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Introduction

Background

Algebraic curves have been studied in various forms for thousands of years, yet still today there are many
unsolved problems relating to the subject. In the 19th century, Abel and Jacobi transformed this subject
by associating to any algebraic curve itsJacobian, which is an additive group containing the curve itself,
and which is in particular an example of an abelian variety.

Possibly the most studied algebraic curves areelliptic curves, the Jacobians of which are isomorphic
to the elliptic curves themselves, meaning that a group law can be de�ned directly on the curve. One
consequence of this nice property is that elliptic curves lend themselves in a natural way to modern
cryptographic algorithms, as the rational points on an elliptic curve form a group.

When studying maps between abelian varieties, we will restrict toisogenies, which are surjective
homomorphisms with �nite kernel. In particular, they preserve the identity.

In curve-based cryptography, it is important to develop fast algorithms for computing isogenies, for
computing endomorphism rings, and for counting points on curves de�ned over �nite �elds Fp, where p is
a large prime number. There are many elliptic curve algorithms that have been developed in recent years
to this end, and due to their geometric nature, one may ask if these algorithms can be applied to more
general algebraic curves (by studying their Jacobians).

Overview

In Chapter 1 , we give a (polarisation-preserving) equivalence of categories between abelian varieties
de�ned over a �nite �eld with a given characteristic polynomial of Frobenius and ideals of an order in a
number �eld. The main applications of the results of this thesis concern (Jacobians of) curves de�ned
over �nite �elds, but in many cases it is much easier to prove theoretical results for ideals than for abelian
varieties. We call the statement of this equivalence of categories the Fixed Frobenius Lifting Theorem
(Theorem 1.3.11). This equivalence is well-known and often-used, but the precise statement does not, to
our knowledge, appear in the literature. We prove it as a consequence of similar, but more general, results
of Deligne and Howe, which use the theory of canonical lifts of Lubin, Serre, and Tate.

In Section 1.6, we also give an introduction to the theory of Hilbert modular forms, which we will
need in Chapter 2.

In Chapter 2 , we give a generalisation of the modular polynomial for elliptic curves. A modular
polynomial makes use of thej -invariant of an elliptic curve. For a �eld k and an elliptic curve E=k of the
form

y2 = x3 + Ax + B;

with A; B 2 k, the j -invariant is de�ned by

j (E ) = 1728
4A3

4A3 + 27B 2 ;

and determines the elliptic curve uniquely up to k-isomorphism. For a prime `, we will refer to an isogeny
of degree` as an`-isogeny. There is an irreducible polynomial

� ` (X; Y ) 2 Z[X; Y ]

called the modular polynomial such that given elliptic curves E and E 0 over a �eld k there exists an
`-isogenyE ! E 0 over k if and only if

� ` (j (E ); j (E 0)) = 0 :

vi



We generalise the modular polynomial for elliptic curves to a tuple of modular polynomials for
principally polarised ordinary abelian varieties with real multiplication by the maximal order of a given
number �eld K 0. We can think of elliptic curves de�ned over C as points in the moduli spaceSL2(Z)nH,
and the modular polynomials for elliptic curves can be computed using this interpretation. There are
two common generalisations of this moduli space: Siegel moduli space, which parametrises principally
polarised abelian varieties, and Hilbert moduli space, which parametrises principally polarised abelian
varieties with real multiplication by a �xed number �eld K 0. The generalisation of modular polynomials
to abelian varieties using Siegel moduli space was studied by Dupont [Dup06]. However, even for abelian
surfaces, most practical applications of these Siegel modular polynomials are computationally out of reach,
as the smallest example is already 25.6MB. We give a generalisation of modular polynomials using Hilbert
moduli space. Included in this generalisation is a generalisation of thej -invariant to RM isomorphism
invariants for principally polarised abelian varieties with maximal real multiplication by a �xed number
�eld K 0. Theoretically, it is relatively easy to show that such invariants exist, and computationally, we use
the formulae given by M•uller for K 0 = Q(

p
5) [Mue83] and K 0 = Q(

p
2) [Mue85]. The main contribution

of this chapter is an algorithm to compute these Hilbert modular polynomials, and we have implemented
this algorithm in MAGMA for K 0 = Q(

p
5). The resulting Hilbert modular polynomials are much more

manageable than the Siegel equivalent, although the algorithm is very slow so computing higher levels
would still require some work.

In Chapter 3 , we give a generalisation of Kohel's structure theorem for isogeny graphs. In his PhD
thesis [Koh96], David Kohel studied the structure of isogeny graphsof elliptic curves. An `-isogeny graph
of elliptic curves is an undirected graph for which each vertex represents aj -invariant of an elliptic curve
over a �eld k, and an edge betweenj (E ) and j (E 0) represents a pair of`-isogenies betweenE and E 0 that
are dual to each other (up to isomorphism).

Kohel gave a structure theorem for` prime and ordinary E=Fq (with special cases occurring atj (E ) = 0
and 1728). Among other things, Kohel's structure theorem is a key component in e�ciently computing
the endomorphism ring of an ordinary elliptic curve over Fq.

We generalise Kohel's theorem to a structure theorem for isogeny graphs of principally polarised
ordinary abelian varieties over Fq with real multiplication by the maximal order of a �xed real number
�eld K 0. The isogeny graphs we study in this thesis are graphs of isogenies depending on a parameter� ,
which is a totally positive element of K 0 that generates a prime ideal inOK 0 . In Section 3.1, we state the
main theorem of this chapter, the Volcano Theorem, and the rest of the chapter is dedicated to the proof,
except for Section 3.10, in which we give an example computation of an isogeny graph. This problem has
also been studied by Ionica and Thom�e [IT14], who give a structure theorem for Jacobians of curves of
genus two with real multiplication by the maximal order of a �xed real quadratic number �eld of narrow
class number 1, and in parallel to the work in this thesis, by Brooks, Jetchev, and Wesolowski [BJW17],
who also prove Theorem 3.1.9, using di�erent methods, with the added assumption that the CM-type is
primitive. Brooks, Jetchev, and Wesolowski also studied the structure of isogeny graphs for which the
isogenies depend on a parameterl, a prime ideal in OK 0 which is not necessarily generated by a totally
positive element � 2 O K 0 .

Chapter 4 is a joint article [Bal+17] with Ballentine, Guillevic, Lorenzo-Garc��a, Massierer, Smith, and
Top, in which we generalise the Atkin{Elkies{Schoof algorithm to count points on elliptic curves over �nite
�elds. The Atkin{Elkies{Schoof algorithm makes use of factorisation patterns of modular polynomials
to give a polynomial time algorithm for counting points on elliptic curves. We give a polynomial time
algorithm to count points on genus 2 curves over a �nite �eld with real mutiplication by the maximal order
a �xed number �eld K 0 using the factorisation patterns of the Hilbert modular polynomials of Chapter 2.

Appendix A gives the technical category-theoretical details necessary for the proof of the equivalence
of categories given in Chapter 1, Theorem 1.3.11.
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Chapter 1

The theory of canonical lifts and
other preliminaries

In much of this thesis we will study principally polarised ordinary abelian varieties over Fq, where q is a
prime or a power of a prime. In this chapter, we specialise results of Deligne and Howe that allow us to
work with ideals and elements of CM-�elds instead of with varieties overFq. The proofs of these results
are based on the lifting theorems of Lubin, Serre and Tate. The main theorem of this chapter, the Fixed
Frobenius Lifting Theorem (Theorem 1.3.11), is an equivalence between two categories, so we now proceed
by de�ning these categories.

1.1 Principally polarised abelian varieties

We �rst summarise some preliminaries on abelian varieties. For details on this subject there are many
good textbooks, for example Mumford's book [Mum08].

De�nition 1.1.1. An abelian variety A over a �eld k is a complete group variety overk.

Remark 1.1.2. If A is an abelian variety de�ned over C then A(C) is complex analytically isomorphic
to a complex torus.

De�nition 1.1.3. An isogeny is a morphism of abelian varieties that is �nite as a morphism of varieties
and surjective. The degreeof an isogeny is its degree as a morphism of varieties.

De�nition 1.1.4. For an abelian variety A over a �eld k, we de�ne the Picard group of A, written as
Pic(A), to be the group of isomorphism classes of line bundles on A.

Proposition 1.1.5. For an abelian variety A over a �eld k and a line bundle L on A, the map de�ned by

� L : A( k) �! Pic(A)
x 7! [T �

x L 
 L � 1];

whereTx denotes translation by x and [�] denotes the isomorphism class of� in Pic(A), is a homomorphism.

Proof. This follows from the Theorem of the Square, see e.g. [GM07, Corollary 2.10].

De�nition 1.1.6. For an abelian variety de�ned over an algebraically closed �eld k, we de�ne Pic0(A) to
be the subgroup ofPic(A) consisting of classes of line bundlesL such that the morphism � L is identically
0.

Proposition 1.1.7. Given an abelian variety A over an algebraically closed �eldk, the group Pic0(A)
carries a canonical structure of an abelian variety overk.

Proof. See [Mum08, Chapter III, Corollary 5].

De�nition 1.1.8. Given an abelian variety A over an algebraically closed �eldk, we de�ne the dual
abelian variety A_ of A to be Pic0(A).

1



Remark 1.1.9. To de�ne the dual abelian variety A_ of an abelian variety A over an arbitrary �eld k,
we need some basic theory of schemes. We have omitted that here for simplicity; the interested reader can
refer to [MFK94, Chapter 6].

Proposition 1.1.10. Given an abelian variety A over an algebraically closed �eldk, if L is an ample
line bundle on A, then we associate toL an isogeny of abelian varieties� L : A ! A_ which is given on
points by

x 7! [T �
x L 
 L � 1]:

Proof. See [GM07, Theorem 6.18].

De�nition 1.1.11. For an abelian variety A over an arbitrary �eld k, we de�ne a polarisation to be an
isogeny (overk)

� : A �! A_

such that there exists an ample line bundleL of A � k for which � = � L , where � L is the canonical isogeny
of Proposition 1.1.10. We de�ne aprincipal polarisation to be a polarisation that is an isomorphism.

1.2 Lifting ordinary abelian varieties over Fq to ideals

De�nition 1.2.1. A CM-�eld K is a totally imaginary quadratic extension of a totally real number
�eld K 0. We denote by � the generator of the Galois groupGal(K=K 0), and we refer to this ascomplex
conjugation. For a CM-�eld K of degree 2g over Q, we de�ne a CM-type of K to be a set ofg embeddings

f � : K ,! Cg

that are pairwise non-complex conjugate.

De�nition 1.2.2. For q a prime power, write Ord Fq for the category of ordinary abelian varieties over
Fq. For a Weil q-number � , and a CM-�eld K such that K = Q(� ), write � (� ) for the minimal polynomial
of � over Q. For A 2 Ord Fq , write � (Frobq(A)) for the characteristic polynomial of the q-power Frobenius
endomorphism of A. We de�ne Ord � to be the full subcategory of Ord Fq with objects given by

f A 2 Ord Fq : � (Frobq(A)) = � (� )g:

Note that for every A 2 Ord � the complex conjugate� of � also de�nes an endomorphism onA as
the multiplication-by- q map [q] factors through [� ]. In particular, every A 2 Ord � in this category comes
with a map

�A : Z[�; � ] ,! End(A)
� 7! Frobq(A)
� 7! Verq(A) :

Then for every g 2 HomOrd � (A; A0) and every r 2 Z[�; � ], we have that �A (r ) � g = g � �A 0(r ). From now
on, we omit � from the notation.

De�nition 1.2.3. Given a prime power q, a Weil q-number � , and a CM-�eld K such that K = Q(� ),
we de�ne Id � to be the category with objects given by the fractional Z[�; � ]-ideals, where for any objects
a and b of Id � , the morphisms in Id � from a to b are given by

Hom(a; b) = f � 2 K : � a � bg:

De�nition 1.2.4. We say that a Weil q-number � is ordinary if at least half of the roots in Qq of the
minimal polynomial of � are q-adic units.

The Fixed Frobenius Lifting Theorem, Theorem 1.3.11, will state that if � is an ordinary Weil q-number
then there is an equivalence of categories

Ord � �! Id � ;

and that this functor satis�es some useful properties.
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1.3 The Fixed Frobenius Lifting Theorem

De�nition 1.3.1. Write Ord Fq for the category of ordinary abelian varieties overFq. We de�ne POrd Fq

to be the category whose objects are pairs (A; � ) where A 2 Ord Fq and � : A ! A_ is a principal
polarisation of A. We de�ne a morphism f : (A; � ) ! (A0; � 0) in POrd Fq to be an isomorphism of abelian
varieties f : A ! A0 for which the following diagram commutes:

A
f //

�
��

A0

� 0

��
A_ (A 0)_ :

f _
oo

De�nition 1.3.2. Recall the notation � from De�nition 1.2.2. We de�ne POrd � to be the full subcategory
of POrd Fq with objects given by

f (A ; � ) 2 POrd Fq : � (Frobq(A)) = � (� )g:

De�nition 1.3.3. Let � be a Weil q-number such that K = Q(� ) is a CM-�eld of degree 2g over Q. Let
(A; � ); (A0; � 0) 2 POrd � be g-dimensional abelian varieties, and letK 0 be the maximal totally real sub�eld
of K . Recall that End(A) � End(A) 
 Q = K . For � 2 O K 0 , if � 2 End(A), we de�ne a � -isogeny

f : (A ; � ) �! (A 0; � 0)

to be a morphism f : A ! A0 in Ord Fq such that the diagram

A
�

  

A
�oo f //A0

� 0

��
A_ A0_

f _
oo

commutes.

Remark 1.3.4. Note that the morphisms in POrd � are exactly the 1-isogenies.

We now de�ne, in several steps, the notion of a polarisation on objects inId � that will be functorially
compatible with the notion of polarisation on objects in Ord � . Fix a prime power q and a Weil q-number
� such that K = Q(� ) is a CM-�eld. We �rst show how to associate a CM-type of K to � , following Howe
[How95, Notation 4.6].

Let k be an algebraic closure ofFq and write Qur
q = W (k), where W (k) denotes the ring of Witt vectors

of k. Now �x one embedding j : Qur
q ,! C, and identify Qur

q with its image under j so that Qur
q � C.

Now, write Qq and Q for the algebraic closures ofQur
q and Q inside C respectively. We then obtain the

following diagram of inclusions (some of which depend onj ):

C

Qq

Qur
q

Q

Qq

Q;

so that in particular the q-adic valuation on Qur
q extends uniquely to a q-adic valuation vj on Qq � Q.

De�nition 1.3.5. (c.f. [How95, Notation 4.6])
For a rational prime power q, �x j : Qur

q ,! C as above and de�nevj to be the q-adic valuation on Q � C
obtained from j . Then given a CM-�eld K and an algebraic integer� such that K = Q(� ) and � � = q,
we de�ne the (�; j ){CM-type of K to be

� �;j := f � : K ,! C : vj (� (� )) > 0g:
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De�nition 1.3.6. With notation as in De�nition 1.3.5, for any x 2 K , we say that x is � �;j {positive-
imaginary (respectively non-positive-imaginary) if, for every � 2 � �;j , we have that � (x)=i 2 R> 0

(respectively R� 0).

De�nition 1.3.7. For an object a 2 Id � , we de�ne the dual of a to be the fractional Z[�; � ]-ideal

a_ = f � 2 K : tr( � a) � Zg:

A polarisation of a is a non-zero � �;j -positive-imaginary element � 2 HomId � (a; a_ ). If in addition
� a = a_ , then we say that � is principal . For a morphism � 2 HomId � (a; b), we de�ne the dual of � to be

� _ = � 2 HomId � (b_ ; a_ ):

Remark 1.3.8. Suppose thata; b 2 Id � and � is a polarisation of a. Observe that for any totally real
totally positive element � of K , if �� 2 HomId � (b; b_ ), then �� is a polarisation of b.

Next, we de�ne PId � and the notion of � -isogeny exactly as we de�nedPOrd � .

De�nition 1.3.9. Fix a prime power q, a Weil q-number � , and a CM-�eld K such that K = Q(� ).
We de�ne the category PId � to be the category with objects given by pairs (a; � ), where a 2 Id � and
� 2 HomId � (a; a_ ) is a principal polarisation of a. We de�ne a morphism (a; � ) ! (a0; � 0) 2 PId � to be
an isomorphism� 2 HomId � (a; a0) in Id � such that

� = �� 0�:

De�nition 1.3.10. For (a; � ); (a0; � 0) 2 PId � and � 2 End(a), a � -isogeny

� : (a; � ) ! (a0; � 0)

is a morphism � 2 HomId � (a; a0) such that

�� = �� 0�:

Theorem 1.3.11 (Fixed Frobenius Lifting Theorem) . Fix a prime power q, an ordinary Weil q-number
� , and let K be the CM-�eld Q(� ). Then there exists an equivalence of categories

T� : Ord � �! Id �

that preserves the notions of dual and polarisation, and preserves the action ofZ[�; � ]. (See Remark 1.3.12
for formal de�nitions.)

Note that as T� preserves the notion of polarisation, it is automatic that it preserves the notion of
� -isogeny.

Remark 1.3.12. Suppose thatC and D are categories, each equipped with an involution called dual
and denoted as

_ : C ! C and _ : D ! D:

We say that a functor F : C ! D preserves the notion of dualif it comes with a natural isomorphism
f : F � _ ~! _ � F .

Suppose that for all objectsA in C (resp. D) we have a subsetPA � Hom(A; A_ ) of `polarisations'
such that for every isomorphismm : B ! A in C (resp. D), the map

Hom(A; A_ ) �! Hom(B; B_ )
' 7! m_ 'm

induces a bijection betweenPA and PB . Given a functor F = ( F; f ) : C ! D preserving the notion of
duals, we say that F preserves the notion of polarisationif for all objects A 2 C the map

Hom(A; A_ ) �! Hom(F (A) ; F (A) _ )
� 7! f A � F (� )

induces a bijection betweenPA and PF (A) .
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We show in Appendix A that if functors F : C ! D and G : D ! C de�ne an adjoint equivalence
of categories andF preserves the notions of dual and polarisation, thenG also preserves the notions of
dual and polarisation. By [Lan78, Theorem IV.4.1], every equivalence of categories is one direction of an
adjoint equivalence of categories.

Let R be a commutative ring and suppose thatC and D are R-linear categories (i.e. the setsHom(A; B)
are R-modules and composition of morphisms isR-bilinear). We say that F preserves the action ofR if

F : HomC (A ; B) �! HomD (F (A) ; F (B))

is R-linear.

The remainder of this chapter is dedicated to de�ning the functor T� , and to showing how Theorem 1.3.11
follows from the work of Deligne and Howe in [Del69] and [How95] via the lifting theorems of Serre, Tate
and Lubin.

1.4 The theory of canonical lifts

In order to write down the functor of Theorem 1.3.11, we require the notion of a `Serre-Tate lift' of both
an ordinary abelian variety A over a �eld k of positive characteristic and of a morphism of ordinary
abelian varieties overk. Categorically lifting ordinary abelian varieties over k = Fp to the ring Wn (k) of
Witt vectors of length n was �rst studied by Lubin, Serre, and Tate in a seminar, skeleton notes of which
can be found at [LST64]. A simpler proof of their main lifting theorem was later found by Drinfeld and
written down by Katz in [Kat81, Chapter 1]. The machinery required to use this theorem to lift ordinary
abelian varieties overFq to abelian schemes overQur

q was written down by Messing in [Mes72]; the version
of the lifting theorems that we state here are as stated by Messing.

1.4.1 Serre-Tate lifts of ordinary abelian varieties

In this section we show how to lift ordinary abelian varieties over a �nite �eld k to abelian schemes over the
Witt vectors W (k) of k; we �rst recall the de�nition of an abelian scheme (c.f. [MFK94, De�nition 6.1]).

De�nition 1.4.1. For a noetherian schemeS, an abelian schemeover S is de�ned to be a proper smooth
group S{scheme of which all �bres are geometrically connected.

Proposition 1.4.2. It is equivalent to de�ne an abelian scheme to be a proper smooth group scheme
over S of which all �bres are abelian varieties. In particular, when k is a �eld, we have that A is an
abelian Spec(k)-scheme if and only if A is an abelian variety.

Proof. Suppose thatA is an abelian scheme over a noetherian schemeS. Then every �bre of A is a proper
smooth geometrically connected group scheme over a �eld. A �bre being proper implies in particular that
it is of �nite type and separated, and a �bre being smooth and geometrically connected implies that it is
geometrically irreducible (see [Stack-Exchange]). Therefore every �bre ofA is a �nite type, separated,
geometrically irreducible group scheme over a �eld, hence a variety. Every �bre is a group object by
de�nition, so a group variety. The reverse direction is clear.

Fix a perfect �eld k of characteristic p > 0, and write W (k) for the ring of Witt vectors of k.

Theorem 1.4.3. Let A be an ordinary abelian variety de�ned overk. Then, up to unique isomorphism,
there is a projective abelian schemeB ! W (k) such that B � W (k) k = A and the mapEnd(B) ! End(A)
is bijective.

Proof. See [Mes72, p. V.3.3].

De�nition 1.4.4. For an ordinary abelian variety A de�ned over k, we de�ne the Serre-Tate lift of A to
be the projective abelianW (k)-scheme satisfying the conditions of Theorem 1.4.3.

Theorem 1.4.5. Let A and A0 be ordinary abelian varieties overk and let B and B0 be the Serre-Tate
lifts of A and A0 respectively. Then the map

� : Hom(B; B0) �! Hom(A; A0)

is bijective.
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Proof. See [Mes72, p. V.3.4].

De�nition 1.4.6. For A, A0, B, B0 and � as in Theorem 1.4.5 andf 2 Hom(A; A0), we de�ne the
Serre-Tate lift of f to be � � 1f 2 Hom(B; B0).

1.4.2 Deligne lifts of ordinary abelian varieties

Deligne used the lifting theorems Theorem 1.4.3 and Theorem 1.4.5 to represent ordinary abelian varieties
over �nite �elds as linear algebra objects over Z, for which he de�ned the following category:

De�nition 1.4.7. (c.f. [How95, De�nition 4.1])
For a prime power q, we de�ne the category Del q to be the category whose objects are pairs (�; F ), where
the � are �nitely generated free Z-modules, and for a given �, the F are endomorphisms of � such that

1. the endomorphismF 
 Q of � 
 Q is semi-simple, and its eigenvalues inC have magnitudeq1=2,

2. at least half of the roots of the characteristic polynomial of F in Qq, counting multiplicities, are
p-adic units, and

3. there is an endomorphismV of � such that F � V = q.

The morphisms
(� ; F ) �! (� 0; F 0)

of Del q are homomorphisms' : � �! � 0 of Z-modules such that ' � F = F 0 � ' .

Remark 1.4.8. In Theorem 1.4.9 and in the rest of this thesis, for an abelian varietyA over a �eld k,
and a �eld embedding j : k ,! k0, we will write A � j k0 or A � k0 for A � Spec(k ) Spec(k0).

Theorem 1.4.9 (Deligne's lifting theorem). For a prime power q, �x an embedding j : Qur
q ,! C. Let

Ord Fq be the category of ordinary abelian varieties de�ned overFq, and for an object A in Ord Fq , let
B=Qur

q be the Serre-Tate lift of A � Fq. De�ne

D(A) = H1(B � j C; Z):

Let Frobq(A) be theq-power Frobenius endomorphism onA, let Frobq(B) be its Serre-Tate lift, and let
Frobq(B) be the endomorphism induced byFrobq(B) � j C on D(A) . Then the functor de�ned by

Ord Fq �! Del q

A 7! (D (A) ; Frobq(B))

is an equivalence of categories.

Proof. See [Del69, Th�eor�eme 7].

We will in fact only use a special case of Deligne's lifting theorem, stated in Corollary 1.4.12.

De�nition 1.4.10. For a prime power q, a non-negative integerg, an algebraic integer� , and a CM-�eld
K of degree 2g over Q such that K = Q(� ), where q = � � , we de�ne the category Mod � to be the
category of Z[�; � ]-modules that are free of rank 2g over Z.

Remark 1.4.11. Observe that Mod � is equivalent to Id � .

Consider Mod � as a subcategory ofDel q by viewing a Z[�; � ]-module M as a pair (M; F ) where F is
the action of � , and the VerschiebungV is the action of � .

Corollary 1.4.12. For a prime power q, an ordinary Weil q-number � , and a CM-�eld K such that
K = Q(� ), de�ne Ord � as in De�nition 1.2.2 and Mod � as in De�nition 1.4.10. The functor of
Theorem 1.4.9 de�nes a functor

D � : Ord � �! Mod �

that is an equivalence of categories.

Proof. Note that Mod � is exactly the full subcategory of pairs (� ; F ) for which the characteristic
polynomial of the Frobenius F is exactly the minimal polynomial of � over Q. The result then follows
from Theorem 1.4.9.

Remark 1.4.13. The equivalence of categoriesT� of Theorem 1.3.11, and the fact thatT� preserves the
action of Z[�; � ] follow immediately from Corollary 1.4.12. For Theorem 1.3.11, it remains only to show
that the equivalence of categories respects the notions of dual and polarisation.
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1.4.3 Howe lifts of polarised ordinary abelian varieties

Howe ([How95]) gave a notion of polarisation on the objects ofDel q which is compatible with the notion
of polarisation in Ord Fq under the functor given in Theorem 1.4.9. We give in Theorem 1.4.21 the special
case of Howe's lifting theorem that we need in order to prove the Fixed Frobenius Lifting Theorem. We
�rst de�ne polarisations of objects in Mod � , following Howe.

De�nition 1.4.14. For a prime powerq, a Weil q-number � that generates a CM-�eld Q(� ), let � 2 Mod � .
We de�ne the dual of � to be

� _ = Hom Z(� ; Z)

viewed as aZ[�; � ]-module via

Z[�; � ] � � _ �! � _

(r; f ) 7! (� 7! f (r� )) :

Then in particular, � _ 2 Mod � .

De�nition 1.4.15. Let R be a commutative ring with an involution

R �! R
r 7! r;

let M be an R-module, let N be an abelian group, and letf be a Z-bilinear form

f : M � M �! N:

We de�ne f to be R{semi-balanced if for every r 2 R and `; m 2 M , we have that

f (r`; m ) = f (`; rm ):

If furthermore N is an R-module and for everyr 2 R and `; m 2 M we have that

f (r`; m ) = rf (`; m) = f (`; rm );

we say that f is R{sesquilinear.

De�nition 1.4.16. (c.f. [How95, p. 2370])
For a prime power q, a Weil q-number � that generates a CM-�eld Q(� ), an element � 2 Mod � , and
� 2 HomMod � (� ; � _ ) we de�ne the Z-bilinear form associated to � to be

b : � � � �! Z
(s; t) 7! � (s)( t):

One can check that this is a non-degenerateZ[�; � ]{semi-balanced form.

Proposition 1.4.17. For an order O in a number �eld K with an involution � such that O = O, given a
non-degenerateO{semi-balanced formb : � � � ! Z, there exists a unique non-degenerateK -sesquilinear
form S : (� 
 Q) � (� 
 Q) ! K such that b
 Q = tr K= Q � S.

Proof. See [Knu91, Theorem I.7.4.1, p.44].

De�nition 1.4.18. For � 2 Mod � and � 2 HomMod � (� ; � _ ), let b : � � � ! Z be the Z-bilinear form
associated to� . We de�ne the K -sesquilinear form associated to� to be the unique non-degenerate
K -sesquilinear form of Proposition 1.4.17.

Remark 1.4.19. For every � 2 Mod � , given a non-degenerateZ[�; � ]-semi-balanced formb : � � � ! Z,
there is a unique morphism � 2 Hom(� ; � _ ) for which the associatedZ-bilinear form is b given by
� (s)( t) = b(s; t).

De�nition 1.4.20. (c.f. [How95, De�nition 4.8])
Fix a Weil q-number � and a CM-�eld K such that K = Q(� ), and �x an embedding j : Qur

q ,! C.
Recall the de�nition of the CM-type � �;j of K from De�nition 1.3.5, and recall the de�nition of � �;j - -
non - positive - imaginary from De�nition 1.3.6. For � 2 Mod � , we de�ne a j -polarisation of � to be a
morphism

� : � �! � _

such that the sesquilinear formS associated to� is skew-Hermitian (i.e. for every u; v 2 � 
 Q we have
S(u; v) = � S(v; u)) and such that for every � 2 � we have that S(�; � ) is � �;j -non-positive-imaginary.
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The following theorem, a special case of Howe's lifting theorem in [How95, Proposition 4.9], shows
that this de�nition of polarisation is what we should use if we wish to study ordinary abelian varieties
over �nite �elds.

Theorem 1.4.21. For an abelian variety A 2 Ord � with dual abelian variety A_ 2 Ord � and an isogeny
� : A ! A_ in Ord � , let � , � _ 2 Mod � and � 2 Hom(� ; � _ ) be the images under the functor of
Corollary 1.4.12 of A, A_ and � respectively. Let j : Qur

q ,! C be the embedding on which the functor of
Corollary 1.4.12 depends. Then� is a j -polarisation of � if and only if � is a polarisation of A.

Proof. See [How95, Proposition 4.9].

Remark 1.4.22. The �rst step of Howe's proof is a reference to the well-known result that one may lift
polarisations of ordinary abelian varieties over �nite �elds to polarisations of abelian varieties over C, but
the reference [Del69, Theorem 1] cited by Howe in [How95, Proof of Proposition 4.9] does not give a proof.
In private correspondence, Howe was kind enough to provide the following argument for this step.

Recall that we �xed an embedding j : Qur
q ,! C. Let B be the Serre-Tate lift of A 2 Ord � , and write

BC for B � j C.
Let K = End(BC) 
 Q and �x an ample divisor L on BC, so that we have a Rosati involution onK .

Then the Neron-Severi group ofBC (that is, Pic(BC)=Pic0(BC)), when tensored with Q, can be identi�ed
via M ! � � 1

L � � M with the maximal additive subgroup K 0 of K �xed by the Rosati involution. (See
Mumford [Mum08, Application III, page 208].) So to every line bundle M , we can associate a real
(i.e. �xed by Rosati) element of K . And the ample line bundles M are precisely the ones for which
� � 1

L � � M 2 K 0 is totally positive. (See the last paragraph of Section 21 of Mumford [Mum08].)
Now, there is an ample line bundleL on BC whose reductionL is ample (see [Gro61, Corollaire 4.5.14]).

This gives us one polarisation� of B that descends to a polarisation� of A. But an isogeny f : BC ! B_
C

is a polarisation if and only if there exists an ample line bundleM on BC such that f = � M , which is if
and only if f � 1� is a totally positive real element of End(B) 
 Q (by the previous paragraph), and this
condition holds for f if and only if it holds for the reduction f of f .

1.4.4 Proof of the Fixed Frobenius Lifting Theorem

The Fixed Frobenius Lifting Theorem, Theorem 1.3.11, is a consequence of Howe's lifting theorem
Theorem 1.4.21. We only need to show that there is a functor de�ning an equivalence of categories between
Mod � of Z[�; � ]-modules and the categoryId � of fractional Z[�; � ]-ideals that preserves the notions of
dual and polarisation.

Proof of Theorem 1.3.11. By Theorem 1.4.21, the equivalence of categoriesOrd � ! Mod � given in
Corollary 1.4.12 preserves the notions of dual and polarisation. By construction this equivalence also
preserves the action ofZ[�; � ]. We show that the forgetful functor

O� : Id � ! Mod �

1. preserves the action ofZ[�; � ].

2. preserves the notion of duals.

3. preserves the notion of polarisation.

The preservation of the action of Z[�; � ] is immediate asO� maps the morphism in Id � de�ned by �
to the morphism in Mod � de�ned by � , and similarly for � . Observe also thatO� is an equivalence of
categories, and as stated in Remark 1.3.12, ifO� preserves the notions of dual and polarisation then so
does the reverse functor. For (2), givena 2 Id � , we claim that

f a : � 7! (� 7! tr K= Q(�� )) (1.1)

de�nes a natural isomorphism from

O� (a_ ) = O� (f � 2 K : tr( � a) � Zg)

to
O� (a)_ = Hom( O� (a); Z)) :
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As
T : K � K �! Q

�; � 7! tr( �� )

is a non-degenerate bilinear form, it induces an isomorphism ofQ-vector spaces

K �! Hom(K; Q)
� 7! T(�; � );

which when restricted to the subseta � K , gives us exactly the map of (1.1).
For (3), we have to show that the map

HomId � (a; a_ ) �! HomMod � (O� (a); O� (a)_ )
� 7! f a � O� (� ) = ( x 7! tr K= Q(�x � ))

induces a bijection Pa $ PO � (a) of the set of polarisations ofa and the set of polarisations ofO� (a). The
morphism

� : O� (a) �! O� (a)_

x 7! tr K= Q(�x � )

is in PO � (a) if and only if the sesquilinear form associated to� , given by

S : (O� (a) 
 Q) � (O� (a) 
 Q) �! K
(s; t) 7! �st;

is skew-Hermitian and, for every� 2 O� (a), we have that S(�; � ) is � �;j {non-positive-imaginary. But S
is skew-Hermitian if and only if � is totally imaginary, and S(�; � ) is � �;j {non-positive-imaginary for
every � 2 O� (a) if and only if � is � �;j {positive-imaginary. Therefore � 2 Hom(a; a_ ) is in Pa if and only
if f a � O� (� ) 2 PO � (a) , hence (3) holds.

1.5 Maximal real multiplication

In much of this thesis, we will study principally polarised abelian varieties of dimensiong de�ned over C
that have maximal real multiplication , that is, the real part of the endomorphism ring is a maximal order
in a totally real number �eld of degree g over Q. We now give some preliminaries.

De�nition 1.5.1. Fix an ordinary Weil q-number � and a CM-�eld K = Q(� ), and denote by K 0 the
maximal totally real sub�eld of K . Let C � denote one of (P)Mod � , (P)Ord � , or (P)Id � . For each
choice ofC � , every object A 2 C � comes together with an embeddingZ[�; � ] ,! End(A), so we identify
K = Z[�; � ] 
 Q with a subring of End(A) 
 Q. We de�ne C �;K 0 to be the full category of C � consisting
of those A 2 C � such that OK 0 � End(A).

De�nition 1.5.2. Let K 0 be a totally real number �eld of degree g over Q with ring of integers OK 0 ,
and de�ne Ord C;g to be the category of abelian varieties overC of dimensiong. We de�ne the objects
of the category Ord C;K 0 to be pairs (A; � ), where A 2 Ord C;g and � : OK 0 ,! End(A) is an embedding.
A morphism in Ord C;K 0 between two objects (A; � ) and (A0; �0) is given by a morphism f : A ! A0 in
Ord C;g such that the diagram

End(A) 
 Q
g7! f � g� f � 1

//End(A 0) 
 Q

K 0

�

OO

� 0

55

commutes. We de�ne the objects of the categoryPOrd C;K 0 to be triples (A; �; � ), where (A; � ) 2 Ord C;K 0

and � : A ! A_ is a principal polarisation of A, and the image of� is stable under the Rosati involution.
A morphism in POrd C;K 0 between two objects (A; �; � ) and (A 0; � 0; �0) 2 POrd C;K 0 is an isomorphism

f : (A ; � ) �! (A 0; �0)
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in Ord C;K 0 that makes the diagram

A

�
��

f //A0

� 0

��
A_ A0_

f _
oo

commute.

De�nition 1.5.3. Let K 0 be a totally real number �eld with ring of integers OK 0 . For

(A ; �; � ); (A 0; � 0; �0) 2 POrd C;K 0

and � 2 O K 0 , we de�ne a � -isogeny f : (A; �; � ) ! (A0; � 0; �0) to be a morphism f : (A; � ) ! (A0; �0) in
Ord C;K 0 such that the diagram

A
�

  

A
� ( � )oo f //A0

� 0

��
A_ A0_

f _
oo

commutes.

De�nition 1.5.4. Let q be a prime power, let � be an ordinary Weil q-number, and let K = Q(� ) be a
CM-�eld with maximal totally real sub�eld K 0. Let g = [ K 0 : Q], and de�ne

Ord C;�

to be the full subcategory of Ord C;g with objects (A; e : Z[�; � ] ,! End(A)), where e has CM-type � �;j .
We de�ne

Ord C;�;K 0

to be the full subcategory ofOrd C;� such for every object (A; e), the embedding e : Z[�; � ] ,! End(A)
extends to an embeddingf : OK 0 [�; � ] ,! End(A). (Note that in fact OK 0 [�; � ] = OK 0 [� + � ] as
� + � 2 O K 0 .)

Observe that for (A; e) 2 Ord C;�;K 0 , we have that (A; f jO K 0
) 2 Ord C;K 0 .

Theorem 1.5.5. Let q be a prime power, let� be an ordinary Weil q-number, and let K = Q(� ) be a
CM-�eld with maximal totally real sub�eld K 0. Let g = [ K 0 : Q]. There is an equivalence of categories

F� : Id �;K 0 �! Ord C;�;K 0

a 7! Cg=� �;j (a)

that preserves the action ofOK 0 [�; � ] and the notions of dual and polarisation.

Proof. This is Theorems 4.1 and 4.2 (1) of Lang [Lan83].

1.6 Hilbert modular forms

De�nition 1.6.1. Let K 0 be a totally real number �eld of degree g over Q with ring of integers OK 0 .
Let N be an invertible OK 0 -ideal. Then the matrix group SL(OK 0 � N ) is de�ned as

��
a b
c d

�
2 SL2(K 0) : a; d 2 O K 0 ; b 2 N ; c 2 N � 1

�
:

Let H be the complex upper half plane. We want to view objects inPOrd C;K 0 as elements ofHg,
where g is the degree ofK 0 over Q. We will be interested in the action of matrix groups with entries in
K 0 on elements ofHg, hence it is much more convenient to work withK 0 
 C instead of Cg. To this end,
we �x once for all a C-algebra isomorphism

Cg �! K 0 
 C (1.2)
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and we de�ne K 0 
 H to be the image ofHg under this isomorphism. Observe thatK 0 
 H does not
depend on the choice of isomorphism. Let the group of 2� 2 matrices with entries in K 0 that have totally
positive determinant be denoted by GL2(K 0)+ . The group GL2(K 0)+ acts on K 0 
 H as

�
a b
c d

�
� � 7! (a� + b)(c� + d) � 1:

Lemma 1.6.2. Let K 0 be a totally real number �eld of degree g over Q with ring of integers OK 0 , and
write O_

K 0
for the trace dual of OK 0 . Then there is a bijection

SL(OK 0 � O _
K 0

)n(K 0 
 H) //f (A ; �; � ) 2 POrd C;K 0 g=�=

where the image of� 2 SL(OK 0 � O _
K 0

)n(K 0 
 H) is A = ( K 0 
 C)=(� OK 0 + O_
K 0

) with the natural
embedding� and the polarisation induced by the Riemann formE : (K 0 
 C) � (K 0 
 C) �! R given by

E(�u 1 + u2; �v 1 + v2) = tr (K 0 
 R)=R(u1v2 � u2v1)

for u1; u2; v1; v2 2 K 0 
 R.

Proof. See [Gee88, Chapter IX, Section 1].

De�nition 1.6.3. Let � be an integer, and let� be in K 0 
 H. Then the weight function w� is de�ned by

w� : GL2(K 0)+ � (K 0 
 H) �! C
(M; � ) 7!

�
NK 0 =Q(det(M )) � 1=2N(K 0 
 C)=C(c� + d)

� �
;

where we choose the positive square root.

De�nition 1.6.4. Let GL2(K 0)+ and K 0 
 H be as in De�nition 1.6.3. Let M be any matrix in GL2(K 0)+ ,
and let f : K 0 
 H ! C be a holomorphic map. Then we de�nef j[M ]� by

f j[M ]� : K 0 
 H ! C
� 7! w� (M; � ) � 1f (M� ):

It is straightforward to check that for M; N 2 GL2(K 0)+ , we have

(f j[M ]� )j[N ]� = f j[MN ]� :

De�nition 1.6.5. Let GL2(K 0)+ and K 0 
 H be as above, and assume thatg > 1. Let � be a congruence
subgroup of GL2(K 0)+ . We say that f : K 0 
 H ! C is a Hilbert modular form of weight � for � if and
only if it is holomorphic and for all M 2 � and � 2 K 0 
 H, we have

f j[M ]� (� ) = f (� ):

From this point on, if f is a Hilbert modular form of weight � , then for M 2 GL2(K 0)+ we will write
f jM for f j[M ]� .

Remark 1.6.6. For g = 1, we also have to impose holomorphicity at the cusps.

De�nition 1.6.7. With notation as in De�nition 1.6.5, if ' = f=g is the quotient of Hilbert modular
forms for � of equal weight, then we say that ' is a Hilbert modular function for �.

De�nition 1.6.8. Suppose thatg = 2. Then for f 2 M K 0 ;k , if for every (� 1; � 2) 2 K 0 
 H = H2 we have

f (� 1; � 2) = f (� 2; � 1);

we say that f is symmetric.

De�nition 1.6.9. Let O_
K 0

be the trace dual of OK 0 . We de�ne M K 0 ;� to be the C-vector space of
Hilbert modular forms for SL( OK 0 � O _

K 0
) of weight � , and we de�ne

M K 0 =
M

�

M K 0 ;�
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to be the gradedC-algebra of all Hilbert modular forms for SL(OK 0 � O _
K 0

). For f 2 M K 0 , let coe�s(f )
be the set of coe�cients of the q-expansion off around the cusp at in�nity. For a ring R, we de�ne

M K 0 ;� (R) = f f 2 M K 0 ;� : coe�s(f ) � Rg;

and
M K 0 (R) = f f 2 M K 0 : coe�s(f ) � Rg:

Theorem 1.6.10. (Baily-Borel Theorem)
Let M K 0 be the graded ring of Hilbert modular forms forSL(OK 0 � O _

K 0
). Then the normal complex

analytic space ofProj( M K 0 ) is a compacti�cation of

V = SL( OK 0 � O _
K 0

)n(K 0 
 H):

Proof. See [Gee88, p. II.7.1].

De�nition 1.6.11. We de�ne the Hilbert modular variety V to be the normal complex analytic space of
Proj( M K 0 ). We will also refer to this as the Baily-Borel compacti�cation of V .

Proposition 1.6.12. (Rapoport)
M K 0 ;� (Z) is a �nitely generated Z-module.

Proof. See [Rap78, Proposition 6.6].

Lemma 1.6.13. (Rapoport)
M K 0 (Z) 
 Z C = M K 0 :

Proof. See the proof of [Rap78, Lemma 6.12].

Proposition 1.6.14. Let K 0 be a quadratic number �eld of discriminant 5, 8, 13 or 17. Then M K 0 (Q)
is a �nitely generated Q-algebra, and theq-expansions of a choice of generators are known.

Proof. For discriminant 5 see [Mue85] or [May07], for discriminant 8 see [Mue83], and for discriminants
13 and 17 see [May07].

Remark 1.6.15. In everything that follows, we will assume that M K 0 (Q) is a �nitely generated Q-algebra.

1.7 A normalisation lemma for principally polarised ideals

Let q be a prime power, let� be an ordinary Weil q-number, and let K = Q(� ) be a CM-�eld with maximal
totally real sub�eld K 0. As we have seen in Theorem 1.3.11, we can study principally polarised ordinary
abelian varieties over �nite �elds by studying principally polarised ideals. Recall from De�nition 1.5.1
that we de�ned PId �;K 0 to be the category of principally polarised OK 0 [�; � ]-ideals. This corresponds
to studying principally polarised ordinary abelian varieties over Fq with Frobenius � and with real
multiplication by OK 0 , which are a main topic of interest throughout this thesis. In this section we prove
a very useful property of objects (a; � ) 2 PId �;K 0 that we will use throughout this thesis:

Lemma 1.7.1. Suppose that (a; � ) 2 PId �;K 0 is a principally polarised fractional OK 0 [�; � ]-ideal. Then
there exists � 2 K � K 0 such that

(a; � ) �= PId �;K 0
(� OK 0 + O_

K 0
; (� � � ) � 1):

Proof. By assumption we have that OK 0 � End(a) � O K , where K = Q(� ) is a totally imaginary
quadratic extension of K 0. In particular, as OK 0 is a Dedekind domain, by Cohen [Coh93, Theorem
1.2.19] there existx; y0 2 K and a fractional OK 0 -ideal b such that

a = xOK 0 + y0b:

Now, from the polarisation � of a, we have a non-degenerate alternatingZ-bilinear form de�ned by

E : a � a �! Z
(u; v) 7! tr K= Q(� uv);
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which factors via the non-degenerate alternatingOK 0 -bilinear form

S : a � a �! O _
K 0

(u; v) 7! tr K=K 0 (� uv)

by de�nition of the trace dual O_
K 0

. The matrix of S 
 Q with respect to the K 0-basishx; y0i is then given
by �

0 c
� c 0

�
;

where c = tr K=K 0 (� xy0). ChooseZ-bases (! 1; : : : ; ! g) and (b1; : : : ; bg) for OK 0 and b respectively. We
compute the matrix of E with respect to the Z-basis

hx! 1; : : : ; x! g; y0b1; : : : ; y0bg i ;

to be �
0 M

� M 0

�
;

where
M = (tr K 0 =Q(c! i bj )) i;j =1 ;:::;g :

In turn, we get that M is the matrix of the Z-bilinear form

F : OK 0 � b �! Z
(u; v) 7! tr K 0 =Q(cuv)

with respect to the Z-bases (! 1; : : : ; ! g) and (b1; : : : ; bg). In particular, as E (and hence F ) is non-
degenerate and the matrix ofE has determinant � 1, we get that

cb = O_
K 0

:

Hence, we have that
a = xOK 0 + y0c� 1O_

K 0
:

Then, setting y = y0c� 1, multiplication by y� 1 de�nes an isomorphism in PId �;K 0 from (a; � ) to

(xy � 1OK 0 + O_
K 0

; yy� ):

Now repeat the same argument witha0 = � OK 0 + O_
K 0

, where � = xy � 1 and � 0 = yy� . Then choose
b = O_

K 0
so that

cO_
K 0

= cb = O_
K 0

;

hence
O�

K 0
3 c = tr K=K 0 (� 0� ) = � 0� + � 0� = � 0(� � � ):

So we can replace� by c� 1� , giving
� 0 = ( � � � ) � 1:

Remark 1.7.2. Note that, as (� � � ) � 1 is a polarisation, it is by de�nition � �;j -positive-imaginary. That
is, for every � 2 � �;j we have that � (� ) 2 H, hence with respect to � �;j we have that � 2 K 0 
 H.
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Chapter 2

Hilbert modular polynomials

2.1 Introduction and statement of the results

The modular polynomial for elliptic curves of prime level p is an irreducible polynomial � p(X; Y ) 2 Z[X; Y ]
which, for every pair of p-isogenous elliptic curvesE and E 0, satis�es

� p(j (E ); j (E 0)) = 0 ;

where j (E ) is the j -invariant of the elliptic curve E . Examples of these modular polynomials can be found
for example on Sutherland's website [Sut18]. One of the reasons that modular polynomials interest us is
that given the j -invariant of an elliptic curve E over a �eld k, we can �nd the j -invariants of all those
elliptic curves that are p-isogenous to it by computing the roots of � p(j (E ); Y ) 2 k[Y ]. In this chapter,
we describe an analogue of the modular polynomial for principally polarised abelian varieties of dimension
g with real multiplication, which we call a set of Hilbert modular polynomials. This is a Hilbert modular
function analogue of Dupont's work with Siegel modular functions in [Dup06]. The advantage of working
in the Hilbert setting is that the coe�cients and degrees of the polynomials are much more manageable
than in the Siegel setting, making it possible to compute modular polynomials for higher prime levels than
previously. Furthermore, Algorithm 2.4.8, which is implemented in MAGMA, computes these polynomials.
This chapter gives a proof that the output of the algorithm is correct.

The modular polynomial for elliptic curves of level p parametrisesp-isogenies of elliptic curves (forp
prime) and is de�ned using the j -invariant. To generalise the modular polynomial to a Hilbert modular
setting, we �rst �x a totally real number �eld K 0 of degreeg over Q, and we write OK 0 for its maximal order.
We then need to replacej by an `isomorphism invariant' for objects (A; �; � ) 2 POrd C;K 0 , the category of
principally polarised complex abeliang-folds (A; � ) with an appropriate embedding � : OK 0 ,! End(A)
(see De�nition 1.5.2 for the formal de�nition). Let V be the Hilbert modular variety for SL(OK 0 � O _

K 0
),

as in De�nition 1.6.11, where O_
K 0

is the trace dual of OK 0 . Recall from De�nition 1.6.9 that M K 0 (Z)
denotes the ring of Hilbert modular forms with coe�cients in Z, and we write Q(M K 0 (Z)) for the �eld of
quotients of modular forms in M K 0 (Z) of equal weight. We will see in Section 2.2 that for somed 2 Z,
there exist d Hilbert modular functions

J1; : : : ; Jd 2 Q(M K 0 (Z)) ;

such that the function �eld of V is C(J1; : : : ; Jd), and for such J1; : : : ; Jd, there exists a Zariski-open a�ne
subvariety U of V such that the rational map

(J1; : : : ; Jd) : U //Ad
C

is an injective morphism.

De�nition 2.1.1. A d-tuple of Hilbert modular functions ( J1; : : : ; Jd) 2 Q(M K 0 (Z)) � d such that

C(V ) = C(J1; : : : ; Jd)

is a choice ofRM isomorphism invariants for K 0.
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Remark 2.1.2. Fixing U as above, if (A; �; � ) 2 POrd C;K 0 corresponds as in Lemma 1.6.2 to a point in
U, then the d-tuple

(J1; : : : ; Jd)(A ; �; � )

determines (A; �; � ) up to isomorphism. That is, on U, RM isomorphism invariants are isomorphism
invariants in the intuitive sense.

De�nition 2.1.3. For a totally positive prime element � of OK 0 , and for �; � 0 2 K 0 
 H, we say that
there exists a� -isogeny

� ! � 0

if there exists a � -isogeny
(A ; �; � ) �! (A 0; � 0; �0; )

where the isomorphism classes of (A; �; � ) and (A0; � 0; �0) 2 POrd C;K 0 correspond as in Lemma 1.6.2 to
the equivalence classes of� and � 0 in V respectively. (Recall from Theorem 1.5.5 and Lemma 1.7.1 that�
and � 0 satisfy

H1(A( C); Z) = � OK 0 + O_
K 0

and H1(A 0(C); Z) = � 0OK 0 + O_
K 0

:)

Our higher dimensional analogue of the modular polynomial for elliptic curves will parametrise� -
isogenies of objects inPOrd C;K 0 , and will be de�ned using the isomorphism invariants of De�nition 2.1.1.
The �rst main theorem of this chapter, given below, gives this higher dimensional analogue of the modular
polynomial.

Theorem 2.1.4. For a totally real number �eld K 0 of degreeg over Q, and a totally positive prime
element � of OK 0 , let V be the Hilbert modular variety for K 0 (as de�ned in De�nition 1.6.11), and
�x a choice of RM isomorphism invariant (J1; : : : ; Jd) for K 0 (as de�ned in De�nition 2.1.1). Then
Algorithm 2.4.8 below outputs a polynomial

G� (X 1; : : : ; X d; Y ) 2 Z[X 1; : : : ; X d; Y ]

that has degreeNormK 0 =Q(� ) + 1 in Y and such that � G� (J1; : : : ; Jd; Y ) is not constant zero onV , and
outputs polynomials

H �;i (X 1; : : : ; X d; Y; Zi ) 2 Z[X 1; : : : ; X d; Y; Zi ]

that are linear in Z i , where i = 2 ; : : : d. Furthermore, for any choice of Zariski-open subvarietyU of V
such that the map

(J1; : : : ; Jd) : U ! Ad
C

is injective, for all but �nitely many

[� ]; [� 0] 2 (U \ V ) � f x 2 (U \ V ) : � G� (J1(x); : : : ; Jd(x); Y ) = 0 g;

there exists a� -isogeny
� ! � 0

if and only if
G(J1(� ); : : : ; Jd(� ); J1(� 0)) = 0 ;

and for i = 2 ; : : : ; d,
H �;i (J1(� ); : : : ; Jd(� ); J1(� 0); J i (� 0)) = 0 :

De�nition 2.1.5. For a totally positive prime element � 2 K 0, we de�ne a Hilbert modular polynomials
of level � to be a set of polynomials

�
G� (X 1; : : : ; X d; Y ) 2 Z[X 1; : : : ; X d; Y ];

H �;i (X 1; : : : ; X d; Y; Zi ) 2 Z[X 1; : : : ; X d; Y; Zi ]

�

i =2 ;:::;d

such that G� (X 1; : : : ; X d; Y ) and H �;i (X 1; : : : ; X d; Y; Zi ) satisfy the conclusions of Theorem 2.1.4.

Remark 2.1.6. Even though Theorem 2.1.4 is overC, in practise we can use it also over �nite �elds (see
Section 2.5).
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2.2 De�ning RM isomorphism invariants

As before, letK 0 be a totally real number �eld of degree g over Q, and let V be the Hilbert modular variety
for SL(OK 0 � O _

K 0
), as de�ned in De�nition 1.6.11. The aim of this section is to prove Proposition 2.2.1.

For completeness, we recall here the de�nition of RM isomorphism invariants from the previous section.

De�nition 2.1.1. A d-tuple of Hilbert modular functions

(J1; : : : ; Jd) 2 Q(M K 0 (Z)) � d

such that
C(V ) = C(J1; : : : ; Jd)

is a choice of RM isomorphism invariants for K 0.

Proposition 2.2.1. Write Q(M K 0 (Z)) for the Q-algebra of quotients of Hilbert modular forms in M K 0 (Z)
of equal weight. There existsd 2 Z and a choice

J1; : : : ; Jd 2 Q(M K 0 (Z))

of RM isomorphism invariant for K 0. Furthermore, for such J1; : : : ; Jd, there exists a Zariski-open a�ne
subvariety U of V such that the map

(J1; : : : ; Jd) : U �! Ad
C

is a well-de�ned injective morphism.

Proof. Write C(M K 0 ) for the �eld of quotients of elements of M K 0 of equal weight. By de�nition of V
(see De�nition 1.6.11), we have that C(V ) = C(M K 0 ), and by Lemma 1.6.13, we know that

Q(M K 0 (Z)) 
 Q C = C(M K 0 ):

So let J1; : : : ; Jd be generators of theQ-algebra Q(M K 0 (Z)), so that

C(J1; : : : ; Jd) = C(V );

and write W for the image of (J1; : : : ; Jd) in Ad
C. Then by [Har77, Corollary I.4.5], there are non-empty

Zariski-open subsetsU � V and U0 � W such that U is isomorphic to U0.

Example 2.2.2. If g = 1, so that K 0 = Q, then we have that

SL2(OK 0 � O _
K 0

)nK 0 
 H = SL 2(Z)nH:

The j -invariant for elliptic curves de�nes an isomorphism

j : SL2(Z)nH �! A1
C:

Hence setting
V = SL 2(Z)nH; V = P1

C; U = V; and J1 = j

gives usC(V ) = C(J1) and an injective morphism J1 : U ! A1
C.

2.3 Algorithm to compute a set of Hilbert modular polynomials

As before, in what follows, K 0 is a totally real number �eld of degree g over Q with ring of integers OK 0 .
From this point on, we �x RM isomorphism invariants ( J1; : : : ; Jd) 2 Q(M K 0 (Z)) � d, and a non-empty
Zariski-open subvariety U of the Hilbert modular variety V such that

(J1; : : : ; Jd) : U �! Ad
C

de�nes an injective morphism.
For i = 1 ; : : : ; d, we choosef i and gi to be elements ofM K 0 (Z) of weight ki such that

J i = f i =gi : (2.1)
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De�nition 2.3.1. Let SL(OK 0 � O _
K 0

) be as in De�nition 1.6.1 and let � be a totally positive prime
element ofOK 0 . De�ne

� 0(� ) :=
��

a b
c d

�
2 SL(OK 0 � O _

K 0
) : b 2 � O_

K 0

�
:

For any x 2 K 0 de�ne

x :=
�

x 0
0 1

�
:

Given a Hilbert modular form f 2 M K 0 (Z), for every N 2 SL(OK 0 � O _
K 0

), the function f j � � 1 N depends
only on the class ofN in � 0(� )nSL(OK 0 � O _

K 0
).

De�nition 2.3.2. Denote by C a choice of coset representatives for the quotient of groups

� 0(� )nSL(OK 0 � O _
K 0

):

We then further de�ne
� � (Y ) :=

Y

M 2C

�
g1j � � 1 M Y � f 1j � � 1 M

�

and for eachi = 2 ; : : : ; d,

	 �;i (Y; Zi ) :=
X

M 2C

(
�

gi j � � 1 M Z i � f i j � � 1 M

� Y

M 02C
M 06= M

�
g1j � � 1 M 0Y � f 1j � � 1 M 0

�
)

:

Note that the de�nitions of � � (Y ) and 	 �;i (Y; Zi ) do not depend on the choice of coset representatives
for � 0(� )nSL(OK 0 � O _

K 0
).

Remark 2.3.3. We have that

� � (Y ) 2 M K 0 (Z)[Y ] and 	 �;i (Y; Zi ) 2 M K 0 (Z)[Y; Zi ]:

Proof. Recall that for M 2 C and N 2 SL(OK 0 � O _
K 0

), for every f 2 M K 0 , we have that

(f j � � 1 M )jN (� ) = f j � � 1 MN (� ):

In particular, acting by jN on the coe�cients of � � (Y ) (and 	 �;i (Y; Zi )) just permutes the factors (or
terms) of the de�ning product (or sum), leaving � � (Y ) (and 	 �;i (Y; Zi )) unchanged, hence the coe�cients
are modular forms for SL(OK 0 � O _

K 0
).

As � � is a univariate polynomial with coe�cients that are modular forms for SL(OK 0 � O _
K 0

) of equal
weight, the discriminant �� � is also a modular form forSL(OK 0 � O _

K 0
). In particular, whether or not

(�� � )( � ) = 0 depends only on the class of� in V .

Proposition 2.3.4. Fix notation as in De�nition 2.3.2 and recall from De�nition 2.1.3 the de�nition of a
� -isogeny� ! � 0 for �; � 0 2 K 0 
 H. For any �; � 0 2 K 0 
 H such that the classes [� ] and [� 0] of � and � 0

in V are in
(U \ V ) � f x 2 (U \ V ) : (�� � )(x) = 0 g;

there exists a� -isogeny� ! � 0 if and only if for every i = 2 ; : : : ; d, evaluating � � (Y ) and 	 �;i (Y; Zi ) at
(Y; Z2; : : : ; Zd) = ( J1([� 0]); : : : ; Jd([� 0])), and then evaluating the resulting modular forms at � , gives

(� � (J1([� 0]))) ( � ) = 0 and (	 �;i (J1([� 0]); J i ([� 0]))) ( � ) = 0 :

Lemma 2.3.5. If � is a totally positive prime element of OK 0 then the set � 0(� )nSL(OK 0 � O _
K 0

) has
NormK 0 =Q(� ) + 1 elements.
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Proof. De�ne
k := max f n 2 Z : (O_

K 0
) � 1 � � n OK 0 g:

There is a bijection of sets

� 0(� )nSL(OK 0 � O _
K 0

)  ! (� k � 0(� )� � k )n(� k SL(OK 0 � O _
K 0

)� � k )
M 7! � k M� � k :

We claim that ��
1 a
0 1

�
: a 2 O K 0 =� OK 0

�
[

��
0 1

� 1 0

��

is in bijection with ( � k � 0(� )� � k )n(� k SL(OK 0 � O _
K 0

)� � k ): Let

�
a b
c d

�
2 � k SL(OK 0 � O _

K 0
)� � k :

Then a; d 2 O K 0 , b 2 � k O_
K 0

� (OK 0 )( � ) and c 2 � � k (O_
K 0

) � 1 � (OK 0 )( � ) , so that in particular, reduction
by � de�nes a group homomorphism

r : � k SL(OK 0 � O _
K 0

)� � k ! SL2(OK 0 =� OK 0 ):

Now OK 0 =� OK 0 is a �eld as � OK 0 is prime, and SL2(OK 0 =� OK 0 ) acts on P1(OK 0 =� OK 0 ) as
�

a b
c d

�
� (x : y) 7! (ax + by : cx + dy):

The stabilizer of (0 : 1) is ��
a 0
c d

�
2 SL2(OK 0 =� OK 0 )

�
;

the pull-back of which under r is � k � 0(� )� � k , so the bijection follows from the orbit-stabilizer theorem.

We will prove Proposition 2.3.4 by using the above lemma and a representation of� -isogenies up to
isomorphism.

De�nition 2.3.6. We say � -isogeniesf : (A; � A ; �A ) ! (B; � B ; �B ) and g : (A; � A ; �A ) ! (B0; � B 0; �B 0) are
isomorphic if there exists a 1-isogeny' : (B; � B ; �B ) ! (B0; � B 0; �B 0) such that the diagram

(A ; � A ; �A )
f //

g

''

(B; � B ; �B )

'

��
(B0; � B 0; �B 0)

commutes.

De�nition 2.3.7. For every
�

a b
c d

�
= M 2 GL2(K 0)+ and for every � 2 K 0 
 H, we de�ne ' M;� to

be the element of HomOrd C;K 0
(�; M� ) 
 Q that is multiplication by ( c� + d) � 1 on K 0 
 C.

Note that
' B;A� � ' A;� = ' BA;� (2.2)

and
' � 1

M;� = ' M � 1 ;M� : (2.3)

Lemma 2.3.8. We have that ' M;� is an isomorphism inPOrd C;K 0 if and only if M 2 SL(OK 0 � O _
K 0

).

Proof. Write M =
�

a b
c d

�
and for any � 0 2 K 0 
 H let E � 0 be the Riemann form

E � 0(u1� + u2; v1� 0+ v2) = tr K 0 =Q(u1v2 � u2v1):
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We get commutative diagram of unpolarised abelian varieties, where the dashed arrows are automorphisms
of K 0 
 C that may or may not induce actual maps of abelian varieties:

(K 0 
 C)=(� OK 0 + O_
K 0

)
f :=id ( K 0 
 C)

++

' M;� :=( c� + d) � 1

//(K 0 
 C)=(M� OK 0 + O_
K 0

)

c� + d

��
(K 0 
 C)=((a� + b)OK 0 + ( c� + d)O_

K 0
):

Now f , and hence� de�nes an isomorphism on lattices if and only if M 2 GL(OK 0 + O_
K 0

). Suppose now
that M 2 GL(OK 0 + O_

K 0
). It remains to show that det(M ) = 1 if and only if � is an isomorphism in

POrd C;K 0 , that is, if
E � (�; � ) = EM� (� (� ); � (� )) :

Write E � = tr K 0 =Q � S� and EM� = tr K 0 =Q � SM� . The matrices of S� and � � SM� with respect to the
(K 0 
 R)-basis f �; 1g of K 0 
 C are �

0 1
� 1 0

�

and

M
�

0 1
� 1 0

�
M t

respectively, soS� = � � SM� if and only if det( M ) = 1 and the result follows.

Lemma 2.3.9. Fix a totally positive prime element � 2 K 0. Then for any � 2 K 0 
 H, there is a map

i : � 0(� )nSL(OK 0 � O _
K 0

) �!
n

� -isogenies from�
o

=�=
M 7! ' � � 1 ;M� � ' M;� ;

and i de�nes a bijection of sets.

Proof. Observe that idK 0 
 C de�nes a � -isogeny

' � � 1 ;� :
�
(K 0 
 C)=(� OK 0 + O_

K 0
); �; �

�
�!

�
(K 0 
 C)=(� � 1� OK 0 + O_

K 0
); ��; �

�
;

where � = ( � � � ) � 1, which in other words is a � -isogeny� ! � � 1� . Replacing � by M� for

M 2 � 0(� )nSL(OK 0 � O _
K 0

)

it is easy to see that i is well-de�ned on SL(OK 0 � O _
K 0

).
We claim further that i is a well-de�ned injection of sets. Let M; N 2 SL(OK 0 �O _

K 0
) and suppose that

' � � 1 ;M� � ' M;� and ' � � 1 ;N� � ' N;� are isomorphic as� -isogenies. That is, there exists an isomorphism
 : � � 1M� ! � � 1N� such that

 � ' � � 1 ;M� � ' M;� = ' � � 1 ;N� � ' N;� ; (2.4)

hence by (2.2) and (2.3)
 = ' � � 1 NM � 1 � ;� � 1 M� : (2.5)

By Lemma 2.3.8, as is an isomorphism, we have that� � 1NM � 1� 2 SL(OK 0 �O _
K 0

). De�ne X = NM � 1

and T = � � 1NM � 1� . As T and X 2 SL(OK 0 �O _
K 0

), we get further that X 2 � 0(� ). Conversely, suppose
that NM � 1 2 � 0(� ). Then � � 1NM � 1� 2 SL(OK 0 � O _

K 0
), so  de�ned by (2.5) is an isomorphism.

Hencei is a well-de�ned injection of sets.
To show that i is in fact a bijection we proceed by counting. By Lemma 2.3.5 the setC has

NormK 0 =Q(� ) + 1 elements, so we just need to show that there are at mostNormK 0 =Q(� ) + 1 non-
isomorphic � -isogenies from any given� 2 K 0 
 H. If f : (A; � A ; �A ) ! (B; � B ; �B ) is a � -isogeny,
then

ker(f ) � ker(� ) �= (OK 0 =� OK 0 ) � 2:
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Also, as for every� 2 O K 0 the following diagram commutes:

ker(f )

��

//A

� A ( � )

��

f //B

� B ( � )

��
ker(f ) //A

f //B;

the kernel of f is an OK 0 -module, and hence anOK 0 =� OK 0 sub-vector space of (OK 0 =� OK 0 ) � 2. Then,
as deg(f ) = NormK 0 =Q(� ), there are at most NormK 0 =Q(� ) + 1 distinct kernels of � -isogenies from any
given � (or equivalently any given (A; �; � ) 2 POrd C;K 0 ). Therefore it remains to show that there do not
exist non-isomorphic � -isogeniesf : (A ; � A ; �A ) ! (B; � B ; �B ) and f 0 : (A ; � A ; �A ) ! (B0; � B 0; �B 0) with the
same kernel. By the universal property of quotient maps there exists an isomorphism� (of unpolarised
abelian varieties) such that the following diagram commutes:

A
f //

f 0

  

B

�
��

B0:

We claim that � is a 1-isogeny. Consider the following diagram:

A

� A ##

A
� A ( � )oo f //B

�
1) � B

��

� //B0

�
2) � B 0

��
A_ B_

f _
oo B0_:

� _
oo

Diagram (1) commutes asf is a � -isogeny and the diagram formed by the outside arrows commutes asf 0

is a � -isogeny, hence diagram (2) commutes. Similarly, consider the following diagram:

End(A) 
 Q
� 7! f � � � f � 1

//End(B) 
 Q
� 7! � � � � � � 1

//End(B0) 
 Q

K 0

� A

�
1)ii

� B

OO �
2) � B 0

55

Diagram (1) commutes asf is a � -isogeny and the diagram formed by the outside arrows commutes asf 0

is a � -isogeny and

f 0 � � (f 0) � 1 = ( � � f ) � � � (� � f ) � 1 = � � (f � � � f � 1) � � � 1:

Hence (2) commutes, so� is a 1-isogeny andf and f 0 are isomorphic as� -isogenies.

Proof of Proposition 2.3.4. Suppose �rst that there exists a � -isogeny� ! � 0. Then by Lemma 2.3.9, there
exists N 2 C = � 0(� )nSL(OK 0 � O _

K 0
) such that this � -isogeny is isomorphic to a� -isogeny� ! � � 1N� ,

so we can identify � 0 with � � 1N� . Plugging this into the de�nitions of � � (Y ) and 	 �;i (Y; Zi ), we get

� � (J1(� � 1N� )) = 0

and
	 �;i (J1(� � 1N� ); J i (� � 1N� )) = 0 :

Suppose now that (Y0; Z2;0; : : : ; Zd;0) is a common root of � � (Y ) and 	 �;i (Y; Zi ). One can see directly
from the de�nition of � � and 	 �;i that under the discriminant condition, the set of common roots of
(2.3.2) is exactly the set

f (J1(� � 1M� ); : : : ; Jd(� � 1M� )) : M 2 Cg:

Therefore, there existsN 2 C such that

(Y0; Z2;0; : : : ; Zd;0) = ( J1(� � 1N� ); : : : ; Jd(� � 1N� )) ;

and by Lemma 2.3.9 there exists a� -isogeny

� ! � � 1N�:
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2.4 Computing the RM isomorphism invariants for a given genus
2 curve

In De�nition 2.1.1, we de�ned RM isomorphism invariants for elements of POrd C;K 0 . Restrict now to the
dimension 2 case. It is however not immediately clear how to compute these given the equation of a genus
2 curve. We have a computational advantage in genus 2, which is that there already exist Igusa-Clebsch
invariants to determine a curve up to isomorphism.

De�nition 2.4.1. For a curve C of genus 2 over a �eldk with char(k) 6= 2, there exists a hyperelliptic
model y2 = f (x) of C, where f is a separable polynomial of degree 6. Fix such a model, denote byc the
leading coe�cient of f , �x an ordering x1; : : : ; x6 of the roots of f in its splitting �eld, and denote by ( ij )
the di�erence x i � x j . For char(k) 6= 2 ; 3; 5, we de�ne the Igusa-Clebsch invariantsof C to be

I 2 = c2
X

(12)2(34)2(56)2;

I 4 = c4
X

(12)2(23)2(31)2(45)2(56)2(64)2;

I 6 = c6
X

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2;

I 10 = c10
Y

(12)2;

where each sum and product runs over the distinct expressions obtained by applying a permutation to the
index set f 1; : : : ; 6g.

These invariants are integral wheneverf is integral. The Igusa-Clebsch invariants are `invariants for
the Siegel moduli space'. Before making this more precise, we recall some facts about the Siegel moduli
space.

De�nition 2.4.2. We de�ne

Sym2(C) =
��

� 1 � 2

� 2 � 3

�
2 Mat 2� 2(C)

�
;

and for � 2 Sym2(C), we write Im( � ) > 0 for `Im(� ) is positive de�nite'.

De�nition 2.4.3. The Siegel upper half spaceis de�ned to be

H2 =
�

� =
�

� 1 � 2

� 2 � 4

�
2 Sym2(C) : Im( � ) > 0

�
;

and the symplectic group

Sp2(Z) =
�


 2 GL4(Z) : 

�

0 I 2

� I 2 0

�

 tr =

�
0 I 2

� I 2 0

��

acts on H2 via �
A B
C D

�
� � = ( A� + B )(C� + D) � 1:

The �eld of rational functions of the coarse moduli space for hyperelliptic curves of genus 2 can be
generated by three Siegel modular functions, as shown by Igusa in [Igu60]. Following the notation in the
Echidna database [Echidna], we choose as generators three Siegel modular functions

i 1; i 2; i 3 : Sp2(Z)nH2 �! C

such that, if C is a curve of genus 2, and [� ] 2 Sp2(Z)nH2 is the point in the moduli space corresponding
to C, then

i 1(� ) = ( I 4I 6=I10)(C); (2.6)

i 2(� ) = ( I 3
2 I 4=I10)(C); (2.7)

i 3(� ) = ( I 2
2 I 6=I10)(C): (2.8)
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Now, for a totally real quadratic number �eld K 0, the forgetful functor

POrd C;K 0 �! POrd C;2

(A ; �; � ) 7! (A ; � )

induces a map
� : SL(OK 0 � O _

K 0
)nK 0 
 H ! Sp2(Z)nH2;

which is generically 2-1. We will refer to this as themodular map. The image of this map is called the
Humbert surface for K 0, and is denoted asH K 0 . That is, the modular map � induces a degree 2 map

� : M K 0 �! H K 0 :

In particular, as there exist 2 algebraically independent Siegel modular functionsf 1 and f 2 in

C(H K 0 ) � C(i 1; i 2; i 3);

we get 2 algebraically independent Hilbert modular functions

J1 = � � f 1 and J2 = � � f 2 (2.9)

in C(M K 0 ). Also, by construction, we get that J1 and J2 are symmetric, that is, that if � is the generator
of Gal(K 0=Q), then for all � 2 K 0 
 H, we have that

J1(� (� )) = J1(� ) and J2(� (� )) = J2(� ):

By Proposition 1.6.12 and Lemma 1.6.13, we have thatC(V ) is a �nite separable �eld extension of
C(J1; J2) and hence is generated by one element; choose such an element and denote it byJ3. Write
m(X ) 2 C(J1; J2)[X ] for the minimal polynomial of J3; then m(X ) is the pullback along � of a polynomial
in C(i 1; i 2; i 3)[X ].

The subtlety of how to choose the root ofm(X ) in practice is addressed in Algorithm 2.5.4, Step 2.

Example 2.4.4. Gundlach [Gun63] and M•uller [Mue85] computed formulae for a choice of isomorphism
invariants J1, J2, and J3 for K 0 = Q(

p
5), and gave the functions from which J1, J2, and J 2

3 (here m(X )
is quadratic and without a linear term) are pulled back along � :

J1 = � �
�

2� 63� 3i 2
1i 2

2 + 2 � 332i 1i 2
2 � 2� 43� 3i 1i 3

3 + 2 � 532i 2i 2
3

i 2
1i 2

2 + 2 235i 1i 2
2

�
; (2.10)

J2 = � �
�

29i 3
1i 2

2 + 2 1135i 2
1i 2

2

i 2
1i 2

2 + 2 2i 1i 3
3 � 2 � 35i 2i 2

3

�
; (2.11)

J 2
3 =5 5 � 2� 153J1J2 + 2 � 4J2 + 2 � 13252J 2

2 J 3
1 � 2� 3J 2

1 J 2
2 � 2 � 33J 3

2 J 5
1 (2.12)

+ 2 � 4J 3
2 J 4

1

Remark 2.4.5. For each choice ofK 0, we have to recalculate RM isomorphism invariantsJ1, J2, and
J3. In [LNY16, Theorem 2.2], Lauter, Naehrig, and Yang give a method to calculate a choice of Siegel
modular functions f 1 and f 2 as in (2.9), but the minimal polynomial of J3 over Q(J1; J2) is not known in
general.

Recall from Lemma 1.6.13 thatC(V ) = Q(M K 0 (Z)) 
 C, so that in particular a choice of Q-algebra
generatorsJ1; : : : ; Jd for Q(M K 0 (Z) is also a choice ofC-algebra generators forC(V ). In the cases for
which a complete set of generators is known, namelyK 0 of discriminant 5, 8, 13, and 17, we can choose RM
isomorphism invariants J1; J2; J3 2 Q(M K 0 (Z)) � 3 for which J1 and J2 are symmetric Hilbert modular
functions (as above) andJ 2

3 2 Q(J1; J2). For simplicity, we restrict to this case in all that follows.

2.4.1 The algorithm

Given the coe�cients of the q-expansions of the numerators and denominators ofJ1; : : : ; Jd up to a high
enough precision (see the implementation atwww.martindale.info for details on the precision), using
Lemma 2.5.2 and the formulae for � � (Y ) and 	 �;i (Y; Zi ) given in De�nition 2.3.2 we can write out explicit
formulae for the q-expansions of the coe�cients (with respect to Y and Z i ) up to some precision of � � (Y )
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and 	 �;i (Y; Zi ). Fix Q-algebra generators ofM K 0 (Q) to be 
 1; : : : ; 
 s 2 M K 0 (Z) of weights � 1; : : : ; � s

respectively (recall from Remark 1.6.15 that we assumeds to be �nite), and assume that we also know
su�ciently many coe�cients of the q-expansions of
 1; : : : ; 
 s. Then for each coe�cient f 2 M K 0 (Z) of
� � (Y ) or 	 �;i (Y; Zi ) it is just linear algebra to determine integers h1; : : : ; hs and rational numbers bh ,
where h = ( h1; : : : ; hs), such that

f =
X

f h2 (Z � 0 ) s :
P s

j =1 h j � j = kg

bh

s+1Y

j


 h j
j ; (2.13)

where k is the weight of f . To deduce the Hilbert modular polynomials G� and H �;i from � � and 	 �;i ,
we �rst have to scale � � and 	 �;i so that the coe�cients are in Q(M K 0 (Z)). To do this, we construct a
ring homomorphism

M K 0 (Z) �! Q(M K 0 (Z)) :

To this end, we de�ne
d = gcd( f � : M K 0 ;� 6= ;g )

and choosew1 and w2 such that M K 0 ;w 1 (Z); M K 0 ;w 2 (Z) 6= ; and d = w1 � w2. Then choose

' 2 M K 0 ;w 2 (Z) and  2 M K 0 ;w 1 (Z); (2.14)

and de�ne
' i = ' � i =d and  i =  � i =d:

This de�nes a map
M K 0 ;� i (Z) �! Q(M K 0 (Z))


 i 7! ' i
 i


 i

which extends Z-linearly to a map

� : M K 0 (Z) �! Q(M K 0 (Z)) ; (2.15)

which is in fact a ring homomorphism. In Algorithm 2.4.8, we will assume that the representations of
� (
 1); : : : ; � (
 s) as rational functions in J1; : : : ; Jd are known.

Example 2.4.6. M•uller [Mue85] de�ned four elements (
 1; 
 2; 
 3; 
 4) = ( g2; s5; g6; s15) of M Q(
p

5) (Z)
of weights 2, 5, 6, and 15 respectively that generateM Q(

p
5) (Q) as a Q-algebra and de�ned modular

functions

(J1; J2; J3) =
�

g5
2

s2
5

;
s6

g3
2

;
s3

5

s15

�
; (2.16)

such that Q(M K 0 (Z)) = Q(J1; J2; J3). In this case, we get that d = 1, we choosew1 = 5 and w2 = 4, and
we choose' = g2

2 and  = s5. Then


 1 = g2 7!
g5

2

s2
5

= J1


 2 = s5 7!
g10

2

s4
5

=
�

g5
2

s2
5

� 2

= J 2
1


 3 = s6 7!
g12

2 s6

s6
5

=
�

g5
2

s2
5

� 3 s6

g3
2

= J 3
1 J2


 4 = s15 7!
g30

2 s15

s15
5

=
�

g5
2

s2
5

� 6 s15

s3
5

= J 6
1 J � 1

3 :

The choice given in Equation (2.16) is the choice in the implementation of Algorithm 2.4.8 that can be
found at www.martindale.info .

The following algorithm computes a set of Hilbert modular polynomials in the sense of De�nition 2.1.5.
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Lemma 2.4.7. Let ki be the weight of  i (the denominator of J i ). Let � � (Y ) and 	 �;i (Y; Zi ) be as in
De�nition 2.3.2. There exist modular forms y0; : : : ; yjCj 2 M K 0 of weight jCjk1, and for i = 2 ; : : : ; d, there
exist modular forms zi; 0; z0

i; 0; : : : ; zi; jCj� 1; z0
i; jCj� 1 2 M K 0 of weight (jCj � 1)k1 + ki such that

� � (Y ) =
jCjX

n =0

yn Y n

and

	 �;i (Y; Zi ) =
jCj� 1X

n =0

(zi;n Z i � z0
i;n )Y n :

Proof. This follows from the explicit formulae in De�nition 2.3.2.

Algorithm 2.4.8.
INPUT: A totally real number �eld K 0 of degreeg over Q, the q-expansions of generators
 1; : : : ; 
 s of
the Q-algebra M K 0 (Q) (up to a certain precision), the images of
 1; : : : ; 
 s under � as rational functions
of J1; : : : ; Jd, and a totally positive element � 2 O K 0 that generates a prime ideal.
OUTPUT: Polynomials

G� (X 1; : : : ; X d; Y ) 2 Z[X 1; : : : ; X d; Y ]

H �;i (X 1; : : : ; X d; Y; Zi ) 2 Z[X 1; : : : ; X d; Y; Zi ];

for i = 2 ; : : : ; d, satisfying the conclusions of Theorem 2.1.4.

1. Compute the q-expansions of the coe�cients of � � and 	 �;i up to precision P. For more details in
genus 2, see Remark 2.5.3. For details on how to compute the required precision, see the MAGMA
code, which can be found atwww.martindale.info .

2. As in (2.13), write each coe�cient of � � and 	 �;i as elements ofZ[
 1; : : : ; 
 s] using linear algebra
on the q-expansions (here it is necessary to have chosen the precision of theq-expansions to be
su�ciently large).

3. For eachi , the input contains an expression

~� (
 i ) 2 Q(X 1; : : : ; X d)

such that
~� (
 i )(J1; : : : ; Jd) = � (
 i ):

De�ne
G� (X 1; : : : ; X d; Y ) 2 Z[X 1; : : : ; X d; Y ]

to be the numerator of ~� (� � (Y )) and

H �;i (X 1; : : : ; X d; Y; Zi ) 2 Z[X 1; : : : ; X d; Y; Zi ]

to be the numerator of ~� (	 �;i (Y; Zi )).

We have implemented a more optimised version of this in MAGMA for K 0 = Q(
p

5) and K 0 = Q(
p

2),
see Section 2.5. That the output of Algorithm 2.4.8 is correct was in the statement of Theorem 2.1.4,
which we now prove:

Proof of Theorem 2.1.4. De�ne D1 2 M K 0 (Z)[Y ] to be the denominator of � (� � (Y )) and

D i 2 M K 0 (Z)[Y; Zi ]

to be the denominator of � (	 �;i (Y; Zi )). Let

S = f [� ] 2 U \ V : D1(J1(� )) = 0 g [ f [� ] :2 U \ V : D i (J1(� ); J i (� )) = 0 g:

Then S is a �nite set, as D1 and D i have �nitely many roots, and for any value r 2 C and any 1 � i � d,
there are �nitely many [ � ] such that J i (� ) = r as J i extends to a holomorphic function on the compact
set V .
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It is immediate from Proposition 2.3.4 that the roots of (� � (Y ))( � ) are given by the �rst isomorphism
invariant J1(� 0) of all the � 0 2 K 0 
 H that are � -isogeneous to� , up to isomorphism. If all the J1(� 0) are
distinct then it also follows from Proposition 2.3.4 that the unique root of (	 �;i (J1(� 0); Z i ))( � ) is J i (� 0).
If they are not distinct then (�� � )( � ) = 0, so as [� ] 62S, we have that � G� (J1(� ); : : : ; Jd(� ); Y ) = 0.
Hence, for every

[� ]; [� 0] 2 (U \ V ) � S [ f x 2 (U \ V ) : � G� (J1(x); : : : ; Jd(x); Y ) = 0 g;

there exists a � -isogeny � ! � 0 if and only if (� � (J1(� 0))( � ) = 0 and for i = 2 ; : : : ; d, we have that
(	 �;i (J1(� 0); J i (� 0))( � ) = 0. But for every

[� ]; [� 0] 2 (U \ V ) � S [ f x 2 (U \ V ) : � G� (J1(x); : : : ; Jd(x); Y ) = 0 g;

we have that (� � (J1(� 0))( � ) = 0 if and only if

G� (J1(� ); : : : ; Jd(� ); J1(� 0) = 0

and, for i = 2 ; : : : ; d, we have that (	 �;i (J1(� 0); J i (� 0))( � ) = 0 if and only if

H �;i (J1(� ); : : : ; Jd(� ); J1(� 0); J i (� 0)) = 0 ;

so the theorem follows.

2.5 Complexity and simpli�cations for genus 2

We only implemented an algorithm to compute the set of Hilbert modular polynomials in genus 2, and
only for small quadratic �elds K 0, due to the fact that we do not know explicit q-expansions for the
RM invariants J1; : : : ; Jd in any other larger genus. Hence, we restrict now to the genus 2 case, and for
simplicity, we set d = 3.

Lemma 2.5.2 gives one simpli�cation of the formulae for genus 2: in this caseK 0 is quadratic, so
that OK 0 and O_

K 0
are isomorphic asOK 0 -modules. This means that we may de�ne the Hilbert modular

variety as a compacti�cation of SL2(OK 0 )n(K 0 
 H) instead of SL(OK 0 � O _
K 0

)n(K 0 
 H). When we do
this, in Lemma 2.3.9, we must replace the matrix group �0(� ) with the matrix group � 0(� )0, which we
now de�ne.

De�nition 2.5.1. For a totally real number �eld K 0 of degree 2 overQ, with ring of integers OK 0 , and
a totally positive element � 2 K 0, we de�ne

� 0(� )0 =
��

a �b
c d

�
2 SL2(OK 0 ) : a; b; c; d2 O K 0

�
:

Lemma 2.5.2. For a totally real number �eld K 0 of degree 2 overQ with ring of integers OK 0 , and a
totally positive element � 2 O K 0 that generates a prime ideal, the set

C =
��

1 !
0 1

�
: ! 2 O K 0 =� OK 0

� [ ��
0 1

� 1 0

��

is a choice of coset representatives for the quotient of groups �0(� )0nSL2(OK 0 ).

Proof. The matrix group SL2(OK 0 ) acts on P1(OK 0 =� OK 0 ) by
�

a b
c d

�
� (x : y) = ( ax + by : cx + dy):

Then in particular, the stabilizer of (0 : 1) is given by � 0(� )0, and hence by the orbit-stabilizer theorem,
there exists a natural bijection from C to � 0(� )0nSL2(OK 0 ).

Remark 2.5.3. Using the representation of �0(� )0nSL2(OK 0 ) given in Lemma 2.5.2, we can write out
explicit q-expansions of the coe�cients of � � and 	 �;i via the following. Let f be a modular form for
SL2(OK 0 ) of weight k with q-expansion

f (� ) =
X

t 2 (O _
K 0

)+

� (t)e2�i tr( t� ) ;

and let ` = Norm K 0 =Q(� ).
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1. For ! 2 O K 0 =� OK 0 and M =
�

1 !
0 1

�
, we have that

f j � � 1 M� = ` � k=2
X

t 2 (O _
K 0

)+

� tr( `� � 1 t! )
` � (t)e2�i tr( � � 1 t� ) ;

where (O_
K 0

)+ denotes the totally positive elements ofO_
K 0

.

2. For M =
�

0 � 1
1 0

�
, we have that

f j � � 1 M� = `k=2
X

t 2 (O _
K 0

)+

� (t)e2�i tr( �t� ) ;

where (O_
K 0

)+ denotes the totally positive elements ofO_
K 0

.

Algorithm 2.4.8 is extremely slow and uses a lot of memory, and so we give here some practical
improvements on the computation time and memory usage. First of all, we do not compute the third
modular polynomial H �; 3(X 1; X 2; X 3; Y; Z3); Algorithm 2.5.4 shows that, given (A; �; � ) 2 POrd C;K 0 , we
can compute every abelian surface� -isogenous to it without using H �; 3.

Algorithm 2.5.4.
INPUT: The �rst 2 Hilbert modular polynomials G� (X 1; X 2; X 3; Y ) and H �; 2(X 1; X 2; X 3; Y; Z2), as
de�ned in De�nition 2.1.5, the RM isomorphism invariants ( j 1; j 2; j 3) 2 C3 of some (A; �; � ) 2 POrd C;K 0 ,
as de�ned in De�nition 2.1.1, and the minimal polynomial m(X ) 2 Q(J1; J2)[X ] of J3, as in Section 2.4.
OUTPUT: The RM isomorphism invariants of each (A0; � 0; �0) 2 POrd C;K 0 that is � -isogenous to (A; �; � ),
or failure.

1. Set L to be the list of the NormK 0 =Q(� ) + 1 roots of G� (j 1; j 2; j 3; Y ). If the roots are not distinct,
output failure.

2. For every j 0
1 2 L:

(a) set j 0
2 to be the unique element ofC for which H �; 2(j 1; j 2; j 3; j 0

1; j 0
2) = 0,

(b) set L 0 to be the list of the roots of m(X ) evaluated at (J1; J2) = ( j 0
1; j 0

2).

(c) for every l 2 L 0, check if G� (j 0
1; j 0

2; l; j 1) = 0. If true for exactly one l, set j 0
3 = l. Else, output

failure.

(d) add ( j 0
1; j 0

2; j 0
3) to list L 0.

3. Return L 0.

The second major improvement is to do computations in �nite �elds in place of in Q and Q(� Norm K 0 = Q( � ) )
and then use the Chinese Remainder Theorem.

One advantage of working over a �nite �eld in place of Q is that while the algorithm is running over
Q, the coe�cients of the q-expansions blow up, using up memory space and slowing down computations,
so that Algorithm 2.5.5 is signi�cantly faster than Algorithm 2.4.8.

Algorithm 2.5.5.
INPUT:

1. A totally real number �eld K 0 of degree 2 overQ.

2. The q-expansions of generators
 1; : : : ; 
 s 2 M K 0 (Z) of the Q-algebra M K 0 (Q).

3. The images of
 1; : : : ; 
 s under � as rational functions of J1; J2; J3, where � is as de�ned in (2.15).

4. A totally positive element � 2 K 0 that generates a prime ideal.

5. An upper bound B on the absolute values and a common denominatorD of the rational coe�cients
of the coe�cients of � � (Y ) and 	 �; 2(Y; Z2) when represented as formal polynomials
 1; : : : ; 
 s.
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6. A prime p0 such that for every prime p � p0, the q-expansion coe�cients in Step 1 of Algorithm 2.4.8
have denominator coprime top, and when replacingQ and Q(� ` ) by Fp and Fp(� ` ), the system of
linear equations in Step 2 of Algorithm 2.4.8 still has a unique solution.

OUTPUT: The �rst 2 polynomials

G� (X 1; X 2; X 3; Y ) 2 Z[X 1; X 2; X 3; Y ]; and

H �; 2(X 1; X 2; X 3; Y; Z2) 2 Z[X 1; X 2; X 3; Y; Z2]

of De�nition 2.1.5.

1. Create a list L of primes in the following way:

(a) Set i = 0.

(b) Set b = pi .

(c) Set pi +1 = minf n 2 Z>b : n prime, n � 1 mod NormK 0 =Q(� )g. (This condition is to speed up
the computations as the NormK 0 =Q(� )th roots of unity are then in Fp.)

(d) Reduce the coe�cients of the q-expansions of
 1; : : : ; 
 s mod pi +1 to get


 1; : : : ; 
 s 2 M K 0 (Z)=pi +1 M K 0 (Z):

If 
 1; : : : ; 
 s generateM K 0 (Z)=pi +1 M K 0 (Z) as aFpi +1 -algebra, go to step (e). Else, setb = pi +1

and go to step (c).

(e) If
Q i +1

j =1 pj < 2BD then set i = i + 1 and go to (b). Else return

L = f p1; : : : ; pi +1 g:

2. Write the coe�cients mod p of � � (Y ) and 	 �; 2(Y ) as formal polynomials in 
 1; : : : ; 
 s for every
p 2 L by following Step 1 and 2 of Algorithm 2.4.8, with Q (and Q(� Norm K 0 = Q)) replaced by Fp.
(This can be done in parallel.)

3. Use the Chinese Remainder Theorem to compute the coe�cients ofD � � (Y ) and D 	 �; 2(Y ) as
formal polynomials in 
 1; : : : ; 
 s with integer coe�cients.

4. Compute G� and H �; 2 following Step 3 of Algorithm 2.4.8.

Remark 2.5.6. Heuristically, we expect that for large primesp and most (A; � ) and (A0; � 0) 2 POrd Fp ;K 0 ,
there exists a� -isogeny (A; � ) ! (A 0; � 0) if and only if

G� (J1(A) ; J2(A) ; J3(A) ; J1(A 0)) � H �; 1(J1(A) ; J2(A) ; J3(A) ; J1(A 0); J2(A 0)) � 0 mod p

and J3(A 0) is the same as the output of Step 2 of Algorithm 2.5.4 (with C replaced by Fp) with

(j 1; j 2; j 3; j 0
1; j 0

2) = ( J1(A) ; J2(A) ; J3(A) ; J1(A 0); J2(A 0)) :

The disadvantage of Algorithm 2.5.5 is that we have to guess the input valuesB , D , and p0. However,
the speed up is quite signi�cant: for NormK 0 =Q(� ) = 11, Algorithm 2.4.8 took 1 week and Algorithm 2.5.5
took 90 minutes (on the same machine). Also, we can heuristically check the output by looking at
the behaviour of the polynomials, for example by attempting to run Algorithm 2.5.4. Even with these
improvements, there is still a long way to go before this algorithm is practical for larger values of
NormK 0 =Q(� ); Table 2.1 gives the timings for the computations that we have done so far.

Disc(K 0) 8 5 5 5 5 5
NormK 0 =Q(� ) 2 4 5 9 11 19

Time 2 secs 63 secs 90 secs � 4 mins � 90 mins � 3 days

Table 2.1: Timings for computation of Hilbert modular polynomials G� and H �; 2
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Chapter 3

The structure of � -isogeny graphs

The main theorem of this chapter, the Volcano Theorem, Theorem 3.1.9, gives the complete structure
of the graph of � -isogenies of principally polarised dimensiong abelian varieties de�ned over a �nite
�eld with real multiplication by a given maximal order. We de�ned � -isogenies in De�nition 1.3.2; the
de�nition is recalled below. This is a generalisation of David Kohel's structure theorem for g = 1 in
[Koh96], and Ionica and Thom�e's work on genus 2 curves with maximal real multiplication by a given
maximal order with narrow class number 1 in [IT14]. In parallel to the work in this thesis, Brooks, Jetchev,
and Wesolowski recently obtained some overlapping results, proven using di�erent methods, in [BJW17].

3.1 The Volcano Theorem

Let q be a prime power, let � be a Weil q-number, and let K be a CM-�eld of degree 2g over Q such
that K = Q(� ). Recall from De�nition 1.3.2 that POrd �;K 0 denotes the category of principally polarised
ordinary abelian varieties (A; � ) over Fq such that the characteristic polynomial of the q-power Frobenius
equals the minimal polynomial of � , together with an embedding OK 0 ,! End(A) that extends the
embedding

Z[� + � ] �! End(A)
� + � 7! Frob(A) + Ver(A) ;

where Frob and Ver denote the q-power Frobenius and Verschiebung morphisms respectively. Note that
the only restrictions we are making for a principally polarised abelian variety to be in POrd �;K 0 are
that there exists an embeddingOK 0 ,! End(A) and that A is ordinary and geometrically simple. Indeed,
given ordinary A=Fq simple over Fq, let � be the characteristic polynomial of Frobenius and de�ne
K = Q(� ) = Q[x]=(� (x)). If A is simple and ordinary, then End(AFq

) 
 Q = K . Recall also that the only
morphisms in POrd �;K 0 are isomorphisms.

Fix a totally positive element � 2 O K 0 such that � OK 0 is a prime ideal. Recall from De�nition 1.3.3
that for ( A; � ); (A0; � 0) 2 POrd �;K 0 with the map � : OK 0 ,! End(A) induced by � 7! Frobq, we de�ne a
� -isogeny

f : (A ; � ) �! (A 0; � 0)

to be a morphism A ! A0 of abelian varieties such that the diagram

A

� ��

A
� ( � )oo f //A0

� 0

��
A_ (A 0)_

f _
oo

commutes. Recall that we denote�(� ) also by � .
For principally polarised abelian varieties (A; � ) and (A0; � 0) and a morphism f : A ! A0 we write

f y = � � 1f _ � 0 : A0 ! A. Note that f is a � -isogeny if and only if f yf = � (� ). Note that if ( A; � ) = ( A0; � 0),
then (�)y is the Rosati involution. We will also call f y the dual of f .

De�nition 3.1.1. Assume that the only roots of unity in OK are � 1. The � -isogeny graph for the Weil
q-number � is the weighted undirected graph for which:

28



1. The vertices are the isomorphism classes of objects inPOrd �;K 0 ,

2. There is an edge between verticesx and x0 if and only if there exists a � -isogeny fromx to x0.

3. If a � -isogenyf : (A; � ) ! (A; � ) satis�es f y = � f , then the edge corresponding to this isogeny has
weight 1

2 . All other edges have weight 1.

Remark 3.1.2. In fact, given that the only roots of unity in OK are � 1, if there exists a � -isogenyf
between (A; � ) and (A 0; � 0), the edge betweenx = [(A ; � )] and x0 = [(A 0; � 0)] represents the� -isogenies

f f; � f; f y; � f yg:

That is, the weight of an edge betweenx and x0 in a � -isogeny graph denotes the total number of
isomorphic � -isogenies between (A; � ) and (A 0; � 0) divided by 4.

De�nition 3.1.3. We de�ne the graphs I , R1, R2, and for n 2 Z � 1, the graph Cn in the following way:

� The graph I is a single vertex with no edges.

� The graph R1 is a single vertex with one edge of weight12 .

1
2

� The graph R2 is a pair of vertices joined by a single edge of weight 1.

� For n 2 Z � 1, the graph Cn is a cycle of lengthn where every edge has weight 1.

C1 C2 C3

De�nition 3.1.4. For v 2 Z � 1, d, n 2 Z � 0, and � 2 f I; R 1; R2; Cn g, a (� ; v; d)-volcano is a weighted
undirected connected graph whose vertices are partitioned into levelsV0; : : : ; Vd such that the following
hold:

1. The subgraph on levelV0 is �.

2. For all i > 0, each vertex inVi has exactly one neighbour in levelVi � 1.

3. There exists no edge between vertices inVi for i > 0.

4. For all non-negative integersi < d , each vertex in Vi has degreev, where the degree is the weighted
sum of the edges counted with intersection multiplicity.

Example 3.1.5. Here is a (C5; 3; 1)-volcano and an (R1; 3; 2)-volcano.

1
2
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De�nition 3.1.6. Let G be a (� ; v; d)-volcano, and let E be an edge inG between w and w0, where
w 2 Vi and w0 2 Vj . If i > j we say that E ascendsfrom w to w0 and descendsfrom w0 to w. If i = j we
say that E is horizontal .

De�nition 3.1.7. Let O be an order inOK which contains OK 0 . The Shimura class groupof O is de�ned
to be

SCl(O) =
f (c; � ) : c an invertible fractional O-ideal; � 2 K +

0 ; cc = � Og
f (vO; vv)) : v 2 K � g;

where K +
0 denotes the subgroup of totally positive elements ofK �

0 .

De�nition 3.1.8. Let � be a totally positive element of K 0 that generates a prime ideal� OK 0 , and let
O be an order in K containing OK 0 [�; � ] that is locally maximal at � . If � O factors in O as � O = mm,
de�ne n(�; O) to be the order of the class of (m; � ) in SCl(O). For such O and � , we de�ne the graph
� O ;� by

� O ;� =

8
<

:

I if � OK 0 is inert in K=K 0;
Cn (O ;� ) if � OK 0 is split in K=K 0;
Rn (O ;� ) if � OK 0 is rami�ed in K=K 0:

The purpose of this section will be to prove the Volcano Theorem, below, which is our analogue to the
results for elliptic curves �rst given by David Kohel in [Koh96].

Theorem 3.1.9 (Volcano Theorem). Let K be a CM-�eld of degree2g, generated overQ by an ordinary
Weil q-number � , and with maximal totally real sub�eld K 0. Suppose further that the only roots of unity
in OK are f� 1g. Let � be a totally positive element ofOK 0 such that � OK 0 is a prime ideal. De�ne

v = Norm K 0 =Q(� ) + 1

and
d = max f k 2 Z : OK 0 [�; � ] � O K 0 + � k OK g:

For every connected componentC of the � -isogeny graph for the Weilq-number � , there exists an orderO
in K containing OK 0 [�; � ] that is locally maximal at � such that C is a (� O ;� ; v; d)-volcano.

Our �rst goal will be to understand how � -isogenous abelian varieties can di�er. As isogenies preserve
the endomorphism algebra, looking at the endomorphism rings of� -isogenous abelian varieties is a natural
place to begin - in fact the endomorphism ring of any abelian variety in our� -isogeny graph is an order
in OK that contains OK 0 [�; � ], by assumption. Furthermore, we will see in Proposition 3.3.1 that every
vertex v in Vi satis�es End(v) = OK 0 + � i O. The following proposition, which we will prove in Section 3.2,
gives a classi�cation of the orders appearing as endomorphism rings of principally polarised ordinary
abelian varieties with real multiplication by OK 0 :

Proposition 3.2.1. There is a bijection of sets
�

Orders O in OK

s.t. OK 0 � O

�
$ f Ideals of OK 0 g

O 7! (O : OK ) \ O K 0

OK 0 + fOK  [ f:

Before giving the proof of the Volcano theorem we give some useful de�nitions regarding conductors
and � -isogenies.

De�nition 3.1.10. Let O be an order in K containing OK 0 . We de�ne the conductor of O to be
(O : OK ), and we de�ne the real conductor of O to be

fO = ( O : OK ) \ O K 0 = f x 2 O K 0 : xOK � Og :

For a prime element � 2 O K 0 , we de�ne the real conductor of O locally at � to be � k OK 0 , where

k = ord � O K 0
(fO ) := max

n 2 Z
f fO � � n OK 0 g:

We de�ne the non-� -part of the real conductor to be � � k fO , which is an OK 0 -ideal coprime to � OK 0 .
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De�nition 3.1.11. Suppose that we have a� -isogeny� between objects ofPOrd C;K 0 given by

� : (A ; � ) �! (A 0; � 0):

Write O = End(A) and O0 = End(A 0). If

(a) � fO = fO 0, then we say that � is ascending,

(b) � fO 0 = fO , then we say that � is descending, and

(c) fO = fO 0, then we say that � is horizontal .

Proposition 3.3.1. All � -isogenies from(A; �; � ) 2 POrd C;K 0 such that End(A) 
 Q = K are ascending,
descending, or horizontal.

We will prove Proposition 3.3.1 in Section 3.3.

Remark 3.1.12. Recall from Theorem 1.5.5 that there is a faithful functor

Id �;K 0 �! Ord C;K 0

that preserves the notions of dual, polarisation, and� -isogeny. Recall also from Theorem 1.3.11 that there
is an equivalence of categories

Ord � �! Id �

that preserves the notions of dual, polarisation, and the action of� and � , hence this induces an equivalence
of categories

Ord �;K 0 �! Id �;K 0 :

In particular, Proposition 3.3.1 implies that all � -isogenies between elements ofPOrd �;K 0 or PId �;K 0

are ascending, descending or horizontal.

In particular, in a � -isogeny graphG, the non-� -part of the real conductor is the same for all vertices
of any given connected componentC of G.

De�nition 3.1.13. Given a connected componentC of a � -isogeny graph, we choose a vertex (A; � ) 2 C,
and we de�ne the real conductor of C to be the non-� -part of the real conductor of End(A). We denote
this by fC .

Below is the proof of Theorem 3.1.9, the Volcano Theorem. The strategy of the proof is as follows: let
C be a connected component of the� -isogeny graph for Weil q-number � , let fC be the conductor ofC,
and let OC be the order of real conductorfC as in Proposition 3.2.1. We �rst prove that the full subgraph
C(fC ) of C that contains the vertices with endomorphism ring OC is of the form � O C ;� . We then show
that from every vertex v with End(v) = OK 0 + � i OC for i < d there are exactly NormK 0 =Q(� ) + 1 edges,
and that every edge from a vertex inC � C(fC ) is either ascending or descending. Finally, we show that
there is a unique ascending edge.

Proof of Theorem 3.1.9. For a connected componentC of a � -isogeny graphG, let GC be the union of
the connected components ofG with real conductor fC . (Note that C � GC � G.) We �rst partition GC

by endomorphism ring and look at the action of the Shimura class group on these subsets. To this end,
write � dOK 0 for the real conductor of OK 0 [�; � ] locally at � (this is equivalent to the formula given for d
in the statement of the Volcano Theorem). By Proposition 3.3.1, we can partition the set of vertices of
GC as

dG

i =0

V(� i fC );

where for any ideal I in OK 0 , we de�ne

V(I ) = f (A ; � ) 2 POrd �;K 0 : (End(A) : OK ) \ O K 0 = I g=�= : (3.1)

To look at the action of the Shimura class group on these subsets, recall that by Theorem 1.3.11 there
is a dual, polarisation, and action-of-OK 0 [�; � ] preserving equivalence of categoriesId �;K 0 $ Ord �;K 0 ,
where (P)Id �;K 0

was de�ned to be the category of (principally polarised) fractional OK 0 [�; � ]-ideals. In
particular V (I ) can also be viewed as

f (a; � ) 2 PId �;K 0 : (End(a) : OK ) \ O K 0 = I g=�= : (3.2)

The following proposition gives us the action of the Shimura class group onV(� i fC ):
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Proposition 3.5.1. For an order O in OK containing OK 0 [�; � ] of real conductor fO , if the set

V (fO ) = f (a; � ) 2 PId �;K 0 : (End(a) : OK ) \ O K 0 = fO g=�=

is non-empty, then the Shimura class groupSCl(O) of O acts freely and transitively on V(fO ) via

SCl(O) � V (fO ) �! V (fO )
([(c; � )]; [(a; � )]) 7! [(c� 1a; �� )]:

We will prove this in Section 3.5. We will now compute the structure of the full subgraph G(fC ) of GC

with vertices V (fC ). If V (fC ) is non-empty, Proposition 3.5.1 tells us how many vertices are inV (fC ), but
to deduce the structure ofG(fC ) we have to also study the (necessarily horizontal)� -isogenies between the
vertices V (fC ) of G(fC ). Two � -isogeniesf 1 : (A; � ) �! (A0

1; � 0
1) and f 2 : (A; � ) �! (A0

2; � 0
2) are de�ned

to be isomorphic if there exists a 1-isogeny� 0 : (A 0
1; � 0

1) �! (A 0
2; � 0

2) such that the diagram

(A ; � )
f 1 //

f 2

$$

(A 0
1; � 0

1)

� 0

��
(A 0

2; � 0
2)

commutes. We deduce the structure ofG(fC ) from the following proposition:

Proposition 3.6.1. Given (A; � ) 2 POrd �;K 0 , let O = End(A), let fO = ( O : OK ) \ O K 0 be the real
conductor of O, and let � 2 O K 0 be a totally positive prime element� 2 O K 0 . Suppose that there exists
(A ; � ) 2 POrd �;K 0 with End(A) = O. Then there is a bijection of sets

�
horizontal � -isogenies

from (A ; � )

�

=�=

 ! f m an O-ideal : mm = � Og

such that:

1. The codomain of the� -isogeny from [(A; � )] corresponding to [(m; � )] is given by[(m; � )] � [(A; � )],
where � is the action of Proposition 3.5.1.

2. The dual f y of the � -isogeny f : [(A; � )] ! [(m; � )] � [(A; � )] corresponding to m is isomorphic to the
� -isogeny from [(m; � )] � [(A ; � )] corresponding to m.

For the proof, see Section 3.6. This immediately gives us the following:

Corollary 3.1.14. For (A; � ) 2 POrd �;K 0 with End(A) = O, if fO 6� � OK 0 , then up to isomorphism,
there are exactly m horizontal � -isogenies from (A; � ), where

m =

8
<

:

0 if � OK 0 is inert in K=K 0:
1 if � OK 0 is rami�ed in K=K 0:
2 if � OK 0 splits in K=K 0:

If fO � � OK 0 , then there are no horizontal � -isogenies from (A; � ).

Now if V (fC ) is non-empty, Proposition 3.5.1 and Proposition 3.6.1 tell us that

(a) if � OK 0 is inert in K=K 0 then there are no edges inG(fC ),

(b) if � OK 0 is rami�ed in K=K 0 and the element [(m; � )] 2 SCl(OC ) is trivial, then G(fC ) is the disjoint
union of loops of weight 1

2 ,

(c) if � OK 0 is rami�ed in K=K 0 and the element [(m; � )] 2 SCl(OC ) is non-trivial, then G(fC ) is the
disjoint union of pairs of vertices joined by a single edge, and

(d) if � OK 0 splits in K=K 0 as mm, then G(fC ) is the disjoint union of cycles of length n, where n is the
order of [(m; � )] in SCl(OC ).
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That is, every non-empty connected component ofG(fC ) has exactly the form � O C ;� . Hence, if d = 0,
then we are done, so assume now thatd > 0. (Recall that d is the exponent of the real conductor� dOK 0

of OK 0 [�; � ] locally at � .) We �rst need to show that every non-empty connected componentC0 of GC

contains vertices in V (fC ), which is an immediate corollary of the following proposition:

Proposition 3.7.1. For i 2 Z> 0, from every vertex in V (� i fC ) there is an ascending� -isogeny.

For the proof, see Section 3.7. De�ning

v = Norm K 0 =Q(� ) + 1

and

v0 =

8
<

:

v if � O C ;� = I;
v � 1 if � O C ;� = Rn ;
v � 2 if � O C ;� = Cn ;

(3.3)

where n is the order of [(m; � )] in SCl(OC ), it now remains to consider the non-maximal vertices. To this
end we have the following proposition:

Proposition 3.8.1. For 0 � i < d , every vertex in V (� i fC ) has degree

NormK 0 =Q(� ) + 1 :

We will prove this in Section 3.8. Proposition 3.8.1 together with Corollary 3.1.14 proves that

(i) there are exactly v0 descending edges from each vertex inV (fC ).

(ii) for 0 < i < d , there are v edges from every vertex inV (� i fC ) and they are all either ascending or
descending.

It remains only to show that if i > 0 then there is a unique ascending edge from each vertex inV (� i fC ),
which will be proven in Section 3.9, as part of the following proposition:

Proposition 3.9.1. Let all notation be as above. Ifd > 0, we have

# V(� fC ) = v0# V(fC )

and for 1 � i < d ,
# V (� i +1 fC ) = ( v � 1)# V (� i fC ):

Also, for every 0 < i � d, there is a unique ascending edge from every vertex inV (� i fC ).

This �nishes the proof of the Volcano Theorem.

The rest of this chapter is dedicated to proving the `black-box' propositions from the above proof of the
Volcano Theorem. For these propositions we will use the Fixed Frobenius Lifting Theorem (Theorem 1.3.11)
to work instead in the category PId �;K 0 of principally polarised fractional OK 0 [�; � ]-ideals that was
de�ned in De�nition 1.5.1. Recall that the Fixed Frobenius Lifting Theorem gave us an equivalence of
categories

Ord �;K 0 $ Id �;K 0

that preserves the notions of duals, of polarisation and the action of� .

Remark 3.1.15. Recall that in Chapter 1 we also de�ned the categoryOrd C;K 0 of complex abelian
varieties with maximal real multiplication, and that in Theorem 1.5.5 we gave a faithful functor

Ord �;K 0 �! Ord C;K 0

that preserves the notions of dual, polarisation, and the action ofOK 0 . In particular, for each CM-�eld K
the Volcano theorem can also be applied to complex abelian varieties in the set

f (A ; � ) : A 2 Ord C; � : K ~! End(A) 
 Q; � (OK 0 [�; � ]) � End(A) g:
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3.2 Parametrising orders by their real conductors

Let K be a CM-�eld with maximal totally real sub�eld K 0, and write OK and OK 0 for the rings of integers
of K and K 0 respectively. In this section we prove that ordersO in K containing OK 0 are determined
completely by their real conductors (O : OK ) \ O K 0 (c.f. De�nition 3.1.10).

Proposition 3.2.1. There is a bijection of sets
�

Orders O in OK

s.t. OK 0 � O

�
$ f Ideals of OK 0 g

O 7! (O : OK ) \ O K 0

OK 0 + fOK  [ f:

Proof. De�ne f(O) = ( O : OK ) \ O K 0 and Of = OK 0 + fOK . It su�ces to show that for every order O in
OK containing OK 0 , we have

O = Of (O ) (3.4)

and that for every OK 0 -ideal f, we have
f = f(Of ): (3.5)

We start by proving (3.4). As

((O : OK ) \ O K 0 )OK � (O : OK )OK � O ;

it is clear that
(Of (O ) =) OK 0 + (( O : OK ) \ O K 0 )OK � O :

To prove equality, �rst note that K=K 0 is a 1-dimensionalK 0-vector space. Choosing a basis gives a
K 0-linear isomorphism

q : K=K 0 ~�! K 0:

Then
O=Of (O )

�= (O=OK 0 )=(Of (O ) =OK 0 ) �= q(O)=q(Of (O ) );

hence to prove (3.4), it su�ces to prove that

q(O) = q(Of (O ) ): (3.6)

To this end, we claim that

(a) for all orders O of K containing OK 0 , we have that q(O) = f(O)q(OK ).

(b) for all ideals f of OK 0 , we have that q(Of ) = fq(OK ).

Observe that if both (a) and (b) hold, then

q(O) = f(O)q(OK ) = q(Of (O ) );

so that (3.6) holds and hence so does(3.4). We �rst prove (a): note that q(O) and q(OK ) are non-zero
�nitely generated OK 0 -submodules ofK 0, and OK 0 is a Dedekind domain, henceq(O) and q(OK ) are
non-zero invertible fractional ideals of OK 0 , so that (a) holds if and only if

(q(O) : q(OK )) = f(O):

Now � 2 K satis�es � 2 (q(O) : q(OK )) if and only if � 2 K 0 and for all x 2 O K we have that

q(�x ) 2 q(O): (3.7)

We claim that (3.7) holds if and only if for all x 2 O K we have that

�x 2 O + OK 0 = O:

The `if ' statement is clear, so assume that for allx 2 O K we have that q(�x ) 2 q(O). Then for each
�x 2 O + K 0 there exists y 2 O and z 2 K 0 such that �x = y + z. Also � 2 (q(O) : q(OK )) and
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q(O) � q(OK ), so � 2 (q(OK ) : q(OK )) = OK 0 , hencez = �x � y is an algebraic integer, so is inOK 0 .
This proves the `only if '. Therefore

(q(O) : q(OK )) = OK 0 \ (O : OK ) = f(O):

So (a) holds. We now prove (b):

q(Of ) = f q(a + b) : a 2 O K 0 ; b 2 fOK g

= f q(a) + q(b) : a 2 O K 0 ; b 2 fOK g

= f q(b) : b 2 fOK g

= q(fOK )

= fq(OK ):

So (b), and hence (3.4), holds. It remains to prove (3.5), which is now almost automatic:

f(Of )q(OK )
(a)
= q(Of )

(b)
= fq(OK )

and q(OK ) is an invertible fractional OK 0 -ideal, hence

f(Of ) = f:

This proposition has an easy corollary:

Corollary 3.2.2. Every order O in K containing OK 0 is stable under complex conjugation.

Proof. By Proposition 3.2.1, we have that

O = OK 0 + (( O : OK ) \ O K 0 )OK

= OK 0 + ( (O : OK ) \ O K 0 )OK

= OK 0 + (( O : OK ) \ O K 0 )OK

= O:

Remark 3.2.3. In fact, it is necessary that the endomorphism ring of a principally polarised abelian
variety is stable under complex conjugation, as the Rosati involution is just complex conjugation.

3.3 All � -isogenies are ascending, descending or horizontal

Recall that for an order O in OK containing OK 0 , the real conductor was de�ned in De�nition 3.1.10 to be

fO = ( O : OK ) \ O K 0 ;

and for a totally positive prime element � of OK 0 . Suppose that we have a� -isogeny� between objects of
POrd C;K 0 given by

� : (A ; �; � ) �! (A 0; � 0; �0);

and that End(A) 
 Q is a CM-�eld. Recall from De�nition 3.1.11 that, writing O = End(A) and
O0 = End(A 0), if

(a) � fO 0 = fO , then we say that � is ascending,

(b) � fO = fO 0, then we say that � is descending, and

(c) fO = fO 0, then we say that � is horizontal.

In this section we prove the following:
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Proposition 3.3.1. All � -isogenies from (A; �; � ) 2 POrd C;K 0 such that End(A) 
 Q = K are ascending,
descending, or horizontal.

Remark 3.3.2. Observe that by Theorem 1.5.5, it follows from Proposition 3.3.1 that all � -isogenies
between objects ofPId �;K 0 are ascending, descending, or horizontal.

We �rst prove a useful lemma:

Lemma 3.3.3. The dual of a � -isogeny between objects ofPOrd C;K 0 with complex multiplication or
objects of POrd �;K 0 is also a� -isogeny.

Proof. We prove this for objects of POrd C;K 0 ; it then follows for objects of POrd �;K 0 by Theorem 1.5.5
and Theorem 1.3.11. Let (A; �; � ) and (A 0; � 0; �0) 2 POrd C;K 0 and suppose that

f : (A ; �; � ) �! (A 0; � 0; �0)

is a � -isogeny. For � : OK 0 ,! End(A), de�ne

�_ : OK 0 �! End(A _ )
� 7! � (� )_ :

As the multiplication-by- � map commutes with isogenies that preserve the real multiplication, both

(A 0)_

( � 0) � 1

##

(A 0)_�oo f _

//A_

� � 1

��
A0 A;

f
oo

and

End((A 0)_ ) 
 Q
g7! f _ g( f _ ) � 1

//End(A _ ) 
 Q

K 0

� 0_

OO
� _

44

commute, so
f _ : ((A 0)_ ; (� 0) � 1; �0_) �! (A _ ; � � 1; �_ )

is a � -isogeny.

Proof of Proposition 3.3.1. By assumption, the endomorphism ring O of A is an order in K . Let f :
(A ; �; � ) ! (A 0; � 0; �0) be a � -isogeny. We identify O0 = End(A 0) with a subring of K via

f � : O0 �! End(A) 
 Q = K
� 7! f � 1�f;

where f � 1 is the inverse of f 2 Hom(A; A0) 
 Q. It su�ces to show that if ( A; �; � ) and (A0; � 0; �0) in
POrd C;K 0 are � -isogenous, with End(A) = O and End(A0) = O0, then

fO = � fO 0; fO 0 = � fO ; or fO = fO 0;

where fO and fO 0 are the real conductors ofO and O0 respectively. So let

f : (A ; �; � ) �! (A 0; � 0; �0)

be a � -isogeny; then the diagram

A A
�oo f //A0

� 0

��
A_

� � 1

__

(A 0)_
f _

oo

(3.8)
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commutes. In particular, we have a surjective morphism

f y := ( � � 1 � f _ � � 0) : A 0 �! A

such that
f y � f = � � 1 � f _ � � 0 � f = [ � ]A :

Then for every � 2 O 0, take ' 2 End(A0) such that �0(' ) = � , so that f y � ' � f 2 End(A). Then
�� = � (f y � ' � f ) 2 O , hence

� O0 � O :

By Lemma 3.3.3, the dual of a� -isogeny is also a� -isogeny, soO � � � 1O0. In particular, this implies that

� fO 0 � fO � � � 1fO 0:

3.4 Principally polarised ideals are invertible

We will use repeatedly for the rest of the chapter the following proposition:

Proposition 3.4.1. If ( a; � ) 2 PId �;K 0 , then a is an invertible End(a)-ideal.

Before proving Proposition 3.4.1 we �rst prove a useful formula forEnd(a). Recall from Lemma 1.7.1
that for ( a; � ) 2 PId �;K 0 there exists � 2 K such that

(a; � ) �= (� OK 0 + O_
K 0

; (� � � ) � 1);

where O_
K 0

is the trace dual of OK 0 .

Lemma 3.4.2. Let a be a fractional OK 0 [�; � ]-ideal such that a = � OK 0 + O_
K 0

, where � 2 K , and
chooseA; B; C 2 K 0 not all zero such that

A� 2 + B� + C = 0 : (3.9)

De�ne the fractional OK 0 -ideal d by

d = AO_
K 0

+ B OK 0 + C(O_
K 0

) � 1: (3.10)

Then
End(a) = A� d� 1 + OK 0 :

Proof. For every x 2 End(a), as End(a) � K , we know that there exist a; b2 K 0 such that

x = a� + b:

Then for every a; b2 K 0, we have that a� + b 2 End(a) if and only if

(a� + b)( � OK 0 + O_
K 0

) � � OK 0 + O_
K 0

:

That is, if and only if for every � 2 O K 0 and every � 2 O _
K 0

, we have that

� OK 0 + O_
K 0

3 (a� + b)� � = � 2�a + � �b = � A � 1(B� + C)�a + � �b (3.11)

and
� OK 0 + O_

K 0
3 (a� + b)� = ��a + �b: (3.12)

Now, we have (3.11) for every� 2 O K 0 if and only if
�

b�
B
A

a
�

OK 0 � O K 0 (3.13)

and

a
C
A

OK 0 � O _
K 0

: (3.14)
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Similarly, we have (3.12) for every� 2 O _
K 0

if and only if

aO_
K 0

� O K 0 (3.15)

and
b 2 O K 0 : (3.16)

Note that (3.16) is equivalent to bO_
K 0

� O _
K 0

becauseO_
K 0

is an invertible OK 0 -ideal (as OK 0 is a
Dedekind domain). Now a� + b 2 End(a) if and only if (3.13)-(3.16) hold. Furthermore, (3.13) and (3.16)
hold if and only if b 2 O K 0 and

B
A

aOK 0 � O K 0 ; (3.17)

and (3.14) holds if and only if

a
C
A

(O_
K 0

) � 1 � O K 0 : (3.18)

We now have that a� + b 2 End(a) if and only if (3.15), (3.16), (3.17), and (3.18) hold. But (3.15), (3.17),
and (3.18) hold if and only if

a 2
�

OK 0 : O_
K 0

+
B
A

OK 0 +
C
A

(O_
K 0

) � 1
�

= Ad� 1:

Hence
End(a) = A� d� 1 + OK 0 :

Proof of Proposition 3.4.1. By Lemma 1.7.1, there exists� 2 K � such that

� a = � OK 0 + O_
K 0

: (3.19)

Without loss of generality, set � = 1. Let A; B; C , and d be as in Lemma 3.4.2. We claim that

a
�
Ad� 1a(O_

K 0
) � 1�

= End( a):

Note that as OK 0 is a Dedekind domain, all fractional OK 0 -ideals are invertible. In particular, both d and
O_

K 0
are invertible OK 0 -ideals. Note also that

tr K=K 0 (� ) = � B=A and NK=K 0 (� ) = � C=A: (3.20)

Now

a(Aad� 1(O_
K 0

) � 1)

= ( � OK 0 + O_
K 0

)( � OK 0 + O_
K 0

)Ad� 1(O_
K 0

) � 1 by (3.19)

= ( � � (O_
K 0

) � 1 + � OK 0 + � OK 0 + O_
K 0

)Ad� 1

= ( C(O_
K 0

) � 1 + B OK 0 + A� OK 0 + AO_
K 0

)d� 1 by (3.20)

= A� d� 1 + OK 0

= End( a): by Lemma 3.4.2

Hencea is an invertible End(a)-ideal, with

a� 1 = Aad� 1(O_
K 0

) � 1:

One nice corollary of Proposition 3.4.1 is the following formula:

Corollary 3.4.3. Let (a; � ) 2 PId �;K 0 with End( a) = O. Then

� aa = O_ : (3.21)
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Proof. Note �rst that by De�nition 1.3.7, we have

a_ = f x 2 K : tr K= Q(xa) � Zg

= f x 2 K : tr K= Q(xa) � Zg:

Also
tr K= Q((a� 1O_ )a) = tr K= Q(O_ ) � Z;

hence
a� 1O_ � a_ = � a;

hence asa is an invertible O-ideal, we have that

O_ � � aa:

For the other inclusion, observe that by De�nition 1.3.7

O_ = f x 2 K : tr K= Q(xO) � Zg;

and that
tr K= Q(aa_ O) = tr K= Q(aa_ ) � Z;

so that in particular aa_ � O _ . Hence
� aa = aa_ � O _ :

3.5 The action of the Shimura class group

Let � be an ordinary Weil q-number that generates a CM-�eld K = Q(� ) with maximal totally real
sub�eld K 0. Let � be a totally positive prime element of OK 0 and let G be the � -isogeny graph for� . Let
C be a connected component ofG and let fC be the real conductor ofC, as de�ned in De�nition 3.1.13.
Recall from Equation (3.1) that we de�ned

V(� i fC ) = f (A ; � ) 2 POrd �;K 0 : (End(A) : OK ) \ O K 0 = � i fC g=�= ;

and that under the equivalence of categories of Theorem 1.3.11, we may also de�ne

V(� i fC ) = f (a; � ) 2 PId �;K 0 : (End(a) : OK ) \ O K 0 = � i fC g=�= :

Proposition 3.5.1. For an order O in OK containing OK 0 [�; � ] of real conductor fO , if the set

V (fO ) = f (a; � ) 2 PId �;K 0 : (End(a) : OK ) \ O K 0 = fO g=�=

is non-empty, then the Shimura class group SCl(O) of O acts freely and transitively on V(fO ) via

SCl(O) � V (fO ) �! V (fO )
([(c; � )]; [(a; � )]) 7! [(c� 1a; �� )]:

Proof. De�ne
Frac(O) = f (c; � ) : c a fractional O-ideal, � 2 K +

0 ; cc = � Og

and
Prin( O) = f (vO; vv) : v 2 K � g

so that SCl(O) = Frac(O)=Prin (O). Now if ( c; � ) 2 Frac(O) and [(a; � )] 2 SCl(O) then c� 1a is an
invertible O-ideal and is in Id � . Also

(c� 1a)_ = ( c� 1a) � 1O_ by Corollary 3.4.3

= ca_ by Corollary 3.4.3

= �� c� 1a as cc = � O and � a = a_ ;
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and � is totally positive, hence �� is a principal polarisation of c� 1a by Remark 1.3.8. ThereforeFrac(O)
acts on V(fO ) via

(c; � ) � [(a; � )] = [( c� 1a; �� )]:

We now show that this in fact de�nes a free action

SCl(O) � V (fO ) �! V (fO ):

Take (c; � ) 2 Frac(O). Then for [( a; � )] 2 V (fO ), we have that

[(a; � )] = [( c� 1a; �� )]

if and only if there exists an isomorphism

(a; � ) �! (c� 1a; �� )

in PId �;K 0 . Recall from De�nition 1.3.9 and De�nition 1.5.1 that an isomorphism in PId �;K 0 is � 2 K
such that

� a = c� 1a and ��� � = �:

This is equivalent to � = ( � � ) � 1 and c = � � 1O. In particular, we have that [( a; � )] = [( c� 1a; �� )] if and
only if

[(c; � )] = [( � � 1O; (� � ) � 1)] = [( O; 1)]:

Hence the action is free and well-de�ned, so it remains to show that it is transitive. That is, it remains to
show that if [( a; � )] and [(a0; � 0)] 2 V (fO ), then

(a(a0) � 1; � � 1� 0) 2 Frac(O): (3.22)

First, note that as � and � 0 are polarisations, for every� 2 � �;j , we have that

� (� )=i; � (� 0)=i 2 R> 0:

(Recall the de�nition of � �;j from De�nition 1.3.5.) In particular, for every � 2 � �;j , we have that

� (� 0� � 1) = � (� 0)� (� ) � 1 2 R> 0;

so � 0� � 1 is totally positive. Finally, we have by Corollary 3.4.3 that aa� = O_ and a0a0� 0 = O_ , so

a(a0) � 1a(a0) � 1 = � 0� � 1O;

hence Equation (3.22) holds and the action is transitive.

3.6 Counting horizontal � -isogenies

The goal of this section is to prove Proposition 3.6.1, which was used in the proof of the Volcano Theorem,
Theorem 3.1.9.

Proposition 3.6.1. Given (A; � ) 2 POrd �;K 0 , let O = End(A), let fO = ( O : OK ) \ O K 0 be the real
conductor of O, and let � 2 O K 0 be a totally positive prime element � 2 O K 0 . Suppose that there exists
(A ; � ) 2 POrd �;K 0 with End(A) = O. Then there is a bijection of sets

�
horizontal � -isogenies

from (A ; � )

�

=�=

 ! f m an O-ideal : mm = � Og

such that:

1. The codomain of the � -isogeny from [(A; � )] corresponding to [(m; � )] is given by [(m; � )] � [(A; � )],
where � is the action of Proposition 3.5.1.

2. The dual f y of the � -isogenyf : [(A; � )] ! [(m; � )] � [(A; � )] corresponding to m is isomorphic to the
� -isogeny from [(m; � )] � [(A ; � )] corresponding to m.
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We �rst prove two lemmas.

Lemma 3.6.2. Suppose that (a; � ) and (a0; � 0) 2 PId �;K 0 and that End(a) = End(a0) = O. If � 2 (a0 : a)
is a � -isogeny

(a; � ) �! (a0; � 0)

then
� a(a0) � 1� a(a0) � 1 = � O:

Proof. By Corollary 3.4.3 we know that

� aa = � 0a0a0 = O_ :

Now given � 2 (a0 : a), by de�nition it is a � -isogeny if and only if

�� = � �� 0;

which implies that
� �� aa = �� a0a0:

Also, by Proposition 3.4.1, we know that a0 and a0 are invertible as O-ideals, hence

� a(a0) � 1� a(a0) � 1 = � O:

Lemma 3.6.3. Let O be an order in OK containing OK 0 of real conductor fO and suppose that� OK 0 jfO .
Then there is a unique prime idealm of O lying above � OK 0 , given by

m = � OK 0 + fO OK :

Proof. Recall that O = OK 0 + fO OK so m is clearly an ideal ofO. Furthermore, we have that

O=m �= OK 0 =� OK 0

which is a �eld (as � OK 0 is prime and OK 0 is a Dedekind domain), som is maximal. Suppose now that
em is a prime ideal of O lying above � OK 0 , so that

� OK 0 + � fO OK = � O � em: (3.23)

We can factor � fO OK into O-ideals as

� fO OK = m(fO OK );

which is contained in em by (3.23). Hence asem is a prime O-ideal, either

m � em (3.24)

or
fO OK � em; (3.25)

and by (3.23), we have also that� OK 0 � em, so that (3.25) implies that

� OK 0 + fO OK � em: (3.26)

Therefore, asm = � OK 0 + fO OK is a maximal ideal, we have by(3.24) or (3.26) that em = m, so m is
unique.

Proof of Proposition 3.6.1. We prove this in the equivalent category Id �;K 0 instead of in Ord �;K 0 ; that
is, we count � -isogenies from (a; � ) 2 PId �;K 0 such that End(a) = O. Suppose that there exists
(a0; � 0) 2 PId �;K 0 with End( a0) = O and a � -isogeny

� : (a; � ) �! (a0; � 0):

41



Then by Lemma 3.6.2, we have that

� a(a0) � 1� a(a0) � 1 = � O: (3.27)

Also � a(a0) � 1 is an O-ideal as � a � a0, so (3.27) implies that there is anO-ideal m such that � O = mm.
If � OK 0 jfO , we have by Lemma 3.6.3 that such anm does not exist and hence there are no horizontal
� -isogenies in this case.

Suppose now thatfO = fC . Then � O is relatively prime to fO O = ( O : OK ), and hence decomposes
uniquely into prime ideals. As � is a prime element ofOK 0 , the ideal � OK 0 is either inert, rami�ed, or
split in K=K 0. If � OK 0 is inert, then there exists no O-ideal m such that � O = mm, so as before, there
are no horizontal � -isogenies from (a; � ) in this case.

It remains to consider the case in which� OK 0 is split or rami�ed in K=K 0, so suppose that� O
decomposes as� O = mm. Then � 2 (ma : a) and m corresponds to the� -isogeny

� : (a; � ) �! (ma; � � 1� );

and � 2 (ma : a) and m corresponds to the� -isogeny

� : (a; � ) �! (ma; � � 1� ):

We claim that up to isomorphism these are the only horizontal � -isogenies from (a; � ). Suppose that there
is an object (a0; � 0) 2 PId �;K 0 with End( a0) = O for which some� 2 (a0 : a) de�nes a � -isogeny

(a; � ) �! (a0; � 0):

Then � 0 = ( � � ) � 1�� , and by Lemma 3.6.2, we have that

� a(a0) � 1� a(a0) � 1 = � O;

so by unique factorisation, we have that

� a(a0) � 1 = m or � a(a0) � 1 = m;

that is,
a0 = � � 1� ma or a0 = � � 1� ma:

It is then easy to see that if a0 = � � 1� ma then � � 1� 2 (a0 : ma) de�nes a 1-isogeny (i.e. isomorphism)

(ma; � � 1� ) �! (a0; (� � ) � 1�� )

corresponding to � � 1� O, in which case the� -isogeny de�ned by � 2 (ma : a) corresponding to m and the
� -isogeny de�ned by � 2 (a0 : a) corresponding to � � 1� O make the diagram

(a; � )
� //

1
��

(ma; � � 1� )

� � 1 �
��

(a; � ) � //(a0; � 0)

commute and hence are isomorphic by de�nition. Similarly, if a0 = � � 1� ma then � 2 (ma : a) and
� 2 (a0 : a) are isomorphic as� -isogenies.

We now show that m = m if and only if the � -isogenies de�ned by� 2 (ma : a) and � 2 (ma : a)
corresponding tom and m respectively are isomorphic. The `only if ' is clear, so we proceed by proving
the `if '. Suppose that there exists a 1-isogeny de�ned by� 2 (ma : ma) such that the diagram

(a; � )
� //

�

%%

(ma; � � 1� )

�

��
(ma; � � 1� )

commutes. Then� = 1 so ma = � ma = ma. Therefore asa is an invertible O-ideal, we get that m = m.
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It remains to show (2), that the dual f y of the � -isogeny

f = � : (a; � ) ! (ma; � � 1� )

corresponding tom is the � -isogeny from
[(ma; � � 1� )]

corresponding tom. By the de�nition of a � -isogeny, we have thatf yf = � , hence

f y = 1 : ( ma; � � 1� ) ! (a; � ):

This is the composition of the � -isogeny

g = � : (ma; � � 1� ) ! (mma; � � 2� )

corresponding tom and the 1-isogeny

� � 1 : (� a; � � 2� ) ! (a; � ):

Hencef y is isomorphic to g so (2) holds.

3.7 A construction of ascending � -isogenies

The goal of this section is to prove Proposition 3.7.1, which was used in the proof of the Volcano Theorem,
Theorem 3.1.9. Recall thatC is a connected component of the� -isogeny graph for the Weil q-number � ,
that fC is the real conductor fC (as de�ned in De�nition 3.1.13), and that

V (� i fC ) = f (A ; � ) 2 POrd �;K 0 : (End(A) : OK ) \ O K 0 = � i fC g=�= :

Proposition 3.7.1. For i 2 Z> 0, from every vertex in V (� i fC ) there is an ascending� -isogeny.

Proof. We prove this in the category PId �;K 0 . That is, we prove that for that ( a; � ) 2 PId �;K 0 with
End(a) = O, if � OK 0 divides fO , the real conductor of O, then there is an ascending� -isogeny from (a; � ).
So suppose that� OK 0 jfO and write O0 = OK 0 + � � 1fO OK for the order in OK of real conductor � � 1fO .
We claim that

End(aO0) = O0; (3.28)

and that
(aO0; �� ) 2 PId �;K 0 : (3.29)

Note that (3.29) implies that 1 2 (aO0; a) de�nes a � -isogeny

(a; � ) �! (aO0; �� );

and (3.28) implies that it is ascending. For (3.28), observe thataO0 is an invertible O0-ideal with
inverse a� 1O0, and henceEnd(aO0) = O0. For (3.29), if we can can show that (aO0)_ = �� aO0 then by
Remark 1.3.8 we have that�� is a principal polarisation of a0O0 as � is totally positive. We have that

(aO0)_ = f x 2 K : tr K= Q(xaO0) � Zg
= f x 2 K : xa � (O0)_ g
= (( O0)_ : a)
= a� 1(O0)_ as a is invertible
= � a(O : O_ )(O0)_ by Corollary 3.4.3.

In the last step we used also thatO_ is an invertible O-ideal; note that O_ = � aa is the product of
invertible O-ideals and so is itself also an invertibleO-ideal. Hence it su�ces to show that

(O : O_ )(O0)_ = � O0: (3.30)

Now as � O0 � O , we have that

� O0O_ � � O0(� O0)_ = � O0� � 1(O0)_ = ( O0)_ ;

then multiplying by ( O : O_ ) gives � O0 � (O : O_ )(O0)_ . Also, as (O0)_ � O _ , this gives us that

� O0 � (O : O_ )(O0)_ � O :

By Lemma 3.6.3 we know that � O0 is the unique prime ideal ofO lying above � OK 0 , hence maximal, so
either � O0 = ( O : O_ )(O0)_ or (O : O_ )(O0)_ = O. But O is not an O0-submodule ofK , hence(3.30),
and in turn (3.29), hold.
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3.8 Counting the degree of vertices in the � -isogeny graph

Recall from (3.2) that for an ideal I of OK 0 we de�ned

V(I ) = f (A ; � ) 2 POrd �;K 0 : (End(A) : OK ) \ O K 0 = I g= �=

to be the set of vertices in the� -isogeny graph for the Weil q-number � for which the endomorphism
rings of the corresponding abelian varieties have real conductorI . In this section we prove the following
proposition:

Proposition 3.8.1. For 0 � i < d , every vertex in V (� i fC ) has degree

NormK 0 =Q(� ) + 1 :

Proof. Recall that in Theorem 1.5.5 we de�ned an equivalence of categories

F� : Id �;K 0 �! Ord C;�;K 0

that preserves the action ofOK 0 [�; � ] and the notions of dual and polarisation. Let (a; � ) 2 PId �;K 0 and
suppose that [(a; � )] 2 V (� i fC ), where 0� i < d . Write F� (a; � ) = (A ; �; e).

From Lemma 2.3.9 we have that there areNormK 0 =Q(� )+1 non-isomorphic � -isogenies from any object
in POrd C;K 0 . (See De�nition 2.1.3 to recall how Lemma 2.3.9 relates to objects inPOrd C;K 0 ). Hence,
it su�ces to show that every � -isogeny from (A; �; ejO K 0

) in Ord C;K 0 comes from a unique� -isogeny in
Ord C;� .

Given a � -isogeny
f : (A ; �; ejO K 0

) ! (A 0; � 0; �0)

in Ord C;K 0 , embedK into End(A 0) 
 Q via e0 = f � e � f � 1. Then

End((A ; e)) = End( a) = OK 0 + � i fC OK � O K ;

therefore by Proposition 3.3.1 we have that (e0) � 1(End(A0)) = OK 0 + � j fC OK where j 2 f i � 1; i; i + 1g.
In particular, as i < d this implies that

f : (A ; �; e) ! (A 0; � 0; e0)

is in Ord C;�;K 0 . Conversely, for every embeddinge0 such that f : (A; �; e) ! (A0; � 0; e0) is a � -isogeny in
Ord C;�;K 0 , by de�nition we have that e0 = f � e � f � 1.

3.9 The order of the Shimura class group

In this section we prove Proposition 3.9.1, which was used in the proof of the Volcano Theorem. We
will use notation as in the proof of the volcano theorem: recall that for a connected componentC of the
� -isogeny graph for the Weil q-number � , we de�ned fC to be the real conductor ofC, and we de�ned OC

to be the order given by OK 0 + fC OK . Recall also that we de�ned V(I ) to be the set of vertices with
endomorphism ring of real conductorI , we de�ned v = Norm K 0 =Q(� ) + 1, and we de�ned

v0 =

8
<

:

v if � O C ;� = I;
v � 1 if � O C ;� = Rn for somen;
v � 2 if � O C ;� = Cn for somen:

(3.31)

Proposition 3.9.1. Let all notation be as above. If d > 0, we have

# V(� fC ) = v0# V(fC )

and for 1 � i < d ,
# V (� i +1 fC ) = ( v � 1)# V (� i fC ):

Also, for every 0< i � d, there is a unique ascending edge from every vertex inV (� i fC ).
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Lemma 3.9.2. Let K be a CM-�eld with maximal totally real sub�eld K 0 such that that the only roots
of unity in OK are � 1, and let O0 � O be orders inOK containing OK 0 . Write fO 0 and fO for the real
conductors of O0 and O respectively, and suppose that thatfO 0 = � fO . Then the map

� : SCl(O0) �! SCl(O)
[(a0; � 0)] 7! [(a0O; � 0)]:

is a surjective homomorphism. Furthermore, if � OK 0 6 jfO , then

# ker( � ) =

8
<

:

NormK 0 =Q(� ) + 1 if � OK 0 is inert in K=K 0

NormK 0 =Q(� ) if � OK 0 is rami�ed in K=K 0

NormK 0 =Q(� ) � 1 if � OK 0 is split in K=K 0,

and otherwise
# ker( � ) = Norm K 0 =Q(� ):

To prove Lemma 3.9.2, we �rst prove some lemmas. The proofs of Lemma 3.9.3 and Lemma 3.9.6 are
based on the proofs of two similar results in [BS17, Lemma 7] and [BS17, Lemma 8].

Lemma 3.9.3. Let K be a CM �eld with maximal totally real sub�eld K 0, let O be an order in K that
contains K 0, and let fO be the real conductor ofO. Suppose that a is an invertible ideal of O. Then
a + fO OK = O if and only if a + fO O = O.

Proof. Recall from Proposition 3.2.1 that O = OK 0 + fO OK so that in particular

fO O � fO OK � O

and hence
a + fO O � a + fO OK � a + O = O:

So one implication is clear. It remains to prove the other implication, so assume thata + fO OK = O.
Observe that fO O = fO (OK 0 + fO OK ) = fO + f2

O OK , giving

f2
O OK � fO O; (3.32)

and that
a + fO OK = O = O2 = ( a + fO OK )2 � a + f2

O OK : (3.33)

Together, (3.32) and (3.33) give us
a + fO OK � a + fO O;

hence
a + fO O = a + fO OK = O:

We will make implicit use of Lemma 3.9.3 from this point on.

De�nition 3.9.4. For R a ring and f an ideal in R, a fractional R-ideal a is de�ned to be coprime to f if
for every prime ideal p of R that divides f, the localisation a 
 R Rp at p of a is Rp.

Lemma 3.9.5. Let K , O, O0, fO , and fO be as in Lemma 3.9.2. ForR = O or O0, de�ne GO to be the
group of invertible fractional R-ideals that are coprime to f = fO 0OK . Then there is an isomorphism of
groups

r : GO 0 �! GO

a0 7! a0O:

Proof. We �rst check that r is well-de�ned. Suppose thata0 is an invertible fractional O0-ideal coprime to
f. Then for every prime ideal p0 of O0 dividing f, we have that a0 
 O 0 O0

p0 = O0
p0. Let p be a prime ofO

lying above p0. Then

a0O 
 O Op = a0 
 O 0 Op = a0 
 O 0 O0
p0 
 O 0

p 0
Op = O0

p0 
 O 0
p 0

Op = Op:

Hencea0O is coprime to f, so r is well-de�ned.
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By [Ste08, Theorem 5.3], there is an isomorphism of groups

 R : GR �!
L

prime p� R GR p

a 7! (a 
 O p)p:

Furthermore, we claim that M

prime p0�O 0

GO 0
p 0

=
M

prime p�O

GO p : (3.34)

To see this, given a prime idealp � O , let p0 = p \ O 0. Then if p 6 jf, we get an isomorphismO0
p0

�= Op.
This gives all primes ofO0 that are coprime to f. Also GO 0

p 0
is trivial if p0jf and GO p is trivial if pjf, so

(3.34) holds. Hence � 1
O �  O 0 : GO 0 ! GO de�nes an isomorphism fromGO 0 to GO .

It remains to show that r =  � 1
O �  O 0. Let a0 2 GO 0. Then

 O 0(a0) = ( a0 
 O 0
p0)p0 = ( a0 
 O p)p 2

M

prime p�O

GO p ;

and
 O � r (a0) =  O (a0O) = ( a0O 
 O p)p = ( a0 
 O p)p;

so r =  � 1
O �  O 0 and the lemma now follows.

Lemma 3.9.6. Let K , O, O0, fO 0, and � be as in Lemma 3.9.2. Then� is a surjective homomorphism
and

ker(� ) �=
(O=fO 0OK ) �

(O0=fO 0OK ) � :

Proof. For any order R in K , de�ne

I R =
�

(a; � ) :
a an invertible fractional R-ideal;
aa = �R; � 2 K 0; � >> 0

�

and
PR = f (xR; x x) : x 2 K � g

so that
SCl(R) = I R =PR :

Furthermore, for any ideal f in R, de�ne

I R (f) =
�

(a; � ) :
a an invertible fractional R-ideal coprime to f;

aa = �R; � 2 K 0; � >> 0

�
;

and de�ne
PR (f) = I R (f) \ PR ;

so that
I R (f)=PR (f) ,! SCl(R):

In fact, by [Ste08, Proposition 4.4] and the Chinese Remainder Theorem, we get an isomorphism

I R (f)=PR (f) �= SCl(R):

In particular, it su�ces to show that

e� : I O 0(f)=PO 0(f) �! I O (f)=PO (f)
[(a0; � 0)] 7! [(a0O; � 0)]

with f = fO 0OK is a surjective homomorphism with kernel isomorphic to

(O=fO 0OK ) �

(O0=fO 0OK ) � :

We claim �rst that
I O 0(f) �! I O (f)
(a0; � 0) 7! (a0O; � 0)

(3.35)
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de�nes a bijection. This is well-de�ned and injective by Lemma 3.9.5, so we only prove surjectivity.
Suppose that (a; � ) 2 I O (f), and let a0 = r � 1(a), where r is the isomorphism of Lemma 3.9.5. Asr is an
isomorphism, we only show that � O0 is coprime to f. It su�ces to show that � OK 0 and fO 0 are coprime
as OK 0 -ideals: asOK 0 � O 0 in this case

O0 = O0OK 0 = O0(� OK 0 + fO 0) � � O0+ f;

so � O0 is coprime to f. Note that � O is coprime to f, so (� mod f) 2 (O=f) � de�nes an automorphism on
O=f. Also, there is an injective ring homomorphism

OK 0 =fO 0 ,! O =f

that sends
� mod fO 0 7! � mod f:

Hence multiplication by ( � mod fO 0) de�nes an injective endomorphism onOK 0 =fO 0, which is a �nite
ring, hence multiplication by ( � mod fO 0) is an automorphism. In particular, this gives that

� mod fO 0 2 (OK 0 =fO 0) �

and hence� OK 0 is coprime to fO 0. We have now proved the surjectivity of (3.35), hence(3.35) is a
bijection.

We have proven that e� is surjective and has kernelPO (f)=PO 0(f). Suppose that (xO; xx) 2 PO (f).
Then there exist invertible O-ideals b and c, coprime to f, such that xO = b=c. Furthermore, without loss
of generality we may assume thatb and c are principal: let r 2 Z> 0 be minimal such that cr is principal,
then xO = ( bcr � 1)=cr , and bcr � 1 and cr are coprime to f and principal. For ( xO; xx) 2 PO (f), choose�
and � 2 O such that xO = ( � O)=(� O) and xx = �� � 1�� � 1. We claim that

i : PO (f) �! (O=f) � =(O0=f) �

(xO; xx) 7! �� � 1

is a well-de�ned surjective morphism with kernel PO 0(f). Well-de�ned is clear as �� � 1 is uniquely de�ned
up to roots of unity in O, and O and O0 have the same roots of unity by assumption. Surjectivity is also
clear: for every x + f 2 (O=f) � , we have anO-ideal xO that is coprime to f. The kernel of i is given by

f (xO; xx) 2 PO (f) : �� � 1 + f 2 (O0=f) � g;

hence
ker(i ) �! PO 0(f)

(xO; xx) 7! (xO0; xx)

de�nes a bijection. This proves the lemma.

Proof of Lemma 3.9.2. We have from Lemma 3.9.6 that � is a well-de�ned surjective homomorphism and
that

ker(� ) �=
(O=fO 0OK ) �

(O0=fO 0OK ) � : (3.36)

To count # ker( � ), we �rst show that

ker(� ) �=
(O=� O) �

(O0=� O) � :

We have that
fO 0OK = � fO OK � � (OK 0 + fO OK ) = � O;

so that in particular there is a natural map

O=fO 0OK ////O=� O

and an induced morphism of unit groups

(O=fO 0OK ) � ////(O=� O) � :
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De�ne

' : (O=fO 0OK ) � �!
(O=� O) �

(O0=� O) �

to be the composition of this with the natural quotient morphism. We claim that

ker(' ) = ( O0=fO 0OK ) � : (3.37)

Clearly (O0=fO 0OK ) � � ker(' ). To show that ker(' ) � (O0=fO 0OK ) � , suppose thatx + fO 0OK 2 ker(' ).
Then there exists y 2 O 0 such that x � y 2 � O � O 0, so x 2 O 0. Hence (3.37) holds, so that by the
isomorphism theorem we have a group isomorphism

(O=fO 0OK ) �

(O0=fO 0OK ) �
�=

(O=� O) �

(O0=� O) � : (3.38)

Then by (3.36),

# ker( � ) =
#( O=� O) �

#( O0=� O) � : (3.39)

We �rst count the denominator. By Proposition 3.2.1, we have that

O0 = OK 0 + fO 0OK = OK 0 + � fO OK = OK 0 + � O;

hence
O0=� O = ( OK 0 + � O)=� O �= OK 0 =(� O \ O K 0 ) = OK 0 =� OK 0 :

Write
` = Norm K 0 =Q(� ):

We assumed� OK 0 to be prime, soO0=� O �= OK 0 =� OK 0 is an integral domain with ` elements. Hence

#( O0=� O) � = ` � 1:

We now count the numerator of (3.39). If either

(a) � OK 0 - fO and � OK 0 is rami�ed in K=K 0 so that � O = m2 is a square inO, or

(b) � OK 0 j fO , so that by Lemma 3.6.3, theO-ideal m = � OK 0 + fO OK is the unique prime O-ideal
containing � O,

then there is a unique maximal idealm=� O in O=� O, and this is the set of non-units. Therefore in either
case

#( O=� O) � = #( O=� O) � #( m=� O) = `2 � ` = `(` � 1):

If � OK 0 6 jfO and � OK 0 is inert in K=K 0, then � O is prime in O and henceO=� O is an integral domain
with Norm K= Q(� ) = `2 elements, giving

#( O=� O) � = `2 � 1:

Finally, if � OK 0 6 jfO and � OK 0 splits in K=K 0, then there are 2 distinct prime idealsm and m of O lying
above � O. This gives

#( O=� O) � = #( O=mO) � #( O=mO) � = ( ` � 1)2:

The result now follows from (3.39).

Proof of Proposition 3.9.1. Recall that C is a connected component of the� -isogeny graph for Weil
q-number � , so in particular contains a vertex � . If � 62V (fC ), there is an ascending� -isogeny from� by
Proposition 3.7.1, so inductively we see thatV (fC ) is non-empty. We �rst show that

# V (� fC ) = v0# V(fC );

where

v0 =

8
<

:

NormK 0 =Q(� ) + 1 if � OK 0 is inert in K=K 0

NormK 0 =Q(� ) if � OK 0 is rami�ed in K=K 0

NormK 0 =Q(� ) � 1 if � OK 0 is split in K=K 0.
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By assumption d > 0, so by Proposition 3.8.1 there areNormK 0 =Q(� ) + 1 edges from every vertex in
V (fC ), and by Proposition 3.6.1, we have thatv0 of these are non-horizontal, hence descending toV (� fC )
by Proposition 3.3.1. Note that NormK 0 =Q(� ) � 2, so that v0 > 0, and henceV(� fC ) is non-empty.
Also, by Proposition 3.5.1, for any K -order eO such that OK 0 [�; � ] � eO, if V (fO ) 6= ; we have that
#SCl( eO) = # V(fO ), so by Lemma 3.9.2 we get that

# V (� fC ) = #SCl( OK 0 + � fC OK ) = v0#SCl( OK 0 + fC OK ) = v0# V(fC ):

Observe that there is aunique ascending� -isogeny from every vertex inV (� fC ): by Proposition 3.7.1
there is an ascending� -isogeny from every vertex inV (� fC ), which accounts for # V (� fC ) of the descending
� -isogenies fromV(fC ), but this is all of them as # V(� fC ) = v0# V(fC ).

By induction, for every 1 < i < d we have that

# V (� i +1 fC ) = ( v � 1)# V (� i fC ):

(The induction is the same argument as fori = 1 above, where we replace the horizontal edges between
elements ofV (fC ) by the unique ascending edge from every element ofV (� i � 1fC ).)

3.10 Example computation of a � -isogeny graph

All the calculations for this example were done in Sage [Sage]. Let us consider the curve

C : y2 = 902701461021360x6 + 938022069033830x5 + 2496384827106779x4

+ 560788189813847x3 + 2116308108498283x2

+ 1865564692722366x + 2658210628678317

de�ned over Fp, with p = 2681144777671301, which is a prime. This curve was taken from the Echidna
Database [Echidna,https://www.i2m.univ-amu.fr/perso/david.kohel/dbs/cgi-bin/quartic_cm_
field.py?D=5&A=37&B=281] and has endomorphism ring isomorphic to the maximal order of the quartic
CM-�eld

K := Q[x]=(x4 + 37x2 + 281);

in which p splits completely and p = � � , where K = Q(� ), and � is the Frobenius morphism on the
Jacobian of C. The minimal polynomial of � is

� � (x) = x4 � 605104x3 � 5215893977257194x2 � 1622371429548014920304x

+ 7188537318834090069340399032601:

The maximal totally real sub�eld of K is K 0 = Q(
p

5), and we will now �x

� = (5 +
p

5)=2:

Then � is a totally positive algebraic integer in K 0 with norm 5, and � OK splits into prime ideals of OK

as mm, where

m =5OK + ( � 66584412017=973349359248690349479457148650000� 3

+ 17464102246896083=486674679624345174739728574325000� 2

+ 179358776708395470690104969=973349359248690349479457148650000�

� 22924673687227109=181517493451825000)OK :

We can easily check that the order of [(m; � )] in SCl(OK ) is 3, and that

d = max f k 2 Z : OK 0 [�; � ] � O K 0 + � k OK g = 4 ;

so that by Theorem 3.1.9, the connected component of the� -isogeny graph in whichC lies is a (C3; 6; 4)-
volcano, pictured below.
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Colour Blue Purple Green Orange Red
End(A) OK OK 0 + � OK OK 0 + � 2OK OK 0 + � 3OK OK 0 + � 4OK

Table 3.1: Colour coding

A ( C3; 6; 4)-volcano.
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Chapter 4

Isogenies for point counting on genus
two hyperelliptic curves with
maximal real multiplication

This chapter is joint work with Ballentine, Guillevic, Lorenzo-Garc��a, Massierer, Smith, and Top, and has
been published as [Bal+17].

This chapter reports on work carried out at the workshop Algebraic Geometry for Coding Theory and
Cryptography at the Institute for Pure and Applied Mathematics (IPAM), University of California, Los
Angeles, February 22{26, 2016. The authors thank IPAM for its generous support.
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Abstract

Schoof's classic algorithm allows point-counting for elliptic curves over �nite �elds in polynomial time.
This algorithm was subsequently improved by Atkin, using factorizations of modular polynomials, and by
Elkies, using a theory of explicit isogenies. Moving to Jacobians of genus-2 curves, the current state of
the art for point counting is a generalization of Schoof's algorithm. While we are currently missing the
tools we need to generalize Elkies' methods to genus 2, recently Martindale and Milio have computed
analogues of modular polynomials for genus-2 curves whose Jacobians have real multiplication by maximal
orders of small discriminant. In this article, we prove Atkin-style results for genus-2 Jacobians with real
multiplication by maximal orders, with a view to using these new modular polynomials to improve the
practicality of point-counting algorithms for these curves.

4.1 Introduction

E�ciently computing the number of points on the Jacobian of a genus 2 curve over a �nite �eld is
an important problem in experimental number theory and number-theoretic cryptography. When the
characteristic of the �nite �eld is small, Kedlaya's algorithm and its descendants provide an e�cient
solution (see [Ked01], [Har07], and [Har12]), while in extremely small characteristic we have extremely
fast AGM-style algorithms (see for example [Mes01], [Mes02], and [Car04]). However, the running times
of these algorithms are exponential in the size of the �eld characteristic; the hardest case, therefore (and
also the most important case for contemporary cryptographic applications) is where the characteristic is
large, or even where the �eld is a prime �eld.

So let q be a power of a large primep, and let C be a genus-2 curve overFq. Our fundamental problem
is to compute the number of Fq-rational points on the Jacobian JC of C.

4.1.1 The state of the art

In theory, the problem is solved: we can compute #JC(Fq) in polynomial time (that is, polynomial
in logq) using Pila's algorithm [Pil90], which is the immediate generalization of Schoof's elliptic-curve
point-counting algorithm [Sch85] to higher-dimensional abelian varieties. But the exponent in Pila's
polynomial time is extremely large; so, despite its theoretical importance, this algorithm is completely
impractical (see x4.3.4). Indeed, to our knowledge it has never been implemented.

Gaudry and Schost have developed and successfully implemented a much more practical variant
of Pila's algorithm for the case q = p that runs in time eO(log8 p); not just polynomial time, but on
the edge of practicality [GS12]. Still, their algorithm requires an extremely intensive calculation for
cryptographic-sized Jacobians: Gaudry and Schost estimated a running time of around one core-month
(in 2008) to compute # JC(Fp) when p has around 128 bits [GS12].

The situation improves dramatically if JC is equipped with an e�ciently computable real multiplication
endomorphism. For such Jacobians, Gaudry, Kohel, and Smith [GKS11] give an algorithm to compute
# JC(Fq) in time eO(log5 q). This allowed the computation of # JC(Fp) for one curve C drawn from the
genus-2 family in [TTV91] with p = 2 512 + 1273 in about 80 core-days (in 2011); this remains, to date,
the record for genus-2 point counting over prime �elds. For 128-bit �elds, the cost is reduced to 3 core
hours (in 2011).

All of these algorithms are generalizations of Schoof's algorithm, which computes the Frobenius
trace (and hence the order #E(Fq)) of an elliptic curve E=Fq modulo ` for a series of small primes̀ by
considering the action of Frobenius on thè -torsion. But Schoof's algorithm is not the state of the art for
elliptic-curve point counting: it has evolved into the much faster Schoof{Elkies{Atkin (SEA) algorithm,
surveyed in [Sch95]. Atkin's improvements involve factoring the`-th modular polynomial (evaluated at the
j -invariant of the target curve) to deduce information on the Galois structure of the `-torsion, which then
restricts the possible values of the trace modulò (seex4.2.6). Elkies' improvements involve computing
the kernel of a rational `-isogeny, which takes the place of the full̀ -torsion; deducing the existence of the
isogeny, and computing its kernel, requires �nding a root of the`-th modular polynomial evaluated at the
j -invariant of the target curve (see x4.2.7).
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4.1.2 Our contributions, and beyond

Our ultimate goal is to generalize Atkin's and Elkies' improvements to genus 2. In this article, we
concentrate on generalizing Atkin's methods to genus-2 Jacobians with known real multiplication. This
project is prompted by the recent appearance of two new algorithms for computing modular ideals, the
genus-2 analogue of modular polynomials: Milio [Mil15a] has computed modular ideals for general genus-2
Jacobians, while Milio [Mil15b, x5] and Martindale [Mar18] have independently computed modular ideals
for genus-2 Jacobians with RM by orders of small discriminants.

To extend Elkies' methods to genus 2 we would need an analogue of Elkies' algorithm [Sch95,xx7-8],
which computes de�ning equations for the kernel of an isogeny of elliptic curves (and the isogeny itself)
corresponding to a root of the evaluated modular polynomial. We do not know of any such algorithm in
genus 2. Couveignes and Ezome have recently developed an algorithm to compute explicit (`; ` )-isogenies
of genus-2 Jacobians [CE15], presuming that the kernel has already been constructed somehow|but
kernel construction is precisely the missing step that we need.1

In contrast, Atkin's improvements for elliptic-curve Schoof require nothing beyond the modular
polynomial itself; so we can hope to achieve something immediately in genus 2 by generalizing Atkin's
results on factorizations of modular polynomials to the decomposition of genus-2 modular ideals. This is
precisely what we do in this article.

We focus on the RM case for three reasons. First, the construction of explicit modular ideals is furthest
advanced in this case: Milio has constructed modular ideals for primes inQ(

p
5) of norm up to 31, while

for general Jacobians the current limit is 3. It is therefore already possible to compute nontrivial and
interesting examples in the RM case. Second, point counting is currently much more e�cient for Jacobians
with e�ciently computable RM; we hope that, at some point, our methods can help tip RM point counting
from \feasible" into \routine". Third, from a purely theoretical point of view, the RM case is more similar
to the elliptic curve case in the sense that real multiplication allows us, in favorable circumstances, to
split `-torsion subgroups of the Jacobian into groups of the same size as encountered for elliptic curves.

After recalling the SEA algorithm for elliptic curves in x4.2, we describe the current state of genus 2
point counting, and set out our program for a generalized SEA algorithm inx4.3. We describe the modular
invariants we need for this in x4.4, and the modular ideals that relate them in x4.4.2. We can then state
and prove our main theoretical results, which are generalizations of Atkin's theorems for these modular
ideals, in x4.5. In x4.6 we provide some concrete details on the special case of RM byQ(

p
5), before

concluding with some experimental results inx4.7.

4.1.3 Vanilla abelian varieties

We can substantially simplify the task ahead by restricting our attention to a class of elliptic curves
and Jacobians (more generally, abelian varieties) with su�ciently general CM endomorphism rings. The
following de�nition makes this precise.

De�nition 4.1. We say that a g-dimensional abelian varietyA=Fq is vanilla2 if its endomorphism algebra
EndFq

(A ) 
 Q (over the algebraic closure) is a CM �eld of degree 2g that does not contain any roots of
unity other than � 1.

If an elliptic curve E=Fq is vanilla, then E is nonsupersingular andj (E) is neither 0 nor 1728: these
are the conditions Schoof applies systematically in [Sch95]. We note that in particular, vanilla abelian
varieties are absolutely simple.

To �x notation, we recall that if A is an abelian variety, then aprincipal polarization is an isomorphism
� : A ! A _ associated with an ample divisor class onA , where A _ = Pic0(A ) is the dual abelian variety
(see for example [Mil86,x13]). We will be working with elliptic curves and Jacobians of genus-2 curves;
these all have a canonical principal polarization. Each endomorphism� of A has a corresponding dual

1 We would also like mention Bisson, Cosset, and Robert's AVIsogenies software package [BCR], which provides some
functionality in this direction. However, their methods apply to abelian surfaces with a lot of rational 2- and 4-torsion, and
applying them to general genus-2 Jacobians (with or without known RM) generally requires a substantial extension of the
base �eld to make that torsion rational. This is counterproductive in the context of point counting.

2Vanilla is the most common and least complicated 
avour of abelian varieties over �nite �elds. Heuristically, over large
�nite �elds, randomly sampled abelian varieties are vanilla with overwhelming probability. Indeed, being vanilla is invariant
in isogeny classes, and Howe and Zhu have shown in [HZ02, Theorem 2] that the fraction of isogeny classes of g-dimensional
abelian varieties over Fq that are ordinary and absolutely simple tends to 1 as q ! 1 . All absolutely simple ordinary abelian
varieties are vanilla, except those whose endomorphism algebras contain roots of unity; but the number of such isogeny
classes for �xed g is asymptotically negligible.
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endomorphism � _ of A _ . If ( A ; � ) is a principally polarized abelian variety, then � induces aRosati
involution on End(A), de�ned by

� 7�! � y := � � 1 � � _ � � for � 2 End(A) :

In the world of elliptic curves, the Rosati involution is the familiar dual. For vanilla abelian varieties, the
Rosati involution acts as complex conjugation on the endomorphism ring.

Fix a real quadratic �eld F = Q(
p

� ), with fundamental discriminant � > 0 and ring of integers
OF . We write � 7! �� for the involution of F over Q; we emphasize that in this article,�� doesnot denote
complex conjugation.

From a theoretical point of view, when talking about real multiplication, our fundamental data are
triples (A ; �; � ) where A is an abelian surface,� : A ! A _ is a principal polarization, and � : OF ,! End(A )
is an embedding stable under the Rosati involution (that is, � (� )y = �(� ) for all � in OF ; we can then
think of the Rosati involution as complex conjugation on the endomorphism ring). While this notation
(A ; �; � ) may seem quite heavy at �rst glance, we remind the reader that generally there are only two
choices of embedding� (corresponding to the two square roots of �), and we are only really interested in
the case whereA is a Jacobian, in which case the polarization� is canonically determined.

4.2 Genus one curves: elliptic curve point counting

We begin by brie
y recalling the SEA algorithm for elliptic curve point counting in large characteristic.
First we describe Schoof's original algorithm [Sch95], before outlining the improvements of Elkies and
Atkin. This will provide a point of reference for comparisons with genus-2 algorithms.

Let E be an elliptic curve over a �nite �eld Fq of large characteristic (or at least, with char(Fq) � logq).
We may suppose thatE is de�ned by a (short) Weierstrass equation E : y2 = x3 + ax + b, with a and b in
Fq.

Like all modern point-counting algorithms, the Schoof and SEA algorithms compute the characteristic
polynomial

� � (X ) = X 2 � tX + q

of the Frobenius endomorphism� of E. We call t the trace of Frobenius. Since theFq-rational points on
E are precisely the �xed points of � , we have

# E(Fq) = � � (1) = q + 1 � t ;

so determining #E(Fq) is equivalent to determining t. Hasse's theorem tells us that

jt j � 2
p

q : (4.1)

4.2.1 Schoof 's algorithm

Schoof's basic strategy is to choose a setL of primes ` 6= p such that
Q

` 2L ` > 4
p

q. We then compute
t ` := t mod ` for each of the primes` in L , and then recover the value oft from f (t ` ; `) : ` 2 Lg using the
Chinese Remainder Theorem. The condition

Q
` 2L ` > 4

p
q ensures that t is completely determined by

the collection of t ` (by Hasse's theorem, Equation (4.1)).
For Schoof's original algorithm, the natural choice is to let L be the set of the �rst O(logq) primes,

stopping when the condition
Q

` 2L ` > 4
p

q is satis�ed. When applying Elkies' and Atkin's modi�cations,
we will need to be more subtle with our choice ofL . It is also possible to replace primes with small prime
powers; we will not explore this option here.

Now, let ` be one of our primes inL ; our aim is to compute t ` . We know that � 2(P) � [t]� (P)+[ q]P = 0
for all P in E, and hence

� 2(P) � [t ` ]� (P) + [ q mod `]P = 0 for all P 2 E[`] :

We can therefore computet ` as follows:

1. Construct a point P of order `.

2. Compute Q = � (P) and R = � 2(P) + [ q mod `]P.
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3. Search for 0� t ` < ` such that [t ` ]Q = R, using Shanks' baby-step giant-step algorithm in the cyclic
subgroup of the `-torsion generated byQ.

To construct such a P, we begin by computing the `-th division polynomial 	 ` in Fq[X ], which is the
polynomial whose roots inFq are precisely thex-coordinates of the nontrivial points in E[`]. When ` is
odd and prime to q, we have deg 	 ` = ( `2 � 1)=2. We then de�ne the ring

A = Fq[X; Y ]=(	 ` (X ); Y 2 � X 3 � aX � b);

and take P = ( X; Y ) in E(A).
In order to work e�ciently with Q = � (P) = ( X q; Y q) in the search for t ` , we need to compute

a compact form for Q. This means computing reduced representatives forX q and Y q in the ring A|
that is, reducing X q modulo 	 ` (X ) and Y q modulo (	 ` (X ); Y 2 � X 3 � aX � b)|which costs O(logq)
Fq-operations.

Having computed t ` for each` in L , we recovert (and hence� � ) using the Chinese Remainder Theorem;
this then yields # E(Fq) = q + 1 � t. In cryptographic contexts, we are generally interested in curves of
(almost) prime order. One particularly convenient feature of Schoof's algorithm is that it allows us to
detect small prime factors of #E(Fq) early: we can determine if any` in L divides # E(Fq) by checking
whether t ` � q + 1 ( mod `). If we �nd such a factor, then we can immediately abort the calculation of t
and move on to another candidate curve.

The cost to compute � ` is eO(`2 +( logq)`2 +
p

`` 2) Fq-operations. We can takeL to be a set ofO(logq)
primes, the largest of which is inO(log q); the total cost is therefore eO(log4 q) Fq-operations.

4.2.2 Frobenius eigenvalues and subgroups

Fix a basis of E[`], and thus an isomorphismE[`] �= F`
2. Now � acts on E[`] as an element ofGL2(F` ).

The local characteristic polynomial � ` is just the characteristic polynomial of this matrix.
Likewise, � permutes the `-subgroups ofE[`]; that is, the one-dimensional subspaces ofE[`] �= F`

2.
These are the points ofP(E[`]) �= P1(F` ), and we can consider the image of� in PGL2(F` ) �= Aut (P(E[`])).
The order of � as an element of PGL2(F` ) is clearly independent of the choice of basis.

Proposition 4.2. Let E=Fq be an elliptic curve with Frobenius endomorphism� , and let ` 6= p = char(Fq)
be an odd prime. If e is the order of the image of� in PGL2(F` ), then the trace t of � satis�es

t2 = � eq in F` ;

where � e =

(
� + � � 1 + 2 with � 2 F�

` 2 of order e if gcd(̀ ; e) = 1 ;
4 otherwise :

Proof. We follow the proof of [Sch95, Proposition 6.2] (correcting the minor error that leads in the case
e even to an e=2-th rather than e-th root of unity appearing in the last part of the statement). Let
� 1; � 2 2 F` 2 be the eigenvalues of the image of� in Aut( E[`]) �= GL2(F` ); then

� 1 + � 2 = t and � 1� 2 = q in F` :

In case� 1 = � 2 we havee j ` and the assertion follows. In case� 1 6= � 2 the given e is the minimal integer
> 0 with � e

1 = � e
2. In particular gcd(e; `) = 1 and � 2 = � 1� for some primitive e=th root of unity � (in

F` 2 ; in fact e j ` � 1 in case the eigenvalues are inF` and e j ` + 1 otherwise). Hence q = � 1� 2 = � 2
1�

which implies
t2 = ( � 1 + � 2)2 = � 2

1(1 + � )2 = q� � 1(� 2 + 2 � + 1) = ( � + � � 1 + 2) q:

4.2.3 Modular polynomials and isogenies

The order-̀ subgroups ofE[`] are precisely the kernels of̀ -isogenies fromE to other elliptic curves, and
the set of all such`-isogenies (up to isomorphism) corresponds to the set of roots of �` (j (E); x) in Fq. The
classical modular polynomial � ` (X; Y ), of degree` + 1 (in X and Y) over Z, is de�ned by the property
that � ` (j (E1); j (E2)) = 0 precisely when there exists an`-isogenyE1 ! E 2. For ` in O(logq), one can
compute � ` (j (E); x) in eO(`3) Fq-operations using Sutherland's algorithm [Sut13]. Alternatively, we can
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use precomputed databases of modular polynomials overZ, reducing them modulo p and specializing
them at j (E).

The Galois orbits of the roots of � ` (j (E); x) correspond to orbits of `-isogeny kernels under� , and
to orbits of points of P1(F` ) under the image of � in PGL2(F` ). If j (E1) and j (E2) are both in Fqk , then
the isogeny is de�ned overFqk (up to a possible twist); in particular, its kernel is de�ned over Fqk . More
precisely, we have the following key lemma:

Lemma 4.3 (Proposition 6.1 of [Sch95]). Let E=Fq be a vanilla elliptic curve with Frobenius endomorphism
� .

1. The polynomial � ` (j (E); x) has a root in Fqe if and only if the kernel of the corresponding`-isogeny
is a one-dimensional eigenspace of� e in E[`].

2. The polynomial � ` (j (E); x) splits completely overFqd if and only if � d acts as a scalar matrix on
E[`]; that is, if and only if d is a multiple of the order e of the image of� in PGL2(F` ). In particular,
the minimal such d is e.

4.2.4 Elkies, Atkin, and volcanic primes

The primes ` 6= p are divided into 3 classes, or types, with respect to a givenE=Fq: Elkies, Atkin , and
volcanic. The type of ` simultaneously re
ects the factorization of � ` (j (E); x) and the Galois structure
of the `-subgroups ofE[`]. Here we recall a number of facts about these classes, all of which are proven
in [Sch95,x6]; see also [Was08,x12.4].

A prime ` is Elkies if the ideal (`) is split in Z[� ]; or, equivalently, if t2 � 4q is a nonzero square
modulo `. Each of the two prime ideals over (̀ ) de�nes the kernel of an `-isogeny,� i : E ! E i for i = 1 ; 2,
say. This means that j (E1) and j (E2) must be roots in Fq of � ` (j (E); x). Lemma 4.3 then implies that

� ` (j (E); x) = ( x � j (E1))( x � j (E2))
( ` � 1)=eY

i =1

f i (x)

where each of thef i are irreducible of degreee, and e > 1 is the order of the image of� in PGL2(F` ),
which must divide ` � 1 in this case.

A prime ` is Atkin if the ideal (`) is inert in Z[� ]; or, equivalently, if t2 � 4q is not a square modulo`.
There are no Fq-rational `-isogenies fromE, and no Fq-rational `-subgroups ofE[`]. Looking at the
modular polynomial, Lemma 4.3 implies

� ` (j (E); x) =
( ` +1) =eY

i =1

f i (x) ;

where each of thef i is an irreducible polynomial of degreee, and e > 1 is the order of the image of� in
PGL2(F` ), which must divide ` + 1 in this case.

Finally, a prime ` is volcanic if the ideal (`) is rami�ed in Z[� ]; or, equivalently, if ` divides t2 � 4q.
Applying Lemma 4.3, either

� ` (j (E); x) =
` +1Y

i =1

(x � j i )

with all of the j i in Fq (so there are` + 1 rational `-isogenies, and̀ + 1 rational `-subgroups ofE[`]); or

� ` (j (E); x) = ( Y � j 1) � f (x) ;

with f irreducible of degree` (so there is a single rational`-isogeny, and one rational`-subgroup of E[`]).
In either situation, � jE[` ] acts on E[`] with eigenvalues� 1 = � 2, so its image inPGL2(F` ) therefore has
order e j `.

We note an interesting and useful fact in passing: ifE=Fq is vanilla, ` 6= p is an odd prime, andr is
the number of irreducible factors of � ` (j (E); x), then

(� 1)r =
� q

`

�
(4.2)

(cf. [Sch95, Proposition 6.3]; the proof generalizes easily fromq = p to general prime powers).
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4.2.5 Computing the type of a prime

The type of a given prime ` for E (that is, being volcanic, Atkin, or Elkies) is de�ned in terms of the
structure of Z[� ] and the trace t. When we are point-counting, these are unknown quantities; but we
can still determine the type of ` without knowing t or Z[� ], by factoring � ` (j (E); x) and comparing
with the possible factorization types above. This, in turn, gives us useful information aboutt and Z[� ].
Determining the type of ` in this way costs eO(`2 + (log q)`) Fq-operations.

In fact, computing the type of ` for E is a good way of checking the correctness of a claimed modular
polynomial. Suppose somebody has computed a polynomialF (J1; J2), and claims it is equal to � ` . The
factorization patterns for modular polynomials corresponding to the prime types above are so special that
there is very little hope of getting these patterns for F (j (E); x) for varying E and p unlessF and � ` de�ne
the same variety in the (J1; J2)-plane. We will use the genus-2 analogue of this observation inx4.7 to
check the correctness of some of Martindale's modular polynomials.

4.2.6 Atkin's improvement

Atkin's contribution to the SEA algorithm was to exploit the factorization type of the modular polynomial
to restrict the possible values oft (mod `). While this does not improve the asymptotic complexity of
Schoof's algorithm, it did allow signi�cant practical progress before the advent of Elkies' improvements.

For example: if ` is volcanic, then by de�nition

t2 = 4q in F` ; (4.3)

which determinest ` up to sign: t � � 2
p

q (mod `). Note that this is also a consequence of Proposition 4.2,
which we will now apply to the other two prime types.

If ` is Elkies or Atkin for E, then Proposition 4.2 tells us that

t2 = ( � + � � 1 + 2) q in F` (4.4)

for some primitive e-th root of unity � in F` 2 , where e j ` � 1 if ` is Elkies and e j ` + 1 if ` is Atkin.
The number of possible values oft2

` is therefore half the number of primitive e-th roots in these cases.
Note that modular polynomials can only give us information about t2

` |that is, t ` up to sign|since their
solutions tell us about isogenies only up to quadratic twists, and twisting changes the sign of the trace.

Obviously, the smaller the degreee of the non-linear factors of � ` (j (E); x), the fewer the values that t `

can possibly take. For example, ife = 2 then t ` = 0; if e = 3, then t ` = �
p

q in F` ; and if e = 4, then
t ` = �

p
2q in F` .

The challenging part of Atkin's technique is making use of these extra modular congruences. Atkin's
match-and-sort algorithm (see for example [Ler97,x11.2]) is a sort of sophisticated baby-step giant-step in
E(Fq) exploiting this modular information. Alternatively, we can use Joux and Lercier's Chinese-and-match
algorithm [JL01].

4.2.7 Elkies' improvement

Elkies' contribution to the SEA algorithm was to note that when computing t ` , we can replaceE[`] with
the kernel of a rational `-isogeny, if it exists. Looking at the classi�cation of primes, we see that there
exists a rational `-isogeny precisely wheǹ is volcanic or Elkies (whence the terminology). Of course, as
we saw above, if̀ is one of the rare volcanic primes thent ` is already determined up to sign; it remains
to see what can be done for Elkies primes.

Let ` be an Elkies prime for E, and let � 1 and � 2 be `-isogenies corresponding to the two roots of
� ` (j (E); x) in Fq. First, we note that � (Pi ) = [ � i ]Pi for Pi in ker � i , and � 1 + � 2 � t (mod `). We only
need to compute one of the� i , since then the other is determined by the relation� 1� 2 = q.

So let � be one of the two`-isogenies; we want to compute its eigenvalue� . The nonzero elements
(x; y) of ker � satisfy f � (x) = 0, where f � is a polynomial of degree (̀ � 1)=2 (if ` is odd; if ` = 2, then
degf � = 1). To compute � , we de�ne the ring A = Fq[X; Y ]=(f � (X ); Y 2 � X 3 � aX � b), set P = ( X; Y )
in E(A), then compute Q = � (P) and solve for � in Q = [ � ]P; then t ` � � + q=� (mod `).

This approach is substantially faster than Schoof's algorithm for Elkies`, because the degree off � is
only (` � 1)=2, whereas the degree of 	̀ is (`2 � 1)=2; so each operation inE(A) costs much less than it
would if we used 	 ` instead of f � . (In practice, it is also nice to be able to reduce the number of costly
Frobenius computations, since we only need to compute� (P) and not � (� (P)).)
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The crucial step is computing f � given only E and the corresponding rootj i of � ` (j (E); X ). We can
do this using Elkies' algorithm, which is explained in [Sch95,xx7{8]. The total cost of computing t ` is
then eO(log3 q) Fq-operations: that is, a whole factor of logq faster compared to Schoof's algorithm.

Ideally, then, we should chooseL to only contain Elkies and volcanic primes: that is, non-Atkin
primes. The usual naive heuristic on prime classes is to suppose that asq ! 1 , the number of Atkin
and non-Atkin primes less than B for E=Fq is approximately equal whenB � logq; under this heuristic,
taking L to contain only non-Atkin primes, the SEA algorithm computes t in eO(log4 q) Fq-operations.

While the heuristic holds on the average, assuming the GRH, Galbraith and Satoh have shown that it
can fail for some curves [Sat02, Appendix A]: there exist curvesE=Fq such that if we try to compute t `

using ` in the smallest possible setL containing only non-Atkin primes, then L must contain primes in

(log 2 q).

Remark 4.4. It is important to note that Elkies' technique applies only to primes ` where there exists a
rational `-isogeny: that is, only Elkies and volcanic primes. Atkin's technique for restricting the possible
values of t ` applies to all primes|not only Atkin primes.

4.3 The genus 2 setting

Let C be a genus-2 curve de�ned overFq (again, for q odd). We suppose thatC is de�ned by an equation
of the form y2 = f (x), where f is squarefree of degree 5.3 The curve C then has a unique point at in�nity,
which we denote1 .

4.3.1 The Jacobian

We write JC for the Jacobian ofC. Our main algorithmic handle on JC is Mumford's model for hyperelliptic
Jacobians, which represents the projectiveJC as a disjoint union of three a�ne subsets. In this model,
points of JC correspond to pairs of polynomialsha(x); b(x)i where a is monic, degb < dega � 2, and
b2 � f (mod a) (we call ha; bi the Mumford representation of the Jacobian point). Mumford's coordinates
on the a�ne subsets of JC are the coe�cients of the polynomials a and b (and in particular, a point ha; bi
of JC is de�ned over Fq if and only if a and b have coe�cients in Fq). The three a�ne subsets are

W2 := fha; bi 2 JC j deg(a) = 2 g (\general" elements) ;

W1 := fha; bi 2 JC j deg(a) = 1 g (\special" elements) ;

W0 := f 0J C = h1; 0ig (the trivial element) ;

and JC = W2 t W1 t W0. The group law on JC can be explicitly computed on Mumford representatives
using Cantor's algorithm [Can87].

The point of JC corresponding to a general divisor class [(xP ; yP ) + ( xQ ; yQ ) � 21 ] on C is represented
by ha; bi where a(x) = ( x � xP )(x � xQ ) and b is the linear polynomial such that b(xP ) = yP and
b(xQ ) = yQ . Special classes [(xP ; yP ) � 1 ] are represented byha; bi = hx � xP ; yP i , while 0J C = [0] is
represented byha; bi = h1; 0i .

4.3.2 Frobenius and endomorphisms of JC

The characteristic polynomial � � of the Frobenius endomorphism� has the form

� � (X ) = X 4 � tX 3 + (2 q + s)X 2 � tqX + q2 ;

where s and t are integers satisfying the inequalities (cf. [R•uc90])

jsj < 4q ; jt j � 4
p

q ; t2 > 4s ; s + 4q > 2jtj
p

q :

We have
# JC(Fq) = � � (1) = 1 � t + 2q + s � tq + q2 ;

as well as #C(Fq) = 1 � t + q and # C(Fq2 ) = 1 � t2 + 4q + 2s + q2. In genus 2, therefore, the point
counting problem is to determine the integerss and t.

3For full generality, we should also allow degf = 6; the curve C then has two points at in�nity. This substantially
complicates the formul� without signi�cantly modifying the algorithms or their asymptotic complexity, so we will not treat
this case here.
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4.3.3 Real multiplication

We are interested in JacobiansJC with real multiplication by a �xed order O in a quadratic real �eld
F := Q(

p
� ); that is, such that there is an embedding � : O ! End(JC). In this article, we will further

restrict to the case whereO is the maximal order OF of F ; note that if O is an order in F that is not
locally maximal at a prime `, then there exist no isogenies of degreè that preserve the polarization (see
De�nition 4.5). These Jacobians can be constructed either from points in their moduli spaces (as inx4.4),
or from a few known explicit families (as in x4.7).

The �xed �eld Q(� + � y) of the Rosati involution on Q(� ) is a real quadratic �eld, and Z[� + � y] is a
suborder of OF . The characteristic polynomial of � + � y is

� � + � y (X ) = ( X 2 � tX + s)2 ;

so determining � � + � y also solves the point counting problem forJC.
Later, we will be particularly interested in C such that JC has real multiplication by an order of

small discriminant. While such curves are special, from a cryptographic perspective they are not \too
special". From an arithmetic point of view, all curves (with ordinary simple Jacobians) over Fq have
real multiplication. Here, we simply require that real multiplication to have small discriminant; the
discriminant of the entire endomorphism ring of JC can still be just as large as for a general choice of curve
over the same �eld. From a geometric point of point view, the moduli of theseC live on two-dimensional
Humbert surfaces inside the three-dimensional moduli space of genus-2 curves. In concrete terms, this
means that when selecting random curves over a �xedFq, only � 1=q of them have real multiplication by
a �xed order; but if we restrict our choice to those curves then there are still O(q2) of them to choose
from.

4.3.4 From Schoof to Pila

The Schoof{Pila algorithm deals with higher dimensions [Sch85; Pil90]. Its input is a set of de�ning
equations for a projective model of the abelian variety, and its group law. Jacobians of genus-2 curves are
abelian varieties, and we can apply Pila's algorithm to them using the de�ning equations computed by
Flynn [Fly90] or Grant [Gra90]. However, the complexity of Pila's algorithm is O(( logq) � ), where � (and
the big-O constant) depends on the number of variables (i.e., the dimension of the ambient projective
space) and the degree and number of the de�ning equations. Pila derives an upper bound for � in [Pil90,
x4], but when we evaluate this bound in the parameters of Flynn's model forJC (72 quadratic forms in 16
variables) we get a 30-bit �; Grant's model (13 quadratic and cubic forms in 9 variables) yields a 23-bit
�. 4 While these are only upper bounds, we are clearly in the realm of the impractical here.

4.3.5 The Gaudry{Schost approach

Pila's algorithm requires a concrete (and necessarily complicated) nonsingular projective model forJC.
The Gaudry{Schost algorithm applies essentially the same ideas to Mumford's a�ne models for subsets of
JC.

Our �rst problem is to �nd an analogue for JC of the elliptic division polynomials 	 ` . Ultimately,
we want an ideal I ` = ( F0; : : : ; Fr ) � Fq[A1; A0; B1; B0] such that ha; bi = hx2 + a1x + a0; b1x + b0i is in
JC[`] if and only if ( a1; a0; b1; b0) is in the variety of I ` : that is,

[`]hx2 + a1x + a0; b1x + b0i = 0 () F (a1; a0; b1; b0) = 0 for all F 2 I ` :

Then, the image ofhx2 + A1x + A0; B1x + B0i in JC(Fq[A1; A0; B1; B0]=I ` ) is an element of order` that
we can use for a Schoof-style computation of� (T) (mod `).

The simplest approach here would be to take a general Mumford representative

hx2 + A1x + A0; B1x + B0i ;

compute L = [ `]hx2 + A1x + A0; B1x + B0i , and then equate coe�cients in L = 0 J C to derive the relations
in I ` . But we cannot do this, becauseL is in W2(Fq(A1; A0; B1; B0)) (that is, its a-polynomial has degree
2, and its b-polynomial degree 1), while 0J C = h1; 0i is in W0: these elements are not in the same a�ne
subvariety, and cannot be directly compared or equated in this form.

4With polynomial time estimates like these, who needs enemies?
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Gaudry and Harley [GH00] neatly stepped around this problem by observing that any element ofJC can
be written as the di�erence of two elements ofW1 (which may be de�ned over a quadratic extension). They
therefore start with D = [( xP ; yP ) + ( xQ ; yQ ) � 21 ] = [( xP ; yP ) � (xQ ; � yQ )] in JC, and �nd polynomial
relations on xP , yP , xQ , and yQ such that [`]D = 0 by computing [ `]hx � xP ; yP i and [̀ ]hx � xQ ; � yQ i ,
and equating coe�cients in [ `]hx � xP ; yP i = [ `]hx � xQ ; � yQ i . There is a quadratic level of redundancy in
these relations, which is a direct result of the redundancy in the initial representation ofD : the involution
(xP ; yP ) $ (xQ ; yQ ) �xes D .

Gaudry and Schost remove this redundancy by resymmetrizing the relations with respect to this
involution, re-expressing them in terms ofA1 = � (xP + xQ ), A0 = xP xQ , B1 = ( yP � yQ )=(xP � xQ ),
and B0 = ( xP yQ � xQ yP )=(xP � xQ ), and computing a triangular basis for the resulting division ideal I ` .
Their algorithm yields a triangular basis for I ` , which facilitates fast reduction modulo I ` .

Once we haveI ` , we can computet (mod `) and s (mod `) as follows:

1. Construct the symbolic `-torsion point

P := hx2 + A1x + A0; B1x + B0i 2 JC(Fq[A1; A0; B1; B0]=I ` ) ;

2. Compute the points

Qs := � 2(P) ;

Qt := � (� 2(P) + [ q mod `]� (P)) ;

R := � 4(P) + [2 q mod `]� 2(P) + [ q2 mod `]P

using Cantor arithmetic, with reduction of coe�cients modulo I ` ;

3. Search for 0� s` ; t ` < ` such that
[t ` ]Qt � [s` ]Qs = R

(using, say, a two-dimensional baby-step giant-step algorithm).

The result is an algorithm that runs in time eO(log8 q). Of course, oncet has been determined, we can
simplify Steps (2) and (3) above to �nd s` more quickly for the remaining `, but this does not change the
asymptotic complexity. In practice, the algorithm has been used to construct cryptographically secure
curves: Gaudry and Schost computed a generic genus-2 curve overF2127 � 1 such that both the Jacobian
and its quadratic twist have prime order [GS12]. Instances of the discrete logarithm problem in this
Jacobian o�er a claimed security level of roughly 128 bits, which is the current minimum for serious
cryptosystems. This computation also represents the current record for point counting for general genus-2
curves.

The Gaudry{Schost computation illustrates not only the state-of-the-art of genus-2 point counting,
but also the practical challenge involved in producing cryptographically strong genus-2 Jacobians. The
Schoof-like point counting algorithm was only applied using the prime powers 217, 39, 54, and 72, and the
primes 11 through 31. Combining the information given by these prime powers completely determines
t, but not s; but it still gives us enough modular information about s to be able to recover its precise
value using Pollard's kangaroo algorithm in a reasonable time (� 2 hours, in this case). The kangaroo
algorithm is exponential, and would not be practical for computing this Jacobian order alone without the
congruence data generated by the Schoof-like computations. Gaudry and Schost estimated the average
cost of these calculations as one core-month (in 2008) per curve.

4.3.6 Point counting with e�ciently computable RM

In [GKS11], Gaudry, Kohel, and Smith described a number of improvements to the Gaudry{Schost
algorithm that apply when JC is equipped with an explicit and e�ciently computable endomorphism �
generating a real quadratic subring ofEnd(JC). When we say that � is explicit we mean that we can
compute the images under� of divisor classes onJC, including symbolic Mumford representatives for
generic divisor classes. When we say that� is e�ciently computable , we mean that these images can be
computed for a cost comparable with a few group operations: that is, from an algorithmic point of view,
we may view evaluation of � as an elementary group operation like adding or doubling.

Suppose thatZ[� + � y] is contained in Z[� ] (this is reasonable, since in the examples we know,Z[� ] is
a maximal order), and let � be the discriminant of Z[� ]. Then � + � y = m� + n for somem and n, which
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completely determines and t: if the characteristic polynomial of � is (X 2 � t � X + s� )2, then t = 2m + nt �

and s = ( t2 � s2
� �) =4. It follows that m and n are both in O(

p
q).

We can compute m and n using a technique similar to Gaudry{Schost. Multiplying the relation
� + � y = m� + n through by � , we have � 2 � (m� + n)� + q = 0. Imitating Schoof's algorithm, we
can compute m` := m (mod `) and n` := n (mod `) by taking a generic element D of JC[`] (as in
Gaudry{Schost), computing (� 2 + q)(D ), � (D ), and �� (D ) (using two applications of � ), and then solving
for m` and n` .

We can do even better by exploiting split primes in Z[� ]. If ` = l1l2 is split, then the `-torsion
decomposes asJC[l1] � JC[l2], and once we have found a short generator (or generators) forl i we can take
D to be an element ofJC[l i ] instead of JC[`]. Such generators can be found with coe�cients inO(

p
`); the

result is that we work modulo a much smaller ideal, of degreeO(`2) rather than O(`4).
But going further, � + � y acts as a scalar onJC[l i ], and so we can compute its eigenvalue to determine

m` and n` . The total cost of computing m` and n` , and hencet ` and s` , is then eO(log5 q) [GKS11,
Theorem 1], a substantial improvement on Gaudry{Schost's eO(log8 q).

The computation resembles what we would do for an Elkies prime in the elliptic case, except that there
is no need for modular polynomials to compute the prime type, or for an analogue of Elkies' algorithm: we
know in advance which primes split in Z[� ], and we can compute the kernel using the decomposition. But
if we did have an analogue of Elkies' algorithm, then we could further reduce the complexity by further
decomposing some of theJC[l i ] into cyclic factors, and thus working modulo ideals of degreeO(`). If we
have an analogue of Atkin's algorithm, then we can restrict the possible values ofm` and n` ; this would
not change the asymptotic complexity of the algorithm, but it could have a signi�cant practical impact.

4.3.7 Generalizing Elkies' and Atkin's improvements to genus 2

Ultimately, we would like to generalize the SEA algorithm to genus 2. The �rst requirement is a genus-2
analogue of elliptic modular polynomials; so assume for the moment that we have a modular ideal relating
suitable invariants of genus-2 curves.

To generalize Elkies' improvements to genus 2, we need an analogue of Elkies' algorithm: that is,
an algorithm which, given two general moduli points corresponding to isogenous Jacobians, constructs
de�ning polynomials for (the kernel of) the isogeny. The most convenient such presentation would be as
an ideal cutting out the intersection of the kernel with W2, since then the Gaudry{Schost approach could
be adapted without too much di�culty (at least in theory). Unfortunately, at present, no such algorithm
is known.

In contrast, Atkin's techniques for elliptic curves require only the factorization of (specializations of)
elliptic modular polynomials; we deduce possible congruences on the trace from the degrees of the factors.
It is clear how we should generalize Atkin's techniques to genus 2: we should deduce possible congruences
on s and t from the degrees of primary components of specialized modular ideals.

The following sections make this concrete. Inx4.4, we de�ne the appropriate analogues of the elliptic
j -invariant for genus-2 curves with real multiplication. We can then de�ne real-multiplication analogues
of the elliptic modular polynomials in x4.4.2, before investigating their factorization in x4.5.

4.3.8 � -isogenies

Before de�ning any generalized invariants or modular polynomials, we must de�ne an appropriate class of
isogenies in genus 2: that is, isogenies that are compatible with the real multiplication structure. (This is
not an issue for elliptic curves, because the elliptic analogue of the real endomorphism subring is just
Z|and everything is compatible with integer multiplications.)

De�nition 4.5. Let (A ; �; � ) and (A 0; � 0; �0) be triples encoding principally polarized abelian surfaces
with real multiplication by OF . Here � : A ! A _ and � 0: A 0 ! (A 0)_ are principal polarizations, and
� : OF ,! End(A) and �0: OF ,! End(A 0) are embeddings that are stable under the Rosati involution. If
� is a totally positive element of F , then a � -isogeny (A ; �; � ) ! (A 0; � 0; �0) is an isogenyf : A ! A 0 such
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that the diagrams

A
� ( � ) //

f
��

A
� //A _

A 0
� 0

//(A 0)_

f _

OO and F � //

� 0

%%

End(A) 
 Q

�

��
End(A 0) 
 Q

commute, where� is the map induced by f on endomorphism algebras.

If f : (A ; �; � ) ! (A 0; � 0; �0) is a � -isogeny, then the polarization � 0 pulls back via f to � � � (� ). For
comparison, an elliptic `-isogeny is anf : E ! E 0 such that the canonical polarization on E0 pulls back via
f to ` times the polarization on E (in more concrete terms: the identity point 0E0 on E pulls back via f to
a divisor on E equivalent to ` � 0E).

4.4 Invariants

Elliptic modular polynomials relate isogenous elliptic curves in terms of their j -invariants; their genus-2
analogues must relate invariants of genus-2 Jacobians. This section describes and relates the various
invariants that we will need. Since we are dealing with classical constructions in this section, we work over
a �eld k � C. However, the resulting algebraic expressions carry over to the case wherek = Fq (at least
for large enoughp). All of the results in this section are well-known, and are shown here for completeness
and easy reference; we refer the reader to [Lan82], [LNY16], [LY11], and [Mar18] for further detail.

4.4.1 Invariants for RM abelian surfaces

Let F be a real quadratic �eld with ring of integers OF . We need RM analogues of the ellipticj -invariant
and elliptic modular polynomials for � -isogenies of abelian surfaces with RM byOF . Our �rst step is to
de�ne appropriate replacements for the j -invariant that classify our triples ( A; �; � ) up to isomorphism.
Instead of a singlej -invariant, we will have a triple ( J1; J2; J3) of RM invariants , which are functions on
the corresponding Hilbert modular surface.

The invariants ( J1; J2; J3) are constructed as follows. For a �eld k, we consider the coarse moduli
spaceH F (k) of triples ( A ; �; � ) (where as before,A=k is an abelian variety with a principal polarization
� : A ! A _ and an embedding� : OF ,! Endk (A ) stable under the Rosati involution). Then H F (k)
is coarsely represented by the Hilbert modular spaceSL2(OF � O F ) n (F 
 H) (see [Gee88]), where
F 
 H := f � 2 F 
 C : = (� ) > 0g and for any fractional ideal f of F ,

SL2(OF � f) :=
��

a b
c d

�
2 SL2(F ) : a; d 2 O F ; b 2 f; c 2 f� 1

�

acts on F 
 H by �
a b
c d

�
� � =

a� + b
c� + d

:

Proposition 4.6. Let V be the Baily{Borel compacti�cation of SL2(OF ) n(F 
 H), and C(V ) the function
�eld of V . There exist rational functions J1, J2, and J3 on V such that

C(V ) = C(J1; J2; J3) :

Proof. The transcendence degree ofC(V ) over C is 2, so there exist 2 algebraically independent functions
J1, J2 in C(V ). Furthermore, C(V ) is a �nite separable �eld extension of C(J1; J2), so it is generated by
at most one further element, J3.

De�nition 4.7. Fixing a choice of rational functions J1, J2, and J3 as in Proposition 4.6, we call
(J1; J2; J3) the RM invariants for F .
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4.4.2 Hilbert modular polynomials for RM abelian surfaces

We are now ready to de�ne modular polynomials for abelian surfaces with RM structure. For elliptic
curves we have a singlej -invariant, and we can relate `-isogenousj -invariants using a single bivariate
polynomial � ` (X; Y ). For our abelian surfaces, we have a tuple of three invariants (J1; J2; J3), and to
relate � -isogenous tuples of invariants we need amodular ideal of polynomials in Q[X 1; X 2; X 3; Y1; Y2; Y3],
such that when we specialize the �rst three variables in the (J1; J2; J3) corresponding to the isomorphism
class of some triple (A; �; � ), the result is an ideal cutting out the moduli points ( J 0

1; J 0
2; J 0

3) for triples
(A0; � 0; �0) that are � -isogenous to (A; �; � ).

The Hilbert modular polynomials below represent a particularly convenient basis for this ideal. We refer
the reader to [Mar18, Chapter 2] for theoretical details and proofs, as well as algorithms for computing
the polynomials. Alternatively, Milio's algorithm can be used to compute Hilbert modular polynomials
� ` (X; J1; J2) and 	 ` (X; J1; J2), in time O(dT dJ 2 ) ~O(`N ) + 4( ` + 1) ~O(dT dJ 2 N ) � ~O(dT dJ 2 `N ) [Mil15b,
Theorem 5.4.4], whereN is the precision anddT ; dJ 2 are degrees involved in the computation, see [Mil15b,
x5.4].

De�nition 4.8. The Hilbert modular polynomials

G� (X 1; X 2; X 3; Y1) ;

H �; 2(X 1; X 2; X 3; Y1; Y2) = H (1)
�; 2(X 1; X 2; X 3; Y1)Y2 + H (0)

�; 2(X 1; X 2; X 3; Y1) ;

H �; 3(X 1; X 2; X 3; Y1; Y3) = H (1)
�; 3(X 1; X 2; X 3; Y1)Y3 + H (0)

�; 3(X 1; X 2; X 3; Y1)

in Q[X 1; X 2; X 3; Y1; Y2; Y3] are de�ned such that for all triples ( A ; �; � ) and (A 0; � 0; �0) representing points
� and � 0 in a certain Zariski-open subset5 of the Baily{Borel compacti�cation of SL2(OF � f) n (F 
 H),
there exists a� -isogenyf : (A ; �; � ) ! (A 0; � 0; �0) if and only if

G� (J1(� ); J2(� ); J3(� ); J1(� 0)) = 0 ;

H �; 2(J1(� ); J2(� ); J3(� ); J1(� 0); J2(� 0)) = 0 ;

H �; 3(J1(� ); J2(� ); J3(� ); J1(� 0); J3(� 0)) = 0 :

The special form ofG� , H2;� , and H3;� are very convenient for computations. If (J1; J2; J3) is a �xed
moduli point, then each root � of G(J1; J2; J3; x) corresponds to a unique� -isogenous moduli point

(J 0
1; J 0

2; J 0
3) =

 

�; �
H (0)

�; 2(J1; J2; J3; � )

H (1)
�; 2(J1; J2; J3; � )

; �
H (0)

�; 3(J1; J2; J3; � )

H (1)
�; 3(J1; J2; J3; � )

!

:

We observe that the action of Galois on the set of� -isogenies from an RM abelian variety representing
(J1; J2; J3) is completely described by the action of Galois on the roots ofG� (J1; J2; J3; x); in particular,
over Fq, rational cycles of � -isogenies under Frobenius correspond to irreducible factors ofG� (J1; J2; J3; x).
From the point of view of Atkin generalizations, therefore, we only really needG� to replace � ` .

4.4.3 Invariants for curves and abelian surfaces

We need to relate the RM invariants (J1; J2; J3) to the invariants for plain old principally polarized abelian
surfaces, and in particular Jacobians of genus 2 curves without any special RM structure. The moduli
spaceA 2 of principally polarized abelian surfaces is coarsely represented by the Siegel modular space
Sp2(Z)nH2, where

H2 :=
�

� =
�

� 1 � 2

� 2 � 3

�
2 Sym2(C) : = (� ) > 0

�
;

and the symplectic group

Sp2(Z) =
�

g 2 GL4(Z) : g
�

0 I 2

� I 2 0

�
gt =

�
0 I 2

� I 2 0

��

5 See [Mar18, Chapter 2, Section 2] for details on this subset. For point counting over large �nite �elds, it is enough
to note that since the subset is Zariski open, randomly sampled Jacobians with real multiplication by OF have their RM
invariants in this subset with overwhelming probability.
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acts on H2 via �
a b
c d

�
� � =

a� + b
c� + d

:

Every rational function on Sp2(Z)nH2 is a quotient of elements of the graded ring of holomorphic
Siegel modular forms forSp2(Z). Igusa proved in [Igu60] that this ring is generated by  4,  6, � 10, and
� 12, where

 k (� ) =
X

�
a b
c d

�
2 P nSp2 (Z)

det(c� + d) � k

is the normalized Eisenstein series of weightk for even integersk � 4 (here P is the standard Siegel
parabolic subgroup of Sp2(Z)), and

� 10 = � 2� 12 � 3� 5 � 5� 2 � 7� 1 � 43867( 4 6 �  10) ;

� 12 = 2 � 13 � 3� 7 � 5� 3 � 7� 2 � 337� 1 � 131� 593(32 � 72 3
4 + 2 � 53 2

6 � 691 12)

are Siegel modular cusp forms of weight 10 and 12 respectively.
Curves of genus 2 are typically classi�ed up to isomorphism by their Igusa invariants (j 1; j 2; j 3), or by

their Igusa{Clebsch invariants (A; B; C; D ). Since the mapC 7! JC is an open immersion of the (coarse)
moduli space of genus-2 curvesM 2 into A 2, the Igusa invariants j i can be written as rational functions of
 4,  6, � 10 and � 12 as follows [Igu67]:

j 1(� ) = 2 � 35 � � 5
12� � 6

10 ;

j 2(� ) = 2 � 3 � 33 �  4� 3
12� � 4

10 ;

j 3(� ) = 2 � 5 � 3 �
�
 6� 2

12� � 3
10 + 2 2 � 3 �  4� 3

12� � 4
10

�
:

Here j i (� ) = j i (C) if there is a genus 2 curveC=C such that JC is isomorphic to the abelian surface
C2=(Z2� + Z2). If there is no suchC, which happens exactly when� 10(� ) = 0, then j i (� ) is not well-de�ned.
The Igusa{Clebsch invariants are related to the Siegel modular forms by

( 4;  6; � 10; � 12) =
�
2� 2B; 2� 3(AB � 3C); � 2� 14C; 2� 173� 1AD

�
: (4.5)

4.4.4 Pulling back curve invariants to RM invariants

The natural maps H2 ! H2, SL2(F ) ! Sp2(Q), and (OF =2OF )2 ! (Z=2Z)4 induce an embedding

� : H F (k) ,! A 2(k) ;

which we can use to pull back Igusa invariants to RM invariants, thus expressing thej i in terms of the J i .
We will see detailed formul� for this pullback for F = Q(

p
5) in Proposition 4.17.

This pullback from curves and their invariants to RM invariants is essential for our computations:
after all, in point counting one usually starts from a curve. In our applications, we are given the equation
of a curve C=Fq drawn from a family of curves with known RM by OF . Having computed the Igusa
or Igusa{Clebsch invariants of C, we can pull them back to RM invariants (J1; J2; J3). This pullback is
possible, becauseC was chosen from an appropriate family, but choosing a preimage (J1; J2; J3) implicitly
involves choosing one of the two embeddings ofOF into End(JC). This choice cannot always be made over
the ground �eld: a point in A 2(k) may not pull back to a pair of points in H F (k), but rather a conjugate
pair of points over a quadratic extension ofk. Proposition 4.18 makes this subtlety explicit in the case
F = Q(

p
5).

4.5 Atkin theorems in genus 2

We are now ready to state some Atkin-style results for� -isogenies in genus 2.
Let (A ; �; � ) be a triple describing a vanilla abelian surface overFq with real multiplication by OF ,

and let � be a totally positive element of OF of norm `. Then �(� ) is an endomorphism of degreè 2, and
we have a subgroup6

A[� ] := ker( � (� )) � A [`] :

6We emphasize that the subgroup A [� ] depends on � , but we have chosen to write A [� ] instead of the more cumbersome
A [� (� )].
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If ( �� ) 6= ( � ) (that is, ( `) 6= ( � 2)), then we have a decompositionA [`] = A [� ] � A [�� ]. The one-dimensional
subspaces ofA [� ] are the kernels of� -isogenies.

In x4.2 we used the elliptic modular polynomial � ` to study the structure of E[`]. Here, we will use
the Hilbert modular polynomial G� to study the structure of A [� ]. The propositions of this section are
generalizations for curves of genus 2 to Schoof's Propositions 6.1, 6.2 and 6.3 for elliptic curves in [Sch95].

4.5.1 Roots of G� and the order of Frobenius

Our �rst result relates the order of Frobenius acting on P(A [� ]) to the extensions ofFq generated by roots
of specialized Hilbert modular polynomials.

Proposition 4.9. 7 Let A=Fq be a vanilla abelian surface with RM byOF and RM invariants (J1; J2; J3)
in F3

q, and with Frobenius endomorphism� . Let � be a totally positive element ofOF of prime norm
` = � � .

1. The polynomial G� (J1; J2; J3; x) has a zero ~J1 in Fqe if and only if the kernel of the corresponding
� -isogenyA ! ~A is a 1-dimensional eigenspace of� e in A [� ].

2. The polynomial G� (J1; J2; J3; x) splits completely in Fqe [x] if and only if � e acts as a scalar matrix
on A [� ].

Proof. The proof follows that of [Sch95, Proposition 6.1] (stated as Lemma 4.3 here).
For (1): Let f : A ! ~A be a � -isogeny with kernel S, and let ( ~J1; ~J2; ~J3) be the RM invariants of ~A .

If S is an eigenspace of� e, then the quotient A ! A =S is de�ned over Fqe . The Igusa invariants of A=S
are therefore all in Fqe , and sinceA=S is isomorphic to ~A as a principally polarized abelian surface, the
Igusa invariants of ~A are all in Fqe . To conclude that ~J1 is in Fqe , we need to show that the injection
~� : OF ,! End( ~A) is de�ned over Fqe ; but this follows from the commutativity of the second diagram in
De�nition 4.5.

Conversely: supposeG� (J1; J2; J3; ~J1) = 0 for some ~J1 in Fqe . Then the fact that each of the H �;i is a
linear polynomial in Yi with coe�cients in Fq[J1; J2; J3; ~J1] = Fqe shows that there exist ~J2 and ~J3 in Fqe

such that ( ~J1; ~J2; ~J3) are the RM invariants of a triple ( ~A ; ~�; ~� ) that is � -isogenous to (A ; �; � ). This means
that there is an Fq-isomorphism ( ~A ; ~�; ~� ) ! (A 0; � 0; �0) where (A 0; � 0; �0) is de�ned over Fqe . Let f : A ! A 0

be the composite� -isogeny. Its kernelS is a one-dimensional subspace ofA [`]. It remains to show that S
is an eigenspace of� e; this is the case if and only if f is de�ned over Fqe . The Z-module HomFq

(A ; A 0)
is free of rank 4 (becauseA is vanilla); and its submodule HomFqe (A ; A 0) of Fqe -isogenies is either 0 or
equal to HomFq

(A ; A 0). Hence, f is de�ned over Fqe if HomFqe (A ; A 0) 6= 0; and HomFqe (A ; A 0) 6= 0 if and
only if the Frobenius endomorphisms ofA=Fqe and A 0 have the same characteristic polynomial.

Since A is vanilla, and A 0 is Fq-isogenous toA , we haveEndFq
(A 0) 
 Q �= EndFq

(A ) 
 Q �= K for
some quartic CM-�eld K . So let  and  0 be the images inK of the Frobenius endomorphisms ofA=Fqe

and A 0, respectively (note that  = � e). Now up to complex conjugation, we have s = (  0)s in K for
somes > 0. If  =  0, then A and A 0 are Fqe -isogenous, and we are done. If = �  0, then we replace
(A 0; � 0; �0) by its quadratic twist; and then A and A 0 are Fqe -isogenous. Otherwise, if 6= �  0, then  = 0

must be a root of unity of order at least 3 in K , which is impossible becauseA is vanilla. Hence =  0,
so  and  0 have the same characteristic polynomial, and thereforef is de�ned over Fqe .

For (2): If all of the zeroes ofG� (J1; J2; J3; x) are contained in Fqe , then all of the 1-dimensional
subspaces ofA [� ] are eigenspaces of� e by Part (1). This implies that � e acts as a scalar matrix on
A [� ].

Remark 4.10. As an example of what can go wrong if the vanilla condition is dropped, consider the curve

C : y2 = x5 + 1 :

The Jacobian JC of this curve has complex multiplication by Q(� 5), so it is not vanilla. While JC

has real multiplication by the maximal order of Q(
p

5), the Siegel modular form  4 is zero for this
curve. Proposition 4.18 below gives explicit formul� for J1, J2, and J 2

3 for Jacobians with maximal real
multiplication by Q(

p
5); and when we look at those formul�, we see that J1 is not well-de�ned when

 4 = 0.

7This is conditional under the heuristics of Remark 2.5.6

65



4.5.2 The factorization of G�

The Frobenius endomorphism� of A commutes with �(� ) (since A is vanilla), so it restricts to an
endomorphism ofA [� ].

Lemma 4.11. Let A=Fq be a vanilla abelian surface with Frobenius endomorphism� , and let ` be an
odd prime.

1. If ` splits in Z[� + � y] (or equivalently, if t2 � 4s is a square inF` ), then

� � (T) � (T2 � uT + q)(T2 � u0T + q) (mod `)

for some u and u0 in Z=`Z.

2. If ` is rami�ed in Z[� + � y] (or equivalently, if ` divides t2 � 4s), then

� � (T) � (T2 � uT + q)2 (mod `)

where u = t=2 in Z=`Z.

3. If ` is inert in Z[� + � y] (or equivalently, if t2 � 4s is a square inF` ), then

� � (T) 6� (T2 � uT + q)(T2 � u0T + q) (mod `)

for any u; u0 2 Z=`Z.

Proof. This is a direct consequence of [Lan86, Chapter 1, Proposition 25].

Lemma 4.12. Let (A ; �; � ) be a triple describing a vanilla abelian surface overFq with real multiplication
by OF , and let � be a totally positive element ofOF of prime norm � � = `. The restriction of the
Frobenius endomorphism� to A [� ] has characteristic polynomial

� �;� (T) � T2 � uT + q (mod `) for some u 2 Z=`Z :

Proof. By de�nition, ` = � �� splits in OF , so it either splits or rami�es in the suborder

Z[� + � y] � O F ;

we are therefore in Case(1) or (2) of Lemma 4.11. In particular, both � and � y restrict to endomorphisms
of A [� ], and they have the same eigenvalues� and q=� ; so the characteristic polynomial of � is

T2 � (� + q=� )T + q:

The result follows with u = � + q=� .

Proposition 4.13 uses the factorization of the modular polynomialG� , specialized at the RM invariants
of A , to derive information � �;� (T) (mod `).

Proposition 4.13. 8 Let (A ; �; � ) be a triple describing a vanilla abelian surface overFq with real
multiplication by OF and with RM invariants (J1; J2; J3), and let � be a totally positive element ofOF

of prime norm � � = `. Let � be the Frobenius endomorphism ofA , with � �;� (T) = T2 � uT + q the
characteristic polynomial of the restriction of � to A [� ], and let e be the order of� in Aut (P(A [� ])) �=
PGL2(F` ).

The polynomial G� (J1; J2; J3; x) has degreè + 1 in Fq[x], and its factorization type is as follows:

1. If u2 � 4q is not a square in F` , then e > 1 and the factorization type is

(e; : : : ; e) where e j ` + 1 :

2. If u2 � 4q is a nonzero square inF` , then the factorization type is

(1; 1; e; : : : ; e) where e j ` � 1 :

8This is conditional under Remark 2.5.6 and should include the assumption that G� (J1 ; J2 ; J3 ; x ) is separable.
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3. If u2 � 4q = 0 in F` , then the factorization type is

(1; e) where e = ` :

Proof. By Lemma 4.11, the endomorphism� acts on A [� ] as a 2� 2 matrix in GL2(F` ) with characteristic
polynomial T2 � uT + q = 0. If the matrix has two conjugate eigenvalues� 1, � 2 in F` 2 , then we are in Case
(1): there are no 1-dimensional eigenspaces of� in A [� ], and all irreducible factors of G� (J1; J2; J3; x)
have degreee, where e is the smallest exponent such that� e

i is in F` .
If the matrix has two eigenvalues in F` and is diagonalizable, then the discriminant t2 � 4s is a square

modulo `: we are in Case(2). This time A[� ] is the direct product of two 1-dimensional eigenspaces,
which account for two linear factors of G� (J1; J2; J3; x). The remaining factors have degreee, where e is
the smallest positive integer such that � e acts as a scalar matrix.

If the matrix has a double eigenvalue and is not diagonalizable, then we are in Case(3): there is only
one 1-dimensional eigenspace, and the matrix of� ` is scalar.

4.5.3 The characteristic polynomial of Frobenius

Now that we can compute the order of Frobenius, we want to use this to derive information on the
characteristic polynomial. Proposition 4.14 generalizes Proposition 4.2 to genus 2.

Proposition 4.14. Let (A=Fq; �; � ) be a triple describing a vanilla abelian surface with real multiplication
by OF , and let � be a totally positive element of prime norm` = � �� 62 f2; pg. Let � be the Frobenius
endomorphism ofA , and � �;� (T) = T2 � uT + q the characteristic polynomial of its restriction to A [� ].
If e is the order of the image of� in Aut( P(A [� ])) �= PGL2(F` ), then

u2 = � eq in F` ;

where � e =

(
� + � � 1 + 2 with � 2 F�

` 2 of order e if gcd(̀ ; e) = 1 ;
4 otherwise :

Proof. The proof is identical to that of Proposition 4.2.

Coming back to point counting: suppose we have a JacobianJC with real multiplication by OF ; we
want to compute the characteristic polynomial

� � (T) = T4 � tT 3 + (2 q + s)T2 � tqT + q2 :

If we have a totally positive element � in OF such that � �� = `, then we know that � � (T) (mod `) splits
into two quadratic factors:

� � (T) � � �;� (T)� �; �� (T) � (T2 � uT + q)(T2 � u0T + q) (mod `) ;

so
t � u + u0 (mod `) and s � uu0 � 2q (mod `) : (4.6)

Given precomputed Hilbert modular polynomials G� and G �� , then, we can specialize them at the RM
invariants of JC and factor to determine the order of Frobenius onJC[� ] and on JC[ �� ] using Proposition 4.13.
We can then apply Proposition 4.14 and Equations(4.6) to restrict the possible values ofs and t modulo
`.

The question of how best to exploit this extra modular information remains open. Atkin's match-and-
sort and Joux and Lercier's Chinese-and-match algorithms for elliptic curves cannot be re-used directly
here, because they were designed to solve the one-dimensional problem of determining the elliptic trace,
while here we have the two-dimensional problem of determining (s; t).

4.5.4 Prime types for real multiplication by OF

The factorization patterns in Proposition 4.13 are the same as those we saw for specialized elliptic modular
polynomials in x4.2.4. This leads us to de�ne an analogous classi�cation of prime types, for totally positive
elements inOF of prime norm.
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De�nition 4.15. Let � be a totally positive element of OF such that � �� = ( `) for some prime ` 6= 2 ; p.
We say that

� � is OF -Elkies for a vanilla triple ( A ; �; � ) with RM invariants ( J1; J2; J3) if the factorization type
of G� (J1; J2; J3; x) is (1; 1; e; : : : ; e) with e > 1;

� � is OF -Atkin for a vanilla triple ( A ; �; � ) with RM invariants ( J1; J2; J3) if the factorization type
of G� (J1; J2; J3; x) is (e; : : : ; e) with e > 1; and

� � is OF -volcanic for a vanilla triple ( A ; �; � ) with RM invariants ( J1; J2; J3) if the factorization
type of G� (J1; J2; J3; x) is (1; e) or (1; : : : ; 1).

If K �= EndFq
(A ) 
 Q is Galois then the type of � completely determines the type of �� (and vice

versa). For generalK , however, this does not hold: the type of �� is not determined by the type of � .

4.5.5 The parity of the number of factors of G�

The following proposition is the genus-2 real multiplication analogue of Equation (4.2) (cf. [Sch95,
Proposition 6.3]).

Proposition 4.16. Let (A ; �; � ) be a triple describing a vanilla abelian surface overFq with real multipli-
cation by OF , and with RM invariants (J1; J2; J3). Let � be a totally positive element ofOF of prime
norm � � = `, let � �;� (T) = T2 � uT + q be the characteristic polynomial of� restricted to A [� ], and let r
denote the number of irreducible factors in the factorization ofG� (J1; J2; J3; x). Then

(� 1)r =
� q

`

�
:

Proof. If ` divides u2 � 4q and � has order ` in Case (3) of Proposition 4.13, then the result is true.
Suppose therefore thatu2 � 4q 6= 0 ( mod `), that is, we are in Cases(1) or (2) of Proposition 4.13,
and let T � GL2(F` ) be a maximal torus containing � . In other words, we take T = f diag(�; � ) :
�; � 2 F�

` g split in Case (2), and T non-split (i.e., isomorphic to F�
` 2 ) in Case (1). The image T of T

in PGL2(F` ) is cyclic of order ` + 1 in Case (1) and ` � 1 in Case(2). The determinant induces an
isomorphism det : T =T

2
! F�

` =(F�
` )2. The action of � is via det(� ) = q, and we obtain an isomorphism

det : T =hT
2
; � i ! F�

` =h(F�
` )2; qi . This shows that the index [T : � ] is odd if and only if q is not a square

mod `. Since the numberr of irreducible factors of G� (J1; J2; J3; x) over Fq is equal to r = ( l + 1) =e or
r = 2 + ( l � 1)=e= [ T : � ], the proposition follows.

4.6 The case F = Q(
p

5): Gundlach{M•uller invariants

All of the theory above can be made much more explicit in the case whereF = Q(
p

5), where the invariants
J1, J2, and J3 are known as Gundlach{M•uller invariants [Gun63; Mue85]. Our computational results are
based on this case, so we will work out the details here, following the treatment in [LY11].

Fixing a square root of 5 in C, we set � := (1 +
p

5)=2 and �� := (1 �
p

5)=2; each is the image of the
fundamental unit of OQ(

p
5) under one of its two embeddings intoC. Let

q1 := e
�

�z 1 � �z 2p
5

�
and q2 := e

�
z2 � z1p

5

�
for z = ( z1; z2) 2 H2 :

The Eisenstein series of even weightk � 2 are de�ned by

gk (z) = 1 +
X

t = a+ b�� 2O +
F

bk (t)qa
1 qb

2 ;

where the coe�cients bk (t) are de�ned by

bk (t) = � k

X

( � ) � ( t )

N(� )k � 1 with � k =
(2� )2k

p
5

(k � 1)!25k � F (k)
2 Q
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(here N(� ) is the norm # OF =(� )). The Hilbert modular forms s6, s10, s12, and s15 of respective weight 6,
10, 12, and 15 forH Q(

p
5) are de�ned by

s6 := �
67

25 � 33 � 52 (g6 � g3
2) ;

s10 :=
1

210 � 35 � 55 � 7

�
191� 2161g10 � 5 � 67� 2293g2

2g6 + 2 2 � 3 � 7 � 4231g5
2

�
;

s12 :=
1
22

�
s2

6 � g2s10
�

;

s2
5 := s10 ;

s2
15 := 5 5s3

10 �
53g2

2s6s2
10

2
+

g5
2s2

10

24 +
32 � 52g2s3

6s10

2
�

g4
2s2

6s10

23 � 2 � 33s5
6 +

g3
2s4

6

24 :

Finally, the Gundlach{M•uller invariants for Q(
p

5) are

J1 := s6=g3
2 ; J2 := g5

2=s2
5 ; and J3 := s3

5=s15 :

The Hilbert modular polynomials for Q(
p

5) are too large to reproduce here, but they can be downloaded
from martindale.info .9

Proposition 4.17 ([LY11, Proposition 4.5] with correction to � � (j 1)) . For F = Q(
p

5), the Igusa
invariants pull back to

� � (j 1) = 4 J2(3J 2
1 J2 � 2)5 ;

� � (j 2) =
1
2

J2(3J 2
1 J2 � 2)3 ;

� � (j 3) = 2 � 3J2(2J 2
1 J2 � 2)2(4J 2

1 J2 + 2 5 � 32J1 � 3) :

For our computations, we want to write J1, J2 and J3 in terms of the Siegel modular forms 4,  6,
� 10 and � 12. (For a canonical way of writing J1, J2 and J3 in terms of Igusa{Clebsch invariants, we refer
to [Mar18, Example 2.5.4].)

Proposition 4.18 ([Mar18, Example 2.5.4]10). For F = Q(
p

5), we have

J2 = � � �
( 4 6=� 10 � 35212)( � 2 � 2( 2

6 � 21236� 12)= 3
4) � 1�

;

J1 = 3 225J � 1
2 + � � �

2� 63� 3(1 � ( 2
6 � 21236� 12)= 3

4)
�

;

J 2
3 = 5 5 � 2� 153J1J2 + 2 � 4J2 + 2 � 13252J 2

2 J 3
1 � 2� 3J 2

1 J 2
2 � 2 � 33J 3

2 J 5
1 + 2 � 4J 3

2 J 4
1 :

The choice of square root forJ3 corresponds to the choice of embedding� .

Proposition 4.18 can be used to �nd RM invariants for curves drawn from families with known real
multiplication, before factoring specialized Hilbert modular polynomials in those RM invariants to derive
information on Frobenius. However, it also crystallizes the rationality question alluded to at the end
of x4.4.4: as we see, a set of values of the Hilbert modular forms overFq (or, equivalently, a tuple of Igusa
or Igusa{Clebsch invariants over Fq) only determine J1, J2, and J 2

3 over Fq.
To get J3, we need to choose a square root ofJ 2

3 ; but J 2
3 is not guaranteed to be a square inFq. If

J 2
3 is not a square inFq, then we cannot apply Propositions 4.9 or 4.13|not even if J3 does not appear

unsquared in the specialized polynomialG� .

4.7 Experimental results

In order to validate the factorization patterns of Proposition 4.13, we ran a series of experiments for
F = Q(

p
5), using the family of curves [TTV91]

Ca : y2 = x5 � 5x3 + 5x + a

9 The polynomials H �; 3 do not appear there, but only G� is required to apply our results in x4.5.
10 The number of this example has changed to Example 2.4.4
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whose Jacobians all have real multiplication byOQ(
p

5) . This family was used in the point-counting records
of [GKS11]. The Igusa{Clebsch invariants ofCa are

(A; B; C; D ) =
�
25 � 52 � 7; 210 � 54; � 213 � 55 � (9a2 � 236); 220 � 55 � (a2 � 4)2�

:

Our experiments treated

1. the rami�ed prime ` = 5, with � = (5 +
p

5)=2, and the modular polynomial G� from martindale.
info ;

2. the split prime ` = 11, with � = (7+
p

5)=2, and the modular polynomial G� from martindale.info .

We collected statistics on the factorization patterns for 10000 tests. For each test, we chose a random
prime q of ten decimal digits, and we chosea randomly from Fq subject to the requirement that Ca be
nonsingular, which is a2 6= 4. We then applied the formul� of Equation (4.5) and Proposition 4.18 to
obtain the RM invariants J2 and J1 for the Jacobian of Ca , as well as the squared invariantJ 2

3 .
In half the cases on average,J 2

3 had a square root in Fq; in these cases we could obtainJ3, and
proceed to factor G� (J1; J2; J3; x). The average frequencies of the resulting factorization patterns appear
in Tables 4.1 and 4.2 (here we take the averages over the roughly 5000 tests whereJ 2

3 has a root in Fq;
for the two roots J3 and � J3 in Fq, we always obtained the same factorization pattern).

Factorization pattern, type of � Number found Percentage

OQ(
p

5) -Elkies: (1; 1; e; : : : ; e) with e > 1 total 1835 total 36.8%
(1; 1; 4) 1266 25.4%
(1; 1; 2; 2) 569 11.4%

OQ(
p

5) -Atkin: ( e; : : : ; e) with e > 1 total 2049 total 41.1%
(6) 844 16.9%
(3; 3) 794 15.9%
(2; 2; 2) 411 8.2%

OQ(
p

5) -Volcanic: (1; e) or (1; : : : ; 1) total 1105 total 22.1%
(1; 5) 1058 21.2%
(1; 1; 1; 1; 1; 1) 47 0.9%

Table 4.1: Factorization pattern frequencies for the modular polynomialG� (J1; J2; J3; x) for � = (5+
p

5)=2
of norm ` = 5. The degree ofG� (J1; J2; J3; x) in x is 6. We only factored whenJ 2

3 was a square inFq,
which happened in 4989 of the 10000 trials (49.9%).

According to Proposition 4.13, we would expect that 1=` of the time � should be OQ(
p

5) -volcanic,
(` � 1)=2` of the time � should beOQ(

p
5) -Elkies, and (̀ � 1)=2` of the time � should beOQ(

p
5) -Atkin. The

summary of our above results in Table 4.3 appears to con�rm this. This gives us considerable con�dence
that the Hilbert modular polynomials computed in [Mar18, Chapter 2] are correct.

Finally, we ran the same tests on Milio's modular polynomial11 �( J1; J2; X ) for ` = 5 and � =
(5 +

p
5)=2, whereJ1 = J2 and J2 = J1J2. We obtained exactly the same factorization patterns each time

J3 was in Fq.

11 Available from https://members.loria.fr/EMilio/modular-polynomials/
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Factorization pattern, type of � Number found Percentage

OQ(
p

5) -Elkies: (1; 1; e; : : : ; e) with e > 1 total 2262 total 44.7%
(1; 1; 10) 994 19.7%
(1; 1; 5; 5) 1040 20.6%
(1; 1; 2; 2; 2; 2; 2) 228 4.5%

OQ(
p

5) -Atkin: ( e; : : : ; e) with e > 1 total 2329 total 46.1%
(12) 859 17.0%
(6; 6) 404 8.0%
(4; 4; 4) 424 8.4%
(3; 3; 3; 3) 429 8.5%
(2; 2; 2; 2; 2; 2) 213 4.2%

OQ(
p

5) -volcanic: (1; e) or (1; : : : ; 1) total 466 total 9.2%
(1; 11) 461 9.1%
(1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 5 0.1%

Table 4.2: Factorization pattern frequencies for the modular polynomialG� (J1; J2; J3; x) for � = (7+
p

5)=2
of norm ` = 11. The degree ofG� (J1; J2; J3; x) in x is 12. We only factored whenJ 2

3 was a square inFq,
which happened in 5057 of the 10000 trials (50.6%).

Prime type frequencies for�
OQ(

p
5) -volcanic OQ(

p
5) -Elkies OQ(

p
5) -Atkin

� = 5�
p

5
2

Theory 20:0% 40:0% 40:0%
Experiments 22:1% 36:8% 41:1%

� = 7+
p

5
2

Theory 9:1% 45:5% 45:5%
Experiments 9:2% 44:7% 46:1%

Table 4.3: Experimental evidence supporting the correctness of Martindale's Hilbert modular polynomials.
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Appendix A

The notions of dual and polarisation
in equivalent categories

In all that follows C and D will denote categories with an involution called dual and denoted by_.
Furthermore, functors F : C ! D and G : D ! C will denote an adjoint equivalence (cf. [Lan78,
De�nition on p. 93]) of categories via natural isomorphisms


 = f 
 A : GF A ~�! A : A 2 Cg (A.1)

and
� = f � A : FGA ~�! A : A 2 Dg: (A.2)

Recall from Mac Lane [Lan78, Theorem IV.1.1] that in this situation, for all A 2 C, we have that

F (
 A ) = � F (A) ; (A.3)

and for all B 2 D, we have that G(� B ) = 
 G(B) .
The purpose of this Appendix is to prove that, as stated in Remark 1.3.12, ifF preserves the notion

of dual (resp. polarisation), then G preserves the notion of dual (resp. polarisation). For the convenience
of the reader, we repeat the de�nitions from Remark 1.3.12 of the preservation of the notions of dual and
polarisation.

De�nition A.1. If F comes together with a natural isomorphism

f : F � _ ~�! _ � F;

we say that (F; f ) preserves the notion of dual. For an object A 2 C, we write f A for the isomorphism
F (A _ ) ~�! F (A) _ .

Claim A.2. Suppose that (F; f ) preserves the notion of dual. Then there is a natural isomorphism
g : G � _ ~�! _ � G given by

f gB = 
 (GB) _ � G(f � 1
GB ) � G(� _

B ) : B 2 Dg: (A.4)

In particular, by de�nition ( G; g) preserves the notion of dual.

Proof. The morphism g given in (A.4) is a natural isomorphism if for every ' 2 HomD (A; B), the diagram

G(A _ )
G(� _

A ) //G((FGA) _ )
G(f � 1

G A ) //GF ((GA) _ )

 ( G A) _ //(GA) _

G(B_ )

G( ' _ )

OO

G(� _
B )

//G((FGB)_ )
G(f � 1

G B )
//

�
1) G(( F G' )_ )

OO

GF ((GB)_ ) 
 ( G B) _
//

�
2) GF (( G' )_

OO

(GB)_

�
3) (G' )_

OO

commutes. But (1) commutes as� is a natural isomorphism, (2) commutes asf is a natural isomorphism,
and (3) commutes as
 is a natural isomorphism. Hence

g = f gB = 
 (GB) _ ) � G(f � 1
GB ) � G(� _

B ) : B 2 Dg

72



is a natural isomorphism
g : G � _ ~�! _ � G:

From now on, we suppose that for all objects inC (resp. D), we have a subsetPA � Hom(A; A_ ) of
`polarisations' such that for every isomorphismm : B ! A in C (resp. D), the map

Hom(A; A_ ) �! Hom(B; B_ )
' 7! m_ 'm

(A.5)

induces a bijection betweenPA and PB .

De�nition A.3. Suppose that (F; f ) preserves the notion of dual. We say that (F; f ) preserves the
notion of polarisation if for all objects A 2 C the map

Hom(A; A_ ) �! Hom(F (A) ; F (A) _ )
� 7! f A � F (� )

induces a bijection betweenPA and PF (A) .

Claim A.4. Suppose that (F; f ) preserves the notions of dual and of polarisation. Then (G; g) with g as
in (A.4) preserves the notion of polarisation.

Lemma A.5. Suppose that (F; f ) preserves the notion of dual. Then (FG; h) preserves the notions of
dual and of polarisation, where

h = f hB = f GB � F (gB ) : B 2 Dg (A.6)

and g is as in (A.4).

Proof. We have that (G; g) preserves the notion of dual by Claim A.2, and it is easy to check that (FG; h)
also preserves the notion of dual. Therefore it su�ces to prove that the isomorphism

HomD (B; B_ ) �! HomD (FGB; (FGB)_ )
� 7! hB � FG(� )

induces a bijection betweenPB and PF G B . By (A.5), the isomorphism
� B : FGB ~! B gives an isomorphism

HomD (B; B_ ) �! HomD (FGB; (FGB)_ )
� 7! � _

B � � � � B ;

which in turn induces a bijection between PB and PF G B . Hence, it su�ces to show that for every
� 2 HomD (B; B_ ), we have that

hB � FG(� ) = � _
B � � � � B : (A.7)

Note, by de�nition of hB and gB , that

hB � FG(� ) = f GB � F (gB ) � FG(� )

= f GB � F (
 (GB) _ ) � FG(f � 1
GB � � _

B � � );

and F (
 (GB) _ ) = � F (( GB) _ ) by (A.3), so

hB � FG(� ) = f GB � � F (( GB) _ ) � FG(f � 1
GB � � _

B � � ): (A.8)

Furthermore, as f � 1
GB � � _

B � � 2 HomD (B; F ((GB)_ ) and � is a natural isomorphism, the diagram

B
f � 1

G B � � _
B � � //F ((GB)_ )

FGB

� B

OO

F G (f � 1
G B � � _

B � � )//FGF ((GB)_ )

� F (( G B) _ )

OO

commutes, so that
� F (( GB) _ ) � FG(f � 1

GB � � _
B � � ) = f � 1

GB � � _
B � � � � B :

Plugging this into (A.8) gives (A.7) and the result follows.
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Proof of Claim A.4. As (F; f ) preserves the notion of dual, by Claim A.2 (G; g) also preserves the notion
of dual. Therefore, it su�ces to show that the isomorphism

bB : HomD (B; B_ ) �! HomC (GB; (GB)_ )
� 7! gB � G(� )

induces a bijection betweenPB and PGB . But by Claim A.5 ( FG; h) preserves the notion of polarisation,
where h is as in (A.6), hence the isomorphism

cB : HomD (B; B_ ) �! HomD (FGB; (FGB)_ )
� 7! f GB � F (gB ) � FG(� )

induces a bijection betweenPB and PF G B , and as (F; f ) preserves the notion of polarisation, the
isomorphism

dGB : HomC (GB; (GB)_ ) �! HomD (FGB; (FGB)_ )
� 7! f GB � F (� )

induces a bijection betweenPGB and PF G B . Therefore the setsPB and PGB are in bijection via the
isomorphism d� 1

GB � cB , which is indeedbB as, for any � 2 HomD (B; B_ ), we have that

dGB (bB (� )) = dGB (gB � G(� ))

= f GB � F (gB � G(� ))

= f GB � F (gB ) � FG(� )

= cB (� ):
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Summary

This thesis is primarily concerned with topics in and around the study of isogenies of abelian varieties.
The precise de�nitions of both abelian varieties and isogenies are unfortunately beyond the scope of this
summary, but we aim to give the reader an intuitive notion of both.

The most common example of an abelian variety that occurs in number theory is that of anelliptic
curve. Let us consider the equation

E : y2 = x3 � x + 1 :

This equation has a solution (x; y) = (1 ; 1), because 12 = 1 3 � 1 + 1. Equation E is an example of an
elliptic curve, and if we plot it, then it looks like this:

We can also see from the picture that we have a solution (x; y) = (1 ; 1) to the equation, because the point
with coordinates (1; 1) lies on the curve. We can also spot other points that lie on the curve with integral
(whole number) coordinates, such as (x; y) = (0 ; � 1), which also then give a solution to equationE.

Having found two points on the curve with integral coordinates, we can �nd more: in this example,
drawing a straight line between the points (0; � 1) and (1; 1) yields the following picture:

The straight line then intersects the curve in a third point ( x; y) = (3 ; 5), giving us a third solution to our
equation. As it happens, this third point still has integral coordinates, although the same construction
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starting from di�erent points with integer coordinates could have yielded fractions (rational numbers).
For example, the straight line passing through (3; � 5) and (0; � 1) intersects the curve in a third point
(� 11

9 ; 17
27 ). However, this construction will never yield an irrational number like � or e!

In fact, in this example, in�nitely many rational solutions (i.e. x and y can be written as fractions)
to our equation can be found in this way - that is, by drawing a straight line between two points that
we already know (or their re
ections in the x-axis) and looking for a third point of intersection with the
curve. Even better, in this example, it is possible to �nd all the rational solutions to our equation in this
way as long as we use well-chosen points at each stage.

This is however, quite a `special' example in this regard - an abelian variety is a geometric object that
can be de�ned by polynomial equations like the one above, for which the rational solutions are related to
one another in a prescribed way, for example by drawing straight lines and looking for intersection points
as above. However, it's not always easy to �nd enough starting points to �nd all the solutions in this way,
sometimes there are only �nitely many solutions, and sometimes you don't even know if there should be a
�nite number or an in�nite number of solutions. Also, for equations with higher degree than the example
above (i.e. higher powers ofx and y), or more variables (or more di�cult in other ways), the relations
between the points become more complicated.

Another way of �nding solutions to such equations is via isogenies. An isogeny is a map between
abelian varieties that `preserves the geometric structure'. We explain by example what we mean by this:
consider the map

(x; y) 7! (x � 11; y);

which sends the above equationE : y2 = x3 � x + 1 to

y2 = x3 � 33x2 + 362x � 1319;

which looks like this:

Above, we found three solutions (0; � 1); (1; 1), and (3; 5) to our equation E that lie on the same straight
line. Note that if ( x; y) is a solution to equation E , then (x + 11; y) will be a solution to the new equation.
So, we can use our map to compute three corresponding solutions to the new equation:

(0; � 1) 7! (11; � 1)

(1; 1) 7! (12; 1)

(3; 5) 7! (14; 5):

If you plot them, they still all lie on a straight line:
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So the geometric relationship between these solutions is somehow preserved. This map is called an isogeny
because this happens.

So, an isogeny from an abelian varietyA to an abelian variety B not only maps points on A to points
on B but preserves the relations between those points. Most importantly, if you are given an abelian
variety A and asked to �nd points on A or relations between those points, it may be easier to look for an
abelian variety B on which you can easily spot points, and an isogeny fromB to A.

The take home message is: we are interested in knowing, given two abelian varieties, whether there
exists an isogeny from one to the other. Normally, we are checking a bit more: whether or not there exists
an isogeny of a certain type (for mathematicians: in the case of elliptic curves, this type is the degree). In
Chapter 2, we give an algorithm to do this, which we have implemented for some `small' abelian varieties.
(Here `small' means abelian varieties coming from genus 2 curves, which will be explained shortly.)

Another approach to help understand, given two abelian varieties, whether or not there exists an
isogeny between them is to make a diagram of the information, called an isogeny graph. An isogeny graph
is a diagram with: nodes labelled as abelian varieties, and an arrow between two nodes if there is an
isogeny (of a certain prescribed type) from one node to the other.

For example, represent the equationE : y2 = x3 � x + 1 as a white node, and the equation
E 0 : y2 = x3 � 33x2 + 362x � 1319 as a black node. We saw already that there exists an isogeny fromE to
E 0 given by (x; y) 7! (x � 11; y). Also, there exists an isogeny fromE 0 to E given by (x; y) 7! (x + 11; y)
so part of our diagram would look like this:

We could also draw one undirected line instead of the two arrows, giving the following diagram:

In Chapter 3, we show that for our type of isogenies an isogeny graph1 of abelian varieties consists of
volcano graphs, an example of which is below:

1 In this thesis, we also equate some nodes (for mathematicians: we identify isomorphic nodes), and E and E 0 would
actually be represented by the same node. However, there do exist many graphs with lots of nodes even after equating some
of the nodes.
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This type of graph has become known as a volcano as it resembles the bird's eye view of a volcano:
the triangle in the centre is the `rim' of the volcano (this could be replaced by anyn-gon), and the lines
going away from the rim is the `lava' 
owing down to the ground.

In Chapter 4 we study solutions of equations de�ning curves of genus 2. Except for some special cases,
a genus 2 curve is given by an equationy2 = f (x), where f (x) is a degree 5 or 6 polynomial (this means
that the highest power of x that appears in f (x) is 5 or 6). For example the equation

y2 = x5 + 1

represents a genus 2 curve. It looks like this:

We can associate an abelian variety to any genus 2 curve; the study of genus 2 curves lies within the
study of abelian varieties (in some sense). Also, instead of only looking for solutions of the equation given by
whole numbers or fractions, we choose a prime number, say 101, and try to �nd integer coordinates (x; y) on
the curve such that x5+1 � y2 is divisible by 101, e.g.x = 6 and y = 0. One can count the number of choices
for (x; y) with 0 � x; y < 101 that yield x5 +1 � y2 divisible by 101 just by listing every possibility for x and
y and checking whether you get a solution (in this case there are 97 solutions). However, if the prime is not
101, but 115792089237316195423570985008687907853269984665640564039457584007913129640233, then
just counting all the solutions in this way cannot be done by modern computers, and many cryptographic
protocols are based on the di�culty of this kind of problem. However, sometimes it is possible to count
more e�ciently by using the abelian variety structure. In Chapter 4, we give an e�cient algorithm to
count all the solutions (for a given large prime) for equations de�ning certain genus 2 curves. Chapter 4 is
joint work with Sean Ballentine, Aurore Guillevic, Elisa Lorenzo-Garcia, Maike Massierer, Ben Smith,
and Jaap Top.
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Samenvatting

Dit proefschrift gaat hoofdzakelijk over isogenie•en en abelse vari•eteiten. De precieze de�nities van de twee
begrippen zijn helaas te geavanceerd voor deze samenvatting, maar wij proberen om wat intu•�tie te geven
voor beide concepten.

Het meest voorkomende voorbeeld van een abelse vari•eteit die zich in getaltheorie voordoet is een
elliptische kromme. Beschouw de vergelijking

E : y2 = x3 � x + 1 :

Deze vergelijking heeft een oplossing (x; y) = (1 ; 1), want 12 = 1 3 � 1 + 1. De vergelijking E is een
voorbeeld van een elliptische kromme, en als we deze plotten krijgen we:

Wij zien ook direct uit de gra�ek dat er een oplossing (x; y) = (1 ; 1) is, omdat het punt met co•ordinaten
(1; 1) op de kromme ligt. Wij kunnen ook andere punten met geheeltallige co•ordinaten die op de kromme
liggen nu zien, zoals (x; y) = (0 ; � 1), en die geven nog meer oplossingen van de vergelijkingE .

Nu dat wij twee punten met geheeltallige co•ordinaten op de kromme hebben gevonden, kunnen wij er
meer vinden: in dit voorbeeld tekenen wij een rechte lijn tussen de punten (0; � 1) en (1; 1). Dit geeft de
volgende gra�ek:

85



De rechte lijn snijdt de kromme in een derde punt (x; y) = (3 ; 5), dus wij krijgen een derde oplossing van
onze vergelijking. Het derde punt heeft weer geheeltallige co•ordinaten, maar dezelfde constructie kan ook
breuken geven. Bijvoorbeeld, de rechte lijn die door (3; � 5) en (0; � 1) gaat, heeft een derde snijpunt met
de kromme op (� 11

9 ; 17
27 ). Aan de andere kant kan deze constructie nooit een irrationaal getal zoals� of e

geven!
In dit voorbeeld kunnen wij op deze manier, dat is door het tekenen van een rechte lijn tussen twee

punten die wij al gevonden hebben (of hun re
ecties in dex-as) en het zoeken naar een derde snijpunt, een
oneindig aantal rationale oplossingen vinden, dat wil zeggen:x en y kunnen als breuk geschreven worden.

Beter zelfs: in dit voorbeeld is het mogelijk omalle rationale oplossingen van onze vergelijking op
deze manier te vinden, zolang wij op elk moment de beste punten kiezen om te gebruiken.

Aan de andere kant, dit voorbeeld is best wel `speciaal' { een abelse vari•eteit is een meetkundig object
dat door polynomen gede�nieerd kan worden (de vergelijkingen hierboven zijn polynomen) waarvoor
bovendien de rationale oplossingen een voorgeschreven relatie hebben, bijvoorbeeld door het tekenen van
rechte lijnen die de kromme in drie rationale punten snijden. Vaak is het niet mogelijk om de beginpunten
te vinden, of er is maar een eindige hoeveelheid rationale oplossingen, en soms weten wij niet of er een
eindige of oneindige hoeveelheid rationale oplossingen is. Daarnaast worden voor vergelijkingen met een
hogere graad dan ons voorbeeld (i.e. hogere machten vanx en y), of meer variabelen, de relaties tussen
de punten gecompliceerder.

Een andere manier van oplossingen vinden is viaisogenie•en. Een isogenie is een afbeelding tussen
abelse vari•eteiten die `de meetkundige structuur bewaart' (voor wiskundigen: de groepsstructuur). Wij
leggen met een voorbeeld uit wat dit betekent: beschouw de afbeelding

(x; y) 7! (x � 11; y);

die de vergelijking E : y2 = x3 � x + 1 van hierboven naar

y2 = x3 � 33x2 + 362x � 1319

stuurt. De gra�ek van deze nieuwe vergelijking ziet er uit als:

Wij vonden hierboven drie oplossingen (0; � 1), (1; 1), en (3; 5) van onze vergelijkingE die op dezelfde
rechte lijn liggen. Merk op dat als (x; y) een oplossing van de vergelijkingE is, dan (x +11; y) een oplossing
van de nieuwe vergelijking wordt. Dus kunnen wij onze afbeelding gebruiken om drie overeenkomende
oplossingen van de nieuwe vergelijking te berekenen:

(0; � 1) 7! (11; � 1)

(1; 1) 7! (12; 1)

(3; 5) 7! (14; 5):

Laten wij hen plotten en zien we dat zij nog steeds op een rechte lijn liggen:
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Dus de meetkundige relatie tussen deze oplossingen is in zekere zin behouden. De afbeelding is eenisogenie
omdat dit gebeurt.

Wij hebben gezien dat een isogenie van een abelse vari•eteitA naar een abelse vari•eteitB niet alleen
maar punten van A naar punten van B stuurt, maar ook de relatie tussen de punten behoudt. Het is
belangrijk om in te zien dat als een abelse vari•eteitA gegeven is en u bent gevraagd om punten vanA
te vinden, of relaties tussen de punten, het dan makkelijker kan zijn om naar een abelse vari•eteitB te
zoeken waar het makkelijk is om punten en relaties te vinden, en een isogenie vanB naar A te geven.

De boodschap is: wanneer twee abelse vari•eteiten zijn gegeven dan willen wij weten of er een isogenie
bestaat van de ene naar de andere. Normaalchecken wij nog een beetje meer: of er een isogenie bestaat
van een speci�ek type (voor wiskundigen: in het geval van elliptische krommen is het type de graad). In
hoofdstuk 2 geven wij een algoritme om dit te doen, dat wij voor een paar `kleine' abelse vari•eteiten ook
hebben geimplementeerd. (Hier betekent `klein' abelse vari•eteiten die van geslacht twee krommen vandaan
komen, dit zullen wij straks uitleggen.)

Nog een manier die kan helpen om te zien of er een isogenie tussen twee abelse vari•eteiten bestaat, is
door een diagram te maken van de informatie; dit heet een isogenie•engraaf. Een isogenie•engraaf is een
diagram dat bestaat uit knopen gemarkeerd als abelse vari•eteiten, met steeds een pijl van een knoop naar
een andere als er een isogenie (van een gegeven type) bestaat van de ene abelse vari•eteit naar de andere.

Bijvoorbeeld, neem voor de vergelijkingE : y2 = x3 � x + 1 een witte knoop, en voor de vergelijking
E 0 : y2 = x3 � 33x2 + 362x � 1319 een zwarte knoop. Wij hebben al gezien dat er een isogenie vanE
naar E 0 is gegeven door (x; y) 7! (x � 11; y). Er bestaat ook een isogenie vanE 0 naar E gegeven door
(x; y) 7! (x + 11; y) dus een deel van ons diagram ziet er als volgt uit:

Wij zouden ook een ongerichte lijn kunnen tekenen in plaats van de twee pijlen, zodat het diagram
wordt:

In hoofdstuk 3 bewijzen wij dat voor onze type isogenie•en bestaat de isogenie•engraaf2 uit vulkanen.
Een vulkaan ziet er bijvoorbeeld als volgt uit:

2 In dit proefschrift stellen we sommige knopen gelijk (voor de wiskundigen: wij stellen isomorfe knopen gelijk), en E en
E 0 worden eigenlijk door dezelfde knoop gerepresenteerd. Maar er bestaan wel grafen met heel veel knopen, zelfs na dit
gelijkstellen.
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Dit type graaf wordt vulkaan genoemd omdat het eruitziet als het bovenaanzicht van een vulkaan: de
driehoek in het centrum is de `rand' van de vulkaan (deze kan ook door iederen-hoek vervangen worden),
en de lijnen die weg gaan van de rand stellen de lava voor dat naar beneden stroomt.

In hoofdstuk 4 bestuderen wij oplossingen van vergelijkingen diegeslacht 2 krommende�ni•eren. Buiten
wat speciale gevallen wordt een geslacht 2 kromme door een vergelijkingy2 = f (x) gegeven, waarf (x)
een polynoom is van graad 5 of 6 (dit betekent dat de hoogste macht vanx die in f (x) voorkomt 5 of 6
is). Bijvoorbeeld de vergelijking

y2 = x5 + 1

is een geslacht 2 kromme. Deze ziet er uit als:

Wij kunnen met elke geslacht 2 kromme een abelse vari•eteit associ•eren; de studie naar geslacht 2
krommen is een substudie van die naar abelse vari•eteiten (in zekere zin). In plaats van alleen te zoeken
naar oplossingen die zijn gegeven door gehele getallen of breuken, kiezen wij daarnaast een priemgetal,
bijvoorbeeld 101, en proberen wij geheeltallige co•ordinaten (x; y) te vinden zodat x5 + 1 � y2 gedeeld kan
worden door 101, bijvoorbeeldx = 6 en y = 0.

Wij kunnen het aantal mogelijkheden tellen voor (x; y) met 0 � x; y < 101 zodat x5 + 1 � y2

gedeeld kan worden door 101 door elke optie voorx en y op te sommen en te checken of het een
oplossing geeft (in dit geval er zijn 97 oplossingen). Aan de andere kant, als de priem niet 101 is, maar
115792089237316195423570985008687907853269984665640564039457584007913129640233, dan kan het op
deze manier tellen van alle oplossingen niet door moderne computers gedaan worden. Cryptographische
protocollen zijn op de moelijkheid van dit soort problemen gebaseerd. Maar soms is het e�ci•enter om
te tellen door gebruik te maken van de structuur van de abelse vari•eteit. In hoofdstuk 4 geven wij een
e�ci•ent algoritme om alle oplossingen (voor een gegeven grote priem) te tellen voor vergelijkingen van
bepaalde geslacht 2 krommen. Hoofdstuk 4 is een samenwerking met Sean Ballentine, Aurore Guillevic,
Elisa Lorenzo-Garcia, Maike Massierer, Ben Smith, en Jaap Top.
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R�esum�e

Dans cette th�ese nous �etudions les isog�enies entre vari�et�es ab�eliennes. Les d�e�nitions pr�ecises de vari�et�e
ab�elienne et d'isog�enie d�epassent malheureusement le cadre de ce r�esum�e, mais nous essayons d'en donner
une id�ee intuitive.

L'exemple le plus commun d'une vari�et�e ab�elienne dans la th�eorie des nombres est celui decourbe
elliptique. Consid�erons l'�equation

E : y2 = x3 � x + 1 :

Cette �equation admet ( x; y) = (1 ; 1) pour solution car 12 = 1 3 � 1 + 1. L'�equation E est un exemple d'une
courbe elliptique, et si nous la dessinons, elle ressemble �a ceci:

Il est �evident sur l'image que (x; y) = (1 ; 1) est une solution de l'�equation, parce que le point de coordonn�ees
(1; 1) se trouve sur la courbe. Nous pouvons aussi trouver d'autres points sur la courbe avec des coordonn�ees
enti�eres (nombres entiers), telles que (x; y) = (0 ; � 1), qui donnent solutions de l'�equation E.

Ayant trouv�e deux points sur la courbe avec des coordonn�ees enti�eres, nous pouvons les utiliser pour
en trouver d'autres: dans notre exemple, tra�cons la ligne droite entre les points (0; � 1) et (1; 1); nous
obtenons l'image suivante:
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La droite coupe la courbe en un troisi�eme point (x; y) = (3 ; 5), ce qui nous fournit une troisi�eme solution
�a notre �equation. Dans cet exemple, ce troisi�eme point a lui aussi des coordonn�ees enti�eres, bien que la
même construction �a partir de points di��erents aurait pu donner des fractions (nombres rationnels). Par
exemple, la ligne droite passant par (3; � 5) et (0; � 1) coupe la courbe en un troisi�eme point (� 11

9 ; 17
27 ).

Cependant, cette construction ne donnera jamais un nombre irrationnel comme� ou e!
En fait, dans cet exemple, il y a une in�nit�e de solutions rationnelles (c'est-�a-dire que x et y sont

des fractions) �a notre �equation qui peuvent être trouv�ees de cette fa�con - en dessinant une ligne droite
entre deux points connu (ou leurs r�e
exions par rapport �a l'axe x) et en cherchant le troisi�eme point
d'intersection avec la courbe. Mieux encore, dans cet exemple, il est possible de trouvertoutes les solutions
rationnelles �a notre �equation de cette mani�ere pour peu que l'on utilise des points bien choisis �a chaque
�etape.

Cet exemple est, cependant, sp�ecial �a cet �egard - une vari�et�e ab�elienne est un objet g�eom�etrique
qui peut être d�e�ni par des �equations polynômiales comme celle ci-dessus, pour lesquelles les solutions
rationnelles ont des relations prescrites, par exemple en dessinant des lignes droites et en recherchant les
points d'intersection comme ci-dessus. En g�en�eral, ce n'est pas toujours possible �a trouver des points
de d�epart pour cette construction, ou parfois il y a seulement un nombre �ni de solutions, et parfois on
ne sait pas s'il y a un nombre �ni ou in�ni de solutions. De même, pour des �equations ayant un degr�e
sup�erieur �a l'exemple ci-dessus (c'est-�a-dire des puissances sup�erieures dex et y) ou plus de variables (ou
qui sont plus compliqu�ees d'une autre mani�ere), les relations deviennent plus compliqu�ees.

Une autre fa�con de trouver des solutions �a de telles �equations est d'utiliser desisog�enies. Une isog�enie
est une application entre vari�et�es ab�eliennes qui � pr�eserve la structure g�eom�etrique � . Expliquons ceci sur
un exemple: consid�erer l'application

(x; y) 7! (x � 11; y);

qui envoie les solutions de l'�equationE : y2 = x3 � x + 1 vers des solutions de

y2 = x3 � 33x2 + 362x � 1319;

qui ressemble �a:

Nous avons trouv�e ci-avant trois solutions (0; � 1); (1; 1) et (3; 5) �a notre �equation E et celles-si se trouvent
sur la même droite. Notons que si (x; y) est une solution de l'�equation E , alors (x + 11; y) sera bien une
solution de la nouvelle �equation. Ainsi, on peut utiliser l'application pour exprimer les trois solutions
correspondantes de la nouvelle �equation:

(0; � 1) 7! (11; � 1)

(1; 1) 7! (12; 1)

(3; 5) 7! (14; 5):

Si l'on ajoute ces trois solutions sur le dessin ci-dessus, on constate que les trois points sont align�es:
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Alors, parce que l'application est uneisog�enie, la relation g�eom�etrique (i.e. le fait d'être align�ees) entre
ces solutions est pr�eserv�ee.

�A l'aide d'une isog�enie d'une vari�et�e ab�elienne A vers une vari�et�e ab�elienne B , et �etant donn�es des
points sur A, on peut trouver des points surB . L'isog�enie pr�eserve de plus les relations entres ces points.
Plus important encore, si l'on se donne une vari�et�e ab�elienne A et que l'on veut trouver des points surA
ou des relations entre ces points, il peut être plus facile de chercher une vari�et�e ab�elienneB sur laquelle
on peut plus facilement trouver des points et une isog�enie deB �a A.

Le message principal est donc: il est int�eressant de savoir, �etant donn�e deux vari�et�es ab�eliennes, s'il
existe une isog�enie entre elles. En fait, on pose une question un peu plus pr�ecise: existe-t-il une isog�enie
d'un type sp�eci�que entre deux vari�et�es ab�eliennes donn�ees? (Pour les math�ematiciennes, dans le cas des
courbes elliptiques, le type d'une isog�enie est son degr�e.) Dans le chapitre 2, nous donnons un algorithme
qui r�epond �a cette question. Nous avons de plus impl�ement�e celui-ci pour certaines � petites� vari�et�es
ab�eliennes. (Ici � petit � signi�e des vari�et�es ab�eliennes qui viennent des courbes de genre 2, qui nous
d�e�nissons plus loin.)

Une autre approche pour aider �a voir, �etant donn�ees deux vari�et�es ab�elienne, s'il existe ou pas une
isog�enie entre elles, est de faire un diagramme de la situation, appel�e graphe d'isog�enie. Un graphe
d'isog�enie est un diagramme dont les sommets sont des vari�et�es ab�eliennes, et dans lequel deux sommets
sont reli�es par une arête s'il y a une isog�enie (d'un type donn�e) entre eux.

Par exemple, repr�esentons l'�equation E : y2 = x3 � x + 1 par un sommet blanc, et l'�equation
E 0 : y2 = x3 � 33x2 + 362x � 1319 par un sommet noir. Nous avons d�ej�a vu qu'il existe une isog�enie
de E vers E 0 donn�ee par (x; y) 7! (x � 11; y). De plus, il existe une isog�enie deE 0 vers E donn�ee par
(x; y) 7! (x + 11; y). Une partie de notre graphe ressemblerait alors �a:

Nous aurions pu aussi dessiner une arête non orient�ee au lieu des deux arêtes orient�ees, ce qui donnerait
le graphe suivant:

Au chapitre 3, nous prouvons que pour notre type d'isog�enie, le graphe d'isog�enie3 se compose de
volcans, dont un exemple est ci-dessous:

3 Dans cette th�ese, nous aussi assimilons des sommets (pour les math�eciennes: nous identi�ons des sommets isomorphiques),
et en fait E et E 0 seraient repr�esent�e par la même sommet. Cependant, c'�existe des graphes avec beaucoup de sommets
même apr�es en iden�er un part des sommets.
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Ce type de graphe s'appelle un volcan car il ressemble �a une vue a�erienne d'un volcan: le triangle au
centre correspond au� crat�ere � du volcan (on pourrait le remplacer par n'importe quel n-gone) et les
lignes qui s'�eloignent du crat�ere sont la � lave� qui coule vers le sol.

Au chapitre 4, nous �etudions des solutions d'�equations d�e�nissant des courbes de genre 2. En dehors
de quelques cas particuliers, une courbe de genre 2 est donn�ee par une �equationy2 = f (x), o�u f (x) est un
polynôme de degr�e 5 ou 6 (c'est-�a-dire que la plus grande puissance dex apparaissant dansf (x) est x5 ou
x6). Par exemple l'�equation

y2 = x5 + 1

repr�esente une courbe de genre 2. Elle ressemble �a ceci:

On peut associer une vari�et�e ab�elienne �a n'importe quelle courbe de genre 2; l'�etude des courbes de
genre 2 se ram�ene donc �a l'�etude de certaines vari�et�es ab�eliennes (dans un certain sens). Au lieu de chercher
seulement des solutions de l'�equation donn�ee par des nombres entiers ou des fractions, on choisit un nombre
premier, disons 101, et on essaie de trouver des points �a coordonn�ees enti�eres (x; y) tels que x5 + 1 � y2

est divisible par 101, par exemplex = 6 et y = 0. On peut compter le nombre des choix de (x; y) avec
0 � x; y < 101 qui donnentx5 + 1 � y2 divisible par 101, simplement en �enum�erant toutes les possibilit�es
pour x et y et en v�eri�ant si on a une solution (dans ce cas, il y a 97 solutions). Toutefois, si le premier n'est
pas 101, mais 115792089237316195423570985008687907853269984665640564039457584007913129640233,
alors le comptage de toutes les solutions ne peut pas être e�ectu�e de cette mani�ere par les ordinateurs
modernes, et de nombreux protocoles cryptographiques sont bas�es sur la di�cult�e de ce type de probl�eme.
Cependant, parfois c'est possible �a compter le nombre de solutions si on utilise la structure de vari�et�e
ab�elienne. Au chapitre 4, nous donnons un algorithme e�cace pour compter toutes les solutions (pour un
grand nombre premier donn�e) pour les �equations d�e�nissant des certaines courbes de genre 2. Le chapitre
4 est un travail en commun avec Sean Ballentine, Aurore Guillevic, Elisa Lorenzo-Garcia, Maike Massierer,
Ben Smith et Jaap Top.
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