J. Abdeljalil, M. Hamid, O. Abdel-mouttalib, R. Stéphane, R. Raymond et al., The optomotor response: a robust first-line visual screening method for mice, Vision Res, vol.45, pp.1439-1446, 2005.

R. R. Ali, M. B. Reichel, A. J. Thrasher, R. J. Levinsky, C. Kinnon et al., Gene transfer into the mouse retina mediated by an adeno-associated viral vector, Hum. Mol. Genet, vol.5, pp.591-594, 1996.

R. R. Ali, M. B. Reichel, M. De-alwis, N. Kanuga, C. Kinnon et al., Adenoassociated virus gene transfer to mouse retina, Hum. Gene Ther, vol.9, pp.81-86, 1998.

M. Almasieh, A. M. Wilson, B. Morquette, . Cueva, J. L. Vargas et al., The molecular basis of retinal ganglion cell death in glaucoma, 2012.

. Prog and . Retin, Eye Res, vol.31, pp.152-181

C. Aloi, A. Salina, L. Pasquali, F. Lugani, K. Perri et al., Wolfram syndrome: new mutations, different phenotype, PloS One, vol.7, 2012.

M. Al-till, N. S. Jarrah, and K. M. Ajlouni, , 2002.

, Ophthalmologic findings in fifteen patients with Wolfram syndrome, Eur. J. Ophthalmol, vol.12, p.84

W. F. Anderson, R. M. Blaese, and K. Culver, The ADA human gene therapy clinical protocol: Points to Consider response with clinical protocol, Hum. Gene Ther, vol.1, pp.331-362, 1990.

D. F. Aschauer, S. Kreuz, and S. Rumpel, Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain, PloS One, vol.8, p.76310, 2013.

R. W. Atchison, B. C. Casto, and W. M. Hammon, ADENOVIRUS-ASSOCIATED DEFECTIVE VIRUS PARTICLES, Science, vol.149, pp.754-756, 1965.
DOI : 10.1126/science.149.3685.754

A. Auricchio, Pseudotyped AAV vectors for constitutive and regulated gene expression in the eye, Vision Res, vol.43, pp.913-918, 2003.

J. E. Ayala, V. T. Samuel, G. J. Morton, S. Obici, C. M. Croniger et al., Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice, Dis. Model. Mech, vol.3, pp.525-534, 2010.

M. Azzouz, S. M. Kingsman, and N. D. Mazarakis, Lentiviral vectors for treating and modeling human CNS disorders, J. Gene Med, vol.6, pp.951-962, 2004.
DOI : 10.1002/jgm.600

S. R. Bababeygy, M. Y. Wang, K. R. Khaderi, and A. A. Sadun, Visual Improvement With the Use of Idebenone in the Treatment of Wolfram Syndrome, J. Neuroophthalmol, vol.32, pp.386-389, 2012.

X. Bai, H. Lv, F. Zhang, J. Liu, Z. Fan et al., Identification of a novel missense mutation in the WFS1 gene as a cause of autosomal dominant nonsyndromic sensorineural hearing loss in allfrequencies, Am. J. Med. Genet. A, vol.164, pp.3052-3060, 2014.

J. W. Bainbridge, M. S. Mehat, V. Sundaram, S. J. Robbie, S. E. Barker et al., Long-term effect of gene therapy on Leber's congenital amaurosis, N. Engl. J. Med, vol.372, pp.1887-1897, 2015.

P. Barabas, W. Huang, H. Chen, C. L. Koehler, G. Howell et al., Missing optomotor headturning reflex in the DBA/2J mouse, Invest. Ophthalmol. Vis. Sci, vol.52, pp.6766-6773, 2011.
DOI : 10.1167/iovs.10-7147

URL : https://iovs.arvojournals.org/data/journals/iovs/933460/z7g00911006766.pdf

T. G. Barrett and S. E. Bundey, Wolfram (DIDMOAD) syndrome, J. Med. Genet, vol.34, p.838, 1997.
DOI : 10.1136/jmg.34.10.838

URL : https://jmg.bmj.com/content/34/10/838.full.pdf

T. G. Barrett, S. E. Bundey, and A. F. Macleod, Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome, Lancet Lond. Engl, vol.346, pp.1458-1463, 1995.
DOI : 10.1016/s0140-6736(95)92473-6

T. G. Barrett, S. E. Bundey, A. R. Fielder, and P. A. Good, Optic atrophy in Wolfram (DIDMOAD) syndrome, Eye Lond. Engl, vol.11, pp.882-888, 1997.

J. Bennett, J. Wilson, D. Sun, B. Forbes, and A. Maguire, Adenovirus vector-mediated in vivo gene transfer into adult murine retina, Invest. Ophthalmol. Vis. Sci, vol.35, pp.2535-2542, 1994.

J. Bennett, M. Ashtari, J. Wellman, K. A. Marshall, L. L. Cyckowski et al., , 2012.

, Gene Therapy Readministration in Three Adults with Congenital Blindness. Sci. Transl. Med, vol.4, pp.120-135

W. Berger, B. Kloeckener-gruissem, and J. Neidhardt, The molecular basis of human retinal and vitreoretinal diseases, Prog. Retin. Eye Res, vol.29, pp.335-375, 2010.

V. Berry, C. Gregory-evans, W. Emmett, N. Waseem, J. Raby et al., Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans, Eur. J. Hum. Genet. EJHG, vol.21, pp.1356-1360, 2013.
DOI : 10.1038/ejhg.2013.52

URL : https://www.nature.com/articles/ejhg201352.pdf

A. Bi, J. Cui, Y. Ma, E. Olshevskaya, M. Pu et al., Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration, Neuron, vol.50, pp.23-33, 2006.

K. Binley, P. Widdowson, J. Loader, M. Kelleher, S. Iqball et al., Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease, Invest. Ophthalmol. Vis. Sci, vol.54, pp.4061-4071, 2013.

C. Bonnet, V. Kaltimbacher, S. Ellouze, S. Augustin, P. Bénit et al., Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or v subunits, Rejuvenation Res, vol.10, pp.127-144, 2007.

D. Bonnet-wersinger, N. Benkafadar, J. Jagodzinska, C. Hamel, Y. Tanizawa et al., Impairment of visual function and retinal ER stress activation in Wfs1deficient mice, PloS One, vol.9, p.97222, 2014.

L. L. Bonnycastle, P. S. Chines, T. Hara, J. R. Huyghe, A. J. Swift et al., Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation, Diabetes, vol.62, pp.3943-3950, 2013.

B. Bostick, A. Ghosh, Y. Yue, C. Long, and D. Duan, Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration, Gene Ther, vol.14, pp.1605-1609, 2007.

A. Bouaita, S. Augustin, C. Lechauve, H. Cwermanthibault, P. Bénit et al., Downregulation of apoptosis-inducing factor in Harlequin mice induces progressive and severe optic atrophy which is durably prevented by AAV2-AIF1 gene therapy, Brain J. Neurol, vol.135, pp.35-52, 2012.

S. E. Boye, S. L. Boye, A. S. Lewin, and W. W. Hauswirth, A comprehensive review of retinal gene therapy, Mol. Ther. J. Am. Soc. Gene Ther, vol.21, pp.509-519, 2013.

N. Brakch, A. S. Galanopoulou, Y. C. Patel, G. Boileau, and N. G. Seidah, Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4 and PC5 in constitutive and regulated secretory pathways, FEBS Lett, vol.362, pp.143-146, 1995.

N. F. Bramhall, J. C. Kallman, A. M. Verrall, and V. A. Street, A novel WFS1 mutation in a family with dominant low frequency sensorineural hearing loss with normal VEMP and EcochG findings, BMC Med. Genet, vol.9, p.48, 2008.

H. Bugger, S. Boudina, X. X. Hu, J. Tuinei, V. G. Zaha et al., Type 1, 2008.

, Diabetic Akita Mouse Hearts Are Insulin Sensitive but Manifest Structurally Abnormal Mitochondria That Remain Coupled Despite Increased Uncoupling Protein 3, Diabetes, vol.57, pp.2924-2932

H. Cahill and J. Nathans, The optokinetic reflex as a tool for quantitative analyses of nervous system function in mice: application to genetic and drug-induced variation, PloS One, vol.3, 2008.

V. Carelli, F. N. Ross-cisneros, and A. A. Sadun, Mitochondrial dysfunction as a cause of optic neuropathies, Prog. Retin. Eye Res, vol.23, p.53, 2004.

L. D. Carter-dawson and M. M. Lavail, Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy, J. Comp. Neurol, vol.188, pp.245-262, 1979.

S. M. Cashman, L. Mccullough, and R. Kumar-singh, Improved retinal transduction in vivo and photoreceptor-specific transgene expression using adenovirus vectors with modified penton base, Mol. Ther. J. Am. Soc. Gene Ther, vol.15, pp.1640-1646, 2007.

R. R. Caspi, A look at autoimmunity and inflammation in the eye, J. Clin. Invest, vol.120, pp.3073-3083, 2010.

N. Chadderton, A. Palfi, S. Millington-ward, O. Gobbo, N. Overlack et al., Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy, Eur. J. Hum. Genet. EJHG, vol.21, pp.62-68, 2013.

C. Issa, P. Maclaren, and R. E. , Nonviral retinal gene therapy: a review, Clin. Experiment. Ophthalmol, vol.40, pp.39-47, 2012.

A. Chaussenot, C. Rouzier, M. Quere, M. Plutino, S. Ait-el-mkadem et al., Mutation update and uncommon phenotypes in a French cohort of 96 patients with WFS1-related disorders, Clin. Genet, vol.87, pp.430-439, 2015.

K. Chekroud, C. Arndt, D. Basset, C. P. Hamel, P. Brabet et al., Simple and efficient: validation of a cotton wick electrode for animal electroretinography, Ophthalmic Res, vol.45, pp.174-179, 2011.

L. Cheng, M. Toyoguchi, D. J. Looney, J. Lee, M. C. Davidson et al., Efficient gene transfer to retinal pigment epithelium cells with long-term expression, Retina Phila. Pa, vol.25, pp.193-201, 2005.

V. Chrysostomou, C. , and J. G. , The photopic negative response of the mouse electroretinogram: reduction by acute elevation of intraocular pressure, Invest. Ophthalmol. Vis. Sci, vol.54, pp.4691-4697, 2013.

P. Colella, A. , and A. , AAVmediated gene supply for treatment of degenerative and neovascular retinal diseases, Curr. Gene Ther, vol.10, pp.371-380, 2010.

D. A. Collier, T. G. Barrett, D. Curtis, A. Macleod, M. J. Arranz et al., Linkage of Wolfram syndrome to chromosome 4p16.1 and evidence for heterogeneity, Am. J. Hum. Genet, vol.59, pp.855-863, 1996.

F. Costello, S. Coupland, W. Hodge, G. R. Lorello, J. Koroluk et al., Quantifying axonal loss after optic neuritis with optical coherence tomography, Ann. Neurol, vol.59, p.963, 2006.

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland et al., Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography, Mult. Scler. Houndmills Basingstoke Engl, vol.14, pp.893-905, 2008.

K. Cryns, S. Thys, L. Van-laer, Y. Oka, M. Pfister et al., The WFS1 gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells, Histochem. Cell Biol, vol.119, pp.247-256, 2003.

H. Cwerman-thibault, S. Augustin, S. Ellouze, J. Sahel, and M. Corral-debrinski, Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial, C. R. Biol, vol.337, pp.193-206, 2014.

H. Cwerman-thibault, S. Augustin, C. Lechauve, J. Ayache, S. Ellouze et al., Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss, Mol. Ther. Methods Clin. Dev, vol.2, p.15003, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121801

D. Dalkara, L. C. Byrne, R. R. Klimczak, M. Visel, L. Yin et al., In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous, Sci. Transl. Med, vol.5, pp.189-76, 2013.

C. O. Davis, M. , and N. , Discovery and implications of transcellular mitophagy, Autophagy, vol.10, pp.2383-2384, 2015.

B. M. Davis, L. Crawley, M. Pahlitzsch, F. Javaid, and M. F. Cordeiro, Glaucoma: the retina and beyond, Acta Neuropathol. (Berl.), 2016.

C. O. Davis, K. Kim, E. A. Bushong, E. A. Mills, D. Boassa et al., Transcellular degradation of axonal mitochondria, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.9633-9638, 2014.

M. De-falco, L. Manente, A. Lucariello, G. Baldi, P. Fiore et al., Localization and distribution of wolframin in human tissues, Front. Biosci. Elite Ed, vol.4, 1986.

C. Delettre, G. Lenaers, J. M. Griffoin, N. Gigarel, C. Lorenzo et al., Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy, Nat. Genet, vol.26, pp.207-210, 2000.

D. Delgado, A. Del-pozo-rodríguez, M. Á. Solinís, M. Avilés-triqueros, B. H. Weber et al., Dextran and protamine-based solid lipid nanoparticles as potential vectors for the treatment of X-linked juvenile retinoschisis, Hum. Gene Ther, vol.23, pp.345-355, 2012.

M. Dezawa, M. Takano, H. Negishi, X. Mo, T. Oshitari et al., Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach, Micron Oxf. Engl, vol.33, pp.1-6, 1993.

D. Pasquale, G. Chiorini, and J. A. , AAV transcytosis through barrier epithelia and endothelium, Mol. Ther. J. Am. Soc. Gene Ther, vol.13, pp.506-516, 2006.

R. M. Douglas, N. M. Alam, B. D. Silver, T. J. Mcgill, W. W. Tschetter et al., Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system, Vis. Neurosci, vol.22, pp.677-684, 2005.

, Terminology and guidelines for glaucoma, EGS, 2014.

M. Ehrlich, M. Ivask, A. Raasmaja, and S. Kõks, Analysis of metabolic effects of menthol on WFS1-deficient mice, 2016.

H. Eiberg, L. Hansen, B. Kjer, T. Hansen, O. Pedersen et al., Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene, J. Med. Genet, vol.43, pp.435-440, 2006.

S. Ellouze, S. Augustin, A. Bouaita, C. Bonnet, M. Simonutti et al., Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction, Am. J. Hum. Genet, vol.83, pp.373-387, 2008.

R. Farjo, J. Skaggs, A. B. Quiambao, M. J. Cooper, and M. I. Naash, Efficient non-viral ocular gene transfer with compacted DNA nanoparticles, PloS One, vol.1, p.38, 2006.

D. Fischer and M. Leibinger, Promoting optic nerve regeneration, Prog. Retin. Eye Res, vol.31, pp.688-701, 2012.

M. D. Fischer, G. Huber, S. C. Beck, N. Tanimoto, R. Muehlfriedel et al., Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography. PLoS ONE, vol.4, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01943818

S. G. Fonseca, M. Fukuma, K. L. Lipson, L. X. Nguyen, J. R. Allen et al., , 2005.

, Biol. Chem, vol.280, pp.39609-39615

S. G. Fonseca, S. Ishigaki, C. M. Oslowski, S. Lu, K. L. Lipson et al., Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells, J. Clin. Invest, vol.120, pp.744-755, 2010.

S. G. Fonseca, F. Urano, G. C. Weir, J. Gromada, and M. Burcin, Wolfram syndrome 1 and adenylyl cyclase 8 interact at the plasma membrane to regulate insulin production and secretion, Nat. Cell Biol, vol.14, pp.1105-1112, 2012.

J. A. Fraser, V. Biousse, and N. J. Newman, The neuro-ophthalmology of mitochondrial disease, Surv. Ophthalmol, vol.55, pp.299-334, 2010.

L. J. Frishman and P. A. Sieving, Evidence for two sites of adaptation affecting the darkadapted ERG of cats and primates, Vision Res, vol.35, pp.435-442, 1995.

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth et al., The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma, Invest. Ophthalmol. Vis. Sci, vol.37, pp.125-141, 1996.

T. Fujikawa, Y. Noguchi, T. Ito, M. Takahashi, and K. Kitamura, Additional heterozygous 2507A>C mutation of WFS1 in progressive hearing loss at lower frequencies, The Laryngoscope, vol.120, pp.166-171, 2010.

K. Fujita, K. M. Nishiguchi, Y. Yokoyama, Y. Tomiyama, S. Tsuda et al., In vivo cellular imaging of various stress/response pathways using AAV following axonal injury in mice, Sci. Rep, vol.5, p.18141, 2015.

H. Fukuoka, Y. Kanda, S. Ohta, and S. Usami, Mutations in the WFS1 gene are a frequent cause of autosomal dominant nonsyndromic low-frequency hearing loss in Japanese, J. Hum. Genet, vol.52, pp.510-515, 2007.

B. A. Gabreëls, D. F. Swaab, D. P. De-kleijn, A. Dean, N. G. Seidah et al., The vasopressin precursor is not processed in the hypothalamus of Wolfram syndrome patients with diabetes insipidus: evidence for the involvement of PC2 and 7B2, J. Clin. Endocrinol. Metab, vol.83, pp.4026-4033, 1998.

S. Gharanei, M. Zatyka, D. Astuti, J. Fenton, A. Sik et al., Vacuolartype H+-ATPase V1A subunit is a molecular partner of Wolfram syndrome 1 (WFS1) protein, which regulates its expression and stability, 2013.

. Mol and . Genet, , vol.22, pp.203-217

R. Giltay, R. Timpl, and G. Kostka, Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4, Matrix Biol. J. Int. Soc. Matrix Biol, vol.18, pp.469-480, 1999.

A. C. Gonçalves, T. D. Matos, H. R. Simões-teixeira, M. Machado, M. Simão et al., WFS1 and non-syndromic low-frequency sensorineural hearing loss: a novel mutation in a Portuguese case, Gene, vol.538, pp.288-291, 2014.

Y. Gotoh, S. Machida, and Y. Tazawa, Selective loss of the photopic negative response in patients with optic nerve atrophy, Arch. Ophthalmol. Chic. Ill, vol.122, pp.341-346, 1960.

J. Grenier, I. Meunier, V. Daien, C. Baudoin, F. Halloy et al., WFS1 in Optic Neuropathies: Mutation Findings in Nonsyndromic Optic Atrophy and Assessment of Clinical Severity, Ophthalmology, vol.123, pp.1989-1998, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01864083

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, P. et al., Appearance of the Retina With Full-Field Optical Coherence Tomography, Invest. Ophthalmol. Vis. Sci, vol.57, pp.96-104, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390871

X. Guo, S. Shen, S. Song, S. He, Y. Cui et al., The E3 ligase Smurf1 regulates Wolfram syndrome protein stability at the endoplasmic reticulum, J. Biol. Chem, vol.286, pp.18037-18047, 2011.

N. Gürtler, Y. Kim, A. Mhatre, C. Schlegel, A. Mathis et al., Two families with nonsyndromic lowfrequency hearing loss harbor novel mutations in Wolfram syndrome gene 1, J. Mol. Med. Berl. Ger, vol.83, pp.553-560, 2005.

J. Guy, X. Qi, R. D. Koilkonda, T. Arguello, T. Chou et al., Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system, Invest. Ophthalmol. Vis. Sci, vol.50, pp.4205-4214, 2009.

M. W. Hankins, R. J. Jones, and K. H. Ruddock, Diurnal variation in the b-wave implicit time of the human electroretinogram. Vis. Neurosci, vol.15, pp.55-67, 1998.

A. R. Harvey, Combined therapies in the treatment of neurotrauma: polymers, bridges and gene therapy in visual system repair, vol.4, pp.300-305, 2007.

A. R. Harvey, W. Kamphuis, R. Eggers, N. A. Symons, B. Blits et al., Intravitreal injection of adenoassociated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors, Mol. Cell. Neurosci, vol.21, pp.141-157, 2002.

M. Hatanaka, K. Tanabe, A. Yanai, Y. Ohta, M. Kondo et al., Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells, Hum. Mol. Genet, vol.20, pp.1274-1284, 2011.

H. Heikkinen, F. Vinberg, S. Nymark, and A. Koskelainen, Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling, J. Neurophysiol, vol.105, pp.2309-2318, 2011.

M. Hellström, H. , and A. R. , Retinal ganglion cell gene therapy and visual system repair, Curr. Gene Ther, vol.11, pp.116-131, 2011.

M. Hellström, M. J. Ruitenberg, M. A. Pollett, E. M. Ehlert, J. Twisk et al., Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection, Gene Ther, vol.16, pp.521-532, 2009.

T. Hershey, H. M. Lugar, J. S. Shimony, J. Rutlin, J. M. Koller et al., , 2012.

J. B. Hilson, S. N. Merchant, J. C. Adams, J. , and J. T. , Wolfram syndrome: a clinicopathologic correlation, Acta Neuropathol. (Berl.), vol.118, pp.415-428, 2009.

J. Hoekel, S. A. Chisholm, A. Al-lozi, T. Hershey, L. Tychsen et al., Ophthalmologic correlates of disease severity in children and adolescents with Wolfram syndrome, J. AAPOS Off. Publ. Am. Assoc. Pediatr. Ophthalmol. Strabismus Am. Assoc. Pediatr. Ophthalmol. Strabismus, vol.18, pp.461-465, 2014.

S. Hofmann and M. F. Bauer, Wolfram syndrome-associated mutations lead to instability and proteasomal degradation of wolframin, FEBS Lett, vol.580, pp.4000-4004, 2006.

S. Hofmann, C. Philbrook, K. Gerbitz, and M. F. Bauer, Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product, Hum. Mol. Genet, vol.12, 2003.

B. F. Hogewind, R. J. Pennings, F. A. Hol, H. P. Kunst, E. H. Hoefsloot et al., Autosomal dominant optic neuropathy and sensorineual hearing loss associated with a novel mutation of WFS1, 2010.

, Mol. Vis, vol.16, pp.26-35

Y. Hu, K. K. Park, L. Yang, X. Wei, Q. Yang et al., Differential effects of unfolded protein response pathways on axon injuryinduced death of retinal ganglion cells, Neuron, vol.73, pp.445-452, 2012.

J. W. Hulke, On some Points in the Pathology and Morbid Anatomy of Glaucoma, MedicoChir. Trans, vol.41, pp.111-118, 1858.

H. Inoue, Y. Tanizawa, J. Wasson, P. Behn, K. Kalidas et al., A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome), Nat. Genet, vol.20, pp.143-148, 1998.

S. Ishigaki, S. G. Fonseca, C. M. Oslowski, A. Jurczyk, J. R. Shearstone et al., AATF mediates an antiapoptotic effect of the unfolded protein response through transcriptional regulation of AKT1, Cell Death Differ, vol.17, pp.774-786, 2010.

H. Ishihara, S. Takeda, A. Tamura, R. Takahashi, S. Yamaguchi et al., Disruption of the WFS1 gene in mice causes progressive betacell loss and impaired stimulus-secretion coupling in insulin secretion, Hum. Mol. Genet, vol.13, pp.1159-1170, 2004.

S. Ito, R. Sakakibara, and T. Hattori, , 2007.

, Wolfram syndrome presenting marked brain MR imaging abnormalities with few neurologic abnormalities, AJNR Am. J. Neuroradiol, vol.28, pp.305-306

M. Ivask, A. Hugill, and S. Kõks, RNAsequencing of WFS1-deficient pancreatic islets, 2016.

J. Wiley, . Sons, and . Ltd, Gene Therapy Clinical Trials Worldwide, 2016.

J. B. Jonas, W. M. Budde, P. , and S. , Ophthalmoscopic evaluation of the optic nerve head, Surv. Ophthalmol, vol.43, pp.293-320, 1999.

C. Kakiuchi, M. Ishiwata, A. Hayashi, and T. Kato, XBP1 induces WFS1 through an endoplasmic reticulum stress response element-like motif in SH-SY5Y cells, J. Neurochem, vol.97, pp.545-555, 2006.

C. Kakiuchi, S. Ishigaki, C. M. Oslowski, S. G. Fonseca, T. Kato et al., Valproate, a mood stabilizer, induces WFS1 expression and modulates its interaction with ER stress protein GRP94, PloS One, vol.4, p.4134, 2009.

V. Kaltimbacher, C. Bonnet, G. Lecoeuvre, V. Forster, J. Sahel et al., , 2006.

, RNA N. Y. N, vol.12, pp.1408-1417

J. Kawano, Y. Tanizawa, and K. Shinoda, , 2008.

, Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system, J. Comp. Neurol, vol.510, pp.1-23

J. Kawano, R. Fujinaga, K. Yamamoto-hanada, Y. Oka, Y. Tanizawa et al., , 2009.

, Wolfram syndrome 1 (Wfs1) mRNA expression in the normal mouse brain during postnatal development, Neurosci. Res, vol.64, pp.213-230

I. G. Kim, S. Y. Kim, S. I. Choi, J. H. Lee, K. C. Kim et al., Fibulin-3-mediated inhibition of epithelial-to-mesenchymal transition and self-renewal of ALDH+ lung cancer stem cells through IGF1R signaling, Oncogene, vol.33, p.3908, 2014.

A. Kimura, K. Namekata, X. Guo, C. Harada, and T. Harada, Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration, Int. J. Mol. Sci, vol.17, 2016.

J. Kinoshita, S. Takada, N. Iwata, T. , and Y. , Comparison of photopic negative response (PhNR) between focal macular and fullfield electroretinograms in monkeys. Doc. Ophthalmol, Adv. Ophthalmol, vol.132, pp.177-187, 2016.

B. T. Kinsley, M. Swift, R. H. Dumont, and R. G. Swift, Morbidity and mortality in the Wolfram syndrome, Diabetes Care, vol.18, pp.1566-1570, 1995.

F. J. Koczot, B. J. Carter, C. F. Garon, R. , and J. A. , Self-complementarity of terminal sequences within plus or minus strands of adenovirus-associated virus DNA, Proc. Natl. Acad. Sci. U. S. A, vol.70, pp.215-219, 1973.

K. Koido, S. Kõks, T. Nikopensius, E. Maron, S. Altmäe et al., Polymorphisms in wolframin (WFS1) gene are possibly related to increased risk for mood disorders, Int. J. Neuropsychopharmacol. Off. Sci. J. Coll. Int. Neuropsychopharmacol. CINP, vol.8, pp.235-244, 2005.

R. D. Koilkonda, W. W. Hauswirth, G. , and J. , Efficient expression of selfcomplementary AAV in ganglion cells of the ex vivo primate retina, Mol. Vis, vol.15, pp.2796-2802, 2009.

S. Kõks, U. Soomets, J. L. Paya-cano, C. Fernandes, H. Luuk et al., Wfs1 gene deletion causes growth retardation in mice and interferes with the growth hormone pathway, Physiol. Genomics, vol.37, pp.249-259, 2009.

S. Kõks, U. Soomets, M. Plaas, A. Terasmaa, K. Noormets et al., Hypothalamic gene expression profile indicates a reduction in G protein signaling in the Wfs1 mutant mice, Physiol. Genomics, vol.43, pp.1351-1358, 2011.

S. Kõks, R. W. Overall, M. Ivask, U. Soomets, M. Guha et al., Silencing of the WFS1 gene in HEK cells induces pathways related to neurodegeneration and mitochondrial damage, Physiol. Genomics, vol.45, pp.182-190, 2013.

K. D. Kolstad, D. Dalkara, K. Guerin, M. Visel, N. Hoffmann et al., Changes in adeno-associated virusmediated gene delivery in retinal degeneration, Hum. Gene Ther, vol.21, pp.571-578, 2010.

J. Kong, G. , and P. , The effect of body temperature on the murine electroretinogram, 2003.

, Doc. Ophthalmol. Adv. Ophthalmol, vol.106, pp.239-242

R. M. Kotin, M. Siniscalco, R. J. Samulski, X. D. Zhu, L. Hunter et al., , 1990.

, Site-specific integration by adeno-associated virus, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.2211-2215

F. Kretschmer, V. Kretschmer, V. P. Kunze, and J. Kretzberg, OMR-arena: automated measurement and stimulation system to determine mouse visual thresholds based on optomotor responses, PloS One, vol.8, p.78058, 2013.

A. M. Kumaran, G. Sundar, C. , and L. T. , Traumatic optic neuropathy: a review, Craniomaxillofacial Trauma Reconstr, vol.8, pp.31-41, 2015.

R. Kumar-singh, Barriers for Retinal Gene Therapy: Separating Fact from Fiction, Vision Res, vol.48, pp.1671-1680, 2008.

H. Kundra, J. C. Park, and J. J. Mcanany, Comparison of photopic negative response measurements in the time and time-frequency domains, Doc. Ophthalmol. Adv. Ophthalmol, 2016.

J. Kunz, B. Marquez-klaka, S. Uebe, A. Volz-peters, R. Berger et al., Identification of a novel mutation in WFS1 in a family affected by low-frequency hearing impairment, 2003.

, Mutat. Res, vol.525, pp.121-124

S. Lamartina, M. Cimino, G. Roscilli, E. Dammassa, D. Lazzaro et al., Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy, J. Gene Med, vol.9, pp.862-874, 2007.

C. Lebherz, A. Maguire, W. Tang, J. Bennett, W. et al., Novel AAV serotypes for improved ocular gene transfer, J. Gene Med, vol.10, pp.375-382, 2008.

C. Lechauve, S. Augustin, H. Cwerman-thibault, É. Reboussin, D. Roussel et al., Neuroglobin gene therapy prevents optic atrophy and preserves durably visual function in Harlequin mice, Mol. Ther. J. Am. Soc. Gene Ther, vol.22, pp.1096-1109, 2014.

V. Lee, R. L. Ford, W. Xing, C. Bunce, and B. Foot, Surveillance of traumatic optic neuropathy in the UK, Eye Lond. Engl, vol.24, pp.240-250, 2010.

K. Lehmann, K. Schmidt, and S. Löwel, Vision and visual plasticity in ageing mice, Restor. Neurol. Neurosci, vol.30, pp.161-178, 2012.

M. M. Lesperance, J. W. Hall, T. B. San-agustin, and S. M. Leal, Mutations in the Wolfram syndrome type 1 gene (WFS1) define a clinical entity of dominant low-frequency sensorineural hearing loss, Arch. Otolaryngol. Head Neck Surg, vol.129, pp.411-420, 2003.

Q. Li, R. Miller, P. Han, J. Pang, A. Dinculescu et al., Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential, Mol. Vis, vol.14, pp.1760-1769, 2008.

F. Liang, V. Anand, A. Maguire, B. , and J. , Intraocular Delivery of Recombinant Virus, Vision Research Protocols, pp.125-139, 2001.

H. Liao and K. Yau, In vivo gene delivery in the retina using polyethylenimine, BioTechniques, vol.42, pp.285-286, 2007.

D. M. Lipinski, M. Thake, and R. E. Maclaren, Clinical applications of retinal gene therapy, Prog. Retin. Eye Res, vol.32, pp.22-47, 2013.

K. L. Lipson, S. G. Fonseca, S. Ishigaki, L. X. Nguyen, E. Foss et al., Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1, Cell Metab, vol.4, pp.245-254, 2006.

L. Lisowski, S. S. Tay, A. , and I. E. , , 2015.

, Adeno-associated virus serotypes for gene therapeutics, Curr. Opin. Pharmacol, vol.24, pp.59-67

G. Liu, D. Li, M. K. Pasumarthy, T. H. Kowalczyk, C. R. Gedeon et al., Nanoparticles of compacted DNA transfect postmitotic cells, J. Biol. Chem, vol.278, pp.32578-32586, 2003.

Y. Liu, C. M. Mcdowell, Z. Zhang, H. E. Tebow, R. J. Wordinger et al., Monitoring retinal morphologic and functional changes in mice following optic nerve crush, Invest. Ophthalmol. Vis. Sci, vol.55, pp.3766-3774, 2014.

N. Lois, R. V. Mccarter, C. O'neill, R. J. Medina, and A. W. Stitt, Endothelial Progenitor Cells in Diabetic Retinopathy, Front. Endocrinol, vol.5, 2014.

S. Lu, K. Kanekura, T. Hara, J. Mahadevan, L. D. Spears et al., A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.5292-5301, 2014.

H. M. Lugar, J. M. Koller, J. Rutlin, B. A. Marshall, K. Kanekura et al., Neuroimaging evidence of deficient axon myelination in Wolfram syndrome, Sci. Rep, vol.6, p.21167, 2016.

H. Luuk, S. Koks, M. Plaas, J. Hannibal, J. F. Rehfeld et al., Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome, J. Comp. Neurol, vol.509, pp.642-660, 2008.

H. Luuk, M. Plaas, S. Raud, J. Innos, S. Sütt et al., Wfs1-deficient mice display impaired behavioural adaptation in stressful environment, Behav. Brain Res, vol.198, pp.334-345, 2009.

H. Luuk, J. Fahrenkrug, H. , and J. , , 2012.

, Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice, Biochem. Biophys. Res. Commun, vol.424, pp.717-723

A. Majander, M. Bitner-glindzicz, C. M. Chan, H. J. Duncan, P. F. Chinnery et al., Lamination of the Outer Plexiform Layer in Optic Atrophy Caused by Dominant WFS1 Mutations, Ophthalmology, vol.123, pp.1624-1626, 2016.

J. D. Malhotra and R. J. Kaufman, ER stress and its functional link to mitochondria: role in cell survival and death, Cold Spring Harb. Perspect. Biol, vol.3, p.4424, 2011.

H. Mao, T. James, A. Schwein, A. E. Shabashvili, W. W. Hauswirth et al., AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa, 2011.

, Gene Ther, vol.22, pp.567-575

H. Mao, M. S. Gorbatyuk, B. Rossmiller, W. W. Hauswirth, and A. S. Lewin, Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adenoassociated viral vector in P23H RHO transgenic mice, Hum. Gene Ther, vol.23, pp.356-366, 2012.

B. A. Marshall, M. A. Permutt, A. R. Paciorkowski, J. Hoekel, R. Karzon et al., Phenotypic characteristics of early Wolfram syndrome, Orphanet J, 2013.

V. Matto, A. Terasmaa, E. Vasar, and S. Kõks, Impaired striatal dopamine output of homozygous Wfs1 mutant mice in response to [K+] challenge, J. Physiol. Biochem, vol.67, pp.53-60, 2011.

S. C. Mcbain, M. , and N. G. , Functional effects of expression of wolframin-antisense transcripts in BRIN-BD11 beta-cells, Biochem. Biophys. Res. Commun, vol.307, pp.684-688, 2003.

R. Medlej, J. Wasson, P. Baz, S. Azar, I. Salti et al., Diabetes mellitus and optic atrophy: a study of Wolfram syndrome in the Lebanese population, J. Clin. Endocrinol. Metab, vol.89, pp.1656-1661, 2004.

Y. Mei and F. Zhang, Molecular tools and approaches for optogenetics, Biol. Psychiatry, vol.71, pp.1033-1038, 2012.

R. F. Miller and J. E. Dowling, Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram, J. Neurophysiol, vol.33, pp.323-341, 1970.

F. Mingozzi, Y. Chen, S. L. Murphy, S. C. Edmonson, A. Tai et al., Pharmacological modulation of humoral immunity in a nonhuman primate model of AAV gene transfer for hemophilia B, Mol. Ther. J. Am. Soc. Gene Ther, vol.20, pp.1410-1416, 2012.

C. H. Moon, S. C. Hwang, B. Kim, Y. Ohn, and T. K. Park, Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression, Invest. Ophthalmol. Vis. Sci, vol.52, pp.8527-8533, 2011.

M. P. Morales, A. Gálvez, J. M. Eltit, P. Ocaranza, G. Díaz-araya et al., IGF-1 regulates apoptosis of cardiac myocyte induced by osmotic-stress, Biochem. Biophys. Res. Commun, vol.270, pp.1029-1035, 2000.

J. E. Morgan, Circulation and axonal transport in the optic nerve, Eye Lond. Engl, vol.18, pp.1089-1095, 2004.

S. Mustafa, P. , and L. , Approach to diagnosis and management of optic neuropathy, Neurol. India, vol.62, pp.599-605, 2014.

F. M. Nadal-nicola´s, M. Jime´nez-lo´pez, P. Sobrado-calvo, L. Nieto-lo´pez, I. Ca´novas-marti´nez et al., Brn3a as a Marker of Retinal Ganglion Cells: Qualitative and Quantitative Time Course Studies in Naïve and Optic Nerve-Injured Retinas. Investig. Opthalmology Vis. Sci. 50, p.3860, 2009.

H. Nakabayashi, Y. Ohta, M. Yamamoto, Y. Susuki, A. Taguchi et al., Clockcontrolled output gene Dbp is a regulator of Arnt/Hifcells, Biochem. Biophys. Res. Commun, vol.434, pp.370-375, 2013.

H. Nakamura, K. Miyamoto, S. Yokota, K. Ogino, Y. et al., Focal macular photopic negative response in patients with optic neuritis, Eye Lond. Engl, vol.25, pp.358-364, 2011.

E. A. Newman, Distribution of potassium conductance in mammalian Müller (glial) cells: a comparative study, J. Neurosci. Off. J. Soc. Neurosci, vol.7, pp.2423-2432, 1987.

N. J. Newman, M. T. Lott, W. , and D. C. , The clinical characteristics of pedigrees of Leber's hereditary optic neuropathy with the 11778 mutation, Am. J. Ophthalmol, vol.111, pp.750-762, 1991.

T. H. Ni, W. F. Mcdonald, I. Zolotukhin, T. Melendy, S. Waga et al., Cellular proteins required for adenoassociated virus DNA replication in the absence of adenovirus coinfection, J. Virol, vol.72, pp.2777-2787, 1998.

Y. Noguchi, T. Yashima, A. Hatanaka, M. Uzawa, M. Yasunami et al., A mutation in Wolfram syndrome type 1 gene in a Japanese family with autosomal dominant low-frequency sensorineural hearing loss, Acta Otolaryngol. (Stockh.), vol.125, pp.1189-1194, 2005.

M. Nonnenmacher, W. , and T. , Intracellular transport of recombinant adenoassociated virus vectors, Gene Ther, vol.19, pp.649-658, 2012.

K. Noormets, S. Kõks, A. Kavak, A. Arend, M. Aunapuu et al., Sex differences in the development of diabetes in mice with deleted wolframin (Wfs1) gene, Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc, vol.7, pp.271-275, 2009.

K. Noormets, S. Kõks, M. Ivask, M. Aunapuu, A. Arend et al., Energy metabolism and thyroid function of mice with deleted wolframin (Wfs1) gene, Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc, vol.122, pp.281-286, 2014.

A. J. Ogilvy, D. Shen, Y. Wang, C. Chan, and M. S. Abu-asab, Implications of DNA Leakage in Eyes of Mutant Mice, Ultrastruct. Pathol, vol.38, pp.335-343, 2014.

A. A. Osman, M. Saito, C. Makepeace, M. A. Permutt, P. Schlesinger et al., , 2003.

, Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium, J. Biol. Chem, vol.278, pp.52755-52762

J. Pang, A. Lauramore, W. Deng, Q. Li, T. J. Doyle et al., Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration, Vision Res, vol.48, pp.377-385, 2008.

R. J. Parks, L. Chen, M. Anton, U. Sankar, M. A. Rudnicki et al., A helperdependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.13565-13570, 1996.

R. D. Penn and W. A. Hagins, Signal transmission along retinal rods and the origin of the electroretinographic a-wave, Nature, vol.223, pp.201-204, 1969.

M. J. Pérez-de-lara, C. Santano, A. Guzmánaránguez, F. J. Valiente-soriano, M. Aviléstrigueros et al., Assessment of inner retina dysfunction and progressive ganglion cell loss in a mouse model of glaucoma, Exp. Eye Res, vol.122, p.40, 2014.

L. Petit, H. Khanna, P. , and C. , Advances in Gene Therapy for Diseases of the Eye. Hum, Gene Ther, vol.27, pp.563-579, 2016.

H. Petrs-silva, A. Dinculescu, Q. Li, S. Min, V. Chiodo et al., Highefficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors, Mol. Ther. J. Am. Soc. Gene Ther, vol.17, pp.463-471, 2009.

C. Philbrook, E. Fritz, and H. Weiher, Expressional and functional studies of Wolframin, the gene function deficient in Wolfram syndrome, in mice and patient cells, Exp. Gerontol, vol.40, pp.671-678, 2005.

L. H. Pinto and C. Enroth-cugell, Tests of the mouse visual system, Mamm. Genome Off. J. Int. Mamm. Genome Soc, vol.11, pp.531-536, 2000.

L. H. Pinto, M. H. Vitaterna, K. Shimomura, S. M. Siepka, E. L. Mcdearmon et al., Generation, characterization, and molecular cloning of the Noerg-1 mutation of rhodopsin in the mouse, Vis. Neurosci, vol.22, pp.619-629, 2005.

V. Porciatti and L. M. Ventura, Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model, J. NeuroOphthalmol. Off. J. North Am. Neuro-Ophthalmol, 2012.

, Soc, vol.32, pp.354-358

G. T. Prusky, N. M. Alam, S. Beekman, D. , R. M. Puk et al., Rapid Quantification of Adult and Developing Mouse Spatial Vision Using a Virtual Optomotor System, Investig. Opthalmology Vis. Sci, vol.45, pp.6269-6275, 2004.

G. Puras, J. Zarate, A. Díaz-tahoces, M. Aviléstrigueros, E. Fernández et al., Oligochitosan polyplexes as carriers for retinal gene delivery, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.48, pp.323-331, 2013.

X. Qi, L. Sun, A. S. Lewin, W. W. Hauswirth, G. et al., The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse, Invest. Ophthalmol. Vis. Sci, vol.48, pp.1-10, 2007.

H. A. Quigley and A. T. Broman, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol, vol.90, pp.262-267, 2006.

N. V. Rangaswamy, L. J. Frishman, E. U. Dorotheo, J. S. Schiffman, H. M. Bahrani et al., Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina, Invest. Ophthalmol. Vis. Sci, vol.45, pp.3827-3837, 2004.

S. Raud, S. Sütt, H. Luuk, M. Plaas, J. Innos et al., Relation between increased anxiety and reduced expression of alpha1 and alpha2 subunits of GABA(A) receptors in Wfs1-deficient mice, Neurosci. Lett, vol.460, pp.138-142, 2009.

S. Raud, R. Reimets, M. Loomets, S. Sütt, A. Altpere et al., Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice, Neuropharmacology, vol.95, pp.59-67, 2015.

W. S. Redfern, S. Storey, K. Tse, Q. Hussain, K. P. Maung et al., Evaluation of a convenient method of assessing rodent visual function in safety pharmacology studies: effects of sodium iodate on visual acuity and retinal morphology in albino and pigmented rats and mice, J. Pharmacol. Toxicol. Methods, vol.63, pp.102-114, 2011.

M. B. Reichel, R. R. Ali, A. J. Thrasher, D. M. Hunt, S. S. Bhattacharya et al., Immune responses limit adenovirally mediated gene expression in the adult mouse eye, Gene Ther, vol.5, pp.1038-1046, 1998.

R. Reimets, S. Raud, M. Loomets, T. Visnapuu, V. Volke et al., Variability in the effect of antidepressants upon Wfs1-deficient mice is dependent on the drugs' mechanism of actions, Behav. Brain Res, vol.308, pp.53-63, 2016.

N. D. Rendtorff, M. Lodahl, H. Boulahbel, I. R. Johansen, A. Pandya et al., Identification of p.A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment, Am. J. Med. Genet. A, vol.155, pp.1298-1313, 2011.

P. Reynier, P. Amati-bonneau, C. Verny, A. Olichon, G. Simard et al., OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract, 2004.

W. H. Ridder and S. Nusinowitz, The visual evoked potential in the mouse-Origins and response characteristics, J. Med. Genet, vol.41, pp.902-913, 2006.

A. C. Riggs, E. Bernal-mizrachi, M. Ohsugi, J. Wasson, S. Fatrai et al., Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis, Diabetologia, vol.48, pp.2313-2321, 2005.

L. Rigoli, D. Bella, and C. , Wolfram syndrome 1 and Wolfram syndrome 2, Curr. Opin. Pediatr, vol.24, pp.512-517, 2012.

L. Rigoli, F. Lombardo, D. Bella, and C. , , 2011.

, Wolfram syndrome and WFS1 gene, Clin. Genet, vol.79, pp.103-117

J. Rohayem, C. Ehlers, B. Wiedemann, R. Holl, K. Oexle et al., Diabetes and neurodegeneration in Wolfram syndrome: a multicenter study of phenotype and genotype, Diabetes Care, vol.34, pp.1503-1510, 2011.

A. A. Sadun, P. H. Win, F. N. Ross-cisneros, S. O. Walker, C. et al., Leber's hereditary optic neuropathy differentially affects smaller axons in the optic nerve, Trans. Am. Ophthalmol. Soc, vol.98, pp.223-232, 2000.

J. Sahel and B. Roska, Gene therapy for blindness, Annu. Rev. Neurosci, vol.36, pp.467-488, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01258538

T. Sakurai, K. Kitadate, H. Nishioka, H. Fujii, J. Ogasawara et al., Oligomerised lychee fruit-derived polyphenol attenuates cognitive impairment in senescence-accelerated mice and endoplasmic reticulum stress in neuronal cells, Br. J. Nutr, vol.110, pp.1549-1558, 2013.

M. Samardzija, C. Caprara, S. R. Heynen, S. Willcox-deparis, I. Meneau et al., A mouse model for studying cone photoreceptor pathologies, Invest. Ophthalmol. Vis. Sci, vol.55, pp.5304-5313, 2014.

E. Sarzi, C. Angebault, M. Seveno, N. Gueguen, B. Chaix et al., The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse, Brain J. Neurol, vol.135, pp.3599-3613, 2012.

S. M. Saszik, J. G. Robson, and L. J. Frishman, The scotopic threshold response of the dark-adapted electroretinogram of the mouse, J. Physiol, vol.543, pp.899-916, 2002.

J. Schimmer and S. Breazzano, Investor Outlook: Significance of the Positive LCA2 Gene Therapy Phase III Results. Hum, Gene Ther. Clin. Dev, vol.26, pp.208-210, 2015.

R. Schmidt-kastner, P. Kreczmanski, M. Preising, R. Diederen, C. Schmitz et al., Expression of the diabetes risk gene wolframin (WFS1) in the human retina, Exp. Eye Res, vol.89, pp.568-574, 2009.

A. W. Scott, N. M. Bressler, S. Ffolkes, and J. S. Wittenborn, Public attitudes about eye and vision health, JAMA Ophthalmol, 2016.

L. Shang, H. Hua, K. Foo, H. Martinez, K. Watanabe et al., Dt>-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome, Diabetes, vol.63, pp.923-933

Z. Shevtsova, J. M. Malik, U. Michel, M. Bähr, and S. Kügler, Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo, Exp. Physiol, vol.90, pp.53-59, 2005.

J. W. Shum, K. Liu, and K. So, The progress in optic nerve regeneration, where are we?, Neural Regen. Res, vol.11, pp.32-36, 2016.

P. A. Sieving, L. J. Frishman, and R. H. Steinberg, Scotopic threshold response of proximal retina in cat, J. Neurophysiol, vol.56, pp.1049-1061, 1986.

R. A. Stockton and M. M. Slaughter, Bwave of the electroretinogram. A reflection of ON bipolar cell activity, J. Gen. Physiol, vol.93, pp.101-122, 1989.

Y. Sun, J. Cheng, Y. Lu, J. Li, Y. Lu et al., Identification of two novel missense WFS1 mutations, H696Y and R703H, in patients with non-syndromic lowfrequency sensorineural hearing loss, J. Genet. Genomics Yi Chuan Xue Bao, vol.38, pp.71-76, 2011.

S. Sütt, A. Altpere, R. Reimets, T. Visnapuu, M. Loomets et al., Wfs1deficient animals have brain-region-specific changes of Na+, K+-ATPase activity and mRNA :E Res, vol.93, pp.530-537, 2015.

N. Suzuki, M. Hosoya, N. Oishi, H. Okano, M. Fujioka et al., Expression pattern of wolframin, the WFS1 (Wolfram syndrome-1 gene) product, in common marmoset (Callithrix jacchus) cochlea, Neuroreport, vol.27, pp.833-836, 2016.

M. Swift and R. G. Swift, Wolframin mutations and hospitalization for psychiatric illness, 2005.

, Mol. Psychiatry, vol.10, pp.799-803

R. G. Swift, D. B. Sadler, and M. Swift, Psychiatric findings in Wolfram syndrome homozygotes, Lancet Lond. Engl, vol.336, pp.667-669, 1990.

R. G. Swift, D. O. Perkins, C. L. Chase, D. B. Sadler, and M. Swift, Psychiatric disorders in 36 families with Wolfram syndrome, Am. J. Psychiatry, vol.148, pp.775-779, 1991.

E. H. Szybalska and W. Szybalski, , 1962.

G. Of, I. V. Cell-lines, . H. Dnamediated, and . Trait, Proc. Natl. Acad. Sci. U. S. A, vol.48, pp.2026-2034

W. Szybalski, The 50th anniversary of gene therapy: beginnings and present realities, Gene, vol.525, pp.151-154, 2013.

K. Takeda, H. Inoue, Y. Tanizawa, Y. Matsuzaki, J. Oba et al., WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain, Hum. Mol. Genet, vol.10, pp.477-484, 2001.
DOI : 10.1093/hmg/10.5.477

URL : https://academic.oup.com/hmg/article-pdf/10/5/477/9464352/dde051.pdf

D. Takei, H. Ishihara, S. Yamaguchi, T. Yamada, A. Tamura et al., WFS1 protein modulates the free Ca(2+) concentration in the endoplasmic reticulum, FEBS Lett, vol.580, pp.5635-5640, 2006.
DOI : 10.1016/j.febslet.2006.09.007

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/j.febslet.2006.09.007

V. Tamboli, G. P. Mishra, and A. K. Mitrat, , 2011.

, Polymeric vectors for ocular gene delivery, Ther. Deliv, vol.2, pp.523-536

E. M. Tanaka and P. Ferretti, Considering the evolution of regeneration in the central nervous system, Nat. Rev. Neurosci, vol.10, pp.713-723, 2009.

J. Tang, T. Edwards, J. G. Crowston, and M. Sarossy, The Test-Retest Reliability of the Photopic Negative Response (PhNR), Transl. Vis. Sci. Technol, vol.3, p.1, 2014.

K. Tein, S. Kasvandik, S. Kõks, E. Vasar, A. Terasmaa et al., Initiation and developmental dynamics of Wfs1 expression in the context of neural differentiation and ER stress in mouse forebrain, Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci, vol.8, pp.80-88, 2014.

A. Terasmaa, U. Soomets, J. Oflijan, M. Punapart, M. Hansen et al., Wfs1 mutation makes mice sensitive to insulin-like effect of acute valproic acid and resistant to streptozocin, J. Physiol. Biochem, vol.67, pp.381-390, 2011.

B. B. Thomas, M. J. Seiler, S. R. Sadda, P. J. Coffey, and R. B. Aramant, Optokinetic test to evaluate visual acuity of each eye independently, d<< Genotype-phenotype correlations in Leber hereditary optic neuropathy, vol.138, pp.1119-1123, 2004.

V. Touitou and P. Lehoang, Diagnostic approach in optic neuropathy, Rev. Neurol, vol.168, pp.691-696, 2012.

I. Trapani, A. Puppo, A. , and A. , Vector platforms for gene therapy of inherited retinopathies, Prog. Retin. Eye Res, vol.43, pp.108-128, 2014.

A. Turchinovich, G. Zoidl, and R. Dermietzel, Non-viral siRNA delivery into the mouse retina in vivo, BMC Ophthalmol, vol.10, p.25, 2010.

K. Ueda, J. Kawano, K. Takeda, T. Yujiri, K. Tanabe et al., Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic beta-cells via transcriptional activation, 2005.

, Eur. J. Endocrinol. Eur. Fed. Endocr. Soc, vol.153, pp.167-176

F. Urano, Wolfram Syndrome: Diagnosis, Management, and Treatment, Curr. Diab. Rep, vol.16, 2016.

R. Valéro, S. Bannwarth, S. Roman, V. Paquisflucklinger, and B. Vialettes, Autosomal dominant transmission of diabetes and congenital hearing impairment secondary to a missense mutation in the WFS1 gene, Diabet. Med. J. Br. Diabet. Assoc, vol.25, pp.657-661, 2008.

S. De-vega, T. Iwamoto, and Y. Yamada, , 2009.

, Fibulins: multiple roles in matrix structures and tissue functions, Cell. Mol. Life Sci. CMLS, vol.66, pp.1890-1902

T. Visnapuu, S. Raud, M. Loomets, R. Reimets, S. Sütt et al., Wfs1-deficient mice display altered function of serotonergic system and increased behavioral response to antidepressants, Front. Neurosci, vol.7, p.132, 2013.

T. Visnapuu, M. Plaas, R. Reimets, S. Raud, A. Terasmaa et al., Evidence for impaired function of dopaminergic system in Wfs1deficient mice, Behav. Brain Res, vol.244, pp.90-99, 2013.

S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma, Invest. Ophthalmol. Vis. Sci, vol.40, pp.1124-1136, 1999.

V. Viswanathan, S. Medempudi, and M. Kadiri, Wolfram syndrome, J. Assoc. Physicians India, vol.56, pp.197-199, 2008.

D. J. Von-seggern, E. Aguilar, K. Kinder, S. K. Fleck, J. C. Gonzalez-armas et al., In vivo transduction of photoreceptors or ciliary body by intravitreal injection of pseudotyped adenoviral vectors, Mol. Ther. J. Am. Soc, 2003.

, Gene Ther, vol.7, pp.27-34

F. B. Walsh, Pathological-clinical correlations. I. Indirect trauma to the optic nerves and chiasm. II. Certain cerebral involvements associated with defective blood supply, Invest. Ophthalmol, vol.5, pp.433-449, 1966.

J. Wang, H. Cheng, Y. Hu, R. A. Tang, and L. J. Frishman, The photopic negative response of the flash electroretinogram in multiple sclerosis, Invest. Ophthalmol. Vis. Sci, vol.53, pp.1315-1323, 2012.

Z. Wang, H. Ma, J. Li, L. Sun, J. Zhang et al., Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo, Gene Ther, vol.10, pp.2105-2111, 2003.

K. H. Warrington and R. W. Herzog, Treatment of human disease by adeno-associated viral gene transfer, Hum. Genet, vol.119, pp.571-603, 2006.

S. E. Wiley, A. Y. Andreyev, A. S. Divakaruni, R. Karisch, G. Perkins et al., , 2013.

, Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis, EMBO Mol

. Med, , vol.5, pp.904-918

K. Willett, B. , and J. , Immunology of AAV-Mediated Gene Transfer in the Eye. Front. Immunol. 4, 261. Wirtschafter, Trans. Am. Ophthalmol. Soc, vol.81, pp.1034-1091, 1983.

D. J. Wolfram and H. P. Wagner, Diabetes mellitus and simple optic atrophy among siblings: report of four cases, Mayo Clin Proc, vol.13, pp.715-718, 1938.

J. Xavier, N. Bourvis, A. Tanet, T. Ramos, D. Perisse et al., , 2016.

, Bipolar Disorder Type 1 in a 17-Year-Old Girl with Wolfram Syndrome, J. Child Adolesc. Psychopharmacol

R. Xu, B. Xia, J. Geng, J. Shi, H. Shi et al., Expression and localization of Wolfram syndrome 1 gene in the developing rat pancreas, World J. Gastroenterol. WJG, vol.15, p.5425, 2009.

T. Yamada, H. Ishihara, A. Tamura, R. Takahashi, S. Yamaguchi et al., WFS1deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells, Hum. Mol. Genet, vol.15, pp.1600-1609, 2006.

H. Yamamoto, S. Hofmann, D. I. Hamasaki, H. Yamamoto, P. Kreczmanski et al., Wolfram syndrome 1 (WFS1) protein expression in retinal ganglion cells and optic nerve glia of the cynomolgus monkey, Exp. Eye Res, vol.83, pp.1303-1306, 2006.

K. Yokoi, S. Kachi, H. S. Zhang, P. D. Gregory, S. K. Spratt et al., Ocular gene transfer with selfcomplementary AAV vectors, Invest. Ophthalmol. Vis. Sci, vol.48, pp.3324-3328, 2007.

T. L. Young, E. Ives, E. Lynch, R. Person, S. Snook et al., Non-syndromic progressive hearing loss DFNA38 is caused by heterozygous missense mutation in the Wolfram syndrome gene WFS1, Hum. Mol. Genet, vol.10, pp.2509-2514, 2001.

S. Yurimoto, N. Hatano, M. Tsuchiya, K. Kato, T. Fujimoto et al., Identification and characterization of wolframin, the product of the wolfram syndrome gene (WFS1), as a novel calmodulinbinding protein, Biochemistry (Mosc.), vol.48, p.3946, 2009.

P. Yu-wai-man, Genetic manipulation for inherited neurodegenerative diseases: myth or reality?, Br. J. Ophthalmol, 2016.

P. Yu-wai-man and P. F. Chinnery, Leber Hereditary Optic Neuropathy-Therapeutic Challenges and Early Promise, Taiwan J. Ophthalmol, vol.1, pp.12-15, 2011.

P. Yu-wai-man and P. F. Chinnery, Leber Hereditary Optic Neuropathy, GeneReviews(®), 2016.

P. Yu-wai-man, P. G. Griffiths, and P. F. Chinnery, Mitochondrial optic neuropathies-disease mechanisms and therapeutic strategies, Prog. Retin. Eye Res, vol.30, pp.81-114, 2011.

P. Yu-wai-man, M. Votruba, F. Burté, C. La-morgia, P. Barboni et al., A neurodegenerative perspective on mitochondrial optic neuropathies, Acta Neuropathol, 2016.

P. A. Zalloua, S. T. Azar, M. Delépine, N. J. Makhoul, H. Blanc et al., WFS1 mutations are frequent monogenic causes of juvenile-onset diabetes mellitus in Lebanon, Hum. Mol. Genet, vol.17, pp.4012-4021, 2008.

M. Zatyka, C. Ricketts, G. Da-silva-xavier, J. Minton, S. Fenton et al., Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress, Hum. Mol. Genet, vol.17, pp.190-200, 2008.

A. Zmyslowska, B. Malkowski, W. Fendler, M. Borowiec, K. Antosik et al., Central nervous system PET-CT imaging reveals regional impairments in pediatric patients with Wolfram syndrome, PloS One, vol.9, p.115605, 2014.

A. Zmyslowska, W. Fendler, A. Niwald, M. Ludwikowska-pawlowska, M. Borowiec et al., Retinal Thinning as a Marker of Disease Progression in Patients With Wolfram Syndrome, Diabetes Care, vol.38, pp.36-37, 2015.

R. Zufferey, T. Dull, R. J. Mandel, A. Bukovsky, D. Quiroz et al., Selfinactivating lentivirus vector for safe and efficient in vivo gene delivery, J. Virol, vol.72, pp.9873-9880, 1998.

, darkness, for 1, 3, 7 and 12 months old Wfs1 WT

, Wfs1 E864K (in red) mice. Results for flashes at 5 ms, 0.5 Hz and 15.9 cd·s/m 2 are shown as mean ± SEM for both eyes

, for ON-bipolar and Müller cells, were recorded after 5 min long adaptation to bright light, as a response to flashes at 5 ms, 1 Hz and 159 cd·s/m 2. Results are shown as mean ± SEM for both eyes of 1, 3, 7 and 12 months old Wfs1 WT, Figure 49. Photopic ERG. A-wave (A), for cones, and b-wave (B)

A. Iv, Optic Neuropathy Optic neuropathy (OPN) has either an acquired or hereditary background (Table 10), 2014.

. Berger, what leads to other symptoms than loss of vision, such as demyelination in CNS, thus multiple sclerosis-like disease; as well as ataxia, myopathy, ocular muscle paralysis, sensorineural hearing loss etc. Leber hereditary optic neuropathy (LHON, OMIM #535000, prevalence 1/30 000) is one of mitochondrial OPNs. LHON is a unilateral disorder, Hence, it may be autoimmune or caused by gene mutations, inflammation, ischemia, trauma or toxicity (Touitou and LeHoang, 1991.

C. Dz-wai-man, visual acuity loss beginning with blurriness, OD atrophy (Figure 70), RGC dysfunction, pre-symptomatic swelling and subsequent thinning of the retinal nerve fiber layer (RNFL). Particularly, parallel RNFL-exclusive peripallary retinal that none of the ON parts is able to regenerate. Even more, in response to axonal atrophy or trauma, glial cells form scars that block the regeneration in a chemical and physical manner, 25% of cases the onset is bilateral. Males are affected four to five times more often than females, with aggravation in case of smoking, but a chance for spontaneous recovery, 1991.

. Hu, OA is its first neurological symptom, starting in adolescence and ending with blindness within 8 years. Unfortunately, a suitable WS mouse model comprising ophthalmologic symptoms has not yet been found, therefore the search for its treatment is delayed. In this thesis, I studied visual impairment in two WS mouse models along with a success of a gene therapy (GT) approach with the human WFS1 gene. Firstly, 3 and 6 months old Wfs1 exon8del mice were examined for the visual acuity (VA) and contrast sensitivity via changes in the optomotor reflex (OMR), the neural retinal function via electroretinogram (ERG), as well as the eye physiology via fundoscopy and optical coherence tomography (OCT). Also, the proportion of retinal ganglion cells (RGC) and the axonal loss at the age of 7 months were determined with anti-Brn3a immuno-labeling of retinal sections and electron microscopy of optic nerve (ON) sections, respectively. There was a progressive loss of VA and contrast sensitivity in Wfs1 exon8del-/-mice, starting already at 1 month of age. It was accompanied by optic disc pallor, retinal thinning as well as axonal damage. However, there was no RGC loss and the endoplasmic reticulum (ER) stress in the retina was at a normal level. It suggested a presence of another cause for the reported degeneration in KO mice; in opposition to what was proposed in the literature. I brief, KO mice exhibit significant WS ophthalmic phenotype. Secondly, in search for another model, visual functions of Wfs1 E864K mouse line were investigated. This line was originally a model of Wolfram-like Syndrome, characterized by dominant mutations in WFS1 leading to congenital progressive hearing impairment, diabetes mellitus and OA. Only homozygous mutants, however, showed expected visual impairment. Already at 1 month of age, Wfs1 E864K mice had drastic loss of RGC function, albeit keeping the cell number at a normal level. This was accompanied by retinal thinning and a severe ON damage, as shown with OCT and fundoscopy, respectively. In contrast, the RGC function in Wfs1 E864K/+ mice dropped slightly only at the age of 7 and 12 months, showing that the pathology of the E864K mutation-driven disease in mice is different than in humans. Therefore, Wfs1 E864K mice, with their strong ophthalmic phenotype, could potentially serve as a model of the classical WS. Finally, to investigate future treatment options, 1 month old Wfs1 exon8del+/+ (WT) and Wfs1 exon8del-/-(KO) mice underwent a uni-and bilateral intravitreal gene therapy (GT) with AAV-2/2-CMV-WFS1. Exams at 3 and 6 months of age showed improved VA, as well as optic pallor and axonal damage rescue in KO mice. Also, no adverse effects related to either GT or sham injections were noted, However, regeneration could be achieved if aspects of axonal survival, re-myelination, functional synapse formation, low ER stress and Ca 2+ balance were managed, 2009.

, / 1000 000) est une maladie neurodégénérative, qui se présente avec un début juvénile, intégrant le diabète insipide, diabète sucré, l'atrophie optique (AO), et la surdité. AO est généralement son premier symptôme neurologique, commençant à l'âge de 11 ans et se terminant par la cécité 8 ans plus tard. Malheureusement, un modèle murin du SW approprié aux symptômes ophtalmologiques n'a pas encore été trouvé, donc la recherche de la thérapie pour sauver la vision en est à ces débuts. Dans cette thèse j'ai étudié l'atteinte visuelle de deux modèles de souris mutantes pour le SW et succès d

, De plus, la proportion des cellules ganglionnaire de la rétine (CGRs) et la perte axonale dans le nerf optique (NO) à 7 mois ont été examinés avec marquage anti-Brn3a et microscopie électronique, respectivement. Il y avait une perte progressive de l'AV et la SC chez les souris KO à partir du 1 mois. Elle était accompagnée d'une pâleur du disque optique (DO), d'amincissement de la rétine ainsi que des lésions axonales. Par contre, il n'avait pas de perte des CGRs ni stress du réticulum endoplasmique dans la rétine, Premièrement, les souris Wfs1 exon8del sont été examinées à 3 et 6 mois pour l'acuité visuelle (AV) et la sensibilité aux contrastes (SC) via changements dans le reflexe optomoteur (ROM), la fonction rétinienne neurale par électrorétinogramme (ERG)

À. Deuxièmement and S. W. La-recherche-d&apos;un-autre-modèle-du, Déjà à 1 mois, les souris Wfs1 E864K avait une perte drastique de la fonction des CGRs, mais en gardant le nombre de cellules à un niveau normal. Ceci a été accompagné par un amincissement de la rétine et d'un sévère dommage du NO, comme montré par le TCO et la fondoscopie, respectivement. En conséquence, les souris Wfs1 E864K , avec leur fort phénotype ophtalmique, les fonctions visuelles de la lignée Wfs1 E864K de la souris ont été étudiées

. Enfin, les souris de la lignée Wfs1 exon8del à 1 mois ont subi une TG intravitréenne avec AAV-2/2-CMV-WFS1. Les examens à 3 et 6 mois ont montré une amélioration de l'AV, ainsi que le sauvetage de la pâleur du DO et réduction des lésions axonales chez les souris KO. En outre, aucun effet indésirable lié à des injections TG n'ont été noté. Suivant cette idée, les souris Wfs1 E864K ont également été soumis à la TG intravitréenne

, Wfs1 E864K comme une alternative, en particulier pour enquêter sur la fonction de Wfs1 dans l'oeil. Enfin, la GT intravitréenne avec WFS1 a un potentiel pour sauver partiellement le phénotype ophtalmique