Skip to Main content Skip to Navigation
Theses

Elaboration de céramiques phosphocalciques pour l'ingénierie tissulaire osseuse : étude de l’influence des propriétés physico-chimiques des matériaux sur le comportement biologique in vitro

Abstract : This transdisciplinary thesis, carried out in collaboration with the SPCTS laboratory (sciences of ceramic processes and surface treatment) and EA 3842 (Cellular homoeostasis and pathologies) of the University of Limoges, is a research project at the interface between biology and chemistry and was devoted to the study of the influence of the physico-chemical properties of calcium phosphate bioceramics on their biological behavior in vitro.The exploration of the processes of interaction between materials and cells remains a major scientific issue, both from a fundamental and applied point of view for the development of highperformance biomaterials. The ultimate objective is to optimize the therapeutic efficiency of phosphocalcic ceramics as substitute materials for bone regeneration.The first part of the thesis is a general bibliographic review presenting the current issues tackled with the clinical needs and limitations of current studies. Knowledge of the biology of healthy bone tissue as well as the regulatory aspects of the bone remodeling process was also discussed in this chapter. It includes also a bibliographic overview of biomaterials and bone regeneration.Chapter 2 relates to the synthesis and the physico-chemical characterization of ceramic materials. HA (hydroxyapatite: Ca10 (PO4) 6 (OH) 2, SiHA (silicated hydroxyapatite: Ca10 (PO4) 5.6 (SiO4) 0.42 (OH) 1.6 and CHA (carbonated hydroxyapatite: Ca9.5 (PO4) 5.5 (CO3) 0.48 (OH) 1.08 (CO3) 0.23, ceramics each with two different microstructures : dense or porous, have been elaborated and thoroughly characterized (porosity, surface topography, wettability, zeta potential, grain size, pore size and distribution, specific surface area). Chapter 3 describes the experimental approach used for the biological evaluation of the interactions between materials and cells. Biological analyzes were performed with two different cell lines. The pre-osteoblastic MC3T3-E1 cell line and the RAW 264.7cell line of monocytes / macrophages, precursors of the steoclasts, (very important for the bone aspects, but less often explored than the osteoblastic lines in the literature). Finally, Chapter 4 reports and comments on the biological results obtained in this work. All biomaterials evaluated are biocompatible, nevertheless, the porous CHA biomaterial was the most promising of the six variants of biomaterials tested.
Document type :
Theses
Complete list of metadatas

Cited literature [193 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01993548
Contributor : Abes Star :  Contact
Submitted on : Friday, January 25, 2019 - 1:01:53 AM
Last modification on : Monday, December 16, 2019 - 10:57:08 AM
Long-term archiving on: : Friday, April 26, 2019 - 11:42:35 AM

File

2017LIMO0003.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01993548, version 1

Collections

Citation

Marie-Michèle Germaini. Elaboration de céramiques phosphocalciques pour l'ingénierie tissulaire osseuse : étude de l’influence des propriétés physico-chimiques des matériaux sur le comportement biologique in vitro. Médecine humaine et pathologie. Université de Limoges, 2017. Français. ⟨NNT : 2017LIMO0003⟩. ⟨tel-01993548⟩

Share

Metrics

Record views

428

Files downloads

136