J. K. Nelson and J. C. Fothergill, Internal charge behaviour of nanocomposites, Nanotechnology, vol.15, p.586, 2004.
DOI : 10.1088/0957-4484/15/5/032

URL : http://homepages.rpi.edu/~nelsoj/nano.pdf

M. F. Frechette, M. L. Trudeau, H. D. Alamdar, and S. Boily, Introductory remarks on nanodielectrics, IEEE Transactions on, vol.11, pp.808-818, 2004.
DOI : 10.1109/tdei.2004.1349786

T. J. Lewis, Dielectrics and Electrical Insulation, IEEE Transactions on, vol.1, pp.812-825, 1994.

T. Andritsch, R. Kochetov, P. H. Morshuis, and J. J. Smit, Proposal of the polymer chain alignment model, Electrical Insulation and Dielectric Phenomena (CEIDP), pp.624-627, 2011.
DOI : 10.1109/ceidp.2011.6232734

J. K. Nelson, J. C. Fothergill, L. A. Dissado, and W. Peasgood, Towards an understanding of nanometric dielectrics, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp.295-298, 2002.
DOI : 10.1109/ceidp.2002.1048793

URL : http://openaccess.city.ac.uk/1365/1/Towards%20an%20understanding%20of%20nanometric%20dielectrics.pdf

Y. Yi, C. Jiong, Y. Jingning, X. Dengming, T. Demin et al., Effect of space charge in nanocomposite of LDPE/TiO2, Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, vol.3, pp.913-916, 2003.

K. Y. Lau, A. S. Vaughan, and G. Chen, Nanodielectrics: opportunities and challenges, IEEE Electrical Insulation Magazine, vol.31, pp.45-54, 2015.
DOI : 10.1109/mei.2015.7126073

R. P. Feynman, There's plenty of room at the bottom [data storage, Journal of Microelectromechanical Systems, vol.1, pp.60-66, 1992.
DOI : 10.1109/84.128057

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, pp.930-933

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-Å scale, Journal of Applied Physics, vol.61, pp.4723-4729, 1987.
DOI : 10.1063/1.338807

S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu et al., Local Dielectric Property Detection of the Interface between Nanoparticle and Polymer in Nanocomposite Dielectrics, Sci Rep, vol.6, p.38978, 2016.

P. Robert, Matériaux de l'électrotechnique: Dunod, 1979.

M. C. Petty, Electrical Conductivity, Molecular Electronics, pp.65-128, 2007.

L. A. Dissado and J. C. Fothergill, Electrical degradation and breakdown in polymers: The institution of Engineering and Technology, 1992.

E. Tuncer and I. Sauers, Industrial Applications Perspective of Nanodielectrics, pp.321-338, 2010.
DOI : 10.1007/978-1-4419-1591-7_11

URL : https://digital.library.unt.edu/ark:/67531/metadc929205/m2/1/high_res_d/970881.pdf

G. Blaise and D. Treheux, Physics of Dielectrics, Dielectric Materials for Electrical Engineering, pp.1-16, 2013.
DOI : 10.1002/9781118557419.ch01

M. Mario and D. Rodolphe, Matériaux diélectriques, Techniques de l'ingénieur Propriétés électriques et électrochimiques, p.336, 2010.

F. Robert, Les isolants en électrotechnique: EYROLLES, 1986.

K. Wagner, Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen, Archiv für Elektrotechnik, vol.2, pp.371-387, 1914.

R. W. Sillars, The properties of a dielectric containing semiconducting particles of various shapes, Journal of the Institution, vol.80, pp.378-394, 1937.

K. C. Kao, 2-Electric Polarization and Relaxation, Dielectric Phenomena in, pp.41-114, 2004.

S. Singha and M. J. Thomas, Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz, IEEE Transactions on Dielectrics and Electrical Insulation, vol.15, pp.2-11, 2008.

R. Coelho and B. Aladenize, Les diélectriques : Propriétés diélectriques des matériaux isolants: HERMES, 1993.

F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy, 2002.

I. A. Preda, Modeling and characterization of nanocomposite materials using dielectric methods, 2013.

T. J. Lewis, Dielectrics and Electrical Insulation, IEEE Transactions on, vol.1, pp.812-825, 1994.

M. F. Frechette, M. L. Trudeau, H. D. Alamdar, and S. Boily, Introductory remarks on nanodielectrics, IEEE Transactions on, vol.11, pp.808-818, 2004.

G. C. Psarras, Nanodielectrics: an emerging sector of polymer nanocomposites, eXPRESS Polymer Letters, 2008.

-. Wiley and . Vch, Ullmann's Polymers and Plastics, 4 Volume Set: Products and Processes, 2016.

C. Mayoux, Degradation of insulating materials under electrical stress, IEEE Transactions on Dielectrics and Electrical Insulation, vol.7, pp.590-601, 2000.

Y. Cao, P. C. Irwin, and K. Younsi, The future of nanodielectrics in the electrical power industry, IEEE Transactions on Dielectrics and Electrical Insulation, vol.11, pp.797-807, 2004.

T. J. Lewis, Interfaces are the dominant feature of dielectrics at the nanometric level, IEEE Transactions on, vol.11, pp.739-753, 2004.

T. Tanaka, M. Kozako, N. Fuse, and Y. Ohki, Proposal of a multi-core model for polymer nanocomposite dielectrics, IEEE Transactions on, vol.12, pp.669-681, 2005.

J. K. Nelson, Overview of nanodielectrics: Insulating materials of the future, 2007 Electrical Insulation Conference and Electrical Manufacturing Expo, pp.229-235, 2007.

S. Hishukawa, S. Okada, T. Imai, and T. Shimizu, Thermal and Mechanical Performance of Nanocomposite Insulating Materials, Advanced Nanodielectrics: Fundamentals and Applications, vol.038988, 2017.

P. O. Henk, T. W. Kortsen, and T. Kvarts, Increasing the Electrical Discharge Endurance of Acid Anhydride Cured DGEBA Epoxy Resin by Dispersion of Nanoparticle Silica, High Performance Polymers, vol.11, pp.281-296, 1999.

J. K. Nelson, Y. Hu, and J. Thiticharoenpong, Electrical properties of TiO2 nanocomposites, p.2003

, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp.719-722, 2003.

M. Dongling, A. H. Treese, W. S. Richard, C. Anna, M. Eva et al., Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites, Nanotechnology, vol.16, p.724, 2005.

S. Li, G. Yin, G. Chen, J. Li, S. Bai et al., Short-term breakdown and long-term failure in nanodielectrics: a review, IEEE Transactions on Dielectrics and Electrical Insulation, vol.17, pp.1523-1535, 2010.

R. C. Smith, C. Liang, M. Landry, J. K. Nelson, and L. S. Schadler, The mechanisms leading to the useful electrical properties of polymer nanodielectrics, Dielectrics and Electrical Insulation, vol.15, pp.187-196, 2008.

R. C. Smith, J. K. Nelson, and L. S. Schadler, 3-Electrical behavior of particle-filled polymer nanocomposites, Physical Properties and Applications of Polymer, pp.70-107, 2010.

?. B. Danikas, R. Sarathi, A. Basri-bin-abd, and . Ghani, A Review of Two Nanocomposite Insulating Materials Models: Lewis' Contribution in the Development of the Models, their Differences, their Similarities and Future Challenges, Technology & Applied Science Research, vol.4, pp.636-643, 2014.

D. Pitsa, G. E. Vardakis, and M. G. Danikas, Effect of nanoparticles loading on electrical tree propagation in polymer nanocomposites, Proceedings of 2011 International Symposium on Electrical Insulating Materials, pp.9-11, 2011.

D. Pitsa, M. G. Danikas, G. E. Vardakis, and T. Tanaka, Influence of homocharges and nanoparticles in electrical tree propagation under DC voltage application, Electrical Engineering, vol.94, pp.81-88, 2012.

T. Andritsch, R. Kochetov, P. H. Morshuis, and J. J. Smit, Proposal of the polymer chain alignment model, Electrical Insulation and Dielectric Phenomena (CEIDP), pp.624-627, 2011.

R. Kochetov, T. Andritsch, P. H. Morshuis, and J. J. Smit, Anomalous behaviour of the dielectric spectroscopy response of nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.19, pp.107-117, 2012.

T. Andritsh, Epoxy based nanocomposites for high voltage DC applications-Synthesis, Dielectric Properties and Space Charge Dynamics, 2010.

R. Kochetov, Thermal and Electrical Properties of Nanocomposites, Including Material Processing, 2012.

C. Zou, J. C. Fothergill, and S. W. Rowe, The effect of water absorption on the dielectric properties of epoxy nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.15, pp.106-117, 2008.

C. Zhang and G. C. Stevens, The Dielectric Response of Polar and Non-Polar Nanodielectrics, IEEE Transactions on Dielectrics and Electrical Insulation, vol.15, pp.606-617, 2008.

D. Fabiani, G. C. Montanari, and L. Testa, Effect of aspect ratio and water contamination on the electric properties of nanostructured insulating materials, IEEE Transactions on Dielectrics and Electrical Insulation, vol.17, pp.221-230, 2010.

J. K. Nelson and J. C. Fothergill, Internal charge behaviour of nanocomposites, Nanotechnology, vol.15, p.586, 2004.

Y. Li, Y. Huang, T. Krentz, B. Natarajan, T. Neely et al., Polymer Nanocomposite Interfaces: The Hidden Lever for Optimizing Performance in Spherical Nanofilled Polymers, Interface/Interphase in Polymer Nanocomposites, pp.1-69, 2016.

G. Meier, Thermodynamics of Surfaces and Interfaces: Concepts in Inorganic Materials, 2014.

S. K. Saha, Observation of giant dielectric constant in an assembly of ultrafine Ag particles, Physical Review B, vol.69, pp.3-26

M. Stamm, Polymer Surface and Interface Characterization Techniques, Polymer Surfaces and Interfaces: Characterization, Modification and Applications, pp.1-16, 2008.

A. I. Rusanov, Recent Investigations on the Thickness of Surface Layers, Progress in Surface and Membrane Science, vol.4, pp.57-114, 1971.

H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche, Annalen der Physik, vol.165, pp.211-233, 1853.

G. Tsagaropoulos and A. Eisenberg, Dynamic Mechanical Study of the Factors Affecting the Two Glass Transition Behavior of Filled Polymers. Similarities and Differences with Random Ionomers, Macromolecules, vol.28, pp.6067-6077, 1995.

V. Arrighi, I. J. Mcewen, H. Qian, and M. B. Serrano-prieto, The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller, Polymer, vol.44, pp.6259-6266, 2003.

S. Raetzke and J. Kindersberger, Role of interphase on the resistance to high-voltage arcing, on tracking and erosion of silicone/SiO2 nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.17, pp.607-614, 2010.

J. Seiler and J. Kindersberger, Insight into the interphase in polymer nanocomposites, IEEE Transactions on, vol.21, pp.537-547, 2014.

P. Preetha and M. J. Thomas, AC breakdown characteristics of epoxy nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.18, pp.1526-1534, 2011.

D. Pitsa and M. G. Danikas, Interfaces features in polymer nanocomposites: a review of proposed models, Nano, vol.06, pp.497-508, 2011.

T. Tanaka, A novel concept for electronic transport in nanoscale spaces formed by islandic multicored nanoparticles, 2016 IEEE International Conference on Dielectrics (ICD), pp.23-26, 2016.

M. G. Todd and F. G. Shi, Complex permittivity of composite systems: a comprehensive interphase approach, IEEE Transactions on, vol.12, pp.601-611, 2005.

I. Preda, J. Castellon, M. Frechette, and S. Agnel, Modelling the dielectric permittivity of nanocomposites-the overlap model, Proceedings of 2014 International Symposium on, pp.17-21, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01762824

F. Ciuprina, L. Andrei, F. M. Tomescu, I. Plesa, and T. Zaharescu, Electrostatic model of LDPE-SiO2 nanodielectrics, Solid Dielectrics (ICSD), pp.876-879, 2013.

W. J. Li, J. Zheqiang, L. Xuguang, and Y. Yi, Finite element simulation of LDPE/SiO2

. Nanocomposite, Int. Symp. on Electrical Insulating Materials, pp.366-369, 2011.

D. Pitsa and M. G. Danikas, Modeling relative permittivity and electrical treeing in polymer nanocomposites, Solid Dielectrics (ICSD), 2013 IEEE International Conference on, pp.832-835, 2013.

J. C. Pandey and N. Gupta, Estimation of interphase thickness of epoxy-based nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.23, pp.2747-2756, 2016.

O. Dugne, S. Prouhet, A. Guette, R. Naslain, and J. Sevely, Interface Characterisation by Transmission Electron Microscopy and Auger Electron Spectroscopy in Tough SiC Fiber (Nicalon)-SiC Matrix Composite with a Boron Nitride Interphase, Developments in the Science and Technology of Composite Materials: ECCM3 Third European Conference on Composite Materials, vol.20, 1989.

. Bordeaux-france, , pp.129-135, 1989.

Q. Wu, M. Li, Y. Gu, Y. Li, and Z. Zhang, Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite, Composites Part A: Applied Science and Manufacturing, vol.56, pp.143-149, 2014.

Q. Wu, M. Li, Y. Gu, S. Wang, and Z. Zhang, Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy, Chinese Journal of Aeronautics, vol.28, pp.1529-1538, 2015.

B. E. Uribe and J. R. Tarpani, Interphase analysis of hierarchical composites via transmission electron microscopy, Composite Interfaces, vol.24, issue.11, p.2017, 2017.

D. R. Clarke and P. R. Stuart, An anomalous contrast effect in the scanning electron microscope, Journal of Physics E: Scientific Instruments, vol.3, p.705, 1970.

M. A. Stevens-kalceff, M. R. Phillips, and A. R. Moon, Electron irradiation-induced changes in the surface topography of silicon dioxide, Journal of Applied Physics, vol.80, issue.10, pp.4308-4314, 1996.

D. C. Joy, Control of charging in low-voltage SEM, Scanning, vol.11, pp.1-4, 1989.

M. Belhaj, S. Odof, K. Msellak, and O. Jbara, Time-dependent measurement of the trapped charge in electron irradiated insulators: Application to Al2O3-sapphire, Journal of Applied Physics, vol.88, pp.2289-2294, 2000.

S. Fakhfakh, O. Jbara, M. Belhaj, Z. Fakhfakh, A. Kallel et al., An experimental approach for dynamic investigation of the trapping properties of glass-ceramic under electron beam irradiation from a scanning electron microscope, Eur. Phys. J. AP, vol.21, pp.137-146, 2003.

D. A. Jesson and J. F. Watts, The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification, vol.52, pp.321-354, 2012.

D. Shiqiang, Y. Lin, and Y. Mai, Measurement of interfacial shear strength of carbon fibre/epoxy composites using a single fibre pull-out test, Advanced Composite Materials, vol.7, pp.169-182, 1998.

M. Rodríguez, J. M. Molina-aldareguía, C. González, and J. Llorca, A methodology to measure the interface shear strength by means of the fiber push-in test, Composites Science and Technology, vol.72, pp.1924-1932, 2012.

J. Kim and A. Hodzic, Nanoscale characterisation of thickness and properties of interphase in polymer matrix composites, The Journal of Adhesion, vol.79, pp.383-414, 2003.

O. W. and P. G. , An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.7, pp.1564-1583, 1992.

A. Hodzic, Z. H. Stachurski, and J. K. Kim, Nano-indentation of polymer-glass interfaces Part I. Experimental and mechanical analysis, Polymer, vol.41, pp.6895-6905, 2000.

A. Hodzic, S. Kalyanasundaram, J. K. Kim, A. E. Lowe, and Z. H. Stachurski, Application of nanoindentation, nano-scratch and single fibre tests in investigation of interphases in composite materials, Micron, vol.32, pp.765-775, 2001.

J. Kim, M. Sham, and J. Wu, Nanoscale characterisation of interphase in silane treated glass fibre composites, Composites Part A: Applied Science and Manufacturing, vol.32, pp.607-618, 2001.

A. Hodzic, J. K. Kim, A. E. Lowe, and Z. H. Stachurski, The effects of water aging on the interphase region and interlaminar fracture toughness in polymer-glass composites, Composites Science and Technology, vol.64, pp.2185-2195, 2004.

A. M. Díez-pascual, M. A. Gómez-fatou, F. Ania, and A. Flores, Nanoindentation Assessment of the Interphase in Carbon Nanotube-Based Hierarchical Composites, The Journal of Physical Chemistry C, vol.116, issue.11, p.2012, 2012.

E. Mäder, S. Gao, and J. Kim, New Nano-Scale Characterization Techniques for Interphases, Interface Controlled Materials, pp.237-242, 2005.

S. B. Yedla, M. Kalukanimuttam, R. M. Winter, and S. K. Khanna, Effect of Shape of the Tip in Determining Interphase Properties in Fiber Reinforced Plastic Composites Using Nanoindentation, Journal of Engineering Materials and Technology, vol.130, pp.41010-041010, 2008.

T. D. Downing, R. Kumar, W. M. Cross, L. Kjerengtroen, and J. J. Kellar, Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation, Journal of Adhesion Science and Technology, vol.14, pp.1801-1812, 2000.

R. Kumar, W. M. Cross, L. Kjerengtroen, and J. J. Kellar, Fiber bias in nanoindentation of polymer matrix composites, Composite Interfaces, vol.11, pp.431-440, 2004.

W. M. Cross, W. M. Cross, L. Kjerengtroen, and J. J. Kellar, Interphase variation in silane-treated glassfiber-reinforced epoxy composites, Journal of Adhesion Science and Technology, vol.19, pp.279-290, 2005.

R. Arinero, Microscopie à force atomique en mode contact vibrant et application à l'étude des propriétés élastiques à l'échelle nanométrique, 2003.

B. Pittenger, N. Erina, and C. Su, Mechanical Property Mapping at the Nanoscale Using PeakForce QNM Scanning Probe Technique, Nanomechanical Analysis of High Performance Materials, pp.31-51, 2014.

P. Leclère, P. Viville, M. Jeusette, J. Aimé, and R. Lazzaroni, Scanning Probe Microscopy of Complex Polymer Systems: Beyond Imaging their Morphology, Scanning Probe Microscopies Beyond Imaging, pp.175-207, 2006.

M. R. Vanlandingham, R. R. Dagastine, R. F. Eduljee, R. L. Mccullough, and J. W. Gillespie, Characterization of nanoscale property variations in polymer composite systems: 1. Experimental results, Composites Part A: Applied Science and Manufacturing, vol.30, pp.75-83

T. A. Bogetti, T. Wang, M. R. Vanlandingham, and J. W. Gillespie, Characterization of nanoscale property variations in polymer composite systems: 2. Numerical modeling, Composites Part A: Applied Science and Manufacturing, vol.30, pp.85-94, 1999.

S. Gao and E. Mäder, Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites, Composites Part A: Applied Science and Manufacturing, vol.33, pp.559-576, 2002.

S. Gao, E. Mäder, and S. F. Zhandarov, Carbon fibers and composites with epoxy resins: Topography, fractography and interphases, Carbon, vol.42, pp.515-529, 2004.

T. J. Young, M. Monclus, W. R. Broughton, S. L. Ogin, and P. A. Smith, Observations on interphase characterisation in polymer composites by nanoscale indentation and use of AFM cantilever torsion to identify measurement artefacts, Plastics, Rubber and Composites, vol.41, pp.240-246, 2012.

Y. Gu, M. Li, J. Wang, and Z. Zhang, Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique, Carbon, vol.48, pp.3229-3235, 2010.

M. A. Monclus, T. J. Young, and D. Di-maio, AFM indentation method used for elastic modulus characterization of interfaces and thin layers, Journal of Materials Science, vol.45, pp.3190-3197, 2010.

V. Cech, E. Palesch, and J. Lukes, The glass fiber-polymer matrix interface/interphase characterized by nanoscale imaging techniques, Composites Science and Technology, vol.83, pp.22-26, 2013.

X. Cheng, K. W. Putz, C. D. Wood, and L. C. Brinson, Characterization of local elastic modulus in confined polymer films via AFM indentation, Macromol Rapid Commun, vol.36, pp.391-398, 2015.

S. Cheng, V. Bocharova, A. Belianinov, S. Xiong, A. Kisliuk et al., Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites, Nano Letters, vol.16, pp.3630-3637, 2016.

S. Cheng, A. P. Holt, H. Wang, F. Fan, V. Bocharova et al., Unexpected Molecular Weight Effect in Polymer Nanocomposites, Physical Review Letters, vol.116, pp.1-22

N. Lahoud-dignat, M. N. Hidayatullah, F. Saysouk, M. L. Locatelli, and S. Diaham, Using the Atomic Force Microscopy for nanocomposites local mechanical characterization: Towards the interphase measurement, 2016 IEEE International Conference on Dielectrics, pp.64-67, 2016.

H. Huang, I. Dobryden, N. Ihrner, M. Johansson, H. Ma et al., Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite, Journal of Colloid and Interface Science, vol.494, pp.204-214

S. Gong, Q. Chen, J. F. Moll, S. K. Kumar, and R. H. Colby, Segmental Dynamics of Polymer Melts with Spherical Nanoparticles, ACS Macro Letters, vol.3, pp.773-777, 2014.

C. D. Wood, A. Ajdari, C. W. Burkhart, K. W. Putz, and L. C. Brinson, Understanding competing mechanisms for glass transition changes in filled elastomers, Composites Science and Technology, vol.127, pp.88-94, 2016.

G. Stan and R. F. Cook, Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy, Nanotechnology, vol.19, p.235701, 2008.

. .. Sensitivity,

.. .. , , p.61

. .. Conclusion,

, Chapter II Introduction to Electrostatic Force Microscopy

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters, vol.49, pp.57-61

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, pp.930-933

G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl et al., Tunneling Spectroscopy and Inverse Photoemission: Image and Field States, Physical Review Letters, vol.55, pp.991-994
DOI : 10.1007/978-94-011-1812-5_11

A. O. , Advances in AFM for the electrical characterization of semiconductors, Reports on Progress in Physics, vol.71, p.76501, 2008.

G. Gramse, Dielectric constant of supported biomembranes measured in air and liquid environment, 2012.

T. Hantschel, P. Niedermann, T. Trenkler, and W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy, Applied Physics Letters, vol.76, pp.1603-1605, 2000.
DOI : 10.1063/1.126109

R. C. Barrett and C. F. Quate, Charge storage in a nitrideoxidesilicon medium by scanning capacitance microscopy, Journal of Applied Physics, vol.70, pp.2725-2733, 1991.
DOI : 10.1063/1.349388

G. Ferrari and M. Sampietro, Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements, Review of Scientific Instruments, vol.78, p.94703, 2007.
DOI : 10.1063/1.2778626

L. Fumagalli, G. Ferrari, M. Sampietro, and G. Gomila, Quantitative Nanoscale Dielectric Microscopy of Single-Layer Supported Biomembranes, Nano Letters, vol.9, pp.1604-1608, 2009.
DOI : 10.1021/nl803851u

K. Lai, M. B. Ji, N. Leindecker, M. A. Kelly, and Z. X. Shen, Atomic-force-microscope-compatible nearfield scanning microwave microscope with separated excitation and sensing probes, Review of Scientific Instruments, vol.78, p.63702, 2007.
DOI : 10.1063/1.2746768

URL : http://arxiv.org/pdf/cond-mat/0703382

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscopeforce mapping and profiling on a sub 100Å scale, Journal of Applied Physics, vol.61, pp.4723-4729, 1987.
DOI : 10.1063/1.338807

M. Nonnenmacher, M. P. O'boyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Applied Physics Letters, vol.58, p.6, 1991.

J. Hu, X. D. Xiao, and M. Salmeron, Scanning polarization force microscopy: A technique for imaging liquids and weakly adsorbed layers, Applied Physics Letters, vol.67, p.7, 1995.
DOI : 10.1063/1.114541

Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Highresolution capacitance measurement and potentiometry by force microscopy, Applied Physics Letters, vol.52, pp.1103-1105, 1988.
DOI : 10.1063/1.99224

G. Binnig, G. Ch, E. Stoll, T. R. Albrecht, and C. F. Quate, Atomic Resolution with Atomic Force Microscope, Europhysics Letters), vol.3, p.1281, 1987.
DOI : 10.1007/978-94-011-1812-5_33

T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, Microfabrication of cantilever styli for the atomic force microscope, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.8, pp.3386-3396, 1990.

O. Wolter, T. Bayer, and J. Greschner, Micromachined silicon sensors for scanning force microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.9, pp.1353-1357, 1991.
DOI : 10.1116/1.585195

L. Fumagalli, M. A. Edwards, and G. Gomila, Quantitative electrostatic force microscopy with sharp silicon tips, Nanotechnology, vol.25, p.495701, 2014.
DOI : 10.1088/0957-4484/25/49/495701

L. Nony, Analyse de la microscopie de force dynamique : application à l, 2000.
URL : https://hal.archives-ouvertes.fr/tel-00008804

S. Yongho and J. Wonho, Atomic force microscopy and spectroscopy, Reports on Progress in Physics, vol.71, p.16101, 2008.

D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, 1994.

. Jennarocca, Lennard Jones Potential Equation, vol.9, 2016.

P. Girard and A. N. Titkov, Electrostatic Force and Force Gradient Microscopy: Principles, Points of Interest and Application to Characterisation of Semiconductor Materials and Devices, Applied Scanning Probe Methods II: Scanning Probe Microscopy Techniques, pp.283-320, 2006.

J. E. Sader, I. Larson, P. Mulvaney, and L. R. White, Method for the calibration of atomic force microscope cantilevers, Review of Scientific Instruments, vol.66, pp.3789-3798, 1995.

J. E. Sader, J. W. Chon, and P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers, Review of Scientific Instruments, vol.70, pp.3967-3969, 1999.

M. A. Poggi, A. W. Mcfarland, J. S. Colton, and L. A. Bottomley, A Method for Calculating the Spring Constant of Atomic Force Microscopy Cantilevers with a Nonrectangular Cross Section, Analytical Chemistry, vol.77, pp.1192-1195, 2005.

Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surface Science, vol.290, pp.688-692, 1993.
DOI : 10.1016/0167-2584(93)90906-y

R. García and R. Pérez, Dynamic atomic force microscopy methods, Surface Science Reports, vol.47, pp.197-301, 2002.

D. K. Jha, Text Book Of Simple Harmonic Motion And Wave Theory, 2005.

L. Portes, P. Girard, R. Arinero, and M. Ramonda, Force gradient detection under vacuum on the basis of a double pass method, Review of Scientific Instruments, vol.77, p.96101, 2006.

M. W. Fairbairn, S. O. Moheimani, and A. J. Fleming, Q Control of an Atomic Force Microscope Microcantilever: A Sensorless Approach, Journal of Microelectromechanical Systems, vol.20, pp.1372-1381, 2011.

L. Portes, M. Ramonda, R. Arinero, and P. Girard, New method for electrostatic force gradient microscopy observations and Kelvin measurements under vacuum, Ultramicroscopy, vol.107, pp.1027-1032, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00327285

C. Riedel, Dielectric and Mechanical Properties of Polymers at Macro and Nanoscale, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01811972

R. Dianoux, Injection et détection de charges dans des nanostructures semiconductrices par Microscopie à Force Atomique, 2004.

R. R. Bugacov, C. Baur, N. Montoya, K. Woronowicz, A. Papson et al., Measuring the tip-sample separation in dynamic force microscopy, Probe Microscopy, vol.1, pp.345-354, 1999.

B. Bhushan and H. Fuchs, Applied Scanning Probe Methods II-Scanning Probe Microscopy Techniques, 2006.
DOI : 10.1007/978-3-540-85037-3

A. L. Tolstikhina, R. V. Ga?nutdinov, M. L. Zanaveskin, K. L. Sorokina, N. V. Belugina et al., Particular artifacts of topographic images of dielectrics in atomic-force microscopy, Crystallography Reports, vol.52, pp.894-900, 2007.

C. Carlos, A. R. Evandro, M. , P. Maria, H. O. et al., AFM topography artifacts resulting from electrostatic force, 2014.

D. E. Khoury, R. Arinero, J. C. Laurentie, and J. Castellon, Nanoscale surface charge detection in epoxy resin materials using electrostatic force spectroscopy, AIP Advances, vol.6, p.35318, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01629503

F. A. Vick, Theory of contact electrification, British Journal of Applied Physics, vol.4, p.1, 1953.

C. Riedel, Dielectric and mechanical properties of polymers and macro and nanoscale, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01811972

M. J. Cadena, S. H. Sung, B. W. Boudouris, R. Reifenberger, and A. Raman, Nanoscale Mapping of Dielectric Properties of Nanomaterials from Kilohertz to Megahertz Using Ultrasmall Cantilevers, ACS Nano, vol.10, pp.4062-4071, 2016.

G. Gramse, I. Casuso, J. Toset, L. Fumagalli, and G. Gomila, Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy, Nanotechnology, vol.20, p.395702, 2009.

R. I. Revilla, X. Li, Y. Yang, and C. Wang, Comparative Method To Quantify Dielectric Constant at Nanoscale Using Atomic Force Microscopy, The Journal of Physical Chemistry C, vol.118, p.3, 2014.

G. Gramse, G. Gomila, and L. Fumagalli, Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe, Nanotechnology, vol.23, p.205703, 2012.

L. Fumagalli, D. Esteban-ferrer, A. Cuervo, J. L. Carrascosa, and G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces, Nat Mater, vol.11, pp.808-816, 2012.

A. Dols-perez, G. Gramse, A. Calo, G. Gomila, and L. Fumagalli, Nanoscale electric polarizability of ultrathin biolayers on insulating substrates by electrostatic force microscopy, Nanoscale, vol.7, pp.18327-18363, 2015.

G. Gramse, A. Dols-perez, M. A. Edwards, L. Fumagalli, and G. Gomila, Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy, Biophysical Journal, vol.104, pp.1257-1262, 2013.

D. Esteban-ferrer, M. A. Edwards, L. Fumagalli, A. Juárez, and G. Gomila, Electric Polarization Properties of Single Bacteria Measured with Electrostatic Force Microscopy, ACS Nano, vol.8, issue.10, pp.9843-9849, 2014.

M. M. Kummali, L. A. Miccio, G. A. Schwartz, A. Alegría, J. Colmenero et al., Local mechanical and dielectric behavior of the interacting polymer layer in silica nano-particles filled SBR by means of AFM-based methods, Polymer, vol.54, pp.4980-4986, 2013.

A. Méndez-vilas, M. L. González-martín, and M. J. Nuevo, Optical interference artifacts in contact atomic force microscopy images, Ultramicroscopy, vol.92, pp.243-250, 2002.

J. Deschler, J. Seiler, and J. Kindersberger, Detection of charges at the interphase of polymeric nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.24, pp.1027-1037, 2017.

N. ,

E. Tevaarwerk, D. G. Keppel, P. Rugheimer, M. G. Lagally, and M. A. Eriksson, Quantitative analysis of electric force microscopy: The role of sample geometry, Review of Scientific Instruments, vol.76, p.53707, 2005.

S. Belaidi, F. Lebon, P. Girard, G. Leveque, and S. Pagano, Finite element simulations of the resolution in electrostatic force microscopy, Applied Physics A, vol.66, pp.239-243, 1998.

S. Gómez-moñivas, L. S. Froufe, R. Carminati, J. J. Greffet, and J. J. Sáenz, Tip-shape effects on electrostatic force microscopy resolution, Nanotechnology, vol.12, p.496, 2001.

G. Lévêque, P. Cadet, and R. Arinero, Sensitivity and resolution in noncontact electrostatic force microscopy in the case of a constant potential, Physical Review B, vol.71, pp.5-27

S. Belaidi, P. Girard, and G. Leveque, Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions, Journal of Applied Physics, vol.81, pp.1023-1030, 1997.

J. Colchero, A. Gil, and A. M. Baró, Resolution enhancement and improved data interpretation in electrostatic force microscopy, Physical Review B, vol.64, p.245403, 2001.

C. Riedel, A. Alegría, G. A. Schwartz, R. Arinero, J. Colmenero et al., On the use of electrostatic force microscopy as a quantitative subsurface characterization technique: A numerical study, Applied Physics Letters, vol.99, p.23101, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01632445

S. B. Arnason, A. G. Rinzler, Q. Hudspeth, and A. F. Hebard, Carbon nanotube-modified cantilevers for improved spatial resolution in electrostatic force microscopy, Applied Physics Letters, vol.75, pp.2842-2844, 1999.
DOI : 10.1063/1.125168

N. R. Wilson and J. V. Macpherson, Enhanced resolution electric force microscopy with single-wall carbon nanotube tips, Journal of Applied Physics, vol.96, pp.3565-3567, 2004.
DOI : 10.1063/1.1781759

F. Bocquet, L. Nony, C. Loppacher, and T. Glatzel, Analytical approach to the local contact potential difference on (001) ionic surfaces: Implications for Kelvin probe force microscopy, Physical Review B, vol.78, p.35410
DOI : 10.1103/physrevb.78.035410

URL : https://hal.archives-ouvertes.fr/hal-00294267

I. Alhossen, C. Villeneuve-faure, F. Baudoin, F. Bugarin, and S. Segonds, Sensitivity analysis of the electrostatic force distance curve using Sobol's method and design of experiments, Journal of Physics D: Applied Physics, vol.50, p.35304, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01826033

U. Zerweck, L. Ch, T. Otto, S. Grafström, and L. M. Eng, Kelvin probe force microscopy of C 60 on metal substrates: towards molecular resolution, Nanotechnology, vol.18, p.84006, 2007.
DOI : 10.1088/0957-4484/18/8/084006

S. Kawai, T. Glatzel, H. J. Hug, and E. Meyer, Atomic contact potential variations of Si(111)-7 x 7 analyzed by Kelvin probe force microscopy, Nanotechnology, vol.21, p.245704, 2010.
DOI : 10.1088/0957-4484/21/24/245704

T. Eguchi, Y. Fujikawa, K. Akiyama, T. An, M. Ono et al., Imaging of all Dangling Bonds and their Potential on the Surface by Noncontact Atomic Force Microscopy, Physical Review Letters, vol.93, p.266102, 2004.

S. Sadewasser, P. Jelinek, C. Fang, O. Custance, Y. Yamada et al., New Insights on Atomic-Resolution Frequency-Modulation Kelvin-Probe Force-Microscopy Imaging of Semiconductors, Physical Review Letters, vol.103, pp.12-28
DOI : 10.1103/physrevlett.103.266103

G. H. Enevoldsen, T. Glatzel, M. C. Christensen, J. V. Lauritsen, and F. Besenbacher, Atomic Scale Kelvin Probe Force Microscopy Studies of the Surface Potential Variations on the TiO2 (110) Surface, Physical Review Letters, vol.100, pp.6-13

A. K. Sinensky and A. M. Belcher, Label-free and high-resolution protein DNA nanoarray analysis using Kelvin probe force microscopy, Nat Nano, vol.2, pp.653-659, 2007.
DOI : 10.1038/nnano.2007.293

E. Palacios-lidón, B. Pérez-garcía, and J. Colchero, Enhancing dynamic scanning force microscopy in air: as close as possible, Nanotechnology, vol.20, p.85707, 2009.

X. D. Ding, J. An, J. B. Xu, C. Li, and R. Y. Zeng, Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions, Applied Physics Letters, vol.94, p.223109, 2009.
DOI : 10.1063/1.3147198

D. Liu, X. Ding, H. Xu, G. Lin, and D. Chen, Improving lateral resolution of ambient electrostatic force microscopy by intermittent contact method, Integrated Ferroelectrics, vol.169, p.2, 2016.
DOI : 10.1080/10584587.2016.1163200

F. J. Giessibl, Principle of NC-AFM, pp.11-46, 2002.
DOI : 10.1007/978-3-642-56019-4_2

B. Pottier and L. Bellon, Noiseless" thermal noise measurement of atomic force microscopy cantilevers, Applied Physics Letters, vol.110, p.94105, 2017.
DOI : 10.1063/1.4977790

URL : https://hal.archives-ouvertes.fr/hal-01485079

D. P. Smith, Limits of force microscopy, Review of Scientific Instruments, vol.66, pp.3191-3195, 1995.

J. L. Hutter and J. Bechhoefer, Calibration of atomicforce microscope tips, Review of Scientific Instruments, vol.64, pp.1868-1873, 1993.
DOI : 10.1063/1.1143970

H. J. Butt and M. Jaschke, Calculation of thermal noise in atomic force microscopy, Nanotechnology, vol.6, p.1, 1995.

S. Rast, C. Wattinger, U. Gysin, and E. Meyer, The noise of cantilevers, Nanotechnology, vol.11, p.169, 2000.

S. A. Cantrell, J. H. Cantrell, and P. T. Lillehei, Nanoscale subsurface imaging via resonant differencefrequency atomic force ultrasonic microscopy, Journal of Applied Physics, vol.101, p.114324, 2007.

A. Striegler, B. Koehler, B. Bendjus, M. Roellig, M. Kopycinska-mueller et al., Detection of buried reference structures by use of atomic force acoustic microscopy, Ultramicroscopy, vol.111, pp.1405-1421, 2011.

Z. Parlak and F. Levent-degertekin, Contact stiffness of finite size subsurface defects for atomic force microscopy: Three-dimensional finite element modeling and experimental verification, Journal of Applied Physics, vol.103, p.114910, 2008.

P. K. Jason, Y. K. Jennifer, M. S. Christopher, J. F. Michael, and C. H. Donna, Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites, Nanotechnology, vol.22, p.175706, 2011.

E. Spitzner, C. Riesch, and R. Magerle, Subsurface Imaging of Soft Polymeric Materials with Nanoscale Resolution, ACS Nano, vol.5, pp.315-320, 2011.

D. Ebeling, B. Eslami, and S. D. Solares, Visualizing the Subsurface of Soft Matter: Simultaneous Topographical Imaging, Depth Modulation, and Compositional Mapping with Triple Frequency Atomic Force Microscopy, ACS Nano, vol.7, issue.11, pp.10387-10396, 2013.

K. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques, Ultramicroscopy, vol.133, pp.41-50, 2013.

G. J. Verbiest, J. N. Simon, T. H. Oosterkamp, and M. J. Rost, Subsurface atomic force microscopy: towards a quantitative understanding, Nanotechnology, vol.23, p.145704, 2012.

H. J. Sharahi, G. Shekhawat, V. Dravid, S. Park, P. Egberts et al., Contrast mechanisms on nanoscale subsurface imaging in ultrasonic AFM: scattering of ultrasonic waves and contact stiffness of the tip-sample, Nanoscale, vol.9, pp.2330-2339, 2017.

M. J. Cadena, Y. Chen, R. G. Reifenberger, and A. Raman, Sub-surface AFM imaging using tip generated stress and electric fields, Applied Physics Letters, vol.110, p.123108, 2017.

J. J. Kopanski, L. You, J. Li, J. J. Ahn, and Y. S. Obeng, Characterization of Buried Interfaces with Scanning Probe Microscopes, Meeting Abstracts, p.997, 2016.

Y. Lin, A. Jung-joon, S. O. Yaw, and J. K. Joseph, Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope, Journal of Physics D: Applied Physics, vol.49, p.45502, 2016.

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault et al., Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy, Sensors and Actuators A: Physical, vol.186, pp.219-222
URL : https://hal.archives-ouvertes.fr/hal-00761630

G. Gramse, A. Kölker, T. Lim, T. J. Stock, H. Solanki et al., Nondestructive imaging of atomically thin nanostructures buried in silicon, Science Advances, vol.3, 2017.

H. T. Thompson, F. Barroso-bujans, J. G. Herrero, R. Reifenberger, and A. Raman, Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy, Nanotechnology, vol.24, p.135701, 2013.

M. J. Cadena, R. Misiego, K. C. Smith, A. Avila, B. Pipes et al., Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods, Nanotechnology, vol.24, p.135706, 2013.

M. J. Cadena, S. H. Sung, B. W. Boudouris, R. Reifenberger, and A. Raman, Nanoscale Mapping of Dielectric Properties of Nanomaterials from Kilohertz to Megahertz Using Ultrasmall Cantilevers, ACS Nano, vol.10, pp.4062-71, 2016.

O. A. Castañeda-uribe, R. Reifenberger, A. Raman, and A. Avila, Depth-Sensitive Subsurface Imaging of Polymer Nanocomposites Using Second Harmonic Kelvin Probe Force Microscopy, ACS Nano, vol.9, p.2015, 2015.

T. S. Jespersen and J. Nygård, Mapping of individual carbon nanotubes in polymer/nanotube composites using electrostatic force microscopy, Applied Physics Letters, vol.90, p.183108, 2007.

M. C. Biagi, R. Fabregas, G. Gramse, M. Van-der-hofstadt, A. Juárez et al., Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy, ACS Nano, vol.10, pp.280-288, 2016.

J. Seiler and J. Kindersberger, Insight into the interphase in polymer nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.21, pp.537-547, 2014.

L. C. Sawyer, D. T. Grubb, and G. F. Meyers, Polymer microscopy, 2008.

S. Raetzke and J. Kindersberger, Role of interphase on the resistance to high-voltage arcing, on tracking and erosion of silicone/SiO2 nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.17, pp.607-614, 2010.

R. Borgani, D. Forchheimer, J. Bergqvist, P. Thorén, O. Inganäs et al., Intermodulation electrostatic force microscopy for imaging surface photo-voltage, Applied Physics Letters, vol.105, issue.10, p.143113, 2014.

R. Borgani, L. K. Pallon, M. S. Hedenqvist, U. W. Gedde, and D. B. Haviland, Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE, Nano Letters, vol.16, pp.5934-5937, 2016.

S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu et al., Local Dielectric Property Detection of the Interface between Nanoparticle and Polymer in Nanocomposite Dielectrics, Sci Rep, vol.6, p.38978, 2016.

. , Tip-sample interaction: numerical modeling description

.. .. Tip-metallic-substrate,

.. .. Tip-dielectric-sample,

.. .. Finite-size-effects,

. .. Tip-nanodielectric, 2.1. EFM signal over a nanodielectric: particle-interphase-matrix

. .. Conclusion,

Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Highresolution capacitance measurement and potentiometry by force microscopy, Applied Physics Letters, vol.52, pp.1103-1105, 1988.

T. Andritsh, Epoxy based nanocomposites for high voltage DC applications-Synthesis, Dielectric Properties and Space Charge Dynamics, 2010.

R. Kochetov, Thermal and Electrical Properties of Nanocomposites, Including Material Processing, 2012.

I. A. Preda, Modeling and characterization of nanocomposite materials using dielectric methods, 2013.

K. Y. Lau, A. S. Vaughan, and G. Chen, Nanodielectrics: opportunities and challenges, IEEE Electrical Insulation Magazine, vol.31, pp.45-54, 2015.

C. Zou, J. C. Fothergill, and S. W. Rowe, The effect of water absorption on the dielectric properties of epoxy nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.15, pp.106-117, 2008.

T. Tanaka, M. Kozako, N. Fuse, and Y. Ohki, Proposal of a multi-core model for polymer nanocomposite dielectrics, IEEE Transactions on Dielectrics and Electrical Insulation, vol.12, pp.669-681, 2005.

J. Seiler and J. Kindersberger, Insight into the interphase in polymer nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.21, pp.537-547, 2014.

J. C. Pandey and N. Gupta, Estimation of interphase thickness of epoxy-based nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.23, pp.2747-2756, 2016.

G. M. Sacha, E. Sahagún, and J. J. Sáenz, A method for calculating capacitances and electrostatic forces in atomic force microscopy, Journal of Applied Physics, vol.101, p.24310, 2007.

L. Fumagalli, M. A. Edwards, and G. Gomila, Quantitative electrostatic force microscopy with sharp silicon tips, Nanotechnology, vol.25, p.495701, 2014.

G. Gomila, J. Toset, and L. Fumagalli, Nanoscale capacitance microscopy of thin dielectric films, Journal of Applied Physics, vol.104, p.7, 2008.

Y. Yi, C. Jiong, Y. Jingning, X. Dengming, T. Demin et al., Effect of space charge in nanocomposite of LDPE/TiO2, Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, vol.3, pp.913-916, 2003.

L. Fumagalli, G. Ferrari, M. Sampietro, and G. Gomila, Dielectric-constant measurement of thin insulating films at low frequency by nanoscale capacitance microscopy, Applied Physics Letters, vol.91, p.243110, 2007.

L. Fumagalli, G. Gramse, D. Esteban-ferrer, M. A. Edwards, and G. Gomila, Quantifying the dielectric constant of thick insulators using electrostatic force microscopy, Applied Physics Letters, vol.96, p.183107, 2010.

C. Riedel, A. Alegria, G. A. Schwartz, J. Colmenero, and J. J. Saenz, Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples, Nanotechnology, vol.22, p.285705, 2011.

S. Gómez-moñivas, L. S. Froufe, R. Carminati, J. J. Greffet, and J. J. Sáenz, Tip-shape effects on electrostatic force microscopy resolution, Nanotechnology, vol.12, p.496, 2001.

G. Gomila, G. Gramse, and L. Fumagalli, Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films, Nanotechnology, vol.25, p.255702, 2014.

S. Hudlet, M. Saint-jean, C. Guthmann, and J. Berger, Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface, Eur. Phys. J. B, vol.2, pp.5-10, 1998.

E. Castellano-hernandez and G. M. Sacha, Finite Conductivity Effects in Electrostatic Force Microscopy on Thin Dielectric Films: A Theoretical Model, vol.2015, p.6, 2015.

H. W. Hao, A. M. Baró, and J. J. Sáenz, Electrostatic and contact forces in force microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.9, pp.1323-1328, 1991.

C. Bohm, F. Saurenbach, P. Taschner, C. Roths, and E. Kubalek, Voltage contrast in integrated circuits with 100 nm spatial resolution by scanning force microscopy, Journal of Physics D: Applied Physics, vol.26, p.1801, 1993.

L. H. Pan, T. E. Sullivan, V. J. Peridier, P. H. Cutler, and N. M. Miskovsky, Threedimensional electrostatic potential, and potentialenergy barrier, near a tipbase junction, Applied Physics Letters, vol.65, issue.10, pp.2151-2153, 1994.

J. Hu, X. Xiao, D. F. Ogletree, and M. Salmeron, Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer Resolution, Science, vol.268, pp.267-269, 1995.

M. S. Lhernould, A. Delchambre, S. Régnier, and P. Lambert, Electrostatic forces in micromanipulations: Review of analytical models and simulations including roughness, Applied Surface Science, vol.253, pp.6203-6210

W. F. Brown, Electrostatique et Magnétostatique. Emile Durand. Masson, Paris, 1953, xii-774 pp. Illus. Paper, 5760 fr., cloth, 6335 fr, Science, vol.120, pp.62-63, 1954.

G. Mesa, E. Dobadofuentes, and J. J. Sáenz, Image charge method for electrostatic calculations in fieldemission diodes, Journal of Applied Physics, vol.79, pp.39-44, 1996.

S. Belaidi, P. Girard, and G. Leveque, Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions, Journal of Applied Physics, vol.81, pp.1023-1030, 1997.

S. Belaidi, F. Lebon, P. Girard, G. Leveque, and S. Pagano, Finite element simulations of the resolution in electrostatic force microscopy, Applied Physics A, vol.66, pp.239-243, 1998.

C. Riedel, R. Arinero, P. Tordjeman, M. Ramonda, G. Lévêque et al., Dielectric properties of thin insulating layers measured by Electrostatic Force Microscopy, Eur. Phys. J. Appl. Phys, vol.50, p.10501, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00909393

Z. Li, B. Gu, and G. Yang, Scanning-electrostatic-force microscopy: Self-consistent method for mesoscopic surface structures, Physical Review B, vol.57, pp.9225-9233

Z. Jia, S. Ito, K. Hosobuchi, S. Goto, Y. Shimizu et al., Characterization of electrostatic force for scanning electrostatic force microscopy of micro-structured surface, International Journal of Precision Engineering and Manufacturing, vol.14, pp.1543-1549, 2013.

L. Fumagalli, D. Esteban-ferrer, A. Cuervo, J. L. Carrascosa, and G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces, Nat Mater, vol.11, pp.808-816

C. T. Dervos, J. A. Mergos, P. D. Skafidas, M. D. Athanassopoulou, and P. Vassiliou, Effect of water on permittivity of nanodielectrics exposed to the atmosphere, IEEE Transactions on Dielectrics and Electrical Insulation, vol.16, pp.1558-1565, 2009.

I. Casuso, L. Fumagalli, G. Gomila, and E. Padrós, Nondestructive thickness measurement of biological layers at the nanoscale by simultaneous topography and capacitance imaging, Applied Physics Letters, vol.91, p.63111, 2007.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz et al., Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy, Physical Review E, vol.81, p.10801
URL : https://hal.archives-ouvertes.fr/hal-00909186

G. Gramse, G. Gomila, and L. Fumagalli, Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe, Nanotechnology, vol.23, p.205703, 2012.

L. A. Miccio, M. M. Kummali, G. A. Schwartz, Á. Alegría, and J. Colmenero, Dielectric spectroscopy at the nanoscale by atomic force microscopy: A simple model linking materials properties and experimental response, Journal of Applied Physics, vol.115, p.184305, 2014.

F. Gao, Clay/polymer composites: the story, Materials Today, vol.7, pp.50-55, 2004.

E. Castellano-hernandez, J. Moreno-llorena, J. J. Saenz, and G. M. Sacha, Enhanced dielectric constant resolution of thin insulating films by electrostatic force microscopy, J Phys Condens Matter, vol.24, p.155303, 2012.

C. Riedel, Dielectric and mechanical properties of polymers and macro and nanoscale, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01811972

G. Gomila, D. Esteban-ferrer, and L. Fumagalli, Quantification of the dielectric constant of single nonspherical nanoparticles from polarization forces: eccentricity effects, Nanotechnology, vol.24, p.505713, 2013.

J. A. Stratton and J. A. Stratton, The Electrostatic Field," in Electromagnetic Theory, pp.160-224, 2015.

O. Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer, and P. Grütter, Lateral-force measurements in dynamic force microscopy, Physical Review B, vol.65, p.161403

J. Konior, Vertical and lateral electrostatic forces in a tip-plane system studied with a Green function plus surface charge method, Journal of Applied Physics, vol.101, p.84907, 2007.

B. Uluutku and M. Z. Baykara, Artifacts related to tip asymmetry in high-resolution atomic force microscopy and scanning tunneling microscopy measurements of graphitic surfaces, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.33, p.31802, 2015.

S. Giordano, Dielectric and elastic characterization of nonlinear heterogeneous materials, Materials, vol.2, pp.1417-1479, 2009.

R. Arinero, C. Riedel, and C. Guasch, Numerical simulations of electrostatic interactions between an atomic force microscopy tip and a dielectric sample in presence of buried nano-particles, Journal of Applied Physics, vol.112, p.114313, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01633538

H. T. Thompson, F. Barroso-bujans, J. G. Herrero, R. Reifenberger, and A. Raman, Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy, Nanotechnology, vol.24, p.135701, 2013.

O. A. Castañeda-uribe, R. Reifenberger, A. Raman, and A. Avila, Depth-Sensitive Subsurface Imaging of Polymer Nanocomposites Using Second Harmonic Kelvin Probe Force Microscopy, ACS Nano, vol.9, p.2015, 2015.

. Chapter,

. .. Conclusion,

. .. References,

P. W. Starostina, Part II: Sample Preparation for AFM Particle Characterization

A. Kinbara, E. Kusano, and I. Kondo, Fundamentals of plasma and sputtering processes, Vacuum, vol.51, pp.475-478, 1998.

S. Y. Kim, K. Hong, K. Kim, H. K. Yu, W. Kim et al., Effect of N2, Ar, and O2 plasma treatments on surface properties of metals, Journal of Applied Physics, vol.103, p.76101, 2008.

T. Murakami, S. Kuroda, and Z. Osawa, Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma: Effect of Aging Media after Plasma Treatment, vol.202, pp.37-44, 1998.

D. Bodas and C. Khan-malek, Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-An SEM investigation, Sensors and Actuators B: Chemical, vol.123, pp.368-373, 2007.

V. Jokinen, P. Suvanto, and S. Franssila, Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers, Biomicrofluidics, vol.6, pp.16501-016501, 2012.

I. A. Rahman and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites;A Review, Journal of Nanomaterials, vol.2012, p.15, 2012.

M. F. Ceiler, P. A. Kohl, and S. A. Bidstrup, Plasma-Enhanced Chemical Vapor Deposition of Silicon Dioxide Deposited at Low Temperatures, Journal of The Electrochemical Society, vol.142, pp.2067-2071, 19951995-06-01.

Z. Ahmad, Polymer Dielectric Materials, p.1, 2012.

L. Fumagalli, D. Esteban-ferrer, A. Cuervo, J. L. Carrascosa, and G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces, Nat Mater, vol.11, pp.808-816

P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo et al., Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage, Materials, vol.2, p.1697, 2009.

I. A. Preda, Modeling and characterization of nanocomposite materials using dielectric methods, 2013.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz et al., Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy, Physical Review E, vol.81, p.10801
URL : https://hal.archives-ouvertes.fr/hal-00909186

, Wikipedia, the free encyclopedia

S. Sakamoto, L. Philippe, M. Bechelany, J. Michler, H. Asoh et al., Ordered hexagonal array of Au nanodots on Si substrate based on colloidal crystal templating, Nanotechnology, vol.19, p.405304, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01701897

M. Bechelany, P. Brodard, L. Philippe, and J. Michler, Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection, Nanotechnology, vol.20, p.455302, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01702054

P. Colson, C. Henrist, and R. Cloots, Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials, Journal of Nanomaterials, vol.2013, p.19, 2013.

J. Rybczynski, M. Hilgendorff, and M. Giersig, Nanosphere Lithography-Fabrication of Various Periodic Magnetic Particle Arrays Using Versatile Nanosphere Masks, LowDimensional Systems: Theory, Preparation, and Some Applications, pp.163-172, 2003.

J. Bognár, J. Sz?cs, Z. Dorkó, V. Horváth, and R. E. Gyurcsányi, Nanosphere Lithography as a Versatile Method to Generate Surface-Imprinted Polymer Films for Selective Protein Recognition, Advanced Functional Materials, vol.23, pp.4703-4709, 2013.

L. S. Mccarty, A. Winkleman, and G. M. Whitesides, Electrostatic Self-Assembly of Polystyrene Microspheres by Using Chemically Directed Contact Electrification, Angewandte Chemie International Edition, vol.46, pp.206-209, 2007.

S. Wu, T. Tang, and W. J. Tseng, Self-assembly of polystyrene microspheres within spatially confined rectangular microgrooves, Journal of Materials Science, vol.43, pp.6453-6458, 2008.

Y. Fu, Z. Jin, Z. Liu, Y. Liu, and W. Li, Self-assembly of colloidal crystals from polystyrene emulsion at elevated temperature by dip-drawing method, Materials Letters, vol.62, pp.4286-4289, 2008.

Y. Wu, C. Zhang, Y. Yuan, Z. Wang, W. Shao et al., Fabrication of Wafer-Size Monolayer Close-Packed Colloidal Crystals via Slope Self-Assembly and Thermal Treatment, Langmuir, vol.29, issue.11, pp.14017-14023, 2013.

J. R. Oh, J. H. Moon, H. K. Park, J. H. Park, H. Chung et al., Wafer-scale colloidal lithography based on self-assembly of polystyrene nanospheres and atomic layer deposition, Journal of Materials Chemistry, vol.20, pp.5025-5029, 2010.

S. S. Shinde and S. Park, Oriented colloidal-crystal thin films of polystyrene spheres via spin coating, Journal of Semiconductors, vol.36, p.23001, 2015.

G. Arutinov, S. B. Brichkin, and V. F. Razumov, Self-Assembling of polystyrene microsphere monolayers by spin-coating, Nanotechnologies in Russia, vol.5, pp.67-72, 2010.

C. Haginoya, M. Ishibashi, and K. Koike, Nanostructure array fabrication with a sizecontrollable natural lithography, Applied Physics Letters, vol.71, issue.11, pp.2934-2936, 1997.

W. W. Stoffels, E. Stoffels, G. H. Swinkels, M. Boufnichel, and G. M. Kroesen, Etching a single micrometer-size particle in a plasma, Physical Review E, vol.59, pp.2302-2304

M. Bechelany, E. Berodier, X. Maeder, S. Schmitt, J. Michler et al., New Silicon Architectures by Gold-Assisted Chemical Etching, ACS Applied Materials & Interfaces, vol.3, pp.3866-3873, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01696090

K. Nojiri, Mechanism of Dry Etching, Dry Etching Technology for Semiconductors, pp.11-30, 2015.

L. Yan, K. Wang, J. Wu, and L. Ye, Hydrophobicity of Model Surfaces with Loosely Packed Polystyrene Spheres after Plasma Etching, The Journal of Physical Chemistry B, vol.110, pp.11241-11246, 2006.

C. Marichy, M. Bechelany, and N. Pinna, Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications, Advanced Materials, vol.24, pp.1017-1032, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01692109

R. Viter, I. Iatsunskyi, V. Fedorenko, S. Tumenas, Z. Balevicius et al., Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofibers, The Journal of Physical Chemistry C, vol.120, p.3, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01681264

V. Vandalon and W. M. Kessels, What is limiting low-temperature atomic layer deposition of Al2O3? A vibrational sum-frequency generation study, Applied Physics Letters, vol.108, p.11607, 2016.

M. Baitimirova, R. Viter, J. Andzane, A. Van-der-lee, D. Voiry et al., Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates, The Journal of Physical Chemistry C, vol.120, issue.10, pp.23716-23725, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01681269

M. Praeger, T. Andritsch, S. G. Swingler, and A. S. Vaughan, A simple theoretical model for the bulk properties of nanocomposite materials, Electrical Insulation and Dielectric Phenomena (CEIDP), pp.699-702, 2014.

M. Fréchette, I. Preda, J. Castellon, A. Krivda, R. Veillette et al., Polymer composites with a large nanofiller content: a case study involving epoxy, IEEE Transactions on Dielectrics and Electrical Insulation, vol.21, pp.434-443, 2014.

M. Hershcovitz and I. E. Klein, Dynamics of spin coating on very rough surfaces, Microelectronics Reliability, vol.33, pp.869-880
DOI : 10.1016/0026-2714(93)90260-6

D. E. Khoury, R. Arinero, J. C. Laurentie, and J. Castellon, Nanoscale surface charge detection in epoxy resin materials using electrostatic force spectroscopy, AIP Advances, vol.6, p.35318, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01629503

C. Riedel, R. Arinero, P. Tordjeman, M. Ramonda, G. Lévêque et al., Determination of the nanoscale dielectric constant by means of a double pass method using electrostatic force microscopy, Journal of Applied Physics, vol.106, p.24315, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01791002

C. S. Erina, Quantitative mechanical property mapping at the nanoscale with PeakForce QNM, Bruker corporation2010

B. Pittenger, N. Erina, and C. Su, Mechanical Property Mapping at the Nanoscale Using PeakForce QNM Scanning Probe Technique, Nanomechanical Analysis of High Performance Materials, pp.31-51, 2014.
DOI : 10.1007/978-94-007-6919-9_2

L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, 1985.
DOI : 10.1088/0957-0233/11/12/703

D. E. Joseph-goldstein, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin et al., Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, 2007.

E. , Electron microscopy

A. , Spectroscopic Ellipsometry Characterization of Thin Films Used in the Food Packaging Industry

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry, 2005.

M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale, 2013.

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters, vol.49, pp.57-61

J. Seiler and J. Kindersberger, Insight into the interphase in polymer nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.21, pp.537-547, 2014.
DOI : 10.1109/tdei.2013.004388

M. R. Amirzada, Optimization in the Technological Steps for the Fabrication of Large Area Micromirror Arrays, 2014.

.. .. Samples-substrates,

. .. Same-interelectrode-distance,

. , 145 DC and AC-2? force gradient measurements

. , 154 Determination of the actual tip-sample distance

.. .. , Type 2 samples

. , Method 3: comparisons of samples with similar dimensions

. .. Conclusion,

S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu et al., Local Dielectric Property Detection of the Interface between Nanoparticle and Polymer in Nanocomposite Dielectrics, Sci Rep, vol.6, p.38978, 2016.

M. V. Hofstadt, R. Fabregas, M. C. Biagi, L. Fumagalli, and G. Gomila, Nanoscale dielectric microscopy of non-planar samples by lift-mode electrostatic force microscopy, Nanotechnology, vol.27, p.405706, 2016.

D. Esteban-ferrer, M. A. Edwards, L. Fumagalli, A. Juárez, and G. Gomila, Electric Polarization Properties of Single Bacteria Measured with Electrostatic Force Microscopy, ACS Nano, vol.8, issue.10, pp.9843-9849, 2014.

G. Gramse, M. Kasper, L. Fumagalli, G. Gomila, P. Hinterdorfer et al., Calibrated complex impedance and permittivity measurements with scanning microwave microscopy, Nanotechnology, vol.25, p.145703, 2014.

A. S. Paramane and K. S. Kumar, A Review on Nanocomposite Based Electrical Insulations, Transactions on electrical and electronic materials, vol.17, pp.239-251, 2016.

E. M. Akinoglu, A. J. Morfa, and M. Giersig, Understanding Anisotropic Plasma Etching of TwoDimensional Polystyrene Opals for Advanced Materials Fabrication, Langmuir, vol.30, issue.10, pp.12354-12361, 2014.

A. L. Tolstikhina, R. V. Ga?nutdinov, M. L. Zanaveskin, K. L. Sorokina, N. V. Belugina et al., Particular artifacts of topographic images of dielectrics in atomic-force microscopy, Crystallography Reports, vol.52, pp.894-900, 2007.

I. Casuso, L. Fumagalli, G. Gomila, and E. Padrós, Nondestructive thickness measurement of biological layers at the nanoscale by simultaneous topography and capacitance imaging, Applied Physics Letters, vol.91, p.63111, 2007.

C. Riedel, Dielectric and Mechanical Properties of Polymers at Macro and Nanoscale, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01811972

Z. Li, B. Gu, and G. Yang, Scanning-electrostatic-force microscopy: Self-consistent method for mesoscopic surface structures, Physical Review B, vol.57, pp.9225-9233

G. Gomila, D. Esteban-ferrer, and L. Fumagalli, Quantification of the dielectric constant of single nonspherical nanoparticles from polarization forces: eccentricity effects, Nanotechnology, vol.24, p.505713, 2013.

G. Gomila, G. Gramse, and L. Fumagalli, Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films, Nanotechnology, vol.25, p.255702, 2014.

L. Fumagalli, D. Esteban-ferrer, A. Cuervo, J. L. Carrascosa, and G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces, Nat Mater, vol.11, pp.808-816, 2012.

C. Riedel, Dielectric and mechanical properties of polymers at macro and nanoscale, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01811972

L. Fumagalli, G. Gramse, D. Esteban-ferrer, M. A. Edwards, and G. Gomila, Quantifying the dielectric constant of thick insulators using electrostatic force microscopy, Applied Physics Letters, vol.96, p.183107, 2010.

L. Portes, M. Ramonda, R. Arinero, and P. Girard, New method for electrostatic force gradient microscopy observations and Kelvin measurements under vacuum, Ultramicroscopy, vol.107, pp.1027-1032, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00327285

S. Cheng, V. Bocharova, A. Belianinov, S. Xiong, A. Kisliuk et al., Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites, Nano Letters, vol.16, pp.3630-3637, 2016.

N. Lahoud-dignat, M. N. Hidayatullah, F. Saysouk, M. L. Locatelli, and S. Diaham, Using the Atomic Force Microscopy for nanocomposites local mechanical characterization: Towards the interphase measurement, 2016 IEEE International Conference on Dielectrics, pp.64-67, 2016.

H. Huang, I. Dobryden, N. Ihrner, M. Johansson, H. Ma et al., Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite, Journal of Colloid and Interface Science, vol.494, pp.204-214

J. Seiler and J. Kindersberger, Insight into the interphase in polymer nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.21, pp.537-547, 2014.

J. Deschler, J. Seiler, and J. Kindersberger, Detection of charges at the interphase of polymeric nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.24, pp.1027-1037, 2017.

R. Borgani, L. K. Pallon, M. S. Hedenqvist, U. W. Gedde, and D. B. Haviland, Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE, Nano Letters, vol.16, pp.5934-5937, 2016.

M. Hershcovitz and I. E. Klein, Dynamics of spin coating on very rough surfaces, Microelectronics Reliability, vol.33, pp.869-880

N. E. Bede-pittenger and C. Su, Quantitative mechanical property mapping at the nanoscale with PeakForce QNM, pp.1-12, 2010.

T. G. Stange, R. Mathew, D. F. Evans, and W. A. Hendrickson, Scanning tunneling microscopy and atomic force microscopy characterization of polystyrene spin-coated onto silicon surfaces, Langmuir, vol.8, pp.920-926, 1992.

I. L. Hosier, M. Praeger, A. S. Vaughan, and S. G. Swingler, The Effects of Water on the Dielectric Properties of Aluminum-Based Nanocomposites, IEEE Transactions on Nanotechnology, vol.16, pp.667-676, 2017.

C. Zou, J. C. Fothergill, and S. W. Rowe, The effect of water absorption on the dielectric properties of epoxy nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation, vol.15, pp.106-117, 2008.

J. W. Bradley and T. Welzel, Process Diagnostics

E. Mahieu and . Ed-berlin, , pp.255-300, 2008.

T. O. Jp, R. Aim, L. Boisgard, M. Fabi, C. Delmas et al., Nanomeniscus Mechanical Properties, Nanoscale Liquid Interfaces Wetting, Patterning and Force Microscopy at the Molecular Scale, 2013.

S. Santos and A. Verdaguer, Imaging Water Thin Films in Ambient Conditions Using Atomic Force Microscopy, Materials, vol.9, p.182, 2016.

D. T. Lee, J. P. Pelz, and B. Bharat, Scanning capacitance microscopy for thin film measurements, Nanotechnology, vol.17, p.1484, 2006.

D. Ebeling, B. Eslami, and S. D. Solares, Visualizing the Subsurface of Soft Matter: Simultaneous Topographical Imaging, Depth Modulation, and Compositional Mapping with Triple Frequency Atomic Force Microscopy, ACS Nano, vol.7, issue.11, pp.10387-10396, 2013.

E. Castellano-hernández and G. M. Sacha, Ultrahigh dielectric constant of thin films obtained by electrostatic force microscopy and artificial neural networks, Applied Physics Letters, vol.100, p.23101, 2012.

H. Yanagihara, K. Yamashita, A. Endo, and H. Daiguji, Adsorption-Desorption and Transport of Water in Two-Dimensional Hexagonal Mesoporous Silica, The Journal of Physical Chemistry C, vol.117, pp.21795-21802, 2013.

, Par conséquent, les lois conventionnelles de mélange de deux phases sont généralement suffisantes pour clarifier et prévoir la réponse des microcomposites à un stimulus externe. Cependant, pour une concentration donnée, lorsque la taille de la charge est réduite à l'échelle nanométrique, les nanocomposites présentent des changements de propriétés inattendues. A titre d'exemple, J.K. Nelson et J.C. Fothergill ont remarqué pour la première fois en, Les matériaux polymères composites ont longtemps révélé des propriétés physiques améliorées en raison du mélange des caractéristiques de leurs constituants, 2004.

, Le comportement singulier des nanocomposites diélectriques, constitués d'un mélange de particules dans une matrice

À. Cette-Échelle, . Et-À-masse-Équivalente-de, and . Matériau, Au contact d'une autre phase, une série d'interactions se produit sur leur interface mutuelle afin d'établir un équilibre thermodynamique. Ces interactions sont susceptibles de favoriser l'apparition d'une région aux propriétés uniques, différentes de celles des phases impliquées. Ainsi, et à titre d'exemple, il est généralement signalé que, dans un nanocomposite, les chaînes de polymères se réorganisent à l, le rapport des atomes et des molécules présents à la surface des particules à l'égard de ceux présents dans le volume

, Cette région, aux propriétés modifiées, est communément appelée ''interphase''. Celle-ci occupe ainsi un pourcentage considérable en volume dans les nanodiélectriques, s'étendant de quelques angströms jusqu'à quelques centaines de nanomètres d'épaisseur. L'interphase pourrait donc posséder une permittivité inférieure à celle du polymère en volume, ce qui explique la réponse diélectrique exceptionnelle observée dans les nanodiélectriques. De surcroit, de nombreuses propriétés d'isolation électrique, telles que la formation de charges d'espace, la propagation des arborescences, la résistance aux décharges électriques, etc., ont également été améliorées avec l'addition de nanoparticules par rapport au même diélectrique non chargé, L'ordre de cette dernière est surtout élevé à la surface de la particule et diminue à mesure qu'on s'approche du volume du polymère

, De quoi sont-elles faites ? Où sont-elles vraiment situées dans le matériau ? Quelles sont leurs propriétés ? Quelle est leur étendue ? Afin de répondre à toutes ces interrogations, les techniques d'imagerie à haute résolution s'avèrent potentiellement aptes à offrir des solutions. De nos jours, les deux méthodes d'imagerie à haute résolution les plus développées sont les microscopies électroniques et les microscopies à sondes locale, en anglais, Scanning Probe Microscopy (SPM), Par conséquent, à cette échelle, du fait que les interphases commencent à contrôler les propriétés finales du matériau, la caractérisation locale de ces régions nanométriques devient incontestablement fondamentale

, EFM est une des méthodes dérivées de l'AFM, prometteuse pour caractériser localement les interphases, en raison de sa sensibilité à la réponse capacitive en présence de l'échantillon, vol.10

, Résumé Résumé 194

, déposée d'abord sur les particules sans la présence de la couche modèle d'interphase, la constante diélectrique d'une couche de 50 nm d'Al2O3, au-dessous de 50 nm d'une matrice de SiO2

, De même, pour le système inversé, la constante diélectrique du SiO2 en tant que couche modèle d'interphase sous une couche de matrice d'Al2O3 calibrée

, Des caractérisations quantitatives peuvent également être offertes en corrélant l'expérience aux résultats obtenus en simulations numériques. Néanmoins, une analyse précise de tous les paramètres d'influence doit être effectuée. Le dernier chapitre de ce mémoire regroupe les résultats clés, et propose des perspectives de travail afin d'appuyer les hypothèses dégagées dans ce travail qui n'ont pas pu être approfondies. Ces travaux permettront ainsi d'étendre l'application pour aller encore plus loin avec l'EFM. Notamment, nos travaux théoriques et expérimentaux pourraient s'appliquer également à d'autres techniques de caractérisation électriques avec l'AFM. (Scanning Microwave Microscopy, Conductive-Microscopy). En plus, l'étude de nos échantillons, à composition et géométrie relativement complexes, pourrait s'avérer transposable à d'autres types de nanomatériaux, En outre, suite aux mesures d'étalonnage de la matrice, nous avons noté une permittivité apparente de la couche de SiO2, lorsque cette dernière est déposée à la surface libre du matériau, beaucoup plus élevée que celle mesurée en volume du matériau

. Références,

J. K. Nelson and J. C. Fothergill, Internal charge behaviour of nanocomposites, Nanotechnology, vol.15, p.586, 2004.
DOI : 10.1088/0957-4484/15/5/032

URL : http://homepages.rpi.edu/~nelsoj/nano.pdf

M. F. Frechette, M. L. Trudeau, H. D. Alamdar, and S. Boily, Introductory remarks on nanodielectrics, IEEE Transactions on, vol.11, pp.808-818, 2004.
DOI : 10.1109/tdei.2004.1349786

T. J. Lewis, Dielectrics and Electrical Insulation, IEEE Transactions on, vol.1, pp.812-825, 1994.

T. Andritsch, R. Kochetov, P. H. Morshuis, and J. J. Smit, Proposal of the polymer chain alignment model, Electrical Insulation and Dielectric Phenomena (CEIDP), pp.624-627, 2011.

J. K. Nelson, J. C. Fothergill, L. A. Dissado, and W. Peasgood, Towards an understanding of nanometric dielectrics, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp.295-298, 2002.

Y. Yi, C. Jiong, Y. Jingning, X. Dengming, T. Demin et al., Effect of space charge in nanocomposite of LDPE/TiO2, Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, vol.3, pp.913-916, 2003.

K. Y. Lau, A. S. Vaughan, and G. Chen, Nanodielectrics: opportunities and challenges, IEEE Electrical Insulation Magazine, vol.31, pp.45-54, 2015.
DOI : 10.1109/mei.2015.7126073

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, pp.930-933

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscopeforce mapping and profiling on a sub 100Å scale, Journal of Applied Physics, vol.61, pp.4723-4729, 1987.
DOI : 10.1063/1.338807

S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu et al., Local Dielectric Property Detection of the Interface between Nanoparticle and Polymer in Nanocomposite Dielectrics, Sci Rep, vol.6, p.38978, 2016.

D. E. Khoury, R. Arinero, J. Laurentie, M. Bechelany, and J. Castellon, Nanodielectric model samples to assess the detectability of interphases with Electrostatic Force Microscopy, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01912144

D. E. Khoury, V. Fedorenko, J. Castellon, M. Bechelany, J. Laurentie et al., Characterization of dielectric nanocomposites with electrostatic force microscopy, Scanning, vol.2017, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01786011

D. E. Khoury, R. Arinero, J. Laurentie, V. Fedorenko, M. Bechelany et al., Detection of shell coatings from core-shell like dielectric nanoparticles with electrostatic force microscopy, 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp.755-758, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01696626

D. E. Khoury, R. Arinero, J. Laurentie, M. Fréchette, and J. Castellon, Investigation of EFM capabilities for probing interphases in nanodielectric materials: A numerical study, 2016 IEEE International Conference on Dielectrics (ICD), pp.800-803, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01791146

D. E. Khoury, R. Arinero, J. Laurentie, and J. Castellon, Nanoscale surface charge detection in epoxy resin materials using electrostatic force spectroscopy, AIP Advances, vol.6, p.35318, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01629503