sites are updated simultaneously, compared to an asynchronous dynamics
for which a single particle jumps at a time, randomly chosen. For the latter dynamics
that will be considered here, a particle is transfered from site i to site i+ 1 according
to the following rate:

T (ni) = a
fi(ni − 1)
fi(ni)

, (4.1)

where a is a site-independent activity parameter, fi an arbitrary positive function. Of
course, mass is conserved and T (n) = 0 if n < 1. Thus, the explicit transfer reads:

2There exist in particular different versions depending on whether the mass exchanged between
sites which is discrete or continuous.
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n′i+1 = ni+1 + 1 and n′i = ni − 1, n′i being the mass at site i after the jump. With
this rule, the transport is totally biased and generates a total flux along the ring. As
already announced, the stationary probability distribution is completely factorised:

P
(
{ni}|Λ|i=1

)
= 1
Z(N)

|Λ|∏
i=1

fi(ni) δ
 |Λ|∑
i=1

ni −N

 . (4.2)

Now, we would like to consider two of such ZRP systems and put them into contact.
To simplify the discussion, both systems will be considered to be homogeneous and fi
will not depend on each site i but only on the system k = A, B. Also, the activity
parameter a = ak will also depend on the system k = A, B. One needs to define
explicitly the dynamics at contact which can be chosen to take place at few sites of
the two rings. Since both systems are homogeneous, the sites belonging to the contact
region are all equivalent. We note C = {(iA, jB)} the set of sites (iA, jB) of each
systems that are linked together. For a transfer of one particle from A to B or from
B to A, the microscopic transition rates on the link (iA, jB) ∈ C read respectively

TiA→jB(niA) = ac
A

fA(niA − 1)
fA(niA) and TjB→iA(njB) = ac

B

fB(njB − 1)
fB(njB) . (4.3)

Even in this heterogeneous contact dynamics, the ZRP model is one of the few
model that is exactly solvable. That explains without doubt its strong interest for
the first studies published on the subject [Bertin et al., 2006, 2007]. For the set-
up described above, the steady-state distribution can be found in the appendix of
[Pradhan et al., 2011]. It reads

P ({niA}, {niB}) = 1
Z(N)

 ∏
iA∈ΛA

fA(niA)
∏

iB∈ΛB
fB(niB)

 e− ln(ac
A)NA

× e− ln(ac
B)NBδ (N ({niA}) +NB({niA})−N) . (4.4)

with N ({nik}) = ∑
ik∈Λk nik .

Hence, one can compute exactly the stationary probability distribution P (NA|N)
from the distribution of the micro-state without assuming a vanishing exchange rate
limit at contact. The latter reads

P (NA|N) = ZA(NA)ZB(NB)
Z(N) e−(ln(ac

A)NA+ln(ac
B)NB) , (4.5)
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where

Zk(Nk) =
∑

{ni}i∈Λk

∏
i∈Λk

fk(ni)δ
∑
i∈Λk

ni −Nk

 (4.6)

� exp [−|Λk| (µk(ρk)ρk − ln gk(µk(ρk)))] ,

with ρk = Nk/|Λk|, g(µ) = ∑
n>0 f(n)eµn. The chemical potential µk(ρk) is implicitly

defined such that such that

g′(µk(ρk))
g(µk(ρk))

=
∑
n>0 nf(n)eµk(ρk)n∑
n>0 f(n)eµk(ρk)n = ρk

The chemical potentials µk, k = A, B, are then chemical potentials associated with iso-
lated systems. The stationary densities are then given by the equalisation of chemical
potentials which reads [Pradhan et al., 2011, see appendix]

µA(ρA) + ln(ac
A) = µB(ρB) + ln(ac

B) . (4.7)

The excess chemical potential ln(ac
k) are reminiscent of the difference in the activity

of the jumps from A to B compared to from B to A. They can be interpreted as (the
logarithm of) effective temperatures which are not uniform over the two systems, thus
producing a bias. Nevertheless, we should stress that this bias is already present in
the microscopic transition rates and corresponds to an additional force in the contact
region, as discussed in section (3.1.3). The latter is thus not due to a genuine breaking
of the microscopic detailed balance at contact as discussed in chapter 2.

These exact computations are made possible by the factorisation property of the
stationary distribution which is definitely not ubiquitous in the realm of non-equilibrium
driven systems. Also, the transport is totally biased and leads to an infinite entropy
production which is thus not controlled by any parameter like a driving force for in-
stance. This totally biased dynamics can be relaxed if one also allows exchange from
to the left from site i to site i − 1 with a probability pL. The probability to jump to
the right is then pR = 1− pL. The transition rates reads in this case

Ti→ i+1(ni) = pRT (ni) Ti→ i−1(ni) = pLT (ni) . (4.8)

When pR = pL = 1
2 , the system is unbiased and one can recover the totally biased

system when pR = 1. But whatever the choice of pR, pL, it can be shown that the
stationary probability distribution does not depend on the bias and takes the same
form as in the totally biased system (4.2) [Evans and Hanney, 2005; Evans et al.,
2004, 2006b]. In particular, the unbiased system verifies detailed balance with respect
to the same probability distribution as the totally biased system. Hence the stationary
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probability distribution does not depend on the forcing and so the chemical potentials
(4.7) defined above.

However, several numerical simulations of different driven lattice gas that will be
discussed henceforth (see [Dickman, 2014, 2016; Dickman and Motai, 2014]) as well
as general theoretical arguments [Colangeli et al., 2011; Maes and Netočnỳ, 2010;
McLennan Jr, 1959] have shown that one could expect a generic dependence of the
external driving force (see related discussion in chapter 3). In order to study such a
dependence we have imagined a new mass transport model inspired by the ZRP whose
stationary distribution can also be exactly computed and shows an explicit dependence
on the driving force. A brief description of this system is the object of the next section.

4.2 A new mass transport model

Figure 4.2 – Sketch of the of the oscillating driving force of our mass transport model.

As for the ZRP, one considers a one dimensional lattice Λ of |Λ| sites. The number
of sites is assumed to be even and we write |Λ| = 2L with L an integer. Each site
i is occupied by ni > 0 particles that cannot exceed a maximum number of nmax

particles per site, that may be infinite. The dynamics of this new model is inspired
by an equilibrium KCM (Kinetically Constrained Models) model [Bertin et al., 2005]
as well as by the ZRP [Evans and Hanney, 2005]. Contrary to most of the standard
mass transport models, the dynamics is synchronous and involves two partitions of
the lattice, namely P1 = {(2k, 2k+ 1)}k∈J0,LK and P2 = {(2k+ 1, 2k+ 2)}k∈J0,LK which
gather alternate adjacent pairs of sites. A partition is selected – at a rate that will
be defined henceforth – randomly between P1 and P2 with equal probability. Once
a partition Pj has been chosen, all links belonging to Pj are updated in parallel and
independently. A link (i, i+ 1) is updated according to the following transition rate

T (n′i+1, n
′
i|ni+1, ni) = K(d′i|n̄i) =

exp
{
−
[
ε
(
n̄i + d′i

2

)
+ ε

(
n̄i − d′i

2

)]
+ f

2d
′
i

}
Q(n̄i)

. (4.9)

with n′i+1 + n′i = ni+1 + ni since mass is conserved (T = 0 otherwise). One has called
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d′i = n′i+1 − n′i and n̄i = (ni + ni+1)/2 = (n′i + n′i+1)/2. Q(n̄i) is a normalisation factor
such that ∑n′1,n

′
2
T (n′2, n′1|n1, n2) = 1. We emphasise that the net transfer of particles

∆ni = (n′i−ni) = −(n′i+1−ni+1) from site i to site i+ 1 is given by ∆ni = (d′i− di)/2
with di = ni+1 − ni. One then notices that the probability to choose a density gap
d′i between site i and i + 1 is independent of di which means that the probability to
transfer ∆ni particles does not depend on the initial difference in density of the two
sites as one might expect intuitively for a mass transport model. In the absence of f ,
the uniform energy ε(n) attached to each site tends to flatten the density over the link
(if we assume ε(n) convex). The parameter f can be interpreted as a driving force
since it pushes particles toward the site i + 1 whatever the initial configuration. In
terms of local detailed balance, on has:

ln T (n′i+1, n
′
i|ni+1, ni)

T (ni+1, ni|n′i+1, n
′
i)

= −∆εi+1 −∆εi + f∆ni (4.10)

with ∆εi = ε(n′i) − ε(ni). Hence, equation (4.10) confirms the interpretation of f as
a driving force since f∆ni can be interpreted as the non-equilibrium work needed to
move a mass ∆ni from site i to site i+1. As for the alternation of the partition choice,
one can imagine that this is produced by an oscillating confining potential of two sites
period. In the presence of a driving force f , the oscillating potential would look more
like a saw-tooth potential of slope −f as shown on figure 4.2.

The stationary probability density function can be exactly computed (see [Guioth
and Bertin, 2017], reproduced in appendix C for the continuous mass version of this
model but the calculations are the same) and reads

P ({ni}i∈Λ) = 2
Z(|Λ|, N) exp

−∑
i∈Λ

ε(ni)
 cosh

∑
i∈Λ

(−1)ifni

 . (4.11)

One thus observes that the stochastic oscillating forcing produces long-range static
correlations that can be guessed by the presence of the hyperbolic cosine term in
(4.11) (see [Guioth and Bertin, 2017] or appendix C for detailed calculations of the
static two-points correlation function).

4.2.1 Isolated chemical potential

Even if the distribution P is not factorised, one can define a chemical potential asso-
ciated with one isolated system, related to the partition function Z(|Λ|, N). Indeed,
from the normalisation of the stationary probability (4.11) the partition function of
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our model reads

Z(|Λ|, N) = 2
∑
{ni}i∈Λ

[
L∏
k=1

f+(n2k)f−(n2k+1)
]
δ∑

i∈Λ ni, N
(4.12)

where f+(n) = exp [−ε(n) + fn] and f−(n) = exp [−ε(n)− fn]. Introducing the
Fourier transform of the Kronecker delta, one obtains

Z(|Λ|, N) = 2
∫ π

−π
dθe−|Λ|

[
iθρ̄−1

2 ln(z+(iθ)z−(iθ))
]
, (4.13)

where one has introduced zα(x) = ∑
n fα(n)exn, α = ± and ρ̄ = N/|Λ|. Assuming that

there is only one saddle-point at µ(ρ̄), the partition function eventually reads

Z(|Λ|, N) � e
−|Λ|

[
µ(ρ̄)ρ̄−1

2 ln(z+(µ(ρ̄))z−(µ(ρ̄)))
]

(4.14)

with the implicit equation verified by µ(ρ̄) reading

ρ̄ = 1
2

(
z′+(µ(ρ̄))
z+(µ(ρ̄)) + z′−(µ(ρ̄))

z−(µ(ρ̄))

)
. (4.15)

The quantity µ(ρ̄) is naturally interpreted as the chemical potential associated with
the isolated system.

Single site marginal distribution. Integrating over all except one site the sta-
tionary distribution (4.11), the single site probability distribution reads

P (n|ρ̄) = exp [µ(ρ̄)n]
2

(
f+(n)
z+(µ(ρ̄)) + f−(n)

z−(µ(ρ̄))

)
(4.16)

= exp [µ(ρ̄)n− ε(n)]
z0(µ(ρ̄)) exp (υ[µ, f ](n))

with

exp (υ[µ, f ](n)) = z0(µ)
2

(
efn

z+(µ) + e−fn

z−(µ)

)
.

The quantity z0(x) reads ∑n f0(n)exn, where f0(n) = exp [−ε(n)], i.e. the stationary
weight for the driving force f = 0.

4.2.2 Definition of the contact

We now move to the study of the contact between two different systems say A and
B. As for the ZRP case, one needs to define precisely the dynamics at contact since
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only isolated systems have been defined insofar. We naturally adopt the framework
expounded in chapter 2. We want to connect both systems to each other with at least
one link, say iA ∈ ΛA and jB ∈ ΛB. But contrary to the bulk dynamics for which all
links are updated in parallel, the contact dynamics is assumed not to be synchronous
with respect to the bulk. An exchange between both systems is thus selected at a rate
very small compared to the bulk one of each system. The dynamics at contact needs to
satisfy local detailed balance without any forcing since there is a priori no reason that
the transition rates change when systems are driven out-of-equilibrium orthogonally
to the contact. Since an energy e(ni) is attached to each site filled by ni particles, we
set Tc, the transition rate at contact, such that it satisfies the local detailed balance
that reads

Tc(n′iA , n
′
jB
|niA , njB)

Tc(niA , njB |n′iA , n′jB) = exp
{
−
[
εA(n′iA)− εA(niA)

]}
exp

{
−
[
εB(n′jB)− εB(njB)

]}
,

(4.17)
if the mass conservation n′iA + n′jB = niA + njB holds, and Tc = 0 otherwise. From
here we will consider different dynamics that will differ by a different choice of the
“activity” parameter [Maes et al., 2008; Maes and Netočný, 2008] (we recall that the

activity refers to the parameter a in the decomposition Tc(C ′|C) = a(C, C ′)e
F (C,C′)

2

according to which a(C, C ′) = a(C ′, C) and F (C, C ′) = −F (C ′, C)).

Natural Dynamics. In this case, one chooses a transition rate at contact that looks
like the dynamics in the bulk, i.e. the transition rates depends on the final
configuration:

Tc(n′iA , n
′
jB
|niA , njB) ∝ exp

[
−εA(n′iA)

]
exp

[
−εB(n′jB)

]
. (4.18)

Sasa-Tasaki’s rule. For the Sasa-Tasaki’s rule which models a high energy barrier
separating both systems, the probability to transfer a particle from A to B (resp.
from B to A) only depends on the energy to go from the A side (resp. B side)
bottom of the barrier to its top. Hence, it reads:

Tc(n′iA , n
′
jB
|niA , njB) ∝

exp
{
−
[
εA(n′iA)− εA(niA)

]}
if n′iA < niA

exp
{
−
[
εB(n′jB)− εB(njB)

]}
if n′iA > niA

(4.19)

Kawasaki-Heat bath rule. This choice of transition rate is a classic one and does
not factorise in two terms that respectively depend on A and B:

Tc(n′iA , n
′
jB
|niA , njB) ∝ 2

1 + exp
{[
εA(n′iA)− εA(niA)

]
+
[
εB(n′jB)− εB(njB)

]} .
(4.20)
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The symbol ∝ means here that the transition rates are equal to the right hand side
up to a constant factor that set the typical time scale associated with the transition.
In the slow contact limit, the latter factor will be infinitesimally small.

4.2.3 Large deviations function and chemical potentials

Having specified the dynamics, we will compute here the large deviations function of
the density. Under the hypothesis that the exchange of particles between systems are
very rare, the coarse-grained transition rates (2.19) reads

ϕ(ρA,∆n) =
∑

niA ,njB

T (niA + ∆n, njB −∆n|niA , njB)P (niA|ρA)P (njB |ρB) . (4.21)

The notations used are the same as in chapter 2.

One-particle exchange

When only one particle can be exchanged, the macroscopic detailed balance (2.35)
always holds. To illustrate the dependence of the large deviations function – and thus
the possible chemical potentials – with respect to the dynamics at contact, we compute
the latter for the three contact dynamics presented in section 4.2.2.

Natural Dynamics. For the natural dynamics, the coarse-grained transition rates
reads

ϕ(ρA,+1) =
nAmax−1∑
niA=0

e−εA(niA+1)P (niA|ρA)
 nBmax∑

njB=1
e−εB(njB−1)P (njB |ρB)

 (4.22)

ϕ(ρA,−1) =
 nAmax∑
niA=1

e−εA(niA−1)P (niA|ρA)
 nBmax−1∑

njB=0
e−εB(njB+1)P (njB |ρB)


with |ΛB|ρB = N −|ΛA|ρA. Since microscopic transition rates are factorised, chemical
potentials associated with each system can be defined and reads, according to (3.5),

µcont
k (ρk) = ln

∑nkmax−1
nk=0 e−εk(nk)P (nk + 1|ρk)∑nkmax−1
nk=0 e−εk(nk+1)P (nk|ρk)

. (4.23)

where k = A, B. Using the expression of the single site probability distribution (4.16),
one finally obtains

µcont
k (ρk) = µiso

k (ρk) + ln
∑nkmax−1
nk=0 e−[εk(nk)+εk(nk+1)+µiso

k nk]eυ[µiso
k ,fk](n+1)∑nkmax−1

nk=0 e−[εk(nk)+εk(nk+1)+µiso
k
nk]eυ[µiso

k
,fk](n)

. (4.24)
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One recognises the excess chemical potential that adds to the chemical potential µiso
k

of the isolated system k.

Sasa-Tasaki’s rule. For the Sasa & Tasaki’s dynamics rule, the coarse-grained tran-
sition rates reads

ϕ(ρA,+1) =
nAmax−1∑
niA=0

P (niA|ρA)
 nBmax∑

njB=1
e−[εB(njB−1)−εB(njB )]P (njB |ρB)

 (4.25)

ϕ(ρA,−1) =
 nAmax∑
niA=1

e−[εA(niA−1)−εA(niA )]P (niA|ρA)
nBmax−1∑

njB=0
P (njB |ρB)


with again |ΛB|ρB = N − |ΛA|ρA. One can also notice that the exclusion rule, i.e.
that there can be at most nmax particle on a single site, adds a dependence of the
recipient system although the transition rates only involve energy exchanges from the
sender system. The term reminiscent to the exclusion rule reads ∑nmax

nk
P (nk|ρk) =

1− P (nkmax|ρk) by normalisation. When nmax →∞, one expects P (nkmax|ρk)→ 0 and
this extra-dependence vanishes. Beyond this remark, the situation appears to be the
same as in the previous case and chemical potentials read

µcont
k (ρk) = ln

∑nAmax
niA=1 e

−[εA(niA−1)−εA(niA )]P (niA|ρA)
1− P (nkmax|ρk)

. (4.26)

In terms of µiso
k , the chemical potential at contact reads this time

µcont
k (ρk) = µiso

k (ρk) + ln
∑nkmax−1
nk=0 e−εk(nk)+µiso

k nkeυ[µiso
k ,fk](nk+1)∑nkmax−1

nk=0 e−εk(nk)+µiso
k
nkeυ[µiso

k
,fk](nk)

. (4.27)

The excess chemical potential reads thus different from the “natural dynamics” case.

Kawasaki rule. Eventually, for the Kawasaki rule, the coarse-grained transition
rates reads

ϕ(ρA,+1) =
nAmax−1∑
niA=0

nBmax∑
njB=1

2P (niA|ρA)P (njB |ρB)
1 + eεA(niA+1)−εA(niA )+εB(njB−1)−εB(njB ) (4.28)

ϕ(ρA,−1) =
nAmax∑
niA=1

nBmax−1∑
njB=0

2P (niA|ρA)P (njB |ρB)
1 + eεA(niA−1)−εA(niA )+εB(njB+1)−εB(njB ) .
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Here the microscopic rates do not factorise and one cannot define proper chemical
potential. The derivative of the large deviations function (2.35) nevertheless reads

I ′(ρA|ρ̄) = µiso
A − µiso

B

+ ln
nAmax−1∑
niA=0

nBmax−1∑
njB=0

2eµiso
A niA+µiso

B njB eυ[µiso
A ,fA](niA+1)+υ[µiso

B ,fB ](nB)

eεA(niA+1)+εB(njB ) + eεB(njB+1)+εA(niA )


− ln

nAmax−1∑
niA=0

nBmax−1∑
njB=0

2eµiso
A niA+µiso

B njB eυ[µiso
A ,fA](niA )+υ[µiso

B ,fB ](nB+1)

eεA(niA+1)+εB(njB ) + eεB(njB+1)+εA(niA )

 . (4.29)

Some comments

When nmax = 1. The first comment we would like to make is that when there is at
most one particles on each site, i.e. that nkmax = 1 for both systems, P (nk|ρk) = ρk by
translation symmetry and is thus independent of the driving force f . In this case, one
recovers an equilibrium situation and stationary densities are given by the equality of
the equilibrium chemical potential µcont

k (ρk) = µeq
k (ρk) = ln(ρk/(1− ρk)).

Contact along several links. The contact we defined heretofore was built along
one single link involving only two sites. Of course, in general, several links can be
involved in the contact area. But since the dynamics is asynchronous, i.e. that only
one link can be chosen at a time, and rare, one does not expect to observe any effect
related to the extension of the area. Numerical simulations performed confirm this
hypothesis (see below).

Numerical simulations & explicit examples

In all cases studied, the excess chemical potentials – or excess large deviations deriva-
tive – is non-zero because of the presence of the non-equilibrium term eυ[µiso,f ](n). But
one can wonder what is the magnitude of these correction terms compared to the chem-
ical potential of the isolated systems. In order to address this question, we provide
some plots of the chemical potentials at contact in different situations.

We fix the maximum number of particles at nmax = 2 and we choose a simple
linear energy function ε(n) = εn. The first figure (see figure 4.3) represents the isolated
chemical potential as well as the “excess” chemical potential. One can observe that for
f > 0.5, µex becomes of the same order of magnitude as µiso and one thus may expect a
clear effect of the forcing coupled to the particular dynamics at play. Furthermore, one
can observe that for a sufficiently high driving force f , a significant difference between
the excess chemical potential associated with both dynamics, namely the “natural
dynamics” and the “Sasa & Tasaki” dynamics, appears.
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Figure 4.3 – Plots of the chemical potentials associated with one system. The pa-
rameters are nmax = 2, ρ = 0.65, and an energy parameter ε = 1 (for ε(n) = εn). The
chemical potentials µiso (dashed-black curve), µex (blue-dashed curve) and µcont (red
curve) are plotted as functions of the forcing f . Left panel: natural dynamics (ND),
right panel: Sasa-Tasaki (ST).

In order to show how this non-equilibrium effect can strongly perturb the equilib-
rium stationary state of the system, we provide some plots (see figure 4.4) directly
stemmed from direct numerical simulations of our model. We mention that we used
50 links at contact with a typical exchange frequency at contact ε = 0.01 in order to
guarantee an effective time-scale separation between the bulk and the contact. We put
two systems of same size (|Λ| = 10000 sites) in contact and keep the driving force of
the system B equal to fB = 2. By symmetry, for fA = 2, the densities in each system
should be the same, namely ρA = ρB = ρ̄ = 0.5. This is what we observe. But when
fA moves away from fB = 2, one can observe that the stationary density difference
grows as well, leading to a significant effect. Also, as one can see on figure 4.4, the
agreement between theory and simulations is very good for this non-zero – but small
– value of ε.

More than one particle exchange

After all, more than one particle can be exchanged in the bulk of each system: there
is no reason for it to be different at contact for our set-up. Assuming that nmax = 2 in
each system A and B, at most two particles can be exchanged along one link. Hence,
one assumes that two particles are also able to be exchanged at contact at a time. The
expressions for ϕ(ρA,∆n = ±1) stay the same as in (4.22), (4.25) and (4.28). Our goal
here is to provide expressions for ϕ(ρA,∆n = ±2) for each transition types described
above and discuss whether macroscopic detailed balance holds or not.

Natural Dynamics. Since, |∆n| = 2 = nmax, there is only one initial local config-
uration that can lead to an exchange of two particles. Coarse-grained transition rates
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Figure 4.4 – Numerical simulations of two lattice models A and B in contact, with
different drivings. Left: Densities ρA (red) and ρB (blue) versus time. Right: Chemical
potentials µcont

A (red) and µcont
B (blue). The dashed lines are the theoretical predictions.

Parameters: |ΛA| = |ΛB| = 10000, ρ̄ = 0.5. The dynamics that has been used is the
“Natural Dynamics” (ND).

read

ϕ(ρA,+2) = e−εA(2)−εB(0)P (0|ρA)P (2|ρB) (4.30)
ϕ(ρA,−2) = e−εA(0)−εB(2)P (2|ρA)P (0|ρB)

Inserting the exact expression of the stationary single site distribution (4.16), one
obtains

1
2 ln ϕ(ρA,−2)

ϕ(ρA,+2) = µiso
A (ρA)− µiso

B (ρB)

+ (υ[µiso
A , fA](2)− υ[µiso

B , fB](2))− (υ[µiso
A , fA](0)− υ[µiso

B , fB](0))
2 . (4.31)

This expression should be compared with

ln ϕ(ρA,−1)
ϕ(ρB,+1) = µiso

A (ρA)− µiso
B (ρB)

+ ln
[
e−εA(0)−εA(1)+υ[µiso

A ,fA](1) + eµ
iso
A e−εA(1)−εA(2)+υ[µiso

A ,fA](2)

e−εA(0)−εA(1)+υ[µiso
A ,fA](0) + eµ

iso
A e−εA(1)−εA(2)+υ[µiso

A ,fA](1)

]

− ln
[
e−εB(0)−εB(1)+υ[µiso

B ,fB ](1) + eµ
iso
B e−εB(1)−εB(2)+υ[µiso

B ,fB ](2)

e−εB(0)−εB(1)+υ[µiso
B ,fB ](0) + eµ

iso
B e−εB(1)−εB(2)+υ[µiso

B ,fB ](1)

]
. (4.32)
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One can then notice that in general for our model

ln ϕ(ρA,−1)
ϕ(ρA,+1) 6=

1
2 ln ϕ(ρA,−2)

ϕ(ρA,+2) (4.33)

which confirms that macroscopic detailed balance does not hold. The large deviations
function can then only be characterised as the stationary solution of the Hamilton-
Jacobi equation (2.23). Therefore, one does not expect for the large deviations function
to be additive (see section 3.2).

Sasa-Tasaki’s rule. The same calculation applies for the Sasa-Tasaki dynamics.
Even if the latter was claimed to be the relevant physical one, representing a high
energy barrier between systems in contact, one can see here that the additivity that
it provides for a one-particle exchange is not robust to an exchange of more than one
particle. Briefly,

ϕ(ρA,+2) = eεB(2)−εB(0)P (0|ρA)P (2|ρB) (4.34)
ϕ(ρA,−2) = eεA(2)−εA(0)P (2|ρA)P (0|ρB)

which gives

1
2 ln ϕ(ρA,−2)

ϕ(ρA,+2) = µiso
A (ρA)− µiso

B (ρB)

+ υ[µiso
A , fA](2)− υ[µiso

A , fA](0)
2 − υ[µiso

B , fB](2)− υ[µiso
B , fB](0)

2 . (4.35)

A comparison with the expression of ln[ϕ(ρA,−1)/ϕ(ρA,+1)] leads us to the same
conclusion as before: macroscopic detailed balance is broken.

4.2.4 Continuous mass version of our model

The mass transport model presented heretofore was originally introduce in its contin-
uous mass version as presented in appendix [Guioth and Bertin, 2017] (reproduced in
appendix C). The stationary solution of an isolated system looks the same as for the
particle case. In order to point out that the mass is continuous, we change notations
and call mi > 0 the mass at site i. For an exchange of a mass ∆m along the link
(iA, jB), the coarse-grained transition rates in the weak contact limit reads

ϕ(ρA,∆m) =
mAmax∫
0

dmiA

mBmax∫
0

dmjBTc(miA + ∆m,mjB −∆m|miA ,mjB)

× P (miA|ρA)P (mjB |ρB)1[0,mAmax](miA + ∆m)1[0,mBmax](mjB −∆m) . (4.36)
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In the sequel, we will consider only a very simple case already mentioned before
for which εA(m) = εAm and εB(m) = εBm. For this very specific choice, the single
site probability distribution (see equation (B.18) in appendix C) reads

P (m|ρ̄) = (ε− µiso(ρ̄))2 − f 2

ε− µiso(ρ̄) e[µiso(ρ̄)−ε]m cosh(fm) (4.37)

Sasa-Tasaki’s rule. For the microscopic Sasa & Tasaki transition rate, the coarse-
grained transition rate reads, in the limit where mmax →∞,

ϕ(ρA,∆m) =

e
µiso
B ∆m

[
cosh(fB∆m) + λ−1

B fB sinh(fB∆m)
]
if ∆m > 0 ,

eµ
iso
A |∆m|

[
cosh(fA∆m) + λ−1

A fA sinh(fA|∆m|)
]
if ∆m < 0 ,

(4.38)

with λk(ρk) = εk − µiso
k (ρk).

From (4.38), it thus appears very clearly that macroscopic detailed balance cannot
hold since ln[ϕ(ρA,−∆m)/ϕ(ρA,∆m)] is generically nonlinear in ∆m for fA 6= fB.
The derivative of the large deviations function I ′(ρA|ρ̄) can therefore only be seen as
the solution of the Hamilton-Jacobi equation that reads in this case
∫

∆m>0
d∆mϕ(ρA,∆m)

(
eI
′(ρA|ρ̄)∆m − 1

)
+
∫

∆m>0
d∆mϕ(ρA,−∆m)

(
e−I

′(ρA|ρ̄)∆m − 1
)

= 0 . (4.39)

Due to the exponential character of the transition rates (4.38), the integrals of the
Hamilton-Jacobi equation (4.39) can be reckoned and an algebraic equation over I ′

can be found. However, in order to keep a simple discussion and tractable calculations,
we have performed a perturbative expansion over the driving forces fA and fB. Since
the symmetry f ↔ −f holds, the first non-zero order is O(f 2). The solution reads

I ′(ρA|ρ̄) = µeq
A (ρA)−µeq

B (ρB) + (f 2
A− f 2

B) (µeq
A )2 + µeq

A µ
eq
B + (µeq

B )2

(µeq
A )2 + 2µeq

A µ
eq
B + (µeq

B )2 +O(fA,B4) (4.40)

One can thus check again that the large deviations function is not additive as long
as fA or fB are different from 0 and from each other.

4.3 Discussion of the literature

In light of the general large deviations framework of chapter 2 and 3 and our previous
examples of mass transport models, we would like now to discuss the main important
studies closely related to the notion of out-of-equilibrium chemical potentials available
in the literature. This will also be a good opportunity to see our framework at work
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in systems of spatial dimension greater that one and the subtleties that can appear.
Proceeding in a chronological order, we first discuss in this section an important work
around the zeroth law conducted by P. Pradhan, U. Seifert et al. [Pradhan et al.,
2010, 2011]. In a second step, we consider a more recent paper of P. Pradhan et al.
[Chatterjee et al., 2015] dealing with a necessary condition that needs to be satisfied
in order to define chemical potentials attached to non-equilibrium systems that mimic
the equilibrium structure. Their condition, that appears to be a particular instance
of our framework, is analysed here. Eventually, we will emphasise the importance of
edge effects that may appear in two (or greater) dimensional systems by considering
very detailed numerical experiments achieved by R. Dickman [Dickman, 2014, 2016;
Dickman and Motai, 2014].

4.3.1 Around the zeroth law – influence of the dynamics at
contact

Few years after the precursor analysis of the contact between two ZRP systems [Bertin
et al., 2006, 2007], extensive numerical analysis on the KLS model [Katz et al., 1984]
followed [Pradhan et al., 2010, 2011]. The authors discussed most specifically the
zeroth law and how it could be used to settle an approximate thermodynamic structure.
Before discussing their results around the zeroth law, one will first consider the KLS
model and comment some of their results regarding our approach expounded in chapter
2.

Results of [Pradhan et al., 2010, 2011] Authors of [Pradhan et al., 2010, 2011]
have performed numerical investigations on the KLS driven lattice gas (on a square
two-dimensional lattice) in its disordered phase – to obtain a homogeneous phase
– which we would like to investigate here, in order to compare our formalism to the
theoretical ideas suggested in [Pradhan et al., 2011]. For this classic model, microscopic
transition rates have been chosen along the Metropolis dynamics:

T (C ′|C) = min
[
1, e−β(H(C′)−H(C)−E·∆y)

]
. (4.41)

where it is implicitly assumed that the new configuration is drawn from the old one
by the move of one particle at a site x to one of its open neighbouring site y, supposed
empty. More precisely the notations are the following: the configuration C reads
C = {nx}x∈Λ, nx = 0, 1 being the number of particle at each site x. The energy
H(C) = −K∑

x∈Λ ; y∈Vx nxny (Vx refers to the set of nearest neighbours of site x), and
E · ∆y is equal to E (resp. −E) if the displacement is along (resp. at the opposite)
of the driving field, but equal to 0 if the displacement is orthogonal to the drive, thus
producing a bias toward the direction of the drive. K is the coupling constant between
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neighbouring sites (K > 0 corresponds to a repulsive dynamics whereas K < 0 refers
to an attractive dynamics).

They chooses to put two different systems in contact (with different parameters
K,E) along a small contact area compared to system sizes. Even if they did not impose
a slow frequency of exchange across the contact, they measure the stationary two-point
correlation function between two sites belonging to different systems that was found
to be small compared to the correlation among neigh-boring sites in the individual
systems. Thus, even if further investigations would be necessary to completely specify
this point (the absence of correlation does not imply independence of variables), we
assume that the stationary distribution of the two systems in contact generally reads

P (CA, CB) = P (NA, NB)P (CA|NA)P (CB|NB) , (4.42)

whereNk = N (Ck) is the number of particles associated with the configuration Ck of the
system k = A,B and P (Ck|Nk) the stationary probability distribution of the isolated
system k. As seen in the first chapter 2 the same equality holds in the slow exchange
limit and simply means that the two systems are linked through the conservation of
mass only and not through the details of their microscopic configurations as it would
be at equilibrium. We point out that the hypothesis we make here is different from
the one made in [Pradhan et al., 2011]. Indeed, the authors rather assumed that the
vanishing of correlations at contact led to the additivity of the large deviations function
of the global densities ρA and ρB. But as we have seen it in the chapter 2, the additivity
of the large deviations function is not dictated by the level of independence of each
system as an equilibrium-like reasoning would suggest if the interacting potential is
short-ranged. It is a consequence of the explicit form of the microscopic transition
rates at contact.

With the Metropolis transition rates above that are assumed to be also at play at
contact and assuming the factorisation condition (4.42), one can compute the coarse-
grained transition rates (2.19) which read in this case (reminding that only one particle
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can be exchanged at a time):

ϕ(ρA,+1) =
∑

xA,xB∈CA,B

1∑
nxA=0

∑
{njA}jA∈VA(xA)

1∑
nxB=0

∑
{njB }jB∈VB(xB)

nxB(1− nxA) (4.43)

exp

−β2
KA

∑
jA∈VA(xA)

njA −KB

∑
jB∈VB(xB)

njB


−

∣∣∣∣∣∣KA

∑
jA∈VA(xA)

njA −KB

∑
jB∈VB(xB)

njB

∣∣∣∣∣∣


× P (nxA , {njA}jA∈VA(xA)|ρA)P (nxB , {njB}jB∈VB(xB)|ρB)

ϕ(ρA,−1) =
∑

xA,xB∈CA,B

1∑
nxA=0

∑
{njA}jA∈VA(xA)

1∑
nxB=0

∑
{njB }jB∈VB(xB)

nxA(1− nxB)

exp

−β2
KB

∑
jB∈VB(xB)

njB −KA

∑
jA∈VA(xA)

njA


−

∣∣∣∣∣∣KB

∑
jB∈VB(xB)

njB −KA

∑
jA∈VA(xA)

njA

∣∣∣∣∣∣


× P (nxA , {njA}jA∈VA(xA)|ρA)P (nxB , {njB}jB∈VB(xB)|ρB)

with CAB the pairs of sites of systems A and B forming the contact, assumed to be
localised (only a small regions at the edges of both systems are involved in the contact).
Vk(xk) refers to the set of neighbour belonging to the system k surrounding the site
xk.

One clearly notices that, due to the absolute value |·| (which stems from a rewrit-
ing of the metropolis transition rate (4.41)), one cannot expect that the factorisation
property (3.3) does hold. Hence, even if macroscopic detailed balance does hold since
only one particles can be exchanged per time step, the derivative of the large de-
viations function I ′(ρA, ρB) = lnϕ(ρA,−1)/ϕ(ρA,+1) has no reason to be additive
contrary to what is assumed in [Pradhan et al., 2011]. Furthermore, if the perfect fac-
torisation condition (4.42) breaks due to microscopic correlations at contact between
systems, there is no reason that microscopic detailed balance holds and propagates
to the macroscopic level since the stationary probability distribution of micro-state is
different from the equilibrium one. As a consequence, excess chemical potentials (see
(3.28)) cannot be defined properly in this situation.

Zeroth law. We move now to the main part of the paper which deals with the zeroth
law (see section 3.1.4 for a general presentation). Numerical investigations of the KLS
model performed by the authors in [Pradhan et al., 2011] leads to the conclusion that
the zeroth law holds only in an approximate way outside equilibrium. More specifi-
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cally, they performed numerical tests of the zeroth law with three different equilibrium
systems. If the zeroth law has been observed to hold for a large parameter (K, the
coupling constant, and E, the driving field) range, significant deviations have been no-
ticed, especially at highly negative coupling constant K (attractive interactions). As
shown on figure 11 of [Pradhan et al., 2011], the authors put a non-equilibrium system
successively in contact with three different equilibrium systems with different coupling
constant Keq = 0, −0.8, −0.9. For each equilibrium system, they measure the density
ρneq and assign a chemical potential µneq(ρneq) = µeq(ρeq) to the non-equilibrium sys-
tems (µeq assumed to be known), thus measuring a curve ρneq(ρneq) for a ρneq ∈ [0, 1].
If the zeroth law was satisfied, every chemical potential curve µneq(ρneq) would have
collapsed one a single curve since the non-equilibrium system stay the same. The
non-collapse of the different chemical potential curves can be attributed to the excess
term ηex in the derivative of the large deviations function. Indeed, as discussed in the
chapter 3, section 3.2.1, the derivative of the large deviations function associated with
the contact between an equilibrium and a non-equilibrium system, generally reads,
when macroscopic detailed balance holds,

I ′(ρneq, ρeq) = µiso
neq(ρneq)− µeq(ρeq) + ηex(ρneq, ρeq) . (4.44)

Here, ηex cannot be split into two parts since the metropolis microscopic rates do not
factorise (see (4.43) above) and thus depends on the equilibrium system as well as
the non-equilibrium one through the detail of the contact dynamics. Since the non-
equilibrium system stays the same, the function µiso

neq (of the density ρneq) does not
change. At stationarity, I ′(ρ∗neq, ρ

∗
eq) = 0 and

µeq(ρ∗eq) = µiso
neq(ρ∗neq) + ηex(ρ∗neq, ρ

∗
eq) (4.45)

where of course Veqρeq +Vneqρneq is fixed by conservation of the total number of parti-
cles. Varying the final densities ρ∗, one can have access to µiso

neq + ηex by the knowledge
of µeq. If ηex was null, the different curves should be the same since µiso

eq stay the same.
But since ηex is a priori different from 0 and depends on Keq, it is not surprising that
the curves depend on Keq.

We eventually stress that such an effect could be avoided by choosing a factorised
dynamics at contact as discussed in a general setting in section 3.1.4. In that case,
ηex would not depend on the coupling constant Keq and the same procedure described
above would give the same curve, representing µcont

neq = µiso
neq + ηex

neq.
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4.3.2 Macroscopic detailed balance at contact & ensemble
equivalence

In [Chatterjee et al., 2015], S. Chatterjee, P. Pradhan and P.K. Mohanty discuss the
restricted case of non-equilibrium steady-state systems having short-ranged spatial
correlations. Under this assumption, they have found a condition – reminiscent of a
detailed balance condition – under which well-defined non-equilibrium chemical po-
tentials can be defined. We point out that they do not assume any slow frequency
exchange at contact, as we do. Nevertheless, even if the hypothesis are physically
different, they are formally commensurable. As a consequence of their short-ranged
correlation assumption, they explicitly demand that the stationary probability distri-
bution of a configuration of the combined system reads,

P (CA, CB) = ωA(CA)ωB(CB)
W (ρ̄) δ (N (CA) +N (CB)−N) . (4.46)

with W (ρ̄) the normalisation factor and where ωk, the weight associated with the
subsystems, are also assumed to display short-ranged correlations. We note that this
assumption already assumed a factorisation of the probability distribution of the den-
sity. Also, contrary to what we have assumed in our framework expounded in chapter
2, they supposed that the stationary state can only be achieved through macroscopic
detailed balance

P (ρA, ρB)π(ρA + ∆N
VA
, ρB − ∆N

VB
|ρA, ρB)

= P (ρA + ∆N
VA
, ρB − ∆N

VB
)π(ρA, ρB|ρA + ∆N

VA
, ρB − ∆N

VB
) . (4.47)

which in the thermodynamic limit reads (see equation (2.35))

ϕ(ρA, ρB,−∆N)
ϕ(ρA, ρB,∆N) = e(µA−µB)∆N (4.48)

with µk defined to be the chemical potentials associated with the partition function

W (Nk) =
∑
Ck
ωk(Ck)δ (N (Ck)−Nk)

These equations are the equations numbered (9) and (10) in [Chatterjee et al., 2015].
Under the short-ranged spatial correlations hypothesis which allows one to define iso-
lated chemical potentials – characterising the distribution of mass – inside each subsys-
tem, they demand – in short – that microscopic detailed balance3 holds with respect to

3We notice that one should rather write “mesoscopic” since they consider only exchange of mass
at a level which is large compared to the microscopic distance but small with respect to the whole
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the same chemical potential associated with the macroscopic detailed balance, itself a
consequence of the completely factorised distribution (4.46). This strong demand can
be interpreted very clearly in our framework: it simply corresponds to the situation
where microscopic detailed balance holds and then propagates to a macroscopic de-
tailed balance condition. In other word, this situation exactly mimics the equilibrium
one for which there is no excess chemical potential and thus no difference between iso-
lated chemical potentials and contact chemical potentials. It is merely a generalisation
of the precursor analysis based on the ZRP of [Bertin et al., 2007]. That being said,
in the absence of any slow frequency exchange assumption, this context seems indeed
to be the only one for which one can associate a thermodynamic structure similar to
the equilibrium one.One can also notice that it is the only case for which ensemble
equivalence holds (more precisely an ensemble equivalence of the level of probability
distributions, see [Touchette, 2015] for a recent survey). Indeed, according to (3.78),
if the chemical potential at contact is the same as the isolated one, the equivalence of
ensemble holds since internal fluctuations of mass (in the canonical ensemble, for an
isolated system) are governed by the same chemical potential as the one defined by
the contact with the external reservoir (grand canonical ensemble).

4.3.3 On the position of the contact (in a weak contact limit)
in two dimensional systems

Figure 4.5 – Sketches of NNE (left) and NNE2 (right) dynamics. Green crosses
materialise the excluded region around the (arbitrary) red particle for each dynamics.

We now move to the last series of papers we would like to discuss. It concerns a

volume.

95



Chapter 4. Lattice models in contact

quite recent numerical work performed by R. Dickman [Dickman, 2014, 2016] which –
in light of the framework presented in chapters 2 and 3 – can be seen as the numerical
proof that the non-uniformities at the edges (that in general affect the stationary state
of any system) plays a major role for two non-equilibrium (almost) uniform systems in
contact. In these papers, R. Dickman has mainly discussed driven lattice gases with
nearest-neighbour exclusion (NNE) and next-nearest-neighbours exclusion (NNE2) as
well as the KLS model that has been discussed in the previous section. The main
purpose of his work is to test and discuss the Steady State Thermodynamics proposed
by Sasa & Tasaki [Sasa and Tasaki, 2006] on a numerical simulation ground. First
[Dickman and Motai, 2014], the author discussed the case of an extended contact,
that is when every site of system A is in contact with corresponding sites of system
B (see figure 4.6 for a sketch). He emphasised – as we have shown in subsection
4.3.1 – the importance of the transition rates at contact, showing that the Metropolis
rule led to a breaking of the zeroth law, contrary to the Sasa and Tasaki’s rule for
instance. In a second paper [Dickman, 2014], R. Dickman discussed this time the
case of localised contacts (see figures 4.7 for a sketch) and showed that even for the
same factorised contact dynamics (which could be of Sasa & Tasaki’s type), different
contact (pointwise, at the edge, etc.) can lead to different final stationary states,
emphasising the strong influence of the localisation of the contact area. In a slow
exchange rate limit, these localisation subtleties – even if they are a bit hidden in our
general presentation of chapter 2, and necessarily absent in our previous discussion
of one dimensional systems – are perfectly present in our framework. Our goal is
to expound them in this section, along the precious detailed numerical investigations
presented by R. Dickman.

The dynamics of the KLS model has been briefly presented above. First, we briefly
lay out the dynamics of the NNE and NNE2 models in two dimensions (see figure 4.5
for a sketch). As for classic driven lattice gas, each site x can be occupied by at most
one particle, so nx = 0, 1. One jump from configurations C to C ′ corresponds to the
move of one particle toward an empty neighbouring site y ∈ V(x) (V(x) being the
set of the nearest neighbours of x) that satisfies the potential constraints. For NNE
dynamics, these constraints are the existence of an infinite interaction energy between
two particles at a distance lower or equal to one site width, or, in another words,
the nearest-neighbour sites need to be empty so that a site can be occupied. For an
exchange between site x and y ∈ V(x), transition rates that embed this exclusion rules
read

T (C ′|C) = 1 + ∆y−xE

4 nx(1− ny)
∏

z∈V(y)
z 6=x

(1− nz) , (4.49)

with ∆x−y the projection of norm 1 of the replacement y − x along the driving force;
E characterises the strength of the driving.
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For NNE2 Dynamics, the exclusion rule is the same as for NNE but displacements
are also allowed to next nearest-neighbours. Thus, for an exchange between site x and
y ∈ V+(x) (V+(x) being the set of nearest as well as next-nearest neighbours of x),
transition rates read

T (C ′|C) = 1 + ∆̃y−xE

8 nx(1− ny)
∏

z∈V(y)
z 6=x

(1− nz) , (4.50)

with ∆̃y−x being equal to 1 (resp. −1) if the projection of the displacement y − x

along the driving force has a strictly positive (resp. strictly negative) component. If
the displacement is orthogonal to the driving force, ∆̃y−x = 0.

Figure 4.6 – Sketch of a "global" contact between systems A and B. Every sites of
A are connected to one site on B (and vice versa).

Global contact. If one imagines a global contact between two systems A and B of
same size as shown on figure 4.6, with a dynamics at contact similar to the bulk one
(without any bias), the coarse-grained transition rates read

ϕ(ρA,+1) (4.51)
=

∑
(xA, xB)∈CAB

∑
nxB

∑
{nyA}yA∈V̄(xA)

nxB(1− nxA)
∏

yA∈V(xA)
(1− nyA)

× P (nxB |ρB)P (nxA , {nyA}yA∈V(xA)|ρA)
=

∑
(xA, xB)∈CAB

n̄ρB(xB)n̄av
ρA

(xA)

and

ϕ(ρA,−1) =
∑

(xA, xB)∈CAB

n̄ρA(xA)n̄av
ρB

(xB)
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with V̄(x) = V(x)⋃{x} and n̄ρ(x) = 〈nx〉ρ being the average density at point x and

n̄av
ρ (x) =

〈
(1− nx)

∏
y∈V(x)

(1− ny)
〉
ρ

being the average of what one can call the average availability of site x (since x is
actually available to receive a particle when (1− nx)

∏
y∈V(x)(1− ny) is equal to 1).

Figure 4.7 – Sketch of a "local" contact between two systems A and B. Left: a
pointwise contact corresponds to a contact which is realised with two sites of each
system only; latter can be in the bulk or at the edges. Right: contact along edges of
both systems.

Local contact. For a local contact between A and B (see figure 4.7), the situation
needs to be precise, depending on the exact geometry of the contact. Following R.
Dickman [Dickman, 2014], the contact can be pointwise or along edges of both sys-
tems. For a pointwise exchange, say along connected sites xA and xB, coarse-grained
transition rates at contact read, using the same notations as in equation (4.51),

ϕ(ρA,+1) = n̄ρB(xB)n̄av
ρA

(xA) (4.52)
ϕ(ρA,−1) = n̄ρA(xA)n̄av

ρB
(xB) .

For an extended contact dynamics along the edge, the transfer of particles happen
in the same dimensions as the systems (for instance in the same plane here, for 2
dimensional systems). Thus for a contact perpendicular to the driving force, the
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coarse-grained transition rates read

ϕ(ρA,+1) =
∑

(xA, xB)∈CAB

n̄ρB(xB)ñav
ρA

(xA;xB) (4.53)

ϕ(ρA,−1) =
∑

(xA, xB)∈CAB

n̄ρA(xA)ñav
ρB

(xB;xA) ,

with this time a modified availability

ñav
ρ (x; y) =

〈
(1− nx)

∏
z∈V(x), z 6=y

(1− nz)
〉

meaning that this time the average availability must not take into account the site
already occupied in the initial configuration.

First of all, one can notice that the derivative of the large deviations function
I ′(ρA, ρB|ρ̄) is not a priori additive for all the case considered above even if microscopic
transition rates factorise:

I ′glob(ρA, ρB) = ln
∑

(xA, xB)∈CAB n̄ρA(xA)n̄av
ρB

(xB)∑
(xA, xB)∈CAB n̄ρB(xB)n̄av

ρA
(xA) (4.54)

I ′pw(ρA, ρB) = ln
n̄ρA(xA)n̄av

ρB
(xB)

n̄ρB(xB)n̄av
ρA

(xA)

I ′edges(ρA, ρB) = ln
∑

(xA, xB)∈CAB n̄ρA(xA)ñav
ρB

(xB;xA)∑
(xA, xB)∈CAB n̄ρB(xB)ñav

ρA
(xA;xB) .

The subscripts refers respectively to the “global”, the “pointwise” and the “edge”
contacts.

Let us inspect what happens when the steady state of each systems is globally
uniform, with a potential exception at the edges.

For the global contact case, each sum over (xA, xB) ∈ CAB in (4.54) can be split
into a bulk contribution and an edge contribution. In the thermodynamic limit, where
the edge contributions become negligible compared to the uniform bulk contribution,
the derivative of the large deviations function reads

I ′glob(ρA, ρB) = ln ρA
n̄av
ρA, bulk

− ln ρB
n̄av
ρB , bulk

. (4.55)

It is then additive and the chemical potentials µcont
k (ρk) = ln[ρk/n̄av

ρk, bulk] correspond
to the ones postulated on a physical ground by Dickman. Furthermore, they equalise
well upon contact [Dickman and Motai, 2014].

As for the pointwise contact, it is also clearly additive but the chemical potentials
read this time µcont

k (ρk;xk) = ln[n̄ρk(xk)/n̄av
ρk

(xk)]. They thus clearly depend on the
localisation of the contact: if the latter is located in the bulk, the chemical potentials
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are the same as for the global contact at the thermodynamic limit. But if the contact
is localised on the edge, chemical potentials may become different since the stationary
state becomes in general non-uniform near the edges, here made of hard walls. At
equilibrium, chemical potentials stay uniform despite a manifest non-uniformity of
the density close to the walls. But out-of-equilibrium, as illustrated numerically by
Dickman [Dickman, 2014], the chemical potential are no-longer uniform due to non-
trivial edge effects (see in particular figures 4, 6 and 7 of [Dickman, 2014]). We will
see in more details in the case of self-propelled particles the role of edge effects.

The contact along an edge proceeds in a similar way as the pointwise contact. If
one assumes that the steady state in each system is uniform along the edge, I ′ is addi-
tive but the chemical potential depends on the density and the “availability” near the
contact area that can be seen as a hard wall in the weak exchange rate limit. Hence,
chemical potentials strongly depend on what happens on the edge and are not neces-
sarily uniform as in equilibrium, then breaking the existence of an equation of state
(along which chemical potential would only depend on uniform bulk quantities (den-
sity here)). For the edge contact case, with the assumption that the stationary state is
uniform along the edge, chemical potential reads µcont

k (ρk) = ln[n̄ρk,edge/ñ
av
ρk,edge]. One

notices the difference between n̄av
ρ and ñav

ρ that may also be a source of disagreement
between a pointwise contact (in the bulk) and an edge contact.

Conclusion

Eventually, our large deviations approach allows us to rationalise – in the weak ex-
change rate limit – the non-uniformity subtleties emphasised by R. Dickman. As the
author pointed out, different contacts can lead to different stationary state although
the systems stay the same. This violates the zeroth law and is reminiscent of the fact
that no equation of state exists for non-equilibrium driven systems. For each type of
contact, depending on its localisation, it exists an associated chemical potential that
is not necessarily the same for other contact type. We here again see a manifestation
of the influence of the contact which this time has focused on its position.

To conclude, one can summarise the role of the contact by noticing two main effects:
the particular dynamics at contact – through the microscopic transition rate – and,
the dynamics being fixed, the position of the contact when the stationary states of
both systems are not perfectly uniform (at the edge in particular). These two effects
both lead in general to the existence of an excess chemical potentials (with respect
to isolated systems) that need to be taken into account to describe the balance of
densities.
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4.4 Macroscopic fluctuation theory

To conclude this chapter, we would like to discuss very briefly the situation of the
contact between two out-of-equilibrium systems in the context of the Macroscopic
Fluctuation Theory (MFT). The latter framework has been developed during the 2000s
years (see [Bertini et al., 2002; Derrida, 2007] for reviews from the main investigators
of this theory), mostly inspired by stochastic lattice gases like the ones presented
along this chapter. As emphasised in a recent review [Bertini et al., 2015a], this
theory can be seen as an extension of the Onsager theory by considering space-time
fields and non-linear evolution equations, valid at a mesoscopic level. However, even if
the Macroscopic Fluctuation Theory goes beyond the standard linear non-equilibrium
theory, it strongly stands on the local equilibrium assumption as we will see.

Our aim in this section is to discuss the situation of the contact between two
systems, exactly in the same setting as the one discussed previously. More precisely,
we will assume periodic boundary conditions along the parallel fields and the contact
will be materialised by an energy barrier U(x) which only varies in the transverse
direction with respect to the fields one. We first provide a very short presentation of
the MFT framework. We will then analyse briefly the situation of the contact before
giving a short opening. In particular, we will focus as previously on the definition of
chemical potentials.

4.4.1 Presentation of the framework

In the context of driven lattice gases and mass transport models, the relevant conserved
variable is the density field ρ(x, t). MFT is then a small noise fluctuating theory valid
in a specific coarse-grained space-time scale (called hydrodynamic scale), which itself
holds when the driving force decreases inversely with the size (in microscopic unit) of
the mesoscopic fluid particles (which correspond to the typical “boxes” on which the
coarse-graining procedure is performed). The equation governing the dynamics of this
density field ρ(x, t) is a field Langevin equation and reads

∂ρt(x)
∂t

+∇ · [Jt(ρt(x),x) + ξt(x)] = 0 (4.56)

Jt(ρ,x) = −D(ρ)∇ρ+ χ(ρ)Ft(x) .

with Jt the current, D(ρ) is the diffusion matrix and χ(ρ) the mobility matrix. Ft(x)
refers to an external force that can contain conservative and non-conservative forces.
We call Λ the space domain to which x belongs. Eventually, ξt(x) is a Gaussian white
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noise characterised by

〈ξt, i(x)〉 = 0 (4.57)
〈ξt, i(x)ξt′, j(x)〉 = 2εdχij(ρt(x)) δ(t− t′)δ(x− x′) .

where d is the space dimension and ε� 1 is the ratio between the microscopic length
scale and the macroscopic one (it is then a dimensionless scaling factor). Hence,
the noise ξt(x) is a small noise. Also, equations (4.56) need to be supplemented by
appropriate boundary conditions. For the case we will consider here, the boundary
conditions will mostly consist in assuming the vanishing of the current orthogonal to
the boundaries. The second equation of (4.56) linking the current J to the diffusion
matrix D and mobility matrix χ is the constitutive relation of the system, embedded
in the ρ dependence of D(ρ) and χ(ρ). Because of the small driving force considered
in the MFT framework, the local equilibrium assumption stays valid and is embedded
in the following local Einstein relation

D(ρ) = f ′′(ρ)χ(ρ) , (4.58)

where f is the equilibrium free energy of the system per unit volume.

When Ft(x) = F (x) does not depend on time, a stationary state can be achieved.
Because of the small-noise limit, the large deviations analysis is particularly suited to
study the behaviour of the probability distribution. Indeed, the probability distribu-
tion to observe a profile ρ(x) in the stationary state can be written

P (ρ) � exp
[
−ε−dV (ρ)

]
. (4.59)

The large deviations functional V (ρ) is often called the “quasi-potential” in the large
deviations literature [Bertini et al., 2015a] and satisfies an Hamilton-Jacobi equation
in a very similar way as the one derived in chapter 2 (see (2.23)). The latter reads

∫
Λ

dx
[
∇δV
δρ
· χ(ρ)∇δV

δρ
− δV

δρ
∇ · J(ρ,x)

]
= 0 , (4.60)

which can be transformed into
∫

Λ
dx

{
∇δV
δρ
·
[
χ(ρ)∇δV

δρ
+ J(ρ,x)

]}
= 0 , (4.61)

when J(ρ,x) vanishes at the boundary of the domain Λ, ∂Λ. The profile ρ∗(x) min-
imising the quasi-potential V is then the most probable profile.
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4.4.2 Discussion about the contact in the MFT framework

Figure 4.8 – Sketch of the external potential barrier that separates the two systems
brought into contact.

We consider here two 2-dimensional systems in contact along the x direction. Peri-
odic boundary conditions along the y direction, which is also the direction of the drives,
are assumed. For both systems, the forces are such that F (x) = E(x)ey − U ′(x)ex,
x = (x, y), with E(x) and U(x) smoothly varying inside the contact area only, as
shown on figure 4.8. For x in the bulk of systems k (x ∈ Λk), one sets E(x) = Ek

and U(x) = 0, k = A, B. Also, we assume that both systems are isotropic. Matrices
χ(ρ) and D(ρ) then become bare coefficients. We point out that we do not consider
non-uniform diffusion and mobility coefficient: systems A and B are the same but
forced by different external fields. This assumption is clearly restrictive compared to
previous studies but it is already a situation where one can see whether deviations
from equilibrium can be expected or not. With these assumptions, the current J(ρ,x)
reads

J(ρ,x) = −D(ρ)∇ρ+ χ(ρ) (E(x)ey − U ′(x)ex) . (4.62)

At stationary state one expects to have only currents (uniform along y) along the
external fields Ek but not along the orthogonal direction. Indeed,

Jx(ρ∗,x) = −D(ρ∗)∂xρ∗ − χ(ρ∗)U ′(x) (4.63)
Jy(ρ∗,x) = −D(ρ∗)∂yρ∗ + χ(ρ∗)E(x) .

For a given x, systems are invariant in the y direction so we look for a solution
ρ∗(x) = ρ∗(x). In this case, Jy(ρ∗,x) = χ(ρ∗(x))E(x) and the stationary condition
∇ · J = 0 implies

Jx(ρ∗, x) = 0 i.e D(ρ∗)∂xρ∗ + χ(ρ∗)U ′(x) = 0 , (4.64)

since both systems are bounded in the x direction. According to the local Einstein
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relation (4.58), the vanishing of the current along x reads

∂x [f ′(ρ∗(x)) + U(x)] = 0 =⇒ f ′(ρ∗(x)) + U(x) = Cst . (4.65)

Hence, the situation is perfectly the same as in equilibrium where local chemical po-
tentials read µeq(ρ∗(x)) = f ′(ρ∗(x)) + U(x). For two points x∗A ∈ ΛA and x∗B ∈ ΛB in
the bulks of each systems such that ρ∗(x∗A) = ρ̄A and ρ∗(x∗B) = ρ̄B, one has

µeq
A (ρ̄A) = µeq

B (ρ̄B) (4.66)

since U(x∗k) = 0 for k = A, B.
One should remark that we have not mentioned the quasi-potential V (ρ). The

approach expounded here is in fact more intuitive but one can also show [Bertini
et al., 2015a, p. 614] that the solution V (ρ) that solve the Hamilton-Jacobi equation
is in fact the equilibrium quasi-potential, related to the equilibrium free energy such
that

δV

δρ
= f ′(ρ)− f ′(ρ∗) . (4.67)

Conclusion

Eventually, the MFT thus does not account for the genuine non-equilibrium effects
encountered in the last chapters. This can be understood by the fact that MFT is
actually a theory which describes non-linear out-of-equilibrium systems which are in
fact close to equilibrium. Even if both systems are spanned by currents, the profile
along the potential barrier remains the equilibrium one and no deviation at contact
occurs. This preliminary very direct result invites us to look for fluctuating field
theories beyond the MFT that could account for the effect at contact observed in the
previous sections and chapters. This probably requires to go beyond linear response
and then probes deviations from the local equilibrium hypothesis4. We will see in
the last chapter 5 simple examples of independent active particles for which local
equilibrium is broken (at least near walls as we will see).

4These very interesting issues are actually a work in progress, but unfortunately, it is not enough
mature to be presented here at this stage.
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CHAPTER 5

Application to diffusive and self-propelled
independent particles

In this chapter, we investigate systems made of independent particles that can be
externally driven by an external field or that can be self-propelled in different manners.
Physically, these are models of colloidal particles immersed in a solvent that can be
driven by external electric fields or self-propelled by the presence of an inhomogeneity
of chemical reactant on their surface for instance. As we are interested in putting two
systems of this kind of particles in contact, we now draw a list up of contact types
that can be physically realisable (see figure 5.1).

• The first type of contact one can think of for the exchange of colloidal particles
is a porous membrane that can be possibly selective and lead to osmosis effect.
In a idealised situation, one could think of a perfect infinitely thin wall modelled
by an infinite potential drilled with perfect holes that require no energetic cost
to be passed through by particles of smaller size than the diameter of the pores.

• The second one, more generic, simply corresponds to a homogeneous high barrier
of potential separating both systems. As we will see henceforth, the absence of
symmetry of the barrier with respect to its top will play an important role.

Our aim is to compute the distribution of the number of particles on both sides of
the contact for several simple non-interacting particle models (Driven Diffusive Parti-
cles) [Barany, 2009; Figliuzzi et al., 2014; Hunter and White, 1987], Active Brownian
Particles (ABP) and Run-&-Tumble particles (RTP) (see [Fodor and Marchetti, 2018]
for a recent review). These models have been introduced for long time in the lit-
erature [Cates and Tailleur, 2013; Tailleur and Cates, 2008] but we focus here our
attention on the contact between these systems and particularly about the definition
of chemical potentials. We will see in particular that the contact specificities, as for
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Figure 5.1 – Scheme of the two types of contact that will be considered henceforth.

the mass transport models discussed in preceding chapters, often plays a significant
role for the control of the densities on both sides of the contact. Interestingly, we
should as of now mention recent studies about the pressure which shows a similar
behaviour [Fily et al., 2017; Solon, Fily, Baskaran, Cates, Kafri, Kardar and Tailleur,
2015; Solon et al., 2018a; Solon, Stenhammar, Wittkowski, Kardar, Kafri, Cates and
Tailleur, 2015; Speck and Jack, 2016; Takatori et al., 2014; Winkler et al., 2015].

5.1 Introductory model of passive particles with a
porous membrane

Let us start with a very simple conceivable physical system. We consider in this section
a simple model of colloidal particles that are in contact with a solvent and forced
by a non-conservative electric field (in a geometric domain with periodic boundary
conditions) [Barany, 2009; Figliuzzi et al., 2014; Hunter and White, 1987]. It is not
at all obvious that the colloids will always respond to the electric field but this is
the case in several situations. Microscopically, a possible mechanism is the one in
which the solvent contains free ions and the colloids can absorbed either the cations
or the anions on its surface, leading to an electric surface charge [Hunter and White,
1987]. This surface charge is screened by ions of the liquid, then forming a diffusive
electric double layer surrounding colloids, which may be also affected by polarisability
or metallic properties of the colloid itself. When the electric field is switched on,
the charges attached to the solid particle and those of the electric double layer are
propelled in opposite directions, leading to a modulated drag force with respect to the
external electric field. For small driving force, one expects the linear response theory
to hold. However, for sufficient magnitudes of the external field, non-linear response
may happen. It appears in particular conceivable for colloids displaying metallic or
polarisability properties [Barany, 2009; Bazant and Squires, 2004; Figliuzzi et al.,
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2014].

Assuming that the colloidal particles can still feel thermal fluctuations, in spite of
the presence of strong forces, we model the dynamics of one particles with a Langevin
equation reading

mdV (t) = −γ(E)V (t)dt+Q(E)Edt+ σ(E) · dW (t) (5.1)
dX(t) = V (t)dt (5.2)

where σ(E) is the diffusion matrix, m the mass, γ(E) the friction coefficient, Q(E)
the coupling constant with the electrical field. We assume the diffusive matrix σ(E) is
diagonal (which means that dWx and dWy are independent) but due to the non-linear
effect discussed above, we let the possibility that it is not proportional to the unity
matrix. We write x(t) = (x(t), y(t)) the space coordinates, σxx =

√
2Dx(E) and σyy =√

2Dy(E). W (t) = (Wx(t),Wy(t)) refers to the vector built upon two independent
Gaussian white noises whose variance reads 〈dWi(t)dWj(t′)〉 = dt δi,jδ(t − t′), i, j =
x, y.

In the absence of the external field, E = 0, colloids are at equilibrium and the
Einstein relation holds: β = 2γ/D. But when the electric field is high enough to
produce the non-linear response suggested above, one does not expect that the Einstein
relation sill hold. We thus assume that is indeed not the case here.

Having defined the dynamics of one particle, we now describe the whole system we
consider. At low density limit, we assume the particles to be independent of each other
and we consider initially NA particles in the left system, say A, and NB particles in the
right system, say B, such that the total number of particles is fixed at N = NA +NB.
The non-conservative field E = Eey is aligned along the y direction where periodic
boundary conditions are assumed. In the transverse direction x, perfect hard walls
are settled at the left side of the system A and the right side of the system B. The
separation between the two systems is assumed to be made of a porous membrane (see
figure 5.1), infinitely thin, whose “hard” part are supposed perfect as well, meaning
that the repulsive potential symbolising the wall becomes infinite at contact but is
null elsewhere. Furthermore we assume that an operator can vary independently the
uniform electric field in the two parts A and B of the system. We call EA and EB the
magnitude of the fields in each part respectively.

Focusing on the steady state, the stationary density probability distribution
P ({xi,vi}Ni=1) verifies the stationary Kramers equation, which reads

0 = −
N∑
i=1

∇xi · (vP ) + ∇vi · [(Q(E)E − γ(E)v)P − σ(E) ·∇viP ] . (5.3)
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Particles being independent and the currents being homogeneous, one can look for a
factorised solution P ({xi,vi}Ni=1) = ∏N

i=1 P (xi,vi), with P (x,v) also factorised (cf.
equation (5.4) below).

At first sight, let us imagine that the systems are isolated from each other with
a perfect wall — i.e. that the holes of the membrane are “filled”. In this case, the
boundary conditions are the following. Because of the walls, particles are prevented to
leave the respective system they belong to. Thus, J (x) = vP = 0 for x ∈ ∂ΛA,B, ∂ΛA,B,
corresponding to the edges of domains ΛA,B. Also, we assume that the momentum
probability current vanishes uniformly, which is a sound assumption here since walls
are not supposed to provide or absorbed momentum. Eventually, the one particle
stationary solution reads

P (x,v) ∝ e
− γ
Dx

v2
xe
− γ
Dy

(
vy−

Q
γ
E

)2

. (5.4)

Figure 5.2 – Transfer of particles through one pore from A to B during t and t+ dt.

If one now allows exchange of particles through the pores of the porous membrane,
a new stationary state settles, depending on the parameters of each systems. Our goal
is now to compute the probabilities to exchange a particle from B to A (respectively
from A to B) between t and t + dt, knowing that there is NA (or NB = N − NA)
particles at time t. Let us focus first on one pore. A classical computation from
kinetic theory [Reif, 2009] gives that, between t and t + dt, the number of particles
going from A to B is the number of particle with velocity v such that vx > 0 that are
in the parallelogram of small side dp (the diameter of one hole) and length vdt whose
surface reads vxdtdp (see figure 5.2). Calling S(k)

vxdtdp the surface of the parallelogram
related to the hole number k of the membrane, the probability that one particle goes
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from A to B through the pore k, knowing that there is NA particles in A reads

pdt(NA − 1|NA) = dtρASp
∫
vx>0

dvxvxPA(vx) (5.5)

= dtρASp
1
2

√√√√Dx(EA)
πγ(EA) (5.6)

where Sp = Npdp, Np being the total number of pores. Symmetrically,

pdt(NA + 1|NA) = dtρBSp
1
2

√√√√Dx(EB)
πγ(EB) . (5.7)

One notices that the probability of having a transfer of two particles or more between
t and t+ dt is of order dt>2 = o(dt) (because the probability that two particles are in
parallelograms of area vxdtdp is ∝ (ρdt)2 since particles are independent). Thus, be-
yond the two above events where only one particle is exchanged, the only other event
is simply that nothing happens which reads, according to the normalisation of prob-
ability, 1− (pdt(NA + 1|NA) + pdt(NA − 1|NA)). Also, we should stress that we made
the assumption that the distribution of particles position corresponds to the station-
ary density value ρA,B, which, as explained in the first chapter, is a sound assumption
only when the jump frequency is very small compared to the frequency associated
with the bulk relaxation time. Furthermore, we emphasise that these densities ρA, ρB
corresponds to the bulk value of the densities, meaning that the membrane is assumed
to not perturbed the local density of particles close to it. This is without doubt an
idealisation and we will see henceforth what may happen in presence of a high energy
barrier for overdamped active particles.

Calling NA = VAρA, the master equation associated with this Markov process reads

dPt
dt (ρA|ρ̄) = ρASp

2

√√√√Dx(EA)
πγ(EA)

(
Pt(ρA + 1

VA
|ρ̄)− Pt(ρA|ρ̄)

)

+ ρBSp
2

√√√√Dx(EB)
πγ(EB)

(
Pt(ρA − 1

VA
|ρ̄)− Pt(ρA|ρ̄)

)
,

such that ρAVA + ρBVB = (VA + VB)ρ̄. At large deviations limit, one can derive a
stationary Hamilton-Jacobi equation (2.23) for the stationary large deviations function
I (defined by P (ρA|ρ̄) � e−VAI(ρA|ρ̄)), which reads

I ′(ρA|ρ̄) = ln
ρA
√
Dx(EA)γ(EA)−1

ρB
√
Dx(EB)γ(EB)−1

. (5.8)
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Chemical potentials attached to system k = A,B then reads

µcont
k (ρk) = ln ρk + 1

2 ln Dx(Ek)
γ(Ek)

. (5.9)

The equalisation of chemical potentials gives the stationary densities in each systems,
generally different when external driving fields are different.

To conclude, this simple example has shown that a non-linear effect produced by
an applied electric field on certain colloids could modify the Maxwellian velocity dis-
tribution by introducing an effective temperature ∝ D/γ that depends on the external
driving force. For this very simple case, chemical potentials attached to each system
can be defined and are independent of the contact properties (because of our assump-
tion that the density near the membrane is not perturbed by the latter). One is able
to recognise the standard chemical potential related to independent particles, namely
ln ρ, but an extra parameter related to the effective temperature D/γ needs to be
added. The latter is generally responsible for a shift in the stationary densities since
their ratio reads

ρ∗A
ρ∗B

= Dx(EB)γ(EA)
Dx(EA)γ(EB) . (5.10)

At equilibrium, the Einstein relation between D and γ is satisfied and one gets β =
2γ/D. The additional part in the chemical potential depending on the temperature is
always there but blank at equilibrium since temperature is uniform along the whole
system.

5.2 Active particle systems in contact

After this simple example involving a perfect contact made of a permeable membrane,
we would like to move to more realistic types of contact made of a general potential
barrier. For this, we will consider other models of independent self-propelled particles
[Cates and Tailleur, 2013; Fodor and Marchetti, 2018; Schnitzer, 1993; Tailleur and
Cates, 2008] whose chemical potentials exhibit a strong dependence on the contact
dynamics. We will see in particular that this effect is the exact counter-part for the
exchange of particles of what has been seen to happen for the exchanged of volume
(controlled by the pressure) in active systems [Fily et al., 2017; Solon, Fily, Baskaran,
Cates, Kafri, Kardar and Tailleur, 2015; Solon et al., 2018a; Solon, Stenhammar,
Wittkowski, Kardar, Kafri, Cates and Tailleur, 2015; Speck and Jack, 2016; Takatori
et al., 2014; Winkler et al., 2015].
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5.2.1 Some generalities about self-propelled particles

Self-propelled particles are part of what people call active matter, which has attracted
lot of attention recently [Fodor and Marchetti, 2018; Marchetti et al., 2013]. Contrary
to the systems encountered so far, particles (or rather colloids in the following) are not
propelled by an external driving force but host in themselves their own self-propulsion
mechanism. Such kind of driving is ubiquitous in the biological realm (cells, molecular
motor, etc.) and in colloids science (self-catalytic colloids).

Most of self-propelled particles are small objects whose dynamics is usually de-
scribed by an overdamped Langevin equation (when inertial effects are neglected). A
general equation for one self-propelled particle evolving in a potential U(x) reads

dX(t) = V (t)dt− µtr∇U(X(t))dt+
√

2DtrdWtr(t) (5.11)

where dWtr(t) is a two dimensional Gaussian white noise with a variance

〈dWtr, i(t′)dWtr, j(t)〉 = dtδ(t′ − t)δi,j ,

µtr the (translational) mobility, Dtr the (translational) diffusion coefficient and V en-
codes the self-propulsion. Different models of self-propulsion exist and mostly vary on
the prescribed stochastic dynamics of its direction, keeping its norm fixed. We will
consider in particular Run-&-Tumble particles (RTP) as well as Active Brownian par-
ticles (ABP) (see [Solon, Cates and Tailleur, 2015] for a comparative study). One then
write V (t) = v0e(θ(t)) where θ(t) is the angle, e(θ) = (cos θ, sin θ) in two dimensions,
and v0 > 0 the amplitude of the self-propulsion, homogeneous to a velocity.

Figure 5.3 – Sketch of trajectories of Run-&-Tumble particles (left) and Active Brow-
nian Particles (right).

Run-&-Tumble particles (RTPs). RTPs model was firstly inspired by the dy-
namics of bacteria. Basically, RTPs alternate between straight moves (“run”) for a
random time before reorienting its direction (“tumble”) to perform a second straight
move (“run”), etc. (see figure 5.3). A simple modelling then consists in assuming that
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θ(t) follows a simple jump Poisson process at a rate α, with a probability to draw a
new angle between θ and θ + dθ that reads dθ/2π.

Active Brownian particles (ABPs). As for the ABPs, they were introduced to
mimic the dynamics of colloidal particles with asymmetric chemical or physical prop-
erties causing its (self-)propulsion. Here, the angle follows a Brownian dynamics which
reads dθ(t) =

√
2DrdWr(t), Dr being the (rotational) diffusion coefficient and dWr a

one-dimensional Gaussian white noise of variance

〈dWr(t′)dWr(t)〉 = dt δ(t′ − t) .

Even for independent particles, the lack of time-reversibility – which appears in
presence of a non-uniform potential as we will see henceforth – in the dynamics makes
it difficult to compute the stationary probability density distribution of the position
(lack of detailed balance in the Master or Fokker-Planck equation). If perturbative
computations are feasible for certain limits of the parameters, for instance when the
reorientation time scale is very small compared to the translational time scales as we
will see in next sections, we shall begin with one of the few available exact results,
namely RTP in one dimension [Schnitzer, 1993; Tailleur and Cates, 2008].

5.2.2 Run-&-Tumble particles in 1D

In one dimension, there are only two possible directions of motion, namely left or
right. Calling PL(x, t) and PR(x, t) the probability density distributions associated
with a velocity oriented to the left or to the right respectively, the master equation
reads

∂PR
∂t

(x, t) = − ∂

∂x
[(v0(x)− µtrU

′(x))PR(x, t)]− α (PR(x, t)− PL(x, t)) (5.12)
∂PL
∂t

(x, t) = − ∂

∂x
[(−v0(x)− µtrU

′(x))PL(x, t)] + α (PR(x, t)− PL(x, t)) . (5.13)

Writing P (x, t) = PR(x, t)+PL(x, t) and D(x, t) = PR(x, t)−PL(x, t), equations (5.27)
read

∂P

∂t
(x, t) = −∂J

∂x
(x, t) with J(x, t) = v0(x)D(x, t)− µtrU

′(x)P (x, t) (5.14)
∂D

∂t
(x, t) = − ∂

∂x
[v0(x)P (x, t)− µtrU

′(x)D(x, t)]− 2αD(x, t) . (5.15)

Now, let us formally split our system into two parts A and B that are separated
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by a high barrier U(x) as drawn in figure 5.1. One can also assume that v0(x) = vA

if x ∈ ΛA and v0(x) = vB if x ∈ ΛB, i.e. that the velocities in A and B can be
different. This situation may be particularly relevant for light-controlled self-catalytic
propulsion as described for instance in [Buttinoni et al., 2013; Gomez-Solano et al.,
2016; Palacci et al., 2013; Stenhammar et al., 2016].

In the bulk of each system, where the potential U(x) is flat, the current reads
J(x, t) = vA,BD(x, t). Since the boundaries are closed, the current is vanishing at
boundaries and one can look for a stationary solution whose current is null. Then,
P (x) = pA or pB for x in the bulk of A or B respectively. The question we ask is how
the two densities ρA and ρB in the bulk of each system are related to each other when
particles are allowed to cross the potential barrier U(x) centred at x = 0.

To address this question, we look for a solution in the presence of the potential
barrier. When the potential barrier U(x) is such that v0(x) > µtr|U ′(x)| for1 all x, it
has been shown in [Tailleur and Cates, 2008] that a steady state solution of equations
(5.14) reads

P (x) ∝ 1
1−

(
µtrU ′(x)
v0(x)

)2 exp

− ∫ x

dq
(
µtrα

v2
0(q)

)
U ′(q)

1−
(
µtrU ′(q)
v0(q)

)2

 , (5.16)

with P (x) = 0 if v0(x) < µtr|U ′(x)|. One can see that this solution is associated with
a vanishing current J(x). We should also note that the latter displays an accumu-
lation of particles near the potential (see [Fodor and Marchetti, 2018] for instance),
which already suggests that something different from the equilibrium happens near
the separating barrier.

Entropy production of 1D RTPs. One should make a remark at this stage.
The reader might indeed wonder where the non-equilibrium character of this model
resides since the noise is symmetric and the force −µtrU

′(x) derives from a potential.
Let us then compare trajectories with their time-reversal counterpart to examine the
non-equilibrium character of this model (the study of time-reversal symmetry in self-
propelled particles and active matter has attracted recently a lot of interest, see for
instance [Fodor et al., 2016; Nardini et al., 2017]). For one particle, a trajectory of
length T corresponds to the position x(t) as well as the direction of its velocity ±v0,
or equivalently the instants of velocity reversal {tk}Njk=1, for each time t ∈ [0, T ], Nj
being the number of jumps during [0, T ]. The position x(t) thus obeys the equation
of motion

ẋ(t) = −µtrU
′(x(t)) + ι(t)v0 , (5.17)

1This means that the propulsion must be sufficient so that a particle can overcome the barrier and
go to the other side.
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with
ι(t) = ιk ∈ {+1,−1} for tk 6 t < tk+1 .

Calling xR(t) = x(T −t) the time-reversed trajectory, it necessarily obeys the equation

ẋR(t) = −µtrU
′(xR(t)) + 2µtrU

′(xR(t))− ι(T − t)v0︸ ︷︷ ︸
/∈{+v0,−v0}

. (5.18)

But clearly, the last term cannot be realised by the natural noise present in the sys-
tem since the latter is only bi-valued, unless the external force vanishes (U ′(x) = 0).
Thus, the presence of an external potential breaks the time-reversal symmetry and the
entropy production gets infinite (because the probability to observe the time-reversed
trajectory is simply zero). One should note that this entropy production is not re-
lated to any global current flowing in the system, but is necessary to maintain the
non-equilibrium state.

In order to compute the stationary distribution of density in A (and B), one can
proceed in two ways. The first one is straightforward: as one knows the exact sta-
tionary distribution for the whole system, one can compute exactly the probability
density of a configuration {Xi}Ni=1 and then find the probability to have NA particles
in A. In a word, this way is the one someone would apply in an equilibrium situation
where the Gibbs-Maxwell-Boltzmann distribution is known. The second one proceeds
in a similar fashion as in section 5.1 and focus directly on the exchange dynamics at
the contact area.

Direct computation

The stationary solution ρ(x) = NP (x) reads

For x ∈ ΛA, ρ(x) = ρ∗A

1−
(
µtrU ′(x)
vA

)2 exp

− ∫ x

x∗A

dq µtrα

v2
A

U ′(q)
1−

(
µtrU ′(q)
vA

)2

 (5.19)

For x ∈ ΛB, ρ(x) = ρ∗B

1−
(
µtrU ′(x)
vB

)2 exp

− ∫ x

x∗B

dq µtrα

v2
B

U ′(q)
1−

(
µtrU ′(q)
vB

)2

 .

with x∗A and x∗B two points respectively in the bulk of A and B where the potential
barrier U(x) = 0 ; and ρ∗A, ρ∗B the densities in the bulks to be determined. The
current being continuous at contact between A and B, the constants ρ∗A and ρ∗B are
not independent from each other but are related by the equalisation of the stationary
currents from A to B and from B to A. The latter equality reads

vAρ
∗
Ae
−∆QA = vBρ

∗
Be
−∆QB (5.20)
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with
∆Qk =

∫ 0

x∗
k

dq αµtr

v2
k

U ′(q)
1− (µtrU ′(q)/vk)2 . (5.21)

At the thermodynamic limit where LA and LB tend to infinity, the normalisation
condition of ρ(x) reads

N =
∫

ΛA∪ΛB
dxρ(x) = LAρ

∗
A + LBρ

∗
B + o(LA, LB) . (5.22)

since the non-uniformity caused by the external potential U(x) stays localised around
the contact area. Equations (5.20) and (5.22) of course completely determine ρ∗A and
ρ∗B but one would like to see how chemical potentials of systems in contact can be
defined in this simple case.

Knowing the density ρ(x) (or P (x) = ρ(x)/N), one can now calculate the prob-
ability to observe NA particles in the region ΛA (and thus NB = N − NA particles
in ΛB). Indeed, particles being independent, the probability distribution is simply a
binomial

P (NA|N) = 1
NN

(
N

NA

)(∫
ΛA

dx ρ(x)
)NA (∫

ΛB
dx ρ(x)

)N−NA
. (5.23)

The associated large deviations function which is the meaningful quantity at the ther-
modynamic limit then reads

P (ρA|ρ̄) � e−LI(ρA,ρB) with I(ρA, ρB) = γAρA ln ρA
ρ∗A

+ γBρB ln ρB
ρ∗B

(5.24)

with γAρA + γBρB = ρ̄ and L = LA + LB.

Eventually, the stationary densities – that we already know! – are dictated by
the minimum of the large deviations function I, characterised by the vanishing of its
derivative:

I ′(ρ∗A, ρ∗B) = 0 =⇒ µcont
A (ρ∗A) = µcont

B (ρ∗B) (5.25)

with
µcont
k (ρk) = ln ρkvke

−∆Qk

α
, (5.26)

where α as been introduced as a typical rate (or typical inverse time scale) to get an
dimensionless argument in the logarithm. One thus notices that beyond the expected
“perfect gas” contribution ln ρk, a non-trivial dependence on the contact appears in
the expression of a chemical potential at contact. Even when the velocities in each
side are equals (vA = vB), ∆QA and ∆QB (see equation (5.21)) are different as soon
as the potential barrier U(x) is asymmetric.
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Computation with the explicit Poisson dynamics over the particle number

To make the link with the previous chapters, we would like here to compute the large
deviations function I(ρA|ρ̄) for this model, by directly using a model of the exchange
dynamics. Following section 5.1, the independence of the particles implies that the
number of particles NA in the system A obeys a Poisson process. Its associated Master
equation reads

dPt
dt (ρA|ρ̄) = vAρ(0−)

(
Pt(ρA + 1

VA
|ρ̄)− Pt(ρA|ρ̄)

)
(5.27)

+ vBρ(0+)
(
Pt(ρA − 1

VA
|ρ̄)− Pt(ρA|ρ̄)

)
,

with
ρ(0−) = ρAe

−∆QA and ρ(0+) = ρBe
−∆QB ,

ρk being the actual densities in the bulk of system k such that γAρA + γBρB = ρ̄, and
∆Qk being defined in equation (5.21). vkρke−∆Qk is nothing but the average current
of particles (and also the transition rates here for this very simple Poisson process)
from k → k′ 6= k, k, k′ = A,B.

The derivative of the large deviations function associated with P (ρA|ρ̄), solution
of the Hamilton-Jacobi equation (2.23), reads

I ′(ρA|ρ̄) = ln vAρAe
−∆QA

vBρBe−∆QB
. (5.28)

We thus retrieve the chemical potentials µcont
k of (5.26).

In line with previous chapters, we note that the additivity of the large deviations
function is again a consequence of the factorisation of the macroscopic transition rates
(which are of Sasa-Tasaki type (see equation (3.11)) as well as macroscopic detailed
balance (only one particle can be exchanged per unit time).

Relation between chemical potential and the pressure

This situation is very reminiscent to what happens to the pressure in the same kind
of active systems. As mentioned in the introduction, several studies on the notion of
pressure in active systems has been conducted quite recently [Fily et al., 2017; Solon,
Fily, Baskaran, Cates, Kafri, Kardar and Tailleur, 2015; Solon et al., 2018a,b; Solon,
Stenhammar, Wittkowski, Kardar, Kafri, Cates and Tailleur, 2015]. The pressure can
be computed as the mean force applied by the particles onto the external operator who
is interacting with the system through the external potential U(x) at the interface:

Pk→U(x)(ρ∗k) =
∫ 0

x∗
k

ρ(x)U ′(x) dx . (5.29)
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If the system is at equilibrium (this can be achieved by taking the limit α → ∞,
D = v2

0/α kept fixed with β = µtr/D the effective temperature), ρ(x) = e−βU(x)/Z(β)
and Pk→U(x) = β−1ρ∗k as one would expect for a perfect gas. But since, ρ(x) is non-
local in U(x) for RTPs in 1D, Pk→U(x) has been shown to strongly depends on the
external potential barrier profile U(x). Indeed, it appears that the pressure can be
exactly computed here (see appendix of [Solon, Fily, Baskaran, Cates, Kafri, Kardar
and Tailleur, 2015] for instance):

Pk→U(x)(ρ∗k) = ρ∗kv
2
k

µtrα

(
1− e−∆Qk

)
. (5.30)

At equilibrium, there is a well known relationship between pressure and chemical
potentials which is often called a Maxwell relation (see [Sekimoto, 2010, Chapter 2],
[Sasa and Tasaki, 2006] or [Takatori and Brady, 2015; Takatori et al., 2014] in the
context of active matter). The latter reads

∂P (ρ)
∂ρ

= ρ
∂µ(ρ)
∂ρ

. (5.31)

However, for independent RTPs in 1D, one has

ρk
∂µk
∂ρk

= 1 and ∂Pk→U(x)

∂ρk
= v2

k

αµtr

(
1− e−∆Qk

)
, (5.32)

which thus show that the Maxwell equation does not hold for the chemical potential
defined above. In the case where vA = vB = v0, part of the discrepancy can be
absorbed by a redefinition of the chemical potential µk. Indeed, the chemical potential
µk is in fact a dimensionless chemical potential and one could define µk → (αµtr/v

2
0)µk,

the parameter v2
0/(αµtr) playing the role of an effective temperature shared by both

systems (otherwise, this redefinition of µk with vA 6= vB would destroy the equalisation
at stationarity since the effective temperature would be different). But even with this
redefinition, 1 6= (1− e−∆Qk) and the Maxwell equation does not hold.

The breaking of the Maxwell relation could have actually been expected. Indeed, as
shown in [Sasa and Tasaki, 2006], the latter relation is intimately related to a balance
between forces applied by an external potential on the particles and by the pressure
exerted by the particles. Nevertheless, since ρ∗k for k = A,B are related through the
equality of currents (5.20), one can notice that∣∣∣∣∣PB→U(x)

PA→U(x)

∣∣∣∣∣ = vB
vA

e∆QB − 1
e∆QA − 1 6= 1 , (5.33)

as long as vA 6= vB and ∆QA 6= ∆QB. Hence, there exists a net force applied on the
external operator producing the external potential U(x) which needs to be balanced
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by something else to keep U(x) centred at x = 0.
Eventually, no link seems to emerge between the mechanical pressure (5.29) and

the chemical potentials at contact. This is expected to be so because of the lack
of balance between the forces exerted by the external potential and the pressure of
the particles, but further studies in this direction should definitely be performed to
validate more systematically this result.

5.2.3 Active dynamics in 2D: perturbative evaluation

As already said in the introduction of the previous section, very few situations even
for independent particles allow explicit exact calculations. To see if the effect of
the potential described before is not specific to the run-&-tumble dynamics and the
dimension one, we would like to look at what happens in dimension 2 again for a
run-&-tumble dynamics (RTPs) as well as for active Brownian particles (ABPs). We
consider first the RTP dynamics. Techniques used in this subsection are borrowed
from [Bertin et al., 2009; Peshkov et al., 2014].

Run-&-Tumble in 2D

In two dimensions, relevant variables are the position x = xex + yey and the angle
θ ∈ [0, 2π[. The master equation which describes the evolution of the probability
density function Pt(x, θ) reads

∂Pt
∂t

(x, θ) = −∇x · [(v0(x)e(θ)− µtr∇xU(x))Pt(x, θ)] + α

2π

∫ 2π

0
dθ̃Pt(x, θ̃)−αPt(x, θ) .

(5.34)
To find a general stationary solution seems out of reach at this stage. However, one
can intuitively expect an equilibrium-like limit behaviour where an infinite tumbling
rate over the angle would lead to a translational diffusive-like behaviour if the velocity
v0 scales in the proper way. With straightforward dimensional analysis, one expects
that in this limiting behaviour, the effective diffusion coefficient D ∼ v2

0/α should
remain finite while α →∞. Our goal is then to compute the first order correction in
α of this equilibrium-like limit. Note that v0 is supposed here to be piecewise constant
(v0(x) = vA for x ∈ ΛA and v0(x) = vB for x ∈ ΛB).

To perform this study, we introduce several quantities and notations (see [Peshkov
et al., 2014] for an extensive review of these techniques). First, we define the Fourier
transform over the angle θ:

Pt(x, θ) = 1
2π

∑
k∈Z

fk, t(x)e−ikθ and fk, t(x) =
∫ 2π

0
dθ Pt(x, θ)eikθ (5.35)

with f̄k, t = f−k, t, z̄ being the complex conjugate of z ∈ C. With these notations, one
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gets Pt(x) =
∫ 2π

0 dθPt(x, θ) = f0, t(x). Projecting the master equation (5.34) onto the
Fourier basis we have just introduced, gives a hierarchy of equations on fk, t, k ∈ Z:

∂fk, t
∂t

= −v0
(
∂fk+1, t + ∂̄fk−1, t

)
+ µtr∇ · (fk, t∇U) + α (fk, tδk,0 − fk, t) , (5.36)

where one has introduced the complex derivatives ∂ = (∂x−i∂y)/2 and ∂̄ = (∂x+i∂y)/2.
In order to perform the perturbative expansion, let us write the first three equations:

∂Pt
∂t

= −v0
(
∂̄f1, t + ∂f̄1, t

)
+ µtr∇ · (Pt∇U) (5.37)

∂f1, t

∂t
= −αf1, t − v0

(
∂̄Pt + ∂f2, t

)
+ µtr∇ · (f1, t∇U)

∂f2, t

∂t
= −αf2, t − v0

(
∂̄f1, t + ∂f3, t

)
+ µtr∇ · (f2, t∇U) .

For k > 1, it is not difficult to see that fk>1 relax quickly to their stationary state for
large α. Hence, one can assume that at a time scale very large compared to α−1,

f1, t = −v0

α

(
∂̄Pt + ∂f2, t

)
+ µtr

α
∇ · (f1, t∇U) (5.38)

f2, t = −v0

α

(
∂̄f1, t + ∂f3, t

)
+ µtr

α
∇ · (f2, t∇U)

Fixing D = v2
0/2α, one obtains that v0 ∼ α1/2. Thus, if one wants to keep only up to

first order corrections in α−1, f1 and f2 read

f2, t = 2D
α
∂̄∂̄Pt

f1, t = −
[

(2D)1/2

α1/2 ∂̄Pt + (2D)3/2

α3/2 ∂∂̄∂̄Pt

+µtr
(2D)1/2

α3/2 ∇ ·
(
∂̄Pt∇U

)]
.

(5.39)

Using the identities ∂∂̄ = ∆/4 and 2<(∂̄f1, t) = ∂f̄1, t + ∂̄f1, t, one eventually gets a
closed equation on Pt(x) which reads

∂Pt
∂t

= D∇·
[
∇
(
Pt + D

2α∆Pt
)]

+ µtrD

α
∇· [∆Pt∇U + (∇Pt ·∇)∇U ]+µtr∇·(Pt∇U) .

(5.40)

Looking for a stationary perturbative solution, we propose the following ansatz

P (x) ∝ exp
(
−φ0(x)− 1

α
φ1(x)

)
, (5.41)

where φ0 and φ1 do not depend on α. Assuming that U(x) = U(x), i.e. that U does

119



Chapter 5. Application to diffusive and self-propelled independent particles

not depend on y, one gets

φ0(x) = µtr

D
U(x) (5.42)

φ1(x) = −1
2U
′′(x)− 1

4D (U ′(x))2 + 1
2D2

∫ x

dq (U ′(q))3
. (5.43)

One thus notices the presence of a non-local contribution of the external potential
barrier at order α−1. This contribution is quite similar to the 1D case at order α−1

and gives different contributions to ∆Qk in (5.21) depending on k = A, B. Particles
being independent, results of the 1D case can be easily extended to this 2D situation.

Active Brownian Particles in 2D

For the active Brownian particles, the dynamics is very similar except for the angle
that follows a Brownian motion rather than a jump process. The corresponding master
equation reads

∂Pt
∂t

(x, θ) = −∇x · ((v0(x)e(θ)− µtr∇xU(x))Pt(x, θ)) +Dr
∂2Pt
∂θ2 . (5.44)

Projecting this Fokker-Planck equation on the Fourier basis (5.35), one obtains

∂fk, t
∂t

= −v0
(
∂fk+1, t + ∂̄fk−1, t

)
+ µtr∇ · (fk, t∇U)− k2Drfk, t (5.45)

This time, we look at the limit where Dr → ∞ and we keep D = v2
0/2Dr fixed. One

can recognise that up to k = 2, the hierarchy of equations is the same if one changes
Dr ↔ α except for k = 2 where a factor 22 = 4 appears. This does not affect the fast
relaxation of the fk>1 and the final equation over Pt(x) reads

∂Pt
∂t

= D∇·
[
∇
(
Pt + D

8Dr
∆Pt

)]
+ µtrD

Dr
∇· [∆Pt∇U + (∇Pt ·∇)∇U ]+µtr∇·(Pt∇U)

(5.46)
Eventually, looking for a stationary solution with a similar ansatz (5.41) as in the

RTP case,
P (x) ∝ exp

(
−φ0(x)− 1

Dr
φ1(x)

)
, (5.47)

one gets

φ0(x) = µtr

D
U(x) (5.48)

φ1(x) = −1
8U
′′(x)− 13

16D (U ′(x))2 + 7
8D2

∫ x

dq (U ′(q))3
. (5.49)

Conclusions are the same as for RTPs in 2D since the expressions are very closed
to each other, except for numerical prefactors.
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5.3 Conclusion & relations with chapter 2 and 3
All the systems presented in this chapter are independent particles systems for which at
most one particle can be exchanged at a time between A and B subsystems. This natu-
rally led to the macroscopic detailed balance (2.35). Associated macroscopic transition
rates were found to be of Sasa-Tasaki type or Arrhenius type (3.7) which naturally led
to the additivity property. Nevertheless, one has seen that additional contributions
to the bulk or equilibrium chemical potential were present. These additional contri-
butions can be organised in two types for the simple models considered here (cases
investigated in this chapter have often mixed this two contributions):

1. A non-uniformity of the effective temperature. For the first model of externally
driven colloids, these effective temperatures of both systems were controlled
each by the external driving fields. As for the RTPs and ABPs, the effective
temperature-like parameters were rather controlled by the fixed value of the
non-uniform velocity v0(x) = vA or vB. In all these situations, the consequence
of this non-uniformity was to induce a bias in the microscopic transition rates,
hence leading to a bias in the macroscopic transition rates. This situation is
thus very similar to the one described in 3.1.3 for which an extra-tilting of the
microscopic transition rates at contact has been considered.

2. The second contribution corresponds to a modification of the stationary distri-
bution value at the top of the high energy barrier, compared to the equilibrium
situation. When P (0−) 6= P (0+), which has been noticed to be the case when
the potential barrier U(x) is not symmetric, macroscopic transition rates are
then tilted and provide an extra-contribution to the perfect gas chemical poten-
tial. By analogy with driven lattice gas cases, this contribution corresponds to a
departure from equilibrium of the local probability distributions, thus breaking
the local detailed balance condition with respect to equilibrium transition rates.

However, one should eventually emphasise that this two types of extra-contributions
are ambiguous and strongly depend on the definition of the frontier between both sys-
tems. Indeed, if the contact area containing the high potential barrier would have been
considered as a contact region separated from both systems A and B, the difference in
P (0±) would have been included in the coarse-grained transition rates involving the
work to climb the potential barrier, thus leading to an asymmetry of the macroscopic
transition rates.

Eventually, contrary to mass transport models and other driven lattice gas models,
the notion of mechanical pressure can be defined without any ambiguity. We have
seen that the latter was not related to the chemical potential at contact through a
Maxwell relation as one may have expected (see [Sasa and Tasaki, 2006]). Even if

121



Chapter 5. Application to diffusive and self-propelled independent particles

further studies would be necessary to assess a definitive conclusion, one can suspect
that this is so because of the lack of balance of mechanical forces exerted on the high
energy barrier.

122



CHAPTER 6

Conclusion and outlook

6.1 General conclusion

The work presented in this thesis aimed at looking at a thermodynamic structure for
non-equilibrium (almost) uniform systems in a steady-state, focusing on a particular
situation, namely the contact between two systems. Following previous studies [Bertin
et al., 2006, 2007; Dickman, 2014; Dickman and Motai, 2014; Pradhan et al., 2010,
2011; Sasa and Tasaki, 2006], we mainly concentrated on mass transport models and
driven lattice gases for which the most natural conserved quantity is the number of
particles, volume being fixed.

In chapter 2, we expounded in a quite general way the large deviations analysis
of the densities in each systems, which is the relevant framework to derive variational
principles and more generally to study the thermodynamic limit. The latter analysis
has been performed in the idealised limit of the vanishing exchange rate at contact,
as first suggested by [Sasa and Tasaki, 2006]. In this limit, we have performed a
multi-scale analysis which has led to the main equation of the chapter, namely the
equation over the stationary large deviations function I(ρA, ρB), which was called the
Hamilton-Jacobi equation. Eventually, the macroscopic detailed balance condition
(which is formally a particular condition for which the Hamilton-Jacobi equation is
very easy to solve) has been discussed in terms of time-reversal symmetry. All these
ideas are clearly not new, but we should stress that some have not been discussed (at
least to the knowledge of the author) in the context of Poisson processes (but rather
on diffusive processes).

After having defined the tools and main objects of our analysis, the chapter 3 fo-
cused on the core of the thesis, namely the thermodynamics analysis of the densities.
At equilibrium, the main feature of the free energy is to be additive. Together with
the conservation of mass, the latter property allows one to define chemical potentials

123



Chapter 6. Conclusion and outlook

attached to each systems, useful to characterise stationarity as well as to predict the
direction of mass flow. We thus derived on general grounds general sufficient condi-
tions, namely macroscopic detailed balance as well as factorisation of transition rates,
for the large deviations function I(ρA, ρB) to be additive. In particular, this result
extensively generalised the pioneering study of the KLS model by Sasa & Tasaki (see
[Hayashi and Sasa, 2003] and [Sasa and Tasaki, 2006, Appendix B.]). Assuming that
the latter conditions hold, we have provided a general definition of out-of-equilibrium
chemical potentials. Their potential relations with equilibrium chemical potentials or,
if defined, with chemical potentials of isolated systems has been also discussed: it has
led to the notion of excess chemical potential that has been shown to be generically
strongly dependent on the dynamics at contact. We then investigate the relation be-
tween the large deviations function I(ρA, ρB) and external potentials through which
an operator can shift stationary densities. Inspired by the thermodynamics analysis
performed in the MFT context [Bertini et al., 2015a], we use the large deviations anal-
ysis presented in chapter 2 to derive a second law relating the work performed by an
external potential and the difference in large deviations functions. Here again, ideas
are not original but it seems that this kind of derivation has never been performed (to
the author’s knowledge) previously. We close the chapter by a discussion around the
different ways to measure experimentally this large deviations function and, if defined,
the related chemical potentials.

The third chapter 4 was devoted to applications and discussions of the most im-
portant studies of the literature in light with the framework presented in previous
chapters. After a short review of exact results on the Zero Range Process [Bertin
et al., 2007; Pradhan et al., 2011], we have presented a new mass transport model
in one dimension, exactly solvable, whose stationary distribution does depend on the
magnitude of the external driving force (more details about the continuous version of
the model is available in [Guioth and Bertin, 2017], reproduced in appendix C). The
contact between two such systems has then been extensively studied and the impor-
tance of the dynamics at contact has been explicitly emphasised. The analysis of the
literature was then the occasion to discuss specific more complex systems, in particular
in two dimensions. With the help of the framework developed in chapter 2 and 3, we
notably have managed to rationalise most of the discrepancies observed in numerical
simulations (at the vanishing exchange rate limit) presented in [Dickman, 2014; Dick-
man and Motai, 2014]. We nevertheless recognise that extensive numerical simulations
on these models would be necessary to assert a definitive conclusion. This is intended
to be the subject matter of future work. Eventually, we have found interesting to
consider briefly this situation of two non-equilibrium systems brought into contact in
the context of the Macroscopic Fluctuation Theory which deals with non-linear out-
of-equilibrium diffusive systems at local equilibrium. The latter theory was after all
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motivated by the same kind of lattice gases discussed above. Nevertheless, it turns
out that the latter cannot account for the effect previously observed. The reason is
without doubt because of the local equilibrium, valid for small external driving forces.

The last chapter 5 leaves the realm of lattice models to enter the one of continuous
space stochastic models. We have discussed in particular independent passive colloids
as well as independent self-propelled particles which have raised a lot of attention re-
cently. The models considered as well as the situation of the contact allowing exchange
of particles are not new but our large deviations approach apparently is. In particular,
we have discussed extensively the exactly solvable models of RTPs in one dimension
as well as a two dimensional model of externally driven colloids. In the same way as
for lattice models, the contact is shown to play a major role in the density balance
between both macroscopic regions A and B. In the case where the contact is realised
with a high energy barrier, a dependence in the latter has been observed for RTPs
in one dimension as well as RTPs and ABPs in two dimensions: this is perfectly in
correspondence with recent results about the mechanical pressure exerted on a wall
[Solon, Fily, Baskaran, Cates, Kafri, Kardar and Tailleur, 2015], albeit no general link
between the mechanical pressure and our chemical potential has been found. This
issue nevertheless deserves future work.

6.2 Some perspectives

We list here some perspectives that would be interesting to explore in the future:

• The preliminary results obtained about the links between the pressure and chem-
ical potentials for self-propelled particles should be continued for other models
as well as in a more systematic way.

• One has mainly focused on only one conserved quantity, namely the number of
particles. In relation with the previous point, looking at the pressure as the
quantity conjugated to the exchange of volume would be interesting too. It may
also be a way to relate the chemical potentials and the pressure. However, we
can already point out that the macroscopic detailed balance is less obvious since
the volume is a continuous quantity. For instance, going beyond the close to
equilibrium (detailed) analysis of the adiabatic piston performed in [Itami and
Sasa, 2015] could be an interesting clue.

• Eventually, one has observed all along this thesis the crucial importance of the
contact for the balance of the density between two (almost) uniform systems.
Contrary to the behaviour of equilibrium systems (actually quite singular in
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light of our work!)1 for which the necessary local perturbations of the equilibrium
state near walls and edges do not play any role, allowing a description in terms
of (uniform) bulk quantities only, out-of-equilibrium systems, even (almost) uni-
form, cannot in general be only described by bulk quantities: the knowledge of
the behaviour at contact is also required.

For this reason, it seems appealing to consider fields (even if the latter are al-
most uniform) rather than simple macro-variables to describe spatially extended
thermodynamic states in a systematic way, in the same vein as the Macroscopic
Fluctuation Theory for instance. Since the latter does not account for the sit-
uations expounded above, it raises the interesting (and probably difficult) issue
to look at field descriptions that go beyond the local equilibrium hypothesis2.

1Eventually, one should emphasise that it is not so surprising for the balance of mass through
the contact to be determined by the property of the contact itself. Along this line, the equilibrium
situation appears quite singular.

2In this respect, we should mention a recent work of Barré et al. [Barré et al., 2015] about a small
noise field description of interacting self-propelled particles.
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APPENDIX A

Entropy production and currents at large
deviations level

A.1 Entropy definitions

Having explored how transition rates could be decomposed with respect to the time-
reversal symmetry in 2.4.3, we discuss here the influence of this decomposition for
the expressions of the entropy production in average, at a large deviations level. In
particular, we will see that the vanishing of the “anti-symmetric” part of the generalised
forces in (2.43) can be seen in average without knowing the exact form of the transition
rates πV (ρ′A|ρA). Our discussion is largely inspired by a recent paper of Ge and Quian
[Ge and Qian, 2017].

Using the same notations as before, we define the entropy related to the transition
ρA → ρ′A between t and t+ dt as

St, dt(ρA, ρ′A) = ln Pt(ρA)Pdt(ρ′A|ρA)
Pt+dt(ρ′A)Pdt(ρA|ρ′A) (A.1)

which measures the asymmetry between the probability of the transition ρA → ρ′A and
its time-reversal counterpart ρ′A → ρA (see for instance [Gaspard, 2004] and [Maes,
2003; Maes and Netočnỳ, 2003]). The ratio of the infinitesimal propagator vanishes
when ρ′A = ρA and thus only transitions ρA → ρ′A matter for its calculation. For
ρ′A 6= ρA, Pdt(ρ′A|ρA) = πV (ρ′A|ρA)dt and one gets

St,dt(ρA, ρ′A) = FV (ρA, ρ′A)− ln Pt+dt(ρ′A)
Pt(ρA) . (A.2)
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In average, one obtains

〈S〉t, dt =
∑
ρA,ρ

′
A

Pt(ρA)Pdt(ρ′A|ρA)FV (ρA, ρ′A)−
∑
ρA,ρ

′
A

Pt(ρA)Pdt(ρ′A|ρA) ln Pt+dt(ρ′A)
Pt(ρA)

(A.3)

which leads when dt→ 0 to

〈dS〉t =
∑

ρ′A 6=ρA

Pt(ρA)πV (ρ′A|ρA)FV (ρA, ρ′A)dt−
∑
ρA,ρ

′
A

Pt(ρA)πV (ρ′A|ρA) ln Pt(ρ
′
A)

Pt(ρA)dt

+ o(dt) . (A.4)

Eventually, introducing the decomposition F = F (S) + F (A) of equation (2.43) into
equation (A.4) and writing

〈
Ṡ
〉
t

= limdt→0 〈dS〉t /dt gives

〈
Ṡ
〉
t

=
〈
Ṡhk

〉
t
− d

dt

〈
ln Pt(ρA)
P (ρA)

〉
t

(A.5)

where
〈
Ṡhk

〉
t

=
∑
ρA,ρ

′
A

Pt(ρA)πV (ρ′A|ρA)F (A)
V (ρA, ρ′A) (A.6)

d
dt

〈
ln Pt(ρA)
P (ρA)

〉
t

=
∑
ρA,ρ

′
A

Pt(ρA)πV (ρ′A|ρA)
[
ln Pt(ρ

′
A)

Pt(ρA) − F
(S)
V (ρA, ρ′A)

]
. (A.7)

〈
Ṡhk

〉
t
refers to the house-keeping entropy production (see [Hatano and Sasa, 2001;

Oono and Paniconi, 1998]).

Interpretation of Ṡhk. As one can easily see from (A.5) that at stationarity, the
total entropy derivative is equal to the house-keeping contribution. When detailed
balance holds i.e. when dynamic is time-reversible, the total entropy derivative should
vanish and

〈
Ṡhk

〉
= 0. Otherwise, the stationary state can be kept with a non-zero

house-keeping entropy meaning that non-conservative forces are in play.

We will see in next subsections that the presence of a non-vanishing F (A) — i.e.
that macroscopic detailed balance holds — is equivalent to the non-zero house-keeping
entropy production at large deviations level.
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A.2 Expressions of entropies at large deviations
level

We examine here how these quantities are transformed at a large deviations level. First
of all, the probability to observe a density ρA at time t, Pt(ρA) � e−VAIt(ρA), leads, for
any observable O(ρA), to

∑
ρA

Pt(ρA)O(ρA) −−−→
V→∞

O(ρA(t)) (A.8)

where ρA(t) is the argument of the minimum of It for which It(ρA(t)) = 0 and
I ′t(ρA(t)) = 0. This come from the fact that Pt becomes more and more peaked
and formally tends to a Dirac delta centred at ρA(t).

Applying this last equality to equation (A.3) and (A.6), leads to the following
expressions:

〈
Ṡhk

〉
t
−−−→
V→∞

Ṡhk(ρA(τ)) =
∑

∆NA 6=0
ϕ(ρA(τ),∆NA)F (A)(ρA(τ),∆NA) (A.9)

〈
Ṡ
〉
t
−−−→
V→∞

Ṡ(ρA(τ)) =
∑

∆NA 6=0
ϕ(ρA(τ),∆NA)F (ρA,∆NA) (A.10)

d
dt

〈
ln Pt(ρA)
P (ρA)

〉
−−−→
V→∞

dI(ρA(τ))
dτ = −

 ∑
∆NA 6=0

ϕ(ρA(t),∆NA)∆NA

 I ′(ρA(τ))

(A.11)

where the time t has been rescaled to τ = V −1t. The last quantities is sometimes
called the “free energy dissipation rate” [Ge and Qian, 2017] and reads:

Ḟdiss = −I ′(ρA(τ))J(ρA(τ)) (A.12)

with J(ρA(τ) is the macroscopic current ∑∆NA 6=0 ϕ(ρA(t),∆NA)∆NA.

F (A) and F are equals to

F (ρA,∆NA) = lim
V→∞

ln
πV

(
ρA + ∆NA

V

∣∣∣ρA)
πV

(
ρA
∣∣∣ρA + ∆NA

V

) = ln ϕ(ρA,∆NA)
ϕ(ρA,−∆NA) (A.13)

F (A)(ρA,∆NA) = lim
V→∞

ln
πV

(
ρA + ∆NA

V

∣∣∣ρA)P (ρA)
πV

(
ρA
∣∣∣ρA + ∆NA

V

)
P
(
ρA + ∆NA

V

) (A.14)

= ln
(
ϕ(ρA,∆NA)
ϕ(ρA,−∆NA)e

I′(ρA)∆NA

)
. (A.15)

One notices that the total entropy derivative Ṡ and the house-keeping entropy Ṡhk are

129



Appendix A. Entropy production and currents at large deviations level

positive quantities since F and F (A) are anti-symmetric in ∆NA. Eventually, (A.5)
becomes

dI(ρA(τ))
dτ = Ṡhk(ρA(τ))− Ṡ(ρA(τ)) . (A.16)

We can thus show the equivalence between Ṡhk(ρA) = 0 and the macroscopic
detailed balance condition.

Link between Ṡhk = 0 and (2.35). Using the standard inequality ln x > 1− 1
x
for

x > 0, where equality holds only for x = 1 one obtains

Ṡhk(ρA) > −
∑

∆NA 6=0
ϕ(ρA,∆NA)

[
eI
′(ρA)∆NA − 1

]
(A.17)

= H(ρA, I ′) = 0 ∀ρA . (A.18)

The transition rate ϕ being always strictly positive for ∆NA 6= 0, the equality in
(A.17) holds only when (2.35) holds. Trivially, if the macroscopic detailed balance is
satisfied, Ṡhk = 0.

A.3 Decomposition of the current at large devia-
tions level

According to equations (2.49) and (2.50), the macroscopic current J(ρA) and J†(ρA)
reads

J(ρA) =
∑

∆NA
ϕ(ρA,∆NA)∆NA (A.19)

=
∑

∆NA>0
∆NAa(ρA,∆NA) sinh (F (ρA,∆NA))

J†(ρA) =
∑

∆NA
ϕ†(ρA,∆NA)∆NA (A.20)

=
∑

∆NA>0
∆NAa(ρA,∆NA) sinh

(
F †(ρA,∆NA)

)

Using the decomposition in terms of force and activity (see equations (2.38) and
(2.43)), one can decompose J and J† in a symmetric and anti-symmetric components
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as

J (S)(ρA) = J(ρA) + J†(ρA)
2 (A.21)

=
∑

∆N>0
∆Na(ρA,∆N) cosh

[
FA(ρA,∆NA)

2

]
sinh

[
FS(ρA,∆NA)

2

]

J (A)(ρA) = J(ρA)− J†(ρA)
2 (A.22)

=
∑

∆N>0
∆Na(ρA,∆N) cosh

[
FS(ρA,∆NA)

2

]
sinh

[
FA(ρA,∆NA)

2

]

A.4 Hamilton-Jacobi in terms of forces and activ-
ity

The stationary Hamilton-Jacobi equation (2.23) can be reformulated in terms of F (A)

and F (S) or in terms of I ′ and F . They read

∑
∆NA>0

sinh
[
F (A)(ρA,∆NA)

]
a(ρA,∆NA) sinh

[
F (S)(ρA,∆NA)

]
= 0 (A.23)

or, equivalently,

∑
∆NA>0

sinh [F (ρA,∆NA) + I ′(ρA)∆NA] a(ρA,∆NA) sinh [I ′(ρA)∆NA] = 0 . (A.24)

These expressions are completely equivalent to Eq (2.23). One should also note that
the above version of the Hamilton-Jacobi equation can be interpreted as the counter-
part of the orthogonality between anti-symmetric and symmetric forces already found
in the Macroscopic Fluctuation Theory (see [Bertini et al., 2015a]) in the context of
Markov jump processes (see [Kaiser et al., 2018] for a very recent study of an almost
identical decomposition in the context of Markov chains).
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APPENDIX B

More than two systems in contact

Insofar, we have only considered the most simple case of two systems in contact with
each other. Even if the case of more than two systems in contact is much more
complicated, we show here how the framework discussed all along this chapter for
the two systems case can be extended to the general case of an arbitrary number of
systems in contact.

We consider a simple graph made of vertex that symbolise the different systems
and links that symbolise the contact between the different systems. The systems
are numbered by i ∈ {1, 2, . . . , S}, and the links are called {` = (i, j)}. Of course,
as we adopt a coarse-grained point of view, we assume that there exist only one
link ` = (i, j) between two adjacent systems i and j. Each system i exchange mass
with its neighbours j according to a coarse-grained transition rate ϕ`(∆Ni, ρi, ρj) with
ρi = Ni/Vi, Ni being the number of particles in system i and Vi its volume. We note
∆Ni the number of particles received or loosed by the system i after the exchange:
N ′i = Ni+∆Ni, N ′j = Nj−∆Ni. We also introduce γi = Vi/V which verify∑S

i=1 γi = 1
since V = ∑S

i=1 Vi. The dynamics is supposed to be asynchronous. The master
equation reads

dPt({Ni})
dt =

∑
`

∑
∆N`1

ϕ`

(
∆N`1 , ρ`1 −

∆N`1
V`1

, ρ`2 + ∆N`1
V`2

)

× Pt(N1, . . . , N`1 −∆N`1 , . . . , N`2 + ∆N`1 , . . . , NS)
−
∑
`

∑
∆N`1

ϕ`(∆N`1 , ρ`1 , ρ`2)Pt({Ni}) (B.1)

with `1 = i and `2 = j the “coordinates” of the link ` = (i, j). At the thermodynamic
limit for which V → ∞, keeping γi fixed, we expect that the distribution Pt({Ni})
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verifies a large deviations principle:

It(ρ1, . . . , ρS) = lim
V→∞

1
V

lnPt(V γ1ρ1, . . . , V γSρS) . (B.2)

The equation obeyed by the latter large deviations function is an Hamilton-Jacobi
equation that reads

dIt
dt ({ρi}) =

∑
`

∑
∆N`1

ϕ`(∆N`1 , ρ`1 , ρ`2)
[
exp

{
∆N`1

(
γ−1
`1

∂It
∂ρ`1

− γ−1
`2

∂It
∂ρ`2

)}
− 1

]
.

(B.3)
Some comments can already be made from (B.3). One notices that if the number

of systems in contact is greater than 2, the exchange of one particle at most between
two adjacent systems is no more a sufficient condition to obtain macroscopic detailed
balance1. The latter yet reads

γ−1
`1

∂I

∂ρ`1
− γ−1

`2

∂I

∂ρ`2
= 1

∆N`1

ϕ`(−∆N`1 , ρ1, ρ2)
ϕ`(∆N`1 , ρ1, ρ2) . (B.4)

If the factorisation (3.3) of the macroscopic transition rates holds, the large deviations
function I is then additive as for the case of only two systems in contact. If factorisation
does not hold but macroscopic detailed balance does, one can already see that the
additivity property has no reason to be verified.

Beyond this particular case, only a perturbative solutions as expounded in section
2.5 seems to be available in general. Even if detailed study are not available, one can
reasonably expect that long range effects – which can be seen through the slow decay
of correlation functions or the non-local response to a local perturbation by an external
potential – emerge as long as the large deviations function is a non-local function of
the systems i ∈ {0, . . . , S} (see [Bertini et al., 2015a] for a presentation of such effects
in the context of continuous-space diffusive dynamics).

1As discussed for the case of two systems in contact, the macroscopic detailed balance can be
evaluate by looking at the vanishing of the house-keeping heat released in the heat bath or the
asymmetry between fluctuation and relaxation path, etc.
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“A mass transport model with a simple
non-factorized steady-state distribution”

This appendix is a duplication of [Guioth and Bertin, 2017] (see below).
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Abstract. We study a mass transport model on a ring with sublattice-parallel

update, where a continuous mass is randomly redistributed along distinct links of

the lattice. The redistribution process on a given link depends on the masses on both

sites, in contrast to the Zero Range Process and its continuous mass generalizations.

We show that the steady-state distribution takes a simple non-factorized form that can

be written as a sum of two inhomogeneous product measures. A factorized measure

is recovered for a symmetric mass redistribution, corresponding to an equilibrium

process. A non-equilibrium free energy can be explicitly defined from the partition

function. For a certain class of transition rates, a condensation transition is

obtained, with a critical density which depends on the driving force. We also evaluate

different characterizations of the ‘distance’ to equilibrium, either dynamic or static:

the mass flux, the entropy production rate, the Gibbs free-energy difference between

the equilibrium and non-equilibrium stationary states, and the derivative of the non-

equilibrium free energy with respect to the applied driving force. The connection

between these different non-equilibrium parameters is discussed.

1. Introduction

One of the goals of non-equilibrium statistical physics is to be able to describe

the statistical properties of systems driven in a non-equilibrium steady state by an

external non-conservative force. As no general statistical formalism is available to deal

with driven systems, exactly solvable models have played an important role in the

development of this field. A paradigmatic exactly solvable model is the Asymmetric

Simple Exclusion Process (ASEP) [1], either with periodic [2] or open boundary

conditions [3, 4, 5, 6]. Generalizations with several types of particles have also been

proposed, with periodic [7, 8, 9] or open geometries [10, 11, 12, 13]. The ABC model

[14], which includes three types of particles, also falls into this class. The solution of

the ASEP model requires in most cases the use of matrix product states [15], often with

infinite size matrices, making its analysis relatively involved. Such matrix product state

solutions are required even with a periodic geometry, when the model includes several

types of particles [7, 8, 9] —except if some restrictive conditions are imposed [16].
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Simpler models, like the Zero-Range Process (ZRP) [1, 17, 18] and related mass

transport models [19, 20, 21, 22], have also been considered, often in relation to

condensation transitions [23, 24, 17, 25]. Multispecies generalizations of these models

have also been proposed [23, 26, 27]. When the transition rates satisfy certain conditions

[19, 20, 21, 25], these models have the advantage that their steady-state distribution

factorizes, making their analytical study much easier. However, in a closed geometry,

they have the drawback that the distribution does not depend on the driving force, and

thus remains identical to the equilibrium distribution obtained for unbiased dynamics.

Note that the same property also holds for the (single-species) ASEP on a ring [2].

In this paper, we propose a class of mass transport models for which the steady-

state distribution takes a simple form (a sum of two inhomogeneous product measures)

and explicitly depends on the local driving force. The present model is inspired by the

equilibrium model considered in [28], though it differs from the latter in several respects,

notably the presence of a driving force and of a synchronous dynamics. The simple form

of the steady-state probability distribution makes calculations easy, as illustrated below

on several examples including the evaluation of a non-equilibrium free energy. For a

certain class of transition rates, our model exhibits a condensation transition similar to

the one appearing in mass transport models with factorized steady states [25], but with

a condensation threshold depending on the driving force. In addition, the dependence of

the steady-state probability distribution on the forcing allows us to compare dynamical

characterizations of the ‘degree of non-equilibrium’ (mass flux and entropy production

rate) with static characterizations like the difference of Gibbs free energy functional

(or Kullback-Leibler divergence [29]) between the non-equilibrium distribution and the

corresponding equilibrium one. We also evaluate the non-equilibrium order parameter

introduced by Sasa and Tasaki [30], defined as a derivative of the non-equilibrium free

energy with respect to the driving force, and discuss the relationship between these

different measures of the ’distance’ to equilibrium.

2. Definition of the model

We consider a one-dimensional lattice with N sites, labelled by i = 1, . . . , N , with

periodic boundary conditions (i ± N ≡ i); N is assumed to be even, namely N = 2N ′

with N ′ integer. On each site i, one defines a real positive mass mi. The model is

endowed with a sublattice parallel-update dynamics‡ The dynamics proceeds, at each

discrete time step t = 0, 1, 2, . . ., by parallel redistributions of mass between neighboring

sites i and i+1 on one of the two partitions P1 = {(2k, 2k+1)} and P2 = {(2k+1, 2k+2)},
randomly chosen with equal probability. Once a partition Pj has been selected, all links

belonging to the partition Pj are simultaneously updated. To update a link (i, i+ 1), a

‡ Note that although the asynchronous, continuous time dynamics is most often used in this context,

synchronous dynamics has also been used in the ASEP [31, 32, 33] and related particle models [27],

as well as in mass transport models [19, 26].
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new value m′i of the mass on site i is randomly drawn from the distribution

K(m′i|Si) =
v(m′i)w(Si −m′i)

v ∗ w(Si)
, Si ≡ mi +mi+1 (1)

where v(m) and w(m) are arbitrary positive functions, and v ∗ w(S) is the convolution

product of v and w,

v ∗ w(S) =

∫ S

0

dmv(m)w(S −m) , (2)

which has to be non-zero for any S > 0 for the model to be well-defined. From mass

conservation, the mass on site i+ 1 is, after redistribution, m′i+1 = Si −m′i.

3. Master equation and steady-state solution

3.1. Discrete time master equation

To describe the statistical evolution of the system under the above dynamics, we write

down the corresponding master equation. A configuration of the system is given by the

ordered list m = (m1, . . . ,mN) of all the masses in the system. The probability density

P (m, t) evolves according to the discrete time master equation

P (m′, t+ 1) =

∫
dmT (m′|m)P (m, t) (3)

with dm =
∏N

i=1 dmi, and where T (m′|m) is the probability (density) to jump from

configuration m to configuration m′ in a single time step. This transition probability is

normalized according to∫
dm′ T (m′|m) = 1 . (4)

For the present mass transport model, the transition probability is given by

T (m′|m) =
1

2
T1(m

′|m) +
1

2
T2(m

′|m) (5)

where

T1(m
′|m) =

N ′∏

k=1

K(m′2k|S2k) δ(S
′
2k − S2k) , (6)

T2(m
′|m) =

N ′∏

k=1

K(m′2k+1|S2k+1) δ(S
′
2k+1 − S2k+1) , (7)

with the shorthand notations Si ≡ mi +mi+1 and S ′i ≡ m′i +m′i+1.

3.2. Steady-state distribution

In the following, we show that the distribution

P (m) =
1

ZN(M)

(
N ′∏

k=1

v(m2k)w(m2k+1) +
N ′∏

k=1

w(m2k)v(m2k+1)

)
δ

(
N∑

i=1

mi −M
)

(8)
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is a stationary solution of the master equation Eq. (3). In Eq. (8), M is the (constant)

total mass, and ZN(M) is a normalization factor. In some cases, it may be convenient

to write P (m) in the form P (m) = 1
2
[P1(m) + P2(m)] with, for j ∈ {1, 2}

Pj(m) =
2

ZN(M)
Qj(m) δ

(
N∑

i=1

mi −M
)
, (9)

having defined

Q1(m) =
N ′∏

k=1

v(m2k)w(m2k+1) , Q2(m) =
N ′∏

k=1

w(m2k)v(m2k+1) . (10)

The partition functions ZN(M) then reads

ZN(M) =

∫
dm [Q1(m) +Q2(m)] δ

(
N∑

i=1

mi −M
)
. (11)

Using Eq. (8), the master equation (3) reads, taking into account the fact that the

dynamics conserves the total mass,

Q1(m
′) +Q2(m

′) (12)

=
1

2

∫
dm [T1(m

′|m) + T2(m
′|m)] [Q1(m) +Q2(m)]

where, to lighten notations, the Dirac delta function accounting for the total mass

conservation is understood.

Expanding the r.h.s. of Eq. (12) into four terms, we evaluate these terms separately,

obtaining for j, k ∈ {1, 2} (see Appendix A)∫
dmTk(m

′|m)Qj(m
′) = Qk(m) . (13)

The sum of the four contributions appearing in the r.h.s. of Eq. (12) is thus equal to

Q1(m
′) + Q2(m

′), so that Eq. (12) is satisfied. Hence the distribution P (m) given in

Eq. (8) is the stationary solution of the model.

3.3. Physical interpretation of the dynamics

Without loss of generality, one can rewrite the functions v(m) and w(m) as

v(m) = e−βε(m)−βh(m), w(m) = e−βε(m)+βh(m) (14)

where we have defined

e−βε(m) =
√
v(m)w(m), e−βh(m) =

√
v(m)

w(m)
. (15)

The parameter β > 0, to be thought of as an inverse temperature, is arbitrary here, and

has only been introduced to facilitate the comparison with equilibrium. A symmetric

redistribution process, obtained for v(m) = w(m), corresponds to h(m) = 0, and the

stationary distribution Eq. (8) boils down to an equilibrium distribution,

P (m) =
2

ZN(M)
e−β

∑N
i=1 ε(mi) δ

(
N∑

i=1

mi −M
)
. (16)
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The function ε(m) thus appears as an effective local energy associated to a local density

m. The function h(m) describes the asymmetry of the dynamics. In the linear case

h(m) = h0m, having in mind local detailed balance, the term 2h0(mi −m′i) that enters

the ratio K(m′i|Si)/K(mi|S ′i) (with Si = S ′i) can be interpreted as the work done by a

driving force f = 2h0 associated with a displaced mass mi−m′i on a unit distance (one

lattice spacing). This case is thus physically meaningful, and we will focus on it when

dealing with specific examples (keeping f rather than h0 as the driving parameter).

When h(m) 6= 0, the non-equilibrium steady-state distribution P (m) given in

Eq. (12) can be rewritten as

P (m) =
2

ZN(M)
e−βE(m) cosh[βH(m)] δ

(
N∑

i=1

mi −M
)

(17)

where one has introduced the global observables

E(m) =
N∑

i=1

ε(mi), H(m) =
N∑

i=1

(−1)ih(mi). (18)

The presence of the hyperbolic cosine in Eq. (17) yields long-range correlations as

can be seen explicitly by a calculation of the two-points spatial correlation function

Gj = 〈mimi+j〉 −ρ2 (ρ = 〈mi〉) for a particular choice of ε(m) and h(m) (see Appendix

B). In more intuitive terms, these correlations are generated by the synchronous

dynamics over two different partitions of the lattice.

Note that more details on the evaluation of the correlation function and on the

expression of the pair and single mass distributions can be found in Appendix B.

In the following, the arbitrary inverse temperature scale β is set to unity, unless

stated otherwise.

4. Partition function: non-equilibrium free energy and condensation

transition

4.1. Expression of the partition function in the thermodynamics limit

It is natural to define from the partition function given in Eq. (11) a non-equilibrium

(intensive) free energy ϕ(ρ) at an average density ρ as

ϕ(ρ) = − lim
N→∞

1

N
lnZ(Nρ), (19)

if this limit exists.

To evaluate ϕ(ρ), we apply the classical saddle-node approximation. Plugging into

Eq. (11) the Laplace representation of the delta function,

δ(s) =
1

2πi

∫ a+i∞

a−i∞
dζ eζs (20)

with a an arbitrary real number, we end up with

ZN(Nρ) =
1

2πi

∫ a+i∞

a−i∞
dζ eN(λ(ζ)−ρζ) (21)
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where we have introduced the functions§

λ(ζ) =
1

2
ln[v̂(ζ)ŵ(ζ)] (22)

and

v̂(ζ) =

∫ ∞

0

dmeζmv(m), ŵ(ζ) =

∫ ∞

0

dmeζmw(m). (23)

Note that the real part of ζ (equal to a) is chosen small enough for the integrals to

converge. Note that a possible restriction on v and w may appear at this stage: v̂ and

ŵ should exist for a free energy to be properly defined.

Assuming that these restrictions are satisfied and that λ(ζ)− ρζ has a unique real

saddle-point for a fixed ρ = M/N , ζ∗(ρ), given by

dλ

dζ
(ζ∗) = ρ, (24)

one gets

ZN(Nρ) �
N→∞

e−N [ρζ∗(ρ)−λ(ζ∗(ρ))] . (25)

The intensive free energy ϕ(ρ) introduced in Eq. (19) is then given by

ϕ(ρ) = ρζ∗(ρ)− λ(ζ∗(ρ)). (26)

As in equilibrium, one can define a non-equilibrium chemical potential µ and a non-

equilibrium pressure p, derived as usual as derivatives of the extensive free energy

F (M,N) = Nϕ(M/N) [30, 34]. Moving to the intensive free energy, one gets

µ(ρ) = ϕ′(ρ) = ζ∗(ρ) , p(ρ) = −ϕ(ρ) + ρϕ′(ρ) . (27)

Assuming that the mass M and the volume N are the only extensive parameters, one

shows, using the Euler relation for a homogeneous function [30], that

ϕ(ρ) = −p(ρ) + ρµ(ρ) . (28)

As an example, we evaluate explicitly the free energy in the specific case of linear

functions ε(m) = ε0m and h(m) = 1
2
fm, using the parameterization Eq. (14) of the

functions v(m) and w(m). For −∞ < ζ < ε0 − f/2, one obtains

v̂(ζ) =
1

ε0 − ζ + 1
2
f
, ŵ(ζ) =

1

ε0 − ζ − 1
2
f

(29)

and

λ(ζ) = −1

2
ln

(
(ε0 − ζ)2 − f 2

4

)
. (30)

The saddle-point ζ∗(ρ), as defined in Eq.(24), is given by

ζ∗(ρ) = ε0 −
1 +

√
1 + ρ2f 2

2ρ
, (31)

§ We take here a determination of the logarithm in the complex plane such that the integration path

does not cross the branch cut.
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Figure 1. (Color online) Chemical potential µ(ρ) (left panel) and pressure p(ρ) (right

panel) as a function of the density ρ, for different values of the driving force f (from

top to bottom, f = 0, 2, 4, 6 and 8).

which is always strictly lower than ε0 − f/2 for any positive ρ. Then, the free energy

reads, from Eq. (26),

ϕ(ρ, f) = ε0ρ−
1 +

√
1 + ρ2f 2

2
+

1

2
ln

(
1 +

√
1 + ρ2f 2

2ρ2

)
. (32)

According to Eq. (28), one reads from the last equation

µ(ρ) = ε0 −
1 +

√
1 + ρ2f 2

2ρ
(33)

p(ρ) = − 1

2
ln

(
1 +

√
1 + ρ2f 2

2ρ2

)
. (34)

The chemical potential µ(ρ) and the pressure p(ρ) are plotted in Fig. 1 for the sake of

illustration.

Note that here and in what follows, we emphasize the f -dependence of the free

energy density by denoting it as ϕ(ρ, f) when considering the specific case h(m) = 1
2
fm.

At equilibrium, for f = 0, one recovers the equilibrium free energy ϕ(ρ, 0) = ε0ρ−1−ln ρ

(we recall that temperature is set to unity).

4.2. Condensation transition

Another choice of v(m) and w(m) can lead to the phenomenon of condensation, well

studied for different versions of the Zero Range Process [17]. Indeed, it may happen that

the saddle-point equation Eq. (24) has no real solution ζ∗ for a density ρ greater than a

critical value ρc. The ensemble equivalence (between “grand canonical” and “canonical”

ensembles) is therefore broken and the condensation of a macroscopic fraction of the

total mass then occurs on a randomly selected site [35]. For our model, the exact
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single-site probability distribution is given by (see Appendix B)

p(m) = v(m)

∫ +∞

0

dm′
ZN−2(M −m−m′)

ZN(M)
w(m′) (35)

+ w(m)

∫ +∞

0

dm′
ZN−2(M −m−m′)

ZN(M)
v(m′) .

As explained in [35], the phenomenon of condensation is closely related to the existence

of a saddle-point for the evaluation of ZN(M), leading to different distributions p(m).

As a specific example, we consider ε(m) = ε0m + ln(1 + mγ), h(m) = 1
2
fm. One

obtains,

v̂(ζ) =

∫ ∞

0

dm

1 +mγ
e−(ε0+

f
2
−ζ)m , ŵ(ζ) =

∫ ∞

0

dm

1 +mγ
e−(ε0−

f
2
−ζ)m , (36)

and the saddle-point equation Eq. (24) reads

ρ =
1

2

(
v̂′(ζ∗)

v̂(ζ∗)
+
ŵ′(ζ∗)

ŵ(ζ∗)

)
. (37)

Clearly, as in the previous example, ζ has to be lower than or equal to ε0 − f/2 for

ŵ to exist‖. Now, the existence of a critical value ρc< +∞ in Eq. (37) depends on γ.

Indeed, for ζ tending to its upper bound ε0 − f/2, the associated ρ in Eq. (37) can be

infinite or finite, depending on the actual value of γ.

If γ ≤ 2, one has

lim
ζ→ε0−f/2

ŵ′(ζ)

ŵ(ζ)
= +∞ , (38)

and thus, there exist a solution ζ∗ of Eq. (37) for each ρ < +∞: a saddle-point

always exists.

If γ > 2, one has on the contrary that

lim
ζ→ε0−f/2

ŵ′(ζ)

ŵ(ζ)
< +∞ (39)

and thus Eq. (37) has a solution ζ∗ only for ρ ≤ ρc where ρc is given by

ρc =
1

2

(
v̂′(ε0 − f/2)

v̂(ε0 − f/2)
+
ŵ′(ε0 − f/2)

ŵ(ε0 − f/2)

)
. (40)

This implies that condensation occurs for ρ > ρc [35].

The threshold density ρc appearing when γ > 2 can be rewritten more explicitly as

ρc =
1

2

(∫ +∞
0

dm(1 +mγ)−1me−fm∫ +∞
0

dm(1 +mγ)−1e−fm
+

∫ +∞
0

dm(1 +mγ)−1m∫ +∞
0

dm(1 +mγ)−1

)
. (41)

We emphasize that the dependence on the driving force of the stationary distribution

leads to a dependence on the driving force of the threshold (or critical) density ρc for

condensation to appear. The threshold density ρc is plotted as a function of the driving

force f in Fig. 2.

‖ Note that v̂ automatically exists if this restriction is satisfied.
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Figure 2. (Color online) Threshold density ρc for condensation, plotted as a function

of the driving force f , for several values of γ (from top to bottom, γ = 2.5, 3, 4 and

5).

5. Characterization of the ‘distance’ to equilibrium

We have seen in the previous section that the presence of a non-zero driving force has

observable consequences, for instance by shifting the threshold density for condensation.

This suggests to try to further characterize the non-equilibrium character of the

dynamics by computing several quantities that can be thought of as different evaluations

of a ’distance’ to equilibrium. The fundamental characterization of a non-equilibrium

stationary stochastic process relies on the breaking of detailed balance, which can

be macroscopically quantified through observables like the mass flux or the entropy

production rate. These two quantities are evaluated in sections 5.1 and 5.2 respectively.

We call these observables ’dynamical’ (although they are time-independent) in the

sense that they involve fluxes, either of mass or of probability. In addition, one

may compute ’static’ observables that characterize the distance to equilibrium only

based on the stationary measure, by comparing the non-equilibrium stationary measure

with the equilibrium one. Although such static observables do not reveal an intrinsic

non-equilibrium character of the system, one expects that this out-of-equilibrium

dependence of the stationary measure is rather typical as suggested for instance by

the McLennan formula in a close-to-equilibrium regime [36, 37]. It is then of interest

to compare these static observables to the dynamical ones to see whether both are

connected. We thus discuss in section 5.3 the Gibbs free energy difference with the

equilibrium state, and in section 5.4 the non-equilibrium order parameter defined as a

derivative of the non-equilibrium free energy with respect to the driving force.

5.1. Stationary mass flux

We start by evaluating the stationary mass flux between two sites i and i + 1 (which,

due to mass conservation, is independent of i). During a given time step, a mass is
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transferred between i and i+ 1 only if the link (i, i+ 1) belongs to the chosen partition

(P1 or P2) of the lattice; mass transfer on this link thus occurs with probability 1
2
. The

average flux Φ then reads

Φ =
1

2
(〈mi〉 − 〈m′i〉) (42)

where mi is the mass on site i before a redistribution occurs on the link (i, i + 1),

while m′i is the mass on site i after the redistribution. The masses mi and mi+1 before

redistribution are assumed to follow the steady-state distribution P (mi,mi+1) given in

Appendix B —see Eq. (B.3); one thus has 〈mi〉 = ρ. Note that the time step has been

set to unity.

The average mass 〈m′i〉 after redistribution can be expressed as

〈m′i〉 =

∫ ∞

0

dmi

∫ ∞

0

dmi+1 P (mi,mi+1)

∫ ∞

0

dm′im
′
iK(m′i|mi +mi+1). (43)

After some algebra, one finds

〈m′i〉 = 2C2(ρ)

∫ ∞

0

dS e−µS
∫ S

0

dm′m′ v(m′)w(S −m′) . (44)

The calculation can be carried out explicitly on the example ε(m) = ε0m and h(m) =
1
2
fm, yielding

〈m′i〉 =
1

ε0 − µ+ f
. (45)

The average mass flux Φ then reads, using Eqs. (33) and (42),

Φ =
1

2
(ρ− 〈m′i〉) =

f

4(ε0 − µ)2 − f 2
. (46)

Also, using the explicit expression of µ(ρ) given in Eq. (33), one finds

Φ =
ρ2f

2 + 2
√

1 + ρ2f 2
. (47)

Furthermore, one can notice that the flux, which can be interpreted as a response of the

system to the driving force f (when h(m) = 1
2
fm), is directly related to the free energy

I (19) as explicitly shown in Appendix C :

Φ = −∂ϕ(ρ, f)

∂f
(48)

We will comment on this relation in the next subsection, in connection to the entropy

production rate.

5.2. Entropy production rate

An alternative dynamical measure of the degree of irreversibility is given by the entropy

production rate. For a discrete time Markov process, the (time-dependent) entropy
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production rate (i.e., the entropy production per time step) is defined as [38]¶

∆intSt =
1

2

∫
dm dm′[T (m′|m)Pt(m)− T (m|m′)Pt(m′)] ln

T (m′|m)Pt(m)

T (m|m′)Pt(m′)
. (49)

The advantage of this form is that the positivity of ∆intS is visible, as it involves products

of factors of equal sign. In steady state, the entropy production rate simplifies to [38]

∆intS =

∫
dm dm′ T (m′|m)P (m) ln

T (m′|m)

T (m|m′) . (50)

The entropy production rate ∆intS can be evaluated in the present model, yielding

(technical details are reported in Appendix D):

∆intS =
1

2

∫
dm [P1(m)− P2(m)]H(m), (51)

where Pj(m) is defined in Eq. (9). One thus recovers, as expected, that ∆intS = 0 at

equilibrium, when P1(m) = P2(m). Eq. (51) can be rewritten in terms of the observables

E and H defined in Eq. (18), as

∆intS =
1

ZN(M)

∫
dmH(m) e−E(m) sinh (H(m)) δ

(
N∑

i=1

mi −M
)
. (52)

Since the entropy production rate is extensive with system size, it is convenient to define

the density of entropy production rate σ = limN→∞∆intS/N , when this limit exists. A

way to evaluate σ in practice is to introduce the generalized partition function ZN(M, θ),

obtained by replacing h(m) by θh(m) where θ is a real parameter, yielding

ZN(M, θ) =

∫
dm e−E(m) cosh (θH(m)) δ

(
N∑

i=1

mi −M
)
. (53)

Assuming a thermodynamic form ZN(Nρ, θ) � e−Nϕ̃(ρ,θ), one can then write

σ = −∂ϕ̃
∂θ

(ρ, θ = 1) . (54)

The free energy ϕ̃(ρ, θ) can be evaluated in the same way as ϕ(ρ), simply replacing

h(m) by θh(m) in the calculation of λ(ζ) —see Eq. (22).

In the specific case h(m) = 1
2
fm, one can also write the entropy production rate in

terms of the non-equilibrium free energy ϕ(ρ, f) as

σ = −f ∂ϕ
∂f

. (55)

Given that the flux Φ is equal to −∂ϕ/∂f , the entropy production σ reads

σ = f Φ (56)

using Eq. (48). One then recovers the usual expression of the local entropy production

interpreted as the average local work injected in the system (times the inverse

¶ Note that notations in [38] do not follow the same convention, as P (ω|ω′) denotes there the probability

of a transition from a configuration ω to a configuration ω′, while we use here a (somehow more

standard) conditional probability notation where T (m|m′) is the transition probability from m′ to m.

Appendix C. A mass transport model with a non-factorized distribution
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temperature that is equal to 1 here). Note that if the inverse temperature β 6= 1, one

finds σ = βf Φ. This result is consistent with the local detailed balance interpretation

of the dynamics briefly discussed in Sect. 3.3.

Having discussed dynamical characterizations of the distance to equilibrium, we

now turn to static characterizations of this distance, namely, measures of the ’degree of

non-equilibrium’ that are based only on the steady-state probability distribution P (m),

without any explicit reference to the dynamics.

5.3. Difference of Gibbs free energy functional

One possible such measure is the difference of Gibbs free energy functional between the

non-equilibrium and equilibrium distributions, for the same temperature of the thermal

bath. Note that for the sake of clarity, we explicitly take into account in this subsection

the temperature T = β−1 (previously set to T = 1). For an arbitrary probability

distribution P (m) over the configuration space of the model, the Gibbs free energy

functional F[P ] is defined as

F[P ] =

∫
dmP (m)E(m)− T

∫
dmP (m) lnP (m). (57)

Given that the equilibrium distribution Peq(m) at temperature T minimizes the

functional F[P ], the quantity

∆F =
1

N

(
F[P ]− F[Peq]

)
(58)

satisfies ∆F ≥ 0 for any distribution P (note that we have introduced the factor 1/N

to make ∆F an intensive quantity). It is thus natural to interpret ∆F as a measure

of the distance to equilibrium. Note that βN∆F identifies with the Kullback-Leibler

divergence

D[P ||Peq] =

∫
dmP (m) ln

P (m)

Peq(m)
. (59)

In the present model, a straightforward calculation yields

∆F =
1

N
lnZeq

N (M)− 1

N
lnZN(M) +

1

N

∫
dmP (m) ln cosh[βH(m)] . (60)

The last integral can be evaluated explicitly in the case h(m) = 1
2
fm, where one has

∫
dmP (m) ln cosh[βH(m)]

=

∫
dM ′

∫
dmP (m) δ

(
N ′∑

k=1

m2k −M ′
)

ln cosh[βf(M − 2M ′)]

=

∫
dM ′Ψ(M ′|M) ln cosh[βf(M − 2M ′)] (61)

where Ψ(M ′|M) is the distribution of the total mass over even sites M ′ =
∑N ′

k=1m2k,

given the total mass M in the system. By symmetry, the most probable value of M ′ is
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M/2, so that by a saddle-point argument, the last integral in Eq. (61) is equal to zero

at order N , with only possible subextensive corrections. One thus finds from Eqs. (60)

and (19), for N →∞,

∆F = ϕ(ρ, f)− ϕ(ρ, 0) (62)

so that ∆F also identifies in this case with the difference of free energy as defined by

the non-equilibrium free energy ϕ(ρ, f) of the partition function ZN(M) —a quantity a

priori distinct from the Gibbs free energy functional, as seen from Eq. (60).

5.4. Non-equilibrium order parameter

A non-equilibrium order parameter Ψ has been introduced by Sasa and Tasaki [30] as

(the opposite of) the derivative of the non-equilibrium free energy with respect to the

driving force. In the present model with h(m) = 1
2
fm, this definition leads to

Ψ = −∂ϕ
∂f

(ρ, f) . (63)

Several remarks are in order here. First, this definition is similar to the relation linking,

at equilibrium, an order parameter like the magnetization to its conjugate field, hence

the name ‘non-equilibrium order parameter’. Second, an alternative definition, involving

the derivation with respect to the (mass or particle) flux, has also been proposed in [30].

Third, we use here an intensive order parameter instead of the extensive order parameter

originally introduced in [30].

Since the non-equilibrium free-energy ϕ(ρ, f) is, from symmetry arguments, an even

function of f , Ψ(ρ, f) is an odd function of f , and thus vanishes for f = 0, consistently

with the interpretation of Ψ as a non-equilibrium order parameter.

Using Eq. (48), the non-equilibrium order parameter Ψ simply boils down to the

mass flux,

Ψ(ρ, f) = Φ(ρ, f) . (64)

Although the non-equilibrium parameter Ψ turns out to be numerically equal to the

mass flux Φ, the two quantities differ in essence: Ψ is a static order parameter, while the

flux Φ is a dynamical quantity. Introducing explicitly a time step ∆t in the model (this

time step is been set to ∆t = 1 up to now), we would have Φ = Ψ/∆t, showing that

both quantities have different dimensions. In any case, Eq. (64) provides an interesting

connection between static and dynamic measures of the ’distance’ to equilibrium.

6. Discussion and conclusion

In this paper, we have introduced a one-dimensional mass transport model on a ring

geometry with sublattice-parallel dynamics for which the steady-state distribution takes

a non-factorized form. In contrast to other models with a non-factorized distribution

like the Target process [39] (see also [25] for a general discussion of the conditions for

factorized steady states), the steady-state distribution can here be determined explicitly

Appendix C. A mass transport model with a non-factorized distribution
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—which constitutes the main contribution of this work— and is found to take a simple

form as a sum of two inhomogeneous product measures. The knowledge of the steady-

state distribution allows for a straightforward evaluation of local distributions of mass,

and, if it exists, of a non-equilibrium free energy. Also, we showed that, like for

other similar systems, our model may exhibit a condensation transition. As already

emphasized, the explicit dependence of the stationary measure on the driving force is

a main advantage of this model —at odds with, for instance, the Zero Range Process

and related mass transport models [17]— since this behavior is expected to be generic.

It has allowed us to exhibit the explicit dependence on the driving field of different

quantities, like the threshold density for condensation.

In addition, we have evaluated several quantities, either static or dynamic, that

characterize the ‘degree of non-equilibrium’ of the steady state of the system. These

include the mass flux Φ, the entropy production rate per site σ, the difference ∆F of

Gibbs free energy functional (per site) between the non-equilibrium and equilibrium

states, as well as the non-equilibrium order parameter Ψ introduced by Sasa and Tasaki

[30] as the derivative of the non-equilibrium free-energy with respect to the driving

force. We have found that all these non-equilibrium parameters are closely related one

to the other, and that (at least in the case of a density-independent driving force f)

the non-equilibrium order parameter Ψ may be seen as a key parameter from which the

others can be evaluated. In particular, we have found that

Φ(ρ, f) = Ψ(ρ, f), σ = fΨ(ρ, f), ∆F(ρ, f) =

∫ f

0

df ′Ψ(ρ, f ′) . (65)

For a non-zero applied force f , all these parameters have a non-zero value. This is to be

contrasted, for instance, with more standard mass transport models [19, 17] (including

the ZRP) which, in spite of the presence of a non-zero particle flux, have vanishing values

of Ψ and ∆F, because their steady-state distribution is independent of the driving.

Future work may consider possible extensions of the model with asynchronous

dynamics, where more complicated forms of the steady-state distribution (involving,

e.g., matrix-product states) are likely to be needed. Applications of the model to the

field of glassy dynamics could also be considered, by including kinetic constraints in the

spirit of the model introduced in [28].

Appendix A. Evaluation of the integral terms in the master equation

Calculations of the integrals appearing in the steady-state master equation, as

formulated in Eq. (12), are straightforward. We provide here the explicit calculation in

the case j = k = 1 [see Eq. (13)], using again the short notation Si ≡ mi + mi+1 and

S ′i ≡ m′i +m′i+1:∫
dmT1(m

′|m)Q1(m) (A.1)

=
1

Z

N ′∏

k=1

∫ ∞

0

dm2k

∫ ∞

0

dm2k+1K(m′2k|S2k) v(m2k)w(m2k+1) δ(S
′
2k − S2k)
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=
1

Z

N ′∏

k=1

[
v(m′2k)w(m′2k+1)

v ∗ w(S ′2k)

∫ ∞

0

dm2k

∫ ∞

0

dm2k+1 v(m2k)w(m2k+1) δ(S
′
2k − S2k)

]
.

Given that ∫ ∞

0

dm2k

∫ ∞

0

dm2k+1 v(m2k)w(m2k+1) δ(S
′
2k − S2k) = v ∗ w(S ′2k) (A.2)

one eventually obtains
∫

dmT1(m
′|m)Q1(m) = Q1(m). (A.3)

Calculations for other values of j, k follow the same lines. For instance, for k = 1 and

j = 2, v and w are exchanged in the l.h.s. of Eq. (A.2), but the result is the same since

the convolution product is commutative.

Appendix B. One- and two-site mass distributions in the thermodynamic

limit

We derive in this appendix the one- and two-site mass distributions in the

thermodynamic limit, provided that the saddle-point approximation discussed in section

4.1 can be performed.

Appendix B.1. Joint mass distribution on a pair of sites

The easiest distribution to compute is the joint distribution of masses P (mi,mi+1) on

neighboring sites. Integrating Eq. (8) over the N−2 remaining variables mj (j 6= i, i+1),

one finds

P (mi,mi+1) =
ZN−2(M −mi −mi+1)

ZN(M)
[v(mi)w(mi+1) + w(mi)v(mi+1)] . (B.1)

Using the “thermodynamic limit” form of ZN , one finds

lim
N→∞

ZN−2(M −mi −mi+1)

ZN(M)
= exp [− 2ϕ(ρ) + µ(ρ)(mi +mi+1 − 2ρ)] . (B.2)

Hence the distribution P (mi,mi+1) can be written as

P (mi,mi+1) = C2(ρ) eµ(ρ)(mi+mi+1)[v(mi)w(mi+1) + w(mi)v(mi+1)] , (B.3)

where C2(ρ) is a normalization constant. It is convenient at this stage to introduce the

auxiliary distributions pv(m) and pw(m) defined as

pv(m) = cv(ρ) eµ(ρ)mv(m) , pw(m) = cw(ρ) eµ(ρ)mw(m), (B.4)

where cv and cw are normalization constants. In this way, the distribution P (mi,mi+1)

given in Eq. (B.3) can be reformulated as

P (mi,mi+1) =
1

2
[pv(mi) pw(mi+1) + pw(mi) pv(mi+1)] . (B.5)
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The same calculation holds for the joint distribution Pj(mi,mi+j) of the masses mi and

mi+j on distant sites i and i+ j, as long as j is odd. One thus has

Pj(mi,mi+j) =
1

2
[pv(mi) pw(mi+j) + pw(mi) pv(mi+j)] (j = 2k − 1, k > 0) . (B.6)

When j is even, the calculation is slightly more complicated; one has

Pj(mi,mi+j) =
ZN ′−2,N ′(M −mi −mi+j)

ZN(M)
v(mi)v(mi+j) (B.7)

+
ZN ′,N ′−2(M −mi −mi+j)

ZN(M)
w(mi)w(mi+j)

with N ′ = N/2 and where the quantity ZN1,N2(M) is defined as

ZN1,N2(M) =

∫ N1+N2∏

i=1

dmi

N1∏

i=1

v(mi)

N2∏

i=N1+1

w(mi) δ

(
N1+N2∑

i=1

mi −M
)
. (B.8)

However, in the thermodynamic limit N ′ → ∞, the two prefactors ZN ′−2,N ′/ZN and

ZN ′,N ′−2/ZN have the same limit, again given by Eq. (B.2). Hence the distribution

reduces in the thermodynamic limit to

Pj(mi,mi+j) =
1

2
[pv(mi) pv(mi+j) + pw(mi) pw(mi+j)] (j = 2k, k > 0) . (B.9)

Using the more physically meaningful parameterization in terms of the functions ε(ρ)

and h(ρ), the distribution Pj(mi,mi+j) can also be written for all j > 0 in the form

P (mi,mi+1) = 2C2(ρ) e−ε(mi)−ε(mi+j)+µ(ρ)(mi+mi+j) cosh [h(mi) + (−1)jh(mi+j)] . (B.10)

As an explicit example, Pj(mi,mi+j) reads in the specific case ε(m) = ε0m and

h(m) = h0m

P (mi,mi+j) =
[(ε0 − µ(ρ))2 − h20]2

(ε0 − µ(ρ))2 + (−1)jh20
e−(ε0−µ(ρ))(mi+mi+j) (B.11)

× cosh (h0mi + (−1)jh0mi+j)

where µ(ρ) is given by Eq. (33). We remind here that (ε0−µ(ρ))2−h20 is always strictly

positive as can be checked from the expression of µ(ρ) in Eq. (33).

Appendix B.2. Two-point correlation

The two-point correlation function Gj between the masses mi and mi+j, defined as

Gj = 〈mimi+j〉 − ρ2 (B.12)

then takes a simple form. From Eqs. (B.6) and (B.9), one has for k > 0

G2k−1 = 〈m〉v〈m〉w − ρ2 (B.13)

G2k =
1

2
(〈m〉2v + 〈m〉2w)− ρ2 (B.14)
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where 〈. . .〉v and 〈. . .〉w are averages over the distributions pv(m) and pw(m) respectively.

Obviously, Gj is 2-periodic for j > 0. In the example ε(m) = ε0m and h(m) = h0m, Gj

is given by

Gj =

(
ρh0

ε0 − µ(ρ)

)2
h20 + (2 + (−1)j)(ε0 − µ(ρ))2

(ε0 − µ(ρ))2 + (−1)jh20
. (B.15)

In the limit where f = 2h0 is small, one can expand Gj to leading order, yielding

Gj =
fρ� 1

(2 + (−1)j)

(ε0 − µ(ρ))2
ρ2f 2 + O

(
(ρf)4

)
. (B.16)

Appendix B.3. Single-site distribution

The single-site distribution p(m) is obtained by integrating the two-site distribution

over one of the masses. Using for instance Eq. (B.5), we get

p(m) =
1

2
[pv(m) + pw(m)] (B.17)

or equivalently, in terms of ε(m) and h(m),

p(m) = c(ρ) e−ε(m)+µ(ρ)m coshh(m), (B.18)

with c(ρ) a normalization constant.

Appendix C. Link between the flux φ and the non-equilibrium free energy ϕ

When one goes from a configuration m to another one m′, the local instantaneous

current ∆i,i+1(m,m′) that goes to the right on the link (i, i+ 1) is

∆i,i+1(m,m′) = −(m′i −mi) = m′i+1 −mi+1 . (C.1)

Summing over all links, the total mass transferred during the transition m → m′,

∆(m,m′), is given by

∆(m,m′) =

{
−∑N ′

k=1(m
′
2k −m2k) = 1

2

∑N
i=1(−1)i(mi −m′i) for part. P1

−∑N ′−1
k=0 (m′2k+1 −m2k+1) = 1

2

∑N
i=1(−1)i(m′i −mi) for part. P2

(C.2)

On average,

〈∆(m,m′)〉 =
1

4

∫
dm dm′

(
N∑

i=1

(−1)i(mi −m′i)
)
T1(m

′|m)P (m)

+
1

4

∫
dm dm′

(
N∑

i=1

(−1)i(m′i −mi)

)
T2(m

′|m)P (m) . (C.3)

Since
∫

dm′ Tk(m′|m) = 1 (k = 1, 2), the terms involving
∑N

i=1mi cancel out. Using

Eq. (10) and (13), one gets

〈∆(m,m′)〉 =
1

2ZN(M)

∫
dm′

(
N∑

i=1

(−1)im′i

)
Q2(m

′)

− 1

2ZN(M)

∫
dm′

(
N∑

i=1

(−1)im′i

)
Q1(m

′) . (C.4)
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To go further, one needs to use the physical interpretation of the dynamics, given in

Sect. 3.3. Indeed, using Eq. (10) and (14), one can notice that in the (linear) case where

h(m) = 1
2
fm,

∫
dm

(
N∑

i=1

(−1)imi

)
Qk(m) = 2

∫
dm

H(m)

f
Qk(m) = 2(−1)k

∂Qk

∂f
(m) . (C.5)

Eventually, using Eq. (11), the total averaged mass transferred is equal to

〈∆(m,m′)〉 =
∂ lnZN
∂f

, (C.6)

leading to the final expression of the mass current Φ (mass transferred per link and

per time step)

Φ =
〈∆(m,m′)〉

N
=

1

N

∂ lnZN
∂f

= −∂I
∂f

(ρ, f) , (C.7)

thus proving the relation given in Eq. (48).

Appendix D. Evaluation of the entropy production rate

In this appendix, we evaluate the entropy production rate in the model defined in

Sect. 2. From Eq. (5), the transition rate T (m′|m) takes the form

T (m′|m) =
1

2
T1(m

′|m) +
1

2
T2(m

′|m) (D.1)

where T1(m
′|m) and T2(m

′|m) respectively describe redistributions over the partitions

P1 and P2 of the lattice. For a given configuration m, we define the sets D1(m) and

D2(m) as the subsets of configurations m′ accessible from m through redistributions

over the partitions P1 and P2. More formally, one has for j ∈ {1, 2},
Dj(m) = {m′|∀k = 1, . . . , N ′, m′2k+j−1 +m′2k+j = m2k+j−1 +m2k+j}. (D.2)

Using the subsets D1(m) and D2(m), one can express the ratio of reciprocal, nonzero

transition probabilities, so that the entropy production reads, in steady state,

∆intS =
1

2

∫
dmP (m)

{ ∫

D1(m)

dm′ T1(m
′|m) ln

T1(m
′|m)

T1(m|m′)
(D.3)

+

∫

D2(m)

dm′ T2(m
′|m) ln

T2(m
′|m)

T2(m|m′)

}
.

The ratios of transition rates can be expressed as

ln
T1(m

′|m)

T1(m|m′)
= [E(m)− E(m′)] + [H(m)−H(m′)] , (D.4)

ln
T2(m

′|m)

T2(m|m′)
= [E(m)− E(m′)]− [H(m)−H(m′)] . (D.5)

The restriction of the integration domains to the subsets D1(m) and D2(m) in Eq. (D.3)

was needed only to be able to properly define the ratio of reverse transition probabilities.

Once Eq. (D.3) is rewritten in terms of the observables E(m) and H(m), the integration
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domains no longer need to be restricted to these subsets since the transition probabilities

T1(m
′|m) and T2(m

′|m) appearing in the integrals vanish by definition outside the

subsets D1(m) and D2(m). Hence one has

∆intS =
1

2

∫
dm dm′ P (m)

[
T1(m

′|m)
(
E(m)− E(m′) +H(m)−H(m′)

)
(D.6)

+T2(m
′|m)

(
E(m)− E(m′)−H(m) +H(m′)

)]
.

The part of the integral involving E is easily shown to vanish. Using the form

P (m) = 1
2
[P1(m) + P2(m)] of the probability distribution —see Eq. (9)— one has

thanks to Eq. (13) that
∫

dmTk(m
′|m)Pj(m) = Pk(m). The H-dependent part in

Eq. (D.6) can then be simplified, after a straightforward calculation, to

∆intS =
1

2

∫
dm [P1(m)− P2(m)]H(m), (D.7)

which is precisely Eq. (51).
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APPENDIX D

Introduction, conclusion et résumés des
chapitres

Nous fournissons dans cet annexe une brève version française de l’introduction, de la
conclusion ainsi que des brefs résumés de chaque chapitre.

D.1 Introduction Générale

Considérons une tasse de café chaude fermée par un couvercle afin d’éviter l’évaporation.
Si vous laissez cette tasse de café sur votre bureau et revenez une heure plus tard, la
température de votre café sera la même que celle de la pièce. Pensez maintenant à
une pompe à vélo que vous voulez tester pour vous assurer qu’elle ne fuit pas. Pour
cela, vous obstruez la valve et poussez le piston afin de comprimer l’air à l’intérieur.
Ensuite, si vous relâcher le piston, ce dernier bougera jusqu’à ce que l’air dans la
pompe obtienne la même pression que l’air dans la pièce. Finalement, prenez un verre
d’eau et laissez tomber une goutte d’encre, disons bleue, dans le verre. Au bout d’un
certain temps, l’eau devient bleue : la goutte a diffusé dans tout le verre. Toutes ces
expériences de la vie quotidienne ont en commun d’être des phénomènes irréversibles :
personne n’a jamais été témoin d’un réchauffement spontané du café après son re-
froidissement, ni d’une compression spontanée de l’air dans la pompe, ni, enfin, d’une
formation spontanée d’une goutte d’encre après sa diffusion dans l’eau. Pour saisir
ces phénomènes irréversibles et utiliser les forces qu’ils peuvent générer1, les physi-
ciens du XIXe siècle ont développé une théorie générale, la thermodynamique [Callen,

1Par exemple, on pourrait chauffer l’air à l’intérieur de la pompe en le mettant en contact avec
une source chaude, afin de déplacer le piston en utilisant le travail produit par l’expansion de l’air
chaud ; ou on pourrait construire une membrane élastique sélective, perméable à l’eau mais pas à
l’encre, séparant le verre d’eau en deux parties : en cherchant à diffuser, l’encre appliquerait une force
supplémentaire sur la membrane qui empêcherait sa diffusion.
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1998]. La thermodynamique traite des états d’équilibre et plus précisément des tran-
sitions qui conduisent un état d’équilibre initial vers un autre état d’équilibre. Les
états d’équilibre ne sont pas clairement définis à ce stade, mais on peut facilement les
imaginer : ils correspondent à des états de la matière très calmes, qui ne contiennent
aucun courant moyen, quelle que soit l’échelle à laquelle on regarde le système.

D’après le second principe de la thermodynamique, ces états d’équilibre finaux d’un
système isolé peuvent être prédits en maximisant l’entropie, généralement appelée S.
La maximisation de l’entropie donne lieu, de par la conservation de l’énergie, du volume
ainsi que du nombre de particules, à l’égalisation de quantités que sont justement la
température, la pression et le potentiel chimique. Si ces quantités peuvent par ailleurs
avoir une définition opérationnelle, leur lien avec cette fonction entropie permet de les
définir de façon non ambiguë.

Très généralement, la problématique à laquelle le présent travail vise à contribuer
est la suivante : existe-t-il une structure thermodynamique pour les systèmes hors de
l’équilibre en régime permanent ? Ou, plus précisément : existe-t-il une fonction des
variables d’état qui joue un rôle analogue à l’entropie ? Peut-on associer à des quantités
conservées des paramètres intensifs comme la pression ou les potentiels chimiques qui
s’égalisent lorsque deux systèmes hors d’équilibre sont mis en contact ?

Contrairement aux systèmes à l’équilibre, les systèmes hors de l’équilibre présentent
des courants (dans l’espace des configurations, pas toujours directement observables)
crées par des forces extérieures ou simplement parce qu’ils n’ont pas encore atteint
leur état d’équilibre. Ces diverses situations peuvent être complexes. Afin de simplifier
notre discussion, nous nous intéresserons principalement à des systèmes maintenus hors
de l’équilibre, dans un état stationnaire, par des forces externes non-conservatives. Si
ces systèmes sont homogènes, de même que les forces extérieures, on peut s’attendre
à pouvoir les décrire macroscopiquement par quelques quantités globales seulement, à
l’instar des systèmes thermodynamiques à l’équilibre.

Comme mentionné plus haut, la problématique principale de cette thèse est de
définir une fonction entropie (ou plutôt ici, une fonction énergie libre) qui décrirait
l’état macroscopique des systèmes hors d’équilibre à la limite thermodynamique. À
l’équilibre, cette fonction entropie est additive lorsque deux systèmes (avec des inter-
actions de courte portée) sont mis en contact. De part les lois de conservation des
quantités échangeables (énergie, nombre de particules, volume, etc.), l’extrémalisation
du potentiel thermodynamique entraîne l’égalisation de paramètres thermodynamiques
intensifs (températures, potentiels chimiques, pressions, etc). Cette structure est-elle
toujours valide pour des systèmes hors d’équilibre en régime stationnaire ?

Pour répondre à cette question, nous nous concentrerons principalement sur des
systèmes stochastiques simples modélisant la dynamique de particules en interaction.
L’idée principale qui sous-tend la modélisation des systèmes hors d’équilibre par des
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modèles stochastiques est de décrire le système à un niveau mésoscopique, à une échelle
plus large que la dynamique hamiltonienne sous-jacente, trop compliquée à traiter.
Pour faire le lien avec la dynamique hamiltonienne, nous ferons l’hypothèse classique
que la dynamique stochastique obéit a un bilan détaillé local.

L’énergie n’étant pas une quantité conservée entre deux (ou plusieurs) systèmes
hors d’équilibre dans un état stationnaire en contact, étendre la notion de température
aux systèmes hors d’équilibre de cette façon paraît sans espoir. Ce n’est néanmoins
pas le cas pour des quantités comme le nombre de particules ou encore le volume qui
demeurent conservées. Le volume étant la quantité conjuguée à la pression, qui dispose
d’une définition mécanique généralement bien définie, nous nous focaliserons princi-
palement dans ce manuscrit sur la notion de potentiel chimique, quantité conjuguée
au nombre de particules, qui a moins été explorée.

Plusieurs études sur ces questions ont été menées durant les dernières décennies.
En particulier, deux d’entre elles sont particulièrement pertinentes :

• La première a été menée sur des modèles de transport de masse et des gaz sur
réseau, qui sont des modèles où les particules sautent localement d’un site à
l’autre selon un processus de Poisson. Les principales contributions théoriques
sur ce sujet contiennent : [Hayashi and Sasa, 2003; Sasa and Tasaki, 2006] sur
le modèle KLS ; [Bertin et al., 2006, 2007], une étude théorique sur le Zero
Range Process (un modèle de transport de masse hors de l’équilibre exactement
soluble, dont la distribution microscopique factorise complètement et permet
ainsi de définir des potentiels chimiques en utilisant la même procédure que pour
la mécanique statistique d’équilibre). Cette dernière contribution a récemment
été étendue à une classe spécifique de systèmes hors d’équilibre comportant des
corrélations à courte portée par [Chatterjee et al., 2015]. Les autres études
pertinentes ont essentiellement consisté en des simulations numériques sur les
modèles KLS [Pradhan et al., 2010, 2011] ainsi que sur d’autres gaz sur réseau
avec exclusion [Dickman, 2014, 2016; Dickman and Motai, 2014].

• La deuxième série d’études porte quant à elle sur des modèles de matière active
dans l’espace continu et plus particulièrement sur des particules autopropulsées
comme des particules browniennes actives (ABP) ou des particules « Run-&-
Tumble » [Fodor and Marchetti, 2018; Marchetti et al., 2013]. En particulier, la
question de la définition de la pression a été abordée en détail dans des travaux ré-
cents [Fily et al., 2017; Solon, Fily, Baskaran, Cates, Kafri, Kardar and Tailleur,
2015; Solon, Stenhammar, Wittkowski, Kardar, Kafri, Cates and Tailleur, 2015;
Speck and Jack, 2016; Takatori et al., 2014; Winkler et al., 2015].

L’objectif de cette thèse est d’étendre et de discuter de façon plus systématique la
première série d’études susmentionnée. En particulier, le principal résultat de ce travail

159



Appendix D. Introduction, conclusion et résumés des chapitres

sera de définir un potentiel thermodynamique à partir duquel une notion de potentiel
chimique pourra être dérivée. Dans un second temps nous aborderons brièvement la
notion de potentiel chimique pour des gaz de particules autopropulsées.

Pour se faire, nous utiliserons abondamment le formalisme des grandes déviations
[Touchette, 2009] qui est l’outil naturel pour analyser des variables macroscopiques à
la limite thermodynamique (grand nombre de particules) dans des systèmes stochas-
tiques.

D.2 Chapitre 1 : contact entre deux systèmes à la
limite thermodynamique

Ce chapitre d’introduction vise à présenter les principaux objets de cette thèse, dans le
cadre simple des gaz sur réseau et autres modèles de transport de masse qui obéissent
à un bilan détaillé local. Nous examinerons la situation dans laquelle deux de ces
systèmes sont mis en contact et atteignent ainsi un nouvel état stationnaire, de la même
façon que plusieurs études précédentes [Bertin et al., 2007; Dickman, 2014; Dickman
and Motai, 2014; Hayashi and Sasa, 2003; Pradhan et al., 2010, 2011; Sasa and Tasaki,
2006]. Une hypothèse importante nécessaire à notre cadre de travail et déjà préconisée
dans [Sasa and Tasaki, 2006, Annexe B.] consiste en une séparation bien définie entre,
d’une part, le temps caractéristique d’échange de particules au contact, et, d’autre part,
le temps caractéristique d’évolution des particules au sein de chaque système. Cette
hypothèse peut sembler plutôt restrictive mais elle est en fait physiquement motivée si
l’on imagine le contact comme une haute barrière de potentiel que les particules doivent
franchir (voir [Sasa and Tasaki, 2006]). Nous considérerons néanmoins des types de
contact plus généraux qui pourraient demeurer physiquement pertinents, toujours dans
cette limite de faible taux d’échange au contact. Sauf mention contraire, la dynamique
au contact sera supposée ne pas être perturbée par les forces externes.

Le principal objectif de ce chapitre est l’introduction de la fonction de grandes
déviations I(ρA, ρB|ρ̄) associée aux densités globales ρA et ρB des deux systèmes en
contact (appelés A et B). Cette dernière est introduite comme solution d’une équation
de Hamilton-Jacobi pour les processus markoviens à sauts. Ces résultats ne sont pas
nouveaux (voir [Kubo et al., 1973; Maes and Netočný, 2007] et [Ge and Qian, 2017]
pour une étude récente portant sur les réactions chimiques) mais semblent avoir reçu
peu d’attention dans le cadre des gaz sur réseau et autres modèles de transport de
masse.

Enfin, ce chapitre discute différentes façons de résoudre l’équation de Hamilton-
Jacobi et ainsi trouver sa solution I(ρA, ρB|ρ̄). En particulier, nous détaillons la sit-
uation importante du bilan détaillé (au niveau macroscopique), ainsi que son lien
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naturel avec la symétrie par renversement du temps. Nous concluons en présentant
une méthode de perturbation générale pour résoudre l’équation de Hamilton-Jacobi
en l’absence de bilan détaillé, qui reprend celle présentée dans [Bouchet et al., 2016]
dans le contexte des systèmes diffusifs.

D.3 Chapitre 2 : propriété d’additivité de la fonc-
tion de grandes déviations

Ce second chapitre aborde la question de l’additivité de la fonction de grandes dévi-
ations I(ρA|ρ̄) pour deux systèmes en contact. Cette condition d’additivité est très
proche de l’additivité de l’énergie libre pour les systèmes à l’équilibre avec interactions
à courte portée. Celle-ci s’écrit :

I(ρA|ρ̄) ∼ IA(ρA) + IB(ρB) (D.1)

où ρB est fixée par la conservation du nombre de particules, connaissant ρA. La dérivée
de la fonction de grandes déviations I est alors

I ′(ρA|ρ̄) = I ′A(ρA)− I ′B(ρB) . (D.2)

Dans l’état stationnaire, on obtient I ′A(ρA) = I ′B(ρB). Cette approche offre donc la
possibilité d’associer à chaque système une quantité I ′k(ρk) (k = A ,B) – notée µk(ρk)
désormais – que l’on appellera potentiel chimique généralisé au contact.

Néanmoins, la limite d’un faible taux d’échange au contact n’est pas suffisante
pour garantir cette propriété d’additivité. Nous montrons dans ce chapitre qu’une
condition suffisante pour garantir l’additivité correspond à la présence d’un bilan dé-
taillé macroscopique, au niveau de la dynamique du nombre de particules, ainsi qu’à
une propriété de factorisation des taux de transition au contact. Sans ces hypothèses
qui ne sont pas automatiquement valides lorsqu’il est possible d’échanger plus d’une
particule par unité de temps, nous ne pouvons nous attendre à obtenir cette propriété
d’additivité nécessaire à la définition de potentiels chimiques. En outre, même lorsque
ces hypothèses sont vérifiées, nous montrons que le potentiel chimique généralisé I ′k(ρk)
dépend fortement des propriétés locales au contact et ne peut donc pas être totalement
associé aux systèmes isolés (autrement dit, les potentiels chimiques ainsi définis ne véri-
fient aucune équation d’état). Nous confirmons et étendons donc significativement les
résultats préliminaires obtenus par S.-I. Sasa, K. Hayashi et H. Tasaki [Hayashi and
Sasa, 2003; Sasa and Tasaki, 2006] sur le modèle KLS, bien que ce dernier n’ait pas
été reconnu comme résultant d’une analyse en grandes déviations.

D’autre part, nous explorons les propriétés thermodynamiques générales de cette
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fonction de grandes déviations I (additive ou non). En particulier, nous montrons que
pour une certaine classe de taux de transition, cette fonction de grandes déviations I
vérifie un second principe de la thermodynamique, par rapport au travail fourni par des
potentiels externes uniformes appliqués sur chaque système A et B. Notre dérivation,
bien qu’originale dans ce contexte, est largement inspirée par les travaux exposés
dans [Bertini et al., 2015a,b, 2012, 2013]. Nous discutons ensuite le cas particulier
où l’un des systèmes, disons B, est très grand par rapport à l’autre et joue le rôle
d’un réservoir. Finalement, nous terminons ce chapitre en discutant différentes façons
expérimentales d’avoir accès à cette fonction de grandes déviations : en biaisant la
dynamique au contact (à l’aide par exemple de potentiels extérieurs), en plaçant le
système en contact avec un petit système à l’équilibre jouant le rôle d’un thermostat,
ou encore, à l’aide du second principe, en mesurant le travail reçu par les systèmes
lors d’une transformation adiabatique.

D.4 Chapitre 3 : modèles sur réseau en contact

Nous examinons à présent le cadre proposé sur des exemples de modèles sur réseau en
contact. Les modèles considérés sont surtout des modèles classiques de la littérature
[Evans and Hanney, 2005; Katz et al., 1984; Liggett, 2012; Spitzer, 1970; Zia, 2010].

Nous commençons par une brève discussion des études précédentes sur deux mod-
èles Zero Range Processes (ZRP) en contact [Bertin et al., 2006, 2007]. Ce modèle
exactement soluble est l’un des rares exemples de système hors d’équilibre qui repro-
duit une situation formellement équivalente à l’équilibre. Néanmoins, ce modèle a
l’inconvénient d’avoir sa distribution de probabilité stationnaire non dépendante du
forçage. Il n’est alors pas possible d’observer une différence réelle entre le potentiel
chimique au contact, µcont, et le potentiel chimique du système isolé µiso, qui cor-
respondent d’ailleurs au potentiel chimique d’équilibre. C’est également le cas pour
d’autres modèles simples sur réseau tels que le Modèle d’exclusion simple asymétrique
(ASEP) [Derrida, 1998], dont la distribution de probabilité stationnaire est la distri-
bution d’équilibre.

Pour cette raison, nous avons élaboré avec Éric Bertin un modèle original de trans-
port de masse, exactement soluble, dont la distribution de probabilité stationnaire
dépend génériquement du forçage extérieur. Une brève présentation de ce modèle
original (voir [Guioth and Bertin, 2017] pour plus de détails) ainsi qu’une étude ap-
profondie du contact entre deux de ces systèmes sont exposées. Nous fournissons égale-
ment quelques simulations numériques qui confirment la pertinence de notre analyse
dans le cadre de ce modèle.

Ensuite, afin d’explorer des dimensions spatiales supérieures à l’unité, nous inter-
prétons les résultats numériques disponibles dans la littérature à la lumière de notre

162



D.5. Chapitre 4 : application à quelques modèles de particules indépendantes diffusives
et autopropulsées

analyse. Ces interprétations nécessiteraient des simulations numériques détaillées pour
être complètement validées (puisque les solutions exactes des modèles considérés ne
sont pas disponibles) mais nous croyons que l’analyse disponible ici donne déjà un
nouvel aperçu pertinent de la littérature disponible sur le sujet. En accord avec les
résultats de R. Dickman [Dickman, 2014, 2016; Dickman and Motai, 2014], nous mon-
trons qu’en plus du détail des taux de transition, l’étendue et la position du contact
jouent un rôle important.

Enfin, nous changeons d’échelle et proposons une brève présentation du contact
entre deux systèmes hors d’équilibre décrits par la Macroscopic Fluctuation Theory
(MFT), exposée par exemple dans [Bertini et al., 2002, 2015a]. Cette dernière trouve
ici une place naturelle puisqu’elle a été imaginée sur la base d’études de modèles sur
réseau. Nous montrons néanmoins que la MFT ne tient pas compte de l’effet observé
dans les modèles stochastiques microscopiques compte tenu de l’hypothèse d’équilibre
local qui est faite.

D.5 Chapitre 4 : application à quelques modèles
de particules indépendantes diffusives et au-
topropulsées

Finalement, nous appliquons dans ce chapitre les idées précédentes à des systèmes
constitués de particules indépendantes qui peuvent être forcées par un champ extérieur
ou qui peuvent être autopropulsées de différentes manières. Physiquement, il s’agit de
modèles de particules colloïdales immergées dans un solvant qui sont entraînées par des
champs électriques externes ou autopropulsées par la présence d’une hétérogénéité de
réactifs chimiques sur leur surface par exemple. Deux systèmes différents constitués de
ces particules peuvent être mis en contact selon plusieurs protocoles différents. Nous
nous focaliserons sur deux types de contact :

• Le premier type de contact auquel on peut penser est une membrane poreuse.
Dans une situation idéalisée, on pourrait penser à une paroi infiniment mince
modélisée par un potentiel infini percé de trous parfaits qui ne nécessitent aucun
coût énergétique pour être traversés par des particules de taille inférieure à leur
diamètre.

• Le second, plus homogène, correspond simplement à une haute barrière de po-
tentiel séparant les deux systèmes. Comme nous le montrons dans le contexte
des particules autopropulsées, l’absence de symétrie de la barrière par rapport à
son sommet joue un rôle important.
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Nous calculons perturbativement le profil de densité (proportionnel à la densité
de probabilité pour des particules indépendantes) pour plusieurs modèles simples de
particules indépendantes : particules diffusives forcées par un champ externe au-delà
de la réponse linéaire [Barany, 2009; Figliuzzi et al., 2014; Hunter and White, 1987],
particules browniennes actives (ABP) et particules Run-&-Tumble (RTP) (voir [Fodor
and Marchetti, 2018] pour une revue récente). Ces modèles ont été introduits il y a
longtemps dans la littérature [Cates and Tailleur, 2013; Tailleur and Cates, 2008] mais
nous concentrons ici notre attention sur la situation d’un contact entre ces systèmes
et en particulier sur la définition des potentiels chimiques. Nous montrons que les
spécificités du contact, comme pour les modèles de transport de masse discutés dans
les chapitres précédents, influencent significativement les densités moyennes des deux
côtés du contact. Aucune équation d’état n’est ainsi vérifiée, à l’instar de la pression
dans certains systèmes de particules actives [Fily et al., 2017; Solon, Fily, Baskaran,
Cates, Kafri, Kardar and Tailleur, 2015; Solon et al., 2018a; Solon, Stenhammar,
Wittkowski, Kardar, Kafri, Cates and Tailleur, 2015; Speck and Jack, 2016; Takatori
et al., 2014; Winkler et al., 2015].

D.6 Conclusion et ouverture

En examinant la situation de deux systèmes macroscopiques en contact, nous avons
montré dans cette thèse que l’existence de potentiels chimiques associés à chaque sous
systèmes, qui s’égaliseraient en atteignant l’état stationnaire, était sujette à plusieurs
restrictions. Plus précisément, nous avons montré, sous une hypothèse de très faible
fréquence d’échange de particules au contact pour des systèmes markovien à sauts, que
l’existence d’un bilan détaillé macroscopique et la factorisation des taux de transition
constituait une condition suffisante pour obtenir l’additivité de la fonction de grandes
déviations. Néanmoins, même lorsque la propriété d’additivité est valide, une dépen-
dance explicite de la dynamique au contact est toujours présente dans l’expression
des potentiels chimiques : ceux-ci ne vérifient aucune équation d’état. Malgré cette
dépendance de la dynamique au contact, il est possible – lorsqu’ils existent – d’avoir
accès expérimentalement aux potentiels chimiques. Ces résultats ont été vérifiés et
illustrés sur différents modèles stochastiques de particules. En particulier, l’étude de
systèmes de dimension spatiale supérieure à un ont montré, en plus de la dépendance
explicite des taux de transition au contact, l’influence de la position et de l’étendue
du contact, corroborant ainsi des résultats de simulations antérieures [Dickman, 2014,
2016; Dickman and Motai, 2014].
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Quelques perspectives

• Cette thèse s’est principalement concentrée sur une seule quantité conservée, à
savoir le nombre de particules. Il serait également intéressant de considérer la
pression comme la quantité conjuguée à l’échange de volume, lui aussi conservé.
Il pourrait s’agir d’un moyen de mettre en relation les potentiels chimiques et
la pression. Le problème du piston adiabatique (voir par exemple [Itami and
Sasa, 2015] pour une étude récente) en contact avec des gaz hors de l’équilibre
pourrait être une étude préliminaire intéressante.

• Finalement, nous avons observé tout au long de cette thèse l’importance cruciale
du contact dans la répartition du nombre de particules dans chaque sous-système.
Contrairement à l’équilibre, la thermodynamique des systèmes hors d’équilibre
ne peut pas être décrite par des quantités globales simples, faisant abstraction
du contact. Pour cette raison, il semble intéressant de considérer des champs
spatiaux (même si ces derniers sont presque uniformes) plutôt que de simples
macro-variables pour décrire de façon systématique des états thermodynamiques,
dans la même veine que la MFT par exemple. Comme cette dernière ne tient
pas compte des situations exposées ci-dessus, il serait intéressant (mais sans
aucun doute difficile) d’élaborer une théorie des champs de densité au-delà de
l’hypothèse de l’équilibre local2.

2Par exemple, voir cet article récent [Barré et al., 2015] à propos d’une description en terme de
champ de densité de particules autopropulsées en interaction dans la limite de petit bruit.
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