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1.1 Motivation

Cloud computing opens new possibilities for more flexible and efficient services. However, one
of the issues of migrating to the cloud is that it involves a third-party implementation and
enforcement of security policies [110]. In such environments, many security aspects must be
faced, including risk management, data privacy and isolation, security-by-design applications,
vulnerability scans, among others. Besides preventive solutions (e.g., encryption, firewalls), it
also becomes necessary to have a system that interrelates all monitored security mechanisms
from different points of observation. On the other hand, new attacks emerge every day, and
thus, threat detection systems start playing a key role in security schemes, identifying possible
attacks.

According to recent reports [31], 90% percent of organizations feel vulnerable to insider at-
tacks. The main enabling risk factors include too many users with excessive access privileges
(37%), an increasing number of devices with access to sensitive data (36%), and the increasing
complexity of information technology (35%). Also, a majority of 53% confirmed insider attacks
against their organization in the previous 12 months (typically less than five attacks). Twenty-
seven percent of organizations say insider attacks have become more frequent. Additionally,
organizations are shifting their focus on detection of insider threats (64%), followed by deter-
rence methods (58%) and analysis and post-breach forensics (49%). The use of user behavior
monitoring is accelerating; 94% of organizations deploy some method of monitoring users and
93% monitor access to sensitive data. Also, technical reports from the industry [25], [38] state
that threat researchers also examined data ex-filtration trends, using a machine-learning algo-
rithm to profile 150,000 users in 34 countries, all using cloud service providers, from January to
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June 2017. After profiling users for six months, researchers spent 1.5 months studying abnor-
malities, flagging 0.5% of users for suspicious downloads. These users downloaded, in total, more
than 3.9 million documents from corporate cloud systems, or an average of 5200 documents per
user during the 1.5-month period. Of the suspicious downloads, 62% occurred outside of nor-
mal work hours; 40% took place on weekends. By benefiting from machine learning techniques,
algorithms can learn and improve themselves by studying high volumes of available data, but
more efficient learning procedures are needed, in order to increase these detection rates.

More specifically, cloud-based threat detection techniques are commonly divided into three
groups, namely pattern-based, behavior-based and hybrid (first two combined). In the first
case, attacks are described as rules or expressions in related grammar (signatures), and the newly
collected data of the system under test are verified with respect to the set of such signatures. For
behavior-based techniques, “normal” system actions are somehow defined, and the monitoring
system can later serve for concluding if the monitored environment is differing from the defined
behavior. In this case, different statistical models, as well as self-learning techniques, can be
effectively utilized. Nevertheless, some proposed algorithms commonly suffer from high false-
positive detection rates, encouraging the use of hybrid approaches by companies and academic
institutions.

Unsupervised learning is arguably more typical of human and animal learning. It is also more
widely applicable than supervised learning since it does not require a human expert to label the
data manually. Labeled data are not only expensive to acquire, but it also could dismiss the
information [92].

The advantage of such neurally-inspired clustering approaches lies in their ability to learn
the representation of a feature space without supervision. A further interesting property is the
fact that they typically perform dimensionality reduction. GNG represents an extension of the
Neural Gas (NG) algorithm in which the number of neurons is not fixed a-priori as in NG, but
grows over time. This feature is especially interesting in such clustering tasks where the number
of clusters is previously unknown.

This research describes the difficulty in modeling and detecting insider threat considering
three factors. First, it is a low-rate problem because detected incidents are relatively rare events.
Second, it is a misperceived problem because security audits are in place focusing mostly on
external attacks. Third, it is a high-impact problem because unlike an external threat, insider
threat tends to go undetected and can involve long-term malicious activities. An example of
this is that most of the insider attacks were only discovered through manual (non-automated)
detection of an irregularity or failure of an information system [74].

Moreover, this threat is more dangerous in a cloud environment than in a traditional Infor-
mation technology (IT) infrastructure because the insider may gain access to data from other
Cloud Internet Service Client (CSC) hosted by the Cloud Internet Service Provider (CSP).
Studies conducted by Verizon [9], [136] indicate that internal breaches continue to be much
more damaging than other sources of attack. Besides, they indicate that there are more insider
breaches this year than ever before. However, companies focus mostly on preventing external
attacks.

Although several research works have addressed relevant indicators when trying to detect
malicious insider threats [26], [29], [33], [65], [66], [95]. However, to the best of our knowledge,
very few publications [26], [33], [66] discuss their implications in a cloud environment.

Furthermore, when aiming to detect this malicious activity, the confidentiality and privacy
of CSPs and CSCs concerning their internal organization and policies, create barriers for the
collection and utilization of data for research purposes. Moreover, despite the predictions and
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possible creative attacks presented by researchers, there is very little evidence of actual events
involving the type of insider described in the Cloud Security Alliance (CSA)’s [27] document.
Additionally, addressing malicious activities also presents challenges since they vary according to
the cloud service model, CSC characteristics such as services used, job types and organizational
hierarchy.

When tackling this threat, existing solutions aim at performing a detection approach con-
sidering hard-task implementations or information assumptions. Such is the case of detection
schema dealing with broad access to data sources (e.g., logs) and even, labeled data. Also,
the studied methods are typically implemented in batch mode, and thus they cannot be easily
extended to anomaly detection problems with streaming data or online settings.

Lastly, they treat the employee’s behavior as a one-class problem, i.e., new examples are
classified as either belonging to the target class or as an anomaly or novelty. This may differ from
reality, where user’s behavior may vary in time and is dependent on daily changing activities,
varying policies and roles.

1.2 Problem statement

The research goal of the present work is to determine whether user behaviors, network traffic
and cloud-based attributes can be used as an indicator to identify insider threats. If there is a
relationship between malicious users and their behaviors that are different from normal users, it
is possible to identify insider threats using these predictive indicators.

Therefore, the goal of this work is then formulated as follows:

Given a monitoring engine that outputs unlabeled employees’ activity traces,

and a collection of their past online activity, we want to detect employ-

ees behaving abnormally concerning their past actions, with high accuracy

and a low false positive rate, at a current time step and in an unsuper-

vised approach. This goal is pursued by the proposal and deployment of

an anomaly detection system based on the extension of a set of existing

techniques.

Accordingly, the following research questions arise:

• Data treatment: Which data should be considered to analyze the user’s anomaly?

• Which algorithms are best suited for detecting the insider threat?

• How these existing algorithms should be adapted, if necessary?

We note that this thesis does not aim to find one universal best technique. It is not plausible
because the experiments will be conducted with a specific type of data, namely, network traces
from the OpenStack cloud implementation. This thesis will explore only a few ways to measure
the detection performance between different techniques. Nevertheless, the proposed solution is
conceived by means of an extensive modular approach, therefore tackling the future reduction
augmentation of more monitoring attributes.
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1.3 Contributions

The main contribution of this work is the analysis, modeling and validation for the insider
threat detection. Moreover, this work presents a fundamental methodology for assessing a
detection from a behavioral data-driven point of view, exposing data-related detection challenges,
implementations trade-offs with respect to detection performance, finally giving a broader view
of considering factors at the moment of dealing with such a complex threat scenario.

The first contribution consists of a literature review and a study providing a closer relation-
ship between existing techniques and tools for effective threat detection in cloud environments.
Also, an evaluation is performed of a group of existing detection techniques concerning cloud
computing principles and security challenges nowadays. Finally, an experimental study is pre-
sented of some commonly utilized datasets and their association with threats in the last five
years.

We assessed the following methodology: we covered the topics of detection systems and
detection techniques in the cloud. The selection of works derived in both a systematic review of
the detection architectures and the second in a detailed examination of the detection techniques.
As existing detection techniques tend to target specific threats (or their groups), an experimental
evaluation of the applicability was also presented, for known detection approaches against non-
targeted threat groups.

The second contribution is focused on the derivation and validation of the dataset for cloud-
based malicious insider threat. Consequently, it addresses a dataset generation methodology
that takes into account various issues, including statistical analysis as well as the creation of
cloud-related user scenarios. The contribution is motivated by the complexity of the problem
itself as well as by the absence of open, realistic cloud-based datasets. Also, it presents a
dataset validation criteria based on a set of predefined rules that include statistical evaluation.
Finally, there is a design and presentation of a cloud-based proof-of-concept with malicious
insider attacks.

The third and main contribution of this work tackles the detection of the threat mentioned
above through an anomaly detection framework. The latter addresses the insider threat em-
ploying machine learning techniques, due to their ability to look into data and look for patterns
which can be learned and improved adaptively in time. In detail, motivated by the above-
presented insider threat detection characteristics, the particular technique in use considers an
unsupervised and online approach, allowing the solution to identify different user behaviors for
present and new data, in a stream-fashion.

Moreover, this contribution is part of a modular design, capable of dealing with several data
input sources, from different nature, namely user actions using text representation, network
traffic and cloud-related attributes. For the first set of features, and given the fact that generally,
machine learning algorithms rely on numeric representations, further analysis of the different
ways of text representation is also examined.

Furthermore, the novel framework for the insider threat makes efficient use of domain knowl-
edge given by known enterprise policies and security experts (e.g., cloud administrator) utilizing
them as additional contextual information. This idea is explored both as attributes used by
the detection algorithm automatically, and also in virtue of labeling/identifying anomalies that
could be treacherous.

Finally, to illustrate the generality of the proposed framework, experimental evaluation is
applied to different insider threat case scenarios. This benchmark work evaluates the relevance
of the different data sources, along with the context-based anomaly detection approach.
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1.4 Publications

The aforementioned contributions have been published in different conference proceedings and
are part of several citations by academic peers. A complete list of the publications related with
the present work is the following:

1. [21]: Carvallo P., Cavalli A.R., Kushik N. Automatic derivation and validation of a cloud
dataset for insider threat detection. ICSOFT 2017 : 12th International Conference on
Software Technologies, Jul 2017, Madrid, Spain. Scitepress, Proceedings ICSOFT 2017 :
12th International Conference on Software Technologies, pp.480 - 487, 2017.

2. [18]: Carvallo P., Cavalli A.R., Kushik N. (2018) A Study of Threat Detection Systems
and Techniques in the Cloud. In: Cuppens N., Cuppens F., Lanet JL., Legay A., Garcia-
Alfaro J. (eds) Risks and Security of Internet and Systems. CRiSIS 2017. Lecture Notes
in Computer Science, vol 10694. Springer, Cham.

In addition, there have been contributions to the European MUSA project (Multi-Cloud
Secure Applications) [93], within the framework of the H2020 program, the main objective of
which is to support the security lifecycle management of distributed applications, heterogeneous
cloud resources.

3. [19]: Carvallo P., Cavalli A.R., Mallouli W. (2018) A Platform for Security Monitoring
of Multi-cloud Applications. In: Petrenko A., Voronkov A. (eds) Perspectives of System
Informatics. PSI 2017. Lecture Notes in Computer Science, vol 10742. Springer, Cham.

4. [20]: Carvallo P., Cavalli A.R., Mallouli W., Rios E. (2017) Multi-cloud Applications
Security Monitoring. In: Au M., Castiglione A., Choo KK., Palmieri F., Li KC. (eds)
Green, Pervasive, and Cloud Computing. GPC 2017. Lecture Notes in Computer Science,
vol 10232. Springer, Cham.

Lastly, we are currently preparing a paper to the “Computers & Security” Journal, where
the insider threat detection framework and related experimental findings form the main contri-
butions.

1.5 Organization of the thesis

The thesis is organized in seven chapters. A brief description of the chapter contents are below
given.

Chapter 1: Introduction. It provides a general background, context and motivations.
The main objectives and research questions are stated, as well as the thesis structure, main
contributions and publications.

Chapter 2: State of the Art. It discusses the related concepts of the main security chal-
lenges in a cloud scenario, along with the most relevant monitoring mechanisms to protect its
assets from threats. We also provide a study of the most important threats followed by a deep
analysis and interrelation of the specific techniques to detect each one of them. Additionally,
this chapter presents the most utilized techniques to tackle the insider threat.
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Chapter 3: Insider Threat Model. It presents the simulation engine that characterizes
the insider threat intended to detect. It provides different configuration possibilities, showing
the adeptness of its usage.

Chapter 4: Anomaly-based Detection Framework. It describes the proposed detection
model to assess the different insider threat scenarios from the previous Chapter 3.

Chapter 5: Implementation. It presents the implementation details for the monitoring
and detection technique in a cloud-based environment.

Chapter 6: Experimental evaluation. It demonstrates the effectiveness of the proposed
detection approach through extensive experimental evaluation.

Chapter 7: Conclusion. It provides some answers to the research questions described in
Chapter 1, which are based on the results obtained from this research. It also points towards
future research directions.
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Chapter 2
State of the Art
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2.1 Introduction

This chapter presents a study of existing threat detection techniques in cloud computing, to-
gether with an experimental evaluation of a subset of them. We consider the threats defined in
the Cloud Security Alliance (CSA) report as well as the techniques for their detection, start-
ing from classical signature-based approaches and finishing with recent machine learning based
techniques.

As the topic of providing security in the cloud remains essential, it is worth mentioning that
the state of the art presented in this work is not the first covering this subject. However, existing
works (e.g., [63], [69], [71], [88], [100], [104]) mostly focus on either analyzing system requirements
and cloud security gaps, or describing detection techniques along with some attacks.
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It is required then to combine both approaches to provide a broad view of the state of the
art of the problem. Below, we briefly sketch some existing works summarizing security issues in
the cloud and discuss the motivation for expanding the research on this field.

2.2 Preliminaries

2.2.1 Security issues in the cloud

According to the National Institute of Standards and Technology [86], cloud computing is a
model for enabling ubiquitous, elastic, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications, and services). Its
service models, known as Software as a Service (SaaS), Platform as a Service (PaaS) and IaaS
have specific and shared security challenges. The first provides a CSC the capability to use
applications running on a cloud infrastructure by a CSP. PaaS provides the CSC with tools
to deploy their applications on top of the cloud infrastructure. The latter gives provision to
the CSC in processing, storage, networks, and other fundamental computing resources where
the consumer can deploy and run arbitrary software, which can include operating systems and
applications. Security challenges reside in the coexistence since PaaS, as well as SaaS services,
are hosted on top of IaaS. Therefore, any threat in IaaS can impact the security of both, PaaS
and SaaS, and vice versa [57].

We further enumerate critical cloud aspects trying to provide the explanations how these
elements can influence the design of a cloud-based threat detection system. In particular, we
consider:

• Virtualized environment Brings elasticity by allowing multiple Virtual Machine (VM)
management and pooling in the same physical resources.

• Multi-tenancy Enables the use of a single resource by multiple customers that may or
may not belong to the same organization.

• Data life cycle Defines no fixed infrastructure and security boundaries on applications
and data on the cloud.

• Network dynamics Concerns non-linear, non-stationary and complex dynamical char-
acteristics of the network flows.

• Access Takes into account the fact that data are transmitted using the Internet and may
require credentials, authentication, identity management and anonymization.

2.2.2 Overview of cloud-related threats

Following the European Network and Information Security Agency [36] we consider a threat as
an event that can exploit a vulnerability, intentionally or accidentally, and obtain, damage, or
destroy an asset. An attack is a sequence of components and interfaces that a threat actor or
a condition can use to achieve a threat against an asset. The threat actor or actors gain access
to the assets via attack vectors and vulnerabilities present in the technology components that
host or provide direct access to the targeted assets. Threat detection systems are deployed in
cloud environments with the intent to prevent, address and mitigate the attacks pursued by the
threat actors, thereby protecting the assets.
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Common threat guidelines have been proposed reflecting the current concerns among experts
[32], [36], [41], [57], resulting in data threats such as breaches or losses, account hijacking,
insecure application programming interfaces, DoS, malicious insiders, abuse of cloud services
and shared technology. These have been previously reviewed in [129], together with the relevant
vulnerabilities and countermeasures analysis [57]. From the preceding sources, we list below
the considered group of threats in this work, along with two threat groups gathered from the
aforementioned studies: Other attacks (corresponding to known attack patterns from network
datasets, such as port scan) and Malware (e.g., Kelihos and Zeus), illustrated in Figure 2.2.

• Data-related threats Treated as the top threats among industry experts [32]. A data
breach is an incident in which protected or confidential information is released, viewed,
stolen or processed by an entity not authorized to do so. It concerns IaaS, PaaS and SaaS
as they all keep sensitive data.

• Account Hijacking Specified as a process in which an individual or organization’s cloud
account is stolen or hijacked by an attacker. This threat is relevant to cloud architectures
since attackers can often access critical areas of deployed cloud computing services, allowing
them to compromise the confidentiality, integrity and availability of IaaS, PaaS and SaaS
services.

• Malicious Insider Defined as a threat to an organization occasioned by a current or
former employee, contractor, or another business partner who has or had authorized access
to an organization network, system, or data. This action intentionally exceeded or misused
the access in a manner that negatively affected the confidentiality, integrity, or availability
of the organization information or information systems.

• Denial of Service Meant to prevent components from being available in a cloud environ-
ment; that concerns, for example addressing to APIs for SaaS outage or specific Distributed
Denial of Service (DDoS) at the infrastructural layer [4].

• Shared Technology threats Existent in all delivery models, including multi-tenant ar-
chitectures (IaaS), re-deployable platforms (PaaS), or multi-customer applications (SaaS)
[32].

2.3 Cloud threat detection systems

Threat detection systems usually correspond to a hardware device or software application that
monitors an activity (e.g., from network, VM host, user) for malicious policy violations. Pre-
vious works (e.g., [104], [131]) have stated several features of detection systems; among those,
fault-tolerance, real-time execution, self-monitoring, minimum operational, interoperability, self-
adaptiveness, scalability. A multi-criteria analysis of Intrusion Detection System (IDS) was pre-
sented in [146], following these and other cloud computing requirements such as performance
and availability along with CSA-inspired criteria, such as service level expectations, secured and
encrypted communication channels, detection methods used and their accuracy, among others.

System architectures may vary if they are distributed, centralized, agent-based [60] or collab-
orative; the positioning of various observation points also defines different types of architectures.
The monitoring layers can be classified as follows:
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1. Network-based monitor activity of network traffic —mostly Internet Protocol (IP) and
transport layer;

2. Host-based monitor application or service activities operating on top of VM’s operative
systems;

3. Hypervisor-based monitor virtual machine introspection to gather system-specific features
(e.g., process list, threats count, number of open ports);

4. Cross layer-based monitor in the form of any combination of the previously mentioned.

In general, data collection and preparation are performed through a sensor or existing dataset.
This information works as an input for the data analysis and detection, which corresponds to the
module of the algorithms implemented to detect suspicious activities, detailed in the following
sections.

Detection
Approaches

Pattern-based Rule-based

Behavior-based

Statistical

Machine Learning

ClusteringHybrid-based

Figure 2.1 – Classification of threat detection techniques

2.3.1 Pattern-based approach and related techniques

Also known as “signature-based”, “knowledge-based” or “misuse-based”, this approach operates
over a set of rules that define a threat pattern or a known authorized pattern. They are known
to have a high level of accuracy [121], but are limited to only known rules and attacks. There-
fore, pattern-based techniques cannot detect variants of known or unknown attacks. Moreover,
keeping signature or knowledge databases updated may be a hard task.

Latest research focuses on facilitating to cloud administrators the determination of new
attack patterns by updating signature databases more efficiently. To assess this automatic and
offline analysis, Hamdi et al. [55] proposed Inductive Logic Programming, while Huang et al. [58]
used Growing Hierarchical Self Organizing Maps (GHSOM) for the characterization of attack
signatures. Other techniques that we further discuss are grouped as so-called rule-based.

2.3.1.1 Rule-based

For known or variants of known attacks, rule-based context methods have been considered in a
number of works.

Watermarking was studied for data breaches detection by Garkoti et al. [48]. Threats may
occur in any stage of the data cycle (Section 2.2.1) and digital watermarking is a reviewed
technique for detecting data tampering. Specifically, the authors introduced spatial domain
watermarking, encryption and logging modules for clinical data. Concerning insider threats and
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further potential data-related threats, Kumar et al. [75] considered a method related to the well-
known Bell-LaPadula model, which aims to determine the organization employee who leaked the
data. This model is built on the concept of subjects and objects (i.e., a file). They define levels
where subjects have access to objects following security policies. Various cryptographic and
watermarking techniques are later applied to identify the internal user involved in the leakage.

Fingerprinting was considered for malicious insider threat detection by Gupta et al. [54]
through the analysis of commonly used programs by a VM. They assumed that the signature
of frequent executions remains reasonably constant and detects malicious modifications of the
system call sequences executed from the VM to the hypervisor.

Provable Data Possession (PDP) formalized in [7], is related to data losses preserving
the data integrity. Basically, a CSC uploads data for storage and keeps meta-data for later
verification. The classical idea behind this technique can only be applied to static (or append-
only) files. Hence, Erway et al. [39] presented a framework based on Dynamic Provable Data
Possession, which extends the PDP traditional approach. It supports provable updates to the
stored data, using a new version of authenticated dictionaries based on rank information.

Sequence alignment commonly used in bioinformatics, was proposed by Kholidy et al. [70] to
detect account or service hijacking threats, specifically for masquerade attacks. They introduced
Heuristic Semi-Global Alignment algorithm, which tests matching patterns of user’s session
sequences (e.g., mouse movements, system calls, opened windows titles, written commands,
opened file names) with the previously stored arrays.

Dependency Graphs were proposed by Yaseen et al. [140]. Based on applying knowledge
and dependency graphs one can detect and predict malicious insiders in relational databases.
The authors considered the network overhead and system performance for variables, including
the number of queries per insider, the number of insiders and percentage of accessibility for data
items in relational databases.

2.3.2 Behavior-based approach and related techniques

Also known as anomaly-based detection, this approach involves the collection of data in order
to construct a model of normal behavior and then to test newly observed behaviors against
potential anomalies. As this is a sophisticated task, some works have proposed a mixed ap-
proach (e.g., [68], [101], [139]) where the following statistical and machine learning methods are
combined. We have differentiated existing techniques in statistical, machine learning-based and
clustering techniques. We hereafter assume that statistical methods mostly use specific formu-
las or functions to compute the corresponding characteristics of the data attributes; machine
learning, on the other hand, “works” when such functions cannot be derived, and thus, it utilizes
more complex relationships between the data for further threat prediction.

2.3.2.1 Statistical

These approaches are in general predefined by a threshold in order to identify anomalies. As an
example one can consider a type of Denial of Service (DoS) — Economic Denial of Sustainabil-
ity (EDoS) — issued by [8], where the authors compared user demands against thresholds of
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patterns.

Principal Component Analysis (PCA) was used by Marnerides et al. [84] for DoS and
netscan detection, not only for reducing datasets dimensionality but also to separate the normal
data from anomalous.

Signal analysis such as Ensemble Empirical Mode Decomposition (E-EMD) was presented
in [83]. The authors proposed a data-driven method for malware, motivated by the fact that
the algorithm can sufficiently decompose data as signals and describe clouds’ non-linear and
non-stationary network traffic and hypervisor information.

Catastrophe theory studies the way systems respond to the continuous modifications from
the variables that control them, producing sudden changes from one system state to another
(e.g., from normal state to anomalous). Xiong et al. [139] introduced a catastrophe function to
describe network traffic anomalies in cloud communications.

2.3.2.2 Machine learning-based

These methods allow improving the performance of their objective by learning from previous
results. The results summarized in this subsection are illustrated in Figure 2.2, where we group
these techniques with their underlying models for detecting security threats in the cloud.

Decision trees are used in [24], where they preprocessed unlabeled data with an unsupervised
clustering algorithm. After labeling, a model based in incremental tree inducer is trained,
therefore updating itself.

SVM technique for cloud threat detection was proposed by Watson et al. [134]. The authors
studied an online novelty implementation of a supervised one-class SVM algorithm, an extension
of traditional two-class SVM which outputs either a known class (VM normal behavior) or
unknown classes to the classifier, for each particular input vector.

Artificial Neural Network (ANN) expose their accuracy based on the configuration of their
hidden layers and training phase. Pandeeswari et al. [101] preprocessed hypervisor attributes
with Fuzzy C-Means clustering and utilized feed-forward neural networks with back-propagation
algorithm for each of them. They later combined the results of the ANNs with a fuzzy aggrega-
tion module. A Synergetic Neural Network (SNN) was addressed by Xiong et al. [139], given the
dynamics of the network’s traffic. Their argument relied on the fact that under some situations,
the changing trend of the cloud-based network traffic is only determined by a few primary factors
and less contribution of others.

Self Organizing Map (SOM) techniques were also addressed by Li et al. [80], by proposing a
cluster system that identified Nmap malicious behaviors in VMs through system call distributions
in order to derive rules for SVM detection.
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2.3.2.3 Clustering

These techniques are utilized under the assumption that normal data instances lie distance-wise
closer to a given centroid of a cluster, whereas anomalous data points are recognized due to their
much longer distance (e.g., K-means). Density-based approaches rely on the fact that normal
data instances belong to large and dense clusters, while anomalies either belong to small or
sparse clusters.

The idea is that data points in the same cluster are as similar as possible, and consequently,
data points in different clusters differ to a high degree. One of the major challenges regarding
clustering is to come up with a function that describes similarity between data points, known as
similarity function. Algorithms for clustering can be divided into two main categories, namely,
partitional and hierarchical algorithms.

K-means technique was followed by Marnerides et al. [84], while showing the clustering
method is directly affected by live-migrations. In this testbed, they detected DoS and netscan
threats successfully when arose, but also achieved high scores when only migration and normal
traffic occurred. Additionally, it was utilized for detecting shared technologies threat, as seen in
Figure 2.2. For example, in [144], the authors combined a two-stage detection mode based on
statistical similarity tests from the cache miss times from hosts, Central Processing Unit (CPU)
and memory utilization collected from VMs, for later clustering.

Density-based technique was proposed by Shirazi et al. [121] where they divided all measured
variables into clusters and evaluated mean and standard deviation, based on the Euclidean
distance threshold. The same clustering idea was used with the dimension reasoning technique
(based on Local Outlier Factor) for memory leakage and malicious port scan, by Huang et al.
[59].

2.3.3 Hybrid-based approach and related techniques

Depending on the architecture and a set of threats to be detected, the use of techniques in cloud
architecture can require a hybrid approach.

While signature-based approach is more rigorous in its detection, behavior-based method-
ology is able to “learn” new threats. Therefore, the combination of previously mentioned ap-
proaches in Sections 2.3.1 and 2.3.2 may reach a more extensive and accurate detection. As
an example, Modi et Patel. [87], used SNORT [22] for signature-based detection, whereas for
anomaly-based detection they focused on Bayesian, associative and decision tree classifiers. Some
of the studies addressing both approaches can be found in [70], [87], [117], [145].

2.4 Discussion

The classification described in the previous sections shows that signature-based methods com-
monly relate to content-based detection techniques since they test known patterns or accepted
actions. Data-related, malicious insider and account hijacking threats (e.g., confidential docu-
ments leakage, allowed user behaviors) are mostly studied in this category. For a visual repre-
sentation of these dependencies, links are depicted in Figure 2.2, where rule-based groups only
share relations with the previously mentioned threats and are not associated with DoS, shared
technology threats or malware.
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As usual, detection techniques discussed above have their unique strengths and weaknesses.
From the results of this study (Figure 2.2 and Section 2.3.2), one can see that the most reviewed
group of techniques are the statistical-based and machine learning, often utilized for network
traffic and DoS detection. The first relies on the assumption that normal data instances fit
a statistical model and anomalies are compared to this model through inference tests, which
may be unhandy for diverse data. Entropy-based techniques offer a deeper examination as
they consider the irregularities in the information content of the data being collected. Machine
learning algorithms are also efficient due to their self-learning capability. Other approaches such
as clustering, add an interesting enhancement since they automatically create and label clusters
for future classification.

Also, evaluating the effectiveness of a given detection technique against a particular threat
(or a group of them) is mainly performed through corresponding experimentation. For that
reason, it is highly relevant building proper datasets that contain heterogeneous normal and
abnormal realistic behaviors with a broad spectrum of threat patterns. Consequently, it may
be intuitive to handle combined datasets, as mentioned in the previously cross layer-based sys-
tem. This implies selecting relevant features, focusing on minimizing used bandwidth during
monitoring, improving detection performance and removing redundant data, while keeping lower
computational complexity (e.g., machine learning techniques, where the time taken to train the
classifier is dataset size dependent).

Literature regarding this matter has used self-generated test-beds [59], [61], [84], [121], [134]
while others relied on the well-known datasets: KDD [24], [101], [117] and DARPA [24], [139].
These last two correspond to the group of threats with more references in Figure 2.2. However,
they suffer from several deficiencies for testing in cloud environments as they do not include be-
haviors such as stated in Section 2.2.1. Accordingly, a dataset containing new malware patterns
was used and is presented in the next section.

2.5 Experimental evaluation of studied techniques and known

threats

The aim of the experimental evaluation was to identify the concrete challenges of the thesis
and to study the missing relation between some threats and a technique of each group. These
connections were formerly determined by the reviewed publications, where Figure 2.2 graphically
illustrates which set of techniques has been utilized for detecting different threat categories (from
Section 2.2.2). We conducted experiments to estimate the effectiveness of these techniques
against other threat types, therefore contributing by adding new links to our study.

To the best of our knowledge, such experiments were not performed before in the time of
study, i.e., 2016, for the following detection algorithms against the utilized dataset: SVM, MLP
feed-forward Neural Network, and LSTM Recurrent Neural Network, K-means and entropy-
based. We have selected one technique of each group to perform a more exhaustive analysis.
The first is commonly used as benchmark experiments outperforming in most cases ([71], [104]);
hence, it was of our interest to see how it performs for the chosen dataset’s attacks. The second
and third techniques enhance the dynamic classification requirement, presented in Section 2.3.

Moreover, the study targeted the usage of techniques with self-learning capabilities (i.e., that
handle new data after the training phase). Following this idea, MLP and LSTM present relevant
characteristics. The last two techniques belong to the clustering and statistical categories,
respectively. K-means is a learning algorithm that groups attribute vectors in clusters, based on
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Table 2.1 – Average detection performance for SVM, MLP, LSTM, K-means and entropy-based
techniques.

Metric (%) SVM MLP LSTM K-means Entropy

Recall 88.255 80.956 81.168 83.431 99.202

Precision 98.506 99.367 79.431 94.071 97.105

FPR 3.773 2.170 4.131 1.547 1.576

Accuracy 89.077 83.530 69.515 65.370 96.407

the notion of similarity.
We considered botnets as threats worth of studying since cloud virtualization and service

models may allow an easier path to their execution. Moreover, we aim to provide another
experimental evaluation to the given found studies [84], [134] regarding this threat.

We utilized the CTU-13 Dataset [46], which comprehends real network traffic capture of
more than 5000 hosts labeled in background, normal and botnet behaviors. In particular, this
traffic concerns different types of DDoS, port scanning, C&C attacks, among others, there is no
single threat pattern, and our experimental schema relied on the trial of arbitrary techniques
against this range of attack patterns. Training and testing distributions were respectively 83.39%
(50.57% and 49.43% for normal and botnet traffic) and 16.61% (13.95% and 86.04% for normal
and botnet traffic), accounting more than 90 million packets. Results were analyzed by widely
used metrics Precision, Recall, Accuracy and False Positive Rate (FPR).

Data preparation consisted in reading NetFlows1, selecting and normalizing their attributes
in header-based features (e.g., source IP address, destination IP address and port, protocol),
content-based features (e.g., source bytes) and time-based features (e.g., session duration). As
tried to simulate the monitoring of continuous data streaming flows arriving from the cloud,
all techniques were implemented using online learning, by feeding the algorithms with timely
ordered dataset in batches.

In particular, SVM was used as a binary classifier. We applied it with linear kernel, taking
into account good experimental results presented in [71]. For MLP, experiments consisted of
finding hyper-parameters values and analyzing their impact against the detection metrics men-
tioned. Given the low standard deviation while changing the number of training iterations, we
proceeded experiments with this parameter fixed at 50 epochs. Model setup was a two-layer hid-
den network, with 36 hidden neurons each. The variability of the latter consisted in increasing
the number of neurons, obtaining higher recall and precision values, but also raising the FPR.

For LSTM, we also experimented with various training parameters and topologies. Hidden
layer consisted of two LSTM memory blocks, with two cells each and peephole connections.
Adam algorithm [72] was considered as the optimizer while MSE as a loss function. We applied
an arbitrary exponential learning decay of 0.97. Time step size, batch size and epoch in ranges
from [10,200], [50,500], [50,800] respectively, while modifying the learning rate from 0.0001 to
0.1.

For K-means technique we applied the Mini Batches function, a faster approximate version
of the more “expensive” K-means clustering [115]. The configuration was set for the algorithm
to create two clusters, normal and abnormal (botnet traffic). This configuration falls upon
the thesis’s assumption, i.e., normal connections are frequent whereas attacks are very rare,

1Network protocol developed by Cisco for the collection and monitoring of network traffic flow data generated
by NetFlow-enabled routers and switches.
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of SVM showed to be more stable than the others for all the metrics, while Artificial Neural
Network-based techniques depended on the topology and training parameters. One can see from
Table 2.1 that overall the techniques perform above 79% for Recall and Precision indicators.
Nevertheless, LSTM and Entropy techniques do it also by increasing the FPR. The latter is
probably due to our static threshold configuration and that chosen features may have dismissed
or not fully exploited the dataset threat behavior.

2.6 Insider threat related works

In virtue of the literature mentioned above review and analysis, together with the proposed
grouping of detection techniques, we were able to see the different aspects of all threats and
the approaches for solving them. Consequently, we have decided to tackle in depth the study
of detection towards the insider threat, which is one of the most difficult studied threats, due
to its challenges regarding monitoring, data accessibility and later processing for its detection,
among others.

Cloud and non-cloud related detection techniques The insider threat issue has been
studied from different optics in the current literature. From this fact, an overview of the past
approaches can be found in [51], [82]. These works cover multiple detection approaches and use-
cases. As an example of them, we can see various categories such as: real-time and non-real time,
host-based, network-based monitoring levels, supervised, semi-supervised and unsupervised, as
well as different detection algorithms such as machine learning-based, information theoretic-
based, among others.

Statistical approaches assume that the data follow some standard or predetermined distribu-
tions, and this type of approaches aim to find the outliers which deviate from such distributions.
However, most distribution models are assumed uni-variate, and thus the lack of robustness for
multidimensional data is a concern. Nevertheless, the assumption or the prior knowledge of the
data distribution is not easily determined for practical problems.

In distance-based methods, the distances between each data point of interest and its neigh-
bors are calculated. If the result is above some predetermined threshold, the target instance will
be considered as an outlier.

In density-based methods, the approach is to use the density (i.e., well connected points), such
as local outlier factor (LOF), to measure the “outlier-ness” of each data instance. For example,
based on the local density of each data instance, the LOF determines the degree of “outlier-ness”,
which provides suspicious ranking scores for all samples. However, it is worth noting that the
estimation of local data density for each instance is very computationally expensive, especially
when the size of the dataset is large.

Though not initially intended for detecting the insider threat in cloud environments, the
previously mentioned techniques contribute to how to analyze users interacting with assets from
many perspectives and utilizing them for the scope of this work, where the insider threat is
examined by its actions in a cloud environment.

Machine learning approaches have also been used for tackling this threat. An example is
Tuor et al. [127], which used real-time unsupervised Deep Neural Network (DNN) and Recurrent
Neural Network (RNN). They treated their system in an online fashion by training a single RNN
with a supplementary data structure that stores a finite window of past inputs and hidden and
cell states for each user. Each time a new feature vector arrives into the model, the hidden
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and cell states for that user are then used for context when calculating the forward pass and
back-propagating error. Although their model benefits from the internal relationships of DNN,
it begins outputting verdicts while completely untrained, therefore anomaly scores are very high
for the first period.

In another schema, Yen et al. [141] presented a machine learning approach that analyses
different network-based logs in an enterprise, namely proxy, Dynamic Host Configuration Proto-
col (DHCP), Virtual Private Network (VPN), Lightweight Directory Access Protocol (LDAP).
They later utilized PCA with the K-means clustering algorithm with labeled data for evaluation
purposes.

Also PCA was used by the authors in [77], which employed unsupervised feature transforma-
tion on their own developed dataset. Their system then creates a tree-structure for each profile,
constructs set of features that describe particular anomalies of interest and computes a PCA
decomposition to identify features that exhibit high deviation.

As an example of a distance-based approach, authors in [12] proposed an unsupervised k-
Nearest Neighbors (k-NN) with a k-d tree data structure in order to find the k-NN of each
new data input. The smallest distance (nearest neighbor) to this new observed point is treated
as the anomaly score of the input. If the anomaly score exceeds a fixed threshold, then the
point is treated as anomalous. This criterion relies on the common drawback of having high
false positives using a fixed threshold while newer data inputs may vary and evolve through the
employee’s behavior in time.

Along with the presented approaches, state-based approaches can be seen for anomaly de-
tection in time-series data. These models assume that there is some underlying hidden state
and previous state that generate the observations and that this hidden state evolves through
time, possibly as a function of the inputs. Rashid et al. [108] used Hidden Markov Model
(HMM) which they trained for a five-week period. Later they were able to predict further
inputs’ anomalies against a fixed threshold.

Graph-based approaches have also been introduced into the insider threat detection. They
intend to model user-system interactions through topological properties, e.g., system components
and user nodes can be connected if they have interacted between each other. Parveen et al. [103]
utilized using system-calls data and proposed a graph-based approach to create multiple models
for a batch of system calls and their parameters which, finally, constitute an ensemble to detect
subsequent batches in a streaming manner. During each iteration, a batch is tested with all the
models, and a weighted majority voting mechanism is applied to make a decision. Afterwards,
the least weighted model is replaced with the new model.

In [34], the authors have used Email and Cell phone logs, specifically analyzing the corre-
spondence patterns. A normative pattern (a graph substructure) is learned from the entire graph
that describes an insider’s correspondences by minimizing the description length (MDL) and an
incident of interest is raised when a test graph substructure is inconsistent with the normative
pattern (by looking for modifications, insertions, and deletions in the graph structure).

In [91], the authors proposed a bipartite graph between two types of nodes: users and system
components. Their methodology includes studying the evolution of the user graph to identify
topological properties that characterize the system’s normal behavior. Among these observed
properties, those that do not follow the norm of the regular pattern are assumed to indicate the
presence of an anomalous event.

Additionally, within the scope of graph-based approaches, tree or partitional techniques have
also been used lately [45], [49]. Gavai et al. [49] utilized a modified version of the Isolation Forest
(IF) method at the task of detecting insider threat from network logs. The process continues
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until each individual point in the dataset is isolated in a leaf. Every point receives a score that
relates to the average number of splits required over the IF trees to isolate it into a leaf node.
They modify this algorithm to identify the anomalous points that arise from the averaging across
the forest and also record the corresponding features that are the reason for their isolation.

Other authors [45] use IF with logs from LDAP, proxy and email services, and apply the
algorithm to detect suspicious users by looking into the graphs and their sub-graphs.

Non-insider threat related anomaly detection studies also contribute to the knowledge in
discovering anomalies as a data mining practice in general (an extensive survey can be found in
[105]). Along with clustering proposals such as ClusStream under the seminal work of [3], there
can also be found techniques within the previously named categories.

One of these sets of algorithms worth mentioning is SOM-based network models, which are
suitable for online processing of unlabeled data in numerous anomaly detection applications [13]
as much as in the security domain [47], [126].

Cloud-based related datasets Authors of [70] proposed a cloud-based dataset for masquer-
ade attacks, i.e., where an attacker assumes the identity of an authorized user for malicious
purposes. They utilized network and host traces from two machines of the DARPA dataset
[81], consisting in host-based audits from Windows NT and Unix Solaris, along with their cor-
responding Transmission Control Protocol (TCP) data. They correlated a seven-week dataset
and labeled the users from both machines into different roles according to their login session
time and the characteristic of the user task (e.g., programmer, secretary, system administrator).
Later they assigned every user to a labeled VM.

Additionally, non-cloud related literature on dataset generation shows a variety of approaches.
RUU dataset was provided by [113], also concerning masquerade attacks. They built a sen-
sor host for Windows OS that captured user’s registry actions, process execution and window
touches. They collected normal users and analyzed differences against masquerade users, fol-
lowing a controlled exercise.

Carnegie Mellon’s Computer Emergency Response Team (CERT) generated a collection of
synthetic insider threat test datasets [14] to produce a set of realistic models.

ISCX dataset was proposed by [120], under the notion of profiles that contained detailed
descriptions of intrusions and abstract distribution models for applications, protocol and lower
network level entities.

The ADFA dataset [128] was proposed by [30] with modern attack patterns and methodology.
This dataset was composed of thousands of system call traces collected from a contemporary
Linux local server, with six types of up-to-date cyber attacks involved.

2.7 Conclusion

In this Chapter, we studied the relation between security threats and detection techniques in
cloud environments. As a result, we conclude that data-related threats and malicious insider
activities are mostly pursued by rule-based detection techniques. On the other hand, network-
based threats such as DoS and botnet attacks can be effectively tackled with statistical and
machine learning techniques. Likewise, whenever behavior-based or hybrid approaches are used,
training data phase remains crucial to establish a wide spectrum of normal behaviors in cloud
architectures. In this sense, more research needs to be performed to correctly discriminate them
from real threats.
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Through Figure 2.2, we have granted a visually synthesized comprehension of which algo-
rithms have been studied for specific threats. However, we noted the absence of some links
between them, raising questions regarding the use of certain techniques for threat detection. We
think this may be because “well-accepted” methods have proven to be effective to known attack
patterns in the past (e.g., SVM and DoS). On the other hand, the existent links are due to the
tryout of novel techniques against classic threat patterns or the use of traditional techniques on
top of cloud-environment settings.

The latter motivated to study the applicability of existing detection approaches against new
threats. Consequently, we attempted at experimenting with a SVM, two ANNs, a statistical
and a clustering method; performed an online detection and obtained results to counteract these
unseen techniques with a dataset of recent malware vectors. In particular, it was experimentally
proven that SVM behaves well as an “all-around” classifier, keeping good accuracy while low false
alarm rates. In contrast, we observe additional studies should be pursued for neural network
detectors as they rely on more parameters. This characteristic adds more complexity at the
moment of detecting different types of threats, as they are commonly tuned for a particular
test-bed.

At the same time, we note that although many of detection techniques have evaluated their
accuracy given FPR, Precision; only a few studies are testing their performance in a holistic
approach that contemplates specific cloud computing characteristics (named in Section 2.3),
such as scalability, fault-tolerance or adaptiveness.

Additionally, high throughput interfaces and maintainable knowledge database repositories
demand a scalable solution. At the same time, cloud-dynamic behavior varies regarding CSC’s
needs, and it can imply the discovery functionality for modified IaaS, PaaS or SaaS configura-
tions. Therefore, it is important to keep in mind a flexible implementation approach that can
detect anomalies adapted to each new requirement.

Furthermore, we have decided to tackle in depth the study of detection techniques towards
one of the most difficult enumerated threats, such as the insider threat. By being one of the
least treated threats due to its monitoring and detection difficulties, the assessment of a detec-
tion framework for this threat has also gained momentum in the last years in the literature.
Nevertheless, many of the presented approaches solve the detection of anomalous behaviors only
partially in a cloud-related scenario.

Each category of methods discussed in this paper has its own strengths and weaknesses,
and faces different challenges for complex datasets. We consider some of the studied meth-
ods presented in [105], such as SOM-based methods, which benefit from the ability to address
high-dimensionality problems, and the flexibility of having no a-priori assumptions about the
properties of the data distribution, therefore allowing the adaptation of the learning process in
time.

Along with the discussed threats and techniques, this state of the art approached in depth
towards the insider threat. With regards to this threat, the literature mentioned above raises
many questions about the proper characterization of malicious insider threat and which fea-
tures could adequately describe it for later detection techniques’ analysis. Additionally, most
of the presented datasets correspond to one-time implementations, which limits the generation
and analysis to that particular test-bed configuration. In this respect, an automatic dataset
generation is aimed, which will establish different scenarios with more dynamics taken into
consideration. This feature also makes the analysis modifiable, extensible and reproducible.

Finally, this survey also proves the absence of a universal approach for identifying various
threats of different nature. Additionally, focusing on multiple cloud service features will provide
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an integral perspective of different behaviors working together. Developing such approach or
at least making steps towards deriving a broader yet effective cloud threat detection system,
without a doubt, form a group of hot topics for future research work.
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3.1 Introduction

In this Chapter, a model for the insider threat is presented. This model is an abstraction of
a user or employee in a company executing actions towards a cloud environment. The main
objective is to describe the most relevant aspects to consider at the moment modeling a user
and/or malicious insider, by means of utilizing psychological and technical attributes.
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complexity taking into account new actors involved, as well as their dependencies. Consequently,
a role-based categorization was proposed by [26], where an insider threat could be (i) A malicious
insider from the CSC, accessing cloud services or (ii) A malicious insider from the CSP, accessing
to sensitive company data. In addition to these, more actors were presented by [33]: (i) A
malicious insider from the Internet Service Provider (ISP) for each zones; (ii) External CSPs if
resources are outsourced to other providers; and (iii) Cloud provisioning services (brokers).

User profiling research and recollection of real cases [28] present no common pattern with
respect to subject’s psychological characteristics. However there are risk indicators [53], [78],
[123] related to the motivational factors that may underlie malicious insider exploits, which are
supported by studies indicating that most of these attacks (81%) are planned [119].

From these representations of insider user profiling, we derive our model definition in the
following section. Moreover, we propose a threat ontology with a probabilistic approach, where
the disposition factor to perform malicious activities mentioned above is considered to occur
with a given probability in time.

Insider’s opportunity A generic set of models usually refer as the Capabilities Motives
and Opportunity (CMO) model [102], [112], [114]. This model postulates that to commit an
attack, the insider must first have the: 1. Capability to commit the attack, 2. Motive to do so,
3. Opportunity to commit the attack.

These three attributes are also present in our model, and in addition, we illustrate how an
insider may relate each of these and come to perform the malicious act through the relationship
with other elements. In particular, the notion of the opportunity dimension is well defined within
the literature relating to threat assessment and risk management [97]. Given the capability (e.g.,
skills) and motive (e.g., revenge, greed), the insider must also have an opportunity. This oppor-
tunity is enhanced when the insider is able to exploit a weakness present in the organization’s
assets.

As mentioned, while this attribute has been well defined within the rational decision literature
with respect to threat assessment and risk management [62], [97], there have also been models
proposed regarding insiders’ perception of risk and endogenous characteristics that are unique
to insiders [40], [53], [123]. The two main key notions are that (i) in order to perform a malicious
act, an employee has to perceive an opportunity; (ii) when this opportunity is perceived, the
employee also has a perceived risk in terms of the action’s potential consequences (i.e., getting
caught). Therefore, while traditional risk assessments focus mostly on technical vulnerabilities,
insider threat assessments need two more dimensions: the employees’ and organization factors
(e.g., policies, practices).

In addition to that, in the context of a cloud environment the relationship between the
employees and the organization’s assets, lead to more complex vulnerabilities. Moreover, as
relevant cloud-based characteristics were addressed in Section 2.2.1, there are several security
challenges inherent to this environment.

An insider threat assessment is a statement of threats posed by ‘trusted’ insiders of an
organization that are related to vulnerabilities, assets, and insider threat agents. In order for
a malicious insider to bring its capability to bear against a target, the employee must have the
correct conditions to do so; and in order for their capabilities to be effective and have an impact
on the target, the target must be vulnerable to attack.

Consequently, we define the levels of opportunity for an insider and follow quantification
methodology of authors in [112], namely: 1. Define the vulnerabilities associated to the assets
interacting with him or her; 2. Highlight the security controls that are appropriate to mitigate
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the exploit of the asset. Concerning the first aspect, ISO 27005 [96] defines a vulnerability as:

A weakness of an asset or group of assets that can be exploited by one or more threats.

We extend this description with European Union Agency for Network and Information Se-
curity (ENISA)’s more specific annotation:

The existence of a weakness, design, or implementation error that can lead to an
unexpected, undesirable event compromising the security of the computer system,
network, application, or protocol involved.

By means of assessing the different vulnerabilities, the CSA provided with recommended
controls for all the previous detailed threats from Section 2.2.2. They released the "Security
Guidance for Critical Areas in Cloud Computing" and the "Security as a Service Implementation
Guidance", providing best practices for securing Cloud Computing (CC) infrastructures. Some
of the recommended security controls for the malicious insider threat are

• Compliance (CCM CO-03): Third-party audits.

• Data Governance (CCM DG-01): Information leakage.

• Information security (CCM IS-08): User access restriction/authorization.

• Human Resources Security (CCM HR-01): Background screening.

• Information Security (CCM IS-19): Audit tools access.

• Information Security (CCM IS:18): Encryption.

3.3 Proposed modeling approach

The definition of an ontology involves complex interconnections in different domains. The fol-
lowing areas have been considered, in order to better characterize employee’s activities in an
organization.

An insider is modeled by two main attributes, namely Intra-psychological behavior
and cyber behavior:

• Intra-psychological behavior considers the humans’ state of mind behind the malicious
activity i.e., the reasons why they performed the malevolent actions, their psychological
motives and the characterization of their intent.

• Cyber behavior considers humans’ behaviors in relation with a cyber cloud asset i.e, the
way employees interact with the organization’s resources.

Additionally, we itemize our assumptions regarding the behavior of an insider with respect to
the rest of the organizational cloud-related assets, along with the dataset generation.

The insider threat is a rare event hence, we consider its occurrence rather low. Therefore,
as treated as an anomaly, we consider the probability of an opportunity is low in most of the
organizational environments.
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3.4 User Model

The model proposed in the following paragraphs aims to consider each one of these domains as
part of the abstraction of an employee, and moreover interrelate them to derive more complex
scenarios for posterior detection analysis.

3.4.1 Definition of entities

We consider the following entities to generate patterns of activity, as shown in Figure 3.2. They
are divided into two groups. On one hand user-related entities, namely:

Profile is defined as an abstract representation of person’s attributes in an organization, to
facilitate the reproduction of realistic behaviors. Each Profile is composed of a Psychological

factor, a Cyber factor, a Context and a Role.

Psychological factor is related to the human characteristics of a person. This category adds
a dynamic realism by means of human attributes, such as the attitude for the given job. This
factor can be personalized and distinguished by its intention in time.

Cyber factor is related to the professional or technical characteristics of a person based on
their Role. This category adds attributes such as the way of interacting with the company’s
resources.

Role is associated to the job of the Profile in a given organization. Moreover, the Role is
defined through the entity Policy, which is composed of a Permission related to an action
towards an Asset.

Context consists of attributes related to specific time and location conditions where the
Profile is performing its Role (e.g., location from where the actions are being executed, time
of the day, IP from where actions are being executed, cloud instance the employee is trying to
access).

Permission is the type of authorization a Role has for a given Asset (e.g., read, modify).

Asset consists of any valuable hardware or software component, property of a CSC in the
CSP stack (e.g., physical servers, VMs, applications, databases, communication infrastructure),
depending on SaaS, PaaS or IaaS models.

On the other hand, the simulation also includes the event-related entities:

Sequence is a list of (sequential) actions performed by the same Profile under a given time
interval. For that matter, an action a is defined as a symbol in an alphabet Σ. Based on this
alphabet, the approach generates three types of Sequences:

(i) Pseudo-random sequences, defined as a Set R ⊂ Σ∗ of finite pseudo-random actions.
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Lines 2 to 7: Algorithm defines the delay for which it will create an Event from a pseudo-
randomly chosen Profile. This generation is done with an exponential distribution, in order to
model the pseudo-random generated sequences as a Poisson process (line 6).

Lines 10 to 14: An agent function takes the form of a Profile assigned by a Role and
Time Between Events (tbe) with a given distribution (e.g., For Normal distribution with mu
and sigma given by the Context).

Lines 17 to 18: The three types of sequences will be generated. Each of these group of
sequences is given by the Policy entity, which relates an action to a given cloud Asset. The
algorithm allows to give specific weights (pol.seq_weights) to the three types of sequences.
Later, the event is executed for that particular assignation.

Lines 20 to 23: Under a certain disposition given by the Psychological factor, each
Profile will have an anomalous behavior. The function GenAnomaly can either change the
Context or the sequence, introducing a single instance of such anomaly.

Line 25: The agent sleeps until a next scheduled event, which will be again normal or
abnormal of a certain type. This is handled by the mentioned tbe, which takes values under the
“working hours” context from the Profile.

Algorithm 1 Dataset generator

1: function Event_generator(profiles, tba, timeout, disposition_thresh,wloc, wwh, wseq)
2: while time < timeout do
3: profile← pseudo_random_choice(profiles)
4: delay ← exponential_distrib(1/tba)
5: Agent(profile)
6: Wait(delay)
7: end while
8: end function
9: function Agent(profile)

10: role← profile.role
11: ctx← profile.context
12: tbe← normal_distribution(ctx)
13: disposition← psychological_factor(profile.psycho_attrs, disposition_thresh)
14: label← “normal”
15: for all pol ∈ role.policies do
16: if disposition then
17: seq ← choose_seq(pol.rnd_seq, pol.predef_seq, pol.hyb_seq, pol.seq_weights)
18: Run_Event(seq, probile, label)
19: else
20: anomaly ← gen_anomaly(profile, wloc, wwh, wseq)
21: label← anomaly.label
22: seq ← anomaly.seq
23: Run_Event(seq, profile, label)
24: end if
25: Wait(tbe)
26: end for
27: end function
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3.4.3 Psychological factor

Algorithm 2 Psycho-social factor for
agents in simulation

Obtain Affective_component Dt

if ∆D > τ then
at ← Rational_component

return at
else

return 0
end if

As above-mentioned, this attribute aims at
modeling the employee’s psychological disposi-
tion with respect to performing a malicious act.
Furthermore, each agent has the potential to
become a malicious insider based on a combi-
nation of emotional and rational affecting their
affective disposition and decision process, cor-
respondingly. For the representation of this
Profile’s attribute we utilized Epstein’s [37]
theoretical Agent_Zero, which is an ABM en-
dowed with distinct emotional/affective, cogni-
tive/deliberative, and social modules. This structure is grounded in contemporary neuroscience,
where internal components interact to generate observed, often far-from-rational, individual
behavior.

Unlike [37], who treats the three mentioned components (each belongs to the interval [0, 1])
as additive parts of the equation to be compared against a general threshold, we propose that an
agent’s disposition to perform a malicious activity, is going to be based primarily by the affective
component. This takes place under the hypothesis that an emotionally satisfied employee would
not perform an illicit activity even if the rational component may be appealing (e.g., if there was
a low risk and/or high reward associated). Following that idea, only if the affective component’s
value exceeds its personal disgruntlement threshold, the agent will secondly perform a cognitive
decision process considering personal judgments (e.g., the value given to a reward), along with
organizational context variables. This decision process will determine the optimal action to
be taken. The above-mentioned general methodology for obtaining the psychosocial factor is
formalized in the Algorithm 2.

3.4.3.1 Affective component

To represent this element we use Epstein’s affective component of the Agent_Zero model. In it,
he uses the seminal Rescorla-Wagner model of conditioning [109], which is based in Reinforce-
ment Learning (RL) and depicted as equation 3.2

∆D = α(Ft − Et) (3.2)

This equation is also used by Sokoloswky et al. [123] in their specific model for the insider
threat. They represent α as the level of attention the agent gives to the disgruntlement ∆D
(also known as salience). This value can vary between 0 and 1, where 0 indicates that the
affective component is irrelevant and 1 indicates that it has maximum relevance.

Ft represents the observed outcome (commonly known as reward or punishment). Following
[123]’s lead, it is the actual level of fulfillment the employee interprets from the organization.
Lastly, Et will be the agent’s personal expectation of fulfillment.

In other words, for each simulation time t, the difference between the expected fulfillment
and the actual experienced fulfillment will determine the level of surprise or disgruntlement ∆D
towards the organization. This is interpreted as the employee’s ability to observe, learn or adapt
himself in regarding the organization environmental characteristics (e.g., organizational culture,
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internal policies). Following [123]’s definition, the expectation of a user at simulation time t+ 1
is

Et+1 =
ωinitF0 + ωactualFt + ωhistoricF

ωinit + ωactual + ωhistoric

(3.3)

Where Et+1 is the expectation for the next time of the simulation, Ft=0 is the initial ful-
fillment (e.g., assumed to value 1 when the employee begins to work in an organization), Ft

is the actual level of fulfillment at simulation time t and F is the average of fulfillment values
throughout the simulation. According to each agent’s arbitrary configuration, weights (namely
ωinit, ωactual and ωhistoric) can have different values, emulating different employees’ characteris-
tics, which for instance, may give more relevance to the overall historic fulfillment or their initial
fulfillment, rather than the actual one.

In our model, we propose a definition for the fulfillment observed by the agent at time t as

Ft =

{

1 with probability pt

0 with probability 1− pt
(3.4)

Where pt ≈ 1 considering that in general, organizations normally have good environmental
characteristics and that events that may negatively impact employees are rather scarce. Finally,
if the agent’s disposition exceeds its personal disposition threshold τ , then rational component
will take place, as

Disgruntled ⇐⇒ ∆D > τ (3.5)

Figure 3.3 depicts two examples for the variables in Equation 3.2. We observe both agents
start the simulation without any disgruntlement (D0 = 0). As time goes by, the fulfillment
experienced within the organization decays (F = 0, shown as the a dark blue line event at
the top of the figure), while the expectation remained high (E > 0). In this case, there is an
increment in the level of disgruntlement for both agents. This level begins to decrement as
the posterior observed fulfillment values remain high (F = 1, shown as the light blue line event
at the top of the Figure). The different disgruntlement decays for both agents may also be
observable, along with the increase whenever a single unexpected event occurs. These different
behaviors derive from the salience factor α, from Equation 3.2, and from the mentioned weights
in Equation 3.3.

3.4.3.2 Rational component

The proposed rational component is based on the work of [64], also proposed in [123] and [40].
It is referred as a descriptive model of human decision making under risk. In our case, the
model describes how an employee aughts to take actions that maximize their expected reward
also considering their assessed or perceived opportunity, in relation with to the organization’s
cloud environment.

We propose a simplified metric that sufficiently models the employee’s decision process, by
considering the perceived opportunity with respect to their skills to exploit the organizations’
vulnerabilities. Specifically, we consider the agent’s decision to perform a malicious act, is based
on this parameter, as well as on their reward and risk values.

This environment is modeled considering organizational attributes, which are not entirely
known by the agent. As mentioned in Section 3.2, all possible contextual variables (e.g., se-
curity policies, assets architecture, organizational culture) ultimately fall under a probability of
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Figure 3.3 – Example of affective component for two simulated agents within a month period.
Both agents have an disgruntlement threshold of 0.5, while the α is 0.8 and 0.5 respectively.
ωinit is 0.001, while both give different relevance to the actual fulfillment value (ωactual is 0.299
and 0.099, respectively). The assigned value to the historic fulfillment ωhistoric is 0.7 and 0.9
respectively.

perceived opportunity to commit a malicious act. The quantification of opportunity po_value,
is perceived subjectively as an arbitrary parameter by the agent and is based on the assessment
of the system’s vulnerability and the existence of implemented security controls.

Following this path, a methodology for deriving the opportunity perceived by the insider is
proposed. The user reasoning considers four steps:

1. Identification of the organization’s assets involved in the cloud implementation.

2. Identification of the Security Control (SC) that protects these assets.
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3. Identification of which SCs are “implemented” or “not implemented” in the cloud environ-
ment.

4. Quantification of the number of not implemented SCs over the total of SCs, seen as the
vulnerability level for each asset (not_pct_implemented_SCs).

5. Estimation of the perceived opportunity of the insider.

Algorithm 3 Rational component of the psy-
chological factor for agents in simulation

function rational_component(t,
reward_value, risk_tol)

Obtain a po_value from a given asset
Obtain reward payoff value Vreward

Obtain risk payoff value Vrisk

if Vreward > Vrisk then
return at ← Perform malicious ac-

tivity
else

return at ← Perform normal activ-
ity

end if
end function

Therefore, we define the perceived oppor-
tunity of an insider, aiming to perform a ma-
licious activity towards an asset as

po_value = β · not_pct_implemented_SCs
(3.6)

where β is a parameter that can have three
values, namely high medium and low, which
are proportional to the skill of the employee
(also defined as high, medium and low).

As mentioned in Section 3.3, we define it
this way due to the fact that employees may
not know all the organizational vulnerabilities
associated when planning a malicious activity,
but it could be partially estimated given the
employee’s experience or knowledge within the organization. Nevertheless, we consider this
probability rather low, under the assumption that the insider threat is a rare event, therefore
the probability of an opportunity is low in most of the contextual environments. In detail, the
model is formed by the tuple

〈 po_value,A, reward_value, risk_tolerance 〉 (3.7)

Where po_value is the above-mentioned opportunity the agent perceives for pursuing a
malicious activity (thus, the probability of risk is 1 − po_value). A = {perform malicious
activity, not perform malicious activity} is the set of possible actions to perform. The parameter
reward_value depicts the relevance that the employee gives to the reward by means of the action
perform malicious activity, while risk_tolerance is the degree of uncertainty of being caught that
the employee is willing to withstand. Moreover, three levels of risk_tolerance and reward value
have been defined. This values represent profiles such as risk-averse, risk-neutral and risk-greedy.
For the reward value parameter sweeps, we have defined high, medium and low attractiveness.

Thus, at every simulation time t, the organization’s environmental context is at an opportu-
nity state with probability po_value, according to the agent. Given this probability, the agent

will choose an action at ∈ A according to their personal decision policy. The above-mentioned
general methodology for obtaining the rational factor is formalized in the Algorithm 3.

The policy used for this component is given by the relation between expected payoff values
between the risk and the reward
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Vreward = reward_value · po_value (3.8)

Vrisk =
1

risk_tolerance
(1− po_value) (3.9)

Perform malicious activity ⇐⇒ Vreward > Vrisk (3.10)

where 1/risk_tolerance determines the risk-profile (i.e., greedy, neutral or averse). To
illustrate this methodology, the following example is provided, followed by the Figure 3.4

Figure 3.4 – Example of rational component for two simulated agents within a month period

Example. We define two agent’s (namely Agent 1 and 2) with different rational attributes.
Both have same value to reward (0.5), nevertheless Agent 1 is risk-greedy (0.9) while Agent 2 is
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frequency. The second advantage is the fact that it can help distinguishing an insider threat
towards masquerade attacks, by means of analyzing the content of the Sequences.

The actions may vary according to the different assets and the level of granularity intended
to simulate. For instance, as Figure 3.6 depicts, actions may differ for an agent whose role is a
Developer, a DBA or a Cloud Administrator (formerly System Administrator) (CloudAdmin).

This set of actions will be also dependent on the cloud context regarding the architecture’s
configuration, such as service model, type of access layer for accessing the cloud services, execu-
tion commands for configuring the architecture, among others. Thus, for a Database (DB) asset
a Developer could have actions such as read, while the DBA could have the former, in addition
to create_role, create_user in the database user’s access, or create, update and delete for
the database records. The CloudAdmin on the other hand, interacts with the asset VM and its
Operative System (OS), in case of an IaaS model. This interaction is done via the Command-line
Interface (CLI) or an Application Programming Interface (API), which determines another set
of possible actions.

As mentioned in previous Section 3.4.1, the cyber factor is based in these Role-Asset rela-
tions, where every Role has a predefined set of authorized actions. These actions are the base
for deriving the Predefined, Random and Hybrid Sequences.

Figure 3.6 – Example of actions for a DBA and Developer with respect to cloud and organization
assets

By means of generating different profile agents with the same Role, a cyber factor Skill
is proposed and defined as the average time in seconds an employee takes to execute a set of
actions. This attribute may be considered as a particular technical characteristic of the employee,
as it relates with professional competences that allow the execution of actions in a more or less
efficient, cautious or creative way.

As the formerly presented Algorithm 1 for generating the simulation data, for every time
step t a Sequence is obtained and an Event is scheduled. At the end of the simulation the result
is a collection of Events E for each profile.

Accordingly, let E = [e1, e2, . . . , en] be the collection of n events where en has the form of
the tuple from Equation 3.1. Formally, for a single profile we initially have

E =







t1 sequence1 context1 label1
...

...
...

tn sequencen context1 labeln







The objective is now to group this Event matrix E into sessions S with respect to the Skill
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Algorithm 4 Methodology for grouping events into sessions

1: function Cyber_factor(profile, malicious_labels, normal_label)
2: E ← profile.events, where ei =< ti, sequencei, contexti, labeli >
3: D = { di | di = ti+1 − ti }
4: I = { ii | di > skill_threshold }
5: StartEnd = { (si, ei) | (si, ei) = (ii, ii+1) ∈ I }
6: for all (s, e) ∈ StartEnd do
7: session_cnt← ie − is
8: duration← te − ts
9: session_seq ← concatenate([sequences, sequencee])

10: if [labels , labele] ∈ malicious_labels then
11: return label← mode([ labels, labele ])
12: else
13: return label← normal_label
14: end if
15: context← mode([contexts, contexte])
16: end for
17: return S = {{ tj , session_seqj , contextj , session_cntj , durationj } | j ∈ StartEnd }
18: end function

parameter. The criteria for grouping the different attributes of the matrix E into sessions are
formalized in the Algorithm 4 and described in the following paragraphs.
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Figure 3.7 – Skill for (i) 200 sec-
onds, (ii) 100 seconds and (iii) 60
seconds

As a first step, the algorithm calculates the time differ-
ences between all the events and collects it in set D (line 3).

Secondly, from E it obtains the matrix indexes where
duration exceeds the Skill time i.e., threshold, and collects
them in the set Index I (line 4). In other words, consecu-
tive events which time is lower than this threshold, will be
considered as part of the same session S. Consequently, it
builds a set with start and end pairs that define the session
indexes of beginning and end within the matrix E.

Thirdly, it joins all sequences from events within the
StartEnd set. Accordingly it derives the number of events
for each session, the duration and obtains the final label and
context for the session, by the following criteria.

In case the subset of events has more than one malicious
label (line 10) it keeps the label with higher frequency or the
first found (in case of equally distributed malicious labels).
The same criterion is calculated by using the statistical mode to obtain a single context (line 15).

Accordingly, an example is given in Figure 3.7 for time duration between each events t1,
t2, t3 and t4 and different Skill seconds. We can observe that for this example, an employee
with low average time or high skills will lead to sessions with shorter sequences of actions, while
a low-level skill will derive in longer sequences. This is an assumption under the basis that a
low-skilled employee may take a longer time (e.g., type in, decide which operation to use and
how) due to the lack of efficacy or experience in performing his role.
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3.5 Anomaly behavior model

The threat scenarios used in this section concerned collected use cases from security groups [28]
and previous malicious insider datasets adapted to simulate the interaction with cloud assets
(e.g., [70], [113]). These examples are classified in content-based and event-based: where an
employee goes rogue pursuing a sparse event concerning IP theft, sabotage or other. The second
group of concern, studies the statistical information of the events, and analyses them following
a graph dependency with respect to the assets in time.

The present work aims to tackle both of these groups of threats. Moreover, the anomaly
behavior model describes the activities an employee performs with respect to the cloud assets.
The profile for every employee under a specific role is performed by using the logged username or
hostname. Therefore, anomalies performed by the attacker are considered by studying content-
based and contextual features with respect to their historic data and possibly with the rest of the
employees with the same Role. We cover the following threat anomaly cases, listed in Table 3.1.

Table 3.1 – Summary of anomalies concerning cyber behavior

Anomaly Acronym Description Example

Unusual list of tasks SEQ Intention to perform an
activity to an asset that
damages the integrity,
confidentiality or avail-
ability of the asset

Data deletion

Unusual hour of access WH Intention to perform an
activity to an asset out-
side the general working
hours for the particular
role

Activity at 3 a.m.

Unusual location of ac-
cess

LOC Intention to perform an
activity to an asset
from an unusual differ-
ent source address

Connection from em-
ployee’s house to cloud
services

Unusual list of tasks This behavior consists of an intent performed by an employee to pursue
an unusual set of commands, such as elevation of privileges (i.e., obtaining further privileges
with respect to the CSC’s asset), storing remote information, creating new services (e.g., VM
for further malicious activities), performing an unusual instruction to the Database Management
System (DBMS). The characteristic for this anomaly consists in observing unusual commands.

Unusual hour of access This behavior consists of an activity performed by an employee
different from normal working hours (e.g., between 7:00p.m. – 8:00a.m.). The working hours
parameter is derived from the profile configuration, specifically the Context attribute. This
relies on the fact that some privileged users, such as systems administrators, typically connect
remotely to various systems outside office hours in the normal course of their daily activities.
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3.6.1 Verifying the intention selector module

This function corresponds to the M1: Intention in Figure 3.8 and it has relation with the
employee’s Psychological factor characteristics. The Figure 3.8 depicts inputs and outputs as

• Inputs

– Disposition threshold constant disposition_thresh ∈ [0, 1]

– Psychological factor function Pt : R→ [0, 1]

• Output

– Intention it ∈ {0, 1} where 1 is perform a malicious activity and 0 is not perform a
malicious activity.

This function follows a time-dependent probabilistic approach where for each time step t of
the simulation, the intention of the employee is obtained when performing an Event. This is
done through Equation 3.10.

it =

{

1 if pt > disposition_thresh

0 otherwise
(3.11)

Consequently, let n be the number of instances obtained, where the matrix M1n×3 of inputs
and outputs consists in







disposition_thresh1 p1 i1
...

...
...

disposition_threshn pn in







Let the average count of x occurrences be defined as

Cx =
1

n

n
∑

j=1

[i = x] (3.12)

whereas the average count of malicious occurrences is C1. Therefore, the condition derived
for this function is

Pre-/postcondition 1 : if disposition_thresh ∈ [0, 1] then C1 ≤ disposition_thresh

3.6.2 Verifying the intention category selector module

This function corresponds to the M2: Intention Category Selector in Figure 3.8 and it has
relation with the election of the anomaly types, presented in Table 3.1. This is done according
to the constants wloc, wwh and wseq, which are defined in the simulation’s initial configuration.
The Figure 3.8 depicts the inputs and outputs at step t of the simulation as

• Inputs

– Intention it ∈ {0, 1}

– Weight for Unusual location of access anomaly (LOC) wloc ∈ [0, 1]
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– Weight for Unusual hour of of access anomaly (WH) wwh ∈ [0, 1]

– Weight for Unusual list of tasks anomaly (SEQ) wseq ∈ [0, 1]

• Output

– Label of the event lt ∈ {LOC, WH, SEQ}

For Ci with i ∈ {LOC, WH, SEQ} correspond to the average occurrences for events WH,
LOC and SEQ, respectively. Therefore, the conditions derived for this function are

Pre-/postcondition 2 : if wwh + wloc + wseq = 1 then Cwh ≤ wwh

Pre-/postcondition 3 : if wwh + wloc + wseq = 1 then Cloc ≤ wloc

Pre-/postcondition 4 : if wwh + wloc + wseq = 1 then Cseq ≤ wseq

3.6.3 Verifying the sequence generator module

This function corresponds to the M3: Sequence Generator in Figure 3.8 and it has relation
with the employee’s Cyber factor attributes. As mentioned in Section 3.3, these characteristics
are derived by generating the sequences of actions the employee is going to execute. This is done
by considering the following inputs, designated in the initial configuration for the simulation:
(i) the set of actions the employee is allowed to execute, according to the cloud Asset and
the Role’s policies; (ii) the predefined sequences of actions, related to the Profile; (iii) the
percentage for the predefined sequences within the output matrix of sequences Sn×1; (iv) the
skill 1 (Cyber factor, detailed in Section 3.4.4) or level of sophistication to perform the actions
to the particular Assets. The Figure 3.8 depicts inputs and outputs at step t of the simulation
as

• Inputs

– Alphabet of actions, defined as Σ

– Predefined sequences subset, defined as P ⊂ Σ∗

– Predefined sequences presence percentage pctp ∈ [0, 100]

– Technical Skill skill ∈ R
+

– Event label lt ∈ {LOC, WH, SEQ, NORMAL}

• Output

– Sequence of actions st to be executed

Therefore, for the presence of predefined sequences in final output matrix 2, the conditions
derived for this function are:

Pre-/postcondition 5 : if pctp ∈ [0, 100] then 100 · C{p∈P} > pctp

1Defined as the average time in seconds an employee takes to execute a set of actions.
2Where Cp is the average count of sequences p, as described in Equation 3.12.



42 Chapter 3. Modeling the Insider Threat

3.6.4 Verifying the event scheduler module

This function corresponds to the M4: Event Scheduler in Figure 3.8 and it has relation
with the employee’s contextual behavior characteristics. These characteristics are derived by
the modification of time and location variables, in case the label of the event (Equation 3.1) is
WH or LOC. For this matter, the location position is mapped from the contextual information
(i.e., ip_source) and is defined as a categorical variable pos ∈ POS, where POS is a set of
all possible countries’ acronyms. In other words, it corresponds to the geographical origin from
where the sequence of actions st is executed (e.g., FR for France, RU for Russia). The Figure 3.8
depicts inputs and outputs at step t of the simulation as

• Inputs

– Sequence of actions executed, defined by st

– Input location from where the event was executed posinit_t

– Working hours context given by the role ctxt

– Event label lt ∈ {LOC, WH, SEQ, NORMAL}

• Output

– Sequence of actions executed, defined by st

– Output location from where the event was executed posout_t

– Timestamp of the event tst

– Event label lt ∈ {LOC, WH, SEQ, NORMAL}

As mentioned, in case the Event label is wh, the resultant timestamp of the event has to be
outside the hour range of the WH derived from the context ctxt. Same modification methodology
is treated with the Event label LOC, where the final location position of the Event posout_t has
to be different from the initial posinit_t. Therefore, the conditions derived for this function are

Pre-/postcondition 6 : if lt = wh then tst /∈ ctxt

Pre-/postcondition 7 : if lt = loc then posinit_t 6= posout_t

3.6.5 Validation criteria

Defining suitable criteria for dataset validation is a complex process, since there are no general
methodologies in the literature [26]. While the insider threat simulation is implemented, some
points of the proposed approach need to be validated before using them on real use cases. To
this end, three validation criteria have been defined. The first two (namely, items 1 and 2) add
an a priori degree of realism to detect plausible attacks, as the result of consulting with the CSC
use cases in industrial reports. The third (namely, item 3) relies on a posteriori verification and
proves the applicability of the proposed approach given the nature of the data for prediction or
detection techniques.

1. Similarity with respect to the average number of events per day: industrial case
studies indicate a number of actions an employee should do on a monthly basis. In this
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case, for example an expert knows that a security administrator can initiate an action at
any given time (e.g., 24x7 service availability) while a DBA Role should not initiate more
than N Events per month, that consider a database back-up Sequence. The generated
Events, should be statistically based on realistic behaviors for every Profile entity and
each threat scenario. Such statistical data can be either provided by an “oracle” aware of
the activities for each Role, or from traces of real case studies for later extrapolation.

2. Sequences’ realism: the pseudo-random generated set of Sequences for each Event,
should be validated to make sense in the context of the Permission-Asset tuple. In
other words, independent actions to a given Asset, for example, “data elimination” or
“tampering” from a database, might not have a pre-defined order. In the case of other
tuples, such as actions to a VM Asset, it might be intuitive to generate Sequences with
a given order (i.e., an action of shutting a VM down cannot be followed by any other
operation that assumes the VM is operational). The latter means that the set of invariants
from the second group includes the ordering of the actions performed, i.e., action “B” in a
Sequence cannot be executed by a given Profile unless the action “A” has been processed.

3. Anomaly detection techniques benchmarking: For an accurate prevention of this
threat, proper anomaly detection benchmarking can be performed. For this matter, the
dataset should contain “well distributed” labeled Events or its technique should recognize
possible label imbalance (under the assumption that malicious Events are less frequent
than normal). This is relevant at the moment of experimenting with detection techniques
such as supervised machine learning models, as they can try to fit anomalies with normal
events.

3.7 Experimental results of the dataset generation

The simulation methodology was implemented using an ABM, where an agent has a psychological
and cyber behavioral factors for every iteration step in the simulation. The benefit of an ABM
strategy is that it provides a mean to represent complex adaptive behaviors by focusing on the
attributes of the individual heterogeneous employees’ entities (agents) and how they interact
within a larger system. Additionally, it allows the possibility to simulate entities simultaneously
interacting with the different CSC’s Assets at the same time.

The implementation assumes that an organization is made of a certain number of heteroge-
neous employees. As mentioned in Section 3.4.1 and detailed in Algorithm 2, those employees
have the potential to become a malicious insider based on a combination of emotional, rational
and social factors affecting their disposition. We designed different scenarios where we derived
three profiles varying: Equations 3.2 (Rescorla-Wagner), different weights for the Expectation
Equation 3.3 and different reward_value, risk_tolerance parameters within the Equation 3.10.
The presentation of these results is gathered in the following Section.

3.7.1 Experimental results

As we represent each profile’s behavior following a role-based approach, we utilize as an example
the role of a DBA, defined as a user in charge of administrative actions towards the database,
such as installation, patching and upgrade of the database. This includes the ownership of all
objects of the database and the ability to create and modify roles, users and data files.
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The aim of this set of experiments is to the benefit of observing different scenarios for
posterior detection analysis. For that matter, the agent’s characterization is then derived from
the variables from two different groups. The first relies on the input variables for the disposition
function (Table 3.2), and the second group (Table 3.3) is derived with respect to cloud-related,
contextual and cyber parameters (e.g., number of agents in simulation, roles for each agent, set
of actions).

The actions for these experiments were taken from the set A = {C,R,U,D}. Note that in
the implementation in Chapter 5, these actions can be fictitious or real commands towards an
implemented asset.

Table 3.2 – Sweep parameters for Disposition function in simulation

Parameters DBA 1 DBA 2

Rational probability Vreward 0.5 0.5
Rational probability Vrisk 0.1 0.5
Affective probability ωinit 0.001 0.001
Affective probability ωactual 0.3 0.15
Affective probability ωhistoric 0.9 0.7
Disgruntled threshold (τ) 0.2 0.5

As mentioned in Section 3.4.1, each Profile’s Role has pseudo-random, predefined and
hybrid group of generated Sequences followed by a normal behavior. The following illustrations
represent the used examples of the events a DBA can perform and, therefore, define the DBA
normal behavior:

• A DBA in a working day, logs into the DBMS and enrolls a new user with write permission
over a database.

• A DBA regularly works remotely on Wednesdays, logging into the DBMS from location a,
while the rest of the week from location b.

On the other hand, the following expressions can be represented as generated Sequences for
an anomalous DBA behavior:

• LOC anomaly: A DBA logs in from a public IP that does not belong to the company and
performs a Sequence of actions. In this case, the insider may connect to any machine via
port 3389 (RDP), 23 (Telnet) or 22 (SSH).

• WH Anomaly: A DBA, logs in and performs numerous Sequences of actions on the
database.

• SEQ Anomaly: A DBA, logs in and performs different Sequences of actions on the
database than its normal behavior.

Three types of Profiles (DBA 1, DBA 2) with the same DBA Role have been outlined,
differentiating them by a created Cyber factor named “skill level” as described in Table 3.3.
This factor defines the time taken to perform a Sequence of actions with low, medium and high
skills and prompts the Sequences’ length. We also have modeled the three profiles with the
Psychological factor derived from different parameters to be malicious in Table 3.2.
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Such cases are depicted in Figure 3.5, where the profile generation is performed under the
assumptions given by the industrial case studies [74]. Additionally, in our example the generation
of Events is treated by the “No. Monthly events” which we have settled at 10 Events per day.

Table 3.3 – DBAs Parameters for cloud-related, contextual and cyber factors

Parameters DBA 1 DBA 2

IP 192.168.1.* .100 .110
Location France France
WH 9am-6pm 9am-6pm
Skill level 30 (high) 60 (med)
No. Daily Events 10 10

Figure 3.9 – Histogram example of sequences’ length for Profile with high, medium and low skills

Along with the implementation previously described in this section, a scalability benchmark
was performed and exposed in Tables 3.4 and 3.5. Table 3.4 depicts different the simulation for
different time duration (in months) with a fixed number of employees (agents). This variable
is compared with the time the simulation takes to finish (calculation time) and the amount of
information in MBytes for the generated output.

Table 3.4 – Benchmark for simulation time in months

Simulation time (months) Calculation time (minutes) Storage capacity (MBytes)

8 7 26
12 11 40
15 13 50
20 19 66



46 Chapter 3. Modeling the Insider Threat

Table 3.5 – Benchmark for number of users

Simulated users Calculation time (minutes) Storage capacity (MBytes)

6 2 300
12 8 1000
24 27 4300
36 59 8700

3.8 Discussion

Cloud computing security is ripe with new opportunities for future research, including cloud-
related insider threats. As mentioned previously, we do not believe the nature of the insider will
change due to CC’s impact, but the opportunities for attacks will broaden.

The validation of human behavior and social interactions poses a challenge because of the
random nature of the system being simulated and the difficulty of gathering empirical evidence
due to this variability [123]. From a theoretical validity point of view, the agent-based model-
based approach is grounded in renowned relevant theories. From an empirical point of view, we
utilized statistical and structural information from industrial case studies, gathered primarily
by the CERT [74].

Also, foundational work in risk management suggests that if an individual has motive, capa-
bility, and opportunity, then they are likely to conduct an attack. However, a crucial question
here is, what constitutes as “enough” motive, or “enough” capability? Likewise, somebody may
well exhibit all these, and yet still choose not to attack. Much previous literature also discusses
the concept that if an individual is disgruntled then they may choose to act out.

3.9 Conclusion

In this chapter, we have addressed some important research topics regarding insider threat
resulting in an enriched user model for further simulation and dataset generation. Accordingly,
we outline the design of the aimed synthetic data, while discussing cloud-based indicators, and
psychological-technical human factors, finally proposing a socio-technical approach to insider
threats.

Additionally, in Sections 3.4 and 3.6, the model for deriving insider threat scenarios was
introduced, along with the simulator’s pre-/post conditions description.

This checking process was designed to test whether or not the agent-based model was capable
of reproducing the conditions of the preliminary conceptual model. The methods for checking
the simulation’s pre-/post conditions included iterative programmatic testing (“debugging”) and
exploratory analysis of the simulated data obtained from execution of the model. The simu-
lation analysis included a parameter sweep, in which the model input variables were adjusted
systematically followed by an individual time series experiment.

Additionally, we studied the performance of the ABM implementation, detailed in Table 3.4
and Table 3.5. The first related to the calculation time taken to provide the dataset scenario, as
we varied the simulation duration in a range of [8,20] months while setting the number of users
to three. The second correlates the same variables when the number of users is increased and
the simulation time is fixed at 5 months.

The proposed model provides a promising exploration characterization of the insider threat,
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from an ABM model paradigm. The results exposed allow the use of this software to derive dif-
ferent characterizations, not only considering distinct psychological attributes but also benefiting
itself from different cyber behaviors.

As a conclusion, we can say that the results obtained will be very useful for intrusion detection
techniques and, in particular, for these working on malicious insider threats.

Results with regards of simulation and calculation time, aside with the dataset sizes, reveals
the outcome behaves scalable enough, where simulated data equivalent to a year takes only 11
minutes of simulation time.
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4.1 Introduction

In this Chapter, an overview of the proposed framework is first given, and each component is
described in greater detail. Moreover, the primary objective is to describe the most relevant
aspects to consider at the moment of distinguishing anomalies with a clustering technique for
established insider threat scenarios. These scenarios are studied as a result of the implementation
of an insider threat model, described in Chapter 3. This model is composed of a combination of
probabilities to be malicious, and different actions towards cloud assets. This detection scenario
is complicated, where defining possible precursors for an insider threat in terms of observable
traces of the employees’ actions, and integrating these contributions in an analytic model is a
significant challenge.

There are numerous alternative ways of doing this, and therefore it cannot be in the scope
of this thesis to evaluate them all. By considering this matter, we have defined some specific
objectives based on the intent to solve use-case scenarios.

As discussed throughout this work, we denote the realistic assumptions under which our
solution is made.

• First, by definition, an insider has legitimate access to the organization’s resources. As
such, it is difficult to define the necessary criteria to discern legitimate activity from that
which is non-legitimate. Regardless of how effective anomaly detection is, “anomalous
behavior can never equate exclusively to misuse or lack of legitimacy”.

• Second, regarding these insider’s activities, as many others have stated [76], [79], [106],
[126], we consider that normal data constitute an overwhelmingly large portion1 of the
collected data in a reasonable mid-term time window, while anomalies either belong to
small or sparse clusters.

• Third, compared to the traditional approaches of post-attack analysis and subsequent
change of policy, predicting threats from data offers the benefit of continuous and an online
evaluation [12], [49]. Therefore, CSCs need reacting in a timely manner to these threats,
as insiders could comprise the availability, confidentiality or integrity of their assets.

Assumptions listed above allow obtaining the following main contributions of this Chapter,
namely: 1. A detection technique and corresponding experimental results; 2. A monitoring solu-
tion for IaaS-based services regarding the detection of malicious insiders; 3. A list of attributes
that should be considered for malicious activities in cloud applications under an IaaS model.

The structure of the chapter begins with the preliminaries (Section 4.2 and the main concepts
related to anomalies, the data representation and the algorithms that served as inspiration for
the anomaly detection framework design. Later, the main solution is presented (Section 4.3),
concerning the data analysis of the different attributes, and the main contribution of the present
work. Discussion (Section 4.4) gives detailed insights on the results found while the last part of
the chapter (Section 4.5) ends with the conclusions.

1Usually considered bigger than 80% for the presented experimental work, but without the loss of generality
it can be adjusted to other values.
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4.2 Preliminaries

4.2.1 Anomalies

Many names are used as synonyms for anomalies in the literature, including outliers, abnormal-
ities, discordants or discords [2]. Chandola et al. [23] defined an anomaly as

Patterns in data that do not conform to a well-defined notion of normal behavior.

Chandola et al. make the distinction between noise and anomaly, with the latter being
outliers of interest to the subject analyzing the data whereas the former is not. The only effect
noise has, is to hinder the data analysis task.

Given that the present work focuses on the automated detection of anomalies, rather than on
their interpretation by analysts, such distinction is not considered relevant; therefore, “anomaly”,
“noise” and “outlier” are understood here as synonyms, unless explicitly stated otherwise.

Anomalies can be categorized as follows [23].

• Point anomalies: data instances that are considered anomalous with respect to the rest
of the data. They are the simplest form of anomaly and the focus of most research on
anomaly detection.

• Contextual anomalies: data instances that are only considered anomalous in a specific
context. This context must be induced from the data, and thus it requires each instance
to be defined using both:

– Contextual attributes, which are used to determine the context of that instance; e.g.,
temporal, geographical characteristics, for a character sequence.

– Behavioral attributes, which determine the non-contextual properties of the instance,
e.g., the employee’s activity towards a cloud asset.

4.2.2 Data collection and representation

4.2.2.1 Data collection

As mentioned in Chapter 2, by means of detecting anomalies in a targeted environment, a
detection system may collect data from different points of observations (e.g., hypervisor-based,
network-based or host-based).

The proposed data collection is enriched by comparing two different points of data capture:
a profile-based view from the local network of the company, and a cloud-end view that analyses
data from the services with whom the clients interact. The latter is considered from an end-user
or CSC perspective, i.e., we assume we do not have a sensor in a CSP proprietary observation
point, but instead we do where the CSC has access.

When the activity of a particular type described above is unusual in a way or to a de-
gree known to correlate with malicious insider actions, we can treat these features as relevant
indicators.
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4.2.2.2 Representation of user sequences of actions

There are two major challenges in sequence classification. First, most of the classifiers, such as
decision trees and ANNs, can only take input data as vectors of features. Second, even with
various feature selection methods, we can transform a sequence into a set of features, the feature
selection is not a trivial task. The reason is because the dimensionality of the feature space for
the sequence data can be very high, and the computation can be costly [138].

At the moment of working only with system call sequences, the various implementations differ
in how data are represented. In general, these representations can be grouped into two categories
based on their feature extraction methods: (i) Frequency-based methods (ii) Sequence-based
methods.

Frequency-based methods rely on the number of occurrences of each system call. For ex-
ample, using a “bag of words” representation (which is commonly used in text classification), a
system call anomaly detection can be mapped into this representation.

Thus, previous works [1], [5], [35], [49], [67], [103], [116], [127], [137], [141] related to
frequency-based approach mostly utilize the “bag of words” representation or considering the
number of occurrences in a arbitrary time window, since it is a manner of transforming the
sequences into a propitious vector input for machine learning algorithms.

For example, Gavai et al. [49] utilized features related to email (e.g., number of emails
sent in a day) and web usage (e.g., average time spent on websites), log-in and log-out (e.g.,
number of log-ins) to detect anomalous activities. Instead of only counting the number of
occurrences, some approaches improve detection by applying a ranking, based on the relative
order of frequency values [130]. Also, following the frequency-based approach, Parveen et al.
[103] utilized a compression-based frequent pattern discovery in order to propose a graph-based
anomaly detection. Song et al. [124] used the system level data with a Windows sensor, to
further detect user behavior bio-metrics with a Gaussian Mixture Model (GMM). For this,
they transformed their data into vectors of the number of occurrences (e.g., number of unique
processes, number of user touches, number of files touched). Senator et al. [116] also followed a
graph-based anomaly detection scheme, by treating proxy, email and LDAP logs as the number
of occurrences, and the percentage of the logs dedicated to emails, attachments on sent emails,
among others.

Sequence-based methods use the order of the sequences as information. They can be divided
into three large categories [138].

1. The first category is feature-based classification, which transforms a sequence into a feature
vector and then applying conventional classification methods. Feature selection plays an
important role in this kind of methods.

2. The second category is sequence distance-based classification. The distance function which
measures the similarity between sequences determines the quality of the classification sig-
nificantly.

3. The third category is model-based classification, such as using HMM and other statistical
models to classify the sequences (e.g., [108]).
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4.2.2.3 Network-based representation

Network core equipment such as routers, switches, firewalls, all have the ability to collect the
network traffic passing through which, traditionally, are considered essential data sources for
detecting intrusions. Moreover, some works have identified such network logs’ great potential
for addressing insider threats (e.g., [82]).

The proposed work has focused on retrieving the most relevant attributes from a Deep
Packet Inspection (DPI) tool, in order to reconstruct the network behaviors and interaction
patterns, through the parsing of the packet headers, and obtaining relevant statistics through
the algorithm’s analysis.

The proposed set of attributes is the result of a monitoring implementation (Chapter 5).

4.2.2.4 IaaS-based representation

As mentioned, the proposed work has focused on IaaS assets, such as virtual machines and images
and network properties within the cloud implementation, correspondent to a CSC. In order to
correctly detect anomalies towards the cloud, and in consideration of the usually restrictive
access CSPs grant to CSCs, it is desirable to characterize the behavior of the usage of these
assets, through monitoring and collection of propitious information related to them.

Hence, the proposed set of attributes, whose implementation and calculation is specified
in Chapter 5, along with their analysis in this Chapter, advises a sufficient group of features,
capable of adequately representing the characterization of the normal usage of them, along with
showing when anomalous activities take place.

4.2.3 Clustering methods

We remind from Chapter 2 that the purpose of the clustering techniques is to divide a dataset into
distinct groups, or clusters. Opposite to categorization, which aims to sort the data points into
predefined groups, clustering aims to find unknown structures in the dataset and do knowledge
discovery. Since clustering deals with unlabeled data, these techniques are unsupervised.

This approach properly treats the proposed challenges and is chosen in the present work by
means of detecting anomalies for the insider threat.

Growing Neural Gas (GNG) From its first presentation by Fritzke [43], this algorithm
has been extended for different purposes in the past years. Generic contributions (e.g., [50])
have been done in the data mining field by means of experimentation with different machine
learning datasets (e.g., UCI datasets [15]), and also it has been proposed as a solution in specific
applications domains. This algorithm has proven to be an efficient solution in several application
fields such as image recognition (e.g., MRI [6], Robotic 3D motion images [132]) and anomaly
detection (e.g., [13], [126]).

In more detail, GNG is an incremental self-organizing approach which belongs to the family
of topological maps such as SOM [73] or NG [85]. It is an unsupervised clustering algorithm
capable of representing a high dimensional input space in a low dimensional feature map and
discover topological relationships of the data.

This technique presents many advantages to other unsupervised clustering techniques. With
respect to its predecessors, SOM and NG, it does not need to fix the graph size in advance.
Additionally, it allows the continuous learning and growth of the network automatically. This
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Table 4.1 – Notations for the proposed and compared algorithms

Notation Range Description

DS Stream of n-dimensional data vectors
x(i) ∈ R

+ Value for feature i in vector x
N ∈ N Set of neurons
Nu ∈ N Set of neurons connected to neuron u
wu ∈ R

d Prototype wu = (w1
u, w

2
u, ..., w

d
u) of neuron u

w(i) ∈ R
+ List of prototype for feature i for all neurons in G

error(u) ∈ R
+ Local accumulated error variable of neuron u

E ∈ R
+ Set of l errors for neurons {u1, u2, . . . , ul}

bmu1 ∈ N BMU (nearest neuron to the xi input)
bmu2 ∈ N Second BMU
H ∈ N0 Set of hits for all neurons N
Hu ∈ N0 Number of hits for neuron u
α1 ∈ [0, 1] bmu1 (the nearest neuron) adaptation factor
α2 ∈ [0, 1] bmu1’s neighbor adaptation factor
β ∈ [0, 1] Global error factor update
λ ∈ N Cycle interval between neuron insertion
η ∈ N Cycle interval between neuron deletion
agemax ∈ N Oldest age allowed for an edge
Tserver ∈ R

+ Threshold for server severity in G
Timage ∈ R

+ Threshold for image severity in G
Tnetwork ∈ R

+ Threshold for network severity in G

Neurons can also be removed if they are identified as being superfluous (Deletion). Finally,
the original algorithm finishes learning (Stopping) when the stopping criterion is achieved.

The presented processes are described in detail, denoting how our approach has adapted and
extended them for anomaly detection purposes for the insider threat.

Learning The original GNG of Algorithm 5 learns through fixed parameters α1 and α2 for
bmu1 and bmu2, respectively, as shown in Equation 4.1. This is a disadvantage that makes the
network less adaptive to the incoming data. In other words, every time a neuron “wins”, it will
update its prototype (wi in Equation 4.1) by a fraction of the absorbed input.

By means of utilizing similar approaches as in [44], in the proposed algorithm the learning
rates are dependent of the number of times the neuron has won. This corresponds to the following
definitions

wu = wu + α1 ∗ (x− wu)

wi = wi + α2 ∗ (x− wi), ∀i ∈ Nu

(4.1)

As said, the learning rate determines the extent to which the winner and the neighbors of
the winner are adapted towards the input signal.

In this work, we adopt an adaptive learning rate over time presented by [44] as
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α1 =
1

Hbmu1
(t)

α2 =
1

100Hbmu1
(t)

(4.2)

In this case, time parameter Hbmu1
(t) represents the number of input signals for which this

particular neuron has been a winner thus far, at time step t. The scheme considered follows the
K-means approach, in the sense that every neuron is always the exact arithmetic mean of the
input signals it has been a winner for [44]. This scheme is adopted because it makes the position
wn of the neuron n more stable by decreasing the learning rate when it becomes a winner for
increasing input patterns.

To consider a broader set of learning rate approaches for the best suit of the insider threat
scenario, an additional adaptive approach has been included in the analysis. This adaptive
learning model proposed in [126] considers the Equation 4.2 presented by [44] and extended it
as

α1 =
1

Hbmu1
(t)
· e

‖xi−w1‖

T1

α2 =
1

100 ·Hbmu1
(t)
· e

‖xi−wn‖

T1 , ∀n ∈ Nu

(4.3)

where Ti is a similarity threshold, also presented in [44]. For classification purposes, the
proposed model in [126] adds an exponential decay function to the existent in Equation 4.2.

Algorithm 5 Original GNG [43]

Input: DS and model params M = (λ, β, α1, α2)
Output: Neurons N = {u1, . . . , un} and prototypes
W = {w1, . . . , wn}

1: Initialize two neurons with prototype vectors w1, w2 ∈ R
d

2: for all x ∈ DS do
3: Find 1st neuron (winner):

bmu1 ← argminbmu1∈N‖x− wbmu1
‖

4: Find 2nd nearest neuron (second winner):
bmu2 ← argminbmu2∈N\bmu1

‖x− wbmu2
‖

5: Modify the age of all edges emanating from bmu1
6: Add the distance between x and bmu1 to error variable:

error(bmu) ← error(bmu) + ‖x− wbmu1
‖2

7: Move bmu1 and its direct neighbors:
wbmu1

← wbmu1
+ α1 · ‖x− wbmu1

‖2
wi ← wi + α2 · (x− wi), ∀i ∈ Nu

8: if i-th x data is an integer multiple of λ then
9: InsertNeuron (Algorithm 6)

10: end if
11: Delete each isolated neuron
12: Decrease the error of all neurons: E ← E − β · E
13: end for
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Insertion As seen in Algorithm 5, a new neuron is inserted every λ steps. Authors of [126]
added a similarity threshold parameter Ti that compares the BMU’s distance with all its neigh-
bors, and determines whether a neuron should be inserted following the original procedure of
Algorithm 6.

Algorithm 6 Original GNG [43] Neuron Insertion

Input: Graph G
Output: Updated Graph G

1: Find neuron q with the maximum accumulated error, error(q)
2: Find the neighbor f of q with the largest accumulated error
3: Add a new neuron r, half-way between neurons f and q:

wr = 0.5 · (wf + wf )
4: Insert edges connecting the new neuron r with neurons q and f
5: Remove the original edge between neurons q and f

The similarity threshold can be calculated in two ways. If the neuron has direct topological
neighbors, the threshold is updated like so in Equation 4.4, by using the maximum distance
between bmu1 and its neighbors.

Ti = argmax
n∈Ni

‖wi − wn‖ (4.4)

If the neuron n has no neighbors, Tn is updated as the minimum distance of neuron n and
all other neurons in the graph G, like so in Equation 4.5:

Tn = argmin
n∈Ni\{i}

‖wi − wn‖ (4.5)

4.2.4 Community detection

When we have a set of feature vectors learned by a clustering algorithm such as the mentioned
GNG, we obtain a graph G, as seen in Figure 4.2, in which each neuron represents a cluster of
inputs, and edges represent the distance (e.g., Euclidean) between these clusters. Now we would
like to know the general structure of this graph, i.e., Ĝ = argmaxp (G|D) where D is our input
vector distribution. Community detection has been studied as the graph partitioning in computer
science for decades and remains quite challenging. Algorithms to detect reasonably good quality
communities have been proposed and improved extensively, especially in recent years, such
as Girvan Newman algorithm, spectral clustering, random walk, modularity optimization and
statistical inference [56].

This graphical model is used to interpret the clustering structure, based on the topology to
make anomaly predictions.

4.2.5 Evaluation metrics

Intuitively, the goal of clustering is to assign input vectors that are similar to the same cluster,
and to ensure that vectors that are dissimilar are in different clusters. Hence, by performing
an unsupervised organization of the data, there exists an underlying ground-true set of clusters,
and the set of clusters found by our algorithm.
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Where,

Sv =
bv − av

max(av, bv)
(4.7)

In this case, av is the average distance between vertex v and all the other vertices in the
same cluster as it is, and bv is the average distance between v and all the vertices in the nearest
cluster that are not v’s. The silhouette index for a given cluster is the average value of silhouette
for all its member vertices. The silhouette index can assume values between -1 and 1, with a
negative value being undesirable, as it means that the average internal distance of the cluster is
greater than the external one.

Modularity This metric has been proposed through many definitions in the literature (e.g.,
[94]). One of the most utilized is the Louvain method [11] which is a validation metric for
topological clustering. Modularity states that a good cluster should have a bigger than expected
number of internal edges and a smaller than expected number of inter-cluster edges when com-
pared to a random graph with similar characteristics.

In particular, the Louvain method of community detection is an algorithm for detecting
communities in networks that relies upon a heuristic for maximizing the modularity. The method
consists of repeated application of two steps. The first step is a “greedy” assignment of neurons
to communities, favoring local optimization of the modularity. The second step is the definition
of a new coarse-grained network in terms of the communities found in the first step. These
two steps are repeated until no further modularity-increasing reassignments of communities are
possible.

The Louvain method achieves modularities comparable to pre-existing algorithms, typically
in less time, so it enables the study of much larger networks. It also generally reveals a hi-
erarchy of communities at different scales, and this hierarchical perspective can be useful for
understanding the global functioning of a graph.

4.2.5.2 External criteria

The proposed algorithm for the insider threat detection is to be evaluated using three perfor-
mance measures.

Confusion Matrix The confusion matrix [125] is commonly used to determine how well a
classification model performs. It provides the information about the actual normal and abnormal
number of instances, and the number of normal and abnormal instances in the analyzed results.
Table 4.2 shows the confusion matrix for a two-class classifier. “True (T)” indicates that the
prediction is correct, and “False (F)” is incorrect. “Positive (P)” is used to indicate an abnormal
class and “Negative (N)” a normal class.

Consequently, there are four kinds of data in the confusion matrix to show the correct and
incorrect predictions of the two classes: 1) True Positive (TP), 2) False Positive (FP), 3) True
Negative (TN) and 4) False Negative (FN). For example, TP indicates the number of abnormal
instances that are predicted correctly.

Rate Measures The basic evaluation measures are derived from the information that the
confusion matrix provides. The definitions and the formulations of these evaluation measures
are explained below.
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Table 4.2 – Definition of confusion matrix

ACTUAL
PREDICTED

Positive Negative

Positive TP FN

Negative FP TN

The Precision is the percentage of the correctly predicted anomalies (TP), computed over
all predicted anomalies.

Precision =
TP

TP + FP
(4.8)

The Recall is the percentage of the correctly predicted anomalies (TP) over all the actual
anomalies. Recall is also known as the true positive rate or sensitivity.

Recall =
TP

TP + FN
(4.9)

The False Positive Rate (FPR) is the percentage of the normal cases that are incorrectly
predicted as anomalies (FP) over all the actual normal cases.

FPR =
FP

TN + FP
(4.10)

The False Negative Rate (FNR) is the percentage of the anomalies that are incorrectly
predicted as normal cases (FN) over all the actual anomalies.

FNR =
FN

FN + TP
(4.11)

The F1-score is the harmonic average of the precision and recall.

F1− score = 2 ·
precision · recall

precision+ recal
(4.12)

The above-mentioned preliminaries serve as a base for the proposed solution for the insider
threat detection, presented in the following sections.

4.3 Proposed solution

Our approach is based on the design and monitoring of novel features from enterprise data
that are reflective of insider threat behavior, and subsequent analysis of these data to identify
inconsistent, statistically rare behavior that can be indicative of insider threat activity.

In Section 4.1, we presented the problem statement, denoted our assumptions and discussed
the challenges to be faced. As a result of this analysis, this section details the proposed solution,
with the following characteristics.
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All five characteristics are assessed through a three-stage methodology. As depicted in Fig-
ure 4.3 and in more detail in the Section 5, our framework is constituted by:

1. Data collection of the employee’s activities, through the monitoring of the cloud envi-
ronment, mainly done through network’s DPI/Deep Flow Inspection (DFI), and active
monitoring modules.

2. Analysis of all the collected data, by means of data extraction, aggregation and processing
through feature selection (Section 4.3.1).

3. Detection of all relevant features that serve as input for the OSAD module. This module
relies on the clustering of the sequences and contextual information into groups, using the
Euclidean metric as the distance measure.

4. Analysis of the employee-based clusters, where we identify a certain percentage of the
outliers as the anomalous events.

5. Derivation of an anomaly score and perform an identification of where and why the event
deviates from normal behavior.

In order to better feed our detection algorithm, an analysis of the extracted features is
considered. This is part of the data processing phase from Figure 4.3 and it involves two steps
(the following Section 4.3.1 and Section 4.3.2), for both, network and cloud collected data. The
first step relies on visualizing relation between features, and also describing the variability and
importance of these features information-wise. The second step concerns the feature scaling in
order to better feed our algorithm.

4.3.1 Feature analysis

As a result, the monitored data are presented in the Table 4.32 and Table 4.4.

With respect to the relation between features, since our features dimensionality is not ex-
tremely high, we observe their correlation and variability. For that, the relationship between all
features are depicted in Figure 4.4.

We monitored a total of 19 IaaS-based features related to the CSC’s network, server instances
and the images (e.g., Counts for server’s resize, paused, hard reboot). Table 4.3 shows only the
non-zero final features.

IaaS-based feature set descriptive statistics can be found in Table 4.3 and the correspon-
dent pair plot in Figure A.1 in Annex A. From these two, we observe that only Server Total

Mean, Server Active Mean, Server Other Mean and Server Reboot Mean are non redundant,
in contrary of the rest (visible in Table 5.4), which always provide the same information. This
is rather obvious given the fact that our simulated actions, in the scope of this thesis, did not
consider any of the other monitored statuses towards the OpenStack implementation.

Nevertheless, given the fact our framework proposes the incremental addition of future ac-
tions, we implemented the whole possibility of the monitoring feature set. For example, if there is
a new action that corresponds to suspend a VM or re-size a VM’s RAM parameters, the features
of Server Suspended Mean and Server Resize Mean would become relevant, respectively.

2The IaaS description details can be found in [99].
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Feature mean std min 25% 50% 75% max

Image Total Mean 3.028E+00 1.746E-01 3.000E+00 3.000E+00 3.000E+00 3.000E+00 4.500E+00
Image Total 25q 3.025E+00 1.613E-01 3.000E+00 3.000E+00 3.000E+00 3.000E+00 4.250E+00
Server Shutoff Mean 1.622E-02 1.107E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00
Server Reboot Mean 4.481E-01 3.853E-01 0.000E+00 1.250E-01 3.333E-01 1.000E+00 1.000E+00
Server Total Mean 1.145E+00 3.747E-01 0.000E+00 1.000E+00 1.000E+00 1.000E+00 2.000E+00
Server Active Mean 6.760E-01 3.888E-01 0.000E+00 5.000E-01 8.000E-01 1.000E+00 1.000E+00
Server Delete Mean 4.879E-03 6.759E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00
Server Password Mean 1.884E-02 1.360E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00
Server Stop Mean 1.636E-02 1.180E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00
Server Snapshot Mean 2.041E-02 1.414E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00
Memory Mb Usage Var 5.121E-05 1.899E-03 0.000E+00 0.000E+00 0.000E+00 1.167E-06 1.364E-01
Local Gb Usage Var 5.093E-10 1.888E-08 0.000E+00 0.000E+00 0.000E+00 1.161E-11 1.357E-06
Server Total Var 1.647E-03 2.011E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.500E-01
Server Total 75q 1.146E+00 3.730E-01 0.000E+00 1.000E+00 1.000E+00 1.000E+00 2.000E+00
Server Total 25q 1.143E+00 3.772E-01 0.000E+00 1.000E+00 1.000E+00 1.000E+00 2.000E+00
Security Rules Mod 2.408E-02 1.533E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00
Server Severity 1.456E+00 1.829E+00 0.000E+00 5.000E-01 1.000E+00 2.000E+00 1.800E+01
Image Severity 9.138E-02 5.156E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.000E+00
Network Severity 1.685E-01 1.073E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 7.000E+00

Table 4.3 – Descriptive statistics for IaaS-features for generated dataset

Other important fact while analyzing these features, is that we may be missing their correct
values by the monitoring sampling time. This is the case, for example, of Image Delete Mean,
where even though it is documented as a possible state, it is very immediate, therefore can be only
captured in logs. To overcome this issue for this feature and others, we have used aggregated
features that measure the variability of the total amount of servers and images, making this
information accessible for the detection engine (more details regarding its calculation can be
found in the next chapter).

Network-based feature set descriptive statistics can be found in Table 4.4 and their cor-
relation plot in Figure A.2 in Annex A. From these two, we observe that some of the features
show a relatively linear relation (e.g., Total Packets and Total Bytes) while for others it is
more evident (e.g, Total Packets and HyperText Transfer Protocol (HTTP)’s content length;
Download Payload Bytes and Total Bytes). To complement this information, Figure 4.4 de-
picts the correlation between all collected features. The reader can see that there are positive
and negative correlations between some features.

Within the positive correlations we have the tuple Download (DL) Data Vol and Total

Bytes. Thus, most of the times the user’s activities rely on a download procedure, rather than
an upload (hence the lower correlation with Upload (UL) Data Vol). This is fairly evident since
the content length for a POST HTTP query is set to 0 while waiting for a HTTP response [42].

Also, for the relation between Total Bytes and Session Time, we observe there are two
behaviors in the traffic: we see that there are high values of session time (in seconds) when
Total Bytes has both low and high values. The reason may be due to the fact that employees
may perform small sets of activities dealing with heavy loads (e.g., downloading a file), while also
executing large sets of non-byte-demanding actions (e.g., editing the details of a VM) within a
session. These two possible practices, of course, weaken the correlation (observable in Figure 4.4)
making it a hard task to analyze them in an unsupervised manner.

Consequently, after this analysis, these two features are kept as relevant information at the
moment of detecting the examples mentioned above.
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Feature mean std min 25% 50% 75% max

Total Bytes 5.655E+08 3.561E+09 3.484E+03 3.848E+03 1.338E+04 1.906E+04 2.300E+10
Total Pkts 1.466E+05 9.232E+05 4.000E+01 4.400E+01 8.800E+01 8.800E+01 6.492E+06
response Time 1.531E+03 9.472E+02 5.906E+01 4.693E+02 1.592E+03 2.216E+03 6.347E+03
UL Data Vol 2.827E+08 1.780E+09 1.742E+03 1.924E+03 6.690E+03 9.532E+03 1.150E+10
DL Data Vol 2.827E+08 1.780E+09 1.742E+03 1.924E+03 6.690E+03 9.532E+03 1.150E+10
Session Time 1.515E+01 3.304E+01 3.614E-02 1.128E-01 3.171E-01 3.528E+01 3.403E+02
Post Method Count 2.997E+00 2.007E+00 0.000E+00 0.000E+00 4.000E+00 4.000E+00 1.200E+01
Get Method Count 5.623E+00 1.119E+01 0.000E+00 0.000E+00 4.000E+00 8.000E+00 8.400E+01
Delete Method Count 8.709E-02 6.008E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 8.000E+00
Transaction Count 8.757E+00 1.110E+01 4.000E+00 4.000E+00 8.000E+00 8.000E+00 9.200E+01
Interaction Time 1.566E+00 9.288E-01 1.446E-01 4.885E-01 1.600E+00 2.233E+00 6.347E+00
Application Type 9.792E-01 1.428E-01 0.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
Octet Stream Type 2.460E-02 1.549E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00
HTTP 200 5.393E+00 1.114E+01 0.000E+00 0.000E+00 4.000E+00 4.000E+00 8.400E+01
HTTP 202 2.724E+00 1.907E+00 0.000E+00 0.000E+00 4.000E+00 4.000E+00 8.000E+00
HTTP 204 8.458E-02 5.755E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.000E+00
HTTP 401 9.882E-02 6.209E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.000E+00

Table 4.4 – Network-based features descriptive statistics for dataset

On the other hand, UL Data Vol is somewhat correlated with the Session Time. We infer
that this may be due to sessions that correspond to long list of actions, that are not bytes-
demanding and/or that may take more time (e.g., an employee performing a list of activities in
the search of a file).

In conclusion, by means of no over-fitting the further clustering steps, we choose to reduce
our feature set by eliminating Total Pkts, since the same information can be deducted in Total

Bytes.

User-based feature set can be viewed in Figure 4.4. As previously mentioned, differently
from the data processing task based on network and IaaS-based feature vectors, the users’ actions
are represented by letters in the form of a list. However, this list does not have explicit features.
For this purpose, from both training and testing datasets, we obtain the list of actions for each of
the employee’s simulated sessions. For every action (defined by letter) there is a correspondent
letter in the following alphabet: [“D”, “L”, “P”, “S”, “R”, “T”, “Z”, “X”], as described in the previous
Chapter 3; the implementation is explained in Chapter 5.

Experimental work has been carried out to determine the most suitable representation for a
discrete sequence of actions. These results have been organized concerning the treatment of the
strings in numerical in Table A.1 in Annex A.

From the corresponding experimental results detailed in Table A.1 in Annex A, we decided
to use the alphabet representation of the employee’s actions. By use of the sequence treatment
presented in the preliminaries, we observed the relationship of these actions in relation with
network and IaaS-based feature sets. This relationship is presented in Figure 4.4, where several
inferences of the monitored data can be made.

The representation of the employee’s actions is based in an n-gram, transforming strings into
numerical vectors. As an example, for n-grams of length n = 4 , if the list of actions is [“L”, “L”,
“R”, “L”], and “L” and “R” are the two existing actions in the alphabet, the resultant n-gram for
that example will be the vector (3,1) if the order of representation for the alphabet is “L”, “R”.

Thus, for every action present in a sequence, the correlation plot in Figure 4.4 will show the
relationship with the rest of the attributes. In other words, it represents the relationship with
the rest of the features, whenever present.
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At the same time, we cannot say much about the time-related features (e.g., Response

Time, Session Time, Interaction Time) because these may not categorize the presence of
these actions for different length sequences of actions.

Nevertheless, we can still infer that the action is “L” (i.e., action that is equivalent to listing
the VM’s details), for instance, when present, the feature Total Bytes and UL Data Volume are
negatively correlated with it, while the response time is positively correlated. This characteristic
indicates that this action is non-byte demanding, but it is embedded in long sessions or sequences
of actions.

Additionally, we may see that the “D” (i.e., download image) action is in fact clearly corre-
lated with the feature DL Data Vol and resembles also some relationship with the Transaction

Count.

Also, we see that for the “T” (i.e., terminate instance) there is a weak correlation with our
aggregated feature Server Severity.

Lastly, we observe that the latter is also weakly correlated with the “S” (i.e., stop instance)
action, which both consist of security threats regarding service availability.

In conclusion, all these complex relationships motivate the use of Server Severity, Image
Severity and Network Severity as contextual features, in order to help decrease the number
of false rate positives in our detection algorithm.

4.3.2 Dynamic feature transformation process

The features selected in the precedent section rely on both numeric and symbolic or categorical
values.

On the one hand, for the numeric features we proceed with a data standardization, which
re-scales the input vectors to have a mean of 0 and standard deviation of 1 (unit variance).
This relies on the fact that we have unbounded attributes (e.g., Session Time), where anoma-
lous values could be possibly high. In this case, standardization (over normalization) is more
useful, getting reasonable transformed values for normal values (otherwise the normal values
will be “squished” by the outliers extreme values; for example, for values [0, 1, 2, 1E100], the
normalization would result in [0.0, 0.0, 0.0, 1.0]).

Another reason to perform this feature scaling phase is that our dataset (composed by m
collected samples by the selected n features) has features with different scales. For example,
while Server Active Mean belongs to the interval [0, 1] we have Total Bytes which can go from
low values to as high as the HTTP communication is intended to be (e.g., a 1GB download).
For that concern, most of machine learning algorithms are not scale-invariant (e.g., for ANN
these different scales may affect the weight of the neurons passing through).

Hence, for a set of m vectors DS = {x1, . . . , xm}, where each vector xi is xi = (x1i , . . . , x
n
i )

given by n features, µn and σn are the mean and standard deviation for the feature n. The
standardization value is given by the Equation 4.13.

zi =
xni − µn

σn
(4.13)

One can see that subtracting the mean will only shift the feature distribution left (or right,
if the mean is negative). Dividing by the standard deviation will only stretch the histogram
horizontally and vertically. Neither operation will change the shape of the distribution.

In our proposed solution, we consider a clustering approach, by means of calculating the Eu-
clidean distance between arriving data vectors. In this case, the values of the feature dimensions
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Figure 4.4 – Correlation plot for all features

that range between 0 and 1 may become uninformative and the algorithm would essentially rely
on the single dimension whose values are substantially larger.

On the other hand, the categorical features are treated just as it is, in virtue of tagging each
feature vector with known contextual information in the detection process.

Aside from these categorical features, by means of comparing our solution with different
subset of features, we made use of the different employee’s simulated actions, also collected from
the same monitoring process, following the mentioned technique in Section 4.2.

As our solution adopts an offline and online phase, we note the importance of the offline
training dataset size, since it will allow to fit the standardization scales for each feature more
robustly. For the online phase, since our case involves an online data-stream, a continuous
standardization of the data is required. This means whenever a new feature vector arrives, it
will be treated accordingly by this module and then applied to the main algorithm.
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4.3.3 Online Streaming Anomaly Detection Algorithm (OSAD)

In this section, we introduce the OSAD and describe some of its novel contributions within the
detection of the insider threat. The structure of the following work concerns:

• The internal details of the proposed algorithm through novel contributions with respect
to the original algorithm detailed in Section 4.2, in the application for the insider threat
in Section 4.3.3.1;

• The detection methodology through the first learning phase in Section 4.3.3.2 along with
the novel labeling proposal in Section 4.3.3.3.

First of all, the algorithm implements a data-stream approach, where the data are treated on-
the-fly by the algorithm. As mentioned in the previous section, this stream is defined as a list of
vectors DS, namely x1, . . . , xm, data streams arriving at time t1, . . . , tm, where xi = (x1i , . . . , x

n
i )

is a vector in ℜn space.

At every time-step t the model is represented by a graph G where each neuron represents a
cluster, following the GNG baseline described in Section 4.2.3.

Our detection procedure functions in two phases: offline and online learning. At the first
phase, the objective is to make the ANN learn the intrinsic relationships between a large dataset.
This is based on the assumption that by capturing user activities in a medium-term, we are able
to analyze the normal usage and overall behavior for each employee.

At the second phase, the objective is to detect and predict anomalies near real time. The
proposed algorithm extends GNG and analyses new data for deciding if every incoming input
belongs to an anomaly or to a normal behavior for the user. Both phases are explained in detail
in the following sections.

4.3.3.1 OSAD and other models’ comparison

The Algorithm 5 in Section 4.2 explained how the original GNG can be resumed in 4 dominant
procedures: (i) Learning, (ii) Insertion, (iii) Deletion, and (iv) Stopping. The OSAD algo-
rithm proposes to go beyond the original methodology proposed in [43], [44], [126] by adapting
these functionalities to an evolving network to properly detect insider threat anomalies.

Learning As said in Section 4.2.3, the learning rate determines the extent to which the winner
and the neighbors of the winner are adapted towards the input signal.

The original GNG in Algorithm 5 learns through fixed parameters α1 and α2 for bmu1 and
its neighbors, respectively, as shown in Equation 4.1. This is a disadvantage that makes the
network very sensitive to new incoming data. In other words, every time a neuron “wins”, it will
update its prototype by a factor of the absorbed input.

Consequently, since this learning is done always by the same factor and independently of the
network evolving characteristics, it outcomes that every neuron will be much more susceptible
to the input pattern they lastly won, making this solution more prone to errors in the case the
neuron wins an input with a high distance from its prototype.

Additionally, the two detailed adaptive propositions of [44], [126] make use of the number
of times the neuron has won, by means of decreasing its learning once it has absorbed many
inputs. This means the more it wins, the less it needs to keep “learning”. This can also be seen
in Figure 4.5, which depicts the evolution of the learning rate parameter for the most winning
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distance. Every fluctuation indicates the neuron won among the others, however the absorbed
input was rather different than its prototype. This could also be read as the absorbed input was
a “surprise” for the neuron. On the other hand, from Figure 4.6b a reader can see there are not
many differences in the recorded time lapse. Moreover, every step in the figure means that the
region of the neuron and its neighbors is increasing spatially.

Therefore, visible peaks in Figure 4.5c are due to all the presented factors. Also, the men-
tioned λ also controls the neuron’s insertion, which can also modify the neighborhood of the
bmu1. Hence, not only the adaptiveness of the learning procedure is important, but also the
insertion rate.

In terms of insider threat behaviors, this could be sensitive to the heterogeneity of the
employee’s actions towards the cloud assets.

As a result of this analysis, this work adopted the adaptive learning rate over time presented
by [44] in Equation 4.2.

Insertion The original GNG of Algorithm 6 inserts neurons at an arbitrary fixed-rate (i.e.,
every λ steps). This is a disadvantage given the nature of the network, which may evolve as new
behaviors happen. Hence, it is necessary to apply a different approach as in [44], [126] through
a different criterion for neuron insertion. Inspired in the latter ideas, the proposed algorithm
runs with the presented adaptive approach in [44], [126], inserting neurons only when the input
vector’s distance to the BMU is bigger than an adaptive threshold.

Additionally, this work extends the previous models by inserting neurons via a domain knowl-
edge contextual data, derived in Chapter 5. The experimental comparison by means of using
the proposed extension, with the different insider threat scenarios is detailed in the experimental
results in Chapter 6.

Algorithm 7 OSAD Neuron Insertion

Input: xi and model params M = (λ, α1, α2), Tbmu1
, wbmu1

Output: Neurons N = {u1, . . . , un} and prototypes W = {w1, . . . , wn}

1: if x > Tbmu1
or ContextualSeverityCriterion then

2: if CheckInReservoir(xi, wbmu1
) then

3: InsertFromReservoir

4: else
5: InsertOuterNeuron

6: end if
7: Continue
8: end if
9: if i-th x data is an integer multiple of λ then

10: InsertNeuron (Algorithm 6)
11: end if
12: Update the local accumulated number of wins Hbmu1

← Hbmu1
+ 1

Moreover, by means of reviewing the efficiency of the past approaches in comparison with
the proposed in this work, Figure 4.7 shows how the network size changes for every model. For
this particular experiment, training data consisted in 800 samples of 36 features each, feature
set correspondent to the scenario 1 described in Section 6.2.1 from Chapter 6. The experiments
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from Figure 4.7 correspond to 18 iterations over the same data. The insertion λ step was 50,
hence the step curves in Figure 4.7a.

Algorithm 8 OSAD Contextual Severity Criterion

Input: xi, prototypes w(i) ∀i ∈ {server, image, network} severity
Output: Boolean

1: listi ← w(i), ∀i ∈ {server, image, network}
2: Ti ← mean(listi) + std(listi), ∀i ∈ {server, image, network}
3: boolean_n ← if x(server_severity) > Tserver

4: boolean_i ← if x(image_severity) > Timage

5: boolean_s ← if x(network_severity) > Tnetwork

6: Return boolean_n or boolean_i or boolean_s

From Figure 4.7 a reader can see that overall the proposed OSAD models have a low global
error (Figure 4.7c), a steady insertion/deletion rate (Figure 4.7a) while keeping its neurons with
absorbed inputs.

It can also be seen that for the utilized dataset, the author of [43] (green curves in Figure 4.7)
have the lowest number of neurons in the graph G. This is the result of an insertion rate that is
not sufficiently efficient, given the fact that at the end of every iteration, more than half of the
created neurons are deleted because they never won any input. This is also visible in Figure 4.7b
where the number of neurons with absorbed inputs is rather stable. This means that the tendency
is that incoming inputs are absorbed by the same set of neurons. In consequence, for different
input behaviors, the error of the neuron will grow, as seen in Figure 4.7c.

Deletion The original GNG of Algorithm 6 eliminates edges when the age value exceeds the
agemax. This results in some isolated neurons to be deleted. An extension of this work was
provided by authors in [44] who added a parameter for every neuron’s winning frequency or
density of absorbed inputs, in order to delete isolated neurons under a frequency threshold
parameter. On the other hand, authors in [126] also included the distance from these neurons
towards their neighbors.

Although in all previous works deletion has the main functionality of dismissing obsolete
neurons while prevailing the scalability of the network, this is a disadvantage for an anomaly
detection case scenario. Even though it allows the network to be highly dynamic in terms of
representing new evolving behaviors, it may discard anomalies as they are rare events. Hence,
it is necessary to apply a different approach through a different criterion for neuron deletion.

The proposed solution in the present work, concerns two differences with respect to previous
works. First, the deletion procedure is executed at the end of every iteration (i.e., a full run
of data feed to the algorithm), therefore the adaptive threshold is only calculated at this step.
This benefits from allowing the graph to adapt for a longer period of time, and make better use
of newly inserted neurons that have not won any incoming vector. This advantage is also seen
in Figure 4.8 where the proposed algorithm has a lower deletion rate, hence it keeps more data
in the graph, while keeping good global error values, such as in Figure 4.7c, with respect to the
other models.

Second, the obsolete neurons and its neighbors are kept in memory, by use of a reservoir,
which is a generic concept utilized in previous stream clustering approaches (e.g., [50], [147]).
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[43]) the result will depend also on the amount of data the network has absorbed so far and how
the connections have been made for the normal and anomalous data.

On the one hand, if the deletion is made at the end of every iteration (for a fixed number of
data inputs), the procedure will consider a much more trained network, therefore will eliminate
poorly connected neurons after that longer time. On the other hand, this procedure may result
in the creation of a higher number of isolated-never-won neurons. Therefore, the moment of
executing this functionality is not a trivial task as it depends on the data.

To tackle this issue with a conservative approach, the proposed algorithm deletes neurons
with less than two neighbors, after a predefined number of read inputs, namely iteration. At
that point it first considers those neurons that have no absorbed inputs. Later, and with the
purpose of preserving the possible treacherous neurons, it stores those in the reservoir.

Algorithm 9 OSAD Neuron Deletion

Input: H, G, w = (w(image), w(server), w(network))
Output: Reservoir

1: Reservoir ← {}
2: Th ← mean(H)
3: Tserver, Timage, Tnetwork ← GetSeverityThresholds(w)
4: neurons ← GetNeuronsWithLessThanTwoNeighbors(G)
5: for all n ∈ neurons do
6: if Hn is Th then
7: G ← DeleteNeuron(n)
8: Continue
9: end if

10: servern, imagen, networkn ← GetNeuronSeverity(n)
11: if servern > Tserver or imagen > Timage or networkn >

Tnetwork then
12: Reservoir[n] ← wn

13: G ← DeleteNeuron(n)
14: end if
15: end for

All adaptive thresholds, namely Th, Tserver, Timage, Tnetwork proposed in the Algorithm 9
are calculated at the moment of finishing an iteration. Therefore, they are updated through the
calculation of the current state of the graph G for the set of number of hits H, server severity
prototypes, image severity prototypes and network severity prototypes, respectively.

For the latter, the severity calculation strategy for every soon-to-be-deleted neuron is de-
scribed in Algorithm 8. Under the assumption that most of the three severities behave under
certain regular values (mean), the strategy considers all reservoir candidates which wi is higher
than the mean plus one standard deviation.

For greater detail, Figure 4.8 depicts the distribution of the deleted neurons for the proposed
algorithm, in comparison with the other models. For this purpose, labels have been included in
the analysis to verify the ground-truth behavior of the procedure.

A deeper analysis was carried for the remaining deleted anomalous neurons in Figure 4.8c.
These neurons consequently correspond to either neurons with few absorbed inputs or with a
value for any of the severities which are not that critical. The first case relies on the fact that
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Reservoir By utilizing the contextual severity criteria in Algorithm 8, the proposed method-
ology benefits itself from the use of a reservoir for keeping neurons with certain treacherous
characteristics. The workflow of this procedure is succinctly extracted from the algorithm’s
output and listed in the following example.

Example of the algorithm’s output for reservoir management.

1. Iteration 1

• Deleting neurons with less than 2 neighbors: neuron 2, neighbors: 26, (sequence label
count: “T”: 4). Winning hits less than thresh 21.56 < 100.12
• Sending neuron 2 to reservoir due to Severity Server: True, Image severity: False,

Network severity: False

2. Iteration 2

• Learning phase: Including neuron 2 from reservoir
• Deleting neurons with less than 2 neighbors: neuron 2, neighbors: 26, (sequence label

count: “T”: 5). Hits less than thresh 23.56 < 96.83
• Sending neuron 2 to reservoir due to Severity Server: True, Image severity: False,

Network severity: False

3. Iteration 3

• Learning phase: Including neuron 2 from reservoir
• Deleting neurons with less than 2 neighbors: neuron 2, neighbors: 26, (sequence label

count: “T”: 6). Hits less than thresh 25.56 < 100.74
• Sending neuron 2 to reservoir due to Severity Server: True, Image severity: False,

Network severity: False

4. Iteration 4

• Learning phase: Including neuron 2 from reservoir
• Deleting neurons with less than 2 neighbors: neuron 2, neighbors: 26, (sequence label

count: “T”: 7). Hits less than thresh 27.56 < 98.53
• Sending neuron 2 to reservoir due to Severity Server: True, Image severity: False,

Network severity: False

The overall behavior of the reservoir can be seen in Figure 4.9, which describes the evolu-
tion of the number of neurons and their absorbed inputs across the learning steps. From the
illustrations it can be seen the values are the same for both, the number of neurons, and for
the number of inputs for each neuron. This results shows that for this example, all the neurons
within the reservoir contain only 1 absorbed input.

Stopping The original GNG of Algorithm 5 can use different stopping criteria such as the max-
imal number of neurons and the global error between two training iterations. Authors in [126]
proposed a stopping criterion based on the silhouette scores’ variation (defined in Section. 4.2.5)
in time.

Although this metric may accurately depict the clustering quality of the algorithm, this
fixed criterion has to be evaluated for the insider threat detection scenario. As also previously
mentioned, the proposed algorithm works with a streaming approach; therefore the procedure
can learn in a continuous manner, absorbing new inputs that could be part of new user behaviors.
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and inter-cluster similarity of them. Thus, of course, this coefficient is going to be heavily
dependent on the number of neurons the algorithm removes or keeps in the graph. Such is the
case of the algorithms of [126] and [44], which have higher silhouette scores. However, their
deletion rate is higher than the OSAD algorithm.

4.3.3.2 Phase 1.1: Offline training

Once the algorithm has integrated all data points into the neuron topology, the present work
proposes to combine this technique with the use of communities. Although there is no uni-
versal definition of what a community is, most existing algorithms rely on the principle that
neurons tend to be more connected within a community than across communities. This scheme
is a simple, efficient and easy-to-implement method for identifying families of clusters in large
networks.

Algorithm 10 Normal Cluster Labeling

Input: Graph G, Th, Communities C = {c1, . . . , cn}
Output: Normal neurons N = {n1, . . . , nm}

1: medoids← GetMedoids(G, C)
2: N ← {}
3: count_per_com← GetAbsorbedInputsPerCommunity(C)

4: NC
+
← PercentileCriteria(count_per_com)

5: NC
+
←MostWinningNeurons(Th, C)

6: NC
+
← NearestCommunities(NC,medoids)

7: N ← All neurons from NC
8: function PercentileCriteria(count_per_com)
9: for all community_counts ∈ count_per_com do

10: if (community_count, community) ≥ percentile(count_per_com) then

11: NC
+
← community

12: end if
13: end for
14: end function
15: function MostWinningNeurons(Th, C)
16: for all n ∈ GetNeuronsWithHitsBiggerThan(Th) do
17: NC ← community where n belongs
18: end for
19: end function
20: function NearestCommunities(NC,medoids)
21: max_intra_cluster ← max(GetCommunitiesMSE(NC,medoids))
22: for all c ∈ NC do
23: if c ≤ max_intra_cluster then

24: NC
+
← c

25: end if
26: end for
27: end function

Consequently, the partition of the graph G is computed, which maximizes the modularity
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using the Louvain heuristics. The resultant partition is the neurons’ grouping that ends with the
highest modularity. This procedure allows the algorithm to obtain cluster “families” for further
labeling.

4.3.3.3 Phase 1.2: Cluster labeling propagation

We proposed a strategy for labeling the communities shown in Algorithm 10.
Through the new community structure for the graph, an analysis is made to every community

and its belonging neurons. By means of detecting the employee’s behavior through their clustered
data, three labeling behavior categories have been defined:

• Normal: behavior related to the former assumptions of this work, described in Chapter 1.

• Treacherous: behavior that is related to the highest severity labels (i.e., network, image
and server) and/or contextual anomalous levels (i.e., outside working hours).

• Unknown: behavior that has not been possible to classify in any of the previous two.

Normal labeling procedure is done by three criteria, namely PercentileCriteria (line 8)
MostWinningNeurons (line 15), and NearestCommunities (line 20).

Firstly, under the second assumption in Section 4.1, the number of input vectors that fell
under each community of neurons it is considered. Afterwards, the threshold correspondent to
the percentile by which the distribution is equal to the mean plus one standard deviation, is
calculated. A conservative criterion is therefore used by labeling as normal communities (NC)
those that have more inputs than this threshold.

Consequently, the algorithm considers as NC only the clusters which have the number of
inputs as high as that percentile of the cluster’s input distribution. This value is set adaptively,
and therefore, it depends on the historical data distribution of the absorbed inputs for all the
neurons in the graph G after every iteration step.

Nevertheless, it could happen that our training data are not condensed into one big normal
cluster with other smaller ones, but that is instead spread through multiple clusters with very
short distances between them. Moreover, from experimental evaluations and mentioned insider
threat scenarios (e.g., [17]) it was seen that there are many kinds of normal activities, giving
small spread clusters that may not even be close to each other. In the context of cloud CSC
employee’s actions, this may be due to:

• Employee’s actions varying broadly in time.

• Employee’s actions not being executed in the same predefined manner.

• Employee’s new actions currently gaining cluster density.

This possibility would result in the labeling of such normal clusters, as unknown. To overcome
this case, if there is no clear bigger cluster, the second MostWinningNeurons proposed
criterion is utilized, which labels as normal, the communities where the set of highest-winning
neurons’ reside.

The last criterion makes use of a second-level topology analysis, which aims at relating com-
munities based on their inter-cluster distance. The intuition behind this procedure is to consider
communities that are close to each other, to have the same label. Accordingly, NearestCom-

munities obtains the medoid for each community and calculates the distance between them.
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and the predictions with respect to possible anomalies are made at predefined times, near real
time. The latter is done by determining the overall behavior status of the graph G.

We also note the depiction of the precedent algorithms, denoted by OSADNeuronIn-

sertion(·), OSADNeuronDeletion(·), NormalClusterLabeling(·) and Treacherous-

ClusterLabeling(·), which consider for their calculation, each respective function arguments
under the notation (·).

Algorithm 12 Online Streaming Anomaly Detection (OSAD)

Input: DS and model params M = (β, α1, α2, η), E , W , N
Output: Anomaly score st

1: for all x ∈ DS do
2: bmu1 ← argminbmu1∈U‖x− wbmu1

‖
3: bmu2 ← argminbmu2∈U\bmu1

‖x− wbmu2
‖

4: if neuron insertion is necessary then
5: OSADNeuronInsertion(·) (Algorithm 7)
6: else
7: Modify the age of all edges emanating from bmu1
8: Add the distance between x and bmu1 to error variable error(bmu1)
9: end if

10: if i-th x step is multiple of η then
11: OSADNeuronDeletion(·) (Algorithm 9)
12: end if
13: Decrease the error of all neurons: E ← E − β ∗ E
14: Unknown neurons U ← N
15: Normal neurons L ← NormalClusterLabeling(·) (Algorithm 10)
16: Treacherous neurons T ← TreacherousClusterLabeling(·) (Algorithm 11)

17: st for normal, treacherous and unknown ← length(L)
N

, length(T )
N

, length(U)
N

18: end for

Moreover, the final prediction component (line 17) discussed is anomaly estimation. The
model produces anomaly scores, which are used to rank each user’s graph G giving a ratio for
treacherous and/or anomalies, normal and unknown behavior in time. This allows to analyze in
specific, how these normal, treacherous and unknown neurons/clusters behave and evolve. The
latter is a posterior separate study out of the scope of this work, relevant at the moment of pre-
dicting future behaviors, indicative of future normal behaviors or insider threat characteristics.

4.4 Discussion

The proposed algorithm describes an unsupervised clustering technique through the interrelation
of a two-phase process: (1) learning, deletion and insertion procedures and (2) community
labeling.

The adaptive learning rate allows the algorithm not only to consider data inputs that gen-
uinely resemble to the existing ones for that BMU, but also to increase its specificity at every
step, through decreasing the learning rate. Although this is an important enhancement towards
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an online detection strategy, it may have some drawbacks. For the most part, it makes it signif-
icantly data-dependent. This issue may be sensitive when dealing with evolving data-streams,
new monitoring points of observation, new attributes to consider, among others. For instance,
if data evolve drastically into new normal behaviors and new anomalies, most of the too-specific
existing neurons will not be good candidates, therefore increasing the number of insertions and
topology of the network.

Nevertheless, the insertion neuron procedure benefits from being non-dependent of arbitrary
a-priori parameters. By comparing every distance of the data input x with its bmu1, against
both, a dynamic neighborhood threshold and severities contextual data; the algorithm guaran-
tees those outliers (e.g., anomalies) are not to be absorbed by either well-adapted neurons or
neurons at their early adaptive stage. This design is an advantage for the latter set of neurons,
which in case of absorbing that input, would increase their local error.

Moreover, the anomalous or treacherous neurons will, by their nature, be part of sparse
regions and will have very few wins in time and therefore, likely to be deleted. To treat this
matter, the concept of reservoir has granted the possibility of saving that information for further
treatment.

Frizke’s approach (Algorithm 5) for deletion considers the age of the edges, namely if the age
between two neurons is older than a predefined parameter, the edge is deleted. The subsequent
step of the algorithm is to eliminate all isolated neurons after this edge deletion. Others [44],
[50] have included a density parameter, considering also the number of times the neuron has
“won” (i.e., BMU) an input. Additionally, Sun et al. [126] considered not only this information
but also the average distance of every neuron i towards their neighbors, disti, compared with a
threshold.

Although the update of this value is considering the evolution of the network, it has some
drawbacks when the anomalies have a very different distribution than the normal behavior.
Their threshold is calculated by averaging all neurons scores scorei = exp−disti . Therefore
regions where neurons have distant neighbors will decrease this averaged threshold. An example
of this behavior obtained for 5 iteration cycles and an insert λ value of 4, where this strategy
caused the deletion of neurons with 273 or 163 winning times, due to the existence of scarce
regions in the graph.

Experiments have shown that the evolution behavior of the reservoir is that it adapts slowly.
As it is intended to keep neurons that would have been deleted otherwise, under the latter
criterion they have low winning times Hn. These could be neurons that have absorbed anomalous
data or new normal behaviors at an early stage. In both cases, if they are probably returning into
the network, they will most likely be in the lower tail of the H win times network distribution.
Consequently, they are possible candidates for the deletion at the next iteration, as seen in the
example from algorithm’s output for reservoir management. This particularity, of course, can
be overcome if those neurons absorb new inputs before the deletion process arrives. Finally, if
they do not, they will return to the reservoir.

4.5 Conclusion

The proposed framework tackled the insider threat detection through an efficient and adaptive
online learning and labeling schema. The procedure extends previous works by means of a
better adaption for the insider threat monitored data. These adapting properties consisted of
providing new insertion and deletion criteria, by using contextual information to increase the
labeling precision and the quality of the clustering for anomaly detection of the insider threat.
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Moreover, the proposed model adjusts itself according to the different scenarios in Section 6.2,
fitting their data accordingly in the graph G. From the experimental study in Chapter 6, the
OSAD detection approach effectively reduces the FPR while maintaining good quality clustering
values and not dismissing anomalous/treacherous data. This result is a definite advantage to
consider because it means the model can be effectively used for different employees and different
feature subsets while maintaining its clustering performance.

Additionally, the overall framework allows the extension of both employee’s actions to be
executed, along with the plausible augmentation of new attributes or features to monitor. This
characteristic makes the proposed work generic for an anomaly detection procedure of the insider
threat.

Furthermore, it incorporates a security detection procedure, by means of removing obsolete
neurons, which are later classified according to their severity. This scheme is an improvement
since it allows the network to evolve according to new input patterns. Additionally, the collected
data in the reservoir can be interpreted as a kind of memory that may be useful again under
specific conditions, for example when new inputs are too distant from all existing neurons.
Therefore, these “obsolete” neurons preserve the knowledge of previous situations, and they could
be taken for evaluation by an expert for future decisions, playing a role in a longer learning cycle
of the employees or profiles in a company.
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5.1 Introduction

In the Chapter 4, the novel anomaly detection framework was described in detail, including the
principal procedures required to apply its methodology. A further expansion of this research is
the implementation of this methodology using a suitable tool. However, it is required to find
such a tool in order to extend it with the proposed functionalities.

This chapter firstly presents the implementation details for the simulator described in Sec-
tion 3, and the considerations taken for the generation of the employee’s actions.

Secondly, it presents the implementation details of the proposed anomaly detection frame-
work employing monitoring agents in a two-layer strategy. First, the MMT tool, a modular,
extensible monitoring DPI [135] used to verify properties of network protocols. This tool is
flexible enough to be used with other purposes than testing network protocols, making it suit-
able for implementing the proposed solution. In addition to this tool, this chapter presents
the deployment and implementation of another monitoring agent, which is capable of retrieving
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Network Events Every Network Event or flow corresponds to a single action from the em-
ployee generated by the simulation, therefore we construct the session that corresponds to the
list of actions generated by the simulation tool. This is done by means of keeping in memory
the incoming flows and collecting the following respective attributes in Table 5.2.

Network Event Network Session Calculation

Start Timestamp Start Timestamp event.start_timestamp[first]
Session Time event.start_timestamp[last]

- event.start_timestamp[first]

End Timestamp event.start_timestamp[last]
+ event.data_transfer_times[last]

Total Bytes Total Bytes sum(event.total_bytes)
Total Packets Total Packets sum(event.total_packets)
Response time Response time sum(event.durations)
UL Data Volume UL Data Volume sum(event.ul_data_vols)
DL Data Volume DL Data Volume sum(event.dl_data_vols)
Source bytes Source bytes sum(event.source_bytes)
HTTP Method POST Method Count sum(event.post_method_counts)

GET Method Count sum(event.get_method_counts)
PUT Method Count sum(event.put_method_counts)
DELETE Method Count sum(event.delete_method_counts)

Transaction count Transaction count sum(event.transaction_counts)
Data Transfer time Duration sum(event.data_transfer_times)

Table 5.2 – Network features

Additionally, the user-agent attribute from the HTTP contains the following simulation
attributes.

Simulation Attributes

Asset Number of actions Simulation location
Profile name (employee’s name) Event Id Label
ith-Action Simulation timestamp

The construction of the object Network Session, is based on the aggregation of several
Network Event objects. This is done by the designation of the tuple (profile name, event id,
asset) and the aggregation of the network attributes until any of the following conditions is
satisfied:

• Complete session: is considered when the ith-action attribute is equal to the number of
total actions within the session.

• Timeout : is considered when an event is not completed (i.e., previous condition is not
met), i.e., when TCP/IP packets are re-transmitted, fragmented, or when the analysis
of the data stream of actions is delayed. We utilized a timeout of four minutes in our
implementation.

Moreover, from the Simulation timestamp and Simulation location we include two attribute
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values, namely 0 or 1, describing whether the simulated actions were intended to be within the
working hours and within the organization’s dependencies, respectively.

Lastly, the Label is kept for the purpose of evaluating the proposed detection solution.

IaaS events Every IaaS event or flow corresponds to a single active monitoring check made
to retrieve information from the OpenStack cloud. This type of event is not related to any
specific employee and thus it is used for future merging with the Network Session objects. The
final attributes are formerly retrieved from two main categories:

• Instance state: describes the current stable (not transitional) state of the VM. That is, if
there is no ongoing compute API call (running task), the instance state should reflect the
VM state expected by the CSC. When combined with task states, a better picture can be
formed regarding the server’s “health” and progress;

• Task state: represents what is happening to the instance at the current moment and allow
a better view into what a server is doing. These tasks can be generic, such as “spawning”,
or specific, such as “powering-off”.

The latter becomes relevant at the moment of performing an active monitoring with a non-
invasive manner. We make use of a combination of these two categories of attributes, in order
to benefit from two sources instead of one that may miss an occurrence.

By this compound methodology, it was possible to retrieve absent information from the VM
state in the percentages depicted in Table 5.3 following a 10 second active check configuration.
This was obtained by combining data from both data subsets, where some VM state attributes
resulted in a constant value of 0, meaning they were not foreseen by our monitoring configuration.
A example of this case is RESTART state being updated in the Server Reboot Mean by the finding
of Task state powering-on and powering-off.

Table 5.3 – Percentage of traceable records with merging methodology

Profile Instance action Task state Recovered records Percentage

Employee 1 Server Reboot reboot 1037 42.378
Image Snapshot createImage 189 100.000
Server Terminate delete 39 100.000
Stop server stop 162 100.000
Server Change Password changePassword 172 100.000

Employee 2 Server Reboot reboot 2550 41.050
Image Snapshot createImage 195 100.000
Server Terminate delete 40 100.000
Stop server stop 167 100.000
Server Change Password changePassword 180 100.000

The final list of attributes or features can be found in the first column of Table 5.4.

5.3.4.2 Events Aggregation

The second step is the aggregation of the data by means of merging of the Network Session and
IaaS Session datasets. This is done following the methodology in Algorithm 13 and calculated
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as shown in Tables 5.2 and Table 5.4. Most features are calculated following the mean or average,
where “◦” is the Hadamard product (element-wise) of each of the events attribute lists. This is
because it is intended to capture the tendencies among all aggregated sessions.

Two other mathematical operations are performed to the rest of the features, followed by
the variance of the session individual features treated as Boolean. The first case relies on the
intention to capture the variability rather than the general tendency, because abrupt changes
could signify anomalies. The second case (e.g., security rules’ modification) aims to capture any
alteration made to the network port rules. This means that for the scope of this work the feature
is not intended to gain information on how much the rules were modified, rather than the fact
that this modification took place. The intuition behind the latter is that it could only take one
single modification (e.g., an addition of a rule) to perform an attack.

Algorithm 13 Network-IaaS Events’ Merging

Input: Network Session List, IaaS Session List per profile
Output: Network-IaaS Sessions per profile

1: for all net_session ∈ NetworkSessions do
2: init_ts← net_session.init_timestamp
3: end_ts← net_session.end_timestamp
4: iaas_sessions← FilterIaaSRecords(init_ts, end_ts, iaas_sessions)
5: if iaas_sessions not empty then
6: iaasaggregated ← AggregateIaaSSession(net_session, iaas_sessions)
7: netiaas_sessions← AddNetworkIaasSession(net_session, iaasaggregated)
8: else
9: Continue

10: end if
11: end for

Table 5.4 presents all the features captured from the IaaS-based probe and it is divided
according to the monitored instance, namely, Image, Sever and Network. Additionally, an
overall metric concerning the memory usage of all the instances is introduced.

As mentioned in Section 4.3.1, some of the features share no information due to several
factors. First, the sampling mechanism may not have the adequate resolution to retrieve data,
due to missing the assets’ states applying the active monitoring. Second, the absence of an action
that reveals information towards this feature. Nevertheless, the monitoring agent is implemented
and capable of retrieving future actions that may change the empty-value attributes.

Additional representations In order to distinguish anomalies more efficiently, three at-
tributes have been proposed, based on the previous knowledge concerning the security threats
intended to detect. They have been introduced due to two main reasons.

First, the profitability of information knowledge within the enterprise. In other words, rel-
evant information can be retrieved from the employees in charge of the common practices and
security policies of the company (e.g., human resources, security and/or operation adminis-
trative) in what respects to job roles, and more importantly, regarding the company’s cloud
assets (e.g., cloud administrator, system administrator). For the former group, utilizing this
already-existing information is convenient. The second group has the knowledge information
on the configuration of the cloud implementation. This configuration could imply an IaaS ser-
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IaaS Event Calculation for IaaS-Session Event object

Image Preparing Mean mean(image_preparing_counts ◦ 1/image_total_counts)
Image Failed Mean mean(image_failed_counts ◦ 1/image_total_counts)
Image Queued Mean mean(image_queued_counts ◦ 1/image_total_counts)
Image Pending Delete Mean mean(Image pending_delete_counts ◦ 1/image_total_counts)
Image Other Mean mean(image_pother_counts ◦ 1/image_total_counts)
Image Killed Mean mean(image_killed_counts ◦ 1/image_total_counts)
Image Unknown Mean mean(image_unknown_counts ◦ 1/image_total_counts)
Image Delete Mean mean(image_delete_counts ◦ 1/image_total_counts)
Image Snapshot Mean mean(image_snapshot_counts ◦ 1/image_total_counts)
Image Active Mean mean(image_active_counts ◦ 1/image_total_counts)
Image Total Mean mean(image_total_counts ◦ 1/image_total_counts)
Total Image Variance var(image_total_counts)

Server Unknown Mean mean(server_unknown_count ◦ 1/server_total_counts)
Server Hard Reboot Mean mean(server_hardreboot_count ◦ 1/server_total_counts)
Server Paused Mean mean(server_paused_count ◦ 1/server_total_counts)
Server Stopped Mean mean(server_stopped_count ◦ 1/server_total_counts)
Server Verify Resize Mean mean(server_verifyresize_count ◦ 1/server_total_counts)
Server Resize Mean mean(server_resize_count ◦ 1/server_total_counts)
Server Suspended Mean mean(server_suspended_count ◦ 1/server_total_counts)
Server Delete Mean mean(server_delete_count ◦ 1/server_total_counts)
Server Rebuild Mean mean(server_rebuild_count ◦ 1/server_total_counts)
Server Rescue Mean mean(server_rescue_count ◦ 1/server_total_counts)
Server Other Mean mean(server_other_count ◦ 1/server_total_counts)
Server Prep Resize Mean mean(server_prepresize_count ◦ 1/server_total_counts)
Server Error Mean mean(server_error_count ◦ 1/server_total_counts)
Server Queue Resize Mean mean(server_queueresize_count ◦ 1/server_total_counts)
Server Password Mean mean(server_password_count ◦ 1/server_total_counts)
Server Build Mean mean(server_build_count ◦ 1/server_total_counts)
Server Shutoff Mean mean(server_shutoff_count ◦ 1/server_total_counts)
Server Reboot Mean mean(server_reboot_count ◦ 1/server_total_counts)
Server Total Mean mean(server_total_count ◦ 1/server_total_counts)
Server Active Mean mean(server_active_count ◦ 1/server_total_counts)
Total Server Variance var(server_total_counts)

Security Rules Modification 1 if var(security_rules) > 0 else 0

Total Memory Mb Usage std(total_memory_mb_usages)

Table 5.4 – IaaS-features

vice model, where this group of people would know the internal network topology and rules’
composition. If the company’s services also include applications on top of the IaaS, practical
information can be retrieved on what respects to acceptable behaviors, such as CPU loads, ap-
plications’ up-time, number of VMs or replicas that should be active, port access rules, among
others.

Second, the know-how already seen in many monitoring and information logging references
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in the literature, such as the RFC 31641. The latter presents a set of recommendations for
categorizing messages with a severity indication for that message. More specifically, they present
predefined scales of integers to define different severity levels (e.g., 0 to 9 where 0 is informative,
and 9 is critical). These scales serve as information for the specific group of people that derived
them, and therefore depend on the relevance they give to each of the components.

These monitoring and auditing considerations have served as inspiration for the below-
proposed schema. Moreover, in the proposed case scenario of a company with their assets in
the cloud, the three aggregated features that are proposed, consider the help of the above men-
tioned decisive players. Consequently, the below-detailed severity definitions and scale factors
are adjustable to each company’s needs and experts opinions.

That being said, these three features cannot be instantaneously checked when collecting the
data since it would demand a higher level of monitoring complexity.

In detail, not all severity levels have the same degree of urgency. Some require immediate hu-
man attention, some require eventual human attention, and some point to areas where attention
may be needed in the future.

Consequently, we propose three severity categories, with respect to the instance to which
they are related. They are defined as:

• Server Severity : describes the presence of a compromise for a VM in either availability,
confidentiality or integrity.

• Image Severity : describes the presence of a compromise for an Image in either availability,
confidentiality or integrity.

• Network Severity : describes the presence of a compromise for a property of the network
in either availability, confidentiality or integrity.

Hence, they are created at the moment of merging the collection of IaaS Events with a
specific Network Event. They are calculated as the weighted sum of the IaaS Event features,
where the weigh is a factor dependent on the attribute, as seen in Table 5.5 and Table 5.6.

5.4 Discussion

With respect to the presented IaaS-based probe, it is worth mentioning the absence of monitoring
tools from a tenant point of view. This is the case of existing tools such as Amazon’s Cloudtrail2,
where CSC can monitor the anomalies with respect to the assets in the cloud for Amazon EC2
instance changes, EC2 large instance changes, console sign-in failures, authorization failures,
Identity and Access Management (IAM) policy changes, to name a few. Then, there is a benefit
– though not free – to monitor anomalies in companies’ assets in the cloud. In contrast, an
OpenStack implementation does not have this monitoring feature by default, and it should be
agreed for CSC’s and CSP’s parts.

Our proposed schema, on the other hand, does not have this possibility because OpenStack
services are entirely independent; there is no service that monitors the access to their endpoints.
Many API servers log the requests when debug logging is enabled, but even so, all these logs
occur in a CSP’s domain.

1The BSD Syslog Protocol
2Service that enables compliance and security auditing by logging all actions taken by users towards the CSC’s

assets
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Table 5.5 – Severity factors for Image and Server

(a) Server severity

Valid Server IaaS attributes Factor

Server Active Count 0
Server Build Count 1
Server Rebuild Count 1
Server Queue Resize Count 1
Server Prep Resize Count 1
Server Resize Count 1
Server Verify Resize Count 1
Server Reboot Count 2
Server Hard Reboot Count 2
Server Password Count 3
Server Paused Count 3
Server Suspended Count 4
Server Migrating Count 4
Server Rescue Count 5
Server Delete Count 5
Server Unknown Count 5
Server Stopped Count 5
Server Shutoff Count 7
If sum of Servers Count is 0 9
If sum of Active Servers’ Count is 0 9

(b) Image severity

Image IaaS attributes Factor

Image Active Count 0
Image Queued Count 2
Image Preparing Count 2
Image Deactivated Count 4
Image Unknown Count 5
Image Failed Count 5
Image Delete Count 9
Image Pending Delete Count 9
Image Killed Count 9
If Sum of Image Active Counts is 0 9
If Total Image Total Counts is 0 9

Table 5.6 – Severity factors for network in the cloud

Network attributes Factor

Security rules’ Count 9

This situation is an issue regarding the relevant plausible data to capture because much
information is lost during an active monitoring mechanism (e.g., a log-in failure action may
happen in less than a second, while active monitoring probes are retrieving information every 5
seconds).

Instead, a more effective mechanism would be to collect the log data from cloud services and
passively foresee every single change in the CSC’s activities. In this sense, our contribution aims
at allowing CSC’s to monitor their assets in OpenStack with similar efficiency, while having
limited information.

Furthermore, the overall monitoring and detection framework has been designed with a single
tenant use in mind. This solution is intended to give every company whose desire is to detect
the insider threat, the possibility to monitor their assets not only in a single cloud application
but also multi-cloud (i.e., one tenant with multiple cloud services connected). In its current
form, this makes sense for organizations with a small number of single or multi-cloud services,
to consolidate their security management and keep track of anomalies in time.

From a technical perspective, what needs to be considered is the scalability of the framework
once a higher number of security metrics are observed or aggregated. These could be in the
aim of adding not only IaaS-based events but also, monitoring the availability, confidentiality or
integrity of applications embedded in the IaaS assets. For instance, the wish to monitor a new
module (e.g., an application on top of IaaS) may require the addition of another probe and a
new set of arrangements for the calculation of simple or aggregated attributes.
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For the solution proposed, we have chosen to deploy the network and IaaS-based probes on
the organization’s side for three main reasons.

First, even if the collected traffic at the organization’s gate is considering all network com-
munications that could be non-cloud related, the MMT tool allows the filtering of this traffic
and permits the reporting of only the protocols and destination of interest. Like so, we have
filtered only the HTTP network flows, along with the destination IP of the machine hosting
the cloud. Nevertheless, the architecture benefits from the adaptability of the MMT tool, in
the direction of detecting anomalies related to network protocols (e.g., such as CERT’s dataset,
which presents insider threat scenarios using log-ins from different ports and protocols).

Second, this benefits within the scope of security. By having a local implementation, the
enterprise has additional protection for the monitored data at storage, whose communication
does not go through the public internet and the access to it is under the security policies of
the company. This policy contrasts the idea of having the monitoring probes, storage and
detection engine as additional assets in the cloud, which makes them more visible to possible
cloud administrators that could perform malicious actions through the direct access to them.

Lastly, we also consider the billing aspect by means of externalizing all the monitoring traffic
from the different probes to the organization’s premises. This benefits from having sensors that
are actively using resources, such as I/O read/write, bandwidth usage and storage capacity.

5.5 Conclusion

In this chapter, the details of the implementation were explained, both for the simulator in
Chapter 3, as well as for the anomaly detection framework in Chapter 4. This work was done by
proposing a set of simulated activities or actions, that considered the internal states of the assets
involved, in order to have an automatic derivation of generated actions. Also, we extended the
existing monitoring sensors by means of deriving a new IaaS-based probe. Finally, we presented
the architecture of the collected events, along with the preprocessing management to serve as a
precise input for the detection engine.

In the next Chapter 6, we present the experimental results obtained with the use of the
developed framework.
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6.1 Introduction

This section presents the experiments which have been carried out to measure the quality of
the proposed algorithm of Section 4. For this reason, the section contains the results of a
series of experiments which have been carried to evaluate the effectiveness and usability of the
developed framework, aiming to distinguish insider threat anomalies by considering different
data attributes.

This is done by benefiting from the flexibility of the user model simulation presented in
Section 3. A study of four detection scenarios is presented, each one of them relying on typical
insider threat characteristics found in the literature and in the industrial reports.
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Additionally, the section provides experimental results by means of comparing the proposed
algorithm in Chapter 4 with different hyper-parameters, different distance metrics used in the
GNG-based algorithm; different dataset imbalance ratios, distinct users, among others. These
comparisons have been discussed through the evaluation metrics presented Section 4.2.5.

6.2 Detection scenarios

For the synthetic experiments, the following datasets have been created. The first two differ
in two main characteristics: the user’s lexicographical sequences of actions, and the use of
contextual data to identify anomalies.

The four presented scenarios contain the same type of sequence anomalies, but rely on
different data subsets for their detection.

6.2.1 Scenario 1: Using Network, IaaS features

The subset used in this scenario consists in all network-based and IaaS-based features described
in Chapter 4 through the implementation described in Chapter 5.

6.2.2 Scenario 2: Using Network, IaaS and action sequences’ features

The subset used in this scenario consists in all network-based and IaaS-based features described
in Chapter 4 through the implementation described in Chapter 5. In addition to that set of
features, this scenario includes the sequence of actions executed by the employee, provided by
the insider threat model from Chapter 3.

6.2.3 Scenario 3: Using Network, IaaS and contextual features

Following the same characterization of the CERT dataset, where some anomalous actions occur
out of the scope of user-days [142], [143], the elaboration of this dataset scenario extends the pre-
vious features (network-based, IaaS-based and sequences) to anomalies using this particularity,
along with anomalous location.

6.2.4 Scenario 4: Using Network, IaaS, actions sequences’ and contextual
features

This scenario comprehends the features’ set of action sequences, network-based and IaaS-based,
along with the contextual working hours and location features. These two Boolean features are
now randomly assigned to 1 whenever the label is of the data input, i.e., “seq” (anomaly). The
purpose of these additional attributes is to see if these two extra features help improving the
detection.

6.3 Experimental results

6.3.1 Analysis of the global error and learning procedure

The process of neuron’s learning has been previously described in Section 4.2.3. The criterion
of Fritzke’s original GNG [43] was presented, along with the adaptive proposal of [44] described
in Equations 4.1 and 4.2, respectively. As explained before, the latter consists in a variable that
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updates itself for every time-step new input vector arrival and its winning neuron bmu1, related
to the bmu1’s number of wins.

The hyper-parameters’ configuration for all the algorithms was fixed to be able to compare
how the scenarios affect the overall global error, along with the internal metric results. The
values were used with a fixed step interval between neurons insertion λ of 50, and an edge
deletion of agemax of 80. The learning rate trials were made with the values from [50], namely
α1 = 0.1 α2 = 0.01, the original GNG [43] α1 = 0.2 α2 = 0.006, another arbitrary α1 = 0.5
α2 = 0.1. Additionally, the adaptive learning rate was evaluated, following Equation 4.2. For
this example, each iteration has 1000 input samples, all results are averaged over 10 algorithm
runs. Moreover, a reader can also see that the initial accumulated errors are different since the
first two GNG neuron’s prototypes are initiated randomly following a uniform distribution.

ID Profile Feats Mod. Sil. Coef. Neurons Global E. Local Acc. E.

1 Cloud Admin High Adaptive 36 43 0.652 0.118 16432.2 0.799 ± 1.768
1 Cloud Admin High Fix [50] 36 43 0.637 0.235 26452.9 3.155 ± 9.909
1 Cloud Admin High Fix [43] 36 43 0.577 0.115 9342.74 0.904 ± 4.773
1 Cloud Admin High Fix [0.5, 0.1] 36 43 0.335 -0.092 11654.1 0.745 ± 5.116
2 Cloud Admin High Adaptive 44 43 0.619 0.27 27770.4 1.174 ± 2.506
2 Cloud Admin High Fix [50] 44 43 0.669 0.198 32853.8 2.128 ± 4.724
2 Cloud Admin High Fix [43] 44 43 0.67 0.261 11992.2 0.98 ± 3.769
2 Cloud Admin High Fix [0.5, 0.1] 44 43 0.457 -0.019 10165.7 0.894 ± 5.186
3 Cloud Admin High Adaptive 38 43 0.629 0.252 17668.7 0.869 ± 1.869
3 Cloud Admin High Fix [50] 38 43 0.626 0.19 28934.4 1.605 ± 3.155
3 Cloud Admin High Fix [43] 38 43 0.557 0.278 12064 0.659 ± 1.791
3 Cloud Admin High Fix [0.5, 0.1] 38 43 0.429 0.022 11423.1 0.689 ± 1.705
4 Cloud Admin High Adaptive 42 43 0.676 0.25 22096.5 0.919 ± 1.826
4 Cloud Admin High Fix [50] 42 43 0.686 0.26 31624.5 1.619 ± 3.147
4 Cloud Admin High Fix [43] 42 43 0.577 -0.075 13587.6 0.765 ± 1.8
4 Cloud Admin High Fix [0.5, 0.1] 42 43 0.381 -0.042 13627.8 0.737 ± 1.75

1 Cloud Admin Medium Adaptive 36 72 0.672 0.117 60800.8 1.177 ± 7.076
1 Cloud Admin Medium Fix [50] 36 72 0.733 0.048 77880.4 3.386 ± 14.239
1 Cloud Admin Medium Fix [43] 36 72 0.642 -0.003 33747.8 1.276 ± 9.813
1 Cloud Admin Medium Fix [0.5, 0.1] 36 72 0.409 0.061 44461.7 1.091 ± 9.212
2 Cloud Admin Medium Adaptive 44 72 0.698 0.152 74072.5 1.554 ± 8.217
2 Cloud Admin Medium Fix [50] 44 72 0.743 0.02 99998.7 6.608 ± 30.24
2 Cloud Admin Medium Fix [43] 44 72 0.603 0.199 38992.1 1.329 ± 9.028
2 Cloud Admin Medium Fix [0.5, 0.1] 44 72 0.499 -0.049 46110.2 1.291 ± 9.679
3 Cloud Admin Medium Adaptive 40 72 0.685 0.005 67038.1 1.356 ± 7.567
3 Cloud Admin Medium Fix [50] 40 72 0.698 0.08 83235.4 5.2 ± 23.619
3 Cloud Admin Medium Fix [43] 40 72 0.58 0.029 42179.8 1.332 ± 9.638
3 Cloud Admin Medium Fix [0.5, 0.1] 40 72 0.408 -0.023 45435.3 1.102 ± 9.303
4 Cloud Admin Medium Adaptive 44 72 0.714 0.283 75631.7 1.459 ± 8.555
4 Cloud Admin Medium Fix [50] 44 72 0.707 0.015 91396.5 5.065 ± 22.299
4 Cloud Admin Medium Fix [43] 44 72 0.648 0.191 48177.3 1.335 ± 9.482
4 Cloud Admin Medium Fix [0.5, 0.1] 44 72 0.491 -0.028 38805.6 1.163 ± 9.275

Table 6.1 – Experimental results for different learning rates

The results of the learning and overall detection procedure for all different subset scenarios,
can be seen in Figure 6.1, through the global error of the network for every iteration step. They
depict the accumulated error, correspondent to the sum of all neurons’ errors at that particular
time step. The iteration number 0 corresponds to how the algorithm learned by passing through
the data only once (e.g., online manner). Additionally, Table 6.1 depicts how the different
learning rates affect the overall clustering quality and global error.
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ID Profile Time Feats Mod. Sil. Coef. Neurons Global E. Local Acc. E.

1 Cloud Admin High Fix 13.987 36 0.435 0.187 18 15941.9 0.716±1.618
1 Cloud Admin High Adaptive 66.820 36 0.841 0.035 324 2276.62 0.012±0.042
1 Cloud Admin Medium Fix 18.031 36 0.51 0.159 27 41599.3 1.09±7.241
1 Cloud Admin Medium Adaptive 66.106 36 0.795 0.371 231 10678.5 0.01±0.036

2 Cloud Admin High Fix 12.926 44 0.392 0.07 18 24132.7 0.999±2.207
2 Cloud Admin High Adaptive 58.287 44 0.838 0.374 276 2562.72 0.016±0.051
2 Cloud Admin Medium Fix 16.509 44 0.439 0.337 27 39912.3 1.102±7.274
2 Cloud Admin Medium Adaptive 72.009 44 0.834 0.369 306 12816.3 0.01±0.033

3 Cloud Admin High Fix 12.158 38 0.386 0.251 18 20338.3 0.878±3.434
3 Cloud Admin High Adaptive 51.932 38 0.848 0.382 298 3200.21 0.008±0.019
3 Cloud Admin Medium Fix 20.524 40 0.473 0.205 27 35685.6 0.901±5.217
3 Cloud Admin Medium Adaptive 73.782 40 0.82 0.27 270 7128.76 0.01±0.043

4 Cloud Admin High Fix 17.482 42 0.43 0.115 18 22965.9 0.848±2.049
4 Cloud Admin High Adaptive 62.872 42 0.832 0.116 310 2601.34 0.014±0.029
4 Cloud Admin Medium Fix 16.528 44 0.508 0.222 27 43936.91 1.16±6.634
4 Cloud Admin Medium Adaptive 67.223 44 0.818 0.22 248 12663.3 0.014±0.058

Table 6.2 – Adaptive neuron insert comparison (proposed algorithm and original)

6.3.3 Analysis of the deletion procedure

The process of deleting neurons whenever a criterion is met has been previously described in
Section 4.3.3.1. This procedure has a different behavior when utilizing different feature subsets.
Such variations can be seen in Figure 6.2, where specifically in Figure 6.2b the deleted number
of neurons per iteration is very low. In detail, scenarios 2 and 4 show higher values than the
others. This may be due to a higher insertion rate, but a low bmu1 winning rate.

From the results in Figure 6.2 it is also clear that the number of neurons deleted is scarce
throughout the experiments. This means that the data tend to be absorbed always by previously
winning neurons. This tells us the dataset consists in similar characteristics for normal behaviors
(biggest majority of the dataset), therefore they are usually absorbed by neurons that know “well”
their characteristics. Also, this tells us that the neurons are tightly connected between in these
regions, not allowing the deletion criterion to eliminate them by reason of poor connection of
low winning rate.

The latter characteristic also benefits from the reservoir, experimented against and described
in the following section.

6.3.4 OSAD Severities and reservoir

Severities As mentioned in Chapter 4, the OSAD makes use of the contextual data given by an
expert, resulting in three severity features, namely server, image and network. The algorithm
utilizes this information in an adaptive manner by means of thresholds Th, Tserver, Timage,
Tnetwork, at the moment of inserting and deleting neurons. An example of this calculation is
depicted in Figure 6.3 where the red dot represents the percentile, correspondent to the x-axis.

Although these thresholds do not depend on the different subset scenarios, they do rely upon
the amount of data inputs the algorithm is fed with.

The thresholds are calculated every time an insertion and deletion is about to take place,
therefore considering all the data absorbed by the graph at that moment. Consequently, the
three severities result in a better representation of the data distribution, after every iteration
step or as the algorithm continues learning in time.
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quence is no different from an “X” or “T” sequence at the vectorization transformation).

Scenario 4, will then inherit the misconceptions of the sequences, therefore obtaining the
highest FPR of all four. The result is also due to the addition of the two Boolean contextual
attributes, which are discussed next.

Regarding the benefits of contextual information, via the addition of location and working
hours attributes, scenario 3 and 4 have considered a Boolean constant changed to 1 whenever the
input vector was labeled as anomalous. Although it corresponds to additional data, it provides
less information to the algorithm. Even if they are sufficiently correlated with the anomalous,
these two additional features do not have much variability (either 0 or 1).

S.1 S.2 S.3 S.4

F1-score 0.637 0.271 0.616 0.803
FPR 0.004 0.037 0.001 0.476
FNR 0.575 0.843 0.584 0.391
Precision 0.963 0.936 0.991 0.940
Recall 0.504 0.159 0.461 0.752
FN 2664.000 7764.000 2627.000 1067.000
FP 76.000 95.000 17.000 108.000
TP 1968.000 1441.000 1870.000 1659.000
TN 19556.000 9646.000 16164.000 18253.000

Table 6.3 – Averaged external metric results for four scenarios with the OSAD algorithm

Nevertheless, this could be enhanced with new ways of dealing with contextual data, given
the fact that the algorithm at the moment of learning, utilizes the Euclidean distance (i.e., the
root of a sum of squares). This distance metric is applied for different dimensional vector, i.e.,
the 34 or above–depending on the scenario, resulting in these two features to play a minor role.

6.4 Other experimental Comparisons

6.4.1 Balanced vs unbalanced dataset

We know that whenever dealing with anomaly detection, the general assumption made in the
literature and in our work, is the fact of having a big proportion of the data to behave in a way,
and having a small portion of the data that follows another conduct.

That being said, for our unsupervised case, there are some disadvantages while working
with a balanced dataset. As previously mentioned in Chapter 4, the anomaly detection engine
follows a labeling methodology for prediction that relies on the representation of this unbalanced
proportion. For this matter, it is counter-intuitive to train a learning algorithm with evenly
distributed classes, impairing the labeling phase, based on similarities and sizes.

Nevertheless, the aim of this experiment was also to evaluate the labeling criteria presented
in Section 4.3.3.3 given a bigger anomalous proportion within the dataset.

To analyze the effects, experiments with two different anomaly/normal ratios were carried.
For both settings random number of samples was taken, restricted with the same ratio between
anomalous and normal samples. First scenario, namely scn-18 consisted in 448 normal and 79
anomalous samples giving a ratio of 0.176, while second scenario, namely scn-33 consisted in
526 normal and 181 anomalous samples giving a ratio of 0.334. The experiment considered a
number of iterations to also see the evolution and fluctuations.
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Consequently, the applied data representation consisted in n-grams. The advantage behind
this is because it converts text (actions) into numerical values, which are the value type only
plausible for the detection algorithm.

Additionally, experimental results were carried for different representations of sequence fea-
tures as numerical data, partly analyzed in Chapter 4 (specifically in the Feature Analysis
Section 4.3.1) and depicted in Table A.1. These experiments considered not only the n-gram
representation for n length of 1, 2, and 3, but also the alphabet-to-vector representation.

Thus, considering this relevant factor for detection purposes, requires further investigation.
Following that path, preliminary experimental work is being carried, in order to make use of
other data representations such as “bag-of-words” or window-based techniques and compare them
against the already performed experiments.

Second, the performance of the reservoir within the detection framework. The was a notice-
able advantage regarding the evaluation metrics, by the proposition of the reservoir. All results
showed to have good precision and very low FPR, and in some case very good recall values.
These results have benefited from the mentioned vault, which keeps for some time, the predicted
as treacherous neurons.

However, in some of the scenarios, a steady increment of the number of neurons could be
seen (e.g., Figure 6.4). This result was the case for a poorly-learned graph, therefore including
neurons that held merged normal and treacherous input vectors.

Hence, new adaptions to this matter are already being considered and evaluated experi-
mentally. Preliminary studies are being held in order to examine a fading function, capable of
deleting neurons within the reservoir, that have not been put back into the algorithm’s graph
in a period.

Lastly, the detection frameworks’ distance metric. In most high dimensional applications the
choice of the distance metric is not obvious, and the notion for the calculation of similarity is
very heuristical. For example, some distance metrics may be known to have poor accuracy (e.g.,
Mean Character Difference) and others may behave accurately but with a high computational
complexity cost (e.g., Cosine measure and Mahalanobis distance, both O(3n) where n is the
number of features, as stated in [122]) for high dimensional data, which is the case for our
generated data.

Regarding this matter, additional metrics have been evaluated against, but need further
investigation for all the benchmarks mentioned above. Also, further ideas of applying compound
criteria of combined distances, is in the research interest.

Finally, by means of pursuing prompt detection, preliminary studies are being done upon
different dataset sizes. This factor gives more insights into the amount of time for training in
order to reach a stable graph, while also experimenting with different iteration values. Also,
it gives crucial information regarding the processing and storage capabilities (e.g., reservoir)
to consider when aiming to implement the anomaly-based detection framework in production
conditions.

6.6 Conclusion

In this Chapter, we attempted to benchmark the proposed model of Chapter 4 concerning
datasets in consideration of different user profiles, distance metrics, dataset imbalance ratio,
among others.

Results show that the OSAD properly clusters the different scenarios, finding topological
structures that closely reflect the structure of the input distribution.
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Moreover, when evaluated against ground-truth classification, it is seen throughout all the
experiments, that the results have good decision performance. Also, experiments were carried
for two different employees, given from the simulation configuration. It is seen then, that the F1-
scores can vary significantly for different profile behaviors. Thus, two conclusions are provided:
first, the dataset generation is, in fact, capable of resulting in datasets with different levels of
heterogeneity, and second, the detection framework should be further improved to obtain good
results for both profiles and moreover, a broader set of profile configurations.

Additionally, the nature of the threats being a rare event makes the possibility of having
evenly distributed datasets, a hard task. From both experiments carried within this scope, the
detection framework behaved showing low FPR values and a precision rate above the 75%. This
result is precisely the benefit of all the adaptive modules of the OSAD algorithm and even more,
of the labelling module, which uses contextual data. Hence, even for less unbalanced classes, it
is able to use the contextual severity criterion to find the treacherous neurons in the graph.

Nonetheless, this can be overcome by data processing techniques such as under-sampling,
which should be added to the overall non-unsupervised implementation. Hence for evaluation
purposes and techniques benchmarking, we think it is an interesting approach to consider while
working with supervised or semi-supervised learning techniques.

Moreover, for insider threat detection, we are usually only interested in the performance of
the detector when its FPR is low. Otherwise, too many employees will be falsely suspected of
being malicious insiders, and conducting countermeasures for all of them becomes impractical.
With this respect, the OSAD algorithm outperforms the compared algorithms, and maintains a
low FPR in all evaluated benchmark experiments.

In summary, clear advantages can be found via the utilization of an unsupervised clustering
technique, given the fact that obtained results prove it can adequately detect anomalies in
different cases.
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7.1 Main results

Insider threats present many challenges, given that they consist in actions of humans and not
machines, and detection techniques will inevitably incorporate characteristics of human behav-
ior as opposed to the more purely technical domains of network data generation. Moreover,
providing data for insider threat research presents an unusual challenge for many reasons.

In order to detect this threat, there are two options: those requiring use or collection of real
user data, and those using synthetic data. In order to collect real data, a CSC must directly
monitor and record the behavior and actions of its employees. However, confidentiality and
privacy concerns create barriers to the collection and manipulation of such data for research,
development, and evaluation.

Accordingly, the works organized and presented in this document describe a solution to
detect the threat mentioned above, utilizing an unsupervised approach, an adaptive technique
towards evolving behaviors, and an extensible framework for deriving datasets regarding this
threat, as well as monitoring its most important attributes.

The first contribution of this work aimed at designing and developing a simulation engine,
capable of tackling these issues and resulting in datasets for detection purposes. It is able to
derive different scenarios from different aspects. On the one hand, given a probabilistic approach,
the developed simulation engine allows modeling a user relative to the technical skills they have
towards cloud assets, and also depending on their psychological predisposition to perform an
anomalous or treacherous act. Also, following a higher optic, it allows the simulation of a single
or multiple users in a company, all of them executing real requests to a cloud implementation.
This approach is a crucial advantage at the moment of deriving different enterprise scenarios, in
the lack of real data, granting adaptability to the specific needs of industrial corporations.

The second and main contribution represents the base of the whole detection framework for
the efficient detection of the insider threat. It corresponds to a novel anomaly-based detection
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framework, and it is framed under the application and extension of a machine learning technique,
adapted for the anomaly detection of the insider threat. This module is designed to represent
past, present and evolving behaviors of employee’s actions towards the cloud assets of a company.
Structurally, it is composed of two main algorithms: a training phase and online phase. The
design has been carried in such a way that the training phase can determine whenever the trained
algorithm has stabilized, by internal clustering metrics such as the modularity. The algorithm
then has learned the normal and abnormal behaviors of the user after capturing data in an
elapsed period, and by iterating itself through that data until the resultant graph topology does
not show significant fluctuations.

Additionally, the framework proposed a continuous adjustment of community detection,
where the clusters are reconstructed based on the adaptation against new incoming data, proving
to be capable of identifying new emerging treacherous communities of neurons/clusters, together
with normal communities, which also evolve, grow, split-up or become more behavior-specific
in time.

The latter procedure works in conjunction with the proposed labeling criteria, which has
been evaluated extensively against different experiments in Section 6. Results show the pro-
posed detection accurately identifies anomalous behaviors, under different benchmark studies.
Furthermore, compared to other clustering techniques presented in Chapter 4, the proposed
solution also shows better comparative FPR and F1-score results at the moment of identifying
treacherous actions.

This contribution also consisted in presenting novelties in the sections of data representation
for further detection. The detection framework combined user-based data (i.e., literal strings
representing actions), network-based and cloud-based attributes, along with contextual knowl-
edge information.

Regarding the benchmark results in Chapter 6, for the analysis of the 4 scenarios and con-
sidering the low-FPR premise, it is better to work with contextual data (FPR for scenario 3
presents the lowest at 0.001%) rather than with sequences. Accordingly, the best performance is
held by scenarios 3 (presenting the lowest at 0.001%) and 1. They both show very similar char-
acteristics, low FPR while having good precision at the moment identifying all the treacherous
neurons in the graph.

Hence, in virtue of an efficient trade-off between the number of features to monitor, it is
advised to pursue the set given by scenario 3, and moreover, if efficiency and implementation is
a relevant issue, the feature set of scenario 1 is a good candidate, which holds good values for
F1-score, while only utilizing network traces and IaaS-related features.

Concerning the different data attributes of study, the essential features for the anomalous and
treacherous detection were classified by their contribution with random forests. This well-known
machine learning method is often utilized for feature selection. However, it requires ground-truth
labels, namely, it is a supervised technique. Since the proposed work aims at achieving results
in an unsupervised manner, the methodology to assess this estimation was using the proposed
labeling criteria given by the framework, and then concluding on the relevant features for each
of the normal, treacherous and unknown classes.

Results from that analysis concluded that regarding the comparative importance between
the different subsets, the network-based features contributed with more information, due to their
variability and richer numerical representation. Relevant features of this group are Total Pkts,
Response Time, DL Data Vol, UL Data Vol, Octet Stream Type and Session Time. These
features could be then selected as a priority subset, if needed to increase computational efficiency.

IaaS-based features also proved to supply complementary information, such as Server Shutoff
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Mean, Server Delete Mean and Server Stop Mean. This is logical, given the fact that the anoma-
lous activities concerned these three actions.

Moreover, when looking into the contextual attributes’ relevance, obtained results showed
these attributes paid a crucial role in contributing to the identification of treacherous traces,
both in: (1) internal features fed by the OSAD algorithm, and (2) using the proposed labeling
criteria.

Sequences on the other hand, whenever present, add information since they are specifying
the real action to which the trace corresponds. Results, in this case, show the importance given
to the overall dataset, depends mainly on two aspects. First, on the action sequences derived
by the insider threat simulation, especially their level of randomness at the profile configuration
stage. The configuration relates to their length and the occurrence of every action within them.
Second and most importantly, their importance depends on the way they are represented (e.g.,
numerically, as strings).

Moreover, the proposed n-gram string-to-vector representation of the actions does not seem
to provide vital information. The reason depends on the factors mentioned above, which for the
generated datasets, may not have been too heterogeneous and fundamentally different between
them (i.e., normal generated actions were slightly longer in string-length than the anomalous)
therefore, at the moment of vectorizing them numerically, they did not differ much. Nevertheless,
the extensible approach derived from the simulation in Chapter 3 allows further investigation in
this matter, through the generation of longer and more complex sequences of actions.

All conclusions considered above give essential insights of the relevant attributes to consider
whenever wanting to detect behaviors that diverge from the typical usage of cloud resources,
considering the suggestions at the moment of implementing monitoring sensors, prepossessing
the data, and detecting correspondingly.

Another aspect of the proposed solution is the concept of reservoir, which is a concept
previously applied (e.g., [50] but for different purposes than anomaly detection). In the present
work, this component has been designed to allow keeping historical track of all the decisions of the
users during their requests towards the cloud. At the same time, it effectively tackles the issue
of belated detection characteristics this threat has in particular. All benchmark experiments
were also analyses concerning this component, in Chapter 6. Results depicted the expected
behavior, in most cases, i.e., the module serves as a temporary vault for treacherous neurons.
Consequently, for most cases, results depict increments of the number of neurons, followed by
decrements. Correspondingly, it effectively permits the company to audit and make decisions
promptly when anomalies are detected.

The third contribution of this work represents the validation process of the proposed frame-
work. By means of characterizing different scenarios, we make use of various subsets to prove
the anomalies’ classification through different datasets. As a consequence, through the adaptive
learning, the experimental work shows that the proposed schema benefits from several factors.
First of all, it makes every neuron more stable and also more specific to its particular prototype.
This means that after a long constant time period, every neuron will have clustered more similar
input vectors, decreasing the accumulated local error and improving the topological structure of
the graph G. Moreover, this means the heterogeneous behavior a user can have in a company, is
properly described by a set of these neurons, therefore tackling the characterization of evolving
execution tasks by the employees. Furthermore, by virtue of the contextual added features, the
framework is able to label certain behaviors for future decision making.

The fourth contribution of this work is formed by the implementation of the aforementioned
monitoring approach, composed by two principal components: a DPI for network traffic provided
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by MMT, along with the proposed implementation for monitoring relevant IaaS features, capable
of detecting critical situations. By virtue of the latter module, the framework is able to monitor
an extensive set of attributes, that automatically retrieve the IaaS information from the cloud.
This also has a flexible approach in mind, by being able to obtain information on not only existing
assets, but also capable of incorporating new assets, as part of cloud principal characteristics.
Additionally, it has an extensive modular design in mind, by means of monitoring not only
the relevant attributes for the portrayed threat scenarios, but also additional future actions the
simulation could consider executing.

7.2 Perspectives

The proposed model in Chapter 3 considers the fundamental characteristics to illustrate a user
model: different technical capabilities, psychological propensity (motive) and the opportunity
to execute an attack. On this behalf, it is considered that adding an inter-psychological factor
would enrich the simulation. This factor would be useful to characterize more complex psycho-
logical and social dynamics. Following the latter, there is much more to explore as to enterprise
schema/hierarchies and how social interactions could also be affected by them. These attributes
may consider the representation of different organization logistics, among others. Also, it would
permit to model insider threat scenarios such as collusion or social engineering. All these char-
acteristics may extend the Context entity of the proposed user model. For example, some
organizations may have a crossfunctional business structure, where the employees are expected
to interact across functional areas, therefore, the normal behavior is broader and could be more
heterogeneous.

Concerning the evaluation of the proper functioning of the simulation tool, further enhance-
ments can also be made regarding its analysis through richer techniques, such as statistical con-
trol. This method was mentioned in the discussion during the defense of this work, and presents
benefits at the moment of working with a simulation tool that generates different datasets every
time, therefore having an inherent statistical nature. Accordingly, the use of a method like this,
would enhance the evaluation of the different properties following a criteria based in acceptable
ranges with intervals of trust, also provided at the configuration step of the simulation; instead
of rigid comparatives such as fix thresholds.

Also, by incorporating the knowledge of the consequences after pursuing a malicious act, the
user model comportment could enrich themselves by the use of reinforcement learning theory.
This machine learning technique falls under the idea of a more complex insider model that
allows reasoning about the risk associated and its consequences, as well as richer conducts in
the context of personal motives, capabilities, and opportunity.

Finally, further studies in this area may contribute to the derivation of an organizational tool
that benefits from studying their employees and analyze risky behaviors regarding vulnerability
scans.

Concerning the specific components of the proposed detection framework, more experiments
could be done towards the optimization of the reservoir. Its capacity is limited and in some
cases could accumulate too many neurons, such as an abrupt group of anomalies arrival or high-
severity behaviors. For that concern, it is necessary to implement enriched policies in order to
maintain relevant information only. For instance, in the case of the examples mentioned above,
the reservoir could be capable of executing a different procedure, such as different deletion for
buffer optimization, along with a possible alert notification.

Regarding anomaly detectors’ functionality, future explorations can be done on how feature
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selection can play a role in the cyber-security domain, and further studies should be carried
to obtain more efficient ways of data representation in continually evolving threat patterns.
This research would also be advantageous since it results in algorithms that require less storage
volume, and lower demand for resources concerning processing.

Lastly, additional relevant features from knowledge in the domain may be studied, helping via
contextual information, for more efficient learning engine in the detection framework. Moreover,
contextual information was used internally by the detection algorithm. Nevertheless, further
studies regarding the use of these features separately by means of categorizing the incoming
vectors in a precedent step may also optimize the algorithm’s performance by having fewer
dimensions. Such would be the case of the use for the proposed severities and the policy based
contextual information location and working hours.

Regarding data collection, enhancements could be made, building new security monitoring
methodologies in order to enforce availability and reliability. Consequently, various challenges
need to be considered such as, for example, storing and synchronizing in distributed environments
that have different Availability Zones (AZs) as well as multiple tenants, distributed logically and
geographically.

Moreover, concerning monitoring implementation and also for the detection engine, a new
design of a parallel version of the proposed method would take advantage of data-intensive com-
puting platforms, such as Apache Spark. One way to do this would be to parallelize independent
parts of the data and process them in parallel while sharing the same graph of neurons. Another
alternative would be to design algorithms to adequately split and distribute the graph of neurons
on multiple machines running in parallel.

Lastly, the proposed solution can be evaluated against more insider threat case scenarios.
For this matter and although non-cloud related, the CERT dataset [17] can be considered, i.e.,
the known and used (e.g., [49], [52], [127]) insider threat dataset from the past years. Therefore,
further work towards the evaluation of detection performance with this dataset is of major
interest.
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A

p
pen

d
ix

A
.

D
a
ta

set
fea

tu
res

Scenario Time
Internal Labeling External

Modularity Silhouette Coms. found Normal Threat Unknown ARI NMI F1 Accuracy FPR

Cloud Admin High Alphabet Seq Only 34.603316 0.834946 0.631 13 1 0 12 0.237659 0.325467 0.472 0.770 0.256
Cloud Admin High Alphabet Seq and other Feats 54.830397 0.818913 -0.036 17 12 0 5 0.264090 0.058151 0.371 0.884 0.057
Cloud Admin Medium Alphabet Seq Only 46.414830 0.809578 0.566 11 2 0 9 0.048926 0.074710 0.096 0.769 0.233
Cloud Admin Medium Alphabet Seq and other Feats 118.933960 0.859154 0.237 20 9 0 11 0.019910 0.016907 0.059 0.710 0.289
Cloud Admin High 1-gram Seq-only 41.656105 0.813539 0.537 11 3 0 8 0.530819 0.244589 0.664 0.901 0.109
Cloud Admin High 2-gram Seq-only 35.361977 0.825814 0.779 11 5 0 6 -0.013859 0.121068 0.123 0.600 0.364
Cloud Admin High 3-gram Seq-only 29.207140 0.745466 0.513 8 5 0 3 0.703185 0.228799 0.761 0.958 0.001
Cloud Admin High 1-gram Seq-feats 60.447913 0.841771 0.129 15 7 0 8 0.001458 0.084937 0.181 0.532 0.465
Cloud Admin High 2-gram Seq-feats 55.331043 0.855454 0.426 19 7 0 12 0.073439 0.066765 0.298 0.669 0.332
Cloud Admin High 3-gram Seq-feats 65.185473 0.875944 0.297 21 4 0 17 -0.022123 0.084752 0.230 0.462 0.577
Cloud Admin Medium 1-gram Seq-only 26.534031 0.750503 0.864 9 4 0 5 0.881494 0.047153 0.885 0.997 1.000
Cloud Admin Medium 2-gram Seq-only 25.847943 0.753429 0.875 10 3 0 7 0.043974 0.032048 0.088 0.762 0.240
Cloud Admin Medium 3-gram Seq-only 30.556918 0.748077 0.630 10 3 0 7 0.038691 0.035276 0.079 0.776 0.223
Cloud Admin Medium 1-gram Seq-feats 89.450220 0.844221 0.057 19 10 0 9 0.008669 0.019387 0.040 0.745 0.249
Cloud Admin Medium 2-gram Seq-feats 94.517919 0.842157 0.406 15 10 0 5 0.009375 0.010454 0.038 0.863 0.127
Cloud Admin Medium 3-gram Seq-feats 105.978900 0.882283 0.378 18 8 0 10 0.044174 0.016188 0.089 0.757 0.245
Cloud Admin High 1-gram Seq-only 24.502653 0.722063 0.652 8 2 0 6 0.181339 0.301477 0.404 0.750 0.261
Cloud Admin High 2-gram Seq-only 27.673261 0.736586 0.499 9 3 0 6 0.127958 0.170443 0.329 0.739 0.249
Cloud Admin High 3-gram Seq-only 26.197885 0.764599 0.737 10 6 0 4 0.227217 0.121573 0.421 0.797 0.191
Cloud Admin High 1-gram Seq-feats 57.601754 0.822315 0.413 14 5 0 9 0.191802 0.098439 0.353 0.815 0.149
Cloud Admin High 2-gram Seq-feats 65.644418 0.827478 0.146 15 7 0 8 0.061508 0.072392 0.261 0.694 0.280
Cloud Admin High 3-gram Seq-feats 56.945146 0.861759 0.388 16 8 0 8 0.102926 0.071671 0.276 0.758 0.208
Cloud Admin Medium 1-gram Seq-only 34.623877 0.770876 0.921 10 5 0 5 0.825137 0.060661 0.831 0.996 1.000
Cloud Admin Medium 2-gram Seq-only 36.335605 0.794424 0.677 10 5 0 5 0.572979 0.026143 0.582 0.991 1.000
Cloud Admin Medium 3-gram Seq-only 29.444148 0.781443 0.707 9 5 0 4 0.658056 0.031687 0.667 0.992 1.000
Cloud Admin Medium 1-gram Seq-feats 73.175335 0.815612 0.323 14 4 0 10 -0.001401 0.005482 0.048 0.488 0.518
Cloud Admin Medium 2-gram Seq-feats 113.543062 0.872850 0.439 15 7 0 8 -0.000645 0.007493 0.023 0.576 0.421
Cloud Admin Medium 3-gram Seq-feats 108.910944 0.866384 0.350 17 7 0 10 0.015151 0.014741 0.050 0.698 0.301

Table A.1 – Experimental results for sequence features as numerical data
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