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Etude des interactions de la capside du VHB impliquées dans le transport nucléaire  

Le virus de l'hépatite B (VHB) est un virus enveloppé composé d'un ADN partiellement 

double brin (ADNrc) contenu dans une capside icosahédrique. Le VHB est responsable 

d'infections aiguës et chroniques. VHB est non cytopathique mais l’inflammation chronique 

entraîne une fibrose hépatique, une cirrhose et un carcinome hépatocellulaire. Le VHB se 

réplique via un intermédiaire à ARN. La transcription nécessite que l'ADNrc soit convertit en 

un ADN circulaire clos de manière covalente (ADNccc). Cet ADNccc sert de matrice pour la 

transcription de l'ARN prégénomique (ARNpg), qui est spécifiquement encapsidé grâce aux 

interactions entre la polymérase virale, l'ARNpg et la protéine core (Cp) qui forme la capside. 

La polymérase rétrotranscrit l'ARNpg en ADN monocaténaire puis en ADNrc, conduisant à 

des matrices de capside matures (MatC). Cp avec 185 aa contient un domaine N-terminal 

structuré, et un domaine C-terminal (CTD) flexible. Le CTD comprend deux signaux de 

localisation nucléaire (NLS) et un domaine de liaison avec l’importin β (IBB). Le CTD est 

orienté vers l'intérieur de la capside de part son interaction avec les acides nucléiques simples 

brins tandis qu'il est exposé vers l'extérieur dans les capsides vides (EmpC) et les MatC. De 

plus Cp étant surexprimée, cela conduit à l'assemblage des EmpC. Le VHB doit délivrer son 

génome dans le noyau des cellules infectées pour sa réplication. Le transport nucléaire est 

médié par la capside qui interagit avec les récepteurs d'import. L’équipe a démontré 

préalablement que ce transport a besoin des récepteurs Importin α (Imp.α) et Importin β 

(Imp.β) en induisant le transport des capsides au panier nucléaire où elle est stoppée par 

l'interaction avec la nucléoporine 153 (Nup153).  

Nous avons démontré que l’Imp.α, mais pas l'Imp.β, se lie aux MatC suggérant que seule la 

partie du CTD qui contient les NLS est exposée à l’extérieur des MatC. En comparaison, nous 

avons analysé les EmpC en collaboration avec Adam Zlotnick (Université d'Indiana, États-

Unis) et démontré que les EmpC sont capables de lier directement l'Imp.β. Cette interaction 

qui est plus forte que l’interaction avec l'Imp.α s'effectue via la reconnaissance du domaine 

IBB du CTD, ce qui implique une exposition totale du CTD à l'extérieur de la capside. Nous 

avons aussi montré que la liaison avec l'Imp.β à des concentrations très élevées fournit des 

forces de déstabilisation menant au désassemblage des EmpC. 

La libération du génome dans le panier nucléaire implique que l’interaction entre les MatC et 

Nup153 participe au désassemblage de la capside. Afin de valider cette hypothèse, nous avons 

exposé des MatC dont le génome est radiomarqué avec un fragment de Nup153 contenant le 

domaine clé, montré pour interagir avec la capside, en présence de nucléases. Nous avons mis 



 

en évidence qu'en présence de ce fragment, les MatC restent stables. Cela suggère la nécessité 

de facteurs cellulaires additionnels pour le désassemblage des MatC. Cette conclusion est 

conforme avec nos résultats sur noyaux isolés, dans lesquels nous avons observé une 

localisation nucléaire des capsides laissant supposer que les facteurs cellulaires nécessaires au 

désassemblage des MatC sont nucléaires. 

Afin d'étudier plus en détail l'étape de désassemblage et la libération du génome viral, nous 

avons mis au point un système permettant de suivre en temps réel le devenir du génome viral. 

Ce système est basé sur l'interaction coopérative d'une protéine (OR) fusionnée à la DGFP 

avec une séquence ADN double brin cible (ANCH). Ce modèle a permis de visualiser des 

génomes viraux isolés après infection avec des pseudo-virions contenant la séquence ANCH 

de lignées hépatiques humaines exprimant stablement le récepteur spécifique du VHB et la 

protéine OR-DGFP. Cet outil permettra d'effectuer des criblages avec des inhibiteurs afin de 

mettre en évidence les facteurs cellulaires impliqués dans la libération du génome et 

éventuellement la conversion de l'ADNrc en ADNccc. 
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Interactions of HBV capsid involved in nuclear transport 

The Hepatitis B Virus (HBV) is an enveloped virus containing a partially double stranded 

DNA genome (relaxed circular; rcDNA). HBV causes acute and chronic infections. HBV is 

not cytotoxic but chronic inflammation leads to liver fibrosis, cirrhosis and hepatocellular 

carcinoma. HBV replicates via an RNA intermediate, which is transcribed from a covalently 

closed circular form of the viral DNA (cccDNA). This pregenomic RNA is specifically 

encapsidated into the capsid by interaction with the viral polymerase, which also interacts 

with the core protein (Cp), forming the capsid. The polymerase retrotranscribes the 

pregenomic RNA into single stranded DNA and subsequently into partially double stranded 

DNA, which is found in mature capsids (MatC). Cp is a 185 aa long polypeptide comprising a 

N-terminal assembly domain, and a flexible C-terminal domain (CTD). The CTD includes 

two overlapping nuclear localization signals (NLS) of eight aa and an Importin β Binding 

Domain (IBB) of 34 aa. The CTD is fixed in the interior of the capsid by interacting with 

single stranded nucleic acids but translocates to the exterior in MatC and empty capsids 

(EmpC). Cp is over expressed leading to assembly of EmpC. HBV has to deliver its genome 

into the nucleus of infected cells for replication. Nuclear transport is mediated by the capsid 

that interacts with nuclear import receptors. The group has shown that MatC needs Importin α 

(Imp.α) and Importin β (Imp.β) for transport of the capsids into the nuclear basket. In this 

structure where genome liberation likely occurs, the transport of the capsid is arrested by 

interaction between the capsid and the nucleoporin Nup153 (Nup153). 

In the thesis we demonstrate that MatC binds to Imp.α, but not Imp.β, suggesting that only the 

part of the CTD, which contains the NLSs is exposed on capsids’ surface. In collaboration 

with the Adam Zlotnick’s group (Indiana University, U.S.A.) we showed that EmpC, in 

contrast, bind Imp.β directly without Imp.α acting as an adaptor. This interaction, which is 

stronger than the one of Imp.α, needs IBB exposure, meaning that the entire CTD becomes 

externalized. Furthermore, exposure to very high Imp.β concentration led to EmpC 

destabilization.  

The genome release within the nuclear basket implies that Nup153 is involved in genome 

liberation from MatC. To verify this hypothesis we used MatC with a radioactively labeled 

genome, which we exposed to the capsid binding-Nup153 fragment. Investigating the 

accessibility of the genome to nucleases we found that the Nup153 fragment had no impact on 

capsids stability, suggesting the need of other cellular factors driving disassembly. This 

conclusion is in agreement with our observation that MatC added to isolated nuclei resulted in 

nuclear capsid entry, which requires disassembly. 



 

To further study the disassembly step and the consequent release of the viral genome, we 

developed a system to directly visualize the viral genome allowing investigations of genome 

uncoating in real time. The system is based on the cooperative binding of a fluorescent fusion 

protein between the bacterial protein OR with DGFP to a double stranded DNA sequence 

called Anch. Using this model we showed that infection of OR-DGFP-expressing hepatoma 

cells with HBV containing a modified Anch genome allowed monitoring genome release into 

the nucleus. In future, this system may help identifying factors involved in genome release 

and repair and to decipher their molecular interactions. 
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Le virus de l'hépatite B (VHB) est un agent pathogène humain majeur avec un ADN 

partiellement double brin. Le VHB provoque des infections aiguës et chroniques. Le virus est 

non cytopathique mais la détection immunitaire des hépatocytes infectés par les lymphocytes 

T CD8 + entraîne une fibrose hépatique, une cirrhose et un carcinome hépatocellulaire suite à 

une infection chronique. 

Comme d'autres virus à ADN et rétrovirus, le VHB doit délivrer son génome dans le noyau 

des cellules infectées pour sa réplication. L'infection avec le VHB est très efficace, comme le 

montrent les expériences effectuées chez les chimpanzés dans lesquelles presque chaque 

particule virale était infectieuse. Cela signifie que le transport intracellulaire du génome, 

médié par la capside, doit être bien coordonné et que les interactions de la capside virale avec 

les protéines cellulaires sont cruciales pour cette étape. 

Le VHB se réplique par transcription inverse de l'ADN viral nucléaire seulement après 

conversion du génome partiellement double brin (ADNrc) sous une forme circulaire fermée 

de manière covalente (ADNccc). Cet ADNccc sert alors de matrice pour la transcription de 

l'ARN prégénomique (ARNpg), spécifiquement encapsidé grâce aux interactions entre la 

polymérase virale attachée en 5' de l'ARNpg et la protéine core (Cp) qui forme la capside. La 

polymérase rétrotranscrit l'ARN prégénomique en ADN monocaténaire (-) encore immature 

puis en ADN partiellement bicaténaire (ADNrc), conduisant à des matrices de capside 

matures MatC. 

Cp est un polypeptide de 185 aa (183 aa dans certains génotypes) comprenant un domaine N-

terminal hautement structuré, responsable de l'assemblage de la capside, et un domaine C-

terminal (CTD) flexible. Le CTD comprend un signal de localisation nucléaire (NLS) de 8 aa 

et un domaine de liaison bêta avec l’Importine β (IBB) de 34 aa. Le domaine CTD est orienté 

vers l'intérieur de la capside en interagissant avec les acides nucléiques simple brin tandis qu'il 

est exposé vers l'extérieur dans les capsides vides et matures. Il convient de noter que Cp est 

surexprimée, conduisant à l'assemblage de capsides vides (EmpC). 

Au cours du processus d’infection, après libération de la vésicule endosomale, la capside doit 

être transportée vers la périphérie nucléaire. Le transport nucléaire est médié par l'interaction 

avec les récepteurs d'import, Importine α (Imp.α) et Importine β (Imp.β). Cela se produit par 

la reconnaissance du NLS présent sur les Cp par l'Imp.α qui agit comme un adaptateur pour 

l'Imp.β. 

Contrairement aux protéines cargos caryophiles, le transport nucléaire de la capside du VHB 

se termine dans le panier nucléaire, où elle est stoppée par l'interaction avec la nucléoporine 



 

 
 

153 (Nup153), qui n’implique pas le CTD de Cp. Des résultats indirects suggèrent que la 

libération du génome se produit dans le panier nucléaire. 

En collaboration avec le groupe du Prof. Adam Zlotnick (Université d'Indiana, États-Unis), 

nous avons montré que l'EmpC est capable de lier directement l'Imp.β sans que l'Imp.α ne 

serve d'adaptateur. Cette interaction s'effectue par la reconnaissance du domaine IBB présent 

sur le CTD des Cp des EmpC qui est alors complètement exposé à l'extérieur. Ce résultat 

diffère de ce qui est observé pour les MatC pour lesquelles la liaison entre les protéines de 

capsides et les récepteurs d'imports où seul le NLS est exposé. 

Nous avons en outre montré que la liaison avec l'Imp.β fournit des forces de déstabilisation 

agissant sur la capside, conduisant au désassemblage des EmpC. Ces capsides étant 

dépourvues d'acides nucléiques, elles sont moins stables. De plus, il a été démontré que les 

dimères Cp ou Cp désassemblés sont dégradés par le protéasome. Nous avons supposé que les 

fragments protéolytiques entrent dans la voie du CMH de classe I menant à une exposition à 

la surface cellulaire où ils sont les ligands de la réponse des cellules T CD8 +. Cela peut 

expliquer que les patients infectés par le VHB et dont les cellules hépatocytaires possèdent 

majoritairement des capsides dans le cytoplasme, présentent une forte inflammation du foie 

contrairement aux patients avec des capsides principalement nucléaires. De manière logique, 

nous avons conclu que les EmpC liées à l'Imp.β sont transportées jusqu'au noyau en évitant 

une reconnaissance par le système immunitaire. 

Nous avons également évalué le rôle du Nup153 dans le désassemblage de la capside par le 

biais d'une analyse de liaison in vitro. Pour cela, nous avons utilisé un fragment de Nup153 

étiqueté par Histidine: le fragment C2 contenant une partie du domaine précédemment montré 

pour interagir avec la capside (HisC2-Nup153). Pour étudier cette étape, nous avons exploité 

l'activité de la polymérase virale endogène pour marquer le génome viral avec α32P dCTP. 

Nous avons ensuite exposé ces capsides radiomarquées au fragment HisC2-Nup153, soit en 

solution, soit fixé sur des billes de Ni / plaques de Ni; ce dernier imitant la fixation de Nup153 

dans le panier nucléaire. Afin de déterminer l'exposition au génome viral, nous avons ajouté la 

nucléase S7 pour suivre le profil de digestion. En effet, la nucléase S7 n’a pas accès au 

génome viral lorsque la capside est intacte, sa taille trop importante ne lui permet pas de 

passer à travers le maillage de la capside; ce qui n'est pas le cas lorsque la capside est 

partiellement ou totalement désassemblée. Nous avons cependant observé que les MatC 

restaient stables, ce qui suggère que des facteurs nucléaires supplémentaires étaient 

nécessaires. 

 



 

 
 

Afin d'étudier plus en détail l'étape de désassemblage et la libération du génome viral, nous 

avons mis au point un système permettant de suivre en temps réel le devenir du génome viral.  

Ce système est basé sur l'interaction coopérative d'une protéine fusionnée à un fluorochrome 

(OR-DGFP) avec une séquence ADN double brin, la séquence ANCH. Cela permet de suivre 

des molécules d'ADN isolées en cellules vivantes. Le nouveau modèle que nous avons mis en 

place repose sur l'infection de lignées hépatiques humaines exprimant stablement la protéine 

OR-DGFP avec des pseudo-virions contenant la séquence ANCH. .Lorsque le génome viral 

est libéré et devient donc accessible, la protéine OR-GFP se lie à la séquence ANCH présente 

sur les pseudo-génomes, entraînant la formation de points fluorescents dans le noyau des 

cellules infectées. A terme, cet outil permettra d'effectuer des criblages avec des inhibiteurs 

afin de mettre en évidence les facteurs cellulaires impliqués dans la libération du génome et 

éventuellement la conversion de l'ADNrc en ADNccc. 
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The Hepatitis B Virus  

History of discovery 

The hepatitis B virus (HBV) was discovered by Baruch Blumberg in 1963, when he reported 

the presence of a previously unknown protein in the serum of an Australian aborigine, the Au 

antigen1. Later on, different lines of evidence linked the Au antigen with symptoms of viral 

hepatitis2,3. The combination of separation by cesium chloride gradient centrifugation with 

immune electro staining, made by Dane end colleagues, proved that the Au antigen was 

present as spherical and tubular subviral particles named Dane’s particles4(Figure 1). The Au 

antigen was later identified as the surface protein of HBV. By the first middle of the ‘70s the 

virus was definitely associated to the hepatitis B and called Hepatitis B virus5,6. 13 years later 

Baruch Blumberg was rewarded with the Noble Prize in Medicine. 

 

 

 

Figure 1: Dane particles 

Electron micrographs of HBV particles from Doerr & Gerlich, Medizinische Virologie, 2000, Thieme Verlag. 

Pictures show the different types of secreted HBV particles: HBV virions on the right panel, and filaments and 

spherical subviral particles formed by the surface protein in the central and left panels, respectively. 

Classification 

HBV belongs to the Hepadnaviridae family, a family of viruses that conserve similarity in the 

organization of the genome and especially in the replication strategy having the unique 
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characteristic of replicating their DNA genome by an RNA intermediate (reviewed by Saager 

and Mason7). 

The Hepadnaviridae family comprises the two genera orthohepadnavirus and 

avihepadnavirus, infecting mammals and birds respectively8. 

Assignment to Hepadnaviridae family is based on the organization and length of the genome, 

which is approximately 3 kb, and on the replication strategy by reverse transcription. Within 

the family the genera are distinguished accordingly to their sequence homology. 40% of 

divergence is found between orthohepadnavirus and 20% of divergence among 

avihepadnavirus. Between the two groups there is an almost no sequence homology8.  

Within the two genera different species can be found. The classification of the species is 

based on the host range. Examples of the orthohepadnavirus genus are the Woolly monkey 

hepatitis B virus infecting woolly monkeys, the Ground squirrel hepatitis b virus (GSHBV) 

infecting ground artic and tree squirrels, the Woodchuck hepatitis virus (WHV) infecting 

woodchucks, and HBV infecting humans, chimpanzees and under certain experimental 

conditions Tupaia belangeri9. An example of avihepadnavirus is Duck hepatitis B virus 

(DHBV) infecting ducks10. 

HBV is divided into eight genotypes (A to H) with a different geographic distribution and a 

genomic diversity of 5% to 8%8 

Clinical features 

Overview on HBV infection  

It was estimated that 257 million persons are infected with HBV (serum was positive for the 

presence of the surface antigen) in 2015 resulting in 650,000 death per year11.  

HBV is hepatotropic causing a broad spectrum of liver disease spanning from acute and 

chronic hepatitis to cirrhosis and hepatocellular carcinoma. The disease is caused by hosts 

immune response, since HBV infection itself is non-cytopathic7. 

Depending on the patient (age, sex, immunocompetence, etc), HBV infection can be either 

asymptomatic (two thirds of infected adults) or resulting in acute hepatitis (one third of 

infected adults)12,13. In the majority of the cases the virus is cleared, however in the 5% to 

10% of adults the infection becomes chronic12. Among the chronic infections, most of them 

lead to mild liver disease, while in some patients it can progress to cirrhosis and 

hepatocellular carcinoma (HCC). Reviewed by Seeger and Mason7. 
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Immune response to HBV infection 

HBV is non-cytopathic and pathogenesis is caused by the host immune response. The 

infection induces a weak innate immune response, and a strong adaptative immune response, 

particularly inducing cytotoxic T cells (CD8+ T-cells)14,15. 

In 1991, Bertoletti et al. demonstrated the induction of MHC class I restricted CD8+ T cells 

specific for a capsid protein epitope during HBV infections in humans. They proposed that 

this response is characteristic of the acute infection since it is absent in healthy donors16 and 

weak in patient affected by chronic hepatitis17. 

In agreement, several other reports showed that acute infection is characterized by a strong T-

cell response and high liver injury while chronic infection is associated with a weak T-cell 

response and only minor liver damage14,15. In rare cases (1% of the acute infections), the T-

cell response eliminates the entire liver within weeks causing the death of the host (fulminant 

hepatitis)13.  

Transmission 

HBV can be transmitted either horizontally by contact with infected blood or other body 

fluids such as saliva, menstrual, vaginal, and seminal fluids, or vertically from mother to child 

during birth. Outside the body HBV can survive at least 7 days11. The incubation period 

depends upon virus intake ranging from 30 to 180 days with an average of 75 days. The 

detection of the virus is possible within 30 - 60 days after infection11. 

Vaccine and current treatment 

A vaccine based on HBV surface proteins is available since 198211. The first vaccine was 

made from subviral particles purified from the plasma of infected individuals followed by 

inactivation of the virions. Since 1986 the vaccine contains the major surface protein 

expressed in Saccharomyces cerevisiae becoming the first vaccine made by recombinant 

DNA technology18. The vaccine has been proved to be effective and safe providing immunity 

in 95 % of infants. The time of protection depends upon the antibody titer, which can last life-

long. 11. 

So far, there is no an effective cure, but long-life treatments can control the infection. The 

nucleoside analogue Entecavir and the nucleotide analogue Tenofovir are the mostly used 

drugs both inhibiting the viral reverse transcriptase19. Currently, novel strategies and novel 

targets are under investigation, targeting viral entry, capsid formation, disassembly, virion 

formation and the immune system (reviewed by Liang et al19).  
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The virus 

HBV is an enveloped virus with a diameter of 42 nm. The envelope encloses the nucleocapsid 

(NC) which is composed by the proteinaceous capsid and the viral genome. Host cellular 

proteins such as kinase C (PKC) and the molecular chaperon complex hsp90 are also 

encapsidated20,21. The genome is formed by a partially double stranded DNA. Replication 

occurs trough reverse transcription mediated by the viral reverse transcriptase (RT). RT is 

encapsidated inside the nucleocapsid and it is covalently bound to the minus strand DNA 

(Figure 2) (reviewed in7,22,23). 

 

 

 

 

Figure 2: HBV particles  

HBV virions with a diameter ranging from 42-47 nm are formed by the envelope, comprising the surface 

proteins L, M and S, that encloses the nucelocapsid (NC). The NC is composed by the capsid and the viral 

genome formed by a partially completed relaxed DNA (rcDNA). Reverse transcriptase (RT) is covalently linked 

to the minus strand DNA Host cellular proteins such as Hsp90 and protein kinase C (PKC) are encapsidated 

during capsid assembly. Along with completed virions, subviral particles, spheres or filaments, formed by the 

surface proteins are secreted 
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The envelope 

The viral envelope is composed of tree surface proteins termed Large (L/LHBs), Middle 

(M/MHBs) and Small (S/SHBs). They are encoded from the same open reading frame (ORF) 

and they share the same C-terminal domain formed by S (226 aa). The M protein is composed 

of the S domain and the preS2 domain (55 aa), which is fused to the N terminus of S. The L 

protein comprises the S and preS2 domain plus the preS1 domain (108 or 119 aa depending 

on the genotype) at its N terminus24,25. 

The L protein is myristylated at the N-terminus of the PreS1 domain (Gly-2), while M protein 

is N-glycosylated within the preS2 domain (Asn-4). The preS2 domain of genotypes B-H is 

O-glycosylated at Thr-3726. 

The preS1 domain is responsible for the envelopment of NC and participates at the binding 

with the sodium taurocholate cotransporting polypeptide (NTCP) receptor during the entry 

step. Indeed, L protein exists in two different topologies, that face either the inner or the 

outside of the virion: in the cytoplasm, during encapsidation, the preS1 domain is directed 

toward the capsid to direct envelopment, while during the entry step is on the virion surface to 

mediate the contact with the receptors. 27–29 

Envelope proteins are produced in 100 to 1000 fold excess and form subviral particles: 

spheres of 22 nm or filaments that differ for their length. Virions and subviral particles 

contain lipids derived from the post-ER, pre-Golgi compartment30.  

The capsid 

HBV capsid (HBcAg) is formed by the capsid or core protein (Cp). Cp can be expressed in 

Escherichia coli (E. coli) where it arranges in capsids that are indistinguishable by EM from 

the ones purified from infected patients31. E. coli produced capsids, hereafter referred as 

rHBc, contain E. coli RNA with the same length than the physiological HBV pregenomic 

RNA. Cp arranges either in 180 copies to form capsids with a T=3 symmetry or in 240 copies 

to form T=4 capsids32. The T=4 form is dominant (85%) upon expression in E. coli but the 

T=4/T=3 ratio depends upon the kinetics of assembly32. In patients, Cp can also 

spontaneously assemble to empty capsid (EmpC)33. 

Depending on the genotype, Cp is a 183-185 aa long polypeptide. The first 149 aa form the N-

terminal domain (NTD) and the last 34-36 aa form the C-terminal domain (CTD). The NTD 

in necessary and sufficient for capsid assembly and the mostly basic CTD interacts with the 

nucleic acids. Expression of the first 149 aa in E. coli results in capsids with the proper 

morphology but which are empty34.  
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The CTD comprises four arginine-reach repeats with seven conserved serine and one 

threonine residues that can be phosphorylated (reviewed in35). One the primary sequence, two 

nuclear localization signal (NLS) sequences have been mapped (aa 158–168 and 165–175)36. 

The structure of the HBV capsid has been solved with a 3.3 Å resolution by crystallization37 

showing that the NTD is highly ordered with a mainly helical structure, folding a major α-

helical hairpin. CTD is disordered and was visualized by cryo electron microscopy after 

nanogold labelling38. Capsid assembly is initiated by rapid Cp dimerization of the two major 

α-helical hairpins of the NTD of two monomers forming a four-helix cluster (Figure3). Cp 

dimers then trimerize in a slow reaction, followed by association of these Cp hexamers to 

capsids without defined assembly intermediates37,39. Assembled capsids appear as spherical 

shell (260 Å in diameter) being fenestrated by holes of different size: 14 Å in diameter at the 

three fold axes, 12-15 Å at the two fold axes and 3 Å at the 5 fold axes. From the surface, 

spikes protrude for a length of 25 Å. These spikes are formed by the four-helix cluster of 

dimers37. 

After leaving the reducing environment of the cytosol, different disulfide bonds are formed. 

At the dimer interface a disulfide bridge is present between the Cys 61 of the two monomers, 

although C61-C61 disulfide bonds are not essential for capsid assembly. A second 

intermolecular disulfide bond has been observed by Zheng et al involving Cys 48, however 

considering the distance between the Cys 48 of two monomers (grater then 20Å), and the 

icosahedral symmetry of the capsid, this disulfide bridge is not formed in native shell 

(Figure3)37. An additional, a disulfide bond was described for the last Cp aa (Cys 185 or 183, 

dependent upon the HBV genotype). When Cp is expressed in eukaryotic cells, this bridge 

links the Cys within one dimer, while when it is expressed in E. coli frequently leads to 

aberrant bonds between neighboring40. 

In the assembled capsid the CTD is present in the inside of capsid by nucleic acid interaction, 

or can be transiently exposed on the capsid exterior, as shown by trypsin digestion studies41. 

The localization of the CTD is associated with genome maturation but also with 

phosphorylation41. 

 



Introduction 

 

31 
 

 

 

Figure 3: Cp monomer and dimer 

A. Cp monomer shown in red. The NTD is highly ordered with a mainly helical structure (5 helix), folding a 

major α-helical hairpin formed by α3 and α4. The CTD is formed by α5. B. Cp dimer is made by the four-helix 

cluster of two monomers, where one monomer is represented in bleu and the other in red. Cys61 which forms a 

disulfide bridge is shown in green while Cys48 that does not in native shell is shown in yellow. Picture modified 

from Wynne et al. 37 

The viral genome 

The HBV genome is 3.2 kb long and exists in three forms. In HBV virions, the genome is 

circular, relaxed and partially double stranded (rcDNA). In this form, the minus strand is 

complete with an 8 nt terminal redundancy, while the plus strand has a gap being partially 

synthetized. In the virion, RT is covalently bounded to the 5’ end of the minus strand  

(reviewed in12). Upon infection, the rcDNA is converted in an episomal form called 

covalently closed circular DNA (cccDNA) in a multistep process involving the release of the 

polymerase, removal of the terminal redundancy, completion of the plus strand DNA by a 

host polymerase and ligation of 5’ and 3’ ends (reviewed by Schreiner and Nassal42). This 

process has not been completely elucidated yet, and the order by which these events happen 

and the host factors involved remain unclear. The cccDNA is the form present in the nucleus 

of infected cells where serve as a template for viral transcription. The cccDNA is organized as 

a minichromosome by association to host cellular histones proteins43. From studies performed 

with DHBV and WHV, the number of copies is estimated between 5 and 5044,45. For HBV the 

cccDNA copy number is less clear, but seems to be below that of DHBV and WHV. Cp and 

the viral protein HBx were described to be associated with it46,47.  

The third DNA form is double stranded linear and is derived from aberrant plus strand DNA 

synthesis. It is found in the virion and becomes integrated into host chromatin upon infection. 
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The genome is tightly organized with all nucleotides being protein encoding. Four 

overlapping ORF are present encoding seven different proteins: RT, L, M, S protein, HBx, 

Cp, and the preCore (preC) coding for e-antigen (HBeAg). The four promoters are regulated 

by two enhancers (Enh1, Enh2) and a glucocorticoid-responsive element (GRE)48. In addition, 

two direct repeats (DR1, DR2) exist, which are sites important for minus and plus strand 

DNA priming. Both, promoters and enhancer are overlapping the ORFs (Figure4). 

 

 

 

Figure 4: HBV genome organization 

HBV contains a 3.2 kb, partially double-stranded (~dsDNA) genome (inner black circles) formed by full-length 

minus strand and an incomplete (dashed lines) plus strand. The genome is tightly organized with all nucleotides 

being protein encoding. It contains four promoters, two enhancer regions (Enh1, Enh2), and two direct repeats 

(DR1, DR2). The four ORFs are shown by the colored arrows. (Picture simplified from Minor et al49)  

Reverse Transcriptase  

RT is a multifunctional protein. In addition to the reverse transcriptase activity, it possesses an 

RNase domain that degrades the RNA upon DNA synthesis. It comprises a so-called priming 

domain, also called terminal protein (TP), a spacer domain between TP and the domain 

involved in the reverse transcription (RT domain). 

HBV replicates via an RNA intermediate called pregenomic RNA (pgRNA), which is 

encapsidated together with RT in newly forming capsid by interaction between RT and Cp 
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and RT and an encapsidation signal called epsilon (ε) on the pgRNA50. Within the capsid TP 

serves as a primer for reverse transcription51. During priming the first 5’ nt becomes 

covalently linked to TP. 

Hepatitis B virus X protein; HBx 

HBx is encoded by the smallest, 154 aa long, ORF and has a molecular weight of 17.5 kDa. 

Many different functions have been attributed to HBx: it has been suggested to affect viral 

replication, as well as host cell functions, by acting on a wide range of cellular processes. It 

has been described to be implicated in viral transcription, DNA damage repair, and cell cycle 

progression52–54.  

Most important is its function in replication, which is only needed in differentiated cells and 

not in hepatoma cell lines. Decorsiere et al. demonstrated that HBx hijacks the cellular 

DDB1-containing E3 ubiquitin ligase to target the ‘structural maintenance of chromosomes’ 

(Smc) complex Smc5/6 for degradation. Smc5/6 complex binds episomal HBV cccDNA 

inhibiting it transcription. Hence, HBx, by targeting the complex for degradation, relieves 

cccDNA inhibition allowing productive gene expression55. An alternative model was 

postulated by Alarcon et al. showing that HBx regulates the regulation of the chromatin 

structure of cccDNA. In the nucleus of infected cells, the cccDNA is present associated to 

host cellular histones43 being regulated by the chromatin state. The authors showed that HBx 

recruits histone lysine-specific demethylase 1 (LSD1) to HBV viral promoters leading to a 

reduction of methylation on lysine 9 on histone H3 and therefore to an increased 

transcriptional activation. The authors also demonstrated that HBx recruits Set1A that is 

responsible for the trimethylation of lysine 4 on histon H3, thus bringing the cccDNA to an 

active chromatins state56. 

HBeAg 

The HBeAg is encoded by the same promoter as Cp but the preC ORF contains 29 residues 

upstream Cp, leading to a primary translation product of 25 kDa57. The additional aa lead to 

insertion into the endoplasmic reticulum (ER) membrane, where the signal peptide is cleaved 

off. The protein dimerizes followed by transport to the Golgi compartment where furine 

proteins remove the C terminus58. The secreted HBeAg has a molecular weight of ca. 15 kDa 

(monomer). It is secreted by all the member of the Hepadanaviridae family35. 

HBeAg expression seems not to be required for productive infection59 but it has been shown 

to have an immune-modulatory role that may help immune evasion60. As HBeAg is 
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transcribed under control of the same promoter than RT and Cp and its presence is correlated 

to the viral load except in patients exhibiting a preC stop mutation12,61. 

The viral life cycle 

The HBV life cycle takes place exclusively in hepatocytes that provide the specific receptors 

and specific factors needed for the viral replication as e.g. HNF4 (reviewed in62,63 and 

summarized in figure 5). 

Entry 

The entry step is a multistep process that involves a first reversible binding to heparan 

sulphate proteoglycans (HPSGs) and a second higher affinity interaction with the NTCP64,65. 

HSPG binding is mediated by the antigenic loop on the S domain and NTCP binding is 

mediated by the preS1 domain of L protein66. HPSGs are expressed in the extracellular matrix 

and on the plasma membrane of many cell types including endothelial and dermal cells. 

However, in hepatocytes surface, they are higher sulfated67. It is generally believed that the 

first interaction with HPSGs is necessary to concentrate the virus at the right site and to 

stabilize the interaction with the main receptor (NTCP)27,68.  

It has been recently proposed that HBV undergoes conformational changes of the preS1 

domain after secretion, that prevent the virus from not specifically bind to other unspecific 

tissue. Directly after leaving the cell, the preS1 domain is on the interior due to its interaction 

with the capsid. Then, a maturation process translocates preS1 to the virion surface allowing 

binding HPSGs and NTCP. However, the molecular mechanism remains under 

investigation69. 

The NTCP was identified as main HBV receptor in 2012 by Yan et al. They firstly showed 

that preS1 binds NTCP with high affinity, and that silencing human NTCP (hNTCP) in 

HepaRG cells reduces the production of HBeAg and viral mRNA. In addition, the expression 

of hNTCP in HepG2 cells, that are normally resistant to HBV infection, confers them 

susceptibility64. NTCP is a transmembrane glycoprotein and it is expressed on the basolateral 

membrane of hepatocyte. The N-terminal domain is located at the extracellular space while 

the C-terminal domain is in the cytoplasm. Physiologically, it is responsible for the sodium-

dependent bile acid uptake70. The N-terminal domain contains two N-glycosylation sites at aa 

5 and 11 and it has been shown that mutations of both these sites, that make the NTCP 

glycosylation deficient, impair HBV infection reducing production of HBeAg and cccDNA71. 

Therefore it has been suggested that the N-glycosylation is required for NTCP mediated HBV 
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infection. Two aa sequence in hNTCP, 157-165 and 84-87 have been shown to be important 

for binding to preS164 and for mediating the entry72 respectively. 

Although the binding properties are well characterized, and although it is known that the 

binding with the NTCP induces endocytosis, the exact mechanism that mediates the entry, 

remains unknown. Whether HBV uses a caveolae-mediated endocytosis or a clathrin-

mediated endocytosis is unsolved. Macovei et al. proposed the first73 while two different other 

studies have been proposed the second to be the main mechanism that mediate the entry of 

HBV74,75. To note, preS1 was shown to interact with clathrin heavy chain and AP2, which is a 

clathrin-mediated endocytosis adapter74. 

Endosomal trafficking 

After the entry step, HBV enters in the endocytic pathway, where the pH drops from 6.2 in 

the early endosome to 5.5 in the late endosome. For many enveloped viruses, acidification is 

needed for endosome escape by activating an envelope fusion protein that mediates the fusion 

with the endosome membrane. However, whether the pH effects HBV infection and how 

HBV escapes the endosomal pathway remains to be clarified. It has been reported that in 

HepaRG cells, HBV infection depends on Rab5 and Rab7, which are GTPases involved in 

endosome maturation, supporting that HBV passes from the early to the late endosome76. 

In experiments using the DHBV as surrogate model, where the pH was raised by ammonium 

chloride, the infection remained unaffected, suggesting that at least for DHBV the endosomal 

escape is pH independent77,78. However, in another study, where the pH was neutralized by 

Bafilomycin A1 the infection of DHBV79 and HBV80 was inhibited. Thus, the potential role of 

pH remains controversial. Although a fusion function has been proposed for the preS181, how 

HBV escapes endosome pathway remains to be fully understood.  

Cytoplasmic transport 

Following the endosomal escape, the capsid is released in the cytoplasm and is translocated 

by retrograde transport to the nuclear periphery. As most viruses, the HBV capsids use 

microtubules and cytoplasmic dynein from transport. Our group observed that after 

microinjection in  Xenopous laevis oocytes, the capsids accumulate at the nuclear pore 

complex (NPC), within 15 min requiring capsid interaction with the dynein light chain 182. 

Interaction and transport required exposure of the CTD82.  

Nuclear transport and capsid disassembly 

Once at the nuclear periphery, the capsid has to pass the NPC and disassemble to release the 

genome inside the nucleus. It was shown that the nuclear localization signal (NLS) present on 
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the CTD of Cp binds the import receptor Importin α (Imp.α)83, but how and where the capsids 

switch from the interaction with the dynein light chain 1 to Imp.α remains to be investigated. 

Imp.α serves as an adapter for the binding with Importin β (Imp.β) that mediates the 

interaction with NPC.  

Being 36 nm in diameter, NC is just below the upper limit of the nuclear pore complex 

(NPC), 39 nm84, and it has been shown that NC cross the NPC intact reaching the 

nucleoplasmic side of it, termed nuclear basket, where NC interacts with Nucleoporin 153 

(Nup153)85. The subsequent step of NC disassembly, leading to diffusion of Cp dimers86, and 

genome41 deeper into the nucleus remains unknown.  

rcDNA conversion to cccDNA 

Once released in the nucleoplasm the rcDNA is converted in cccDNA.  

Guo et al. reported the presence of DHBV capsids containing deproteinized rcDNA in the 

cytoplasm of infected duck hepatitis cells, and they suggested that for DHBV the 

deproteinization may lead to capsid destabilization with consequent disassembly87. However, 

Cui et al. showed that destabilized HBV capsids contain only rcDNA bounded to RT, arguing 

against a role for a deproteinization-induced capsid destabilization. They suggested that the 

deproteinization likely occurs after the genome release step rather than before88. Considering 

that the disassembly is thought to take place at the nuclear side of the nuclear basket, 

according to Cui et al.88 the deproteinization likely occurs in the nucleus.  

The group of Michael Nassal proposed that the TPN2 protein, which is a cellular enzyme 

implicated in host cell genome repair, is involved in the releasing of RT from the rcDNA. 

TPN2 is known to repair DNA adducts induced by the topoisomerase (TOP) by releasing 

TOP from DNA breaks. This suggests that RT bounded to rcDNA is structurally similar to 

TOP adducts and therefore is recognized by TPN289. 

Early studies on DHBV showed that the viral polymerase does not participate in completing 

the plus strand DNA90. Recent investigations showed that several host polymerases as pol , 

pol  and pol  are involved, although with different efficiency. Their knockout impaired the 

formation of cccDNA but however it did not completely abolished HBV infection suggesting 

that other factor need to be implicated in the process91. 

Viral DNA integration  

Although being a dead end of infection, HBV DNA but also the DNA of other hepatitis B 

viruses integrates into host chromosomes. HBV DNA has been found integrated in tissue 
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originated from HCC patients, and in cells lines derived from HCC23. Thus, it has been 

hypothesized integration may contribute to the development of the carcinogenesis.  

In contrast, studies on WHV, often used as surrogate model, showed in woodchuck liver 

tumor that integrations frequently occurs closed to the N-Myc family of proto-oncogenes 

causing their activation. This seems to be the leading cause for the developing of WHV-

associated HCC92. However, studies of human HBV-associated HCC have shown random 

integration with less clear evident mechanisms93,94. 

Transcription and protein synthesis and assembly 

cccDNA serves as a template for viral transcription, which is facilitated by the host 

polymerase II. Five mRNAs are synthesized: the pregenomic RNA (pgRNA), one further 

mRNA of supergenomic length coding for HBeAg, and three subgenomic mRNAs. In 

addition, two defined spliced versions of the pgRNA are synthesized95. The three subgenomic 

mRNAs encode for HBx and for the three surface proteins. pgRNA is the RNA intermediate 

necessary to replicate the viral genome and which is the template for reverse transcription. In 

addition, it encodes for Cp, and RT. pgRNA contains a stem loop structure at the 5’ end, 

which is the encapsidation signal ε (reviewed in 23). 

It has been shown that the binding of RT to ε triggers the recruitment of the RT and pgRNA 

inside newly assembled capsid96. 

To explain how the assembly process occurs, a new model has been recently proposed, where 

pgRNA plays an active role in Cp enucleation. Using RNA SELEX, Patel et al. identified Cp 

binding sites (Packaging signals PS) on the pgRNA forming stem loops structures. They also 

observed that at low concentration, and without RNA, only Cp lacking CTD and not full-

length Cp assemble into capsids. This implies that in these conditions, the CTD inhibits the 

enucleation of Cp and therefore its assembly. However, this inhibition can be suppressed 

either by phosphorylation of CTD, or by the presence of RNA, thus arguing for electrostatic 

repulsion of Cp due the positive charged CTD. Therefore, the authors suggested that the 

recognition of PS by Cp may favor the dimer formation (the first assembly intermediate) by 

reducing the electrostatic repulsion between the CTD of Cp and consequently start the 

enucleation process that lead to the formation of assembled NC.97 In addition, one PS has 

been mapped adiacent to a pgRNA region, called (φ). φ, being the complementary region of ε 

can pair with it circularizing the pgRNA.  
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Thus, the model suggests that the RT-ε/φ complex may guide the folding of PS1 in its stem 

loop motif which then binds to Cp, leading to assembly initiation; this would also assure that 

Cp assembly only occurs on a pre-genome that is bounded to RT97.  

Similar mechanisms have been proposed for other viruses RNA such as parechovirus98.  

It has been further shown that packaging also depends on host factors, as e.g. Hsp90, which is 

thought to stabilize the interaction between RT and ε99. 

Reverse transcription and morphogenesis 

Genome maturation starts with RT-ε complex formation, which triggers the start of the 

reverse transcription that takes place inside the capsid. The required nucleotides get access to 

the inside of the capsid via the fenestrations in the capsid surface. After priming and synthesis 

of the first 3 nucleotides, which are copied from the bulge of , the complex switches to DR1 

closed to the 3’ end of the pgRNA from where reverse transcription continues towards the 5’ 

end of the pgRNA. The degradation of the pgRNA by the RNaseH domain occurs in parallel 

to reverse transcription but 11 nucleotides behind. This delay leaves the capped 5’ end of the 

pgRNA undegraded and this oligonucleotide serves as the primer for plus strand DNA 

synthesis after translocation of the DR2. Circularization leading to the rcDNA requires three 

not-well characterized elements called M, 3E and 5E100. 

In 30 - 50% the RNA primer translocation does not succeed and the plus strand DNA 

synthesis results in a double stranded linear HBV genome. (Reviewed in23).  

In vitro, the single strand gap on the rcDNA may be repaired by addition of few nucleotides 

by the endogenous DNA polymerase. The endogenous polymerase reaction carried out in the 

presence of (32P) dNTP is generally used to radiolabel HBV genome and was firstly 

described by Summers et al.101 to screen serum samples of different host species for the 

presence of a hepatitis B like virus102. 

The entire genome maturation process seems to occur prior to secretion and at least reverse 

transcription is a requirement for secretion103. Thus, the cytoplasm of infected cells contains 

capsids at different stages of replication. Capsid containing replication intermediates, e.g. 

early RNA containing capsid, and ssDNA containing capsid are referred as Immature capsid 

(ImmC). When the formation of the rcDNA is completed, capsids reach their “maturation” 

and are therefore called mature capsid (MatC). 
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Secretion  

Once reached their maturation, MatC can either re-enter in the nucleus, leading to the 

amplification of cccDNA pool, or acquired the lipid envelope together with the surface 

proteins and be secreted. 

It has been proposed that the cccDNA pool in the nucleus is maintained by recycling of newly 

formed MatC. Although the recycling into the nucleus of MatC is generally accepted for 

DHBV, experiments on HBV are not fully clear as the half-life of cccDNA remains 

controversial104,105.  

In the cytoplasm of infected cells, MatC, but not ImmC103 can be enveloped and eventually 

secreted106. It has been shown that MatC acquire the host-derived lipid envelope, where 

surface proteins are embedded, by budding into the lumen of an intracellular membrane 

believed to be MVBs for extracellular secretion107.  

To explain how only MatC are recognized, the maturation signal model has been proposed. 

According to this hypothesis, rcDNA formation and, therefore, capsid maturation leads to 

conformational changes in the capsids that lead to its recognition by the envelope proteins108. 

The preS1 domain of L seems to be involved in the interaction with the capsid to guide the 

envelopment28. The structural capsid changes required for MatC envelopment seem to also 

occur on EmpC leading to empty virions with a concentration of up to 1011 particles/mL109,110. 

The secretion and envelopment of EmpC argues against the maturation signal induced by the 

formation of rcDNA. Recently, Ning et al. proposed the “ssDNA or pgRNA dependent 

blocking signal” hypothesis, where, an inhibitory signal is present in ImmC111.  

Nevertheless, even if in lower amount, ssDNA and pgRNA containing particles have been 

recently found in the blood of infected patients (100 to 1000 lower than rcDNA containing 

virions)112,113, although their secretion is under debate and their presence needs further 

characterization. 

The secretion of filaments also occurs through the ESCRT machinery and the mutivescicular 

body secretion pathway107,108. While the secretion of spheres occurs through the host 

constitutive secretory pathway114  

In infected patients, HBsAg spheres and filaments outnumber rcDNA virions of 100,000-fold 

with a concentration of 1014 particles /mL115 versus 109 particles/mL. The reason for such 

subviral particles secretion remains unclear. The leading hypothesis regards the modulation of 

the immune system; and it has been proposed that HBsAg particles would bind circulating 

antibodies preventing their neutralization of infectious virions116. 
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Figure 5: HBV life cycle 

HBV replicates via reverse transcription in hepatocytes. Infection starts with the binding to HPSG and NTCP 

receptors and leads to receptor-mediated endocytosis. NC is released in the cytoplasm and translocated to the 

nuclear periphery through active transport involving microtubules and association with dynein light chain 1. 

Nuclear transport ends in the nuclear basket. The genome is released and following the remove of RT repaired 

forming the cccDNA form. Then, transcription occurs and viral RNAs are brought to the cytoplasm. pgRNA is 

encapsidated along with RT that start the reverse transcription. Eventually rcDNA containing capsid are formed 

that can be either recycled back into the nucleus or recruited for envelopment and secreted. In addition to rcDNA 

containing virions, in the extracellular medium, HBsAg particles are secreted as spheres or filament, as well as 

EmpC containing particles. 

Capsid protein and the maturation process 

The maturation process is a tightly organized and involves structural changes of the CTD 

including its phosphorylation and consequent exposure on the capsid surface. 

Localization of the CTD 

The CTD of Cp is a highly flexible and has a disordered structure. In 1997, Zlotnick et al. 

coupled the CTD to gold particles and visualized it by electron microscopy of rHBc 



Introduction 

 

41 
 

containing E. coli RNA. They showed that in this type of capsid, mimicking ImmC containing 

pgRNA, the CTD is located inside the capsid lumen, probably by interacting with the RNA. 

The CTD is localized at the quasi-six- fold vertex thus adjacent to a fenestration38. 

Rabe et al, reported that in MatC all the CTDs are sensitive to trypic digestion, implying that 

the CTDs is exposed on the capsid surface. In ImmC only a small fraction of CTDs (30%) is 

sensitive to tripic digestion, while in ImmC derived from cells which were treated with a 

polymerase inhibitor (foscarnet), even a smaller fraction was digested (15%). These data 

argue for a maturation dependent exposure of the CTD requiring the activity of RT. In 

agreement, in rHBc, devoid of RT, all CTDs are protected by the activity of trypsin 

supporting that the initial synthesis of the minus strand DNA is required. 

In rHBc, which were in vitro phosphorylated, the phosphorylated CTDs were trypsin 

sensitive. As the introduction of negative phosphate charges, between the positively charged 

arginine cluster of the CTD, repulse RNA, it was assumed that a reduced affinity between 

capsids and RNA in the lumen of the capsid allows CTD exposure41. This hypothesis is in 

agreement with a reduced affinity of Cp to dsDNA compared to single stranded nucleic acids 

Localization of CTD is summarized in Figure 6. 

Phosphorylation of the CTD 

The aforementioned experiments argue for a phosphorylation dependent exposure of the 

CTD. The CTD contains seven conserved serine and one threonine that are potentially 

phosphorylated. Point mutations of the serine residues exhibited that Ser162 is crucial for 

pgRNA packaging117. Consistently, mutated Ser164 Cp failed to interact with TP118. 

Precipitations of capsids from patient sera using an antibody against the phosphorylated CTD 

at Ser170/172 showed that this modification is also found in vivo and is maintained in 

virions119. However, it has been observed that phosphorylation decreases with genome 

maturation, which was also shown for DHBV capsids120. As pgRNA encapsidation can be 

potentially driven by RT interaction with one single phosphorylated Cp these data do not 

allow drawing a conclusion about the number of phosphorylated sites in assembled capsids so 

that the data are not necessarily contradictious.  

In addition, the protein kinase involved in the phosphorylation has not been unequivocally 

identified. Protein kinase C (PKC) was found in HBV virions from cell culture and from 

patients20,40,121. Inhibition of protein kinase C in cells expressing HBV results in decrease 

virion formation and intracellular accumulation, although does not impairs genome 

maturation. 
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Additionally, altering the CTD localization, phosphorylation may induce the signal leading to 

envelopment and seems to influence capsid stability. Selzer et al, reported that the substitution 

of serine 155, 162 and 170 with glutamate results in increased stability of the capsid122. 

However, it remains unclear if this finding is relevant for capsid disassembly. 

 

Figure 6: Localization and phosphorylation of CTD according to the maturation degree of the capsid 

CTD (in red) has seven conserved serine and one threonine potentially phosphorylated (in bold characters). In 

pgRNA containing capsid the CTD in situated in the capsid lumen. Synthesis of the minus strand DNA induced 

Phosphorylation of the CTD (in blue), however, the extent of phosphorylation remains unknown. 

Phosphorylation causes partial exposure of CTD on the capsid surface. In MatC CTD is present 

dephosphorylated on the capsid surface  

HBV tropism 

HBV host tropism 

HBV presents a narrow host range infecting only humans, chimpanzee and under 

experimental conditions Tupaia belangeri9. Commonly used animal models such as mice and 

rats are resistant to the infection123. The host tropism, together with the liver tropism, is 

determined on different levels. The first one is the entry step mediated by NTCP. Two aa 

sequences have been mapped on hNTCP to be crucial for HBV tropism: aa 157-16564 and aa 

84-8765 mediating binding and entry respectively. It has been shown that the homologue 
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mouse NTCP conserves the first sequence, while present an alteration in the second one. In 

agreement, although being able to bind a synthetic L-protein derived peptide, Myrcludex 

B64,65, mouse NTCP cannot efficiently mediate HBV entry65. However, at least in the case of 

mice, the host tropism seems to be determined also at later steps. Murine cells expressing 

hNTCP, support HDV entry, which have the same envelope as HBV124, but these cells do not 

support later steps of the HBV life cycle as cccDNA formation  and HBeAg secretion65. This 

restriction can be overcome by fusing hNTCP expressing mouse cell with HepG2 human cells 

that do not express NTCP125, showing that human cells provide additional factors necessary to 

the steps after the entry. 

On the contrary, it seems not to be the case for other animals normally resistant to the 

infection as macaque and pig. It has been reported that the only expression of hNTCP in 

hepatocytes deriving from cynomolgus and rhesus macaque and pig is enough to restore 

cccDNA and HBV transcripts levels comparable to human hepatocytes126, suggesting that for 

these species the only level that determine the host restriction is the entry. 

As expected, expression of NTCP from Tupaia belangeri, as well as hNTCP in HepG2 cells 

renders these cells susceptible for HBV infection, confirming the importance of NTCP in 

defining host specificity and the possibility of Tupaia belangeri to be infected64. Tupaia 

belangeri hepatocytes however do not support productive HBV synthesis. 

Hepatic tropism 

The NTCP receptor plays a pivotal role also in determine the hepatic tropism. NTCP 

expression is regulated by liver-specific transcription factors, hormones and cytokine and is 

expressed exclusively in the basolateral membrane of hepatocytes. However, as for host 

tropism, also hepatic tropism is determined at different levels. For example, to promote viral 

transcription, Enh1 and Enh2 has binding sites for specific liver transcription factors including 

hepatocyte nuclear factor (HNF) 4 and HNF3 where HNFs are typical example of liver-

enriched transcription factor (reviewed in127) 

Research on HBV: challenges 

Animals models 

Studies on host immune response, as well as studies on the course of the infection have been 

done mainly on the chimpanzee model. However; the use of high primate in clinical research 

as chimpanzee raises ethical concerns and it is hampered by the limited animal availability 

and by their high maintenance costs. 



Introduction 

 

44 
 

As an alternative, human liver chimera mice have been used. These mice are made by 

repopulating the partially destroyed liver of nude mice with primary human hepatocytes128. 

These mice are permissive to HBVinfection, but infection rate depends upon the quality of the 

donor and the outcome of infection is highly variable128. Double chimera mice have been 

developed engrafting human hepatocytes and human immune system and it has been reported 

that such mice develop human specific liver fibrosis129. 

Cell culture model 

Hepatoma-derived cells line, such as HuH-7 and HepG2 cells are not susceptible to HBV 

infection as they do not express the NTCP. An exception is the hepatoma cell line HepaRG, 

which is kept differentiated with addition of dimethyl sulfoxide (DMSO)130. 

Nevertheless, hepatoma cell lines in general support later steps of HBV replication. This has 

been shown the HBV particles derived from transfection of HBV genomes into HepG2 cells 

(HepAD38 and HepG2.2.15) are infectious in chimpanzees131. 

HuH-7 and HepG2 cell line stably expressing NTCP are currently used as model to study the 

entry step. To note, HepG2-NTCP cells seems to be more highly susceptible to HBV than 

Huh7-NTCP cells. These suggest that additional factors, present in HepG2 cells but absent in 

HuH-7 cells are required to achieve optimal level of viral infection65.  

Human primary hepatocytes (PHH) are the in cellulo closest model. However, they present 

some constrains due to the limited life in the order of weeks in culture and to the limited 

availability. In addition, their susceptibility is lost three days after taken into culture ref. This 

seems to depend on the loss of cell polarization caused by the loss of hepatic specific factors 

during cell culture132. One other drawback is the high donor-to-donor variability that renders 

limited the number of reproducible studies (Reviewed in 133 ). 
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Nuclear transport 

The Nuclear Pore Complex 

The NPC is macromolecular structure embedded in the nuclear membrane where it forms an 

aqueous channel that represents the gate that molecules has to pass to get access to or exit the 

nucleus (Figure 7).  

The NPC protein complex has a mass of >125 MDa with an octagonal rotational symmetry. It 

is composed by three major parts: a central ring that fuses the outer nuclear envelope with the 

inner one, a nuclear face that is made by eight fibers forming a cage-like structure ending with 

a nuclear ring, called nuclear basket, and a cytoplasmic face with 50–100 nm long flexible 

filaments that radiate from the central ring toward the cytoplasm.  

NPCs are phylogenetically well conserved even between distant species like humans and 

Xenopus leavis (reviewed in134). 

It is formed by ~30 different proteins called nucleoporins (Nups). All Nups are present as 

multiples of eight reflecting the highly conserved eight-fold symmetry of NPCs. Aside of 

their function during import and export they play a role also during cell cycle and intranuclear 

chromatin distribution135,136.  

The number of NPCs per nucleus varies between organisms, cell types and depends on the 

metabolic status of the cell. It is higher during G2 phase than G1 phase (e.g., 8.5 vs 5 

NPCs/µm2 nuclear envelope in HeLa cells)137. 

For molecules that shuttle through the nuclear membrane, the barrier to pass is represented by 

phenylalanine-glycine (FG)-repeats present on one third of the Nups138–140 and which form a 

hydrophobic exclusion mesh within the pore.  

Analyzed by electron microscopy, the central ring has a diameter of 40 nm and it has been 

demonstrated that the upper limit size for cargo molecules that can pass through it is 39 nm.84 

Molecules with a size of 5-8 nm and a molecular weight of 20-40 kDa can freely pass the 

NPC by diffusion141–144, but diffusion also depends on shape and surface charge. Large 

molecules need to be actively transported through the NPC.  
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Figure 7: NPC 

It is a protein complex of complexes of >125 MDa having an octagonal rotational symmetry. It is composed by 

three major parts: a central ring, embedded in the nuclear membrane, a nuclear side that is made by eight fibers 

forming a cage-like structure ending with a nuclear ring, called nuclear basket, and a cytoplasmic face with 50–

100 nm long flexible fibers that radiate from the central ring toward the cytoplasm. It is formed by 30 Nups, one 

third of them having FG repeats forming the hydrophobic barrier of the central ring  

Import receptors and nuclear localization signals 

Cargos that have to go inside the nucleus harbor a nuclear localization signal (NLS), while 

cargos that have to go from the nucleus to the cytoplasm harbor a nuclear export signal 

(NES). NLS and NES are recognized by Karyopherin family of transport receptors that 

mediate the active transport through the NPC. Although there are a few exception145, the 

member of the karyopherin family mediate the transport of cargos unidirectionally with 

importins facilitating the transport into the nucleus and exportins facilitating the transport into 

cytoplasm146.  

The NLS is recognized by import receptors. Import receptors either bind their cargo directly 

through the interaction with NLS, or via an adaptor. One prototype is transportin-1 (Kapβ2) 
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that directly binds an NLS named M9 from its characterization in the C-terminal M9 domain 

of the Influenza virus nuclear ribonucleoprotein A1 (hnRNP A1)147. When transporting cargos 

with a classical NLS importin β (Imp.β) requires an adapter, Importin α (Imp.α). The 

prototype of a classical NLS was firstly described on the T-antigen of the polyomavirus 

Simian virus 40 (SV40Tag)148,149 where it has the aa sequence PKKKRKV. Classical NLSs 

are formed by clusters of positively charged aa, usually lysine or arginine. They can be mono- 

or bipartite. In the monopartite signal there is only one stretch of highly basic aa, while in the 

bipartite two basic aa sequence are separated between each other by a linker region of usually 

10-12 aa. Imp.α serves as adaptor by having an importin beta binding domain (IBB) that 

allows its binding with Imp.β. Canonical IBB consists of 13 basic amino acids in seven 

clusters scattered over 39 residues150,151.  

Nuclear import 

Classical import pathway 

Classical import pathway is mediated by the ternary complex formed by cargo with classical 

NLS, Imp.α and Imp.β. Imp.α binds to classical NLSs through a binding groove formed by 

ten armadillo (Arm) repeats, while it binds Imp.β by the IBB on its N-terminal domain152. 

To regulate cargo binding, the IBB on Imp.α has an auto-inhibitory function. Crystals 

structural studies performed on mammalian Imp.α showed that, when Imp.α is not bounded to 

a cargo, part of the IBB occupies the NLS binding groove153. Therefore, when Imp.α is 

unbound to a cargo, its IBB is not exposed thus avoiding import of unloaded adaptor. 

However, it has been shown that aa responsible of Imp.β binding in the IBB remains outside 

the binding groove free to bind Imp.β154. Additionally, it has been shown that the IBB inhibits 

the binding of NLS-cargos by decreasing the affinity interaction between Imp.α and NLS155, 

suggesting that this conformation reduces the affinity of Imp.α for the NLS-bearing cargo 

when Imp.β is not available. Thus, formation of the trimeric import complex likely occurs 

when both NLS-cargo and importin β are available in the cytoplasm. 

Models for translocations in the nucleus 

Binding to a cargo triggers conformational changes of the import receptor that allows the 

interaction with Nups localizing on the cytoplasmic side of the NPC. In the case of the 

classical import pathway, the ternary import complex localizes at the nuclear periphery where 

Imp.β interacts with the FG repeats of Nups present in the cytoplasmic fibers of the NPC156. 
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How the translocation across the NPC occurs is still under investigation and several models 

have been proposed involving FG-repeats of Nups in the central channel (Nups 98, 93, 62, 58, 

54 and 45). 

Data from atomic force microscopy suggested the so called “collapse model” where, upon 

binding of import receptor, the hydrophobic mesh in the central channel, collapse opening the 

passage to the import complex157. The “hydrophobic gel model” or “saturated model” 

proposes that the FG repeats are cross linked with each other creating a dense “gel”. 

According to this model, import receptors would rupture the phenylalanine cross-links 

dissolving the gel138,158. 

Another described model is the “polymer brush model”, where Nups containing FG-repeats 

form brush-like structures in constant movement159. This movement would sweep away 

macromolecules. In this model would be the shape and the movement of the Nups containing 

FG repeats to create an entropic barrier for unspecific cargoes rather than FG-FG interactions.  

Finally, the “reduction of dimensionality model”, proposed by Peters et al., proposes that 

translocation across NPC occurs via progressive and continuous interaction of import 

receptors with the FG repeats along the central channel.160 

The analysis of native nuclear pores of Xenopus laevis oocyte cells by high-speed atomic 

force microscopy favor the polymer brush model161. 

In summary, the majority of Nups, containing FG-repeats, form a selectivity barrier and are 

localized in the central channel of the NPC. However, some are asymmetrically distributed at 

the periphery of the NPC. For example, Nup 214 and 358 are major components of the 

cytoplasmic filaments and that are the first contact of import receptors serving as docking 

site162,163. 

Nup153 has a N-terminal domain that anchor it to the nuclear basket and a C-terminal domain 

that is unfolded and highly flexible being ∼200 nm long it potentially reaches through to the 

cytoplasmic side of the NPC. In addition, the C-terminal domain is enriched in FG repeats and 

therefore it is thought to be involved in the interaction with import receptors164 (Figure 9). 

Nuclear import ends in the nuclear basket where the import-complex binds to Nup153 for 

then being dissociated by interaction between the import receptor and the member of Ras-

related nuclear protein, Ran, in its GTP-bound form. Nup153 has also a crucial role in import 

pathways as its depletion leads to defect in importin α/β-mediated nuclear import and it is 

thought to participate in the dissociation of importin cargo-complexes165. However, it is not 

essential for M9 mediated import164. 
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Ran GTP cycle 

The nucleus-cytoplasmic transport mediated by Imp.β requires metabolic energy. 

Directionality of the transport is caused by the gradient of RanGTP, which is 1000-fold more 

concentrated in the nucleus then in the cytoplasm166.  

RanGTP is one of the two forms in which the Ras GTPase family member Ran can be found 

in the cellular environment. Ran can either be present bounded to GTP or to GDP; the latter as 

a result of GTP hydrolysis. In the nucleus RanGTP binds to import receptors causing the 

dissociation and the release of the cargo. Imp.α is recycled back to the cytoplasm by the 

nuclear exporter CAS and RanGTP167, while Imp.β is recycled back in the cytoplasm in 

complex with RanGTP. In the cytoplasmic side, GTP hydrolysis is mediated by RanGAP1 

that causes the release of Imp.β that can participate in a new import cycle168. 

Recycling of Ran requires nuclear import of RanGDP using the nuclear transport factor 2 

(NTF2)169. This is followed by the exchange of GDP by GTP catalyzed by the chromatin-

bound Ran guanine nucleotide exchange factor (RanGEF; also termed regulator of 

chromosome condensation, RCC1)168. The classical import pathway is schematized in figure 

8. 

 



Introduction 

 

50 
 

 

 

Figure 8: Classical import pathway 

1. NLS present on the cargo protein is recognized by Imp.α that in turn binds to Imp.β. The import complex is 

translocate across the NPC. 2. In the nucleus RanGTP mediates the release of the cargo from the import 

receptors. 3. Imp.α is recycled back in the cytoplasm by CAS, while Imp.β remains associated with RanGTP. 4. 

In the cytoplasm, RanGTP is converted in RanGDP by RanGAP1 leading to the dissociation of Imp.β  

Nup153 

Nup153 is a 1475 aa long polypeptide (Figure 9). Using Xenopus egg extract in which 

Nup153 was depleted from reconstituted nuclei, it has been demonstrated that Nup153 is 

crucial for maintaining the correct architecture of the NPC164. Walther et al, showed that 
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depletion of Nup153 results in unstable association of components of the nuclear basket and 

of filamentous structures associated to NPC. In addition, the authors showed that lack of 

Nup153 leads to mobilization of NPCs in the NE164 and Nup153 was found interacting with 

lamin A and lamin B170. 

The N-terminus domain of Nup153 is responsible for recruiting another Nup, Tpr, to the 

nuclear basket and depletion of Nup153 results in the loss of Tpr at the NPC164,171. As 

Nup153, Tpr is involved in maintaining the correct NPC structure164 and it localizes between 

the NPC and the underlying chromatin. 

The zinc finger domain on Nup 153 interacts with DNA172 and with RanGDP173. 

 

 

 

Figure 9: Nup 153 

Nup153 has a N-terminal domain that anchor the nucleoporin to the NPC, a zinc finger domain and a CTD 

domain containing FG-repeats and forming fiber that extrude toward the cytoplasm 

Nuclear import of viral genome and capsids 

DNA viruses with a nuclear replication step have to deliver their genome in the nucleus. As 

DNA is not karyophilic it needs transport mostly via attached karyophilic proteins. They can 

form a shell around the genome having the advantage the genome can is sensed by cytosolic 

or membrane-bound pattern recognition receptors (PRRs).  

Nuclear transport in such a shielded way can be exemplified by the herpes simplex virus 1 

(HSV-1). After fusion of the viral envelope with the plasma- or endosomal membrane174, the 
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capsid stays attached to several tegument proteins. It has been shown that the nuclear import 

is mediated by a direct interaction between the inner tegument protein pUL25 of the HSV 

capsid with the cytoplasmic filaments of Nup214175. A direct interaction between pUL36 and 

the filaments of Nup358 was also described176. Ojala et al. showed that the docking of the 

capsids to NPCs is mediated by Imp.β via tegument protein. In addition, they showed that the 

docking site involves Imp.β association to Nup358 and it is sensitive to RanGTP176,177. 

Having a diameter of 120 nm in diameter herpes viral capsid cannot pass the NPC intact. The 

capsid opens at the vertex opposing the NPC. This opening leads to ejection of the genome by 

repulsion of the condensed viral DNA, which resembles to bacteriophages. This mechanism 

was suggested using in vitro assay involving capsids and nuclear envelopes from Xenopus 

laevis oocytes visualized by atomic force microscopy178. After relaxation of the DNA inside 

the capsid, the remaining part also have to enter the nucleus, but by a different mechanism. It 

was hypothesized that the DNA may be pulled out by the activity of RNA polymerases, a 

mechanism that has been proposed also for the bacteriophage T7179. This assumption is in 

agreement of observations of Newcomb et al., who observed that the part of the genome 

entering the nucleus comprises the immediate-early genes180. 

Another example is the parvoviridae family. They are small non-enveloped viruses with a 

genome formed by single strand DNA and a capsid ranging from 18 to 28 nm in diameter. 

The size of the capsid would allowed parvoviruses to pass the NPC intact181.  

A NLS has been mapped on the large parvovirus capsid protein VP1, which becomes exposed 

following endosomal acidification182. Functionality of the NLS during nuclear import of the 

genome is however unclear. Parvovirus H1, canine parvovirus, and different adeno-associated 

viruses (AAV) cause localized transient disintegration of the nuclear envelope (nuclear 

envelope break down (NEBD) in somatic cells and Xenopus laevis oocytes, which could 

allow nuclear entry without passing the nuclear pore183. The function of the NLS could thus 

also be the nuclear import of VP1-VP2 trimers184, which is required for virus assembly, which 

occurs inside the nucleus.  
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Nuclear import of HBV 

Classical import pathway mediates HBV nuclear import 

Because of the lack of efficient infection in cell culture, HBV nuclear import has been mostly 

studied using permeabilized cells and Xenopous laevis oocytes. The latter has the advantage 

of providing a larger cytoplasm allowing a better study of the cytoplasmic and nuclear 

transport. 

Subjecting HBV capsids to digitonin permeabilized cells, it was observed that only in vitro 

phosphorylated rHBc and not unphosphorylated rHBc are able to reach the nuclear periphery 

and to bind the NPC83. Co immune precipitations provided evidence of an Imp.α-mediated 

Imp.β interaction of MatC, purified from HepG2.2.15 cells, and phosphorylated rHBc83. 

Further, replacing the cytoplasmic extract added to permeabilized cells by Imp.α and Imp.β 

allowed binding to the NPC (in phosphorylated rHBc83) and nuclear import of the viral 

genome (in MatC). In agreement, a bipartite NLS has been mapped on the CTD of Cp36. 

Moreover, Panté et al. showed that in vitro phosphorylated rHBc, but also MatC and ImmatC, 

microinjected into the cytoplasm of Xenopous laevis oocytes localize intact at the nuclear side 

of the NPC84. 

Together these evidences suggest a model where the phosphorylation of Cp and/or genome 

maturation induces conformational changes that lead to the CTD exposure on the capsid 

surface allowing recognition of the bipartite NLS by Imp.α that in turn binds to Imp.β. 

Regulation of nuclear transport through phosphorylation has been described e.g. for SV40, 

where phosphorylation of the T antigen can either support nuclear import (aa 111/112185) or 

inhibit nuclear import (aa 124 186). 

Nup153 involvement in HBV interaction with NPC and disassembly  

In the nuclear basket, only MatC disassemble and release the genome inside the nucleus. This 

conclusion relies on the observation that ImmC and MatC produced in HepG2.2.15 cells and 

added to digitonin permeabilized cells or which were microinjected into the cytosol of 

Xenopus laevis oocytes reach the nuclear side of the NPC but only MatC result in intranuclear 

capsid staining and nuclear HBV genomes41. Cross-linked MatC entered the nuclear basket 

but stayed arrested85. Formation of intranuclear capsids is thus a surrogate marker for capsid 

disassembly. Arrest of the capsids in the nuclear basket is caused by their interaction with 

Nup153 as shown by co immune precipitations85 and partial RNAi silencing of Nup153.  
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Binding occurred to the C-terminal domain of Nup153 without requirement of the CTD and 

was~200 times stronger than the interaction of Imp.β with Nup15385. 
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Aim of the work 

So far only MatC have been characterized with regard to nuclear transport and transport 

receptors interactions. Nuclear import of MatC is mediated by the classical import pathway 

and therefore by Imp.α and Imp.β. Whether EmpC use the same import pathway is an open 

question and nuclear import of EmpC has been essentially unexplored.  

MatC have also been characterized to interact with Nup153. Following the interaction with 

Nup153 the genome is released inside the nucleus, however how the disassembly occurs to 

enable the liberation of the genome is unknown. We hypothesized that the interaction with 

Nup153 may enhance the disassembly of the capsid and we aimed to investigate this 

possibility.  

The lack of suitable detection methods has hampered our investigation of the disassembly 

step, thus we decided to develop a method that would have allowed us to follow the liberation 

of the genome directly and in real time, and which would allow identifying factors implicated 

in genome release 

.  
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Buffers used 

PBS 1 X (pH 7.4) 

0.137 M sodium chloride 

0.0027 M Potassium Chloride 

0.010 M Disodium phosphate 

0.0018 M Potassium phosphate 

 

Endogenous polymerase reaction buffer 1 X 

0.05 M tris(hydroxymethyl)aminomethane (Tris) 

0.04 M magnesium chloride 

0.05 M ammonium chloride 

 

IF buffer 1 X in PBS  

10% FCS 

0.1% Saponin 

 

Ripa buffer 

150 mM sodium chloride 

1.0% NP-40  

0.5% sodium deoxycholate* 

0.1% sodium dodecyl sulfate (SDS) 

50 mM Tris, pH 8.0 

Supplemented with 0.001 M phenylmethane sulfonyl fluoride (PMSF) 

 

SCC 10X pH 7 

1.5 M sodium chloride 

0.15 M sodium citrate 

 

TAE 50X 

2 M Tris 

57 % Acetic Acid 

0.5 M pH8 Ethylenediaminetetraacetic acid (EDTA) 
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TGS 10X 

0.5 M Tris 

1.92 M Glycerol 

1% SDS 

 

TNE 1X 

10 mM Tris 

100 mM sodium chloride 

1 mM EDTA 

25 % Saccharose  

0.75% NP40 

 

Transport buffer (TB) 1X pH 7.3 

2 mM magnesium acetate 

110 mM potassium acetate 

5 mM sodium acetate 

1 mM EGTA 

 

Laemml buffer 

200mM Tris pH 6.8 

8% SDS 

40% glycerol 

0.4% Bromophenol Blue 

 

TN 1 X 

20 mM Tris pH 7.4 

140 mM sodium chloride 

 

Hypotonic buffer 

5 mM Tris pH 7.4 

5 mM potassium chloride  

1.5 mM magnesium chloride 

0.1 mM EGTA 

1 mM DTT and 1mM PMSF 
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Cell culture 

Cell Culture Maintenance 

Cell lines used are listed in Table 1. 

 

Table 1: Cells lines 

 

Cell line Reference Description 

Huh-77 
Nakabayashi et al., 1982 

187 

Human liver derived cell line. Kindly 

provided by Jean Rosenbaum, Université 

de Bordeaux, Bordeaux, France. 

HepG2 ATCC HB-8065 

Human liver derived cell line. Kindly 

provided by Jean Rosenbaum, Université 

de Bordeaux, Bordeaux, France. 

HepG2 NTCP Konig et al., 2014188 

HepG2 cell line expressing NTCP under 

the control of a doxycycline inducible 

promoter. 

Provided by Dieter Glebe, Justus-Liebig-

Universitat Giessen, Germany 

HepG2.2.15 Sells et al.,1987131 

HepG2 cell line with stably integrated 

HBV genome. Provided by Wolfram 

Gerlich Hygiene-Institut, Göttingen, 

Germany. 

 

During the cell culture routine, unless otherwise indicated, cells were maintained in 

Dulbecco’s modified Eagle Medium (DMEM), supplemented with 10% fetal calf serum 

(GIBCO), 100 U/ mL of penicillin and 100 μg/ mL of streptomycin (PS) (GIBCO), in 5 % v/v 

CO2 at 37°C. For culture of HepG2-NTCP or HepG2-NTCP cells, we used the same medium 

but certified to be tetracycline free. Cells were regularly splitted twice a week in a 2/10 ratio, 

by firstly washing them in sterile 1 x PBS (GIBCO), detaching them from the cell flask with 

0.05% trypsin/EDTA (GIBCO) and diluting the resuspended cells in fresh medium before 

adding them to a new dish. 
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Establishment of stable cell lines  

HepG2 NTCP OR-DGFP and HuH-7 OR-DGFP were obtained by transduction with OR-

DGFP VSV-G pseudotyped lentivectors MOI 2. After 2 weeks and 4-5 passages, expression 

of OR-DGFP was verified by microscopy, using an epifluorescent Leica DMI6000 B 

microscope. Cells were sorted by FACS at the Flow cytometry platform (FR TransBioMed) 

before populations with similar OR-DGFP expression were expanded.  

HuH-7 and HepG2 EAP Δε as well as HuH-7 and HepG2 LAP Δε were established by Dr. 

Marie Lise Blondot, (Université de Bordeaux). Briefly, cells were obtained by transduction 

with VSV-G pseudotyped lentivectors harboring the EA, LA or Δε construct MOI 1. Double 

positive cells were sorted by FACS at the Flow cytometry platform (FR TransBioMed). 

Transfection 

Transfection of EAP or LAP in HuH-7 OR-DGFP cells  

2*10^6 cells were seeded on a 10 cm dish in order to be 60-80% confluence the day after. The 

next day, 2μg of EAP or LAP were transfected using FugenHD transfection reagent. The 

reaction mix was prepared by adding 100µL of Optimem medium (Opti-MEM, GIBCO) 

without antibiotics to the plasmid DNA and incubated for 5 min at RT. 12µL of FugenHD 

were added and the mix was incubated for 30 min at RT. During the incubation time the cell 

medium was changed with fresh one. Finally, the transfection mix was added drop wise to the 

cell culture medium. Formation of green dots indicating internalization of EAP or LAP was 

verified by microscopy after 24 h. 

Double transfection of EAP or LAP constructs with Δε in HuH-7 cells 

2*10^6 cells were seeded on a 10 cm (diameter) cell plate. The day after 2μg of EAP or LAP 

and 2μg of Δε plasmid were transfected using FugenHD transfection reagent. 2µg of a DGFP 

expressing plasmid were used as transfection control. Transfection was performed as 

described above. Transfection efficiency was analyzed by verifying the expression of DGFP 

by microscopy with the epifluorescence microscope Leica DMI6000 B. 

Transduction 

3.0 x 104 HuH-7 LAP Δε were seeded into each channel of an ibidi µ slide IVα. The day after, 

cells were transduced with OR-DGFP VSV-G pseudotyped lentivectors MOI 2. Then cells 

were verified at the epifluorescence microscope Leica DMI6000 B. 48h after transduction, 

cells were treated with Demecolcine (Sigma Aldrich) 10 µg/mL to arrest cells in mitosis 

allowing a clear vision of condensed chromatin. To visualize the chromatin, cells were live 
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stained with Hoechst diluted 1:500 in the culture medium. After staining, cells were rapidly 

visualized at the microscope. 

Capsids preparation 

MatC preparation from HepG2.2.15 cell supernatant 

Cells were grown in eight T150 flasks until confluence in DMEM complemented with 5% 

FCS/ 1% PS at 37°C 5% CO2. Once at confluence the medium was replaced with DMEM 1% 

FCS and cells were kept for 2 to 3days. Cell culture supernatant was collected and cleared 

from cell debris at 4000 rpm for 15 min at 4°C (sigma 4-16k centrifuge Swing-out rotor 

11150). 38.5 mL were added on top of a 3 mL of sucrose cushion of 1 x TNE/-0.75 % NP40 

buffer and centrifuged at 28000 rpm for 22h at 4°C using Beckman SW28ti rotor. Pellets were 

resuspended in 1 mL 1 x PBS/0.7% NP40, transferred to 1.5 mL Eppendorf tubes and then 

incubated for 1 h at 37°C to remove the viral envelope, allowing transferring the preparation 

to a BSL1 lab. Pellets were dissociated with a dissociater-grinder, and incubated overnight 

under slow agitation. Samples were centrifuged at 13000 rpm for 15 min at 4°C to remove 

debris and aggregates. Supernatants were then collected, pooled, and added in 5 mL fractions 

on top of a 1 mL of sucrose cushion 1 x TNE/0.75 % NP40 for centrifugation at 55000 rpm 

for 2h at 10°C using a Beckman SW55ti rotor. Pellets containing MatC were resuspended in 

100 μL of 1 x PBS, followed by centrifugation at 13000 rpm for 15 min at 4°C with a bench 

centrifuge. The supernatant was stocked at 4°C. 

MatC quantification 

To quantify the amount of MatC, different dilutions of the production were loaded a 0.7% 

agarose/1 x TAE gel together with serial dilutions of a rHBc standard. After the 

electrophoresis in 1 x TAE, proteins in their native state were transferred to a PDVF 

membrane by capillary transfer using 10 x SCC buffer overnight. Following preactivation of 

the membrane by 1 min incubation in absolute EtOH followed by 1 min incubation in distilled 

water and incubation in 10 x SSC he membrane was blocked with 5% Fat Free Milk/ 1 x PBS 

for 1h. For capsid detection, polyclonal rabbit anti HBV Core Antigen antibodies (Dako 

B0586) were added in a1:5000 dilution in blocking solution: 5% Fat Free Milk/ in 1 x PBS 

for 2 h, followed by three washing steps of the membrane in 0.5% Fat Free Milk/1 X PBS. 

As secondary antibody, peroxidase conjugated AffiniPure Donkey Anti Rabbit antibody 

(Jackson ImmunoResearch Laboratories, 711035152) was used in a 1:10000 dilution in 
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blocking solution for 1h. Afterward, the membrane was washed three times with 0.5% Fat 

Free Milk/1 x PBS. Bound antibodies were detected by chemiluminescence using the 

Millipore Immobilion Western Chemiluminescent HRP substrate (Millipore) and a 

chemiluminescence imaging system (Las 4000). Exposure times were chosen according to the 

strength of the signal. All steps were performed at RT. 

The acquired image was analyzed with ImageJ to obtain the value of the optical density (OD) 

of the bands corresponding to rHBc and MatC. A standard curve was generated from the 

bands of the rHBc serial dilution and the amount of the MatC was obtained by interpolation of 

the MatC OD values from the standard curve.  

EmpC preparation 

EmpC were kindly provided by Dr. Andris Dishlers of the Latvian Biomedical Research and 

Study Centre, Riga, Latvia. 

RNA was removed from E. coli-expressed capsids (rHBc), using the same method used by 

Prof. Zlotnicks. Briefly, particles were biochemically dissociated and reassociated as 

described by Porterfield et al189.  

Cryo-EM and 3D reconstruction 

This part of the work was done in collaboration with the team of Dr. Rémi Fronzes at the 

Institut Européen de Chimie et Biologie (IECB) in Pessac, France. 

To obtain the 3D reconstruction, 6.7μg of EmpC in 1 x PBS were used. The cryo fixation was 

done in ethane using VitrobotTM (Thermo Scientific). Electron micrographs were taken at the 

Talos Arctica 200kV-FEG (FEI) electron microscope. Images were acquired with 26 frame 

number, after 1.32 second of exposure time with a 120000X magnification for 1.24 

Armstrong as pixel size. 3D reconstruction was made by the team of Dr. Rémi Fronzes using 

the software Relion . 

Anch HBV virus purification 

EAP, LAP and Δε constructs 

EAP and LAP were made by Dr. Marie Lise Blondot, (Université de Bordeaux). Briefly, the 

Anch sequences, 983 bp for the EAP and 399 bp for LAP, were inserted into HBV genome, 

genotype Adw2. Δε construct was obtained by deletion of the sequence TTCAAG in the ε 

region 
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Virus production 

Virus harboring the EA sequence were produced in HuH-7 or HepG2 cells stably transfected 

with EAP and Δε, while virus harboring the LA sequence were produced in HuH-7 or HepG2 

cells stably transfected with LAP +Δε. Cells were grown in eight T150 flask until confluence 

in DMEM/5% FCS/1% PS and were incubate with 1% DMSO at 37°C 5% CO2. Once at 

confluence the medium was replaced with DMEM 1% SCF and cells were cultivated under 

the above conditions for 2-3days. Cell culture supernatant was collected, centrifuged at 4000 

rpm for 15 min at 4°C (sigma 4-16k centrifuge Swing-out rotor 11150) to remove cells debris 

before the supernatant was passed through a 0.25 µm filter. Fresh medium was added to the 

cells and collected once again after 2-3 days. 

Heparin Affinity Chromatography 

Heparin Affinity Chromatography was performed using the Akta chromatography system (GE 

Healthcare) equipped with 5 mL HiTrap Heparin HP columns (GE Healtcare), according to69. 

Runs were live monitored following the UV absorption at 254 and 280nm (OD254 and OD280). 

Up to 450 mL were applied per 5 mL Column. Then the column was washed with 5 column 

volumes of 1 x TN. Elution was made using a linear gradient of NaCl over 10 column 

volumes ranging from 140 to 2140 mM in 20 mM Tris-Cl (pH 7.4) NaCl. 

Virus quantification 

The amount of produced virus was quantified by quantitative PCR (qPCR) measuring the 

genome equivalents.  

DNA was purified from 50µL of virus preparation using the kit High Pure Viral Nucleic acid 

(Roche 11858874001) following the manufacturer instructions. 

For the qPCR reaction Perfecta Sybr Green super mix Quantabio was used. Primers were used 

accordingly to Jursch et al.190. They were designed against the X region: HBV X2s 

[nucleotide (nt.) 1413-1436]: GAC GTC CTT TGT YTA CGT CCC GTC and HBV X2as (nt. 

1601-1578): TGC AGA GGT GAA GCG AAG TGC ACA. 

The program of the light cycler CFX96 was the follow: denaturation and activation of the 

Polymerase at 95°C for 3min, and 39 cycles of amplifications made by 95°C for 10sec and 

60°C for 30sec. 

As standard, six dilution of a plasmid containing the full length HBV genome was used. 
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Proteins Purification 

Imp.α purification 

Purification of Imp.α was made by Dr Mildred Delaleau. The protein was expressed as His 

tag protein using E. coli XL1-blue transformed with pQE70-Imp.α (Kindely provided by Dirk 

Gorlich). The His fragment was eluted from Ni++ agarose according to manufacturers’ 

instructions with 500 mM NaCl and 500 mM imidazole 

Imp.β purification 

Purification of Imp.β was made by Dr Mildred Delaleau. Imp.β was expressed as His tag 

protein using E. coli M15 e transformed with pQE60-Imp.β (kindely provided by Dirk 

Gorlich)191. The His fragment was eluted from Ni++ agarose according to manufacturers’ 

instructions and dialyzed against: 50 mM Tris-HCl, 50 mM NaCl 5% glycerol, 250 mM 

sucrose and 2 mM DTT  

His-C2Nup153 fragment 

The C-terminal domain of Nup153 was purified as described by Schmitz et al85. It was 

expressed as His tag protein using E. coli Rosettte transformed with pET28-153C2 (kindely 

provided by K. Ullamn). The His fragment was eluted from Ni++ agarose according to 

manufacturers’ instructions and dialyzed against 0.2 M NaCl, 0.1 M NaH2PO4 pH7.6   

Gel electrophoresis, transfers and antibody staining 

Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Proteins were diluted in 1 x Laemmli buffer/100 mM DTT and boiled for 5 min at 100°C. 

Polyacrylamide gels consisted of staking gel (4% acrylamide/bis-acrylamide solution 

(Biorad), 125 mM Tris pH 6.8 and 0.1% SDS), the separating gel of 11% acrylamide/bis-

acrylamide, 375 mM Tris pH 8.8 and 0.1% SDS. Gel electrophoresis was run at constant 

voltage of 90 V in 1 x TGS. A protein ladder was loaded onto the gel to determine the MW of 

the proteins (PageRuler Plus Prestained Protein Ladder; Thermo Scientific).  

Western Blot (WB) after SDS PAGE 

Separated proteins were transferred to a nitrocellulose membrane by wet electrotransfer using 

a Trans-Blot Cell apparatus (Biorad) and filled with transfer buffer (composition) at 600 mA 
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for 90 min at RT. Following the transfer, the membrane was blocked with 5% Fat Free Milk 

in 1 X PBS for 1h RT. Antibody staining and detection were performed as described before. 

Antibodies used and their dilutions are summarized in Table 2. 

 

Table 2: Antibodies used for Western blot (WB) and Immunofluorescence (IF) 

 

Primary Antibody Immunogen Organism Dilution Source 

Anti HBc Ag HBV capsid Rabbit WB 1:2000 Dako B0586 

Fab 3105 HBV capsid Mouse IF 1:200 

Institute of 

Immunology Co LTD 

2AHC21 

Anti Karyopherin alpha Imp.α Mouse WB 1:1000 
BD bioscience 

610985 

 Imp.β Rabbit WB 1:4000  

Anti GST GST Mouse WB 1:500 
BD bioscience 

554805 

Mab 414  Mouse IF 1:200 

WB 1:2000 

Ab 24609 

Anti His His Tag  Mouse WB 1:1000 Novagen 707964 

Anti NTCP NTCP Rabbit WB 1:250 

IF 1:700 

Sigma HPA042727 

Anti Actin Actin Mouse WB 1:2000 MerkMillipore 

Mab1501 

Secondary Antibody Immunogen Organism Dilution Source 

Alexa fluor 647 donkey 

anti mouse IgG 

IgG of mouse Donkey 1:500 Invitrogen A31573 

Alexa fluor 555 donkey 

anti mouse IgG 

IgG of mouse Donkey 1:500 Invitrogen  

Peroxidase conjugated 

anti mouse 

IgG of mouse Donkey 1:10000 Jackson 

ImmunoResearch 

715035151 

Peroxidase conjugated 

anti rabbit 

IgG of rabbit Donkey 1:10000 Jackson 

ImmunoResearch 

715035151 
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In vitro interaction studies 

Native Agarose Gel Electrophoresis (NAGE) of Multiprotein complexes  

Interaction between MatC and EmpC with Importins 

2 ng of MatC or EmpC were incubated alone or with either 8 μg of Imp.β, either 4 μg of 

Imp.α, or both, in the presence of 1 x TB supplemented with 2 mM DTT unless otherwise 

indicated, for 2 h at 37°C to allow the formation of complexes. 

The mixes were separated by NAGE, followed by capillary transfer and detection of the 

proteins of interest. 

Titration assay 

A constant amount of the His-C2Nup153 fragment was incubated with different amounts of 

EmpC for 2 h at RT in 1 x TB. The ratio used ranged from one His-C2Nup153 fragment for 

each Cp to one His-C2Nup153 fragment for 0.03 Cp The reaction was carried on in 20 µL of 

finale volume. After the incubation, 5 µL of each condition were loaded onto a 0.7% agarose 

gel for a NAGE followed by capillary transfer and anti His staining. 

Imp.β Pull down  

10 μL of Glutathione Sepharose beads (GE Health Care Life Science, 17075601) were taken 

per sample and washed three times with 1 x PBS. 2.5μg of GST-IBB was added to each 

sample and incubated with the beads for 1 h at RT in a rotating wheel. Next, beads were 

washed three times in 1 x PBS and 1 μg or 0.5 μg of Imp.β were added. Incubation was 

carried on overnight at 4°C in the rotating wheel. Beads were then spin down and washed 

three times in 1 x PBS. Beads were resuspended in 20 μL of 1 x Laemmly buffer/100 mM 

DTT and boiled for 5 min at 100°C. Separation of the bounded fraction was done by SDS 

page as described above. Imp.β and GST-IBB were detected by Western blot as described 

before. 

Radiolabeling 

MatC radiolabeling  

The genome of MatC was radiolabeled using the endogenous polymerase reaction. The viral 

polymerase can incorporate into the viral genome radiolabeled nucleotides that enter inside 

the capsid trough the fenestration present on the capsid surface. Previous experiments of the 

lab showed that four nucleotides were incorporated in average.  
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10 μL of MatC, corresponding to 200 ng, were incubated together with 1 mM dATP, dGTP, 

dTTP 1 x endogenous polymerase buffer and 10μCi [α-32P] dCTP for 2 h at 37°CAfter the 

incubation time non radio labeled dCTP was added at 1 mM final concentration. MatC were 

purified from the excess of nucleotides by column purification using the kit Illustra Probe 

Quant G-50 Micro Columns and following manufacturer instructions. 

To verify the successful labelling, an aliquot was separated by NAGE. The gel was fixed in 

5% Trichloroacetic acid (TCA) for 30 min and dried with Biorad 583 electrophoresis gel 

dryer prior to exposure to a Fuji screen imaging plate. Signals on the screen were visualized 

using a Biorad PharosFX phosphorimager and Quantity One. 

Viral genome purification by phenol/chloroform 

Phenol was added to the samples in the same volume as the sample, samples were vortexed 

vigorously and centrifuged one minute at the maximum speed. After the centrifuge samples 

were separated in an aqueous and in an organic phase. The aqueous phase was recovered, 

while the organic one was discarded  

Chloroform was added to the sample was added to the samples in the same volume as the 

sample, then samples were vortexed vigorously and centrifuged one minute at 17000g. As 

above, the aqueous phase was recovered. 

One out of ten sample volumes of 3 M sodium acetate, ph5.2, and EtOH 100% ice cold were 

to the samples together with 1 µL of Glycogen as DNA carrier. Samples were incubated 

overnight at -20°C. Following the incubation, samples were centrifuged at maximum speed 

for 1h at 4°C. The pellet was rinsed with 70 % EtOH and centrifuged again for 30 min. 

Finally, the supernatant was discarded and the pellet was left air dry before being suspended 

in the appropriate buffer of water 

Southern Blot 

Capsid production and quantification was done as described above. Viral DNA was purified 

by phenol/chloroform extraction as described in the above paragraph. 10 µL of purified DNA 

were loaded onto 0.7% agarose gel. After the electrophoretic run, DNA was transferred into a 

nitrocellulose membrane under vacuum for 1h and 30 min. Cross-linking was carried on for 

2h at 80°C. For the hybridization, the membrane was preincubated for 30 min at 65°C in 

Rapid Hyb buffer (GE-Healtcare). Incubation with radiolabeled DNA probes, prepared 

according to Wittkop et al.192, was maintained for 2h at 65°C. The membrance was washed 

with SCC buffer with decreasing salt concentration. The first washed was carried on at RT for 
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10min with 2 x SSC / 0.1% SDS, the second at 65°C for 15min with 1x SSC /0.1% SDS while 

the the third one at 65°C for 15 min with 0.1 % SSC 0/0.1 % SDS. The final rinse was made 

with 0.1 x SSC at RT for 10 min. The membrane was let dry at 37°C and finally imaged with 

Biorad PharosFX phosphorimager and Quantity One. 

Viral genome degradation by Nuclease S7 

15 ng of MatC containing α-32P were incubated in the presence or absence of Nuclease S7/ 

TB at pH 7 if not otherwise stated, for 2 h at 37°C if not otherwise stated. 15 U/µL Nuclease 

S7 (Roche 10107921001) corresponding to 20 µg, was added and CaCl2 was adjusted to 3 

mM. After the incubation, an aliquot of the sample was passed through a Wallac 1400 liquid 

scintillation system for separating non-incorporated nucleotides, followed by determination of 

the radioactivity. Then, samples were separated by NAGE, fixed in 5% trichloroacetic acid 

(TCA), dried, and exposed to a Fuji screen imaging plate. Fuji screen was then imaged with 

Biorad PharosFX phosphorimager and Quantity One.  

Immobilization of the His-C2Nup153 fragment on Nickel beads  

10 µL of beads (Admatech beads Ni magnetic 04500) were aliquoted for each sample in a 

lower binding Eppendorf cup, afterwards 20 µL corresponding to 8 µg of His-C2Nup153 were 

added to the beads and incubated for 4 h at RT. At the end of the incubation time, beads were 

sedimented, the supernatant was removed and the beads were washed in 1 x PBS three times. 

Then, beads were saturated with bovine serum albumin (BSA) 0.1% over night at 4°C. 

Immobilization of the His-C2Nup153 fragment on Nickel plates  

For this assay, Pierce Nickel Coated Plates (Thermo Scientific) were used. 2 µg of His-

C2Nup153 were added to the plate and incubated for 1 h at RT. At the end of the incubation, 

the plates were washed three times with 1 x PBS. 

Transport assay 

Transport assay in Digitonin permeabilized cells 

12 mm coverslips were washed with 2-propanol for 10 min and subsequently dried under the 

hood. Then they were coated with 100 µL of 0.01% (v/v) Poly-L-Lysine (Sigma) and 

incubated for 30 min at RT. Finally, they were washed with sterile water, and EtOH, and 

dried before use. 
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For each sample, 8.0*10^4 HuH-7 cells were seeded. The day after, cells were washed three 

times before being permeabilized with Digitonin. For this, 50 µL of 0.005% (v/v) Digitonin 

(Calbiochem 300410) in transport buffer were added per coverslip for 10 min at 37°C. After 

cell permeabilization, coverslips were washed three times with 1x TB at RT. Then, coverslips 

were incubated for 30 min in 1 x TB for 30 min at 30°C in humidified environment. After, the 

reaction mix was added to each sample. Components of the reaction mix are summarized in 

Table 3. 

The transport reaction was carried on for 30 min at 37°C.  Finally, cells were washed three 

times in 1 x TB.  

 

Table 3: Reaction Mix for transport assay in Digitonin permeabilized cells  

 

Sample Substrate µg Substrate µL Energy Mix µL RRL µL TB 1X µL 

MatC pH 5,5 0.2 7 4 13,25 25,75 

MatC pH 7 0.2 7 4 13,25 25,75 

BSA-NLS  1 4 13,25 31,75 

 

Energy Mix Stock µL 

ATP 50mM 50mM 1 

Creatine Phosphate (CP) 100mM 
2.5 

Creatin Phosphate Kinase 

(CPK) 2000U/mL 

0.5 

 

Transport assay in isolated nuclei 

Nuclei were isolated from HepG2 cells following the protocol described by Chang et al., 

2012193. Briefly, cells were incubated with hypotonic buffer on ice for 1 h, harvested by 

scraping and homogenized by several passages through a 27 gauge needle. Then cells were 

centrifuged at 500 g for 5 min at 4C°(sigma 4-16k centrifuge Swing-out rotor 11150) and the 

pellet was washed once in hypotonic buffer. After isolation nuclei were verified for their 

integrity with a light transmission microscope and counted. ~2*104 nuclei were aliquoted per 

sample, the transport mix was added and the transport reaction was carried on for 30 min at 

37°C. Sample mixes are summarized in Table 4. At the end of the incubation, nuclei were 

separate by centrifugation at 800g for 10 min. Then, both, the supernatant and the nuclei 

pellet were treated with 15 U of Nuclease S7, corresponding to 20 µg, with 0.1% Triton as 
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final concentration to allow the nuclease to enter in the nucleus, for 30 min at 37°C. 

Afterwards, samples were treated with 5µg of proteinase K, 6 mM EGTA and 2% SDS for 1 h 

at 65°C to inactivate the Nuclease S7 and remove capsid and polymerase from the viral DNA. 

Viral nucleic acids were extracted by phenol/chloroform and precipitated by EtOH. The 

radioactivity was determined before samples were loaded onto 0.7% agarose/1 x TAE gel. 

Following electrophoresis, the gel was fixed dried as described above, exposed to a Fuji 

screen imaging plate. After incubation time in the cassette, which depended on the amount of 

radioactivity in the samples, the Fuji screen was imaged with Biorad PharosFX 

phosphorimager and Quantity One software. 

 

Table 4: Reaction Mix for transport assay in Digitonin permeabilized cells  

 

Sample Substrate 

µL 

Substrate µg Energy 

µL 

RRL WGA 

(2mg/mL) 

TB 1X 

MatC-WGA 12 60ng 3,6 12  22,4 

MatC-WGA +S7 12 60ng 3,6 12  22,4 

MatC+ WGA 12 60ng 3,6 12 20 2,4 

MatC+WGA+S7 12 60ng 3,6 12 20 2,4 

 

Immunofluorescence (IF) 

Cells were fixed using 4% (v/v) paraformaldehyde/1 x PBS for 15 - 20 min at RT and then 

washed with 1 x PBS. Cells were then incubated with 100 µL IF-buffer per coverslip for 15 -

20 min at RT. For antibodies staining, primary antibodies were diluted in IF-buffer (see Table 

2) and centrifuged at 17000g for 2 min to remove aggregates. Next, each coverslip was 

incubated with 100 µL of the primary antibody solution at 37 ºC for 1 - 2 h in a humid 

chamber, then washed three times for at least 15 min in 1 x PBS. Secondary antibodies were 

diluted in IF-buffer and centrifuged at 20000g for 2 min as well and each coverslip was 

incubated with 100 µL of the secondary antibody solution 37 ºC for 30min -1 h in a humid 

chamber. Coverslips were washed as before. Antibodies used and their dilutions are 

summarized in table 2. Finally, coverslips were rinsed in distilled water and absolute EtOH 

and dried. Moviol mounting medium containing DABCO as anti bleaching agent and 1 

μg/mL DAPI (Sigma) was used for mounting.  
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Doxycycline (dox) inducible NTCP expression  

Western Blot to verify NTCP expression followed by dox Treatment 

2*10^6 HepG2 NTCP cells were seeded into a poly L Lysin-pretreated 10 cm dish. The day 

after, 5µg/mL doxycycline (doxycycline hydrocloride, Fisher scientific BP2653-1) were 

added. Doxycycline induction was maintained for 24h, 48h or 72h. At each time point cells 

were lysed by washing with ice cold 1 x PBS, and then incubated on ice with 1 mL of Ripa 

Buffer for 2 min. Without removing the Ripa Buffer, cells were detached using a cell scraper, 

transferred to a 1.5 mL Eppendorf Tube, and incubated for 30 min on ice with constant 

agitation. Finally, the debris was removed by centrifugation for 20 min at 12000 rpm in a 

bench centrifuge. The supernatant was kept and stored at -20°C 

Proteins in the cell lysate were quantified using the BSA Pierce kit according to the 

manufactures instructions. 20 µg of total cell lysate added per lane of an SDS PAGE and a 

Western blot using anti NTCP antibodies were performed as described before. 

Immunofluorescence to follow NTCP expression followed by dox Treatment 

8*10^4 HepG2 NTCP cells were seeded into a 12mm coverslip pretreated with Poly L Lysin 

for each sample. The day after, 5µg/mL of Doxycycline (Doxycycline Hydrocloride Fisher 

scientific BP2653-1) were added to the cell medium. Doxycycline induction was maintained 

for 24h, 48h 72h or 96h. At each time point cells were fixed with 4% (v/v) paraformaldehyde 

in 1 x PBS for 15 - 20 min at RT and then washed with PBS 1X. Immunofluorescence using 

anti NTCP was done as described above. 

 

Anchor HBV capsid lipofection and infection 

Capsid lipofection 

Lipofection was performed using the pulsin reagent (Polyplus 501-01). 

10 µL of pseudo HBV capsid harboring the EAP construct, corresponding to 5 ng of capsids 

were incubated with 100 µL of Hepes (20 mM pH 7.4) for 5 min at room temperature. 

Following the incubation 2 µL of pulsin were added to the mix. The mix was incubated 20 

min at RT before being added dropwise to 2 x 105 of HuH-7 OR-DGF seeded the day before 

in a µ- dish 50 nm (ibidi). Pictures were taken each 12 min over 4h. 
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Infection  

8 x 104 HepG2 NTCP OR-DGF cells were seeded in each well of a 12 well plate falsk. The 

day after NTCP expression was induced by doxycycline (5 µg/mL) and cells were infected 

with HBV Anch (EA contruct) at MOI 10. Pictures were regularly taken (each our during the 

first 6 h post infection and each day for three days post infection) at the epifluorescent 

microscope using 20 x objective to monitor the kinetic of the formation of green dots.  

Microscopy images acquisition and processing 

Images acquisition 

Images were acquired either using a laser scanner confocal microscope Leica DMI6000 TCS 

SP5 or an epifluorescence wide field microscope Leica DMI6000 B. The first was provided 

by the Bordeaux Imaging Center (BIC) platform. 

Image processing 

Images were processed using Image J software (National Institutes of Health). 
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EmpC interaction with Imp.β 

The phosphorylation of the CTD of Cp as well as genome maturation have been associated 

with its exposure on the capsid surface 36,122,194. It is hypothesized that this structural change is 

caused by a reduced affinity between CTD and the encapsidated nucleic acids40, allowing that 

CTD passes adjacent holes in the center of the capsids’ quasi 6-fold symmetry. Further, it has 

been shown that in vitro phosphorylated rHBc and purified MatC are targeted to the NPC via 

the canonical nuclear import pathway, by an eight aa-long NLS present on the CTD of Cp83. 

This however requires exposure of the NLS on the capsid surface, allowing binding by Imp.α 

that in turn binds to Imp.β by an Imp.β binding domain (IBB), which is classically ~38 aa 

long. It remains however unclear how much of the CTD is exposed. Noteworthy all import 

studies done until now contained Imp.α and Imp.β so that a full exposure of the CTD with an 

intact IBB could not be excluded. 

During HBV infection, EmpC are produced as a result of the spontaneous association of Cp, 

which is produced in excess with respect of the amount needed 111. Little is known about the 

role of EmpC during HBV infection, and the interaction between EmpC and import receptors 

is an open question that is essentially unexplored. We investigated this question in 

collaboration with the group of Prof. Adam Zlotnick (Indiana University, USA).  

Through a series of size exclusion chromatography experiments, the group of Prof. Zlotnick 

showed that the full length Cp and EmpC are able to bind Imp.β alone without Imp.α 110. This 

was complemented by results of our group showing that the entire CTD binds Imp.β 

preferentially to Imp.α or Imp.α/Imp.β.  

Through size exclusion chromatography our collaborators further showed that more than more 

than 50 molecules of Imp.β could bind to each EmpC. Considering that the expected binding 

sites for Imp.β are only 30, they proposed that during the capsid breathing, Imp.β molecules 

could also be swallowed inside the capsid shell. This was investigated by cryo electron 

microscopy (Cryo-EM). 

Figure 10A shows a Cryo-EM micrograph of EmpC incubated in NaCl buffer with a ratio of 

205 molecules of Imp.β for each capsid. Four different types of capsids were found: normal 

empty capsid (white arrow), defective particles (stars) a minor population of T3 particles 

(black arrowed) and darker particles (black arrows). The latter showed a darker interior that 

might be due to an internal content. The presence of an internal content was confirmed by 

image reconstruction of the darker particles (Figure 10B). As this contrast was not visible in 
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absence of Imp.β, the inner density represents internal Imp.β allowing the calculation that the 

internal volume could accommodate 48 closely packed Imp.β copies. Given that 30 external 

Imp.β binding sites were found, a theoretical number of 78 capsid-bound Imp.β molecules can 

be concluded. This is consistent with the more than 50 molecules founded experimentally.  

To visualize the β-binding, which is linked to nuclear import, the structure of Imp.β was fitted 

into the external Imp.β-mediated densities. The 3D structure in Figure 10C shows the 

external presence of Imp.β (red) arranged at the quasi-six-fold vertex and thus directly 

opposing the 12-15 Å holes in the capsids, through which the CTDs might be traslocated.  

 

 

 

Figure 10: Cryo-EM micrograph and 3D structure of EmpC bounded to Imp.β in NaCl 

A. Representative Cryo-EM micrograph of EmpC in complex with Imp.β. with a ratio of 205 molecules of Imp.β 

for each capsid. White arrows indicate empty capsids, stars indicate defective particles, black arrowheads 

indicate T3 capsids and black arrows indicate darker particles. B. 3D reconstruction of darker particles on the 

right and all particles from the left viewed from the central section. The reconstructions were determined to 8.9 

Å resolution for all particles and 15.9 Å resolution for the dark particles. Oval shows the qua si-six-fold 

symmetry axis, triangle the 3-fold symmetry axis and pentagons the 5-fold symmetry axis C. Imp.β density in 

red superimposed to the 3D structure of EmpC in grey. Oval triangles and pentagon represent the quasi-six, three 

and five symmetry respectively. The additional surface-attached Imp.β-derived density is found on top of the 

holes in the quasi-six-fold symmetry 110.  

EmpC Characterization 

3D structure of EmpC 

Complementary to these findings, we investigated the interaction between EmpC and Imp.β 

by biochemical assays. During these analyses we also investigated the MatC and Imp.α and 

Imp.β binding as control. 

First, we characterized the EmpC preparation we would use during all the following 

experiments. We analyzed the E. coli-expressed capsids, which were biochemically 

dissociated and reassociated for removal of the E. coli RNA encapsidated upon expression. 

These particles were kindly provided by Dr. Andris Dishlers of the Latvian Biomedical 

Research and Study Centre, Riga, Latvia.  
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As shown in Figure 11A, the capsid preparation was devoid of significant amounts of 

contaminating proteins showing the one dominant Cp band of 21.5 kDa in Coomassie stain 

after SDS PAGE. Figures 11B, C show a migration of these capsids on an agarose gel under 

native conditions (native agarose gel electrophoresis, NAGE) followed by Coomassie stain 

(B) and ethidium bromide stain (C). In addition to EmpC, E. coli-expressed capsids without 

RNA removal were added as control. The panel shows that both capsids migrated as a defined 

band indicating no major differences in their diameter or surface charge. The loss of ethidium 

bromide stain in panel C indicates the absence of at least ds RNA into which the dye 

intercalates. 

 

 
 

Figure 11: Separation of 2 µg of core particles.. 

Separation of 2 µg of core particles by A. SDS PAGE, B, and C, NAGE. A, B: Coomassie brilliant blue stain, C: 

ethidium bromide stain. EmpC: empty capsids, rHBc: control capsids purified from E. coli. m: protein molecular 

weight markers (A) dsl DNA marker (C). The figure shows the purity of the capsid preparation and confirms the 

absence of RNA in EmpC. 

Next, we analyzed the EmpC by Cryo-EM and by reconstructing their 3D structure. 

Achieving a resolution of 6.5Å (Figures 12A, B, C). Figures 12D and E show a similar 

reconstruction of RNA filled capsid from Wang et al., 2012195. 

In both reconstructions, the characteristic spikes, formed by the two α helixes of the assembly 

domain of two monomers, can be seen on the capsid surface, as well as the fenestrations at the 

3, 5 and quasi-6-fold axes. As reported by others, the hole at the 5-fold symmetry is smaller 

than the others37. EmpC showed in contrast to the non-reassembled capsids no additional 

densities inside the capsid shell, confirming the absence of nucleic acids, leading to the 

conclusion that the density is derived from packaged RNA. The RNA (Figure 12E, in blue) 
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was condensed at the inner walls of the capsid, which agrees with the RNA-binding of the 

CTD. 

 

 

 

 

Figure 12: EmpC characterization by Cryo-EM and 3D reconstruction. 

EmpC were incubated 2h in 1 x PBS at RT before the samples were Cryo fixed in liquid ethane. A. Images were 

acquired with 26 frames of 1.32 second of exposure time with a 120000 x magnification for 1.24 Angstrom as 

pixel size. Darker grey represents the carbon phase while the lighter grey represents the vitreous phase. B. 3D 

structure of EmpC showing 5-fold axes (pentagon), 3-fold axes (triangle), and quasi-6-fold axes (hexagon). 

Arrows inside pentagon, triangle and hexagon indicate the fenestrations of the capsid. C. EmpC seen from the 

inside. D and E. RNA filled capsid from Wang et al.,2012195. In E central section in which in red the symmetry 

axes and in blue the RNA 

SDS-page of EmpC in the presence of 2 mM Dithiothreitol (DTT) 

To investigate the disulfide bonds in our preparation, we subjected reduced and non-reduced 

capsids to an SDS-PAGE followed by Coomassie brilliant blue staining. Figure 13 shows that 

for both samples, which were exposed to SDS without heat, a major band is present at 17.5 

kDa regardless to the presence of 2 mM DTT. This indicates that the Cp is still folded to a 

certain extent but that the majority of Cp is not covalently linked. This hypothesis is in 

agreement with the additional bands at 30 kDa in the presence of DTT and 27 kDa in the 

absence, likely representing Cp dimers as observed in other capsid preparations. Without 

DTT, this band migrated faster than in the presence of DTT, suggesting a more compact form, 

likely by keeping the two CTDs of a dimer together. This is in agreement with the observation 
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that the C terminal disulfide bonds are better accessible. Higher assembled forms could not be 

detected indicating that the Cp were not linked by aberrant disulfide bonds between Cys 185 

as observed previously40. The experiment further indicates a high stability of the Cp dimers as 

SDS alone did not result in complete unfolding resulting in disulfide bond access for DTT. 

Quantification of surface plots (Figure. 13B) revealed that 10 and 2% of Cp are dimers. The 

signal strengths did not allow a precise quantification so that a significant difference between 

the samples cannot be supposed. However, the data allow the conclusion that the majority of 

Cp are not linked by disulfide bonds and that at least the majority of capsids are thus 

equivalents to intracellular capsids. 

 

 

 

Figure 13: SDS PAGE of EmpC 

A. 1 µg of EmpC were diluted in 1 x PBS buffer containing 2 mM or no DTT. Afterwards, samples were 

resuspended in 1 x Laemmli buffer and separated on an 11% acrylamide gel. Proteins were stained with 

Coomassie brilliant blue. M: molecular weight marker; the MW of the bands is given on the right. 0: no DTT, 2 

mM: 2 mM DTT. The arrows indicate the migration of putative Cp monomers and Cp dimers with a migration 

corresponding to 17.5 kDa and 30 kDa (2 mM DTT) and 27 kDa (no DTT). B. Surface plot of A. The 

background baseline is depicted as a red line. Upper panel: no DTT, lower panel: 2 mM DTT. The plots allow 

the estimations that 10% (no DTT) and 2% (2 mM DTT) of the Cp are dimers. 

NAGE of EmpC  

NAGE separates macromolecules by their quotient of surface charge and diffusion diameter. 

This, for instance, does not allow the separation of HBV capsids with a T=3 and a T=4 

symmetry as the larger diameter of the T=4 capsids (36 nm versus 32 nm) is compensated by 
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less charge-exposing Cp (240 versus 180). Attachment of other proteins change, however, the 

surface charge and – if a significant binding occurs – also the diameter. 

We first analyzed the migration of EmpC, rHBc, and MatC (Figure 14). Figure 14A shows 

that MatC migrated slightly faster than rHBc and EmpC (Figure 14B).  

As all three capsid types exhibit identical diameters we conclude that the surface charge of 

MatC differs, which can be explained by the fact that MatC and EmpC sequences were from 

different HBV genotypes (MatC: D; EmpC: A). 

Of note, a second, slower migrating band was observed for rHBc, which is well reported in 

the literature. It corresponds to two core particles, which are linked by RNA.  

The attachment of macromolecules to MatC, which were co-purified, was considered to be 

unlikely as they would cause an increase in the diameter and thus a retarded migration. 

Confirming the same capsid structure, we observed that all capsid types showed the same 

reactivity using a polyclonal antibody (DAKO), which mainly reacts against the tips of the 

spikes formed by the two α helices of the Cp dimers. 

 

 

 

Figure 14: NAGE of MatC and EmpC 

Different amounts of MatC as indicated below the panel (A) and 2.5 ng of EmpC (B) were loaded onto a 0.7% 

Agarose gel in 1 x TAE together with different dilutions of rHBc (indicated below the panel) as migration 

control. Proteins were transferred to a PDVF membrane and polyclonal anti capsid antibodies (Dako B0586) 

were used for detection. The figure shows that MatC migrated slightly faster and that all the capsids type have 

the same antibody reactivity using a polyclonal antibody (DAKO) 
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Imp.α and Imp.β purification and functionality 

Imp.α and Imp.β gel migration properties 

To verify the correct purification, different dilutions of both Imp.α and Imp.β were analyzed 

by Western blot using anti Imp.α and Imp.β antibodies. Figures 15A and C show that both 

proteins migrated at their expected size. We then investigated the migration property under 

non-denaturing conditions by NAGE followed by antibody staining to Imp.α and Imp.β, 

showing that Imp.β migrated as capsids while Imp.α migrated much slower (Figures 15B and 

D). 

Imp.β functionality 

To confirm functionality of the purified Imp.β, we performed a pulldown assay using 

Glutathione S-transferase fused to IBB (GST-IBB). Different amounts of Imp.β were 

incubated with constant amounts of GST-IBB, which was immobilized on Sepharose Beads. 

Input fractions as well as beads bounded fractions were analyzed by Western blot with anti-

Imp.β and anti-GST antibodies.  

In Figure 15E, the upper panel represents the different amounts of Imp.β added to the pull 

down, the bottom panel shows the beads-bounded fractions after the pull down. Anti-GST 

antibody staining was used as loading control. 

The result shows that ~400 ng of Imp.β were precipitated by 2.5 µg GST-IBB when 1 µg of 

purified Imp.β was added. Given that GST-IBB was in excess in the reaction mixture, we 

conclude that~ 40% of Imp.β was functional. 
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Figure 15: Migration property of Imp.α and Imp.β and Imp.β functionality 

Western Blot after A. SDS PAGE and B. NAGE of Imp.β. The amount of  Imp.β is indicated below each lane. 

Imp.β was detected using rabbit anti Imp.β antibodies. Western Blot after C. SDS PAGE and D. NAGE of 

Imp.α. The amount of Imp.α is indicated below each lane. Imp.α was detected using rabbit anti Imp.α antibodies  

E. Pull down of Imp.β. 1 μg or 0.5 μg of Imp.β were added.to 10μL of Glutathione Sepharose beads 

preincubated with 2.5 μg GST-IBB. The upper panel shows the input represented by the different amount of 

Imp.β added to the beads. The lower panel shows the beads fraction: Imp.β was detected using rabbit anti Imp.β 

antibody while GST was detected using anti GST mouse antibody.  

Interaction between EmpC and Imp.β by NAGE  

Two ng of MatC and EmpC were incubated for 2h at 37°C with either 8 µg of Imp.β alone, or 

with 4 µg of Imp.α or with both importins. These corresponded to a stoichiometry of 887 
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Imp.β or Imp.α molecules per Cp. After NAGE, proteins were transferred to a PDVF 

membrane by capillary transfer and the change in the migration pattern was analyzed by 

antibody staining against the capsid protein using anti capsid antibodies. 

Figure 16 shows that the presence of Imp.α alone or in combination with Imp.β induced a 

retardation of MatC migration, suggesting that Imp.α binding to the capsid NLS does not 

require stabilization by Imp.β. The absence of retardation when Imp.β alone was added 

showed that only an NLS became exposed but not a functional IBB. The retardation was 

however limited despite of the slow migration of Imp.α alone, suggesting that just a few 

Imp.α molecules bind per capsid. 

In contrast, migration of EmpC was retarded by Imp.β alone (Figure 16A) resulting in a 

smear (Figure 16B). Retardation and inhomogeneity indicate that either the number of Imp.β 

molecules bound to capsids differs, increasing their size, or that a part of EmpC disassembled, 

which also causes a slower inhomogeneous migration36. We further observed that the 

presence of Imp.β resulted in increased signals by the polyclonal antibody but only when 

using EmpC.  

Collectively, these results confirm that, in contrast to MatC, EmpC are able to bind Imp.β 

directly thus expose the entire CTD. We further concluded that Imp.β-binding induced 

conformational changes that lead to increased antibody binding. This conclusion is consistent 

with a capsid destabilization and the entry of Imp.β into capsids’ lumen as observed by cryo- 

EM.  

Figure 16C shows that in the absence of 2 mM DTT, EmpC incubated with Imp.β at the same 

concentration as before migrate as EmpC alone. This implies that the reducing environment 

provided by the DTT helps the formation of the EmpC-Imp.β complex. 
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Figure 16: NAGE of MatC and EmpC complexes with Importins 

A. EmpC and MatC were incubated for 2h at 37°C either alone either with Imp.α or Imp.β or both (combination 

showed above each panel). Change in the migration pattern was analyzed by NAGE followed by capillary 

transfer and antibody staining using anti HBcAg. B. The same experiment was repeated leaving the gel migrate 

for a longer time. C. The same experiment was carried on incubating capsid with importins in transport buffer 

without DTT. 
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Analysis of HBV capsid disassembly 

As for other DNA viruses, HBV needs to release its genome inside the nucleus. Previous 

studies have shown that both, ImmC and MatC reach the nuclear basket of the NPC, but only 

MatC disassemble41,82. Both the type of capsid interact with the C-terminal portion of 

Nup15385 in an CTD-independent manner. The disassembly of MatC occurs via Cp hexamers, 

which disassemble to Cp dimers. The capsid subunits diffuse into the nucleus, where they 

reassemble to genome-devoid capsids. However, the exact mechanism by which the viral 

capsid disassembles to release the viral genome remains unclear.  

Viral genome degradation by Nuclease S7  

To investigate the disassembly, we used an in vitro model based on the radiolabeling of the 

viral genome and the Nuclease S7. Labelling by 32P was chosen as capsid concentrations 

allowing EtBr staining of the DNA can be hardly achieved by eukaryotic expression. The 

experiment relies on the idea that the Nuclease S7 has no access to the viral genome when the 

capsid is intact, being too large to pass by the fenestrations of the capsid surface (Figure 17). 

Nuclease S7 is a globular protein having a calculated Stokes diameter of 3.6 nm 

(http://www.calctool.org/CALC/prof/bio/protein_size). It must be thus concluded that the 

removal of one Cp hexamers leaving a hole of ~8 nm would be sufficient for allowing entry 

S7 nuclease entry into capsids’ lumen. 

 

 

Figure 17: Nuclease S7 access to viral genome 

The Nuclease S7 has no access to the viral genome when the capsid is intact, being too large to pass by the 

fenestrations present on the capsid surface, on the contrary when the capsid is disassembled or partially 

disassembled, the Nuclease S7 gain access to the viral genome depredating it and, when the viral genome is 

radiolabeled, its degradation can be used as read out for the disassembly step . 

http://www.calctool.org/CALC/prof/bio/protein_size
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Proof of concept: stability of the capsid at 37°Cand 56°C 

To prove our method, we purified MatC capsids from the supernatant of HepG2.2.15 cells and 

we radiolabeled the viral genome inside using α-32P dCTP which is incorporated into the viral 

genome by the activity of the viral polymerase. We incubated the radiolabeled MatC with 

Nuclease S7 in transport buffer for 2h at 37°C and 56°C, and we analyzed the degradation of 

the α-32P labeled genome by phosphoimaging after NAGE.  

Figure 18 shows that nuclease S7 almost completely degraded the viral genome at 56°C, 

while no degradation was observed at 37°C.  

 

 

 

Figure 18: Viral genome degradation at 56°C by Nuclease S7 

A. MatC capsids were purified from HepG2.2.15 and their genome was radio labeled with α -32P dCTP exploiting 

the polymerase endogenous reaction. MatC with α-32P labeled genome were incubated in the presence or absence 

of Nuclease S7, in transport buffer at pH7, for 2h at 37°C and 56°C. Samples were loaded on a NAGE and viral 

genome degradation was determined by phosphoimaging. B. Quantification of viral genome degradation was 

done using ImageJ after background subtraction. Normalization was achieved by using the negative control 

without Nuclease S7 as 100% value. Error bars represent the quantification made from two independent 

experiments. 

Stability of the capsid at pH 7 pH6.5 and pH5.5 

The so-called internal recycling pathway leading to cccDNA accumulation in infected cells 

via newly synthesized capsids from the cytosol is – despite of shown in textbooks – not 

established for HBV. Further, the entry pathway of HBV in terms of virus exposure to mildly 

acidic pH (~ 6.5) is unclear. To analyze if the pH has an impact on capsid stability favoring 

genome liberation we investigated the genome accessibility for nuclease S7. We subjected the 

capsids with α32P labeled genome in transport buffer to pH 7, pH 6.5 and pH 5.5 for 10 min at 

37°C before the incubation with the Nuclease S7 for 2h at 37°C at pH 7. 

Figures 19A and B show that the capsids remained stable at pH 7, 40% of viral genomes 

were degraded when capsids were incubated at pH 6.5 and 60% of the genomes were 
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degraded at pH 5.5. This shows a pH-dependent capsid stability and allows drawing the 

conclusion that a moderate capsid acidification upon virus entry could increase infectivity. 

For investigating if this had an effect on genome transport into the nucleus we performed a 

transport assay using digitonin permeabilized HuH-7 cells, subjecting capsids, which were 

preincubated with the different pHs. As read-out, we used the arrival of intranuclear 

capsids/Cp, which is a surrogate marker for capsid liberation. As control of the transport 

reaction we used BSA coupled to NLS, which was efficiently imported. Nuclear import 

occurred actively through the nuclear pores as wheat germ agglutinin (WGA) blocked the 

reaction196,197 (Figure 19C, lower panels). Figures 19C (upper panels) and D shows that the 

same amount of capsids were imported, regardless of the pH treatment (~30%). This suggests 

that low pH-induced destabilization does not affect the capsid arrival in the nucleus and 

consequently not enhance genome liberation from the capsids. Considering the stability of the 

genomes at 37°C, these findings further indicate that capsid disassembly must be strongly 

enhanced by a cellular factor. 
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Figure 19: Capsid stability and viral genome degradation by Nuclease S7 at different pHs 

A. MatC capsids were purified from HepG2.2.15 and their genome was radio labeled with α-32P dCTP .MatC 

with α-32P labeled genome were incubated in transport buffer at different pH for 10  min before being incubated 

in the presence or absence of the Nuclease S7. After the incubation, samples were loaded on a NAGE and viral 

genome degradation was determined by phosphoimaging . B. Quantification of viral genome degradation was 

done using ImageJ after background subtraction. Normalization was achieved by using the negative control 

without Nuclease S7 as 100% value. C. Representative confocal images of Digitonin permeabilized cells after 

transport assay. MatC were incubated in transport buffer at different pHs for 10 min before the transport reaction 
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(specific pH treatment is shown on the left of each row). MatC were stained with Fab 3105 acting against the 

HBV capsid, Nucleoporins were stained with Ab414 antibod. BSA-NLS was coupled to the A488 fluorophore 

(green) and DAPI staining was used to visualize the chromatin. Images were acquired using a 63X object. 

Maximal projection images are shown for the capsid part, while focal plane is shown for the BSA-NLS. D. 

Quantification of HBV capsid inside the nucleus was done using Image software, by counting nuclear dots 

corresponding to the capsid inside the nucleus and normalizing for the total number of cellular dots. Length bar 

20 µm.  

Capsid disassembly during transport assay with isolated nuclei 

To reduce the number of potential cellular interaction partners involved in capsid 

disassembly, we replaced the permeabilized cells by isolated nuclei. We incubated MatC 

containing 32P labeled genome with a nuclei preparation from HepG2 cells in the presence or 

absence of WGA and in the presence or absence of the Nuclease S7 for 30 min at 37°C. After 

incubation, we separated the nuclei fraction from the supernatant by sedimenting the nuclei. 

The pellet thus contained capsids inside the nucleus but also those attached to the inner and 

outer part of the NPC, or other parts of nuclear envelope. Both the fractions were treated by 

proteinase K, followed by phenol-chloroform extraction for purifying the viral genome. 

Figure 20A shows the nuclei preparation by light microscopy. As shown in Figure 20B, the 

majority of the non-degraded genomes remained in the supernatant. In this fraction the 

Nuclease S7 had a limited effect on the viral genome degradation (~30% of viral genome 

degradation). In the nuclear fraction, the Nuclease S7 had a stronger impact of more than 50% 

of genome degradation (Figure 20C). We interpret this finding in that capsid opening does 

not exclusively occur in the nuclear basket but also happens at an earlier step of nuclear 

transport, possibly at the outer NPC surface. Considering the need of Nup153 for genome 

arrest and its potential function in genome release85, we conclude that the externally exposed 

Nup153 fraction could be involved. Moreover, in the viral genome degradation was decreased 

in both fractions by WGA suggesting that glycosylated Nups enhance the disassembly 

process. 
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Figure 20: MatC disassembly during transport assay with isolated nuclei 

A. Representative picture of Nuclei purified from HepG2 cells. Nuclei were imaged trough a light transmission 

microscope. B. MatC capsids were purified from HepG2.2.15 and their genome was radio labeled with α-32P 

dCTP MatC with α-32P labeled genome were incubated with the isolated nuclei in the presence or absence of 

wheat germ agglutinin (WGA) and in the presence or absence of the Nuclease S7 for 30 min at 37°C. At the end 

of the incubation the nuclei fraction was separated from the supernatant by centrifugation at 8000g for 10 min. 

Both the fractions were subjected to proteinase K digestion and to phenol-chloroform to purify the viral genome 

α-32P labeled. Finally, samples were loaded on a 0.7% agarose. Viral genome degradation was determined by 

phosphoimaging. C. Quantification of viral genome degradation was done using ImageJ after background 

subtraction. Normalization was achieved by using the negative control without Nuclease S7 as 100% value  

Role of Nup153 C-term during capsid disassembly 

Characterization of the binding between EmpC and Nup153 

To explore the possibility that Nup153 impact on capsid opening, we characterized the 

binding between EmpC and a soluble fragment of Nup153 by NAGE and cryo-EM. We used 

EmpC because of their structural similarity with MatC and the need for the high amount of 

capsid required for cryo-EM. As soluble fragment we used the His-tagged C2 fragment, which 

corresponds to the C-term portion of Nup153 implicated in capsids binding (His-

C2Nup153)85. This fragment contains most of the ~ 30 FXFG repeats and corresponds to the 

aa 992-1219197. 

To characterize the binding between EmpC and His-C2Nup153, we analyzed the binding ratio 

between the two partners. In a titration assay, we incubated a constant amount of His-

C2Nup153 with a decreasing amount of EmpC, for 2h at 37°C, and we analyzed the 

complexes by NAGE. As shown in figure 21A, His-C2Nup153 migrates towards the anode, in 

the opposite direction than the capsids. Figure 21B shows the dilution of Cp and the constant 

amounts of Nup153-C2 fragments by Coomassie staining after SDS PAGE.  
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Figure 21C shows the NAGE of the capsid His-C2Nup153 fragment complexes. At ratio 4 

Cp: 1 His-C2Nup153 one band was present migrating to the cathode, as the capsids do. No 

band was visible at the migration of His-C2Nup153 suggesting that all C2 fragments were 

bound to the capsid. At a ratio of 1:2 two bands were present: one migrating in the direction 

of the capsid and the other migrating like the C2 fragment. At lower ratios, the C2-like 

migration occurred only. We interpret this finding in that from a ratio of 1:1 Cp per Nup153-

C2 fragment on, all capsids were covered with the Nup153 fragment. Consistently, 

approximately half of the Nup153-fragments were associated with capsids at the 1:2 ratio, 

leading to the conclusion that one Cp binds to one Nup153 fragment.  

 

 

Figure 21: NAGE of EmpC and His-C2Nup153 and titration assay 

A. 10µg of His-C2Nup153 and 3 µg were loaded onto 0.7%agarose gel in TAE1X, either alone either together 

after 1h incubation at 37°C to allow the formation of the complexes . NAGE was performed as described before. 

After the electrophoresis, the gel was stained with Comassie blue and sequentially destained in destaining 

solution until clear bands over a dark background were observed. B. Titration was made keeping constant the 

amount of His-C2Nup153 and decreasing the amount of EmpC. Therefore, His -C2Nup153 fragment and EmpC 

were incubated together at different ratio (indicated above the upper panel) for 2h at RT. At the end of the 

incubation, an aliquot was taken from each sample as control and immediately loaded on acrylamide gel for SDS 

page followed by SyproRed staining (Upper panel). NAGE was performed as described before and was  followed 

by antibody staining with Anti His Novagen 707964 directed against the His tag of the His-C2Nup153 fragment. 

The experiment was made twice with the same outcome. 
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To characterize the binding sites and to possibly obtain 3D structures we analyzed cryo-EM 

images of EmpC bounded to His-C2Nup153 at 1:1 ratio.  

The EM micrographs in figure 22 show a different behavior of EmpC when in complex with 

the His-C2Nup153fragment (Figure 22A): capsids were no longer attracted to the carbon 

phase, as shown for EmpC alone (Figure 22B), but diffused in the vitreous ice phase. This 

indicates a difference in the capsid surface charge, confirming the difference in the migration 

behavior during NAGE. However, we were not able to obtain regular additional Nup153-

caused densities suggesting that binding is heterogeneous. 

 

 

 

Figure 22: Cryo-Em images of EmpC and EmpC bounded to the His -C2Nup153 fragment 

EmpC were incubated in 1x PBS 2h at RT, either alone either with His -C2Nup153 fragment. Afterwards samples 

were cryo fixed in liquid ethane. Images were acquired with 26 frames of 1.32 second of exposure time with a 

120000 x magnification for 1.24 Angstrom as pixel size. Darker grey represents the carbon phase while the 

lighter grey represents the vitreous phase. In A. EmpC with the His-C2Nup153 fragment are shown while in B. 

EmpC alone are shown to compare. 

Role of the C-term portion of Nup153 in solution during capsid disassembly  

For further evaluating a potential function of the C-terminal portion of Nup153 in enhancing 

capsid disassembly, we incubated MatC with 32P labeled genome with Nuclease S7, in the 

presence or absence of His-C2Nup153 for 2h at 37°C in transport buffer at pH 7. We observed 

slight degradation in the presence of Nuclease S7 that was not increased in the presence of the 

C-terminal portion of Nup153 (Figure 23). We thus concluded that at least under these 

conditions the C-terminal portion of Nup153 did not impact the accessibility of the viral 

genome. 
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Figure 23: Viral genome degradation by the Nuclease S7 in the presence of soluble His-C2Nup153 

fragment 

A. MatC capsids were purified from HepG2.2.15 and their genome was radio labeled with α -32P dCTP exploiting 

the polymerase endogenous reaction. MatC with α-32P labeled genome were incubated in the presence or absence 

of Nuclease S7, and in the presence or absence of the soluble His -C2Nup153 fragment in transport buffer pH7, 

for 2h at 37°C. After the incubation, samples were loaded on a NAGE. Viral genome degradation was 

determined by phosphoimaging. B. Quantification of viral genome degradation was done using ImageJ after 

background subtraction. Normalization was achieved by using the negative control without Nuclease S7 as 100% 

value Error bars represent the quantification made from two independent experiments. 

Role of the C-term portion of Nup153 fixed on Nickel beads during capsid disassembly  

According to the current model, the capsids should release the genome within the nuclear 

basket but not already inside the cytoplasm where free Nup153 molecules are present. Thus, 

we wondered whether having the C2 fragment immobilized on a solid phase might alter the 

geometry of the binding and enhance the disassembly of the capsid. With this aim we 

immobilized the His-C2Nup153 on Nickel beads.  

Firstly, we verified the successful binding of His-C2Nup153 to Nickel beads by a pull down 

followed by Western blot and anti Nup staining. As input control, we used different amount of 

the C2 fragment. Figure 24A shows that, for each dilution most of the fragment was 

precipitated on the beads fraction indicating the correct immobilization of the fragment to the 

beads. 

To test the accessibility of the viral genome, we repeated the same experiment as before by 

incubating MatC containing 32P labeled genome with Nuclease S7, in the presence or absence 

of immobilized His-C2Nup153 for 2h at 37°C in transport buffer at pH 7. We observed only a 

slight degradation by Nuclease S7 in the presence of the C-terminal portion of Nup153 (10%), 

very similar to the degradation induced by the soluble fragment (Figure 24B and C). Hence, 
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we concluded that in these conditions the C-terminal portion of Nup153 did not significantly 

affect the accessibility of the viral genome. 

 

 

Figure 24: Viral genome degradation by the Nuclease S7 in the presence of the His -C2Nup153 fragment 

immobilized on Nickel beads. 

A. Several amounts of the His-C2Nup153 indicated below the panel were added to 10 µL of nickel beads and 

incubate for 4h RT. Imput and beads fractions were loaded on a acrylamide gel for a western blot. His-

C2Nup153 was detected using anti Nup antibody (mAb414). B. MatC capsids were purified from HepG2.2.15 

and their genome was radio labeled with α-32P dCTP. MatC with α-32P labeled genome were incubated in the 

presence or absence of Nuclease S7 and in the presence or absence of the His -C2Nup153 fixed on nickel beads 

in transport buffer pH7, for 2h at 37°C. After the incubation, samples were loaded on NAGE. Viral genome 

degradation was determined by phosphoimaging. C. Quantification of viral genome degradation was done using 

ImageJ after background subtraction. Normalization was achieved by using the negative control without 

Nuclease S7 as 100% value. 

Role of the C-term portion of Nup153 fixed on Nickel beads during capsid disassembly of 

MatC pretreated at pH5.5 

pH 5.5 represents the environment of the late endosome, and MatC that were incubated for 10 

min at pH 5.5 showed partial degradation of the viral genome, indicating less stability of the 
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capsid. However, these capsids were still capable to reach the NPC. Thus, we asked whether 

the combination of a previous incubation at pH 5.5, mimicking the late endosome, and the C-

terminal portion of Nup153, mimicking the interaction at the NPC, would have provided the 

right cues for the disassembly of the capsid. To asses this possibility, we incubated MatC with 

32P labeled genome in transport buffer at pH 7, pH 6.5 and pH 5.5 for 10 min at 37°C, and 

sequentially with the Nuclease S7, in the presence of the His-C2Nup153 immobilized on 

nickel beads, for 2h at 37°C in transport buffer at pH 7. 

Figure 25 shows that the addition of the C-terminal portion of Nup153 does not increase the 

instability of the capsid at pH 5.5 rather, when it is added the degradation of the viral genome 

induced by the Nuclease S-7 decreases.  

 

 

 

Figure 25: Viral genome degradation by the Nuclease S7 of MatC pretreated at different pH in the 

presence of the His-C2Nup153 fragment fixed on Nickel beads. 

A. MatC capsids were purified from HepG2.2.15 and their genome was radio labeled with α -32P dCTP. MatC 

with α-32P labeled genome were incubated in transport buffer at different pH for 10  min before being incubated 

with the Nuclease S7 in the presence of the His -C2Nup153 fragment fixed on Nickel beads. After the incubation, 

samples were loaded on NAGE. Viral genome degradation was determined by phosphoimaging. B. 

Quantification of viral genome degradation was done using ImageJ after background subtraction. Normalization 

was achieved by using the negative control without Nuclease S7 as 100% value. In the graph this results is put in 

comparison with the previus experiment with different pHs without the Nup fragment.  

Role of the C-term portion of Nup153 fixed on Nickel plates during capsid disassembly  

To verify that the presence of the His-C2Nup153 does not inhibit the Nuclease S7, we 

incubated 1 µg of control plasmid with Nuclease S7 in the presence or absence of the 

fragment. As shown in figure 26, the plasmid became completely degradated in the presence 

of the Nuclease S7 and in the presence of the His-C2Nup153. 



Results 

 

98 
 

 

 

 

Figure 26: His-C2Nup153 does not inhibits the Nuclease S7: 

1µg of plasmid DNA was incubated with the Nuclease S7 for 15 min at 37°C in the presence or absence of the 

HisC2-Nup153 fragment. After the incubation samples were loaded on a 0.7% agarose gel and DNA was stained 

with EtBr. Figure shows that the His -C2Nup153 fragment does not inhibit the degradation activity of the 

nuclease S7. 

We then asked whether the presence of the His-C2Nup153 fragment, either in solution either 

fixed on Nickel beads, was hindering the complete disassembly of the capsid. Probably it 

could bind to it from all the directions without respecting the physiological environment and 

geometry of the NPC. To verify this hypothesis, we fixed the His-C2Nup153 fragment on the 

bottom of a Nickel plate so that the binding would have come from only one direction and to 

closer mimic the NPC environment. However, as shown in figure 27, not even under these 

conditions the His-C2Nup153 fragment was unable to support complete disassembly of the 

capsid.  

Together these results suggest that this portion alone is not sufficient to promote the 

disassembly of the capsid and that other factors probably coming from the host cell are 

involved in the HBV disassembly step.  
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Figure 27: Viral genome degradation by the Nuclease S7 in the presence of the His -C2Nup153 fragment 

immobilized on Nickel plate. 

A. MatC capsids were purified from HepG2.2.15 and their genome was radio labeled with α -32P dCTP exploiting 

the polymerase endogenous reaction. MatC with α-32P labeled genome were incubated in the presence or absence 

of Nuclease S7 and in the presence or absence of the His -C2Nup153 previously added to Nickel plate in transport 

buffer pH7, for 2h at 37°C. After the incubation, Supernatant was collected and the His -C2Nup153 was eluted 

from the plate with elution buffer. Both elution samples and supernatants were loaded on a NAGE. B. Viral 

genome degradation was quantified by the ratio between the addition of the optical density of the bands 

corresponding to the radio labeled genome in the elution and supernatants , calculated with the ImageJ software, 

and the addition of CPMA of the radioactivity in the elution and supernatant in the same sample, collected before 

loading the samples in the gel. Normalization was made on the negative sample, in the absence of the Nuclease 

S7 and in the absence of the His-C2Nup153 fragment. 
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HBV AnchorTM 

Our results indicate that the presence of Nup153 does not enhance the capsids disassembly 

rather it seemed to stabilize them. at least with an in vivo-like kinetics and efficiency. 

However, our in vitro model did not provide sufficient information to explain how the 

disassembly of HBV capsid occurs in vivo. For following genome liberation in living cells 

allowing to investigate individual genomes we introduced the Anchor technology developed 

at the Neovirtech by Dr. Frank Gallardo (http://neovirtech.com/) into HBV. The Anchor 

technology exploits the specific binding of OR fused to a fluorescent protein, to a DNA 

sequence called Anch, which has a minimal length of 200 bp. (figure 28A). OR is a bacterial 

partition protein (ParB) and its interactions with the Anch leads to an accumulation of up to 

500 molecules for each sequence, that nonspecifically associate to the adjacent DNA. 

In infection with a pseudo-HBV in which the Anch has replaced part of the genome, single 

green dots corresponding to the viral Anch sequence recognized by OR become visible. 

Recognition is only possible when the genome is accessible and therefore released by the viral 

capsid (figure 28B). As binding of OR requires dsDNA, the Anch must be either inserted into 

the ds part of the genome or the single stranded part of the genome must be filled. 

Interaction between OR and Anch is highly dynamic with a turnover of 57s allowing the 

expression of adjacent genes (figure 28C).  

 

http://neovirtech.com/
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Figure 28: Schematic presentation of the AnchorTM Technology 

A. The AnchorTM Technology is based on two partners: a DNA sequence called Anch and a bacterial protein 

called OR fused to DGFP. OR-DGFP specifically binds to the Anch sequence and the binding serves as 

enucleation site for the recruitment of up to 500 molecules of OR-DGFP for each Anch sequence. B. Example of 

a model system made by a virus that harbors in its genome the Anch sequence and cells expressing OR-DGFP. 

In this model, the formation of green dots is used as read out of genome released since they represent the 

recognition of the Anch sequence, present in the viral genome by OR-DGFP. This recognition is only possible 

when the viral genome is accessible and therefore released from the capsid. C. The binding of OR-DGFP to the 

Anch sequence is highly dynamic with a t1/2 of 57s as determined by FRAP (personnel information Neovirtech) 

allowing protein expression from OR-DGFP-covered ORFs. 

HBV Anch plasmid constructs 

For adapting the Anch-OR system to HBV we used hepatic cells line expressing OR fused to 

Dasher Green Fluorescent Protein (OR-DGFP). We first inserted the Anch sequence into the 

HBV genome (HBV Anch). In the specific case of HBV this is particularly challenging, 

because of the limited size of the genome, 3.2kb and because of its tight organization. We 

solved these problems by making three plasmid constructs.  

Design of the constructs 

In the first construct we placed the Anch sequence in the double strand portion of the HBV 

genome allowing genome detection directly after release (Early Anchor Plasmid, EAP).  
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In the second construct, we placed the Anch sequence in the single stranded region of the viral 

genome. In this case, the Anch sequence will be recognized only once that the genome is 

released and repaired (Late Anch Plasmid, LAP).  

As the Anch insertion led to disruption of at least two viral ORFs, we constructed a trans 

complementation vector, termed Δε. It misses a functional ε encapsidation signal ensuring 

that only the pseudoviral genome harboring the Anch becomes encapsidated (Figure 29) 

 

 

Figure 29: Insertion sites of theAnch in the HBV genome 

The Anch sequence was inserted into two different regions of the viral genome. In the first construct it is inserted 

were the genome is double stranded, allowing HBV pseudogenome detection directly after genome release from 

the capsid (Early Anchor Plasmid, EAP). In the second construct the Anch sequence is placed in the single 

stranded part of the genome between the defined 5’ end and the undefined 3’ end of the  plus strand DNA. In this 

position the HBV pseudogenomes will not be recognized by OR-DGFP until the plus strand DNA will be 

(nearly) completed (Late Anch Plasmid, LAP). For production of HBV pseudoviruses, we constructed a trans 

complementation vector. This construct codes for all viral proteins but not for the encapsidation signal ε. 

Pregenomic RNA coded from vector Δε is thus not encapsidated. The transexpression of the proteins, including 

protein over expression derived from co-transfection of EAP (or LAP) and Δε is not interfering with virus 

production as shown in the literature. 

 

Validation of Anch constructs recognition by OR-DGFP  

We validated the constructs first by plasmid transfection of EAP LAP in HuH-7 cells 

expressing OR-DGFP. Figure 30 shows formation of green dots in the transfected cells. The 
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difference in intensity and size of the dots is consistent with the lipofection used for plasmid 

transfection since it induces the aggregate formation. 

 

 

Figure 30: EAP and LAP recognition by OR-DGFP.  

250 copies of EAP and LAP per cell were transfected in HuH-7 OR-DGFP. Images were taken at the confocal 

microscope with 63 x objective. Figure shows formation of OR-DGFP dots upon transfection.  

To validate the trans complementation strategy, we double transfected either EAP or LAP 

with Δε in HuH-7 cells. We purified the pseudovirus from HuH-7 supernatant and 

characterized the viral genome from purified pseudo HBV by Southern blot using a radio 

labeled probe against the HBV X region present on EAP and LAP. As shown in Figure 31A 

for both LAP and EAP, two bands were visible corresponding to the rcDNA and to the single 

stranded DNA. Further, an excess of replication intermediates was observed, which is 

consistent to Southern blots using HBV genomes extracted from virions purified from patients 

or from HepG2.2.15 cell supernatants.  

For further validation, we analyzed the capsids extracted from the purified pseudovirions by 

non-ionic detergent treatment by NAGE, followed by anti capsid staining. Figure 31B shows 

that capsid containing the Anch sequence exhibited the same migration behavior and antibody 

reactivity as MatC purified under the same conditions.  
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Following the quantification, we estimated that with the double transfection strategy, 0.1 ng 

of capsid were produced per mL of cell culture medium.  

 

Figure 31: Validation of the trans complementation strategy 

A: Southern blot of nucleic acid extracted from purified particles extracted from HuH-7 double transfected with 

LAP and Δε or EAP and Δε. The figure shows the presence of two bands one corresponding to rcDNA and the 

other corresponding to sslDNA. B. NAGE of different amount (indicated below each lane) of purified particles 

extracted from HuH-7 double transfected with LAP and Δε or EAP and Δε in comparison to 0.05 ng of MatC. 

The figure shows that all the particles present the same migration properties and the same reactivity to the Dako 

polyclonal antibody.  

Production of Anch modified virus 

Once validated the system, we established cell lines for permanent EAP or the LAP 

pseudovirus production.  

Establishment of stable cell lines constitutively producing HBV Anch 

To establish stable cell lines constitutively producing HBV Anch, we made three lentivectors 

using the three plasmid constructs. Then, from these, VSV-G pseudotyped lentivectors 

particles were produced by the Vectorology platform in Bordeaux. As transduction marker for 

the EAP and LAP constructs, we used DGFP, and for the Δε we used tdTomato. 
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Once obtained the lentiviral particles, we double transduced HepG2 and HuH-7 with either 

the EAP and the Δε or the LAP and the Δε. 

Two weeks after transduction, we verify transduction efficiency by the fluorescence of the 

cells and sorted the positive cell by FACS next. 

Figure 32 shows a representative FACS sorting of HuH-7 double transduced with either EAP 

and Δε (left side), or LAP and Δε (right side). 

 

 

 

Figure 32: Establishment of stable cell lines: HuH-7 LAP/EAP +Δε 

Representative FACS sorting of HUH-7 double transduced with either EAP and Δε (left side), or LAP and Δε 

(right side). 

 

Virus purification 

In a recent study it has been shown that HBV that bind to heparin are highly infectious69. This 

is caused by the cell attachment step needing attachment to HSPGs serving as a low-affinity 

HBV receptor. Purification via heparin columns thus selects infectious HBV and avoids co-

purification of defective particles. It further avoids co purification of other impurities from 

cell culture supernatant we observed using centrifugation-based protocols. We collected twice 

the supernatant from eight T150 flask of HuH7 or HepG2 cells line stable double transduced 

previously treated or not with 1% DMSO. DMSO has been reported to enhance the viral 

production by bringing the cell into a differentiate state and providing the specific factors 

needed for the viral replication cycle198. Purification was performed by binding the 

pseudovirus to 5 mL heparin columns, followed by elution using a linear gradient of NaCl. 

Figure 33A depicts a chromatogram showing the elution peak at ~300 mM NaCl, in 

agreement with the study above69. Afterwards, the pseudoviruses were concentrated by 
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sedimentation. After suspension of the (invisible) pellet, the pseudoviruses were quantified by 

quantitative PCR amplifying the HBV X region, which is present in EAP and LAP.  

Figure 33B shows that in these conditions we were able to purify up to 3 x10^3 copies per µL 

and that as expected, the amount produced was slight higher in HepG2 cells then in HuH-7 

cells and in the presence of DMSO. Assuming that one copy corresponds to one viral 

particles, we estimated that we obtained in our best preparation 3 x10^3 particles of HBV 

Anch per mL of cell culture medium. This is far below reports of Glebe et al. observing the 

production of 10^6 HBV genome equivalents per mL from different cell lines stable 

transfected with HBV DNA construct198, which can be explained by transcomplementation. 
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Figure 33: HBV Anch purification 

A. Chromatogram obtained during virions purification. Virus purification was performed using Heparin 

Columns and the Akta purifier that allows the live time monitoring of the chromatography. 240 mL of virus 

containing HepG2 EAP + Δε supernatant were applied to a 5 mL Hi trap Heparin column. Bounded virions were 

eluted with a linear gradient of NaCl. NaCl concentrations are shown on the right of the chromatogram. OD at 

280 nm is represented by the blue line. The first peak represents unbound material appearing in the flow-through. 

The majority of the bounded material is eluted at ~340 mM NaCl (second peak). A second small peak is presents 

at~1000mM. B. Quantification of copy number/µL of HBV EAP obtained as described above. 
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HBV Anch infection of HepG2 inducible NTCP cell line expressing OR-DGFP 

HepG2 cell line expressing NTCP 

For testing infectivity of the pseudoviruses, we used HepG2 cell expressing NTCP under the 

control of a TET on system, kindly provided by Dr. Dieter Glebe (Giessen, Germany). In this 

system, the expression of the NTCP is induced by the presence of doxycycline that enhances 

the recognition of the TET regulatory elements by the TET transcription factor.  

We first tested the correct expression of NTCP by Western blot and IF upon induction of 

NTCP by adding 5 µg/ mL of doxycycline to the culture medium. 

Figure 34A shows a gradual expression of NTCP starting from 24h post induction reaching a 

maximum at 72h post induction. The NTCP showed an apparent molecular weight of 72 kDa, 

which is in agreement of others199. As the MW of the NTCP is 37 kDa, the retarded migration 

indicates its glycosylation, which is consistent with reports showing that the NTCP is N-

Glycosylated at its N-terminal domain71. Next, we confirmed the expression of the NTCP by 

IF also allowing verifying exposure on the plasma membrane. Figure 34B shows NTCP in 

induced cells only with a dominant localization at the plasma membrane. The kinetic showed 

that NTCP expression increased until 96h of induction. 
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Figure 34: Doxycycline induction of NTCP in HepG2 NTCP inducible cell line 

NTCP expression was induced by 5µg/ mL of Doxycycline over different time point. A. At each time point 

indicated in the upper panel, cells were lysate and proteins were separated by SDS-page followed by western 

blot. NTCP was detected using an anti SLC10A1 antibody, while Actin was detected by an anti Actin antibody 

lower panel. B. quantification of the NTCP expression was made with the software ImageJ calculating the ratio 

between NTCP and Actin for each sample and normalizing it to the negative control, HepG2 cells. C. At each 

time point indicated left of each row, cells were fixed and the NTCP expression was visualized by IF using the 

anti SLC10A1 antibody. Images were taken at the confocal microscope Leica DMI6000 TCS SP5 with a 40X 

objective. D. 63 x magnification of HepG2 NTCP after 96h of dox induction showing NTCP expression on the 

plasma membrane. Length bar 20 µm. 
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Infection of HepG2 NTCP OR-DGFP cells with HBV Anch (EA) 

In order to test genome localization after infection, we next transduced the HepG2 cells with 

OR-DGFP VSV-G pseudotyped lentivectors particles at MOI 2. Three weeks later, we sorted 

positive cells by FACS to have an homogeneous population of Or-DGFP expressing cells 

(Figure 35).  

 

 

Figure 35: FACS sorting of HepG2 NTCP OR-DGFP 

The figure shows the expression of OR-DGF in HepG NTCP transduced with OR-DGFP (in the left panel), in 

comparison with the negative control represented by HepG2 NTCP (right panle), where only a basal GFP 

fluorescence is present 

Then we induce the expression of NTCP by doxycycline and we infected them with HBV 

Anch (EA construct) at MOI 10. 72h later we verified we the formation of green dots by 

microscopy using the epifluorescent microscope. We observed the presence of one positive 

cell after 2h p.i. The number of positive cells increased after 3 days p.i to 9% (Figure 36).  
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Figure 36: Infection of HepG2 NTCP OR-DGFP cells 

NTCP expression was induced with 5µg/µL of Doxycycline and infection was made using HBV Anch (EA 

contruct) Images were taken 72h pi with epifluorescent microscope Leica DMI6000 B using a 40X Object. 

Capsid Lipofection 

In cell culture, HBV infection is slow and inefficient. An MOI of 3000 was reported to yield 

in 80% infection (Prof. Ulrike Protzer, Munich, personal communication). For circumventing 

this obstacle, also with regard to the relatively low quantities of pseudo HBV we obtained, we 

used capsid lipofection, which bypasses the initial rate-limiting steps of HBV infection200. 

During capsid lipofection, capsids are lipo-coated also allowing entry of non-susceptible cells. 

Using capsid containing EAP, we observed the formation of green dots after 2h post 

lipofection (figure 37) confirming that a slow entry kinetic is not the limiting factor in 

infection. 
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Figure 37: HBV-EAP capsid lipofection 

HBV EAP lipofection in HuH-7 OR-DGFP cells. Pictures were taken each 12 min over 4 h. Here six 

representative time points are shown. Time depicted in the figure refers to the time passed from the start of the 

acquisition. The figure shows the appearance of two green dots within two hours from the start of the acquisition 

(white harrows). 

HBV pseudogenome visualization after integration 

The chromatinization of HBV cccDNA could lead to displacement of OR-DGFP from the 

genome. This would not only cause disappearance of the signals after infection but would also 

prevent HBV genome detection after integration. As the loss of genomes after infection or 

lipofection could also be caused by other reasons as genome degradation, we investigated the 

detection of pseudo HBV genomes after integration. We investigated the presence of the 

Anch sequence integrated into the cellular genome by transduction of HuH-7 LAP +Δε cells 

with OR-DGFP VSV-G pseudotyped lentivectors particles. Figure 38A shows that after 10 

passages HuH-7 LAP +Δε were still positive for the both transduction marker: DGFP for LAP 

constructs and tdTomato for the Δε, although with different intensity. Figure 38B shows the 

presence of green dots corresponding to LAP in the 11% of the cells. Considering that the 

cells underwent 10 divisions prior to transduction, we hypothesize that the Anch sequence 

remained in the cells in an integrated form and accessible to the OR-DGFP protein after three 
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weeks. We observed however that the dots were present in the non-condensed open chromatin 

only. This was particularly evident when cells undergo mitosis (Figure 38B lower panel) 

 

 

 

Figure 38: OR-DGFP transduction of HuH-7 LAP +Δε. 

A. Huh7 double transduce with LAP and Δε lenti vector the figure shows that all cells were positive for both 

transduction marker.B. HuH-7 LAP Δε transduced with OR-DGFP lenti vector. The figure shows the presence of 

the integrate LAP construct. Picture were taken at the epifluorescent microscope length bar in A. 100 µn and in 

B. 20µn 
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Discussion 
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EmpC binds directly to Imp.β 

HBV has to deliver its genome inside the nucleus of infected cells. To do this it has to hijack 

the cellular pathways that mediate nuclear import. 

Studies of HBV nuclear import have been done mostly subjecting different preparation of 

capsids to digitonin permeabilized cells or microinjecting them to Xenopus laevis oocytes. It 

has been shown that in vitro phosphorylated rHBc but not unphosphorylated rHBc are able to 

reach the nuclear periphery and to bind to the NPC in digitonin permeabilized HuH-7 cells36. 

Microinjecting these capsids into the cytoplasm of Xenopus laevis oocytes confirmed this 

finding and showed that the capsids pass the nuclear pore and accumulate in the nuclear 

basket. Further, phosphorylated rHBc and MatC purified from HepG2.2.15 cells are able to 

coimmuneprecipitate Imp.β. from RRL implying a binding with Imp.β. However, the 

precipitation of Imp.β is lost when Lamin B2 NLS is added to RRL suggesting that the 

binding requires Imp.α36. Consistently, phosphorylated rHBc interacts with the nucleus, when 

Imp.α and Imp.β are added and two overlapping NLS have been mapped on the primary 

sequence of the CTD of Cp (aa 158–168 and 165–175)36. Phosphorylation has been linked 

with the maturation process, even though MatC are thought to be dephosphorylated. 

Therefore, it has been suggested that the phosphorylation might help the exposure of the CTD 

from the interior of the capsid starting the maturation process and leading to the recognition of 

the NLS by Imp.α that then acts as an adaptor for Imp.β. Thus, regarding MatC a canonical 

import pathway has been proposed. 

So far, import studies have not involved EmpC and their interaction with import receptor is 

still an open question. EmpC derive from spontaneous assembly of Cp111 and being devoid of 

nucleic acid they are less stable88 and prone to disassembly. The intracellular localization of 

Cp reflects the clinical state of the infection: cytosolic Cp or capsids in patients’ liver are 

linked to hepatocellular injury201,202 and to a low viral load203 while nuclear localization 

correlates with high viral load and minor hepatitis activity204, showing the importance of 

understanding the biological role and the intracellular trafficking of EmpC and Cp.  

In this work, we investigated the interaction between EmpC and import receptors. Our 

principal observation was that EmpC bind to Imp.β directly. EM micrographs and 3D 

structure showed the presence of Imp.β at the quasi-six fold vertex of EmpC and in the 

internal lumen. This finding is supported by the presence of a putative IBB on Cp, 

overlapping the NLS but spanning aa 141 to aa 180 thus comprising almost the entire CTD 
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and the linker region. Such overlapping nuclear import signals were already described 

earlier205. 

Together these data of HBV capsids imply a difference in the exposure of the CTD between 

MatC, phosphorylated rHBc and EmpC. Being 39 aa long the IBB domain is larger than the 

NLS (8 aa) thus in EmpC a larger portion of Cp needs to be switched on the capsid surface.  

 

 

 

Figure 39: IBB and NLSs on the CTD of Cp (183 aa) 

Cp comprises an NTD from aa 1 to aa 149 and a CTD from aa150 to aa183. Two overlapping NLS (blue) have 

been mapped on the CTD of Cp. IBB (green) has been proposed encompassing aa 140 to aa180, thus almost all 

the CTD plus the linker region (from aa 141 to aa 149). In the sequence serines 155, 162 and 170 are depicted in 

bold. 

The structural change can be explained by two models. Considering that the CTD is 

unstructured the polypeptide chain has a diameter of 6 – 7 Å, while the triangular fenestration 

in the quasi six fold symmetry has diameter of 12 x 15 Å, the CTD could pass the pore. 

Consistently, the CTD is connected to the N terminal part of Cp directly adjacent to the 

opening38. In the second model, the extrusion can be explained by “capsid breathing”206 that 

has been observed for other virus such as poliovirus207 and rhinovirus 208. Capsid breathing 

involves the temporary dissociation of Cp hexamers followed by their re-association, which 

would open the capsid shell by at least one Cp hexamer, corresponding to a size of ~8 nm. In 

difference to MatC, ImmC, and rHBc, which contain nucleic acids interacting with the CTD 

to different extent, EmpC do not exhibit this interaction retracting the CTD inside the lumen 

of the capsid. This hypothesis is in agreement to the observation that MatC, ImmC and rHBc 
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are more stable leading to the consequence that capsid breathing would be more seldom 

resulting in less CTD exposure88. 

The second model also explains the presence of Imp.β in the capsid lumen as its size of 14 x 

4.6 nm209 does not allow diffusion through the fenestrations of the capsid. 

After binding to an IBB, Imp.β wraps around the IBB leading to an essentially globular shape 

with a diameter of 8.5 nm210. Capsids lumen has a diameter of 26 nm allowing internalization 

of <50 Imp.β molecules preventing that additional Cp- Imp.β complexes integrate into the 

capsid. Association of released Cp hexamers by capsid breathing, which became bound to  

Imp.β would thus prevent re-association with the capsid, which would result in broken 

capsids as we observed in EM micrographs. However, only broken particles were seen and 

not complete dissociated ones, which leads to the hypothesis that Imp.β binding may favor the 

disassembly by decreasing energetic barriers rather than directly causing it. 

The conclusion of an Imp.β-mediated destabilization is also consistent with the finding that 

EmpC in complex with Imp.β showed an increased antibody reactivity to the polyclonal anti 

capsid antibody that mainly binds to the tips of the capsid spikes. Further, EmpC did not 

migrate as a single band but as a smear supporting disintegration. Such an inhomogeneous 

migration was also observed after acid-denaturation of phosphorylated rHBc36. Neither an 

increase in signal strength nor an inhomogeneous migration was observed in the presence of 

Imp.α leading to the hypothesis that the increased antibody reactivity is caused by exposure of 

additional epitope(s). Importantly, a similar increase of signal strength or an inhomogeneous 

migration was not observed using MatC, suggesting that MatC was not destabilized, neither 

by Imp.β nor by Imp.α nor by Imp.α/Imp.β.  

While a missing destabilization by Imp.α is not surprising as the Imp.α NLS-interaction has 

the same affinity of 3 kcal/mol211 as the Cp subunits (3-5 kcal/mol;212), a destabilization in the 

presence of both Imp.α and Imp.β is surprising as Imp.β increases the affinity to an NLS by 

nine-fold 213. We interpret this finding in that the import receptors gained access to the 

externally exposed CTD part comprising the NLSs but not to CTDs of isolated Cp hexamers 

derived from capsid breathing. This means that capsid breathing occurs less – if at all - in 

MatC compared to EmpC. This in turn is consistent with the higher stability of MatC and with 

our observation that the genome of MatC was not degraded upon addition of Nuclease S7. 

Furthermore, this conclusion is in agreement with the observation that UV crosslink of MatC 

leads to DNA Cp bonds, indicating DNA Cp-interaction, while EmpC cannot be linked by 

this method, as shown by Rabe et al41 and by unpublished observations of our group. 
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We further observed that the capsid Imp.β-binding was DTT-dependent at 2 mM 

concentration, which mimics the reducing intracytoplasmic environment. This finding may 

either indicate a low activity of Imp.β, which is sensitive to oxidization, or may suggest that 

the capsids expose more Imp.β binding sites upon reduction. Our estimation that 40% of 

Imp.β was active in the absence of DTT however favors that DTT acted rather on the capsids 

than on Imp.β. 

This assumption is supported by the observation that DTT treatment changed the migration 

pattern of Cp dimers during SDS PAGE. The finding that monomeric Cp migrated with and 

without DTT in a 15 kDa band confirms that the folding of only the dimers changed, while 

the monomers exhibited a stable SDS-resistant folding. The fact that the dimers were not 

dissociated to Cp monomers suggests that the better accessible disulfide bond between 

Cys185 were reduced and that the inner bonds between Cys61 were not affected. However, 

the observations that only a minority of Cp exhibited disulfide bonds but that reduction is 

important for EmpC Imp.β-interaction implies that the bonds have a dominant negative effect 

on capsid breathing. Nonetheless, the Imp. binding-properties and the low fraction of disulfide 

bonds-linked Cp indicated that EmpC in the presence of DTT were in a in vivo-like state 

similar to intracellular capsids.  

In summary, our data indicate for the first time that EmpC differs from MatC, ImmatC and 

phosphorylated rHBc by its nuclear import receptor binding, which is caused by different 

exposure of the CTD. Our findings indicate that this different exposure is based on two 

different mechanisms, either full CTD exposure due to capsid breathing or partial exposure by 

topology change of the CTD through the fenestrations in quasi-six-fold symmetry. Imp.β 

binding upon capsid breathing can further cause EmpC disassembly at least under in vitro 

conditions. However, it must be considered that microinjection of EmpC into the cytoplasm of 

Xenopus laevis oocytes led to the accumulation of assembled EmpC at the nuclear pore82. 

Correlating the data of this work (95% NPCs decorated with ~7 capsids after microinjection 

of 5 x 108 EmpC) and the estimated number of 5 x 107 NPC per oocyte214 , in fact indicate 

that – if at all - only a minority of EmpC become disintegrated prior to their arrival at the 

nuclear pore. 

Cytosolic EmpC disassembly, however, may have an important function in hepatitis B. Cp, 

which have a much shorter half-life than capsids are degraded by the proteasome215 and the 

degraded fragments enter the TAP pathway for being transported in an MHC class I-

dependent pathway to the plasma membrane. In particular in acute HBV infection these Cp-

derived peptides are recognized by the CD8+ T cells16 activating the inflammatory response. 
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Consistently, cytoplasmic localization of Cp has been linked to chronic infection and strong 

hepatocellular injury. 

In this scenario the transport of EmpC into the nucleus would be a mechanism by which HBV 

limits the cellular immune response. 
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Study of HBV capsid disassembly 

For HBV the mechanism by which capsid disassembly is unclear. Rabe et al., in 2003 showed 

that ImmC and MatC produced in HepG2.2.15 cells reach the nuclear side of the NPC in 

digitonin permeabilized cells but only MatC generate intranuclear capsid staining and released 

viral genomes41, indicating genome maturation-dependent differences. UV cross-linked MatC 

in contrast were transported into the nuclear basket but failed to enter the nucleus showing 

that capsid disassembly is required for entering the nucleus85. Thus, the presence of 

intranuclear capsids is a surrogate marker for the disassembly and genome release. 

It has further been observed that Cp reassembles inside the nucleus, indicating that both the 

nuclear and the cytoplasmic environment support the assembly reaction of the capsid216.  

Together, these evidences suggest that the environment where the disassembly takes place is 

likely after the transport towards the NPC, but before the entry in the karyoplasm, likely the 

NPC. At the level of the NPC, it has been shown that ImmC, MatC and phosphorylated rHBc 

interacts with the C-terminal domain of Nup153, that is part of the nuclear basket but which 

was also described to be cytosolically exposed85. 

We thus investigated the disassembly of MatC, and especially the role of the Nup153. We 

found that the C-terminal domain of Nup153 interacts with the Cp in ratio 1:1, a ratio 

implying that Nup153 binds to a different site then Imp.β. In agreement, it has been shown 

that capsids lacking the CTD were able to bind Nup153 demonstrating that the binding of 

Nup153 to the capsid is independent from the CTD, region at which Imp.β. binds85. Further, 

we observed that the binding of the His-C2Nup153 to EmpC was heterogeneous but resulted 

in a different surface charge of capsids and the capsid-Nup153 complex.  

We further observed that the presence of the His-C2Nup153 fragment did not enhance the 

capsid disassembly; rather it seemed to stabilize it. When the fragment was added in solution 

or solid-phase fixed to mimic the conditions of the nuclear basket, the amount of degraded 

genome by Nuclease S7 was slightly decreased, strongly arguing against an impact on capsid 

disassembly. As Nup153 attaches to the outer surface of the capsids, this finding is in 

agreement to our conclusion that Imp.α/β also binding to capsid’s exterior did not disassemble 

MatC.  

The stabilization could be explained by the need of HBV capsids to complete their maturation 

so that only MatC would be able to release their genome. In this scenario, Nup153 would be 

necessary to arrest the capsid until genome maturation is complete. In agreement with this 

assumption are conclusions of Dhason et al. who proposed a model in which the formation of 
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dsDNA facilitates capsid disassembly by acting as a coiled spring217. Contradictious to this 

model is the observation that capsid release is efficient in permeabilized cells in which no 

deoxynucleotides are added41,216  

We have to consider, however, that in our experiments all Cp were covered with Nup153, 

while in vivo just 8 – 16 copies of Nup153 are present in the nuclear basket. This would still 

allow interaction of other cellular factors potentially involved in genome release.  

In the control reaction we used MatC, which were preincubated in different acidic pHs. The 

observation that the genome became accessible after pH 5.5 could be interpreted that 

acidification is relevant in infection as shown for numerous other viruses as adeno218,219- and 

hepatitis C viruses220,221. Such a destabilization upon cell entry would then result in release of 

the polymerase-DNA genome complex, which is karyophilic at least when extracted capsids 

of the WHV222. This model would be in agreement with the finding of nuclease sensitive 

HBV genomes after infection88. Experiments of others however showed that the treatment 

with by Bafilomycin A1 blocks HBV infection80. Addition of Nup153 to the pre-acidified 

capsids also inhibited MatC genome degradation although an unspecific inhibition of the 

nuclease by the Nup153 fragment was excluded. The experiments thus confirmed that 

Nup153 is rather a stabilizing factor and that capsid disassembly requires additional factors.  

The conclusion of a cellular factor was confirmed by using digitonin-permeabilized cells, 

using nuclear capsids as read-out. pH 5.5 pretreatment did not increase nuclear capsids 

indicating that a pre-opening of the capsid is not required for nuclear entry of the capsids. 

WGA which blocks the NPC by interacting with the O-linked β-N-acetyl glucosamine (O-

GlcNAc) of glycosylated Nups196 blocked nuclear entry of the control protein, which is 

agreement to previous results41.  

Replacing permeabilized cells with isolated nuclei, we observed that the nuclear fraction 

contained mostly nuclease sensitive genomes, while the genomes in the supernatant were 

dominantly nuclease resistant. The fact that not all nuclear genomes could be degraded can be 

explained by a capsid interaction with the nuclear envelope, which was also part of this 

fraction or by an incomplete separation due to technical obstacles arising from the small 

volumes. The latter interpretation is supported by the observation that WGA was not fully 

blocking generation of nuclease sensitivity.  

Most of the capsid in this experiment rested however in the supernatant and we conclude that 

the transport competence of isolated nuclei is much weaker than that of digitonin-

permeabilized cells. In fact, quantification of transport and genome liberation by Rabe et al. 

showed that all MatC released their genome using similar capsid amounts216.  
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The experiment further showed that a minor fraction of the genomes in the supernatant 

became nuclease sensitive. Aside of technical reasons linked to separation of the fractions as 

mentioned before, these results could also mean that MatC just need contact with the 

cytoplasmic face of the NPC for capsid opening. This interpretation is not contradictious to 

the presence of capsids in the nuclear basket as EM in thin sections hardly allow the 

visualization of capsids integrity. It is however in agreement with findings showing free 

cytoplasmic HBV DNA after infection although it must be considered that the authors used 

the same technique for separation of nuclei and cytoplasm88. 

In summary, we conclude that the used in vitro approaches were unable to demonstrate the 

need of Nup153 for genome release or capsid opening. However, our data can not exclude 

that a larger portion of Nup153 is required to trigger the disassembly of the capsid as we 

restricted our analysis to the C2 fragment which only represents one part of the capsid 

interacting domains identified on this nucleoporin.  
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Establishment of the Anchor technology to HBV 

In the light of the partially conflicting interpretations – genome release outside the nucleus or 

exclusively inside – and the limited significance of the test system,s we established a system 

of single genome visualization for HBV.  

We first inserted the Anch sequence into the HBV genome. The disruption of at least one 

ORF required trans-complementation as it was successfully done by others using HBV223,224. 

Aside of controlling the formation of capsids, we also verified the formation of rcDNA, which 

depends on multiple DNA sequences, which are poorly characterized as 5R, 3R and M 

important for circularization. Southern blotting revealed a ratio of 90:10 rcDNA molecules: 

dsl DNA molecules, which is also found in wt HBV from cell culture and patients225. 

Transfection assays confirmed the functionality of the methods by showing the formation of 

green dots when the Anch constructs plasmids were added to OR-DGFP expressing cells. The 

dots were of different size and intensity as expected from DNA lipofection, which causes 

DNA aggregates. 

Production of properly folded capsids was proven by migration in NAGE migration and 

polyclonal antibody reactivity, which were identical as wild type HBV virions produced in 

HepG2.2.15. 

In addition, we established a purification method to purify high infectious particles. It was 

shown by Seitz et al. that using a heparin-based purification system two population of HBV 

virion were obtained: not binding to heparin and binding to heparin. The latter was proved to 

be highly infectious, when added to HepaRG cells69. 

Performing protein lipofection using capsids with the pseudo-typed genome, we observed that 

incubation of OR-DGFP-expressing HuH-7 cells with HBV EAP pseudo particles resulted in 

green dots exclusively into the nucleoplasm. Dots appeared at the nuclear membrane and 

remained immobile throughout the 4 h observation period.   

To perform infection experiment we used NTCP expressing cells where we verify the 

expression of NTCP by IF and WB. The first confirmed the correct localization of the NTCP 

on the plasma membrane of HepG2 cells, while the second confirmed the glycosylation status 

of the receptor. In infection we observed only few positive cells after 2h p.i. that however 

increased after 3 days post infection. This, together with the lipofection experiment confirms 

that the limiting step during HBV infection is the entry into the host cells rather than the 

transport and the genome liberation. 
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HBV genomes undergo genome repair followed by chromatinization. The assays before gave 

proof that the genome of the Anch-bearing rcDNA is released, but did not give any evidence 

about detection after chromatinization and in particular integration; the latter important for 

applying the system to cancer research. We thus investigated if integrated HBV Anch 

sequences were still detectable. We observed that after lentiviral transduction of the HBV 

Anch sequence and 10 passages of the cells that, the pseudoviral genome was detectable in 

11% of transduced cells. This suggests that the Anch did not allow efficient association of 

OR-DGFP despite of transcriptional activity of the inserted sequence. Detailed analysis 

showed that the dots were however still visible in not condensed chromatin. This indicates 

that not histone-association but the condensation of the chromatin suppressed DGFP-OR 

binding. We thus conclude that cccDNA could be detected after histone association but that 

the integration of integrates in particular in mitotic cells is limited. 

In summary, our HBV Anch experiments showed that this system is a powerful tool for 

investigating HBV genome liberation and suggest that unsolved questions like the fate of the 

genome upon cell division can be addressed. Further, it could serve a tool in the validation of 

drugs targeting cccDNA but higher yield of infections must be obtained. It is nonetheless the 

first system allowing HBV genome detection not only on the single molecule level but also in 

real time. Its use in integration studies remains however more complicated. 
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List of abbreviations 

Au: Australian Antigene 

BSA: bovine serum albumin 

BSL: biosafety level 

cccDNA: covalently closed circular DNA 

CD8 + T Cell: cytotoxic T cells 

Cp: Core/Capsid Protein 

cryo-EM: cryo Electron Microscopy. 

CTD: carboxyl-terminal domain of the Core Protein 

DAPI: 4',6-diamidino-2-phenylindole 

DHBV: duck hepatitis B virus 

DHBV: duck hepatitis B virus 

DMSO: Dimethyl sulfoxide 

DNA: Deoxyribonucleic acid 

dNTP: Deoxynucleotide 

DR: direct repeat 

E. coli: Escherichia coli 

EAP: Early Anch plasmid 

EmpC: empty capsids 

Enh: enhancer  

FG-repeats: phenylalanine-glycine repeats 

GRE: glucocorticoid-responsive element 

GSHBV: grand squirrel hepatitis B virus 

HBeAg: HBV preCore antigene 

HBV: Hepatitis B virus  

HBx: HBV protein x 

HCC: hepatocellular carcinoma 

HIV-1: Human immunodeficiency virus 1 

hNTCP: human NTCP 

HPSG: heparan sulfate proteoglycans 

Hsp90: molecular chaperon complex 90 

IBB: Importin β binding domain 
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IF: Immunofluorescence 

ImmC: immature capsids 

Imp.α: Importin α 

Imp.β: Importin β 

L/LHBs: HBV Large surface protein 

LAP: Late Anch plasmid 

LSD1: lysine-specific demethylase 1  

M/MHBs: HBV Middle surface protein 

MatC: mature capsids 

MOI: Multiplicity of infection 

NAGE: Native Agarose Gel Electrophoresis  

NC: nucleocapsid of HBV 

NEBD: Nuclear envelope breakdown 

NES: nuclear export signal 

NLS: Nuclear Localization Signal 

NPC: Nuclear pore complex 

NTCP: sodium taurocholate cotransporting polypeptide 

NTD: amino-terminal domain of Cp 

Nup153: Nucleoporine 153 

ORF: open reading frame 

PCR: Polymerase chain reaction 

PKC: protein kinase C 

RanBP: Ran binding protein 

RanGAP: Ran GTP-ase activating protein 

rcDNA: relaxed circular DNA 

rHBc: recombinant E. Coli expressed capsids 

RNA: Ribonucleic acid 

RRL: rabbit reticulocyte lysate 

RT: Reverse Transcriptase 

S/SHBs: HBV Small surface protein 

Smc: structural maintenance of chromosomes  

SV40: simian virus 40 

TCA: Trichloroacetic acid  

TOP: topoisomerase 
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TP: terminal protein (domain of RT) 

WGA: wheat germ agglutinin 

WHV: woodchuck hepatitis virus 
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