S. Albosaily and S. Pergamenshchikov, Optimal investment and consumption for Ornstein-Uhlenbeck for financial markets on small time interval, 1712.04333v3). arXiv, 2018.

S. Albosaily and S. Pergamenshchikov, Optimal investment and consumption for Ornstein-Uhlenbeck spread financial markets with power utility, Finance and Stochastics, 2018.

S. Albosaily and S. Pergamenshchikov, Optimal investment and consumption for Ornstein-Uhlenbeck spread financial markets with logarithmic utility. Risk and Decision analysis, 2018.

S. Albosaily and S. Pergamenshchikov, The optimal investment and consumption for financial market generated by the spread of risky assets for the power utility, Mathematical and Statistical Methods for Actuarial Sciences and Finance, 2019.

L. Andersen and V. Piterbarge, Moment explosions in stochastic volatility models, Finance and Stochastics, vol.11, pp.29-50, 2007.

C. Ball and A. Roma, Stochastic volatility option pricing. Finance and Quantitative, Analysis, vol.29, issue.4, pp.589-607, 1994.

O. E. Barndorff-nielson and N. Shephard, Modelling by lévy-processes for financial econometrics, pp.283-318, 2001.

R. Bellman, The stability of solutions of linear differential equations, Duke Math. J, vol.10, pp.643-647, 1943.

B. Berdjane and S. M. Pergamenchtchikov, Optimal consumption and investment for markets with random coefficients, Finance and stochastics, vol.17, issue.2, pp.419-446, 2013.

B. Berdjane and S. Pergamenshchikov, Sequential ?-optimal consumption and investment for stochastic volatility markets with unknown parameters, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00743164

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, vol.81, pp.63-659, 1973.

M. Blais and P. Protter, An analysis of the supply curve for liquidity risk through book data, International Journal of Theoretical and Applied Finance, vol.13, issue.06, pp.821-838, 2010.

M. Boguslavsky and E. Boguslavskaya, Arbitrage under power, Risk. References, 2004.

J. Caldeira and G. Moura, Selection of a portfolio of pairs based on cointegration: a statistical arbitrage strategy, 2013.

R. Horn and C. Johnson, Matrix Analysis, 1985.

J. Jackwerth and M. Rubinstein, Recovring probability distributions from contemporaneous sequirity prices, J. Finance, vol.40, pp.455-480, 1996.

J. Jacod, Calcul Stochastique et Problmes de Martingales, 2008.

H. Johnson, Options on the maximum or the minimum of several assets, Journal of Financial and Quantitative Analysis, vol.22, pp.277-283, 1987.

Y. M. Kabanov and S. M. Pergamenshchikov, Asymptotic Analysis and Control. Applications of mathematics. stochastic modelling and applied probability, 2003.

J. Kallsen and J. Muhle-karbe, Utility maximization in affine stochastic volatility models, International Journal of Theoretical and Applied Finance, 2010.

J. Kallsen and J. Muhle-karbe, The general structure of optimal investment and consumption with small transaction costs

I. Karatzas, Optimization problems in the theory of continuous trading, SIAM, J. Control and Opt, vol.27, pp.1221-1259, 1989.

I. Karatzas and S. E. Shreve, Brownian Motion and stochastic Calculus, 1991.

I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, 1998.

H. Kraft, T. Seiferling, and F. T. Seifried, Optimal consumption and investment with Epstein-Zin recursive utility, Finance and Stochastics, 2017.

C. Krauss, Statistical arbitrage pairs trading strategies: review and outlook, J. Economic Surveys, vol.31, issue.2, pp.513-545, 2017.

P. E. Kloeden and E. Platten, Numerical Solution of Stochastic Differential Equations, 1992.

C. Klüpelberg and S. M. Pergamenchtchikov, Optimal consumption and investment with bounded downside risk for power utility functions. Optimality and Risk : Modern Trends in Mathematical Finance, pp.133-150, 2009.

R. Korn, Optimal portfolios, 1997.

H. Kraft and M. Steffensen, Poerfolio problems stopping at first hitting time with applications to default risk, Math. Meth. Oper. Res, vol.63, pp.123-150, 2006.

N. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, 1987.

H. Ku, K. Lee, and H. Zhu, Discrete time hedging with liquidity risk, Finance Research Letter, vol.9, pp.135-143, 2012.

H. J. Kushner, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations, 1977.

O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans.). Providence, R. I, 1967.

M. Raghava and S. Bharadwaj, Pairs Trading using cointegration in pairs of stocks, 2014.

S. Reverre, The Complete Arbitrage Desk-book, chapter 10 McGraw Hill, 2001.

M. Rubinstein, Somewhere over the rainbow, pp.63-66, 1991.

N. Touzi, Stochastic control problems, viscosity solutions and applications to finance, Scuola Normale superiore di Pisa, 2004.

T. Zariphopoulou, A solution approach to valuation with unhedgeable risk, Finance and stochastics, vol.5, pp.61-82, 2001.

A. A. Zebedee and M. Kasch-haroutounian, A closer look at co-movements among stock returns, J. Economics and Business, issue.4, pp.279-294, 2009.

, # Number of increments that we made (steps)

T. , ? 1 # Terminal time (usually we use it =1). ? seq(t0, T, length=n+1)

W. ,

, Another method for Wiener, p.10

?. Wt and . Sqrt, T-t0)/N) * cumsum(xi) #To add continuously 18 # xi

, Defining the Constantes, p.-

M. , , 1000.

, For the Integral function, p.28

?. T+,

?. , , p.1

?. T+,

?. Integ,

?. ,

, * sqrt(Sigma2(t,u,m))+s * exp

G. , function(s,t,y) 51 { 52 gt ? ? ? c1-exp

, gamma)) * (gt * s * s/2+y)))

, Gamma0 ? ? ? function(s,t,y1,y2) 58 { 59 gt ? ? ? c1-exp

, gamma1/2) * y2 ** 2+(sigma ** 2) * gt

, gamma) * 1 * G(s,t,y1))

?. Rnorm,

?. E+sum,

, L ? ? ? function(s,t,h,hs,T,m)

?. T+,

, To plot the strategies, p.-

?. ,

?. ,

, gamma)

?. ?-?-sigma and *. ,

, gamma)

?. ,

, phi = 30, theta =-30, 173 xlab = "S

. #x-?-?-?-c,

S. ,

, #I ? ? ? 10 #it was 5 194 #J ? ? ? 10 # it was 5 195 #s1 ? ? ?

X. ,

?. ,

, * theta * c1)/(exp(omega *

*. ,

?. ,

?. ?-?-sigma and *. ,

*. Dw,

, A.3 Simulation for log utility

?. Seq, , vol.10, p.30

?. Seq, , vol.1, p.11

, )/(4 * kappa

, Zvarsigma ? ? ? function(s,t) log(T-t+1) +s ? ? ? 2 * g(t)+f(t), p.22

, ? outer(s,t, Zvarsigma) 26 jet.colors ? ? ? colorRampPalette( c("blue

?. ,

, phi = 30, theta =-30, xlab = "S

=. ,

=. "xstar-;-?-?-?-*,