L. Hendrikse and W. S. Blanchard, Youn 12342. (f) M 6227

H. Lodish and L. Zipursky, Molecular cell biology. Biochemistry and Molecular Biology Education, vol.29, pp.126-133, 2001.

H. Sui, B. Han, J. K. Lee, P. Walian, and B. K. Jap, Structural basis of water-specific transport through the aqp1 water channel, Nature, vol.414, issue.6866, pp.872-878, 2001.
DOI : 10.1038/414872a

URL : https://digital.library.unt.edu/ark:/67531/metadc737003/m2/1/high_res_d/791215.pdf

R. Norman, Water salination: a source of energy, Science, vol.186, issue.4161, pp.350-352, 1974.
DOI : 10.1126/science.186.4161.350

S. Loeb and R. Norman, Osmotic power plants, Science, issue.4203, pp.654-659, 1975.
DOI : 10.1126/science.189.4203.654

URL : http://science.sciencemag.org/content/189/4203/654.full.pdf

J. N-weinstein and F. Leitz, Electric power from differences in salinity: the dialytic battery, Science, issue.4227, pp.557-566, 1976.

T. Thorsen and T. Holt, The potential for power production from salinity gradients by pressure retarded osmosis, Journal of Membrane Science, vol.335, issue.1-2, pp.103-110, 2009.
DOI : 10.1016/j.memsci.2009.03.003

A. Achilli, Y. Tzahi, A. E. Cath, and . Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation, Journal of Membrane Science, vol.343, issue.1-2, pp.42-52, 2009.
DOI : 10.1016/j.memsci.2009.07.006

D. A. Vermaas, E. Guler, M. Saakes, and K. Nijmeijer, Theoretical power density from salinity gradients using reverse electrodialysis, Energy Procedia, vol.20, pp.170-184, 2012.
DOI : 10.1016/j.egypro.2012.03.018

URL : https://doi.org/10.1016/j.egypro.2012.03.018

J. W. Post, V. M. Hubertus, C. J. Hamelers, and . Buisman, Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system, Environmental Science & Technology, vol.42, issue.15, p.18754509, 2008.
DOI : 10.1021/es8004317

A. Piotr-dd-lugoo-l¸eckil¸ecki, K. Gambier, M. Nijmeijer, and . Wessling, Practical potential of reverse electrodialysis as process for sustainable energy generation, Environmental Science & Technology, vol.43, issue.17, pp.6888-6894, 2009.

R. Schoch, J. Han, and P. Renaud, Transport phenomena in nanofluidics, Reviews of Modern Physics, vol.80, issue.3, pp.839-883, 2008.
DOI : 10.1103/revmodphys.80.839

URL : https://infoscience.epfl.ch/record/112120/files/Schoch_RMP_2008_review.pdf

H. J. Frank, D. J. Van-der-heyden, D. Bonthuis, C. Stein, C. Meyer et al., Electrokinetic energy conversion efficiency in nanofluidic channels, Nano Letters, vol.6, issue.10, p.17034089, 2006.

A. Siria, P. Poncharal, A. Biance, R. Fulcrand, X. Blase et al., Giant osmotic energy conversionmeasured in a single transmembrane boron nitride nanotube, Nature, vol.494, pp.455-458, 2013.
DOI : 10.1038/nature11876

E. Brunet and A. Ajdari, Generalized Onsager relations for electrokinetic effects in anisotropic and heterogeneous geometries, Physical Review E, vol.69, issue.1, p.16306, 2004.
DOI : 10.1103/physreve.69.016306

C. Dong-kwon-kim, Y. Duan, and . Majumdar, Power generation from concentration gradient by reverse electrodialysis in ionselective nanochannels, pp.1215-1224, 2010.

H. Ouyang, W. Wang, and Z. Li, Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis, Nanotechnology, vol.24, issue.345401, 2013.
DOI : 10.1088/0957-4484/24/34/345401

P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, Current status of ion exchange membranes for power generation from salinity gradients, Journal of Membrane Science, vol.319, issue.1-2, pp.214-222, 2008.

M. Saakesa, S. J. Metz, G. J. Harmsen, J. Veermana, and R. M. De-jongb, Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density, Journal of Membrane Science, vol.343, pp.7-15, 2009.

E. Bruce, M. Logan, and . Elimelech, Membrane-based processes for sustainable power generation using water, Nature, vol.488, issue.7411, pp.313-322, 2012.

R. Karnik, C. Duan, K. Castelino, H. Daiguji, and A. Majumdar, Rectification of ionic current in a nanofluidic diode, Nano letters, vol.7, issue.3, pp.547-551, 2007.
DOI : 10.1021/nl062806o

C. Wei, A. J. Bard, and S. Feldberg, Current rectification at quartz nanopipet electrodes, Analytical Chemistry, vol.69, issue.22, pp.4627-4633, 1997.
DOI : 10.1021/ac970551g

Z. Siwy, H. A. Gu, . Spohr, . Baur, . Wolf-reber et al., Rectification and voltage gating of ion currents in a nanofabricated pore, Europhysics Letters), vol.60, issue.3, p.349, 2002.

W. Guo, Y. Tian, and L. Jiang, Asymmetric Ion Transport through IonChannel-Mimic Solid-State Nanopores, Acc Chem Res, vol.46, issue.12, pp.2834-2880, 2013.

S. Zuzanna and . Siwy, Ion-current rectification in nanopores and nanotubes with broken symmetry, Advanced Functional Materials, vol.16, issue.6, pp.735-746, 2006.

N. Laohakunakorn, . Ulrich, and . Keyser, Electroosmotic flow rectification in conical nanopores, Nanotechnology, vol.26, issue.27, p.275202, 2015.

C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Phys. Rev. Lett, vol.111, p.244501, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01087699

J. N. Israelachvili, Intermolecular and surface forces 2nd edn, 1991.

J. Robert and . Hunter, Foundations of colloid science, 2001.

. Dc-prieve, . Anderson, and . Ebel, Motion of a particle generated by chemical gradients. part 2. electrolytes, Journal of Fluid Mechanics, vol.148, pp.247-269, 1984.

J. C. Fair and J. F. Osterle, Reverse electrodialysis in charged capillary membranes, The Journal of Chemical Physics, vol.54, issue.8, p.3307, 1971.

R. Gross and J. Osterle, Membrane Transport Characteristics of Ultrafine Capillaries, The journal of Chemical Physics, vol.49, pp.228-234, 1968.

W. Ouyang, W. Wang, H. Zhang, W. Wu, and Z. Li, Nanofluidic crystal : a facile , scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis, vol.24, 2013.

Z. Siwy and A. Fuli´nskifuli´nski, A nanodevice for rectification and pumping ions, American Journal of Physics, vol.72, issue.5, pp.567-574, 2004.

F. George-donnan, Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. a contribution to physicalchemical physiology, Journal of Membrane Science, vol.100, issue.1, pp.45-55, 1995.

P. Jin, H. Mukaibo, L. P. Home, G. W. Bishop, and C. R. Martin, Electroosmotic flow rectification in pyramidal-pore mica membranes, J. Am. Chem. Soc, vol.132, issue.7, pp.2118-2119, 2010.

H. Hubert and . Girault, ANALYTICAL AND PHYSICAL ELECTROCHEMISTRY, 2004.

J. Catalano-anders-bentien-bjørn-sjøgren-kilsgaard and S. Haldrup, High figure of merit for electrokinetic energy conversion in nafion membranes, Journal of Power Sources, vol.247, pp.235-242, 2014.

A. Sharifi-viand, M. G. Mahjani, and M. Jafarian, Investigation of anomalous diffusion and multifractal dimensions in polypyrrole film, Journal of Electroanalytical Chemistry, vol.671, pp.51-57, 2012.

C. Heitner-wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, Journal of Membrane Science, vol.120, issue.1, pp.1-33, 1996.

A. Dupuis, Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques, Progress in Materials Science, vol.56, issue.3, pp.289-327, 2011.

A. Kenneth, R. B. Mauritz, and . Moore, State of understanding of nafion, Chemical Reviews, vol.104, issue.10, p.15669162, 2004.

T. D. Gierke, G. E. Munn, and F. C. Wilson, The morphology in nafion perfluorinated membrane products, as determined by wide-and small-angle x-ray studies, Journal of Polymer Science: Polymer Physics Edition, vol.19, issue.11, pp.1687-1704, 1981.

Y. William, T. D. Hsu, and . Gierke, Ion transport and clustering in nafion perfluorinated membranes, Journal of Membrane Science, vol.13, issue.3, pp.307-326, 1983.

G. Gebel, Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution, Polymer, vol.41, issue.15, pp.5829-5838, 2000.

A. Rollet, O. Diat, and G. Gebel, A new insight into nafion structure, The Journal of Physical Chemistry B, vol.106, issue.12, pp.3033-3036, 2002.

K. Schmidt-rohr and Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nature materials, vol.7, issue.345401, pp.75-83, 2007.

S. Slade, S. A. Campbell, T. R. Ralph, and F. Walsh, Ionic conductivity of an extruded nafion 1100 ew series of membranes, 2002.

M. Plazanet, P. Bartolini, R. Torre, C. Petrillo, and F. Sacchetti, Structure and acoustic properties of hydrated nafion membranes, The Journal of Physical Chemistry B, vol.113, issue.30, pp.10121-10127, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01091705

D. R. Lide, Handbook of Chemistry and Physics, 2004.

M. I. Marques, M. H. Ferra, and . Bandeira, No Title. Portugaliae Electrochimica Acta, vol.24, pp.295-303, 2006.

B. Paul, A. H. Hostetler, C. L. Truesde, and . Christ, Activity Coefficients of Aqueous Potassium Chloride Measured with a Potassium-Sensitive Glass Electrode, Science, vol.155, issue.3769, pp.1537-1539, 1967.

M. A. Izquierdo-gil, V. M. Barragán, J. P. Villaluenga, and M. P. Godino, Water uptake and salt transport through nafion cation-exchange membranes with different thicknesses, Chemical Engineering Science, vol.72, pp.1-9, 2012.

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, pp.1073-1095, 2010.

D. A. Vermaas, M. Saakes, and K. Nijmeijer, Doubled power density from salinity gradients at reduced intermembrane distance, Environmental Science & Technology, vol.45, issue.16, p.21736348, 2011.

M. Dimitar, J. A. Vlassarev, and . Golovchenko, Trapping dna near a solid-state nanopore, Biophysical journal, vol.103, issue.2, pp.352-356, 2012.

D. J. Frank-hj-van-der-heyden, D. Bonthuis, C. Stein, C. Meyer, and . Dekker, Power generation by pressure-driven transport of ions in nanofluidic channels, Nano letters, vol.7, issue.4, pp.1022-1025, 2007.

D. Byron, Q. Gates, C. Xu, . Love, G. Daniel-b-wolfe et al., Unconventional nanofabrication, Annu. Rev. Mater. Res, vol.34, pp.339-372, 2004.

D. Mijatovic, J. C. Eijkel, A. Van-den, and . Berg, Technologies for nanofluidic systems: top-down vs. bottom-up-a review, Lab Chip, vol.5, pp.492-500, 2005.

A. J. Storm, . Chen, . Ling, C. Hw-zandbergen, and . Dekker, Fabrication of solid-state nanopores with single-nanometre precision, Nature materials, vol.2, issue.8, pp.537-540, 2003.

. Ct-jan and . Niels, Albertávan den Berg, et al. 1-d nanochannels fabricated in polyimide, Lab on a Chip, vol.4, issue.3, pp.161-163, 2004.

N. R. Tas, . Berenschot, . Mela, M. Hv-jansen, A. Elwenspoek et al., 2d-confined nanochannels fabricated by conventional micromachining, Nano Letters, vol.2, issue.9, pp.1031-1032, 2002.

A. Heuberger, H. Seidel, L. Csepregi, and H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions i. orientation dependence and behavior of passivation layers, J. Electrochem. Soc, vol.137, issue.11, pp.3612-3626, 1990.

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2002.

B. E. Kastenmeier, P. J. Matsuo, J. J. Beulens, and G. S. Oehrlein, Chemical dry etching of silicon nitride and silicon dioxide using CF 4 /O 2 /N 2 gas mixtures, Journal of Vacuum Science Technology, vol.14, pp.2802-2813, 1996.

M. Quirk and J. Serda, Semiconductor manufacturing technology, 2001.

W. M. Zhang, J. Li, L. X. Cao, Y. G. Wang, W. Guo et al., Fabrication of nanoporous silicon dioxide/silicon nitride membranes using etched ion track technique, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, pp.3166-3169, 2008.

M. J. De-boer, R. W. Tjerkstra, J. W. Berenschot, H. V. Jansen, G. J. Burger et al., Micromachining of buried micro channels in silicon, Journal of Microelectromechanical Systems, vol.9, issue.1, pp.94-103, 2000.

M. Suemitsu, T. Kaneko, and N. Miyamoto, Low Temperature Silicon Surface Cleaning by HF Etching / Ultraviolet Ozone Cleaning ( HF / UVOC ) Method ( I )-Optimization of the HF Treatment, Japanese Journal of applied physics, vol.28, pp.2421-2424, 1989.

. Kenneth-e-bean, Anisotropic etching of silicon, IEEE Transactions on Electron Devices, vol.25, issue.10, pp.1185-1193, 1978.

O. Tabata, R. Asahl, H. Funabashi, K. Shimaoka, and S. Sugfyama, Anisotropic etching of silicon in TMAH solutions *, vol.34, pp.51-57, 1992.

K. Biswas, Etch characteristics of KOH , TMAH and dual doped TMAH for bulk micromachining of silicon, vol.37, pp.519-525, 2006.

W. Schomburg, Introduction to Microsystem Design

L. Garcia, ´ Etude rhéologique desélectrolytesdesélectrolytes confinés en Appareiì a Forces de Surfaces dynamique, 2016.

J. Liu, M. Kvetny, J. Feng, D. Wang, B. Wu et al., Surface charge density determination of single conical nanopores based on normalized ion current rectification, Langmuir, vol.28, issue.2, p.22182684, 2012.

W. Lan, M. A. Edwards, L. Luo, R. T. Perera, X. Wu et al., Voltage-rectified current and fluid flow in conical nanopores, Accounts of Chemical Research, vol.49, issue.11, p.27689816, 2016.

A. Daniel-g-haywood, . Saha-shah, A. Lane, S. Baker, and . Jacobson, Fundamental Studies of Nano fl uidics: Nanopores, Nanochannels, and Nanopipets, vol.87, pp.172-187, 2014.

Z. Silber-li, Picoliter Flow Calibration, pp.1650-1653, 2008.

K. V. Sharp and R. J. Adrian, Transition from laminar to turbulent flow in liquid filled microtubes, Experiments in Fluids, vol.36, issue.5, pp.741-747, 2004.

H. Cui and S. Zhu, Flow characteristics of liquids in microtubes driven by a high pressure, Physics of Fluids, vol.16, 2004.

X. Huang, J. Manuel, R. Gordon, and . Zare, Current-Monitoring Method for Measuring the Electroosmotic Flow Rate in Capillary Zone Electrophoresis, vol.60, pp.1837-1838, 1988.

A. Sze, D. Erickson, L. Ren, and D. Li, Zeta-potential measurement using the smoluchowski equation and the slope of the current-time relationship in electroosmotic flow, Journal of Colloid and Interface Science, vol.261, issue.2, pp.402-410, 2003.

A. Siria, A. Biance, C. Ybert, and L. Bocquet, A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows, Lab on a Chip, pp.872-875
URL : https://hal.archives-ouvertes.fr/hal-01628777

E. Meng, S. Gassmann, and Y. Tai, A Mems Body Fluid Flow Sensor, pp.167-168, 2001.

H. Ernst, A. Jachimowicz, and G. A. Urban, High resolution flow characterization in bio-mems, Sensors and Actuators A: Physical, vol.100, issue.1, pp.54-62, 2002.

K. T. Hjelt, R. Van-den-doel, W. Lubking, and M. J. Vellekoop, High-resolution liquid volume detection in sub-nanoliter reactors, Sensors and Actuators A: Physical, vol.83, issue.1-3, pp.61-66, 2000.

J. Collins and A. P. Lee, Microfluidic flow transducer based on the measurement of electrical admittance, Lab Chip, vol.4, pp.7-10, 2004.

J. Wu and J. Ye, Micro flow sensor based on two closely spaced amperometric sensors, Lab Chip, vol.5, pp.1344-1347, 2005.

K. Mathwig, D. Mampallil, S. Kang, and S. G. Lemay, Electrical cross-correlation spectroscopy: Measuring picoliter-per-minute flows in nanochannels, Phys. Rev. Lett, vol.109, p.118302, 2012.

D. Sinton, C. Escobedo-canseco, L. Ren, and D. Li, Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels, Journal of colloid and interface science, vol.254, pp.184-189, 2002.

A. Zeyad, T. Almutairi, C. L. Glawdel, and D. A. Ren, Johnson. A y-channel design for improving zeta potential and surface conductivity measurements using the current monitoring method, Microfluidics and Nanofluidics, vol.6, issue.2, pp.241-251, 2009.

E. Secchi, S. Marbach, A. Nigués, and D. Stein, Alessandro Siria, and Lydéric Bocquet. Letter. Nature, vol.537, issue.7619, pp.210-213, 2016.

N. Laohakunakorn, B. Gollnick, F. Moreno-herrero, D. G. Aarts, P. A. Roel et al., A landau-squire nanojet, Nano Letters, vol.13, issue.11, p.24124664, 2013.

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, vol.6, 1987.

L. D. Landau, Dokl. Akad. Nauk SSSR, vol.43, pp.286-288, 1944.

H. B. , Squire. Quart. J. Mech. Appl. Math, vol.4, pp.321-329, 1951.

C. Lee, C. Cottin-bizonne, A. Biance, P. Joseph, L. Bocquet et al., Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett, vol.112, p.244501, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01628783

K. Zsdánszky, Precise measurement of small currents, Nuclear Instruments and Methods, vol.112, issue.1, pp.299-303, 1973.

M. Rahman and S. Chowdhury, A New Deflection Shape Function for Square Membrane CMUT Design, pp.2019-2022, 2010.

G. Mensitieri, J. Apicella, L. Kenny, and . Nicolais, Water Sorption Kinetics in Poly ( aryl Ether Ether Ketone ), Journal of Applied PolymerScience, vol.37, pp.381-392, 1989.

M. Keyhani, R. Kulacki, and . Christensen, Free Convection in a Vertical Annulus With Constant Heat Flux on the Inner Wall, J. Heat Transfer, vol.105, issue.3, pp.454-459, 1983.

H. R. Nagendra, M. A. Tirunarayanan, and A. Ramachandran, Free convection heat transfer in vertical annuli, Chem. Eng, vol.25, pp.605-610, 1970.

H. Robert and . Doremus, Glass Science, 1994.

F. Devreux, . Ph, M. Barboux, B. Filoche, and . Sapoval, A simplified model for glass dissolution in water, Journal of Materials Science, vol.36, issue.6, pp.1331-1341, 2001.

Z. Dagan, S. Weinbaum, and R. Pfeffer, An infinite-series solution for the creeping motion through an orifice of finite length, J. Fluid Mech, vol.115, pp.505-523, 1982.

R. , B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2002.