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Introduction

Background

Algebraic curves have been studied in various forms for thousands of years, yet still today there are many
unsolved problems relating to the subject. In the 19th century, Abel and Jacobi transformed this subject
by associating to any algebraic curve itsJacobian, which is an additive group containing the curve itself,
and which is in particular an example of an abelian variety.

Possibly the most studied algebraic curves arelliptic curves, the Jacobians of which are isomorphic
to the elliptic curves themselves, meaning that a group law can be de ned directly on the curve. One
consequence of this nice property is that elliptic curves lend themselves in a natural way to modern
cryptographic algorithms, as the rational points on an elliptic curve form a group.

When studying maps between abelian varieties, we will restrict toisogenies which are surjective
homomorphisms with nite kernel. In particular, they preserve the identity.

In curve-based cryptography, it is important to develop fast algorithms for computing isogenies, for
computing endomorphism rings, and for counting points on curves de ned over nite elds Fp, wherep is
a large prime number. There are many elliptic curve algorithms that have been developed in recent years
to this end, and due to their geometric nature, one may ask if these algorithms can be applied to more
general algebraic curves (by studying their Jacobians).

Overview

In Chapter 1 , we give a (polarisation-preserving) equivalence of categories between abelian varieties
de ned over a nite eld with a given characteristic polynomial of Frobenius and ideals of an order in a
number eld. The main applications of the results of this thesis concern (Jacobians of) curves de ned
over nite elds, but in many cases it is much easier to prove theoretical results for ideals than for abelian
varieties. We call the statement of this equivalence of categories the Fixed Frobenius Lifting Theorem
(Theorem 1.3.11). This equivalence is well-known and often-used, but the precise statement does not, to
our knowledge, appear in the literature. We prove it as a consequence of similar, but more general, results
of Deligne and Howe, which use the theory of canonical lifts of Lubin, Serre, and Tate.

In Section 1.6, we also give an introduction to the theory of Hilbert modular forms, which we will
need in Chapter 2.

In Chapter 2 , we give a generalisation of the modular polynomial for elliptic curves. A modular
polynomial makes use of the -invariant of an elliptic curve. For a eld k and an elliptic curve E=k of the
form

y2 = x3+ Ax + B;
with A; B 2 Kk, the j -invariant is de ned by

473 ]
4A3 +27B2’

and determines the elliptic curve uniquely up to k-isomorphism. For a prime ™, we will refer to an isogeny
of degree” as an-isogeny. There is an irreducible polynomial

(X;Y)2 Z[X; Y]

i(E)=1728

called the modular polynomial such that given elliptic curves E and E%over a eld k there exists an
“-isogenyE ! ECoverk if and only if

“((E);i(E=0:

Vi



We generalise the modular polynomial for elliptic curves to a tuple of modular polynomials for
principally polarised ordinary abelian varieties with real multiplication by the maximal order of a given
number eld Ky. We can think of elliptic curves de ned over C as points in the moduli spaceSL,(Z)nH,
and the modular polynomials for elliptic curves can be computed using this interpretation. There are
two common generalisations of this moduli space: Siegel moduli space, which parametrises principally
polarised abelian varieties, and Hilbert moduli space, which parametrises principally polarised abelian
varieties with real multiplication by a xed number eld Kg. The generalisation of modular polynomials
to abelian varieties using Siegel moduli space was studied by Dupont [Dup06]. However, even for abelian
surfaces, most practical applications of these Siegel modular polynomials are computationally out of reach,
as the smallest example is already 25.6MB. We give a generalisation of modular polynomials using Hilbert
moduli space. Included in this generalisation is a generalisation of th¢-invariant to RM isomorphism
invariants for principally polarised abelian varieties with maximal real multiplication by a xed number
eld Kg. Theoretically, it is relatively easyr}g show that such invarianfgsiexist, and computationally, we use
the formulae given by Mdller for Ko = Q( 5) [Mue83] and Ko = Q(' 2) [Mue85]. The main contribution
of this chapter is an algorithm to compuﬁeﬁthese Hilbert modular polynomials, and we have implemented
this algorithm in MAGMA for Ko = Q(' 5). The resulting Hilbert modular polynomials are much more
manageable than the Siegel equivalent, although the algorithm is very slow so computing higher levels
would still require some work.

In Chapter 3 , we give a generalisation of Kohel's structure theorem for isogeny graphs. In his PhD
thesis [Koh96], David Kohel studied the structure of isogeny graphsof elliptic curves. An "-isogeny graph
of elliptic curves is an undirected graph for which each vertex represents @-invariant of an elliptic curve
over a eld k, and an edge between (E) and j (E°) represents a pair of -isogenies betweerE and E° that
are dual to each other (up to isomorphism).

Kohel gave a structure theorem for™ prime and ordinary E=Fq (with special cases occurring af (E) =0
and 1728). Among other things, Kohel's structure theorem is a key component in e ciently computing
the endomorphism ring of an ordinary elliptic curve over Fy.

We generalise Kohel's theorem to a structure theorem for isogeny graphs of principally polarised
ordinary abelian varieties over Fq with real multiplication by the maximal order of a xed real number
eld Kgo. The isogeny graphs we study in this thesis are graphs of isogenies depending on a parameter
which is a totally positive element of K that generates a prime ideal inOk,. In Section 3.1, we state the
main theorem of this chapter, the Volcano Theorem, and the rest of the chapter is dedicated to the proof,
except for Section 3.10, in which we give an example computation of an isogeny graph. This problem has
also been studied by lonica and Thone [[IT14], who give a structure theorem for Jacobians of curves of
genus two with real multiplication by the maximal order of a xed real quadratic number eld of narrow
class number 1, and in parallel to the work in this thesis, by Brooks, Jetchev, and Wesolowski [BJW17],
who also prove[ Theorem 3.1)9, using di erent methods, with the added assumption that the CM-type is
primitive. Brooks, Jetchev, and Wesolowski also studied the structure of isogeny graphs for which the
isogenies depend on a parametdr a prime ideal in Ok, which is not necessarily generated by a totally
positive element 2 Ok,

Chapter 4 is a joint article [Bal+17] with Ballentine, Guillevic, Lorenzo-Garca, Massierer, Smith, and
Top, in which we generalise the Atkin{Elkies{Schoof algorithm to count points on elliptic curves over nite
elds. The Atkin{Elkies{Schoof algorithm makes use of factorisation patterns of modular polynomials
to give a polynomial time algorithm for counting points on elliptic curves. We give a polynomial time
algorithm to count points on genus 2 curves over a nite eld with real mutiplication by the maximal order
a xed number eld Kg using the factorisation patterns of the Hilbert modular polynomials of Chapter 2.

Appendix A gives the technical category-theoretical details necessary for the proof of the equivalence

of categories given in Chapter 1] Theorem 1.3.1.
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Chapter 1

The theory of canonical lifts and
other preliminaries

In much of this thesis we will study principally polarised ordinary abelian varieties over Fy, whereq is a
prime or a power of a prime. In this chapter, we specialise results of Deligne and Howe that allow us to
work with ideals and elements of CM- elds instead of with varieties overFy. The proofs of these results
are based on the lifting theorems of Lubin, Serre and Tate. The main theorem of this chapter, the Fixed
Frobenius Lifting Theorem (Theorem 1.3.1]), is an equivalence between two categories, so we now proceed
by de ning these categories.

1.1 Principally polarised abelian varieties

We rst summarise some preliminaries on abelian varieties. For details on this subject there are many
good textbooks, for example Mumford's book|[MumO&].

De nition 1.1.1.  An abelian variety A over a eld k is a complete group variety overk.

Remark 1.1.2. If A is an abelian variety de ned over C then A(C) is complex analytically isomorphic
to a complex torus.

De nition 1.1.3.  An isogenyis a morphism of abelian varieties that is nite as a morphism of varieties
and surjective. The degreeof an isogeny is its degree as a morphism of varieties.

De nition 1.1.4. For an abelian variety A over a eld k, we de ne the Picard group of A, written as
Pic(A), to be the group of isomorphism classes of line bundles on A.

Proposition 1.1.5.  For an abelian variety A over a eld k and a line bundleL on A, the map de ned by

L OAK) ! Pic(A)
X 7" [T,L L 1

where T, denotes translation by x and [] denotes the isomorphism class ofin Pic(A), is a homomorphism.
Proof. This follows from the Theorem of the Square, see e.g, [GM07, Corollary 2.10]. O

De nition 1.1.6.  For an abelian variety de ned over an algebraically closed eldk, we de ne Pic’(A) to
be the subgroup ofPic(A) consisting of classes of line bundlet such that the morphism | is identically
0.

Proposition 1.1.7.  Given an abelian variety A over an algebraically closed eldk, the group Pic®(A)
carries a canonical structure of an abelian variety over.

Proof. See|[MumO08, Chapter IIl, Corollary 5]. O

De nition 1.1.8. Given an abelian variety A over an algebraically closed eldk, we de ne the dual
abelian variety A- of A to be Pic(A).



Remark 1.1.9. To de ne the dual abelian variety A- of an abelian variety A over an arbitrary eld Kk,
we need some basic theory of schemes. We have omitted that here for simplicity; the interested reader can
refer to [MFK94| Chapter 6].

Proposition 1.1.10.  Given an abelian variety A over an algebraically closed eldk, if L is an ample
line bundle on A, then we associate toL an isogeny of abelian varieties | : A! A- which is given on
points by

x7V[T,L L 1

Proof. See|[GMO7, Theorem 6.18]. O

De nition 1.1.11. For an abelian variety A over an arbitrary eld k, we de ne a polarisation to be an
isogeny (overk)
AL A-

such that there exists an ample line bundleL of Ak for which = |, where | is the canonical isogeny
of [Proposition 1.7.10. We de ne aprincipal polarisation to be a polarisation that is an isomorphism.

1.2 Lifting ordinary abelian varieties over Fq to ideals

De nition 1.2.1. A CM-eld K is a totally imaginary quadratic extension of a totally real number
eld K. We denote by~ the generator of the Galois groupGal(K=K (), and we refer to this ascomplex
conjugation. For a CM-eld K of degree @ over Q, we de ne a CM-type of K to be a set ofg embeddings

f :K,!] Cg
that are pairwise non-complex conjugate.

De nition 1.2.2. For g a prime power, write Ord g, for the category of ordinary abelian varieties over
Fq. For a Weil g-number , and a CM-eld K such that K = Q( ), write () for the minimal polynomial
of overQ. For A 2 Ord ¢,, write  (Frobg(A)) for the characteristic polynomial of the g-power Frobenius
endomorphism of A. We de ne Ord to be the full subcategory of Ord ¢, with objects given by

fA2Ordg, : (Frobg(A)= ( )g

Note that for every A 2 Ord the complex conjugate™ of also de nes an endomorphism orA as
the multiplication-by- q map [g] factors through [ ]. In particular, every A 2 Ord in this category comes
with a map

Al Z[; 71} End(A)
7! Frobg(A)
- 71 Verg(A):

Then for every g 2 Homog  (A;A% and everyr 2 Z[; ~], we have that A(r) g=g ao(r). From now
on, we omit from the notation.

De nition 1.2.3.  Given a prime powerd, a Weil g-number , and a CM-eld K such that K = Q( ),
we de ne Id to be the category with objects given by the fractional Z[ ; ~]-ideals, where for any objects
aand b of Id , the morphisms inld from ato b are given by

Hom(a;b)=f 2K : a bg:

De nition 1.2.4.  We say that a Weil g-number is ordinary if at least half of the roots in Q, of the
minimal polynomial of are g-adic units.

The Fixed Frobenius Lifting Theorem, [Theorem 1.3.17, will state that if is an ordinary Weil g-number
then there is an equivalence of categories

Ord ! Id ;

and that this functor satis es some useful properties.



1.3 The Fixed Frobenius Lifting Theorem

De nition 1.3.1.  Write Ord g, for the category of ordinary abelian varieties overFq. We de ne POrd f,

to be the category whose objects are pairsA; ) where A 2 Ordg, and : A ! A- is a principal

polarisation of A. We de ne a morphismf : (A; )! (A% 9in POrd F, 10 be an isomorphism of abelian
varieties f : A1 Afor which the following diagram commutes:

A" Ip0

A-0—— (A9-:

0

De nition 1.3.2.  Recall the notation from[De nition 1.2.2] We de ne POrd to be the full subcategory
of POrd g, with objects given by

f(A; )2 POrd ¢, : (Frobg(A) = ( )g:

De nition 1.3.3. Let be a Weil g-number such that K = Q( ) is a CM- eld of degree 29 over Q. Let
(A; ):(A% 92 POrd be g-dimensional abelian varieties, and letk o be the maximal totally real sub eld
of K. Recall that End(A) End(A) Q= K. For 2Ok,,if 2 End(A), we denea -isogeny

fra; ) (A% 9
to be a morphismf : A1 ACin Ord F, Such that the diagram

AQ A" Jp0

AN

0

A- 0 — A"

commutes.
Remark 1.3.4. Note that the morphisms in POrd are exactly the 1-isogenies.

We now de ne, in several steps, the notion of a polarisation on objects irld that will be functorially

compatible with the notion of polarisation on objects in Ord . Fix a prime power g and a Weil g-number
such that K = Q( ) is a CM- eld. We rst show how to associate a CM-type of K to , following Howe

|[How95, Notation 4.6].

Let k be an algebraic closure ofq and write Q" = W (k), where W (k) denotes the ring of Witt vectors
of k. Now x one embeddingj : Q" } C, and identify Q" with its image under j so that Qg C.
Now, write Qq and Q for the algebraic closures olQy" and Q inside C respectively. We then obtain the
following diagram of inclusions (some of which depend on):

so that in particular the g-adic valuation on Qg extends uniquely to ag-adic valuation v; on Q Q.

De nition 1.3.5. (c.f. [How95, Notation 4.6])

For a rational prime power g, X j : Q' ! C as above and de neyv; to be the g-adic valuation on Q C
obtained from j. Then given a CM- eld K and an algebraic integer suchthatK = Q( )and —= q,
we de ne the (;j ){CM-type of K to be

g =fF K, Civi( ())> 0g:



De nition 1.3.6.  With notation as in Pe nition 1.3.5,for any x 2 K, we say thatx is ; {positive-
imaginary (respectively non-positive-imaginary) if, for every 2 ; , we have that (x)=i 2 Rsgq
(respectively R o).

De nition 1.3.7. For an objecta2 Id , we de ne the dual of a to be the fractional Z[ ; ~]-ideal
a=f 2K :tr( a) Zg

A polarisation of a is a non-zero ; -positive-imaginary element 2 Homyg (& a-). If in addition
a= a, then we say that is principal . For a morphism 2 Homyg (a;b), we de ne the dual of to be

-="2Homyg (b-;a):

Remark 1.3.8. Suppose thata;b2 Id and is a polarisation of a. Observe that for any totally real
totally positive element of K, if 2 Homyg (b;b-), then is a polarisation of b.

Next, we de ne PId and the notion of -isogeny exactly as we de nedPOrd

De nition 1.3.9. Fix a prime power g, a Weil g-number , and a CM-eld K such that K = Q( ).
We de ne the category Pld to be the category with objects given by pairs @ ), wherea2 Id and

2 Homyg (a;a-) is a principal polarisation of a. We de ne a morphism (a; )! (&% 92 PId to be
an isomorphism 2 Homyg (a;a% in Id such that

- — 0.

De nition 1.3.10.  For (a; );(a% 9 2 PIld and 2 End(a), a -isogeny
@) @9
is a morphism 2 Homyqg (a;a% such that

- — 0.

Theorem 1.3.11 (Fixed Frobenius Lifting Theorem). Fix a prime power g, an ordinary Weil g-number
, and let K be the CM-eld Q( ). Then there exists an equivalence of categories

T :0rd ! Id

that preserves the notions of dual and polarisation, and preserves the action 4f ; ~]. (See[Remark 1.3.17
for formal de nitions.)

Note that as T preserves the notion of polarisation, it is automatic that it preserves the notion of
-isogeny.

Remark 1.3.12. Suppose thatC and D are categories, each equipped with an involution called dual
and denoted as
_:C!' C and _:D! D:

We say that a functor F : C! D preserves the notion of dualif it comes with a natural isomorphism
f:F _I~ F.

Suppose that for all objectsA in C (resp. D) we have a subsetPy, Hom(A; A-) of “polarisations'
such that for every isomorphismm : B! A in C (resp. D), the map

Hom(A;A-) ! Hom(B; B-)
' 7! m-'m

induces a bijection betweenP, and Pg. Given a functor F = (F;f): C! D preserving the notion of
duals, we say thatF preserves the notion of polarisationif for all objects A 2 C the map

Hom(A;A-) ! Hom(F(A);F(A)-)
7! fa F()

induces a bijection betweenPs and Pg (4 .



We show in Appendix A that if functors F : C! D andG:D ! C de ne an adjoint equivalence
of categories andF preserves the notions of dual and polarisation, therG also preserves the notions of
dual and polarisation. By [Lan78, Theorem IV.4.1], every equivalence of categories is one direction of an
adjoint equivalence of categories.

Let R be a commutative ring and suppose thatC and D are R-linear categories (i.e. the setHom(A; B)
are R-modules and composition of morphisms ifR-bilinear). We say that F preserves the action ofR if

F :Homc(A;B) ! Homp (F(A);F(B))
is R-linear.

The remainder of this chapter is dedicated to de ning the functor T , and to showing how| Theorem 1.3.11
follows from the work of Deligne and Howe in|[Del69] and|[How95] via the lifting theorems of Serre, Tate
and Lubin.

1.4 The theory of canonical lifts

In order to write down the functor of Theorem 1.3.17, we require the notion of a "Serre-Tate lift' of both
an ordinary abelian variety A over a eld k of positive characteristic and of a morphism of ordinary
abelian varieties overk. Categorically lifting ordinary abelian varieties over k = F, to the ring Wy (k) of
Witt vectors of length n was rst studied by Lubin, Serre, and Tate in a seminar, skeleton notes of which
can be found at [LST64]. A simpler proof of their main lifting theorem was later found by Drinfeld and
written down by Katz in [Kat81, Chapter 1]. The machinery required to use this theorem to lift ordinary
abelian varieties overFq to abelian schemes oveQy" was written down by Messing in [Mes72]; the version
of the lifting theorems that we state here are as stated by Messing.

1.4.1 Serre-Tate lifts of ordinary abelian varieties

In this section we show how to lift ordinary abelian varieties over a nite eld k to abelian schemes over the
Witt vectors W (k) of k; we rst recall the de nition of an abelian scheme (c.f. [MFK94| De nition 6.1]).

De nition 1.4.1. For a noetherian schemeS, an abelian schemeover S is de ned to be a proper smooth
group S{scheme of which all bres are geometrically connected.

Proposition 1.4.2. It is equivalent to de ne an abelian scheme to be a proper smooth group scheme
over S of which all bres are abelian varieties. In particular, when k is a eld, we have that A is an
abelian Speck)-scheme if and only if A is an abelian variety.

Proof. Suppose thatA is an abelian scheme over a noetherian schen® Then every bre of A is a proper
smooth geometrically connected group scheme over a eld. A bre being proper implies in particular that
it is of nite type and separated, and a bre being smooth and geometrically connected implies that it is
geometrically irreducible (see|[Stack-Exchange]). Therefore every bre of\ is a nite type, separated,
geometrically irreducible group scheme over a eld, hence a variety. Every bre is a group object by
de nition, so a group variety. The reverse direction is clear. O

Fix a perfect eld k of characteristic p > 0, and write W (k) for the ring of Witt vectors of k.

Theorem 1.4.3. Let A be an ordinary abelian variety de ned overk. Then, up to unique isomorphism,
there is a projective abelian schemd ! W (k) such thatB ) k = A and the mapEnd(B) ! End(A)
is bijective.

Proof. See|[Mes72, p. V.3.3]. O

De nition 1.4.4. For an ordinary abelian variety A de ned over k, we de ne the Serre-Tate lift of A to

be the projective abelian W (k)-scheme satisfying the conditions of Theorem 1.4|3.

Theorem 1.4.5. Let A and A° be ordinary abelian varieties overk and let B and B® be the Serre-Tate
lifts of A and A° respectively. Then the map

:Hom(B;B% ! Hom(A;A9

is bijective.



Proof. See|[Mes72, p. V.3.4]. O

De nition 1.4.6. For A, A°, B, B®and as in[Theorem 1.4.5 andf 2 Hom(A;A9, we de ne the

Serre-Tate lift of f to be f 2 Hom(B;B9.

1.4.2 Deligne lifts of ordinary abelian varieties

Deligne used the lifting theoremg Theorem 1.4]3 anfl Theorem 1.4.5 to represent ordinary abelian varieties
over nite elds as linear algebra objects over Z, for which he de ned the following category:

De nition 1.4.7. (c.f. [How95, De nition 4.1])
For a prime power g, we de ne the category Del 4 to be the category whose objects are pairs (; F), where
the are nitely generated free Z-modules, and for a given , the F are endomorphisms of such that

1. the endomorphismF  Q of Q is semi-simple, and its eigenvalues irfC have magnitude q'2,

2. at least half of the roots of the characteristic polynomial of F in Gq, counting multiplicities, are
p-adic units, and
3. there is an endomorphismV of suchthat F V = q.
The morphisms
(:F)! (%F9
of Del ; are homomorphisms' : | 0of Z-modules such that' F = F9 '.

Remark 1.4.8. In and in the rest of this thesis, for an abelian varietyA over a eld k,
and a eld embeddingj : k| kO we will write A j k®or A kOfor A spec(k) Speck?.

Theorem 1.4.9 (Deligne's lifting theorem). For a prime power g, x an embeddingj : Qg' ! C. Let
Ord g, be the category of ordinary abelian varieties de ned ovef,, and for an objectA in Ord ,, let
B=Qy' be the Serre-Tate lift of A F;. De ne
D(A)= Hi(B j C;2):
Let Frobq(A) be theg-power Frobenius endomorphism om, let Frobq(B) be its Serre-Tate lift, and let
Frobq(B) be the endomorphism induced b¥robq(B) ; C on D(A). Then the functor de ned by
Ordg, ! Del 4
A 71 (D(A);Frobg(B))
is an equivalence of categories.
Proof. See|[Del69, Theoeme 7]. O

We will in fact only use a special case of Deligne's lifting theorem, stated ifi Corollary 1.4.72.

De nition 1.4.10. For a prime power g, a hon-negative integerg, an algebraic integer , and a CM- eld
K of degree @ over Q such that K = Q( ), whereq= —, we de ne the category Mod to be the
category of Z[ ; ~]-modules that are free of rank 2j over Z.

Remark 1.4.11. Observe that Mod is equivalent to Id

ConsiderMod as a subcategory oDel ¢ by viewing a Z[ ; ~]-module M as a pair (M; F ) whereF is
the action of , and the VerschiebungV is the action of —.

Corollary 1.4.12. For a prime power g, an ordinary Weil g-number , and a CM-eld K such that

K = Q( ), dene Ord as in|Denition 1.2.2|and Mod as in[De nition 1.4.10| The functor of
[Theorem 1.4.9 de nes a functor

D : Ord ! Mod
that is an equivalence of categories.
Proof. Note that Mod is exactly the full subcategory of pairs ( ;F) for which the characteristic

polynomial of the Frobenius F is exactly the minimal polynomial of over Q. The result then follows
from Theorem 1.4.9. O

Remark 1.4.13. The equivalence of categorie§ of , and the fact thatT preserves the

action of Z[ ; ~] follow immediately from Corollary 1.4.12 For[Theorem 1.3.11, it remains only to show
that the equivalence of categories respects the notions of dual and polarisation.




1.4.3 Howe lifts of polarised ordinary abelian varieties

Howe ([How95]) gave a notion of polarisation on the objects oDel 4 which is compatible with the notion
of polarisation in Ord ¢, under the functor given in|[Theorem 1.4.9. We give if Theorem 1.4.21 the special
case of Howe's lifting theorem that we need in order to prove the Fixed Frobenius Lifting Theorem. We
rst de ne polarisations of objects in Mod , following Howe.

De nition 1.4.14.  For a prime powerd, a Weil g-number that generates a CM-eld Q( ),let 2 Mod
We de ne the dual of to be
- =Homz( ;Z)

viewed as aZ[; ~]-module via

zZ[; 71 - ! -
(rf) 70 ( 7Mf(r)):

Then in particular, - 2 Mod
De nition 1.4.15. Let R be a commutative ring with an involution

R ! R
r 7' T

let M be anR-module, let N be an abelian group, and letf be aZ-bilinear form
f:M M! N
We de ne f to be R{semi-balancedif for everyr 2 R and ;m 2 M, we have that
f(rm)=f(;mm):
If furthermore N is an R-module and for everyr 2 R and ';m 2 M we have that
f(rim)=rf (Gm)=f(;mm);
we say that f is R{sesquilinear.

De nition 1.4.16. (c.f. [How9s, p. 2370])
For a prime power g, a Weil g-number that generates a CM-eld Q( ), an element 2 Mod , and
2 Hompog ( ; -) we de ne the Z-bilinear form associated to to be

b: ! z
(s;t) 7! (s)(1):

One can check that this is a non-degenerat&[ ; ~]{semi-balanced form.

Proposition 1.4.17.  For an order O in a number eld K with an involution ~ such that O = O, given a

non-degenerateO{semi-balanced formb: I Z, there exists a unique non-degenerat& -sesquilinear
form S ( Q) ( Q)! K suchthatb Q=trg-o S.

Proof. See|[Knu9l, Theorem 1.7.4.1, p.44]. O
De nition 1.4.18. For 2 Mod and 2 Hompeg ( ; -),letb: I Z be the Z-bilinear form

associated to . We de ne the K -sesquilinear form associated to to be the unique non-degenerate
K -sesquilinear form off Proposition 1.4.1J.

Remark 1.4.19. Forevery 2 Mod |, given a non-degenerate&Z[ ; ~—]-semi-balanced formb: 1 Z,
there is a unique morphism 2 Hom( ; -) for which the associated Z-bilinear form is b given by

(s)(t) = b(s;1).
De nition 1.4.20. (c.f. [How95, De nition 4.8])

Fix a Weil g-number and a CM-eld K such that K = Q( ), and x an embedding j : Qg | C.

Recall the de nition of the CM-type  ; of K from and recall the de nition of ;- -
non - positive - imaginary from For 2 Mod , we de ne aj-polarisation of to be a
morphism

| —

such that the sesquilinear formS associated to is skew-Hermitian (i.e. for everyu;v 2 Q we have
S(u;v) = S(v;u)) and such that for every 2 we have that S(; )is  -non-positive-imaginary.




The following theorem, a special case of Howe's lifting theorem in [How95, Proposition 4.9], shows
that this de nition of polarisation is what we should use if we wish to study ordinary abelian varieties
over nite elds.

Theorem 1.4.21. For an abelian variety A 2 Ord  with dual abelian variety A- 2 Ord and an isogeny
Al A-inOrd ,let , -2 Mod and 2 Hom( ; -) be the images under the functor of

Corollary 1.4.12/of A, A- and respectively. Letj : Q) | C be the embedding on which the functor of

Corollary 1.4.12| depends. Then is a j-polarisation of if and only if is a polarisation of A.

Proof. See|[How95, Proposition 4.9]. O

Remark 1.4.22. The rst step of Howe's proof is a reference to the well-known result that one may lift
polarisations of ordinary abelian varieties over nite elds to polarisations of abelian varieties over C, but
the reference|[Del69, Theorem 1] cited by Howe in [How95, Proof of Proposition 4.9] does not give a proof.
In private correspondence, Howe was kind enough to provide the following argument for this step.

Recall that we xed an embeddingj : Qy" ! C. Let B be the Serre-Tate lift of A 2 Ord , and write
BcforB j C.

Let K = End(Bc) Q and x an ample divisor L on B¢, so that we have a Rosati involution onK .
Then the Neron-Severi group ofB¢ (that is, Pic(Bc)=Pic’(Bc¢)), when tensored with Q, can be identi ed
via M ! L 1\ with the maximal additive subgroup K, of K xed by the Rosati involution. (See
Mumford [MumO08| Application Ill, page 208].) So to every line bundle M , we can associate a real
(i.e. xed by Rosati) element of K. And the ample line bundlesM are precisely the ones for which

L 1 u 2Ky is totally positive. (See the last paragraph of Section 21 of Mumford|[Mum03].)

Now, there is an ample line bundleL on B¢ whose reductionL is ample (see|[Gro6i, Corollaire 4.5.14]).
This gives us one polarisation of B that descends to a polarisation of A. But an isogenyf : Bc! Bg
is a polarisation if and only if there exists an ample line bundleM on B¢ such that f = \ , which is if
and only if f 1 is a totally positive real element of End(B) Q (by the previous paragraph), and this
condition holds for f if and only if it holds for the reduction f of f .

1.4.4 Proof of the Fixed Frobenius Lifting Theorem

The Fixed Frobenius Lifting Theorem, [Theorem 1.3.11, is a consequence of Howe's lifting theorem
[Theorem 1.4.2]. We only need to show that there is a functor de ning an equivalence of categories between
Mod of Z[; ~]-modules and the categoryld of fractional Z[ ; ~]-ideals that preserves the notions of
dual and polarisation.

Proof of [Theorem 1.3.11. By [Theorem 1.4.21, the equivalence of categorie®rd ! Mod given in
Corollary 1.4.17 preserves the notions of dual and polarisation. By construction this equivalence also

preserves the action ofZ[ ; ~]. We show that the forgetful functor
O :ld ! Mod
1. preserves the action ofZ[; 7.
2. preserves the notion of duals.
3. preserves the notion of polarisation.

The preservation of the action of Z[ ; 7] is immediate asO maps the morphism inld de ned by
to the morphism in Mod de ned by , and similarly for —. Observe also thatO is an equivalence of

categories, and as stated ifi Remark 1.3.12, i© preserves the notions of dual and polarisation then so
does the reverse functor. For (2), givera 2 Id , we claim that
fa: 70( T treeo(™ ) (1.1)

de nes a natural isomorphism from
O(@)=0((f 2K :tr( @ Zog)

to
O (8- =Hom(O (a);2)):



As
T: K K | Q
; 7 tr(T)

is a nhon-degenerate bilinear form, it induces an isomorphism of-vector spaces

K ! Hom(K; Q)
TG )

which when restricted to the subseta K, gives us exactly the map of ).
For (3), we have to show that the map

Homg (a;a) ! Homwea (O (a);0 (a)-)
70 fa O ()=(xTtreo(X )

induces a bijectionP, $ Po (4 Of the set of polarisations ofa and the set of polarisations ofO (a). The
morphism
O (a) ! O (a)-
X 7 tr=o(x )

is in Po (g if and only if the sesquilinear form associated to , given by

S: ©@® Q (©O@ Q ! K
(s;1) 7 st
is skew-Hermitian and, for every 2 O (a), we have that S(; )is ; {non-positive-imaginary. But S

is skew-Hermitian if and only if is totally imaginary, and S(; )is ; {non-positive-imaginary for
every 20 (a)ifandonlyif is  {positive-imaginary. Therefore 2 Hom(a;a-) is in P4 if and only
if fa O ()2Po (a,hence (3) holds. O

1.5 Maximal real multiplication

In much of this thesis, we will study principally polarised abelian varieties of dimensiong de ned over C
that have maximal real multiplication , that is, the real part of the endomorphism ring is a maximal order
in a totally real number eld of degree g over Q. We now give some preliminaries.

De nition 1.5.1. Fix an ordinary Weil g-number and a CM-eld K = Q( ), and denote by K the
maximal totally real sub eld of K. Let C denote one of P)Mod , (P)Ord , or (P)ld . For each
choice ofC , every object A 2 C comes together with an embeddingZ[; 7] ! End(A), so we identify
K =2Z[; 7] Q witha subring of End(A) Q. Wedene C x , to be the full category of C consisting
of those A2 C such that Ok, End(A).

De nition 1.5.2. Let Ko be a totally real number eld of degree g over Q with ring of integers O,
and de ne Ord ¢4 to be the category of abelian varieties overC of dimensiong. We de ne the objects
of the category Ord ¢k, to be pairs (A; ), where A2 Ord cg and : Ok, ! End(A) is an embedding.
A morphism in Ord ¢k, between two objects @; ) and (A% 9 is given by a morphismf : Al A%in

Ord c.¢g such that the diagram

Endy, Q-' " /epd(A) Q
Ko/

commutes. We de ne the objects of the categoryPOrd c.x , to be triples (A; ; ), where (A; ) 2 Ord ¢k,
and :A! A- is a principal polarisation of A, and the image of is stable under the Rosati involution.
A morphism in POrd ¢, between two objects (A ; ) and (A% % 9 2 pPOrd cK, IS an isomorphism

f:(A; ) (A%9



in Ord ck, that makes the diagram

commute.
De nition 1.5.3. Let Ko be a totally real number eld with ring of integers Og,. For
(A;; ) (A% % 92 POrd ck,

and 2 Og,, wedenea -isogenyf :(A;; )! (A% % 9 tobeamorphismf :(A;)! (A% 9in
Ord ¢k , such that the diagram

AﬁAQAO

AN

0

A- 0 — A%

commutes.

De nition 1.5.4. Let g be a prime power, let be an ordinary Weil g-number, and letK = Q( ) be a
CM- eld with maximal totally real subeld Ky. Let g=[Kg: Q], and de ne

to be the full subcategory of Ord ¢4 with objects (A;e: Z[; ]! End(A)), where e has CM-type ; .
We de ne
Ord C:K o

to be the full subcategory of Ord ¢. such for every object @;e), the embeddinge: Z[; 7]] End(A)
extends to an embeddingf : Ox,[; 7] ! End(A). (Note that in fact Ok,[; 7] = Ok,[ + 7] as
+ ~ 20k 0 )
Observe that for (A;€) 2 Ord c; x ,, we have that (A;fjo, ) 2 Ord ¢k,

Theorem 1.5.5. Let q be a prime power, let be an ordinary Weil g-number, and letK = Q( ) be a
CM- eld with maximal totally real sub eld Kg. Let g=[Ky : Q]. There is an equivalence of categories

a 71 Ci= ()

that preserves the action ofOk ,[; ~] and the notions of dual and polarisation.

Proof. This is Theorems 4.1 and 4.2 (1) of Lang|[Lan83].

1.6 Hilbert modular forms

De nition 1.6.1. Let Ko be a totally real number eld of degree g over Q with ring of integers Ok, .
Let N be an invertible Ok ,-ideal. Then the matrix group SL(Ok, N ) is de ned as

a 3 2 SLyp(Ko) : 2;,d2 Ok,; b2N;c2N 1

Let H be the complex upper half plane. We want to view objects inPOrd ¢k, as elements ofH9,
where g is the degree ofK o over Q. We will be interested in the action of matrix groups with entries in
Ko on elements ofHY, hence it is much more convenient to work withKy C instead of C9. To this end,
we x once for all a C-algebra isomorphism

CY! Ko C (1.2)

10



and we dene Ky H to be the image ofH? under this isomorphism. Observe thatK, H does not
depend on the choice of isomorphism. Let the group of 22 matrices with entries in K that have totally
positive determinant be denoted by GL,(K)*. The group GL,(Kp)* actsonKy H as

a b

. d 7' (a +b(c +d) %

Lemma 1.6.2. Let K be a totally real number eld of degree g over Q with ring of integers Ok ,, and
write Og  for the trace dual of Ok,. Then there is a bijection

SL(Ok, O g )N(Ko H)—f(A;; )2 POrd ck,9

where the image of 2 SL(Ok, O g )n(Ko H)is A =(Ko C)= Ok, + Og,) with the natural
embedding and the polarisation induced by the Riemann formE : (Kg C) (Ko C)! R given by

E(uys+ uz vi+ Vo) =1tr (¢, r=r(U1V2 UzV1)
for ug;us;vi;vo 2 Kg R
Proof. See|[Gee88, Chapter IX, Section 1]. O
De nition 1.6.3. Let be aninteger, andlet bein Ky H. Then the weight function w is de ned by

W GLz(K0)+ (Ko H) ! C
(M; ) 7! Nk =o(det(M)) N, ¢=c(c +d) ;

where we choose the positive square root.

De nition 1.6.4.  Let GL»(K)* andKo H be asinDe nition 1.6.3| Let M be any matrix in GL,(Kg)*,
and letf :Ko H! C be aholomorphic map. Then we de nef jy; by

fJ[M] Ko H ! C
77w (M; ) (M)

It is straightforward to check that for M;N 2 GL,(Kg)*, we have

(Fimy ding = Fimn g -

De nition 1.6.5.  Let GL,(Kg)* and Ky H be as above, and assume thag > 1. Let be a congruence
subgroup of GL(K)*. We say thatf : Ko H! Cis aHilbert modular form of weight for if and
only if it is holomorphic and forall M 2 and 2 Ky H, we have

fimy ()= 1(C):

From this point on, if f is a Hilbert modular form of weight , then for M 2 GL,(Kg)* we will write
ij for fj[M] .

Remark 1.6.6. For g=1, we also have to impose holomorphicity at the cusps.

De nition 1.6.7.  With notation as in De nition 1.6.5,|if ' = f=g is the quotient of Hilbert modular
forms for of equal weight, then we say that ' is a Hilbert modular function for .

De nition 1.6.8. Suppose thatg =2. Then for f 2 M g, «, if for every ( 1; 2) 2 Ko H = H? we have
f(12)=1(2 1)
we say thatf is symmetric.

De nition 1.6.9. Let Og, be the trace dual of Ox,. We dene M k,; to be the C-vector space of
Hilbert modular forms for SL(Ok, O g ) of weight , and we de ne
M
M Ko — M Ko;

0
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to be the graded C-algebra of all Hilbert modular forms for SL(Ok, O g ). For f 2M ,, let coe s(f)
be the set of coe cients of the g-expansion off around the cusp at in nity. For aring R, we de ne

Mk, (R)y=ff 2M k,. : coes(f) Rg;

and
Mk, (R)=ff 2M ¢, : coes(f) Rag:

Theorem 1.6.10. (Baily-Borel Theorem)
Let M ¢, be the graded ring of Hilbert modular forms forSL(Ox, O g ). Then the normal complex
analytic space ofProj(M g ,) is a compacti cation of

V :SL(OK0 O KO)H(KQ H)
Proof. See|[Gee88, p. 11.7.1]. O

De nition 1.6.11.  We de ne the Hilbert modular variety V to be the normal complex analytic space of
Proj(M «,). We will also refer to this as the Baily-Borel compacti cation of V.

Proposition 1.6.12.  (Rapoport)
M k,: (Z)is a nitely generated Z-module.

Proof. See|[Rap78, Proposition 6.6]. O

Lemma 1.6.13. (Rapoport)
M KO(Z) ZC: M Ko-

Proof. See the proof of [Rap78, Lemma 6.12]. O

Proposition 1.6.14. Let Ky be a quadratic number eld of discriminant 5, 8, 13 or 17. ThenM g ,(Q)
is a nitely generated Q-algebra, and the g-expansions of a choice of generators are known.

Proof. For discriminant 5 see [Mue85] or|[May0Y], for discriminant 8 see [Mue83], and for discriminants
13 and 17 seg [MayQ7]. O

Remark 1.6.15. In everything that follows, we will assume that M « ,(Q) is a nitely generated Q-algebra.

1.7 A normalisation lemma for principally polarised ideals

Let g be a prime power, let be an ordinary Weil g-number, and letK = Q( ) be a CM- eld with maximal

totally real sub eld K. As we have seen ifi Theorem 1.3.11, we can study principally polarised ordinary
abelian varieties over nite elds by studying principally polarised ideals. Recall from
that we de ned PId .k , to be the category of principally polarised Ok ,[; ~]-ideals. This corresponds
to studying principally polarised ordinary abelian varieties over Fy with Frobenius  and with real
multiplication by Ok ,, which are a main topic of interest throughout this thesis. In this section we prove
a very useful property of objects @ ) 2 Pld .k , that we will use throughout this thesis:

Lemma 1.7.1. Suppose that @, ) 2 Pld .« , is a principally polarised fractional Ok ,[; ~]-ideal. Then
there exists 2 K K such that

(& )=rd x« , ( Oko*+ Og; (T ) h:

Proof. By assumption we have that Ok, End(a) O g, where K = Q( ) is a totally imaginary
quadratic extension ofKy. In particular, as Ok, is a Dedekind domain, by Cohen|[Coh93, Theorem
1.2.19] there existx;y°2 K and a fractional O ,-ideal b such that

a= xO, + y%:
Now, from the polarisation of a, we have a non-degenerate alternating-bilinear form de ned by

E: a a ! 4
(uv) 71 tre-o( Tv),

12



which factors via the non-degenerate alternatingOx ,-bilinear form

S: a a ! O g,
(u;v) 70 trg= ,( TV)

by de nition of the trace dual Og . The matrix of S Q with respect to the K o-basishx; y4 is then given
by

0 ¢ .
c 0 7
wherec = trg= ,( Xy9. ChooseZ-bases {1;:::;! ) and (by;:::;lky) for Ok, and b respectively. We

to be

where

In turn, we get that M is the matrix of the Z-bilinear form
F: Ok, b ! z
(u;v) 7! trg,=o(cuv)
degenerate and the matrix ofE has determinant 1, we get that
cb= OR o .

Hence, we have that
a= xOg, + y%& 'Og,:

Then, setting y = y% !, multiplication by y ! de nes an isomorphism inPId  , from (a; )to
(xy 'Ok, + Og,iyy ):

Now repeat the same argument witha®= Ok, + Og , where = xy *and °= yy . Then choose
b= Og, so that

hence o
OK03C:trK:K0( (P)z +70 = 0(7 ):
So we can replace by ¢ !, giving
0— (7 ) l:
O
Remark 1.7.2. Note that, as (— ) !is a polarisation, it is by de niton  ; -positive-imaginary. That
is, forevery 2 ; we have that ( )2 H, hence with respectto ; we have that 2 Ko H.
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Chapter 2

Hilbert modular polynomials

2.1 Introduction and statement of the results

The modular polynomial for elliptic curves of prime level p is an irreducible polynomial ,(X;Y ) 2 Z[X;Y ]
which, for every pair of p-isogenous elliptic curvesE and E satis es

o (E);i(E9)=0;

wherej (E) is the j -invariant of the elliptic curve E. Examples of these modular polynomials can be found
for example on Sutherland's website|[Sut18]. One of the reasons that modular polynomials interest us is
that given the j-invariant of an elliptic curve E over a eld k, we can nd the j-invariants of all those
elliptic curves that are p-isogenous to it by computing the roots of ,(j (E);Y) 2 k[Y]. In this chapter,
we describe an analogue of the modular polynomial for principally polarised abelian varieties of dimension
g with real multiplication, which we call a set of Hilbert modular polynomials This is a Hilbert modular
function analogue of Dupont's work with Siegel modular functions in [Dup06]. The advantage of working
in the Hilbert setting is that the coe cients and degrees of the polynomials are much more manageable
than in the Siegel setting, making it possible to compute modular polynomials for higher prime levels than
previously. Furthermore, which is implemented in MAGMA, computes these polynomials.
This chapter gives a proof that the output of the algorithm is correct.

The modular polynomial for elliptic curves of level p parametrisesp-isogenies of elliptic curves (forp
prime) and is de ned using the j -invariant. To generalise the modular polynomial to a Hilbert modular
setting, we rst x atotally real number eld K, of degreeg over Q, and we write Ok, for its maximal order.
We then need to replacej by an ‘isomorphism invariant' for objects (A; ; ) 2 POrd c«x ,, the category of
principally polarised complex abeliang-folds (A; ) with an appropriate embedding : Ok, ! End(A)
(see| De nition 1.5.§|for the formal de nition). Let V be the Hilbert modular variety for SL(Ox, O Ro)s
as in[De nition 1.6.11] where O is the trace dual of Ox,. Recall from that M k,(2)
denotes the ring of Hilbert modular forms with coe cients in Z, and we write Q(M g, (Z)) for the eld of
quotients of modular forms in M  ,(Z) of equal weight. We will see in[Section 2.p that for somed 2 Z,
there exist d Hilbert modular functions

is an injective morphism.

De nition 2.1.1. A d-tuple of Hilbert modular functions (J1;:::;J4) 2 Q(M k,(Z)) ¢ such that

is a choice ofRM isomorphism invariants for K.
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Remark 2.1.2. Fixing U as above, if @; ; ) 2 POrd ¢k, corresponds as i Lemma 1.6|2 to a point in
U, then the d-tuple

determines (A; ; ) up to isomorphism. That is, on U, RM isomorphism invariants are isomorphism
invariants in the intuitive sense.

De nition 2.1.3. For a totally positive prime element of Ok, and for ; °2 Ko H, we say that

there exists a -isogeny
I 0

if there exists a -isogeny
A5 ) (A% 5%
where the isomorphism classes ofA; ; ) and (A% ¢ 9 2 POrd ck, correspond as id Lemma 1.6]2 to

the equivalence classes of and %in V respectively. (Recall from[Theorem 1.5.5 and Lemma 1.7[1 that
and O satisfy

Hi(A(C);Z)= Ok, + Og, and Hi(AYC);Z)= %O, + Og,?)

Our higher dimensional analogue of the modular polynomial for elliptic curves will parametrise -

isogenies of objects irPOrd ¢k ,, and will be de ned using the isomorphism invariants of[De nition 2.1.7]
The rst main theorem of this chapter, given below, gives this higher dimensional analogue of the modular

polynomial.

Theorem 2.1.4. For a totally real number eld Ko of degreeg over Q, and a totally positive prime
element of Ok,, let V be the Hilbert modular variety for Ko (as de ned in De nition 1.6.11)| and

outputs polynomials

that are linear in Z;, wherei = 2;:::d. Furthermore, for any choice of Zariski-open subvarietyU of V
such that the map

is injective, for all but nitely many
[E[92 UV V) f x2@U\V): G (Ju(x);::::34(x);Y)=0g;

there exists a -isogeny

if and only if

De nition 2.1.5. For a totally positive prime element 2 Ky, we de ne a Hilbert modular polynomials
of level to be a set of polynomials

G (Xp;ii X, Y) 2 Z[Xq500 5 X Y

Remark 2.1.6. Even though|{Theorem 2.1.4 is overC, in practise we can use it also over nite elds (see
Section 2.3).
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2.2 De ning RM isomorphism invariants

As before, letK ¢ be a totally real number eld of degree g over Q, and let V be the Hilbert modular variety
for SL(Ok, O g,), as dened in|De nition 1.6.11] The aim of this section is to prove |Proposition 2.2.1.
For completeness, we recall here the de nition of RM isomorphism invariants from the previous section.

[De nition 2.1.1. | A d-tuple of Hilbert modular functions

such that

is a choice of RM isomorphism invariants for K.

Proposition 2.2.1.  Write Q(M « ,(2)) for the Q-algebra of quotients of Hilbert modular forms inM g, (Z)
of equal weight. There existsd 2 Z and a choice

is a well-de ned injective morphism.

Proof. Write C(M ) for the eld of quotients of elements of M  , of equal weight. By de nition of V'

(see| De nition 1.6.11)), we have that C(V) = C(M ), and by Lemma 1.6.13, we know that

QM k,(2)) @ C= C(Mk,):

Zariski-open subsetsU  V and U® W such that U is isomorphic to U°, O
Example 2.2.2. If g=1, so that Ko = Q, then we have that
SL2(Ok, O g,)nKo H =SLy(Z)nH:
The j -invariant for elliptic curves de nes an isomorphism
j:SLy(Z)nH! Al

Hence setting -
V =SLyZ)nH; V=P U=V;and J;= |
gives usC(V) = C(J1) and an injective morphismJ; : U ! AL.

2.3 Algorithm to compute a set of Hilbert modular polynomials

As before, in what follows, K is a totally real number eld of degree g over Q with ring of integers Ok, .

Ji = fi:gi (2.1)
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De nition 2.3.1. Let SL(Ok, O g,) be as in[De nition 1.6.1|and let be a totally positive prime

element of Ok ,. De ne

o )=

a b
c d 2 SL(Ok, O g,):b2 Og,
For any x 2 Ko de ne

x 0
0 1
Given a Hilbert modular form f 2 M g, (Z), for every N 2 SL(Ok, O ), the function fj .y depends

only on the class ofN in  °( )nSL(Ok, O g,).

De nition 2.3.2. Denote by C a choice of coset representatives for the quotient of groups

°( )nSL(Ok, O ,):

We then further de ne Y
(Y):= i wmY faf am
M 2C
and for eachi =2;::::;d,
X ( . . Y - . )
i (Y;2) = g wmZi fij m i moY  f1f amo
M 2C T T M O2c T T

M Os M

Note that the de nitions of (Y)and  (Y;Z) do not depend on the choice of coset representatives
for °( )nSL(Ok, O g,)-

Remark 2.3.3.  We have that
(Y)2M g, (2)[Y] and i (Y5Z)2M ¢, (DIY; Z]:
Proof. Recall that for M 2C and N 2 SL(Ok, O ¢,), foreveryf 2M ,, we have that

(Fi v ()= fi sun ()

In particular, acting by jy on the coe cients of  (Y) (and . (Y;Z;)) just permutes the factors (or
terms) of the de ning product (or sum), leaving (YY) (and . (Y;Z)) unchanged, hence the coe cients
are modular forms for SLOk, O ). O

As is a univariate polynomial with coe cients that are modular forms for SL(Ox, O ) of equal
weight, the discriminant is also a modular form forSL(Ok, O g, ). In particular, whether or not
( )( ) = 0 depends only on the class of in V.

Proposition 2.3.4.  Fix notation as in Pe nition 2.3.2 hnd recall from De nition 2.1.3 fhe de nition of a
-isogeny ! Ofor ; 92K, H.Forany ; °2 Ky H such that the classes [Jand [ 9 of and °

inV are in
UV V) f x2U\NV):( )(X)=0g;

there exists a -isogeny ! Cif and only if for every i =2;:::;d, evaluating (Y)and  (Y;Z) at

( Qu@DNC)=0 and ( ;i Q2 D;IC Dy( )=0:

Lemma 2.3.5. If is a totally positive prime element of O, then the set °( )nSL(Ox, O ,) has
Normg ,-o( )+ 1 elements.
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Proof. De ne
ki=maxfn22Z:(0g,) * "Ok,o

There is a bijection of sets

O )nSL(Ok, O x,) ! (X °) Mn(*sL©Ok, O g,) ¥
M 7! Mk
We claim that
1 a 0 1

0 1 :aZOKO: OKO [

is in bijection with ( ¥ °( ) *)n(_ ¥SL(Ok, O g,) *): Let

a b

c d 2 *sLok, O0g,) “

Thena;d2 Ok,,b2 *Og, (Ok,)()yandc2 ¥(Og,) * (Ok,)() sothatin particular, reduction
by denes a group homomorphism

r: “SL(Ok, O g,) X! SLa(Ok,= Ok,):
Now Ok ,= Ok, isa eld as Ok, is prime, and SL,(Ok,= Ok,) acts on P}(Ox,= Ok,) as

i 3 (x:y) 7! (ax+ by:cx+ dy):
The stabilizer of (0: 1) is
a o0

qd 2 SL(Ok,= Ok,)

the pull-back of which underr isik OC ) K, so the bijection follows from the orbit-stabilizer theorem. [

We will prove Proposition 2.3.4 by using the above lemma and a representation of -isogenies up to
isomorphism.

De nition 2.3.6. We say -isogeniesf : (A; a; a)! (B; g;g)andg:(A; a; a)! (B% go; go)are
isomorphic if there exists a 1-isogeny : (B; g; g)! (B% go; go) such that the diagram

f
A; a; A) —I(B; & 8)
\
(B% &o; B9)
commutes.
De nition 2.3.7. For every i g =M 2 GLy(Ko)* and forevery 2Ky H,wedene'y to
be the element of Hombg ., (M ) Q that is multiplication by ( ¢ + d) lonKy, C.
Note that
"BA A T BA (2.2)
and
lM;l =" M 1M . (23)

Lemma 2.3.8. We have that"' y; is an isomorphism inPOrd cx, if and only if M 2 SL(Ok, O g, ).

Proof. Write M = i g and forany °2 Ko, H let E o be the Riemann form

E o(up + Uz vy %+ Vo) =tr g o(U1Vz  Upvi):

18



We get commutative diagram of unpolarised abelian varieties, where the dashed arrows are automorphisms
of Ko C that may or may not induce actual maps of abelian varieties:

w =(c +d)

(Ko C)=( O, + Og,) =™ /(Ko C)=(M Ok, + Og.)

~ f=id ko o

—

~ - _+

(Ko O)=((a + BOk, +(c + d)Og):

c +d

Now f, and hence de nes an isomorphism on lattices if and only ifM 2 GL(Ok, + Og ). Suppose now
that M 2 GL(Ok, + Ok ). It remains to show that det(M) = 1 if and only if  is an isomorphism in
POrd ck,, that is, if

EG )=Em () ()

Write E = trg,-o S andEy = trg,-o Swm . The matrices of S and Sy with respect to the
(Ko R)-basisf ; 1gof Kg C are

0 1
10
and 0 1
M 1 0 M!
respectively, soS = Sy if and only if det(M) =1 and the result follows. O

Lemma 2.3.9. Fix a totally positive prime element 2 Ky. Then forany 2 Ky H, there is a map

i: % )nSL(Ok, O g,) ! " -isogenies from 0__
M 7! T
and i de nes a bijection of sets.
Proof. Observe that idx, ¢ denes a -isogeny
" (Ko OF( Okt Og)is ! (Ko ©=( 'Ok, +Ogy) s
where =( ~) 1, which in other words is a -isogeny ! 1 . Replacing by M for

M 2 °(C)nSL(Ok, O g,)

it is easy to see thati is well-de ned on SL(Ok, O g,).

We claim further that i is a well-de ned injection of sets. LetM;N 2 SL(Ox, O g ) and suppose that
"o "m; and' 1, ' n; areisomorphic as -isogenies. That is, there exists an isomorphism
M ! IN such that

aam Twy = N TN (2.4)

hence by [2.2) and [2.)
= INM 17;71M . (25)

By Lemma 2.3.8, as is an isomorphism, we have that 'NM ' 2 SL(Ok, O ¢, ). Dene X = NM *

andT = NM ! . AsTandX 2 SL(Ok, O K ,)» We get further that X 2 9( ). Conversely, suppose
that NM 12 9C). Then 'NM ' 2 SL(Ok, O g,).so denedby @5)is an isomorphism.
Hencei is a well-de ned injection of sets.

To show that i is in fact a bijection we proceed by counting. By[Lemma 2.3.5 the sefC has
Normg ,-o( ) + 1 elements, so we just need to show that there are at mostNormy -o( ) + 1 non-
isomorphic -isogenies from any given 2 Ky, H. If f : (A; a; a) ! (B; g; ) is a -isogeny,
then

ker(f) ker( )= (Ox,= Ok,) %
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Also, as for every 2 O, the following diagram commutes:

ker(f) — A — /B
|
[ Aa() ()

|
ker(f) — A —IB;

the kernel of f is an Ok ,-module, and hence arOx ,= Ok, sub-vector space of Qx ,= Ok,) 2. Then,
asdeg(f) = Normy -q( ), there are at most Normg ,-o( ) + 1 distinct kernels of -isogenies from any
given (or equivalently any given (A; ; ) 2 POrd c.k,). Therefore it remains to show that there do not
exist non-isomorphic -isogeniesf : (A; a; A)! (B: s g)andf2:(A; a; a)! (B% go; go) with the
same kernel. By the universal property of quotient maps there exists an isomorphism (of unpolarised
abelian varieties) such that the following diagram commutes:

A B
N
B
We claim that is a 1-isogeny. Consider the following diagram:
Aot AT g /B0
\ 1) . 2) o
A #
A- O B- 0 BO-

Diagram (1) commutes asf is a -isogeny and the diagram formed by the outside arrows commutes &s°
is a -isogeny, hence diagram (2) commutes. Similarly, consider the following diagram:

End(A) 7!f4f1/End(Eaa) Q”;llEgd(Bo) Q

D) %

Diagram (1) commutes asf is a -isogeny and the diagram formed by the outside arrows commutes as°
isa -isogeny and

B

Ko

£ () = f) ( f)yt= fh n

Hence (2) commutes, so is a 1-isogeny andf and f © are isomorphic as -isogenies. O
Proof of [Proposition 2.3.4] Suppose rst that there exists a -isogeny ! ° Then by[Lemma 2.3.9, there
existsN 2C= 9( )nSL(Ok, O K ,) such that this -isogeny is isomorphic to a -isogeny ! IN
so we can identify ®with N . Plugging this into the de nitions of (Y)yand i (Y;Z), we get
(J2( 'N )=0
and
i (31 N )Y N ) =0

Suppose now that (Yo; Z2.0;:::;Z4.0) is @a common root of (Y)and . (Y;Z). One can see directly
from the de nition of and  that under the discriminant condition, the set of common roots of

@3 is exactly the set
f(31( ™ );::3a( M )M 2Cg
Therefore, there existsN 2 C such that

and by[Cemma 2.3.9 there exists a -isogeny
1IN
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2.4 Computing the RM isomorphism invariants for a given genus
2 curve

In we de ned RM isomorphism invariants for elements of POrd c.x ,. Restrict now to the
dimension 2 case. It is however not immediately clear how to compute these given the equation of a genus
2 curve. We have a computational advantage in genus 2, which is that there already exist Igusa-Clebsch
invariants to determine a curve up to isomorphism.

De nition 2.4.1. For a curve C of genus 2 over a eldk with char(k) 6 2, there exists a hyperelliptic
model y? = f (x) of C, wheref is a separable polynomial of degree 6. Fix such a model, denote laythe

the di erence x; X;. For char(k) 8 2;3;5, we de ne the Igusa-Clebsch invariantsof C to be

I, = sz (12)2(34)%(56)?;

l4 = c“x (12)2(23)%(31)?(45)%(56)?(64)?;

lg = c6x (12)%(23)%(31)?(45)?(56)(64)?(14)%(25)%(36)?;
l10 = clOY (12)%;

where each sum and product runs over the distinct expressions obtained by applying a permutation to the
These invariants are integral wheneverf is integral. The Igusa-Clebsch invariants are “invariants for

the Siegel moduli space'. Before making this more precise, we recall some facts about the Siegel moduli
space.

De nition 2.4.2. We de ne
Sym,(C) = 12 2 Mat, »(C) ;
2 3

and for 2 Sym,(C), we write Im( ) > 0 for “Im( ) is positive de nite'".

De nition 2.4.3.  The Siegel upper half spacés de ned to be

H= = ' 2 2Symy(C):Im( )>0 ;
2 4
and the symplectic group
— . 0 I2 tr — 0 I2
Sp,(2) = 2 GL4(2): , 0 = , 0
acts onH; via
’é g (A +B)(C +D) &

The eld of rational functions of the coarse moduli space for hyperelliptic curves of genus 2 can be
generated by three Siegel modular functions, as shown by Igusa in [Igu60]. Following the notation in the
Echidna database |[Echidna], we choose as generators three Siegel modular functions

il;ig;igispz(Z)nHz ! C

such that, if C is a curve of genus 2, and [] 2 Sp,(Z)nH, is the point in the moduli space corresponding
to C, then

i1( ) = (1lale=I10)(C); (2.6)
i2( )= (1314=110)(C); (2.7)
is( )= (1216=l10)(C): (2.8)
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Now, for a totally real quadratic number eld Ky, the forgetful functor

POrd CKo ! POrd C:2
A, ) 7 (A;)

induces a map
:SL(Ok, O g, )nKog H! Sp,(Z)nHy;

which is generically 2-1. We will refer to this as themodular map. The image of this map is called the
Humbert surface for Ko, and is denoted asHg,. That is, the modular map induces a degree 2 map

Mk, 'H «,:
In particular, as there exist 2 algebraically independent Siegel modular functiong; and f, in
C(Hk,) C(i1;iz;is);
we get 2 algebraically independent Hilbert modular functions
Jy= f1 and J,= f; (2.9)

in C(M g,). Also, by construction, we get that J; and J, are symmetric, that is, that if  is the generator
of Gal(Ko¢=Q), then forall 2 Ky H, we have that

Ji( ()= J2() and J2o( ()= J2( ):

By Proposition 1.6.12 and|Lemma 1.6.13, we have thatC(V) is a nite separable eld extension of
C(J1;J2) and hence is generated by one element; choose such an element and denote ity Write
m(X) 2 C(J;;J,)[X] for the minimal polynomial of J3; then m(X) is the pullback along of a polynomial
in C(ig;ig;ig)[X].

The subtlety of how to choose the root ofm(X) in practice is addressed irf Algorithm 2.5.4, Step 2.

Example 2.4.4.  Gundlach [Gun63] gnd Mdller [Mue85] computed formulae for a choice of isomorphism
invariants Ji, Jz, and J3 for Ko = Q(" 5), and gave the functions from whichJ;, J,, and J% (here m(X)
is quadratic and without a linear term) are pulled back along

3= 2 83 %i%i2+2 3.32.i1i§ 2_43 8i1id+2 5FiLi3 (2.10)
1215 +223%14i3 ’
29313 + 2113%i2i3
|%I§+22|1|g 2 35|2|%
J2=5% 215%3.0,+2 43,+2 132523233 233232 2 33337 (2.12)

+2 43337

Jp = (2.11)

Remark 2.4.5. For each choice oKy, we have to recalculate RM isomorphism invariantsJ;, J,, and
Js. In [LNY16, Theorem 2.2], Lauter, Naehrig, and Yang give a method to calculate a choice of Siegel
modular functions f, and f, as in (2.9), but the minimal polynomial of J3 over Q(J1;J>) is not known in
general.

Recall from|Lemma 1.6.18 thatC(V) = Q(M k,(Z)) C, so that in particular a choice of Q-algebra

which a complete set of generators is known, nameli o of discriminant 5, 8, 13, and 17, we can choose RM
isomorphism invariants Ji; J2;J3 2 Q(M ,(Z)) 2 for which J; and J, are symmetric Hilbert modular
functions (as above) andJZ 2 Q(J1;J»). For simplicity, we restrict to this case in all that follows.

2.4.1 The algorithm

enough precision (see the implementation atvww.martindale.info | for details on the precision), using
Lemma 2.5.2 and the formulae for (Y)and  (Y;Z) given in[De nition 2.3.2 lve can write out explicit
formulae for the g-expansions of the coe cients (with respect to Y and Z;) up to some precision of (Y)
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X ¥l
f = b, S (2.13)

P .
fQZ(Z 0)51 J-S:1 hi j=kg J

whereKk is the weight of f . To deduce the Hilbert modular polynomials G and H ., from and  ,
we rst have to scale and  so that the coe cients are in Q(M g, (Z)). To do this, we construct a
ring homomorphism

Mk, (2)! QM k,(2)):
To this end, we de ne

d=gcd(f Mk, 6,9)

and choosew; and w; such that M g ;.w, (Z);M k,w,(Z) 6 ; andd= w; wy. Then choose

"2M KoJWZ(Z) and 2M Ko;Wl(Z); (2-14)
and de ne
ty=' % and = T
This de nes a map
M Ko |(Z) ! Q(M Ko(z))
i 7! -

which extends Z-linearly to a map

Mk, (2) ! QM «,(2)); (2.15)
which is in fact a ring homomorphism. In[Algorithm 2.4.8} we will assume that the representations of
( 1);:::; ( s) as rational functions in Jq;:::;Jq are known.

Example 2.4.6. Muller [Mue85] de ned four elements ( 1; 2; 3; 4) = (02;Ss5;06;S15) Of M ) (2)
of weights 2, 5, 6, and 15 respectively that generatév ol g)(Q) as a Q-algebra and de ned modular
functions 6 s
D1 %.S6. S5 .

J1;32;d3) = S5 = —= 2.16

( 1,92 3) Sé gg Sis ( )
such that Q(M k,(2)) = Q(J1;J2;J3). In this case, we get thatd = 1, we choosew; =5 and w; =4, and
we choosé = g3 and = ss. Then

%
1= Q7! 2 J1
5
10 5 2
2= 557! gL = giz = le
v 2
S5 S5
12 5 3
-  $27Se 0 R S _ 43
3= Sg 7! 5 — - 3 = JlJz
S5 S5 %
30 5 6
4= S5 7! L5 B S5 ey 1,
si5 2 s 13

The choice given in[ Equation (2.16) is the choice in the implementation of Algorithm 2.4.8 that can be

found at www.martindale.info

The following algorithm computes a set of Hilbert modular polynomials in the sense of De nition 2.1.5.
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Lemma 2.4.7. Let k; be the weight of ; (the denominator of J;). Let (Y)and  (Y;Z) beasin
De nition 2.3.2 There exist modular forms yo;:::;Yjcj 2 M k, of weight jCjky, and fori =2;:::;d, there

exist modular forms z; o; zi?o; D Zc 1 Zi(;)jCj 12M g, of weight (JCj  1)k; + k; such that
Y
(Y)= YaY"
n=0
and
6 1
i (Y z) = (Zin Zi  Z0)Y™:
n=0
Proof. This follows from the explicit formulae in O
Algorithm 2.4.8.
INPUT: A totally real number eld K, of degreeg over Q, the g-expansions of generators 1;:::; s of
the Q-algebraM ¢ ,(Q) (up to a certain precision), the images of 1;:::; s under as rational functions
of J1;:::;Jq, and a totally positive element 2 Oy, that generates a prime ideal.

1. Compute the g-expansions of the coe cients of and . up to precision P. For more details in
genus 2, se¢ Remark 2.5.3. For details on how to compute the required precision, see the MAGMA

code, which can be found aiwww.martindale.info

2. Asin ), write each coe cient of and  as elements ofZ[ 1;:::; <] using linear algebra
on the g-expansions (here it is necessary to have chosen the precision of tiqeexpansions to be
su ciently large).

3. For eachi, the input contains an expression

such that
De ne

to be the numerator of { (Y)) and

to be the numerator of «  (Y;Z)).

We have implemented a more optimised version of this in MAGMA forK o = Q(p 5)and Kg = Q(p 2),
see[ Section 2J5. That the output of Algorithm 2.4.8 is correct was in the statement of Theorem 2.1}4,

which we now prove:

Proof of [Theorem 2.1.4. De ne D; 2 M ¢, (2)[Y] to be the denominator of ( (Y)) and
Di 2M «,(2DIY:Z]

to be the denominator of ( . (Y;Z)). Let
S=f[12U\ V:D1(J2( ))=0g[f []:2U\ V:Di1( );Jdi( )=0g:

Then S is a nite set, as D; and D; have nitely many roots, and for any value r 2 Candany 1 i d,
there are nitely many [ ] such that J;( ) = r asJ; extends to a holomorphic function on the compact
setV.
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It is immediate from Proposition 2.3.4) that the roots of ( (Y))( ) are given by the rst isomorphism
invariant J;( 9 of allthe 92 K, H that are -isogeneous to , up to isomorphism. If all the J1( 9 are
distinct then it also follows from Proposition 2.3.4] that the unique root of (i (J1( 9;Zi))( ) is Ji( 9.
If they are not distinct then ( )( )=0,s0as[]62S, we have that G (J1( );:::;Jdq( );Y)=0.
Hence, for every

[LE192@WU\N V) S[fx2(@U\V): G (Jux);:::;3¢(x);Y)=0g;

there exists a -isogeny ! Cifand only if (  (J1( 9)( ) =0 and for i = 2;:::;d, we have that
(4 Qa( 953 9( ) =0. But for every

[EL2 UV V) S[fx2U\V): G (Ji(x);:::;34(x);Y)=0g;
we have that ( (J1( 9)( ) =0 if and only if

so the theorem follows. O

2.5 Complexity and simpli cations for genus 2

We only implemented an algorithm to compute the set of Hilbert modular polynomials in genus 2, and
only for small quadratic elds Ky, due to the fact that we do not know explicit g-expansions for the

RM invariants Ji;:::;Jq in any other larger genus. Hence, we restrict now to the genus 2 case, and for
simplicity, we set d = 3.
gives one simpli cation of the formulae for genus 2: in this cas& is quadratic, so

that Ok, and O are isomorphic asOk ,-modules. This means that we may de ne the Hilbert modular
variety as a compacti cation of SL(Ok,)n(Ko H) instead of SL(Ok, O g )Jn(Ko H). When we do

this, in Lemma 2.3.9, we must replace the matrix group °( ) with the matrix group  °( )° which we
now de ne.

De nition 2.5.1. For a totally real number eld K, of degree 2 overQ, with ring of integers Ok ,, and
a totally positive element 2 Ky, we de ne

0( )O: 2 3 2 SL»(Ok,) s a;b;c;d2 Ok,

Lemma 2.5.2. For a totally real number eld Kg of degree 2 overQ with ring of integers Ok ,, and a
totally positive element 2 Ok, that generates a prime ideal, the set
1 1 [ 0 1

C= 0 -l 2 20K0: OKO 1 0

is a choice of coset representatives for the quotient of groups®( )SL,(Ox,).
Proof. The matrix group SL,(Ok,) acts on P}(Ox,= Ok,) by

a b

c d (x:y)=(ax+ by:cx+ dy):

Then in particular, the stabilizer of (0 : 1) is given by °( )% and hence by the orbit-stabilizer theorem,
there exists a natural bijection from Cto  °( )%SL,(Ox,). O

Remark 2.5.3. Using the representation of °( )MSL,(Ok,) given in[Lemma 2.5.2, we can write out
explicit g-expansions of the coe cients of and ; via the following. Let f be a modular form for
SL,(Ok,) of weight k with g-expansion
X .
()= e 1),

t2(0g )

and let = Norm g ;—o( ).
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1. For! 20k,= Ok, and M = , we have that

1!
0 1
fj i = k=2 X tr(” 1) (t)eZitr( 1t);
t2(0g )

where (Og )* denotes the totally positive elements ofOg .

2. ForM = 2 01 , we have that

: _ k=2 X it t ).
fj = ® :
t2(0g )"

where (Og )" denotes the totally positive elements ofOg .

[Algorithm 2.4.8]is extremely slow and uses a lot of memory, and so we give here some practical
improvements on the computation time and memory usage. First of all, we do not compute the third

modular polynomial H . 3(X1; X2; X3;Y;Z3); Algorithm 2.5.4|shows that, given (A; ; ) 2 POrd cx,, we
can compute every abelian surface -isogenous to it without using H . 3.

Algorithm 2.5.4.

INPUT: The rst 2 Hilbert modular polynomials G (X1;X2;X3;Y) and H. 2(X1;X2; X3;Y;2Zy), as
de ned in |5e nition 2.1.5,|the RM isomorphism invariants ( j1;j2;j3) 2 C3 of some @; ; ) 2 POrd ¢ ,,
as de ned in|De nition 2.1.1] and the minimal polynomial m(X) 2 Q(J1;J2)[X] of J3, as in[Section 2.4.
OUTPUT: The RM isomorphism invariants of each (A% % 9 2 POrd ck, thatis -isogenousto f; ; ),
or failure.

1. SetL to be the list of the Normy j-o( )+ 1 roots of G (j1;j2:j3;Y). If the roots are not distinct,
output failure.

2. Foreveryj92L:

(@) setj? to be the unique element ofC for which H . 2(j1;j2:i3:i%j9) =0,
(b) set Lo to be the list of the roots of m(X) evaluated at (J1;J2) = (j$%j9).

(c) for everyl 2 Lo, check if G (j2;j9;1;j1) = 0. If true for exactly one I, setj$ = I. Else, output
failure.
(d) add (j$;i2;j3) to list L.
3. Return L°

The second major improvement is to do computations in nite elds in place of in Q and Q( norm , o=l )
and then use the Chinese Remainder Theorem.

One advantage of working over a nite eld in place of Q is that while the algorithm is running over
Q, the coe cients of the g-expansions blow up, using up memory space and slowing down computations,

so that [Algorithm 2.5.5]is signi cantly faster than
Algorithm 2.5.5.
INPUT:

1. A totally real number eld K of degree 2 overQ.

2
3
4. A totally positive element 2 K that generates a prime ideal.
5

. An upper bound B on the absolute values and a common denominatob of the rational coe cients
of the coecients of  (Y) and . »(Y;Z;) when represented as formal polynomials 1;:::; s.
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6. A prime po such that for every primep  po, the g-expansion coe cients in Step 1 of[Algorithm 2.4.§
have denominator coprime top, and when replacingQ and Q( -) by F, and Fy( ), the system of

linear equations in Step 2 of Algorithm 2.4.8 still has a unique solution.

OUTPUT: The rst 2 polynomials
G (X1;X2;X3;Y) 2 Z[X1;X2; X3; Y], and
H.o(X1;X2:X3;Y;2Z2) 2 Z[X1; X2; X3, Y; 2]
of [De nifion 2.1.5]
1. Create a listL of primes in the following way:
(@) Seti=0.
(b) Setb= p;.

(c) Setpi+1 = minfn2 Z,, :n prime, n 1 mod Normg ,-o( )g. (This condition is to speed up
the computations as the Normy ,-o( ) roots of unity are then in Fp.)

(d) Reduce the coe cients of the g-expansions of 1;:::; ¢ mod pj+1 to get
1 Ts 2M i (2)=p+1 Mk, (2):
If 77;:::; 7s generateM g, (Z)=p+1 M «,(Z) as aFy,,, -algebra, go to step (e). Else, seb= pj+1

and go to step (c).
(e) If J'+:11 pi < 2BD then seti = i +1 and go to (b). Else return

2. Write the coe cients mod pof (Y)and . ,(Y) as formal polynomials in ;:::; s for every

p 2 L by following Step 1 and 2 of| Algorithm 2.4.8, with Q (and Q( nom , ,-o)) replaced by Fp.

(This can be done in parallel.)

3. Use the Chinese Remainder Theorem to compute the coe cients oD (Y) and D . »(Y) as

4. Compute G and H . ; following Step 3 of[Algorithm 2.4.8.

Remark 2.5.6. Heuristically, we expect that for large primesp and most (A; ) and (A% 9 2 POrd FoiK o
there exists a -isogeny (A )! (A% 9 if and only if

G (J1(A);J2(A);J3(A); J1(AD)  H; 1(J1(A);32(A) ;33(A);31(A9); 32(A%) 0 modp

and J3(A9 is the same as the output of Step 2 of Algorithm 2.5.4 (with C replaced by Fp) with
(1:i2ii3i 359 = (J1(A) 1 32(A) ; 35(A) ; 31(A9; I2(A9):

The disadvantage of Algorithm 2.5.5 is that we have to guess the input value®, D, and py. However,
the speed up is quite signi cant: for Normy -o( ) = 11, Algorithm 2.4.8 took 1 week and|Algorithm 2.5.5

took 90 minutes (on the same machine). Also, we can heuristically check the output by looking at

the behaviour of the polynomials, for example by attempting to run[Algorithm 2.5.4] Even with these
improvements, there is still a long way to go before this algorithm is practical for larger values of

Normyg ,=o( ); gives the timings for the computations that we have done so far.

Disc(K o) 8 5 5 5 5 5
Normy ,-o( ) 2 4 5 9 11 19
Time | 2 secs| 63 secs| 90 secs 4 mins 90 mins 3 days

Table 2.1: Timings for computation of Hilbert modular polynomials G andH . ,
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Chapter 3

The structure of -Isogeny graphs

The main theorem of this chapter, the Volcano Theorem[ Theorem 3.1)9, gives the complete structure
of the graph of -isogenies of principally polarised dimensiorg abelian varieties de ned over a nite
eld with real multiplication by a given maximal order. We de ned  -isogenies irf De nition 1.3.2; the
de nition is recalled below. This is a generalisation of David Kohel's structure theorem forg =1 in
[Koh96], and lonica and Thorre's work on genus 2 curves with maximal real multiplication by a given
maximal order with narrow class number 1 in [IT14]. In parallel to the work in this thesis, Brooks, Jetchev,
and Wesolowski recently obtained some overlapping results, proven using di erent methods, in [BJW17].

3.1 The Volcano Theorem

Let g be a prime power, let be a Weil g-number, and let K be a CM- eld of degree 3y over Q such
that K = Q( ). Recall from[De nition 1.3.2|that POrd .« , denotes the category of principally polarised
ordinary abelian varieties (A; ) over Fq such that the characteristic polynomial of the g-power Frobenius
equals the minimal polynomial of , together with an embedding Ok, ! End(A) that extends the
embedding

Z[ +7] ! End(A)
+— 7! Frob(A) + Ver(A) :

where Frob and Ver denote the g-power Frobenius and Verschiebung morphisms respectively. Note that
the only restrictions we are making for a principally polarised abelian variety to be inPOrd  , are
that there exists an embeddingOx, ! End(A) and that A is ordinary and geometrically simple. Indeed,
given ordinary A=Fy simple over Fq, let  be the characteristic polynomial of Frobenius and de ne
K =Q( )= QIx]=( (x)). If Ais simple and ordinary, then End(Aﬁ) Q = K. Recall also that the only
morphisms in POrd .« , are isomorphisms.

Fix a totally positive element 2 O, such that Ok, is a prime ideal. Recall from[De nition 1.3.3|
that for (A; );(A% 92 POrd « , with the map : Ok, ! End(A)induced by 7! Frobg, we de ne a

-isogeny

foa; ) (A% 9
to be a morphism A! A° of abelian varieties such that the diagram

f

Aol) A In0

N

commutes. Recall that we denote ( ) also by

For principally polarised abelian varieties (A; ) and (A% 9 and a morphismf : A1 A®we write
fy=1f- 9: A% A. Notethat f isa -isogeny if and only iff¥f = (). Note thatif (A; )= (A% 9,
then ()Y is the Rosati involution. We will also call f¥ the dual of f .

0

A-0—— (A9Y-

De nition 3.1.1. Assume that the only roots of unity in O are 1. The -isogeny graph for the Well
g-number is the weighted undirected graph for which:
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1. The vertices are the isomorphism classes of objects iROrd « ,
2. There is an edge between vertices and x° if and only if there exists a -isogeny fromx to x°.

3. Ifa -isogenyf :(A; )! (A; )satisesfY = f,then the edge corresponding to this isogeny has
weight % All other edges have weight 1.

Remark 3.1.2. In fact, given that the only roots of unity in Ok are 1, if there exists a -isogenyf
between (A; ) and (A% 9, the edge betweenx = [(A ; )] and x°=[(A % 9)] represents the -isogenies

ff; f;fY, fYq

That is, the weight of an edge betweenx and x°in a -isogeny graph denotes the total number of
isomorphic -isogenies between (A ) and (A% 9 divided by 4.

De nition 3.1.3.  We de ne the graphs |, Ry, Rz, and forn 2 Z 4, the graph C,, in the following way:

The graph | is a single vertex with no edges.

The graph R; is a single vertex with one edge of Weigh%.

@

The graph R, is a pair of vertices joined by a single edge of weight 1.

N[

*—0

For n 2 Z 4, the graph C, is a cycle of lengthn where every edge has weight 1.
Ci Cz Cs

De nition 3.1.4. Forv2Z ;,dn22Z g,and 2fl;R1;R2;Crg, a ( ;v;d)-volcano is a weighted

hold:
1. The subgraph on levelV, is .
2. For all i> 0, each vertex inV; has exactly one neighbour in leveV, ;.
3. There exists no edge between vertices iK; for i > 0.

4. For all non-negative integersi < d, each vertex inV; has degreev, where the degree is the weighted
sum of the edges counted with intersection multiplicity.

Example 3.1.5. Here is a (Cs; 3; 1)-volcano and an R1; 3; 2)-volcano.

N[
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De nition 3.1.6. Let G be a ( ;v;d)-volcano, and let E be an edge inG betweenw and w° where
w2 V;andw®2 V. If i>] we say that E ascendsfrom w to w® and descendsfrom w°to w. If i = j we
say that E is horizontal.

De nition 3.1.7. Let O be an order inOk which contains Ok ,. The Shimura class groupof O is de ned
to be
f(c; ) : can invertible fractional O-ideal;, 2 Kg; = Og

SCI(O) = f(vO;w)):v2K g;

where K denotes the subgroup of totally positive elements oK, .

De nition 3.1.8. Let Dbe a totally positive element of K that generates a prime ideal Ok, and let
O be an order inK containing Ok ,[; ] that is locally maximal at . If O factorsin O as O = mm,
de ne n(; O) to be the order of the class of (n; ) in SCI(O). For such O and , we de ne the graph
o; by 8
< | if Ok, isinertin K=K g;
o; = . Cn(O; ) if OK0 is Sp“t in K=K g;
" Rpo;) if Ok, isramiedin K=Kg:

The purpose of this section will be to prove the Volcano Theorem, below, which is our analogue to the
results for elliptic curves rst given by David Kohel in [Koh96].

Theorem 3.1.9 (Volcano Theorem). Let K be a CM- eld of degree2g, generated overQ by an ordinary
Weil g-number , and with maximal totally real sub eld K. Suppose further that the only roots of unity
in Ok aref 1g. Let be a totally positive element ofOk, such that Ok, is a prime ideal. De ne

v=Normyg o )+1

and
d=maxfk2 Z:0k,[; ] O k,+ *Okg:

For every connected componenC of the -isogeny graph for the Weilg-number , there exists an orderO
in K containing Ok ,[; ] that is locally maximal at such thatC is a ( o. ;Vv;d)-volcano.

Our rst goal will be to understand how -isogenous abelian varieties can di er. As isogenies preserve
the endomorphism algebra, looking at the endomorphism rings of -isogenous abelian varieties is a natural
place to begin - in fact the endomorphism ring of any abelian variety in our -isogeny graph is an order
in Ok that contains Ok ,[; ~]. by assumption. Furthermore, we will see in Proposition 3.3.1 that every
vertex v in V; satis es End(v) = Ok, + 'O. The following proposition, which we will prove in |§ection 3.g,
gives a classi cation of the orders appearing as endomorphism rings of principally polarised ordinary
abelian varieties with real multiplication by Ok ,:

[Proposition 3.2.1. | There is a bijection of sets

Orders O in Ok $ f Ideals of Ok ,g

S.t. OK[) (@]
0 71 (0:0)\O k.,
Ok, *+ fOk [ f:

Before giving the proof of the Volcano theorem we give some useful de nitions regarding conductors
and -isogenies.

De nition 3.1.10. Let O be an order in K containing Ok,. We de ne the conductor of O to be
(O : Ok ), and we de ne the real conductor of O to be

fo=(0:0k)\O gk, =fx20k, :xOk Og :
For a prime element 2 O ,, we de ne the real conductor of O locally at to be kOKO, where

— - n .
k=ord o, (fo):= nggl)Z(ffo Ok, 0:

We de ne the non- -part of the real conductor to be  ¥fo, which is an O ,-ideal coprime to Ok, .

30



De nition 3.1.11. Suppose that we have a -isogeny between objects ofPOrd ¢k, given by
TA )L (AT Y
Write O = End(A) and O°=End(A 9. If
(@) fo = foo, then we say that is ascending
(b) foo= fo, then we say that is descending and
(c) fo = foo, then we say that is horizontal.

[Proposition 3.3.1. | All -isogenies from(A; ; ) 2 POrd ¢k, such thatEnd(A) Q= K are ascending,
descending, or horizontal.

We will prove Proposition 3.3.7] in[Section 3.3.
Remark 3.1.12. Recall from[Theorem 1.5.% that there is a faithful functor
Id K o ! Ord CKo

that preserves the notions of dual, polarisation, and -isogeny. Recall also fronf Theorem 1.3.31 that there
is an equivalence of categories

Ord ! Id

that preserves the notions of dual, polarisation, and the action of and —, hence this induces an equivalence
of categories

Ord K o ! Id K o-
In particular, Proposition 3.3.1]implies that all -isogenies between elements &0rd .« , or Pld «
are ascending, descending or horizontal.

In particular, in a -isogeny graphG, the non- -part of the real conductor is the same for all vertices
of any given connected componentC of G.

De nition 3.1.13.  Given a connected componenC of a -isogeny graph, we choose a vertexX; ) 2 C,
and we de ne the real conductor of C to be the non- -part of the real conductor of End(A). We denote
this by fc.

Below is the proof of[Theorem 3.1.9, the Volcano Theorem. The strategy of the proof is as follows: let
C be a connected component of the -isogeny graph for Weilg-number , let fc be the conductor of C,
and let O¢ be the order of real conductorfc as in[Proposition 3.2.1. We rst prove that the full subgraph
C(fc) of C that contains the vertices with endomorphism ring O¢ is of the form .. . We then show
that from every vertex v with End(v) = Ok, + 'Oc fori<d there are exactly Normg ,-o( ) + 1 edges,
and that every edge from a vertex inC  C(f¢) is either ascending or descending. Finally, we show that
there is a unique ascending edge.

Proof of [Theorem 3.1.9. For a connected componentC of a -isogeny graphG, let G¢ be the union of
the connected components ofs with real conductor fc. (Note that C  G¢  G.) We rst partition Gc¢
by endomorphism ring and look at the action of the Shimura class group on these subsets. To this end,
write 90y, for the real conductor of Ok [ ; ~] locally at  (this is equivalent to the formula given for d

in the statement of the Volcano Theorem). By|[Proposition 3.3.1, we can partition the set of vertices of

Gc as

V( 'fe);
i=0
where for any ideall in Ok ,, we de ne
V()= f(A; )2POrd k ,:(End(A): Ok)\O k, = lg-: (3.1)

To look at the action of the Shimura class group on these subsets, recall that by Theorem 1.3]11 there
is a dual, polarisation, and action-ofOk ,[ ; ~] preserving equivalence of categoriell x ,$ Ord « ,,
where (P)Id . = was de ned to be the category of (principally polarised) fractional Ok, [; ~]-ideals. In
particular V(1) can also be viewed as

f(a; )2 Pld x ,:(End(a): Ox)\O k, = 1 g (3.2)

The following proposition gives us the action of the Shimura class group oV ( 'fc):
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[Proposition 3.5.1. | For an order O in Ok containing Ok ,[; ~] of real conductor fo, if the set

V(fo)=f(a; )2 Pld kx ,:(End(a): Ox)\O k, = fo0--
is non-empty, then the Shimura class groufsCI(O) of O acts freely and transitively onV (fo) via

SCI(0) V(fo) ! V(fo)
((c Ml M) 7 [(cta )

We will prove this in Section 3.5. We will now compute the structure of the full subgraph G(fc) of Gc¢
with vertices V (fc). If V(fc) is non-empty, [Proposition 3.5.1 tells us how many vertices are irV (fc), but
to deduce the structure of G(fc) we have to also study the (necessarily horizontal) -isogenies between the
vertices V (fc) of G(fc). Two -isogeniesf; : (A; ) ! (A‘l’; Dandfr:(A; )! (AS: 9) are de ned
to be isomorphic if there exists a 1-isogeny %: (A9; 9) ! (A%; 9) such that the diagram

A; ) —J@AY 9

X
$

(A% 9

commutes. We deduce the structure oiG(fc) from the following proposition:

[Proposition 3.6.1. | Given (A; ) 2 POrd « ,, let O = End(A), let fo = (0O : Ok )\ O k, be the real
conductor of O, and let 2 O, be a totally positive prime element 2 Ok ,. Suppose that there exists
(A; )2 POrd « , with End(A) = O. Then there is a bijection of sets

horizontal -isogenies

from (A: ) I'f man O-ideal: mm= Og

such that:

1. The codomain of the -isogeny from[(A; )] corresponding to[(m; )] is given by[(m; )] [(A; )],
where is the action of [Proposition 3.5.1].

2. The dual fY of the -isogenyf :[(A; )]! [(m; )] [(A; )] corresponding tom is isomorphic to the
-isogeny from [(m; )] [(A; )] corresponding tom.
For the proof, see[ Section 3J6. This immediately gives us the following:
Corollary 3.1.14. For (A; ) 2 POrd k , with End(A) = O, if fo 6 Ok,, then up to isomorphism,
there are exactly m horizontal -isogenies from (A ), where

8
< 0 if Ok, is inertin K=K g:
m=_ 1 if Ok, isramiedin K=Kg:
2 if Ok, splits in K=K g:

If fo Ok, then there are no horizontal -isogenies from (A ).

Now if V (fc) is non-empty, [Proposition 3.5.1 and| Proposition 3.6.1 tell us that

(a) if Ok, is inertin K=K ¢ then there are no edges inG(fc),

(b) if Ok, isramiedin K=K g and the element [(m; )] 2 SCI(O¢) is trivial, then G(fc) is the disjoint
union of loops of weight %,

(c) if Ok, isramiedin K=K and the element [(n; )] 2 SCI(Oc¢) is non-trivial, then G(fc) is the
disjoint union of pairs of vertices joined by a single edge, and

(d) if Ok, splitsin K=K o asmm, then G(fc) is the disjoint union of cycles of lengthn, wheren is the
order of [(m; )] in SCI(Oc¢).
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That is, every non-empty connected component ofG(fc) has exactly the form .. . Hence, ifd =0,
then we are done, so assume now thad > 0. (Recall that d is the exponent of the real conductor 9O,
of Ox,[; ~]locally at .) We rst need to show that every non-empty connected componentC® of G¢
contains vertices inV (fc), which is an immediate corollary of the following proposition:

[Proposition 3.7.1. | For i 2 Z. o, from every vertex in V( 'fc) there is an ascending -isogeny.
For the proof, se€[ Section 3]7. De ning

v=Normyg o )+1

and
< Vv if oc: = 1;
V0= v 1 if o.. = Rq; (3.3)
v 2 if oo = Cp;

wheren is the order of [(m; )] in SCI(O¢), it now remains to consider the non-maximal vertices. To this
end we have the following proposition:

[Proposition 3.8.1. | For 0 i<d, every vertex inV( 'fc) has degree

Normg ,—o( )+ 1:

We will prove this in Bection 3.8. [Proposition 3.8.7 together with[Corollary 3.1.14 proves that

(i) there are exactly v° descending edges from each vertex W (fc).

(i) for0<i<d ,there arev edges from every vertex inV( 'fc) and they are all either ascending or
descending.

It remains only to show that if i > 0 then there is a unique ascending edge from each vertex M( 'fc),
which will be proven in [Section 3.9, as part of the following proposition:

[Proposition 3.9.1. | Let all notation be as above. Ifd > 0, we have

#V( fc)= v¥# V(fc)
and forl i<d, _ _
#V( )= (v D#V( o)
Also, for every 0<i d, there is a unique ascending edge from every vertex M( 'fc).

This nishes the proof of the Volcano Theorem. O

The rest of this chapter is dedicated to proving the “black-box' propositions from the above proof of the
Volcano Theorem. For these propositions we will use the Fixed Frobenius Lifting Theorem|(Theorem 1.3.11)

to work instead in the category Pld . , of principally polarised fractional Ok ,[; ~]-ideals that was
de ned in Recall that the Fixed Frobenius Lifting Theorem gave us an equivalence of
categories

Ord ;K0$ Id K o

that preserves the notions of duals, of polarisation and the action of .

Remark 3.1.15. Recall that in Chapter 1 we also de ned the categoryOrd ¢, of complex abelian
varieties with maximal real multiplication, and that in Theorem 1.5.5)we gave a faithful functor

that preserves the notions of dual, polarisation, and the action ofOk . In particular, for each CM-eld K
the Volcano theorem can also be applied to complex abelian varieties in the set

f(A; ):A20rd¢; :KI~End(A) Q; (Ok,[; 7)) End(A)g:
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3.2 Parametrising orders by their real conductors

Let K be a CM- eld with maximal totally real sub eld Ky, and write Ox and Ok, for the rings of integers
of K and K¢ respectively. In this section we prove that ordersO in K containing Ok, are determined
completely by their real conductors (O : Ok )\ O k, (c.f. [De nition 3.1.10).

Proposition 3.2.1.  There is a bijection of sets

Orders O in Ok
st Og, O $ f Ideals of Ok,g

0 71 (0:0k)\O g,
OKD+fOK [ f:

Proof. Dene f(O)=(0:0k)\O g, and Of = Ok, + fOk . It su ces to show that for every order O in
Ok containing Ok ,, we have
o= Of(o) (34)

and that for every Ok ,-ideal f, we have
f= f(Os): (3.5

We start by proving (B.4). As
((0:0k)\Ok,)Ok (0:0k)Ok O ;

it is clear that
(Of(o) =)OKO+((O:OK)\O KO)OK O :

To prove equality, rst note that K=K is a 1-dimensionalK g-vector space. Choosing a basis gives a
K o-linear isomorphism
q: K=K g!~ Kog:

Then
O=0O¢(0) = (0=Ok,)=(Ot(0)=Ok,) = a(O)=AOx(0));

hence to prove [3.4), it su ces to prove that
d(0) = a(Ox(0)): (3.6)
To this end, we claim that
(a) for all orders O of K containing Ok ,, we have that g(O) = f(O)q(Ox ).
(b) for all ideals f of Ok, we have that g(O;) = fg(Ox ).
Observe that if both (a) and (b) hold, then
d(0) = f(0)a(O«k ) = a(Ox(0));

so that (B.6) holds and hence so doe.4). We rst prove (a): note that g(O) and g(Ok ) are non-zero
nitely generated Ok ,-submodules ofK g, and Ok, is a Dedekind domain, hencey(O) and q(Ok ) are
non-zero invertible fractional ideals of Ok ,, so that (a) holds if and only if

(a(O) : a(Ok ) = (O):
Now 2K satises 2 (g(O):q(Ok))ifandonlyif 2 Ky and for all x 2 Ok we have that
a( x ) 2 q(0): 3.7
We claim that (B.7) holds if and only if for all x 2 Ok we have that
X 20 + Ok, = O:

The "if' statement is clear, so assume that for allx 2 Ok we have that g( x ) 2 g(O). Then for each
X 2 0 + Kg there existsy 2 O and z 2 Ky such that x = y+ z. Also 2 (q(O) : g(Ok)) and
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g(0) d(Ok),so 2 (q(Ok):d(Ok))= Ok,, hencez= x vy is an algebraic integer, so is iNOk,.
This proves the “only if'. Therefore

(a(0) : a(Ok )) = Ok, \ (O :0k) = f(O):
So (a) holds. We now prove (b):

g(Of) = fg(a+ b): a2 0k,; b2 fOk g
=fg(a)+ qb): a20k,; b2 fOkg
=fq(b): b2 fOk g
= o(fOk )
= fg(O« ):

So (b), and hence [(3.4), holds. It remains to prove[(3.5), which is now almost automatic:

f(0r)a(0k ) € (o) @ fo(ok)

and g(Ok ) is an invertible fractional Ok ,-ideal, hence

f(Os) = 1
O
This proposition has an easy corollary:
Corollary 3.2.2.  Every order O in K containing Ok, is stable under complex conjugation.
Proof. By Proposition 3.2.7, we have that
o= OKO +((O : OK)\O KD)OK
= OKO +((O : OK)\O KD)OK
= Ok, +((0:0k)\O k,)Ok
= 0O:
O

Remark 3.2.3. In fact, it is necessary that the endomorphism ring of a principally polarised abelian
variety is stable under complex conjugation, as the Rosati involution is just complex conjugation.

3.3 All -isogenies are ascending, descending or horizontal

Recall that for an order O in Ok containing Ok ,, the real conductor was de ned in|[De nition 3.1.10]to be
fo =(O . OK)\O Ko

and for a totally positive prime element of Ok,. Suppose that we have a -isogeny between objects of
POrd c.k, given by

TA ) AS S Y
and that End(A) Q is a CM-eld. Recall from Pe nition 3.1.11 [that, writtng O = End(A) and
0°%=End(A 9, if

(a) foo= fo, then we say that is ascending
(b) fo = foo, then we say that is descending and
(c) fo = foo, then we say that is horizontal.

In this section we prove the following:
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Proposition 3.3.1.  All -isogenies from A; ; ) 2 POrd ¢k, such that End(A) Q = K are ascending,
descending, or horizontal.

Remark 3.3.2. Observe that by [Theorem 1.5.5, it follows from[Proposition 3.3.1 that all -isogenies
between objects ofPld .« , are ascending, descending, or horizontal.

We rst prove a useful lemma:

Lemma 3.3.3. The dual of a -isogeny between objects oPOrd ¢, with complex multiplication or
objects of POrd .« , is also a -isogeny.

Proof. We prove this for objects of POrd ¢ ,; it then follows for objects of POrd « , by [Theorem 1.5.5

and[Theorem 1.3.11. Let (A ; ) and (A% % 9 2 POrd ¢, and suppose that
fr(A; ;) (A% %9
isa -isogeny. For : Ok, ! End(A), dene

-1 Ok, ! End(A-)
7! ()-:

As the multiplication-by- map commutes with isogenies that preserve the real multiplication, both

(A0 (A9 = Ja-

1
(9t #

AOOf—A;

and
End(A%) QUM JEpda) Q

f-: (A9 (9 L %91 A L)

isa -isogeny. O

Ko

commute, so

Proof of [Proposition 3.3.1] By assumption, the endomorphism ringO of A is an order in K. Let f :
(A;; ) (A% % 9bea -isogeny. We identify O°= End(A 9 with a subring of K via

f . 00 I End(A) Q=K
7! f 1f

wheref 1 is the inverse off 2 Hom(A;A% Q. It suces to show that if ( A; ; ) and (A% ¢ 9 in
POrd ck, are -isogenous, with End(A) = O and End(A% = 09 then

fo = foo; foo= fo; orfo = foo;
wherefo and foo are the real conductors ofO and O° respectively. So let
fr(A;; ) (A% %9

be a -isogeny; then the diagram

A0 A" Jp0 (3.8)

N

0

A- 0 (A)-
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commutes. In particular, we have a surjective morphism
fy=( ' f- 9:A%1 A

such that
Y f= 1 - 0 f=[1a:

Then for every 2 009 take ' 2 End(A% such that ' )= ,sothatfyY ' f 2 End(A). Then
= (f¥Y ' f)20, hence
0% o :

By Lemma 3.3.3, the dual of a -isogeny is also a -isogeny, soO 10° In particular, this implies that

foo fo 1f00:

3.4 Principally polarised ideals are invertible
We will use repeatedly for the rest of the chapter the following proposition:

Proposition 3.4.1. If (a; )2 PIld « ,, then ais an invertible End(a)-ideal.

Before proving|Proposition 3.4.1 we rst prove a useful formula forEnd(a). Recall from
that for (a; ) 2 PId x , there exists 2 K such that

(& )=(Oky*+Ogei( )Y

where O  is the trace dual of O,.

Lemma 3.4.2. Let a be a fractional Ok,[; “]-ideal such thata = Ok, + Og , where 2 K, and
chooseA;B;C 2 Kq not all zero such that

A?+B +C=0: (3.9)
De ne the fractional Ok ,-ideal d by
d= AOg, + BOk, + C(Og,) " (3.10)

Then
End(a)= A d '+ O,:

Proof. For every x 2 End(a), as End(a) K, we know that there exist a;b2 K such that
Xx=a +b:
Then for every a;b2 Ko, we have thata + b2 End(a) if and only if
(@ +b( Ok, + Og,) Ok, + Og,:

That is, if and only if for every 2 Oy, and every 2 Og , we have that

Ok, +Og,3(a +bh = 2a+ b= A'B +Cla+ b (3.11)
and
Ok,+Og,3(a +b = a + b (3.12)
Now, we have [3.1]) for every 2 O, if and only if
B
b —a OKO O Ko (313)
A
and
C .
azOk, O g,: (3.14)
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Similarly, we have ) for every 2 Og, if and only if
a0y, O , (3.15)

and
b2 Ox,: (3.16)

Note that ( is equivalent to bOg O g  becauseOg is an invertible OKO-ldeaI (as Ok, is a
Dedekind domam) Nowa + b2 End(a) if and only if (8.13 - B.16) hold. Furthermore, (B.13) and (B.16)
hold if and only if b2 Ok, and

B
KaOKo o Kos (317)
and (3.14) holds if and only if
Cc
aK(oRO) Lo, (3.18)

We now have thata + b2 End(a) if and only if (8.15), (B.16), (B.17), and (3.1§) hold. But (B.15), B.17),
and (3.1§) hold if and only if

a2 Ok, :Og,+ %OKO + %(ORO) b =Adh
Hence
End(a)= A d '+ O,:
O
Proof of [Proposition 3.4.1] By Lemma 1.7.1, there exists 2 K such that
a= Ok, + Og,: (3.19)

Without loss of generality, set =1. Let A; B; C, and d be as in[CLemma 3.4.2. We claim that
a Ad 'a(Og,) * =End(a):

Note that as Ok, is a Dedekind domain, all fractional O ,-ideals are invertible. In particular, both d and
Ok, are invertible Ok ,-ideals. Note also that

tr k=x 0( ) = B=A and NK=K 0( ) = C=A: (320)
Now

a(Aad l(ORD) h

=( Ok, *+ Og,)("Ok, + Og,)Ad *(Og,) * by B.19)
=( 7(Og,) '+ Ok, + Ok, + Og,)Ad *

=(C(Og,) '+ BOk, + A Ok, + AOg,)d ! by (8:20)
= A d '+ O,

= End( a): by [[emma 3.4.2

Hencea is an invertible End(a)-ideal, with

a'=Aad '(Og,) -

O
One nice corollary offProposition 3.4.1 is the following formula:
Corollary 3.4.3. Let(a )2 Pld x , with End(a) = O. Then
aa= O-: (3.21)

38



Proof. Note rst that by De nition 1.3.7, \ve have
a =fx2K :trg-o(Xa) Zg
=fx2K trg-o(xa@) Zo:

Also
trk=((@ '0-)3) =tr k=(0-)  Z;

hence
alo- a= a

hence asa is an invertible O-ideal, we have that
O- aa
For the other inclusion, observe that by[De nition 1.3.7]
O- = fx 2K :tre=q(x0) Zg;

and that -
trg= Q(éa—O) =tr k= Q(éa—) Z;

so that in particular aa= O -. Hence
aa=aa O -:

3.5 The action of the Shimura class group

Let be an ordinary Weil g-number that generates a CM-eld K = Q( ) with maximal totally real
subeld K. Let be a totally positive prime element of Ok , and let G be the -isogeny graph for . Let
C be a connected component ofs and let fc be the real conductor ofC, as de ned in[De nition 3.1.13]

Recall from|Equation (3.1) that we de ned
V( 'fe)=f(A; )2 POrd x ,:(End(A): Ox)\O k, = 'fcg-;

and that under the equivalence of categories df Theorem 1.3.11, we may also de ne
V( fc)=f(a; )2PId x,:(End(a): Ox)\O k, = 'fcg-:

Proposition 3.5.1.  For an order O in Ok containing Ok ,[; ~] of real conductor fo, if the set
V(fo)=f(a; )2PIld kx ,:(End(a): Ok )\O k, = foO--

is non-empty, then the Shimura class group SCIQ) of O acts freely and transitively on V (fo) via

SCI(0) V(fo) ! V(fo)
(e Ml ) 70 [(c'a )
Proof. De ne
Frac(O) = f(c, ): ca fractional O-ideal, 2 K;; = Og
and

Prin(O) = f(vO;w):v2 K g

so that SCI(O) = Frac(O)=Prin(0). Now if (¢, ) 2 Frac(O) and [(a; )] 2 SCI(O) then ¢ ais an
invertible O-ideal and isinld . Also

(c *a)- =(c Ta) 'O- by [Corollary 3.4.3
= o by [Coralary 343
= c¢la ascc= Oand a= a;
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and s totally positive, hence is a principal polarisation of ¢ 'a by |Remark 1.3.8. ThereforeFrac(O)

acts onV (fo) via
(¢ ) & N=MLc'a
We now show that this in fact de nes a free action
SCI(O) V(fo)! V(fo):
Take (c; ) 2 Frac(O). Then for [(a; )] 2 V (fo), we have that
[(& )N=[c'a )]
if and only if there exists an isomorphism

(@ )! (c'a )

in Pld « ,. Recall from[De nition 1.3.9]and De nition 1.5.1 that an isomorphismin Pld x ,is 2 K
such that

a=—c 'a and =
This is equivalentto =( —) Yandc= 'O. In particular, we have that [(a; )]=[(c 'a; )]if and
only if
[(c =1 'O;( ) HI=[Oo;L
Hence the action is free and well-de ned, so it remains to show that it is transitive. That is, it remains to
show that if [(a; )] and [(a% 9] 2 V(fo), then

(a@) *; ! 92 Frac(0): (3.22)
First, note that as and °are polarisations, for every 2  , we have that
()=i: ( 9=i2 Rso:

(Recall the de nition of  ; from In particular, for every 2 , we have that
(% H= (%) '2Rs0;
so © 1istotally positive. Finally, we have by [Corollary 3.4.3|that aa = O- and a%C °= O-, so
a@) 'a@) 1= ° ‘o;

hence[ Equation (3.22) holds and the action is transitive. O
3.6 Counting horizontal -isogenies

The goal of this section is to prove Proposition 3.6.]L, which was used in the proof of the Volcano Theorem,

Theorem 3.1.9.

Proposition 3.6.1.  Given (A; ) 2 POrd « ,, let O = End(A), let fo = (0O : Ok )\O g, be the real
conductor of O, and let 2 Ok, be a totally positive prime element 2 Ok,. Suppose that there exists
(A; )2 POrd « , with End(A) = O. Then there is a bijection of sets

horizontal -isogenies

| _i - M =
from (A; ) I'f  man O-ideal : mm Og

such that:

1. The codomain of the -isogeny from [(A; )] corresponding to [(m; )] is given by [(m; )] [(A; )],
where is the action of[Proposition 3.5.1.

2. The dual fY of the -isogenyf : [(A; )]! [(m; )] [(A; )] corresponding to m is isomorphic to the
-isogeny from [(m; )] [(A; )] corresponding tom.
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We rst prove two lemmas.

Lemma 3.6.2. Suppose that @; )and (&% 9 2 Pld x , and that End(a) = End(a® = O. If 2 (a°: a)
isa -isogeny
(& )! @9

then
a@) ' a@ = O:
Proof. By [Corollary 3.4.3] we know that

aa= %%0= O-:
Now given 2 (a°: a), by de nition itis a  -isogeny if and only if
- — 0

which implies that

aa= a%°

Also, by [Proposition 3.4.1, we know that a° and a0 are invertible as O-ideals, hence

a@) ! a@) = o:
O]

Lemma 3.6.3. Let O be an order inOk containing Ok, of real conductor fo and suppose that Ok, jfo.
Then there is a unique prime idealm of O lying above Ok, given by

m= OKO + fo Ok :
Proof. Recall that O = Ok, + fo Ok som is clearly an ideal ofO. Furthermore, we have that
O=m= OKOZ OKD

which is a eld (as Ok, is prime and Ok, is a Dedekind domain), som is maximal. Suppose now that
® is a prime ideal of O lying above Ok, so that

OKO + foOk = O e (3.23)
We can factor fo Ok into O-ideals as
foOk = m(fo Ok );

which is contained in & by (8.23). Hence as@ is a prime O-ideal, either

m e (3.24)
or
foOx (3.25)
and by (8.23), we have also that Ok, #®, so that (3.25) implies that
Ok, + foOk  m (3.26)

Therefore, asm = Ok, + foOk is a maximal ideal, we have by(8.24) or (8.26) that ®m = m, som is
unique. O

Proof of [Proposition 3.6.1] We prove this in the equivalent categoryld  , instead of in Ord  ,; that
is, we count -isogenies from & ) 2 Pld . , such that End(a) = O. Suppose that there exists
(@ 92PId x , with End(a) = O and a -isogeny

@) @9
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Then by [Lemma 3.6.2, we have that
a@) ! a@ = O: (3.27)

Also a(@) !isanO-idealas a &% so (3.27) implies that there is anO-ideal m such that O = mm.
If Ok,ifo, we have by[Lemma 3.6.B that such arm does not exist and hence there are no horizontal
-isogenies in this case.

Suppose now thatfo = fc. Then O is relatively prime to foO = (O : Ok ), and hence decomposes
uniquely into prime ideals. As is a prime element ofO,, the ideal Ok, is either inert, rami ed, or
splitin K=K . If Ok, is inert, then there exists no O-ideal m such that O = mm, so as before, there
are no horizontal -isogenies from &; ) in this case.

It remains to consider the case in which O, is split or ramied in K=K, so suppose that O
decomposes asO = mm. Then 2 (ma: a) and m corresponds to the -isogeny

(g )! (ma )
and 2 (ma:a) and m corresponds to the -isogeny
(@ )l (ma b))

We claim that up to isomorphism these are the only horizontal -isogenies from &; ). Suppose that there
is an object @% 9 2 PId k , with End(&% = O for which some 2 (a°: a) de nes a -isogeny

(& )! @ %
Then °=( 7) ! ,and by[Lemma 3.6.2, we have that
a@) ' a@) 1= O;
so by unique factorisation, we have that
a@) '=m or a@) '=m;

that is,
&= Tma or &= ! ma

It is then easy to see thatifa®= ! mathen ! 2 (a°: ma) de nes a 1-isogeny (i.e. isomorphism)
(ma *)! @(CD) )

corresponding to ! O, in which case the -isogeny de ned by 2 (ma: a) corresponding tom and the
-isogeny de ned by 2 (a°: a) correspondingto ' O make the diagram

(& )—I(ma 1)

1 1
(& )—@&% 9

commute and hence are isomorphic by de nition. Similarly, if a = ! mathen 2 (ma: a) and
2 (a°: a) are isomorphic as -isogenies.
We now show that m = m if and only if the -isogenies dened by 2 (ma:a)and 2 (ma: a)
corresponding tom and m respectively are isomorphic. The “only if' is clear, so we proceed by proving
the "if'. Suppose that there exists a 1-isogeny de ned by 2 (ma: ma) such that the diagram

(& )—I(ma 1)

\%

(ma, 1)

commutes. Then =1soma= ma= ma Therefore asais an invertible O-ideal, we get thatm= m.
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It remains to show (2), that the dual fY of the -isogeny
f= @) (ma ')
corresponding tom is the -isogeny from
[(ma; )]
corresponding tom. By the de nition of a  -isogeny, we have thatf Yf = , hence

fY=1:(ma ')! (a ):

This is the composition of the -isogeny

g= :(ma ')! (mMmg ?)
corresponding tom and the 1-isogeny
ia 2)! (&)
Hencef Y is isomorphic to g so (2) holds. O
3.7 A construction of ascending -isogenies

The goal of this section is to prove Proposition 3.7.]L, which was used in the proof of the Volcano Theorem,
[Theorem 3.1.9. Recall thatC is a connected component of the -isogeny graph for the Weil g-number
that fc is the real conductorfc (as de ned in [De nition 3.1.13), and that

V( 'fc)= f(A; )2 POrd x ,:(End(A): Ox)\O g, = 'fcg-:

Proposition 3.7.1.  For i 2 Z. ¢, from every vertex in V( 'fc) there is an ascending -isogeny.

Proof. We prove this in the category Pld « ,. That is, we prove that for that (a; ) 2 Pld x , with
End(a) = O, if Ok, dividesfp, the real conductor of O, then there is an ascending -isogeny from (@ ).
So suppose that Ok ,jfo and write O%°= Ok, + foOk for the order in Ok of real conductor 1fq.
We claim that
End(a0?% = O°% (3.28)

and that

(@0% Y2 PId k ,: (3.29)
Note that (B.29) implies that 1 2 (aO%a) de nes a -isogeny

(& )! (0% )
and (3.2§) implies that it is ascending. For (3.28), observe thataO® is an invertible O%ideal with

inversea 0% and henceEnd(a0% = O° For (8.29), if we can can show that @0%- =  aO°then by
Remark 1.3.8 we have that is a principal polarisation of a8%°as is totally positive. We have that

(a0%- =fx2K :trg-o(Xa0?% Zg
=fx2K:xa (09-g

=((09-:9)
=a }09- asais invertible
= a0 :0-)(09- by [Corollary 3.4.3,
In the last step we used also thatO- is an invertible O-ideal; note that O- = aa is the product of
invertible O-ideals and so is itself also an invertibleO-ideal. Hence it su ces to show that
(0:0-)(0%- = 0% (3.30)

Now as O° O , we have that
o%- 0% 0% = 0° *0%-=(09-;
then multiplying by ( O : O-) gives 0% (O :0-)(09-. Also, as (09~ O -, this gives us that
0% (0:0-)0Y- O :

By we know that O%is the unique prime ideal of O lying above Oy, hence maximal, so
either O%= (O : 0-)(0Y- or (O : 0-)(09Y- = O. But O is not an O%submodule ofK , hence (B.30),

and in turn (8.29), hold. O
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3.8 Counting the degree of vertices in the -isogeny graph
Recall from ) that for an ideal | of Ok, we de ned
V()= f(A; )2POrd k ,:(End(A): Ok)\O k, = lg==

to be the set of vertices in the -isogeny graph for the Weil g-number for which the endomorphism
rings of the corresponding abelian varieties have real conductor. In this section we prove the following
proposition:

Proposition 3.8.1. For0 i<d, every vertex in V( 'fc) has degree

Normg ,—o( )+ 1:

Proof. Recall that in we de ned an equivalence of categories

that preserves the action ofOk [ ; ~] and the notions of dual and polarisation. Let (a; ) 2 Pld x , and
suppose that [@; )] 2 V( 'fc), where 0 i<d. Write F (a; )=(A; ;e).

From [Lemma 2.3.9 we have that there areNormy -o( )+1 non-isomorphic -isogenies from any object
in POrd cx,. (See[De nition 2.1.3 to recall how[Lemma 2.3.9 relates to objects ifPOrd ¢k ,). Hence,
it su ces to show that every -isogeny from A; ;ejo, ) in Ord ¢k, comes from a unique -isogeny in
Ord c; -

Given a -isogeny

fo(Aieiog) ! (A 59
in Ord ¢ ,, embedK into End(A% Qviae’=f e f L Then

End((A;e)=End(a)= Ok, + 'fcOx O k;

therefore by[Proposition 3.3.1 we have that €) *(End(A%) = Ok, + [fcOx wherej 2fi 1;i;i +1g.
In particular, as i <d this implies that

fi(A;;e)! (A% %€9

isin Ord c. .« ,. Conversely, for every embedding® such that f : (A; ;e)! (A% % &9 is a -isogeny in
Ord ¢, ,, by de nition we have that = f e f 1. O

3.9 The order of the Shimura class group

In this section we prove[Proposition 3.9.1, which was used in the proof of the Volcano Theorem. We
will use notation as in the proof of the volcano theorem: recall that for a connected component of the
-isogeny graph for the Weilg-number , we de ned fc to be the real conductor of C, and we de ned O¢
to be the order given by Ok, + fc Ok . Recall also that we de ned V(1) to be the set of vertices with
endomorphism ring of real conductorl, we de ned v = Norm ,-o( )+ 1, and we de ned
8 :
< Vv if oc;
Vo= v 1 if o
v 2 if Oc:

l;
Ry for somen; (3.31)
C, for somen:

Proposition 3.9.1. Let all notation be as above. Ifd > 0, we have
#V( fc)= V¥ V(fc)

andforl i<d, _ _
#V( )= (v 1#V( o)

Also, for every 0<i d, there is a unique ascending edge from every vertex i ( 'fc).
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Lemma 3.9.2. Let K be a CM- eld with maximal totally real sub eld Kg such that that the only roots
of unity in Ox are 1, andletO® O be orders inOk containing Ok ,. Write foo and fo for the real
conductors of O and O respectively, and suppose that thatfgo = fg. Then the map

SCl(09 ! SCI(0)
(@ 9 7t [@0; 9

is a surjective homomorphism. Furthermore, if Ok, 6fp, then

8

< Normg,—o( )+1 if Ok, isinertin K=K g
#ker( )= Normg -o( ) if Ok, isramiedin K=K

" Normg,—o( ) 1 if Ok, Is splitin K=K,

and otherwise
#ker( ) =Norm g -o( ):

To prove [Lemma 3.9.2, we rst prove some lemmas. The proofs ¢f Lemma 3.9.3 afid Lemma 3.9.6 are
based on the proofs of two similar results in|[BS17, Lemma 7] and [BS17, Lemma 8].

Lemma 3.9.3. Let K be a CM eld with maximal totally real subeld Ky, let O be an order inK that
contains K, and let fo be the real conductor ofO. Suppose thata is an invertible ideal of O. Then
a+ foOx = Oifand only if a+ foO = O.

Proof. Recall from[Proposition 3.2.7 that O = Ok, + fo Ok so that in particular

foO foOx O
and hence
a+ foO a+fgOk a+ O=0:
So one implication is clear. It remains to prove the other implication, so assume thaa+ foOx = O.
Observe that fo O = fo (O, + foOk ) = fo + f3 Ok, giving
20k foO; (3.32)
and that
a+ foOx = 0= 0% =(a+fo0k)* a+ fi0«: (3.33)

Together, (3.32) and (3.33) give us

a+ fo Ok a+ fpO;

hence
a+ foO=a+ fogOk = O:

We will make implicit use of Lemma 3.9.3 from this point on.

De nition 3.9.4. For R aring and f an ideal in R, a fractional R-ideal a is de ned to be coprime to f if
for every prime ideal p of R that divides f, the localisationa r Rp at p of ais R,.

Lemma 3.9.5. Let K, O, O° fo, and fo be as in[Lemma 3.9.p. ForR = O or O° de ne Go to be the
group of invertible fractional R-ideals that are coprime tof = f50Ok . Then there is an isomorphism of
groups
r. Goo ! Go
a 71 a%:

Proof. We rst check that r is well-de ned. Suppose thata®is an invertible fractional O%ideal coprime to
f. Then for every prime ideal p° of O° dividing f, we have thata’ oo 080 = OSO. Let p be a prime of O
lying above p°. Then

a0 00p=a’" 000p=a" 000 09, Op=Of o2, Op = Op:

Hencea is coprime to f, sor is well-de ned.
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By [Ste0&, Theorem 5.3], there is an isomorphism of groups
L

R: Gr ! prime p R Gr,
a 7! (a O pp:
Furthermore, we claim that M M
Gogo = Go,: (3.34)
prime p%0 © prime p O

To see this, given a prime idealp O , let p°= p\O ° Then if p 6f we get an isomorphismOJ, = Op.
This gives all primes of O° that are coprime to f. Also Gogo is trivial if pYf and Go, is trivial if pjf, so

(B.34) holds. Hence 01 00:Gpo! Ggo de nes an isomorphism fromGgo to Go.
It remains to show that r = 01 oo. Let a2 Ggo. Then
M
oo(@) =(a> O Jo)po=(a O p)p2 Go,;
prime p O

and

o @)= o0(@0)=(a%0 0 p)p=(a" 0 p)p;
sor = 01 oo and the lemma now follows. O

Lemma 3.9.6. Let K, O, O° foo, and be as inf[Lemma 3.9.2. Then is a surjective homomorphism

and
(0O=fpeOk)

ker( ) = 7(004000“ :

Proof. For any order R in K, de ne

lo = . . aaninvertible fractional R-ideal;
RT (&) @@= R 2Kg > 0

and
Pr=f(XR;xX):x2K ¢

so that
SC'(R) = Ir=Pr:

Furthermore, for any ideal f in R, de ne

a an invertible fractional R-ideal coprime to f;

'rO= (2 ) aa= R, 2Kg >> 0 !

and de ne
Pr(f) = Ir(f)\ Pr;

so that
Ir(f)=Pr(f) ! SCIR):

In fact, by [Ste08, Proposition 4.4] and the Chinese Remainder Theorem, we get an isomorphism
Ir (f)=Pr (f) = SCI(R):
In particular, it su ces to show that

e: loo(H=Poo(f) !  1o(f)=Po(f)
[(@% 9 70 [(@%0; 9]

with f = fo0Ok is a surjective homomorphism with kernel isomorphic to

(O=fooOk ) .
(O%fno0Ok )
We claim rst that

loo(f ! lo(f
&0 0 @8 (3.35)
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de nes a bijection. This is well-de ned and injective by Lemma 3.9.5, so we only prove surjectivity.
Suppose that @ ) 2 1o (f), and let &%= r 1(a), wherer is the isomorphism of Lemma 3.9.5. Ag is an
isomorphism, we only show that O0%is coprime tof. It su ces to show that Oy, and foo are coprime
as Ok ,-ideals: asOx, O Yin this case

0°%= 0%k, = O Ok, + for)  O°+f;

so OUYis coprime tof. Note that O is coprime tof, so ( mod f) 2 (O=f) de nes an automorphism on
O=f. Also, there is an injective ring homomorphism

Ok ,=foo 1 O =f

that sends
mod foo 7! mod f:

Hence multiplication by (  mod foo) de nes an injective endomorphism on Ok ,=foo, which is a nite
ring, hence multiplication by (  mod foo) is an automorphism. In particular, this gives that

mod foO 2 (OK():fOO)

and hence Ok, is coprime to foo. We have now proved the surjectivity of (3.35), hence (8.35) is a
bijection.

We have proven that e is surjective and has kernelPg (f)=Poo(f). Suppose that xO;xX) 2 Po(f).
Then there exist invertible O-ideals b and ¢, coprime to f, such that xO = b=c. Furthermore, without loss
of generality we may assume thatb and c are principal: let r 2 Z. o be minimal such that ¢ is principal,
then xO = (bd )=, and bd ! and ¢ are coprime tof and principal. For (xO;xX) 2 Po (f), choose

and 2O suchthat xO =( O)= O) and xX = 1 1. We claim that
i Po(f) ! (0=f) =(0%f)
(xO;xx) 7! !

is a well-de ned surjective morphism with kernel Pgo(f). Well-de ned is clear as L is uniquely de ned
up to roots of unity in O, and O and O° have the same roots of unity by assumption. Surjectivity is also
clear: for everyx + f 2 (O=f) , we have anO-ideal xO that is coprime to f. The kernel of i is given by

f(xO;xx) 2 Po(f):  *+f2 (0% g

hence
ker(i) ! Poo(f)
(xO;xx) 7! (xO%xx)
de nes a bijection. This proves the lemma. O
Proof of Lemma 3.9.2. We have from[Lemma 3.9.6 that is a well-de ned surjective homomorphism and
that
(O=fp00k )
k = )
er( ) (0% 0:0¢) (3.36)
To count #ker( ), we rst show that
(0= 0)
ki =
er( ) (0= 0)

We have that
fooOk = foOk (Ok, + foOk)= O;

so that in particular there is a natural map
O=fe0x —H0= 0
and an induced morphism of unit groups

(O=feo0x) —(0= 0) :
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De ne
(0= 0)

(0% 0)
to be the composition of this with the natural quotient morphism. We claim that

' 1 (0=f000x )

ker(' ) = (O%fp0Ok ) : (3.37)

Clearly (0%f500 ) ker(' ). To show that ker(') (O%fooOk) , suppose thatx + fooOx 2 ker(' ).
Then there existsy 2 O%such thatx y2 O O © sox 2 O% Hence (3.37) holds, so that by the
isomorphism theorem we have a group isomorphism

(O=f0s0x) _ (0= 0)

(0%fo0x)  (O%= O) (3-38)
Then by (8.36),
#ker( )= #O=0) . (3.39)
# 0= 0) '

We rst count the denominator. By Proposition 3.2.1) we have that

0°%= Ok, + fooOk = Ok, + foOk = Ok, + O;
hence
0% 0=(0Ok,+ 0)= 0= Og,= O0\0 g,)= Ok,= Ok,:

Write
" =Normy ,=q( ):

We assumed Oy, to be prime, soO% O = Oy ,= Ok, is an integral domain with = elements. Hence
#O0%=0) =" L
We now count the numerator of ). If either
(@ Ok, -fOand Ok, isramiedin K=Ky sothat O = m? is a square inO, or

(b) Ok, jfo, so that by Lemma 3.6.3, theO-ideal m= Ok, + fo Ok is the unique prime O-ideal
containing O,

then there is a unique maximal idealm= O in O= O, and this is the set of non-units. Therefore in either
case
# 0= 0) =#(0=0) #(m=0)="2 ~="(C 1)

If Ok, 6fp and Ok, is inertin K=K, then O is prime in O and henceO= O is an integral domain
with Norm k= o( ) = “2 elements, giving

# 0= 0) =2 1

Finally, if Ok, 6fp and Ok, splits in K=K g, then there are 2 distinct prime idealsm and m of O lying
above O. This gives
# O= 0) =#( O=mO) #(0O=m0O) =(" 1%

The result now follows from (3.39). O

Proof of [Proposition 3.9.1] Recall that C is a connected component of the -isogeny graph for Weil
g-number , so in particular contains a vertex . If 62V (fc), there is an ascending -isogeny from by
[Proposition 3.7.1), so inductively we see thatV (fc) is non-empty. We rst show that

#V( fc)= vV V(fc);

where 8
< Normg,—o( )+1 if Ok, isinertin K=K
V0= Normg,=o( ) if Ok, is ramiedin K=K

Normg ,—o( ) 1 if Ok, is splitin K=K .
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By assumption d > 0, so by|Proposition 3.8.1 there areNormy ,-o( ) + 1 edges from every vertex in
V (fc), and by [Proposition 3.6.7, we have thatv® of these are non-horizontal, hence descending td ( fc)
by [Proposition 3.3.1. Note that Normg ,-o( ) 2, so that v?> 0, and henceV ( fc) is non-empty.

Also, by |Proposition 3.5.1, for any K -order ® such that Ox,[; =] @, if V(fo) 6 ; we have that
#SCI( @) =# V(fo), so by|Lemma 3.9.42 we get that

#V( fc)=#SCI( Ok, + fcOk) = VO#SC|( Ok, + fcOk) = VO#V(fc):

Observe that there is aunique ascending -isogeny from every vertex inV ( fc): by Proposition 3.7.1
there is an ascending -isogeny from every vertex inV ( fc), which accounts for #V ( fc) of the descending
-isogenies fromV (fc), but this is all of them as # V( fc) = v% V(fc).
By induction, for every 1 <i<d we have that

#V( M) = (v D#V( fe):

(The induction is the same argument as fori = 1 above, where we replace the horizontal edges between
elements ofV (fc) by the unique ascending edge from every element of ( ' fc).) O

3.10 Example computation of a -isogeny graph
All the calculations for this example were done in Sage [Sage]. Let us consider the curve

C:y? =90270146102136%° + 938022069033830° + 249638482710677%"

+56078818981384%° + 2116308108498288
+1865564692722366+ 2658210628678317

de ned over F,, with p=2681144777671301, which is a prime. This curve was taken from the Echidna
Database [Echidna,https://www.i2m.univ-amu.fr/perso/david.kohel/dbs/cgi-bin/quartic_cm_
field.py?D=5&A=37&B=281] and has endomorphism ring isomorphic to the maximal order of the quartic
CM- eld

K := Q[x]=(x*+ 37x2 + 281);

in which p splits completely andp = —, whereK = Q( ), and is the Frobenius morphism on the
Jacobian of C. The minimal polynomial of is

(x)=x* 605104&° 5215893977257194 1622371429548014920304
+7188537318834090069340399032601

The maximal totally real sub eld of K is Kq = Q(p 5), and we will now x
=G5+ P 5)=2:

Then s a totally positive algebraic integer in Ko with norm 5, and Ok splits into prime ideals of Ok
as mm, where

m=50k +( 66584412017973349359248690349479457148650000

+1746410224689608186674679624345174739728574325000
+179358776708395470690104988 3349359248690349479457148650000
2292467368722716981517493451825000) :

We can easily check that the order of [(n; )] in SCI(Ok ) is 3, and that
d=maxfk2 Z:0k,[; 7] O k,+ “Oxg=4;

so that by [Theorem 3.1.9, the connected component of the -isogeny graph in whichCllies is a (Cs; 6; 4)-
volcano, pictured below.
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Colour | Blue Purple Green Orange Red

End(A) | Ok | Ok,+ Ox | Ok,+ 2Ok | Ok, + 3Ok | Ok, + 7Ok

Table 3.1: Colour coding

il
A (Cgs; 6;4)-volcano.
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Chapter 4

Isogenies for point counting on genus
two hyperelliptic curves with
maximal real multiplication

This chapter is joint work with Ballentine, Guillevic, Lorenzo-Garca, Massierer, Smith, and Top, and has
been published as|[Bal+17].

This chapter reports on work carried out at the workshop Algebraic Geometry for Coding Theory and
Cryptography at the Institute for Pure and Applied Mathematics (IPAM), University of California, Los
Angeles, February 22{26, 2016. The authors thank IPAM for its generous support.

Please note that the numbering in this thesis is di erent from the published version; due to this being
Chapter 4 of the thesis every number of the form 4x appears in the published version as X.
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Abstract

Schoof's classic algorithm allows point-counting for elliptic curves over nite elds in polynomial time.
This algorithm was subsequently improved by Atkin, using factorizations of modular polynomials, and by
Elkies, using a theory of explicit isogenies. Moving to Jacobians of genus-2 curves, the current state of
the art for point counting is a generalization of Schoof's algorithm. While we are currently missing the
tools we need to generalize Elkies' methods to genus 2, recently Martindale and Milio have computed
analogues of modular polynomials for genus-2 curves whose Jacobians have real multiplication by maximal
orders of small discriminant. In this article, we prove Atkin-style results for genus-2 Jacobians with real
multiplication by maximal orders, with a view to using these new modular polynomials to improve the
practicality of point-counting algorithms for these curves.

4.1 Introduction

E ciently computing the number of points on the Jacobian of a genus 2 curve over a nite eld is
an important problem in experimental number theory and number-theoretic cryptography. When the
characteristic of the nite eld is small, Kedlaya's algorithm and its descendants provide an e cient
solution (see [Ked01],|[Har07], and| [Har12]), while in extremely small characteristic we have extremely
fast AGM-style algorithms (see for example [[Mes01], [Mes02], and [Car04]). However, the running times
of these algorithms are exponential in the size of the eld characteristic; the hardest case, therefore (and
also the most important case for contemporary cryptographic applications) is where the characteristic is
large, or even where the eld is a prime eld.

So letq be a power of a large primep, and let C be a genus-2 curve oveFy. Our fundamental problem
is to compute the number of Fy-rational points on the Jacobian Jc of C,

4.1.1 The state of the art

In theory, the problem is solved: we can compute #¢c(Fq) in polynomial time (that is, polynomial
in logq) using Pila's algorithm [Pil90], which is the immediate generalization of Schoof's elliptic-curve
point-counting algorithm [Sch85] to higher-dimensional abelian varieties. But the exponent in Pila's
polynomial time is extremely large; so, despite its theoretical importance, this algorithm is completely
impractical (see %4.3.4). Indeed, to our knowledge it has never been implemented.

Gaudry and Schost have developed and successfully implemented a much more practical variant
of Pila's algorithm for the case q = p that runs in time ®(log® p); not just polynomial time, but on
the edge of practicality |GS12]. Still, their algorithm requires an extremely intensive calculation for
cryptographic-sized Jacobians: Gaudry and Schost estimated a running time of around one core-month
(in 2008) to compute #Jc(Fp) when p has around 128 bits|[GS12].

The situation improves dramatically if Jc is equipped with an e ciently computable real multiplication
endomorphism. For such Jacobians, Gaudry, Kohel, and Smith [GKS11] give an algorithm to compute
# Jc(Fg) in time @(log® g). This allowed the computation of # Jc(Fp) for one curve C drawn from the
genus-2 family in [TTV91] with p =252 + 1273 in about 80 core-days (in 2011); this remains, to date,
the record for genus-2 point counting over prime elds. For 128-bit elds, the cost is reduced to 3 core
hours (in 2011).

All of these algorithms are generalizations of Schoof's algorithm, which computes the Frobenius
trace (and hence the order #E (Fg)) of an elliptic curve E=F; modulo ~ for a series of small primes by
considering the action of Frobenius on the -torsion. But Schoof's algorithm is not the state of the art for
elliptic-curve point counting: it has evolved into the much faster Schoof{Elkies{Atkin (SEA) algorithm,
surveyed in [Sch95]. Atkin's improvements involve factoring the -th modular polynomial (evaluated at the
j -invariant of the target curve) to deduce information on the Galois structure of the -torsion, which then
restricts the possible values of the trace modulo (seeX4.2.6). Elkies' improvements involve computing
the kernel of a rational "-isogeny, which takes the place of the full' -torsion; deducing the existence of the
isogeny, and computing its kernel, requires nding a root of the *-th modular polynomial evaluated at the
j -invariant of the target curve (see 4.2.7).
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4.1.2 Our contributions, and beyond

Our ultimate goal is to generalize Atkin's and Elkies' improvements to genus 2. In this article, we
concentrate on generalizing Atkin's methods to genus-2 Jacobians with known real multiplication. This
project is prompted by the recent appearance of two new algorithms for computing modular ideals, the
genus-2 analogue of modular polynomials: Milio| [Mil15a] has computed modular ideals for general genus-2
Jacobians, while Milio [Mil15b, x5] and Martindale [Mar18] have independently computed modular ideals
for genus-2 Jacobians with RM by orders of small discriminants.

To extend Elkies' methods to genus 2 we would need an analogue of Elkies' algorithm [Sch9%7-8],
which computes de ning equations for the kernel of an isogeny of elliptic curves (and the isogeny itself)
corresponding to a root of the evaluated modular polynomial. We do not know of any such algorithm in
genus 2. Couveignes and Ezome have recently developed an algorithm to compute explicit {)-isogenies
of genus-2 Jacobians [CE15], presuming that the kernel has already been constructed somehow|but
kernel construction is precisely the missing step that we neeff]

In contrast, Atkin's improvements for elliptic-curve Schoof require nothing beyond the modular
polynomial itself; so we can hope to achieve something immediately in genus 2 by generalizing Atkin's
results on factorizations of modular polynomials to the decomposition of genus-2 modular ideals. This is
precisely what we do in this article.

We focus on the RM case for three reasons. First, the construction of exmicit modular ideals is furthest
advanced in this case: Milio has constructed modular ideals for primes iQ(" 5) of norm up to 31, while
for general Jacobians the current limit is 3. It is therefore already possible to compute nontrivial and
interesting examples in the RM case. Second, point counting is currently much more e cient for Jacobians
with e ciently computable RM; we hope that, at some point, our methods can help tip RM point counting
from \feasible" into \routine". Third, from a purely theoretical point of view, the RM case is more similar
to the elliptic curve case in the sense that real multiplication allows us, in favorable circumstances, to
split “-torsion subgroups of the Jacobian into groups of the same size as encountered for elliptic curves.

Atfter recalling the SEA algorithm for elliptic curves in ¥4.7, we describe the current state of genus 2
point counting, and set out our program for a generalized SEA algorithm in¥4.3. We describe the modular
invariants we need for this in ¥4.4, and the modular ideals that relate them in¥4.4.2. We can then state
and prove our main theoretical results, which are generalizations of Atkin's theorems for ﬂﬁese modular
ideals, in . In we provide some concrete details on the special case of RM 6 5), before
concluding with some experimental results in¥4.7.

4.1.3 Vanilla abelian varieties

We can substantially simplify the task ahead by restricting our attention to a class of elliptic curves
and Jacobians (more generally, abelian varieties) with su ciently general CM endomorphism rings. The
following de nition makes this precise.

De nition 4.1.  We say that a g-dimensional abelian variety A=F is vanilla['ﬂ if its endomorphism algebra
Endfq (A) Q (over the algebraic closure) is a CM eld of degree g that does not contain any roots of
unity other than 1.

If an elliptic curve E=F4 is vanilla, then E is nonsupersingular andj (E) is neither O nor 1728: these
are the conditions Schoof applies systematically in [Sch95]. We note that in particular, vanilla abelian
varieties are absolutely simple.

To x notation, we recall that if A is an abelian variety, then aprincipal polarization is an isomorphism

: AlA - associated with an ample divisor class o\, where A- = Pic®(A) is the dual abelian variety
(see for example|[Mil86,x13]). We will be working with elliptic curves and Jacobians of genus-2 curves;
these all have a canonical principal polarization. Each endomorphism of A has a corresponding dual

1 We would also like mention Bisson, Cosset, and Robert's AVIsogenies software package [BCR], which provides some
functionality in this direction. However, their methods apply to abelian surfaces with a lot of rational 2- and 4-torsion, and
applying them to general genus-2 Jacobians (with or without known RM) generally requires a substantial extension of the
base eld to make that torsion rational. This is counterproductive in the context of point counting.

2Vanilla is the most common and least complicated avour of abelian varieties over nite elds. Heuristically, over large
nite elds, randomly sampled abelian varieties are vanilla with overwhelming probability. Indeed, being vanilla is invariant
in isogeny classes, and Howe and Zhu have shown in [HZ02, Theorem 2] that the fraction of isogeny classes of g-dimensional
abelian varieties over Fq that are ordinary and absolutely simple tendsto 1 as q!1 . All absolutely simple ordinary abelian
varieties are vanilla, except those whose endomorphism algebras contain roots of unity; but the number of such isogeny
classes for xed g is asymptotically negligible.
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endomorphism - of A-. If (A; ) is a principally polarized abelian variety, then induces aRosati
involution on End(A), de ned by

70 Y= 1 - for 2 End(A) :

In the world of elliptic curves, the Rosati involution is the familiar dual. For vanilla abelian varieties, the
Rosati involution acts as complex CorB'LQation on the endomorphism ring.

Fix a real quadratic eld F = Q(' ), with fundamental discriminant > 0 and ring of integers
Or. We write 7! for the involution of F over Q; we emphasize that in this article, doesnot denote
complex conjugation.

From a theoretical point of view, when talking about real multiplication, our fundamental data are
triples (A; ; ) where A is an abelian surface, : Al A - is a principal polarization, and : O | End(A)
is an embedding stable under the Rosati involution (thatis, ( )Y = ( ) forall in Og; we can then
think of the Rosati involution as complex conjugation on the endomorphism ring). While this notation
(A; ; ) may seem quite heavy at rst glance, we remind the reader that generally there are only two
choices of embedding (corresponding to the two square roots of ), and we are only really interested in
the case whereA is a Jacobian, in which case the polarization is canonically determined.

4.2 Genus one curves: elliptic curve point counting

We begin by brie y recalling the SEA algorithm for elliptic curve point counting in large characteristic.
First we describe Schoof's original algorithm|[Sch95], before outlining the improvements of Elkies and
Atkin. This will provide a point of reference for comparisons with genus-2 algorithms.

Let E be an elliptic curve over a nite eld Fq of large characteristic (or at least, with char(Fy)  logq).
We may suppose thatE is de ned by a (short) Weierstrass equationE : y?> = x3 + ax + b, with aand bin
Fq-

! Like all modern point-counting algorithms, the Schoof and SEA algorithms compute the characteristic
polynomial
(X)= X% tX +q

of the Frobenius endomorphism of E. We call t the trace of Frobenius. Since theF,-rational points on
E are precisely the xed points of , we have

#E(Fg)= (1)=g+1 t;
so determining #E(Fq) is equivalent to determining t. Hasse's theorem tells us that

iti 2°g: (4.1)

4.2.1 Schoof's algorithm

Schoof's basic strategy is to choose a sét of primes ™ 6 p such that sz,_ > 4P g. We then compute
t- ;= t mod " for each of the primes’ in L, an(bthen recover the value oft from f(t-;): ~ 2 Lg using the
Chinese Remainder Theorem. The condition ™., ~> 4" @ ensures thatt is completely determined by
the collection of t- (by Hasse's theorem, Equation [(4.1)).

For Schoof's original algetithm, the natural choice is to letL be the set of the rst O(logq) primes,
stopping when the condition ~., "> 4" Qs satis ed. When applying Elkies' and Atkin's modi cations,
we will need to be more subtle with our choice ofL. It is also possible to replace primes with small prime
powers; we will not explore this option here.

Now, let * be one of our primes inL; our aim is to computet-. We know that 2(P) [t] (P)+[¢]P =0
for all P in E, and hence

2(P) [t] (PY+[gmod’ P =0 forall P 2E[]:
We can therefore computet:- as follows:

1. Construct a point P of order ".

2. ComputeQ= (P)andR= ?(P)+[gmod ]P.
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3. Search for0 t- <" such that [t-]Q = R, using Shanks' baby-step giant-step algorithm in the cyclic
subgroup of the "-torsion generated by Q.

To construct such aP, we begin by computing the "-th division polynomial - in Fq[X], which is the
polynomial whose roots inFq are precisely thex-coordinates of the nontrivial points in E[']. When " is
odd and prime to g, we have deg - = ("2 1)=2. We then de ne the ring

A= F[X;Y]=( (X); Y2 X® aX b);

and take P = (X;Y ) in E(A).

In order to work e ciently with Q = (P) = (X9 Y?9) in the search for t-, we need to compute
a compact form for Q. This means computing reduced representatives fok 4 and Y9 in the ring A|
that is, reducing X 9 modulo (X) and Y% modulo ( ~(X);Y?2 X3 aX b)|which costs O(logq)
Fq-operations.

Having computedt- for each™ in L, we recovert (and hence ) using the Chinese Remainder Theorem;
this then yields # E(Fq) = q+1 t. In cryptographic contexts, we are generally interested in curves of
(almost) prime order. One particularly convenient feature of Schoof's algorithm is that it allows us to
detect small prime factors of #E(Fg) early: we can determine if any” in L divides # E(Fq) by checking
whethert- q+1 (mod ). If we nd such a factor, then we can immediately abort the calculation of t
and move on to another candidate curve. B

The cost to compute - is ®('2+(logg) 2+ " 2) F4-operations. We can takeL to be a set ofO(logq)

primes, the largest of which is inO(log q); the total cost is therefore ®(log* ) Fq-operations.

4.2.2 Frobenius eigenvalues and subgroups

Fix a basis of E['], and thus an isomorphismE['] = F-2. Now acts onE['] as an element ofGL,(F-).
The local characteristic polynomial - is just the characteristic polynomial of this matrix.

Likewise, permutes the “-subgroups ofE[']; that is, the one-dimensional subspaces of['] = F-2.
These are the points ofP(E[']) = P'(F-), and we can consider the image of in PGLy(F) = Aut (P(E['])).
The order of as an element of PGl (F) is clearly independent of the choice of basis.

Proposition 4.2.  Let E=Fq be an elliptic curve with Frobenius endomorphism , and let* 6 p = char(F,)
be an odd prime. Ife is the order of the image of in PGL,(F:), then the tracet of satises

t?= .q inF;
(

+ o t+2wi . i e)=1;
where , = 2 with 2 F., of order e if gcd(;e)=1

otherwise:

Proof. We follow the proof of [Sch9%, Proposition 6.2] (correcting the minor error that leads in the case
e even to an e=2-th rather than e-th root of unity appearing in the last part of the statement). Let
1; 2 2 F2 be the eigenvalues of the image of in Aut( E[']) = GL,(F); then

1+ =1t and 1 2=(0 in F:

Incase ;1= , we haveej " and the assertion follows. In case ; 6 ; the given e is the minimal integer
> 0with §= §. Inparticular gcd(e;)=1and ,= ; for some primitive e=th root of unity  (in
F;infact ej~ 1 in case the eigenvalues are i~ and ej * + 1 otherwise). Henceq= | ,= 3
which implies

2=( 1+ )%= 21+ )2=q Y(?%+2 +1)=( + '+2)q

4.2.3 Modular polynomials and isogenies

The order-" subgroups ofE["] are precisely the kernels of -isogenies fromE to other elliptic curves, and
the set of all such"-isogenies (up to isomorphism) corresponds to the set of roots of- (j (E); x) in Fq. The
classical modular polynomial -(X;Y ), of degree” +1 (in X and Y) over Z, is de ned by the property
that -(j (&);]j (E)) = 0 precisely when there exists an -isogenyE; ! E ,. For * in O(logq), one can
compute ~(j (E);x) in @(3) Fq-operations using Sutherland's algorithm [Sut13]. Alternatively, we can
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use precomputed databases of modular polynomials ove£, reducing them modulo p and specializing
them at j (E).

The Galois orbits of the roots of -(j (E);x) correspond to orbits of “-isogeny kernels under , and
to orbits of points of PX(F-) under the image of in PGL,(F). If j(E;) and j (E) are both in Fqe, then
the isogeny is de ned overFy (up to a possible twist); in particular, its kernel is de ned over Fq.. More
precisely, we have the following key lemma:

Lemma 4.3 (Proposition 6.1 of [Sch9%]) Let E=F be a vanilla elliptic curve with Frobenius endomorphism

1. The polynomial -(j (E);x) has a root in Fge if and only if the kernel of the corresponding’-isogeny
is a one-dimensional eigenspace of€ in E[].

2. The polynomial -(j (E);x) splits completely overFy if and only if d acts as a scalar matrix on
E[']; that is, if and only if d is a multiple of the order e of the image of in PGL,(F-). In particular,
the minimal suchd is e.

4.2.4 Elkies, Atkin, and volcanic primes

The primes ™ 6 p are divided into 3 classes, or types, with respect to a givere=F,: Elkies, Atkin , and
volcanic. The type of * simultaneously re ects the factorization of - (j (E);x) and the Galois structure
of the “-subgroups ofE["]. Here we recall a number of facts about these classes, all of which are proven
in [Sch95, x6]; see also [Was08x12.4].

A prime " is Elkies if the ideal () is split in Z[ ]; or, equivalently, if t?> 4q is a nonzero square
modulo . Each of the two prime ideals over () de nes the kernel of an “-isogeny, ;: E'E ; fori =1;2,
say. This means thatj (E;) and j (E;) must be roots in Fq of -~ (j (E); x). Lemma then implies that

C yb=e
(G(Exx)=(x JENx () fi(x)

i=1

where each of thef; are irreducible of degreee, and e > 1 is the order of the image of in PGL,(F),
which must divide © 1 in this case.

A prime " is Atkin if the ideal (*) is inert in Z[ ]; or, equivalently, if t> 4qis not a square modulo’.
There are no Fq-rational “-isogenies fromE, and no F4-rational “-subgroups ofE[]. Looking at the
modular polynomial, Lemma[4.3 implies

() =e
(1 (B);x) = fi(x);

i=1
where each of thef; is an irreducible polynomial of degreee, and e > 1 is the order of the image of in
PGL,(F+), which must divide * + 1 in this case.

Finally, a prime " is volcanic if the ideal () is ramied in Z[ ]; or, equivalently, if * divides t> 4q.

Applying Lemma [@.3, either

!

(ExXx)= (X i)

i=1

with all of the j; in Fq (so there are” + 1 rational "-isogenies, and + 1 rational “-subgroups ofE[]); or

(B =(Y  j1) F(x);

with f irreducible of degree™ (so there is a single rational" -isogeny, and one rational -subgroup of E[']).
In either situation, jgpp acts on E['] with eigenvalues 1 = 3, so its image inPGL,(F ) therefore has
orderej .

We note an interesting and useful fact in passing: ifE=Fq is vanilla, * 6 p is an odd prime, andr is
the number of irreducible factors of -(j (E); x), then

(1= 3 4.2)

(cf. [Sch95, Proposition 6.3]; the proof generalizes easily fromm = p to general prime powers).
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4.2.5 Computing the type of a prime

The type of a given prime ™ for E (that is, being volcanic, Atkin, or Elkies) is de ned in terms of the
structure of Z[ ] and the trace t. When we are point-counting, these are unknown quantities; but we
can still determine the type of * without knowing t or Z[ ], by factoring -(j (E);x) and comparing
with the possible factorization types above. This, in turn, gives us useful information aboutt and Z[ ].
Determining the type of ™ in this way costs ®(*2 + (log q)") Fq-operations.

In fact, computing the type of * for E is a good way of checking the correctness of a claimed modular
polynomial. Suppose somebody has computed a polynomidl (J;; J,), and claims it is equal to -. The
factorization patterns for modular polynomials corresponding to the prime types above are so special that
there is very little hope of getting these patterns for F (j (E); x) for varying E and p unlessF and - de ne
the same variety in the (J1;J2)-plane. We will use the genus-2 analogue of this observation i®R4.7 to
check the correctness of some of Martindale's modular polynomials.

4.2.6 Atkin's improvement

Atkin's contribution to the SEA algorithm was to exploit the factorization type of the modular polynomial

to restrict the possible values oft (mod ). While this does not improve the asymptotic complexity of

Schoof's algorithm, it did allow signi cant practical progress before the advent of Elkies' improvements.
For example: if * is volcanic, then by de nition

t?=4q inF ; (4.3)

which determinest- up to sign: t P g (mod °). Note that this is also a consequence of Propositi02,
which we will now apply to the other two prime types.
If * is Elkies or Atkin for E, then Proposition [4.2 tells us that

t?=( + '+2q inF (4.9

for some primitive e-th root of unity in F2, whereej~ 1if " is Elkiesandej  +1if * is Atkin.
The number of possible values ot? is therefore half the number of primitive e-th roots in these cases.
Note that modular polynomials can only give us information about t?|that is, t- up to sign|since their
solutions tell us about isogenies only up to quadratic twists, and twisting changes the sign of the trace.

Obviously, the smaller the degreee of the non-linear factors of -(j (E); x), the fewer the values that t-
can pcbc,sibly take. For example, ife=2 then t- = 0; if e=3, then t- = pﬁ in F; and if e = 4, then
t = 2qin F.

The challenging part of Atkin's technigue is making use of these extra modular congruences. Atkin's
match-and-sort algorithm (see for example|[Ler9¥ x11.2]) is a sort of sophisticated baby-step giant-step in
E(Fq) exploiting this modular information. Alternatively, we can use Joux and Lercier's Chinese-and-match
algorithm [JLO1].

4.2.7 Elkies' improvement

Elkies' contribution to the SEA algorithm was to note that when computing t-, we can replaceE[ ] with
the kernel of a rational "-isogeny, if it exists. Looking at the classi cation of primes, we see that there
exists a rational “-isogeny precisely when is volcanic or Elkies (whence the terminology). Of course, as
we saw above, if is one of the rare volcanic primes thert- is already determined up to sign; it remains
to see what can be done for Elkies primes.

Let ° be an Elkies prime forE, and let ; and , be "-isogenies corresponding to the two roots of

(j (B);x) in Fq. First, we note that (P;)=[ ;]P; for P; in ker ;,and 1+ , t (mod’). We only
need to compute one of the i, since then the other is determined by the relation ; , = q.

So let be one of the two -isogenies; we want to compute its eigenvalue. The nonzero elements
(x;y) of ker satisfy f (x) =0, where f is a polynomial of degree { 1)=2 (if ~ is odd; if * = 2, then
degf =1). To compute , we de ne the ring A = Fg[X;Y ]=(f (X);Y2 X3 aX b),setP=(X;Y)
in E(A), then compute Q = (P) and solve for in Q=[ ]P; thent- +qg= (mod").

This approach is substantially faster than Schoof's algorithm for Elkies", because the degree of is
only (" 1)=2, whereas the degree of - is ("? 1)=2; so each operation inE(A) costs much less than it
would if we used - instead off . (In practice, it is also nice to be able to reduce the number of costly
Frobenius computations, since we only need to compute (P) and not ( (P)).)
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The crucial step is computingf given only E and the corresponding rootj; of -(j (E); X). We can
do this using Elkies' algorithm, which is explained in [Sch95,xx7{8]. The total cost of computing t- is
then @(log® q) Fq-operations: that is, a whole factor of logq faster compared to Schoof's algorithm.

Ideally, then, we should choosel to only contain Elkies and volcanic primes: that is, non-Atkin
primes. The usual naive heuristic on prime classes is to suppose that ag! 1 , the number of Atkin
and non-Atkin primes less than B for E=F is approximately equal whenB  logg; under this heuristic,
taking L to contain only non-Atkin primes, the SEA algorithm computes t in ©(log” q) Fq-operations.

While the heuristic holds on the average, assuming the GRH, Galbraith and Satoh have shown that it
can fail for some curves|[Sat02, Appendix A]: there exist curve&=F such that if we try to compute t-
using ~ in the smallest possible set. containing only non-Atkin primes, then L must contain primes in
(log 2 ).

Remark 4.4. It is important to note that Elkies' technique applies only to primes * where there exists a
rational “-isogeny: that is, only Elkies and volcanic primes. Atkin's technique for restricting the possible
values oft- applies to all primes|not only Atkin primes.

4.3 The genus 2 setting

Let C be a genus-2 curve de ned ovef 4 (again, for g odd). We suppose thatCis de ned by an equation
of the form y2 = f (x), where f is squarefree of degree @.The curve Cthen has a unique point at in nity,
which we denotel .

4.3.1 The Jacobian

We write J¢ for the Jacobian of C. Our main algorithmic handle on J¢ is Mumford's model for hyperelliptic
Jacobians, which represents the projectivelc as a disjoint union of three a ne subsets. In this model,
points of Jc correspond to pairs of polynomialsha(x); b(x)i where a is monic, degb < dega 2, and
¥ f (mod a) (we call ha;bi the Mumford representation of the Jacobian point). Mumford's coordinates
on the a ne subsets of Jc are the coe cients of the polynomials a and b (and in particular, a point ha; b
of Jc is de ned over Fq if and only if a and b have coe cients in Fy). The three a ne subsets are

W, = fha;hi 2 Jcjdeg@ =29 (\general" elements) ;
Wi = fha;bi 2 Jcjdeg@=1g (\special” elements) ;
Wy := f0;. = hi;Oig (the trivial element) ;

and Jc = Wt Wit Wy, The group law on Jc can be explicitly computed on Mumford representatives
using Cantor's algorithm [Can87].

The point of J¢ corresponding to a general divisor class Kp;yp) +( Xq;Yq) 21 ]on Cis represented
by he;bi where a(x) = (x xp)(X Xg) and b is the linear polynomial such that b(xp) = yp and
b(xq) = yo. Special classes p;yp) 1 ] are represented byhe;bi = hx  xp;ypi, while 0;, =[0] is
represented byha; b = hi;0i.

4.3.2 Frobenius and endomorphisms of  Jc
The characteristic polynomial of the Frobenius endomorphism has the form
(X)= X* tX3+(@2q+9X? tgX + ¢ ;

where s and t are integers satisfying the inequalities (cf.|[Ruc90])

4P p-

jsi< 4q; jtj q; > 4s ; s+4q> 2t q:

We have
#Jc(Fg)= (1)=1 t+2qg+s tq+ o ;

aswellas #0(Fq) =1 t+gand #C(Fp) =1 t2+4q+2s+ ¢?. In genus 2, therefore, the point
counting problem is to determine the integerss and t.

3For full generality, we should also allow degf = 6; the curve C then has two points at in nity. This substantially
complicates the formul without signi cantly modifying the algorithms or their asymptotic complexity, so we will not treat
this case here.
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4.3.3 Real multiplication

We are Bngrested in Jacobians]c with real multiplication by a xed order O in a quadratic real eld
F = Q( ); thatis, such that there is an embedding : O! End(Jc). In this article, we will further
restrict to the case whereO is the maximal order O of F; note that if O is an order in F that is not
locally maximal at a prime °, then there exist no isogenies of degree that preserve the polarization (see
De nition . These Jacobians can be constructed either from points in their moduli spaces (as i),
or from a few known explicit families (as in ¥4.7).

The xed eld Q( + V) of the Rosati involution on Q( ) is a real quadratic eld, and Z[ + Y]isa
suborder of O . The characteristic polynomial of + Y is

+v(X)= (X% X +9)?;

so determining . , also solves the point counting problem forJc.

Later, we will be particularly interested in C such that Jc has real multiplication by an order of
small discriminant. While such curves are special, from a cryptographic perspective they are not \too
special". From an arithmetic point of view, all curves (with ordinary simple Jacobians) over Fyq have
real multiplication. Here, we simply require that real multiplication to have small discriminant; the
discriminant of the entire endomorphism ring of Jc can still be just as large as for a general choice of curve
over the same eld. From a geometric point of point view, the moduli of theseC live on two-dimensional
Humbert surfaces inside the three-dimensional moduli space of genus-2 curves. In concrete terms, this
means that when selecting random curves over a xed-q, only  1=qg of them have real multiplication by
a xed order; but if we restrict our choice to those curves then there are stillO(¢?) of them to choose
from.

4.3.4 Fom Schoof to Pila

The Schoof{Pila algorithm deals with higher dimensions [Sch85; Pil90]. Its input is a set of de ning
equations for a projective model of the abelian variety, and its group law. Jacobians of genus-2 curves are
abelian varieties, and we can apply Pila's algorithm to them using the de ning equations computed by
Flynn [Fly90] or Grant [Gra90]. However, the complexity of Pila's algorithm is O((logq) ), where (and
the big-O constant) depends on the number of variables (i.e., the dimension of the ambient projective
space) and the degree and number of the de ning equations. Pila derives an upper bound for in|[Pil90,
x4], but when we evaluate this bound in the parameters of Flynn's model fordc (72 quadratic forms in 16
variables) we get a 30-bit ; Grant's model (13 quadratic and cubic forms in 9 variables) yields a 23-bit

. E] While these are only upper bounds, we are clearly in the realm of the impractical here.

4.3.5 The Gaudry{Schost approach

Pila's algorithm requires a concrete (and necessarily complicated) nonsingular projective model fafc.
The Gaudry{Schost algorithm applies essentially the same ideas to Mumford's a ne models for subsets of
Je.

Our rst problem is to nd an analogue for Jc of the elliptic division polynomials -. Ultimately,
we want an ideall- = (Fo;:::;Fr)  Fg[A1;Ao; B1; Bo] such that ha;bi = X2 + a;x + ag;byx + hyi is in
Jc['1if and only if (a;;ag; by; by) is in the variety of I-: that is,

[Ix? + a;x + ag;x + byi =0() F(ay;a0;by;lp)=0forall F 21 :

Then, the image ofhx? + A;x + Ag;B1x + Bgi in Jc(FqlA1; Ao; B1; Bo]=1+) is an element of order” that
we can use for a Schoof-style computation of (T) (mod 7).
The simplest approach here would be to take a general Mumford representative

h(2+ A1X + Ag;B1x + Byi;

computeL =["]mx? + Aix + Ag; B1x + Boi, and then equate coe cients in L = 0, to derive the relations
in 1.. But we cannot do this, becausel is in W»(Fq(A1; Ao; B1; Bo)) (that is, its a-polynomial has degree
2, and its b-polynomial degree 1), while §. = h1;0i is in Wp: these elements are not in the same a ne
subvariety, and cannot be directly compared or equated in this form.

4With polynomial time estimates like these, who needs enemies?
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Gaudry and Harley [GHOQ] neatly stepped around this problem by observing that any element oflc can
be written as the di erence of two elements ofW; (which may be de ned over a quadratic extension). They
therefore start with D =[(Xp;yp) + (Xa:Ya) 21 ]1=[(Xp;¥r) (Xo; Yo)lin Jc, and nd polynomial
relations onxp, Yp, Xq, and yg such that [']D =0 by computing [ ]I'x  Xp;ypi and [JX Xg; VYoi,
and equating coe cientsin [ ']l Xp;ypi =[]X Xq; VYoi. There is a quadratic level of redundancy in
these relations, which is a direct result of the redundancy in the initial representation ofD: the involution
(Xp;yr) $ (Xq:Yq) xes D.

Gaudry and Schost remove this redundancy by resymmetrizing the relations with respect to this
involution, re-expressing them in terms of A1 = (Xp + Xg), Ao = XpXqg, B1 =(Yp VYo)=(Xp Xo),
and Bo = (XpYo XqYe)=(Xp Xg), and computing a triangular basis for the resulting division ideal |-.
Their algorithm yields a triangular basis for |-, which facilitates fast reduction modulo I-.

Once we havel -, we can computet (mod *) and s (mod °) as follows:

1. Construct the symbolic "-torsion point

P = Ix?+ A1x + Ag;B1x + Boi 2 Jc(Fq[A1;A0;B1; Bol=l) ;

2. Compute the points

Qs:= 2(P);
Q= (*P)+[gmod’] (P));
R:= *P)+[2gqmod’] ?(P)+[¢? mod ]P

using Cantor arithmetic, with reduction of coe cients modulo 1-;

3. Search for 0 s';t- < such that
[t]Qt [s]Qs=R

(using, say, a two-dimensional baby-step giant-step algorithm).

The result is an algorithm that runs in time ®(log® ). Of course, oncet has been determined, we can
simplify Steps () and (B) above to nd s more quickly for the remaining *, but this does not change the
asymptotic complexity. In practice, the algorithm has been used to construct cryptographically secure
curves: Gaudry and Schost computed a generic genus-2 curve ovEgiz 1 such that both the Jacobian
and its quadratic twist have prime order [GS1Z2]. Instances of the discrete logarithm problem in this
Jacobian o er a claimed security level of roughly 128 bits, which is the current minimum for serious
cryptosystems. This computation also represents the current record for point counting for general genus-2
curves.

The Gaudry{Schost computation illustrates not only the state-of-the-art of genus-2 point counting,
but also the practical challenge involved in producing cryptographically strong genus-2 Jacobians. The
Schoof-like point counting algorithm was only applied using the prime powers ¥, 3%, 5% and 72, and the
primes 11 through 31. Combining the information given by these prime powers completely determines
t, but not s; but it still gives us enough modular information about s to be able to recover its precise
value using Pollard's kangaroo algorithm in a reasonable time ( 2 hours, in this case). The kangaroo
algorithm is exponential, and would not be practical for computing this Jacobian order alone without the
congruence data generated by the Schoof-like computations. Gaudry and Schost estimated the average
cost of these calculations as one core-month (in 2008) per curve.

4.3.6 Point counting with e ciently computable RM

In [GKS11], Gaudry, Kohel, and Smith described a number of improvements to the Gaudry{Schost
algorithm that apply when J¢ is equipped with an explicit and e ciently computable endomorphism
generating a real quadratic subring ofEnd(Jc). When we say that is explicit we mean that we can
compute the images under of divisor classes onlc, including symbolic Mumford representatives for
generic divisor classes. When we say that is e ciently computable , we mean that these images can be
computed for a cost comparable with a few group operations: that is, from an algorithmic point of view,
we may view evaluation of as an elementary group operation like adding or doubling.

Suppose thatZ[ + Y]is contained in Z[ ] (this is reasonable, since in the examples we knovwZ[ ] is
a maximal order), and let be the discriminant of Z[ ]. Then + Y= m + n for somem and n, which
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completely determines and t: if the characteristic polynomial of is (X2 t X +s )2 thent=2m+ nt
ands=(t2 s?) =4. It follows that m and n are both in O(p 0).
We can computem and n using a technique similar to Gaudry{Schost. Multiplying the relation
+ Y=m + nthroughby ,wehave 2 (m +n) + g=0. Imitating Schoof's algorithm, we
can computem- := m (mod ) and n- ;= n (mod ") by taking a generic elementD of Jc['] (as in
Gaudry{Schost), computing ( 2+ g)(D), (D), and (D) (using two applications of ), and then solving
for m- and n-.

We can do even better by exploiting split primes in Z[ ]. If © = Iil, is split, then the "-torsion
decomposes adc[l1] Jc[l2], and once we have found a short generator (or generators) fdr we gan take
D to be an element ofJ¢[li] instead of Jc[']. Such generators can be found with coe cients inO(" °); the
result is that we work modulo a much smaller ideal, of degree("2) rather than O("%).

But going further, + Y acts as a scalar onJ¢[li], and so we can compute its eigenvalue to determine
m- and n-. The total cost of computing m- and n-, and hencet- and s, is then ®(log® g) [GKS11,
Theorem 1], a substantial improvement on Gaudry{Schost's®(log® ).

The computation resembles what we would do for an Elkies prime in the elliptic case, except that there
is no need for modular polynomials to compute the prime type, or for an analogue of Elkies' algorithm: we
know in advance which primes split inZ[ ], and we can compute the kernel using the decomposition. But
if we did have an analogue of Elkies' algorithm, then we could further reduce the complexity by further
decomposing some of the¢[li] into cyclic factors, and thus working modulo ideals of degreeD("). If we
have an analogue of Atkin's algorithm, then we can restrict the possible values ofm- and n-; this would
not change the asymptotic complexity of the algorithm, but it could have a signi cant practical impact.

4.3.7 Generalizing Elkies' and Atkin's improvements to genus 2

Ultimately, we would like to generalize the SEA algorithm to genus 2. The rst requirement is a genus-2
analogue of elliptic modular polynomials; so assume for the moment that we have a modular ideal relating
suitable invariants of genus-2 curves.

To generalize Elkies' improvements to genus 2, we need an analogue of Elkies' algorithm: that is,
an algorithm which, given two general moduli points corresponding to isogenous Jacobians, constructs
de ning polynomials for (the kernel of) the isogeny. The most convenient such presentation would be as
an ideal cutting out the intersection of the kernel with W,, since then the Gaudry{Schost approach could
be adapted without too much di culty (at least in theory). Unfortunately, at present, no such algorithm
is known.

In contrast, Atkin's techniques for elliptic curves require only the factorization of (specializations of)
elliptic modular polynomials; we deduce possible congruences on the trace from the degrees of the factors.
It is clear how we should generalize Atkin's techniques to genus 2: we should deduce possible congruences
on s and t from the degrees of primary components of specialized modular ideals.

The following sections make this concrete. In{4.4, we de ne the appropriate analogues of the elliptic
j -invariant for genus-2 curves with real multiplication. We can then de ne real-multiplication analogues
of the elliptic modular polynomials in ¥4.4.3, before investigating their factorization in ¥4.5.

4.3.8  -isogenies

Before de ning any generalized invariants or modular polynomials, we must de ne an appropriate class of
isogenies in genus 2: that is, isogenies that are compatible with the real multiplication structure. (This is
not an issue for elliptic curves, because the elliptic analogue of the real endomorphism subring is just
Z|and everything is compatible with integer multiplications.)

De nition 4.5. Let (A; ; ) and (A% % 9 be triples encoding principally polarized abelian surfaces

with real multiplication by Og. Here : A!A - and % A%l (A9- are principal polarizations, and
O ! End(A)and % O ! End(A9 are embeddings that are stable under the Rosati involution. If
is a totally positive element of F, then a -isogeny (A; ; )! (A% % 9is anisogenyf : Al A %such
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that the diagrams

A Ing  and F—— JEnd(A) Q
f fo

A (AD- (yEnd(AO) Q

commute, where is the map induced byf on endomorphism algebras.

Iff:(A;;)! (A% % 9isa -isogeny, then the polarization ° pulls back via f to (). For
comparison, an elliptic *-isogeny is anf : E ! E ©such that the canonical polarization on E° pulls back via
f to ~ times the polarization on E (in more concrete terms: the identity point Ogo on E pulls back via f to
a divisor on E equivalent to ~  Og).

4.4 |nvariants

Elliptic modular polynomials relate isogenous elliptic curves in terms of theirj -invariants; their genus-2
analogues must relate invariants of genus-2 Jacobians. This section describes and relates the various
invariants that we will need. Since we are dealing with classical constructions in this section, we work over
a eld k C. However, the resulting algebraic expressions carry over to the case wheke= Fq (at least

for large enoughp). All of the results in this section are well-known, and are shown here for completeness
and easy reference; we refer the reader to [LanB2], [LNY16], [LY11], and [MarL8] for further detail.

441 Invariants for RM abelian surfaces

Let F be a real quadratic eld with ring of integers Or. We need RM analogues of the ellipticj -invariant
and elliptic modular polynomials for -isogenies of abelian surfaces with RM byOg . Our rst step is to
de ne appropriate replacements for thej -invariant that classify our triples ( A; ; ) up to isomorphism.
Instead of a singlej -invariant, we will have a triple ( J1;J2;J3) of RM invariants , which are functions on
the corresponding Hilbert modular surface.
The invariants (Jg;J2;J3) are constructed as follows. For a eld k, we consider the coarse moduli

spaceHE (k) of triples (A; ; ) (where as before, A=k is an abelian variety with a principal polarization

A1l A - and an embedding : O | Endx(A) stable under the Rosati involution). Then Hg (k)
is coarsely represented by the Hilbert modular spaceSL,(Or O g) n(F H) (see [Gee88]), where
F H:=f 2F C:=()> 0gand for any fractional ideal f of F,

SL(Or f):= ‘z‘ ld’ 2 SLy(F):a:d20g: b2 f c2f !
actsonF H by
a b _a+b,
c d T ¢ +d’

Proposition 4.6. Let V be the Baily{Borel compacti cation of SL,(Og)n(F H), and C(V) the function
eld of V. There exist rational functions J;, J,, and Jz on V such that

C(V) = C(Jl;Jz;J3) .

Proof. The transcendence degree ofE(V) over C is 2, so there exist 2 algebraically independent functions
J1, J2 in C(V). Furthermore, C(V) is a nite separable eld extension of C(J;1;J2), so it is generated by
at most one further element, Js. O

De nition 4.7. Fixing a choice of rational functions J1, J,, and J; as in Proposition [4.6, we call
(J1;J2;J3) the RM invariants for F.
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4.4.2 Hilbert modular polynomials for RM abelian surfaces

We are now ready to de ne modular polynomials for abelian surfaces with RM structure. For elliptic
curves we have a singlg -invariant, and we can relate “-isogenousj -invariants using a single bivariate
polynomial -(X;Y ). For our abelian surfaces, we have a tuple of three invariants J;; J»; J3), and to
relate -isogenous tuples of invariants we need anodular ideal of polynomials in Q[X 1; X 2; X3; Y1; Y2; Y3],
such that when we specialize the rst three variables in the (J1;J2; J3) corresponding to the isomorphism
class of some triple A; ; ), the result is an ideal cutting out the moduli points (J2;J5;J9) for triples
(A% % O that are -isogenous to @; ; ).

The Hilbert modular polynomials below represent a particularly convenient basis for this ideal. We refer
the reader to [Mar18, Chapter 2] for theoretical details and proofs, as well as algorithms for computing
the polynomials. Alternatively, Milio's algorithm can be used to compute Hilbert modular polynomials

<(X; J1;32) and  ~(X; J1;J2), in time O(dyd;,)O(CN)+4(" +1)O(drd;,N) O(drd;, N) [Mill5b,
Theorem 5.4.4], whereN is the precision anddr ;d;, are degrees involved in the computation, see [Mil15b,
x5.4].

De nition 4.8.  The Hilbert modular polynomials

G (X1;X2;X3; Y1) ;
H. o(X1;X2;X3;Y1;Y2) = H(;l)z(xl;XZ;X3;Yl)Y2 + H(;O)z(xl;xz;x3;Yl) ;
H . a(X1; X2; X3 Ya; Ya) = H (X0 X2 X3, Ya) Yo + H O (X 15 X2 X35 Y1)
in Q[X 1; X2;X3; Y1; Ya; Y3] are de ned such that for all triples (A; ; ) and (A% © 9 representing points

and Cin a certain Zariski-open subse{ﬂof the Baily{Borel compacti cation of SL,(Or f)n(F H),
there exists a -isogenyf : (A; ; )! (A% % 9if and only if

G (I1( );Jd2( );33( ); 31 ( Y =0 ;
H . 2(31( );32( );33( ); 31 9:32( =0 ;
H . 3(31( );32( );33( ); I Y 33( Y =0 :

The special form of G , H,. , and Hs. are very convenient for computations. If (J;;J2;J3) is a xed
moduli point, then each root of G(J1;J2;J3;X) corresponds to a unique -isogenous moduli point
!
HO01:32:93 ) HO3192:35 )

(353239 = ; ’
H(;l)z(Jl;Jz;Js; ) H(;l)3(J1;J2;J3; )

We observe that the action of Galois on the set of -isogenies from an RM abelian variety representing
(J1;3J2; J3) is completely described by the action of Galois on the roots of5 (Jq;J2; Js;X); in particular,
over Fq, rational cycles of -isogenies under Frobenius correspond to irreducible factors @& (Ji; J2; Js; X).
From the point of view of Atkin generalizations, therefore, we only really needG to replace

4.4.3 Invariants for curves and abelian surfaces

We need to relate the RM invariants (J1;J2; J3) to the invariants for plain old principally polarized abelian
surfaces, and in particular Jacobians of genus 2 curves without any special RM structure. The moduli
spaceA, of principally polarized abelian surfaces is coarsely represented by the Siegel modular space
Sp,(Z)nH,, where

H, = 2Symy(C):=()>0 ;

and the symplectic group

0 |2 t 0 |2

Sp(Z2)= 92GLa(2): 9 , 097 1, 0

5 See [Mar18, Chapter 2, Section 2] for details on this subset. For point counting over large nite elds, it is enough
to note that since the subset is Zariski open, randomly sampled Jacobians with real multiplication by Of have their RM
invariants in this subset with overwhelming probability.
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acts onH» via
a b _a+b,
c d T ¢ +d’

Every rational function on Sp,(Z)nH, is a quotient of elements of the graded ring of holomorphic
Siegel modular forms forSp,(Z). Igusa proved in [Igu60] that this ring is generated by 4, &, 10, and

12, Where X

k()= det(c +d) K

ab
cd 2PnSp,(2)

is the normalized Eisenstein series of weighk for even integersk 4 (here P is the standard Siegel
parabolic subgroup of Sp(2)), and

0= 212 355271 43867(4 ¢ 10) ;
12=2 ¥ 3753723371 131593 77 $+2 5% ¢ 691 1)

are Siegel modular cusp forms of weight 10 and 12 respectively.

Curves of genus 2 are typically classi ed up to isomorphism by their Igusa invariants [1;j2;j3), or by
their Igusa{Clebsch invariants (A;B;C;D ). Since the mapC 7! J¢ is an open immersion of the (coarse)
moduli space of genus-2 curveM , into A,, the Igusa invariants j; can be written as rational functions of

4, 6, 10 and 12 @S follows [|gU67]Z

ii()=2 3 3}, ¢
i20)=2°%3 4,3 ¢
jsa()=2 °3 6% 10+22 3 43 40

Hereji( ) = ji(Q if there is a genus 2 curveC=C such that J¢ is isomorphic to the abelian surface
C2=(Z? + Z2). If there is no such C, which happens exactly when 15( ) =0, then j;( ) is not well-de ned.
The Igusa{Clebsch invariants are related to the Siegel modular forms by

(4 6 100 120= 2°2B; 23%AB 3C); 2 'c;2'31'aD (4.5)

4.4.4 Pulling back curve invariants to RM invariants
The natural maps H? ! Hy, SL(F) ! Sp,(Q), and (O =20¢)? ! (Z=2Z)* induce an embedding
THe(K) A 2(k) 5

which we can use to pull back Igusa invariants to RM invaF;iants, thus expressing thg; in terms of the J;.
We will see detailed formul for this pullback for F = Q(' 5) in Proposition .

This pullback from curves and their invariants to RM invariants is essential for our computations:
after all, in point counting one usually starts from a curve. In our applications, we are given the equation
of a curve C=F; drawn from a family of curves with known RM by Of. Having computed the Igusa
or Igusa{Clebsch invariants of C, we can pull them back to RM invariants (J;;Jz;J3). This pullback is
possible, becausé& was chosen from an appropriate family, but choosing a preimagelg; Jo; J3) implicitly
involves choosing one of the two embeddings D¢ into End(Jc). This choice cannot always be made over
the ground eld: a point in A,(k) may not pull back to a pair of points in Hg (k), but rather a conjugate
pair of Boints over a quadratic extension ofk. Proposition [4.1§ makes this subtlety explicit in the case

F=0Q( 5).

4.5 Atkin theorems in genus 2

We are now ready to state some Atkin-style results for -isogenies in genus 2.

Let (A; ; ) be a triple describing a vanilla abelian surface over, with real multiplication by O,
and let be a totally positive element of O of norm *. Then ( ) is an endomorphism of degre€?, and
we have a subgrouf

Al J=ker( (1)) A []:
6We emphasize that the subgroup A[ ] depends on , but we have chosen to write A[ ] instead of the more cumbersome

AL
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If ()6 ( ) (thatis, (°) 6 ( ?)), then we have a decompositionA[']= A[ ] A [ ]. The one-dimensional
subspaces oA[ ] are the kernels of -isogenies.

In we used the elliptic modular polynomial - to study the structure of E[']. Here, we will use
the Hilbert modular polynomial G to study the structure of A[ ]. The propositions of this section are
generalizations for curves of genus 2 to Schoof's Propositions 6.1, 6.2 and 6.3 for elliptic curves |in [Sch95].

45.1 Roots of G and the order of Frobenius

Our rst result relates the order of Frobenius acting on P(A[ ]) to the extensions of Fy generated by roots
of specialized Hilbert modular polynomials.

Proposition 4.9. []Let A=F, be a vanilla abelian surface with RM byOr and RM invariants (J1;J2; J3)
in Fg, and with Frobenius endomorphism . Let be a totally positive element ofOg of prime norm

1. The polynomial G (J1;J2;J3;X) has a zeroJy in Fqe if and only if the kernel of the corresponding
-isogenyA! A is a 1-dimensional eigenspace of € in A[ ].

2. The polynomial G (J1;J2;Js;X) splits completely in Fqe[x] if and only if € acts as a scalar matrix
on Al ].

Proof. The proof follows that of [Sch95, Proposition 6.1] (stated as Lemmé 4]3 here).

For : Letf: Al A bea -isogeny with kernel S, and let (J1; J2; J3) be the RM invariants of A.
If S is an eigenspace of ¢, then the quotient A! A =S s de ned over Fg. The Igusa invariants of A=S
are therefore all in Fqe, and sinceA=S is isomorphic to A" as a principally polarized abelian surface, the
Igusa invariants of A" are all in Fge. To conclude that Jj is in Fqe, we need to show that the injection
~ O ! End(A) is de ned over Fe; but this follows from the commutativity of the second diagram in
De nition 45]

Conversely: supposes (J1;J2;J3;J1) = 0 for some J7 in Fge. Then the fact that each of the H ; is a
linear polynomial in Y; with coe cients in Fq[J1;J2; J3;J1] = Fge shows that there existJ> and Jz in Fge
such that (J1; J2; J3) are the RM invariants of a triple ( A; 7 thatis -isogenous to A; ; ). This means
that there is an Fg-isomorphism (&; 79! (A% % 9 where (A% % 9is dened over Fge. Letf: ATA ©
be the composite -isogeny. Its kernelS is a one-dimensional subspace @& [']. It remains to show that S
is an eigenspace of ©; this is the case if and only iff is de ned over Fge. The Z-module Homfq (A; A9
is free of rank 4 (becauseA is vanilla); and its submodule Home . (A; A9 of Fqe-isogenies is either O or
equal to Homg, (A;A9. Hence,f is de ned over Fge if Home,. (A;A9 6 0; and Homg,. (A; A9 60 if and
only if the Frobenius endomorphisms ofA=F¢ and A° have the same characteristic polynomial.

SinceA is vanilla, and A is F4-isogenous toA, we have Endg, (AY Q= Endz (A) Q=K for
some quartic CM-eld K. Solet and °be the images inK of the Frobenius endomorphisms ofA=F
and A respectively (note that = €). Now up to complex conjugation, we have $=( 9% in K for
somes > 0. If = 9 then A and A®are Fg-isogenous, and we are done. If = 9 then we replace
(A% % 9 by its quadratic twist; and then A and A° are Fqe-isogenous. Otherwise, if 6 O then = ©
must be a root of unity of order at least 3 in K , which is impossible becausé\ is vanilla. Hence = ¢
so and ©have the same characteristic polynomial, and thereforé is de ned over Fe.

For @: If all of the zeroes of G (J1;J2;J3;X) are contained in Fge, then all of the 1-dimensional
subspaces ofA[ ] are eigenspaces of € by Part . This implies that ¢ acts as a scalar matrix on
Al ] O

Remark 4.10. As an example of what can go wrong if the vanilla condition is dropped, consider the curve
C:y?=x2+1:

The Jacobian Jc of this curve has complex muItichgtion by Q( s5), so it is not vanilla. While Jc

has real multiplication by the maximal order of Q(' 5), the Siegel modular form 4 is zero for this

curve. Proposition[4,18 below gives explicit formul for J;, J,, and JZ for Jacobians with maximal real

multiplication by Q(' 5); and when we look at those formul , we see that J; is not well-de ned when
4= 0.

"This is conditional under the heuristics of Rpmark 2.5.6

65



45.2 The factorization of G

The Frobenius endomorphism of A commutes with ( ) (since A is vanilla), so it restricts to an
endomorphism ofA[ ].

Lemma 4.11. Let A=Fq be a vanilla abelian surface with Frobenius endomorphism, and let * be an
odd prime.

1. If * splits in Z[ + Y] (or equivalently, if t> 4s is a square inF-), then
(T) (T2 uT+qg(T? u°T+qg (mod"’)
for someu and u®in z="Z.
2. If “isramiedin Z[ + VY] (or equivalently, if * dividest? 4s), then
(T) (T? uT+q@? (mod’)
whereu = t=2 in Z="Z.
3. If “isinertin Z[ + Y] (or equivalently, if t> 4sis a square inF-), then
(T)6 (T? uT+q(T? uT+qg (mod")
for any u;u®2 z="7.
Proof. This is a direct consequence of [Lan§6, Chapter 1, Proposition 25]. O

Lemma 4.12. Let (A; ; ) be a triple describing a vanilla abelian surface oveFq with real multiplication
by O, and let be a totally positive element ofOr of prime norm — = °. The restriction of the
Frobenius endomorphism to A[ ] has characteristic polynomial

(T) T? uT+q (mod') forsomeu?2z="Z:
Proof. By de nition, ~ = splits in Of, so it either splits or rami es in the suborder
Z[ + 7] OF;

we are therefore in Cas or @ of Lemma. In particular, both and Y restrict to endomorphisms
of A[ ], and they have the same eigenvalues and g= ; so the characteristic polynomial of is

T2 ( +qg=)T+q:
The result follows with u=+ g=. O

Proposition uses the factorization of the modular polynomialG , specialized at the RM invariants
of A, to derive information . (T) (mod 7).

Proposition 4.13. [ﬂ Let (A; ; ) be a triple describing a vanilla abelian surface ovefF, with real
multiplication by Or and with RM invariants (Jq;J»;J3), and let be a totally positive element ofOg

of prime norm — = . Let be the Frobenius endomorphism of\, with . (T)= T2 uT + qthe
characteristic polynomial of the restriction of to A[ ], and let e be the order of in Aut(P(A[ 1)) =
PGL,(F).

The polynomial G (J1;J2;Js;x) has degree +1 in Fq4[x], and its factorization type is as follows:

1. If u> 4qis not a square inF-, then e > 1 and the factorization type is

2. If u> 4qis a nonzero square inF-, then the factorization type is
(1;%;e;:::;69 where ej” 1:

8This is conditional under Hemark 2.5.6 gnd should include the assumption that G (J1;J32;J3;X) is separable.

66



3. If U’ 4q=0 in F, then the factorization type is

(1;e) where e="

Proof. By Lemma, the endomorphism acts onA[ Jasa 2 2 matrix in GLy(F) with characteristic
polynomial T2 uT + g = 0. If the matrix has two conjugate eigenvalues 1, » in F-2, then we are in Case
: there are no 1-dimensional eigenspaces ofin A[ ], and all irreducible factors of G (J1;J2; J3;X)
have degreee, where e is the smallest exponent such that { is in F.

If the matrix has two eigenvalues inF- and is diagonalizable, then the discriminantt?> 4s is a square
modulo *: we are in Case@. This time A[ ] is the direct product of two 1-dimensional eigenspaces,
which account for two linear factors of G (J1;J2;J3; X). The remaining factors have degreee, wheree is
the smallest positive integer such that € acts as a scalar matrix.

If the matrix has a double eigenvalue and is not diagonalizable, then we are in Cas@): there is only
one 1-dimensional eigenspace, and the matrix of is scalar. O

4.5.3 The characteristic polynomial of Frobenius

Now that we can compute the order of Frobenius, we want to use this to derive information on the
characteristic polynomial. Proposition [4.14 generalizes Propositiofi 4]2 to genus 2.

Proposition 4.14.  Let (A=Fq; ; ) be a triple describing a vanilla abelian surface with real multiplication
by Og, and let be a totally positive element of prime norm™ = 62 P;pg. Let be the Frobenius
endomorphism ofA, and . (T)= T2 uT + g the characteristic polynomial of its restriction to A[ ].
If eis the order of the image of in Aut(P(A[ ])) = PGL2(F), then

2 _

u“= <q inkF;
1 i i e)=1;
where . = + +2 with 2 F., of order e if gcd(,e) 1;
otherwise :
Proof. The proof is identical to that of Proposition #.2] O

Coming back to point counting: suppose we have a Jacobiadc with real multiplication by O ; we
want to compute the characteristic polynomial

(T)y=T* tT3+@2q+9)T? tqT+ ¢ :

If we have a totally positive element in O such that = 7, then we know that (T) (mod °) splits
into two quadratic factors:
(M (M), (T) (T? uT+ag(T> uT+q (mod");
S0
t u+u (mod’) and s uu® 29 (mod): (4.6)

Given precomputed Hilbert modular polynomials G and G , then, we can specialize them at the RM
invariants of Jc and factor to determine the order of Frobenius onJc[ ] and onJ¢[ ] using Proposition|4.13.
We can then apply Proposition[4.14 and Equations(.6) to restrict the possible values ofs and t modulo

The question of how best to exploit this extra modular information remains open. Atkin's match-and-
sort and Joux and Lercier's Chinese-and-match algorithms for elliptic curves cannot be re-used directly
here, because they were designed to solve the one-dimensional problem of determining the elliptic trace,
while here we have the two-dimensional problem of determiningg; t).

4.5.4 Prime types for real multiplication by Or

The factorization patterns in Proposition .13 are the same as those we saw for specialized elliptic modular
polynomials in ¥4.2.4. This leads us to de ne an analogous classi cation of prime types, for totally positive
elements inOg of prime norm.
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De nition 4.15. Let be a totally positive element of O such that = (") for some prime” 6 2;p.
We say that

is Of -Elkies for a vanilla triple ( A; ; ) with RM invariants ( J1;J»;J3) if the factorization type

is Of -Atkin  for a vanilla triple ( A; ; ) with RM invariants ( J1; J2; J3) if the factorization type

If K = Endﬁq (A) Q is Galois then the type of completely determines the type of (and vice
versa). For generalK , however, this does not hold: the type of is not determined by the type of

455 The parity of the number of factors of G

The following proposition is the genus-2 real multiplication analogue of Equation (@.2) (cf. [Sch95,
Proposition 6.3]).

Proposition 4.16.  Let (A; ; ) be a triple describing a vanilla abelian surface oveF, with real multipli-
cation by Og, and with RM invariants (J1;J»;J3). Let be a totally positive element ofOr of prime

norm —=",let . (T)= T? uT + qbe the characteristic polynomial of restricted to A[ ], and letr
denote the number of irreducible factors in the factorization ofG (J1;J2;J3;x). Then
(1= 3

Proof. If * divides u?> 4gand has order’ in Case@ of Proposition , then the result is true.
Suppose therefore thatu? 4q 6 0 (mod ), that is, we are in Cases(l) or () of Proposition [4.13,
and let T  GLy(F) be a maximal torus containing . In other words, we take T = fdiag(; ) :
;2 F. gsplitin Case @), and T non-split (i.e., isomorphic to F.,) in Case (I). The imageT of T
in PGL,(F) is cyclic of order * + 1 in Case and > 1in Case@. The determinant induces an

isomorphism det: T=T°! F =(F. )2. The action of is via det( )= @, and we obtain an isomorphism

det: T=HT: i! F. =h(F. )?; qi. This shows that the index [T : ]is odd if and only if g is not a square
mod . Since the numberr of irreducible factors of G (J1;J2;J3;X) over Fq is equal tor = (I +1)=eor
r=2+(l 1)=e=[T : ], the proposition follows. O

4.6 The case F = Q(p 5): Gundlach{Msller invariants

All of the theory above can be made much more explicit in the case wherg = Q(p 5), where the invariants
J1, J2, and Jz are known as Gundlach{Maller invariants [Gun63| Mue85]. Our computational results are
based on this case, so we will work out the detailsd1ere, following the tBeatment in [LY11].

Fixing a square root of 5inC, we set :=(1+ 5)=2and :=(1 5)=2; each is the image of the
fundamental unit of Oq P 5 under one of its two embeddings intoC. Let

= e ﬂp?zz and ¢ :=e %?a for z=(z1;25) 2 H?:
The Eisenstein series of even weight 2 are de ned by

X
&(z) =1+ b ()3 ;

t=a+b 20/

where the coe cients b (t) are de ned by

X Pz
b(®= « NP owith = )5

= 2Q
O o (k" DPF (9
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(here N( ) is the norm # O =( )). The Hilbert modular forms sg, S10, S12, and s;5 of respective weight 6,
10, 12, and 15 forH 4P 5 are de ned by

67
Sg = 2% 33 52(96 gg):

1
S 191 216119 5 67 2293205 +22 3 7 4231y ;

2 .
S12 = 2 Se  OSi0

s2:

S10 ;
529556570 + 95sdo + 3 B’gpsisio g3SESio
2 24 2 23

34
02S6 .

53
57siy 4

25 2 B+

Finally, the Gundlach{Maller invariants for Q(p 5) are

Ji = 36:@ N PR gg:% ;and Jz = Sg:S:LS :

The Hilbert modular polynomials for Q(p 5) are too large to reproduce here, but they can be downloaded
from Imartindale.info ]

Proposition 4.17  ([LY11| Proposition 4.5] with correction to  (j1)). For F = Q(p 5), the Igusa
invariants pull back to

(11)=432(33132 2)°;
(2)= 333920, 2
(3) =2 33,2323, 2)%(4323,+25 323, 3):
For our computations, we want to write Jq, J, and Jsz in terms of the Siegel modular forms 4, &,

10 and 1. (For a canonical way of writing J1, J> and Js in terms of Igusa{Clebsch invariants, we refer
to [Marl8, Example 2.5.4].)

Proposition 4.18 ([Marl8, Example 2.5.. For F = Q(p 5), we have

2= (a6 F29)( 2 2(§ 23° )= ' ;
=372, 2°%331 (§ 2V )= ;
J2=55 2 1530,0,+2 43,+2 132523233 233232 2 33333 +2 43307

The choice of square root forJz corresponds to the choice of embedding

Proposition 4.1§ can be used to nd RM invariants for curves drawn from families with known real
multiplication, before factoring specialized Hilbert modular polynomials in those RM invariants to derive
information on Frobenius. However, it also crystallizes the rationality question alluded to at the end
of : as we see, a set of values of the Hilbert modular forms ovéx, (or, equivalently, a tuple of Igusa
or Igusa{Clebsch invariants over Fq) only determine Ji, Jo, and JZ over F.

To get J3, we need to choose a square root af2; but JZ is not guaranteed to be a square irFq. If
J2 is not a square inFq, then we cannot apply Propositions o|not even if J3 does not appear
unsquared in the specialized polynomialG .

4.7 Experimental results

In ordef, to validate the factorization patterns of Proposition we ran a series of experiments for
F = Q(' 5), using the family of curves [TTV91]

G:y?=x> Bx®+5x+a

9 The polynomials H . 3 do not appear there, but only G is required to apply our results in -
10The number of this example has changed to Example 2.4.4
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whose Jacobians all have real multiplication byOQ(P 5)- This family was used in the point-counting records
of [GKS11]. The Igusa{Clebsch invariants of G, are

(A;B;C;D)= 2° 5 7;2'% 5% 2V 5° (9a® 236)2° 5° (a® 4)

Our experiments treated

1. the ramied prime ~ =5, with =(+ P 5)=2, and the modular polynomial G from martindale.
info
2. the split prime ~ =11, with = (7+ P 5)=2, and the modular polynomial G from martindale.info

We collected statistics on the factorization patterns for 10000 tests. For each test, we chose a random
prime g of ten decimal digits, and we chosea randomly from Fg subject to the requirement that G, be
nonsingular, which is a?> 6 4. We then applied the formul of Equation @) and Proposition to
obtain the RM invariants J, and J; for the Jacobian of G,, as well as the squared invariantJ%.

In half the cases on averageJ? had a square root in Fq: in these cases we could obtainJz, and
proceed to factorG (J;;J»;J3;x). The average frequencies of the resulting factorization patterns appear
in Tables and (here we take the averages over the roughly 5000 tests whelg has a root in Fg;
for the two roots J; and Js in F4, we always obtained the same factorization pattern).

Factorization pattern, type of Number found Percentage

OqP g)-EIkies: (L;%e;:::;9 with e> 1 total 1835 total 36.8%
1;14) 1266 25.4%

1:1,2;2) 569 11.4%

OQ(P 5 -Atkin: (e;:::;9with e>1 total 2049 total 41.1%
(6) 844 16.9%

(3;3) 794 15.9%

(2;2;2) 411 8.2%

Ool’ 5 -Volcanic: (1;e) or (1;:::;1) total 1105 total 22.1%
(1;5) 1058 21.2%

(1;1;1;1;1;2) a7 0.9%

Table 4.1: Factorization pattern frequencies for the modular polynomialG (J;;J2;Js;x) for = (5+ P 5)=2
of norm * =5. The degree of G (J1;J,;J3;X) in x is 6. We only factored whenJ? was a square inFq,
which happened in 4989 of the 10000 trials (49.9%).

According to Proposition , we would expect that E° of the time  should be Oq 5 -volcanic,
(" 1)=2 ofthetime should beOyP 5 -Elkies, and ( 1)=2" of the time  should beOg, P 5 -Atkin. The
summary of our above results in Tabld 4.B appears to con rm this. This gives us considerable con dence
that the Hilbert modular polynomials computed in [Mar18, Chapter 2] are correct.

Finally, we ran the same tests on Milio's modular ponnomiaE (J1;d2;X)for " =5and =
(5+  5)=2, whereJ; = J, and J, = J1J,. We obtained exactly the same factorization patterns each time
Jz was inFyg.

11 Available from |https://members.loria.fr/EMilio/modular-polynomials/
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Factorization pattern, type of

Number found

Percentage

(@] -Elkies:

)

(@] -Atkin:

)

Oq(P 5 -Vvolcanic:

(L;%e;:::;9 with e> 1
(1;1;10)

(1;1,5;5)
(1,1,2,2,2,2,2)

(12)

(6;6)

(4;4,4)
(3;3,3,3)
(2,2,2,2;2,2)

(1;11)
1;4,1115511;1;1511)

total 2262
994

1040

228

total 2329
859
404
424
429
213

total 466
461
5

total 44.7%
19.7%
20.6%

4.5%

total 46.1%
17.0%
8.0%

8.4%

8.5%

4.2%

total 9.2%
9.1%
0.1%

Table 4.2: Factorization pattern frequencies for the modular polynomialG (Jq;J,;J3;Xx) for = (7+ P 5)=2
of norm * = 11. The degree ofG (J1;J2;J3;X) in X is 12. We only factored whendZ was a square inFq,
which happened in 5057 of the 10000 trials (50.6%).

Prime type frequencies for
OqP 5-Vvolcanic | Oy P 5 -Elkies | Oq P 5 -Atkin
5 P Theory 20.0% 40:.0% 40:0%
~ 2 Experiments 221% 36:8% 41:1%
P Theory 91% 455% 455%
T 2 Experiments 9:2% 447% 46.1%

Table 4.3: Experimental evidence supporting the correctness of Martindale's Hilbert modular polynomials.
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Appendix A

The notions of dual and polarisation
In equivalent categories

In all that follows C and D will denote categories with an involution called dual and denoted by_ .
Furthermore, functors F : C! D and G : D ! C will denote an adjoint equivalence (cf. [Lan78,
De nition on p. 93]) of categories via natural isomorphisms

=f o:GFAI~ A:A2Cg (A1)
and
=f A:FGA!~ A:A2Dg (A.2)
Recall from Mac Lane [Lan78, Theorem 1V.1.1] that in this situation, for all A 2 C, we have that
F(A)= Fys (A.3)
and for all B 2 D, we have thatG( g) = g -

The purpose of this Appendix is to prove that, as stated in[Remark 1.3.1P, ifF preserves the notion
of dual (resp. polarisation), then G preserves the notion of dual (resp. polarisation). For the convenience
of the reader, we repeat the de nitions from[Remark 1.3.1P of the preservation of the notions of dual and
polarisation.

De nition A.1. If F comes together with a natural isomorphism
f:F _ 1!~ F;

we say that (F;f) preserves the notion of dual For an object A 2 C, we write f 5 for the isomorphism
F(A-)!~ F(A)-.

Claim A.2. Suppose that (;f) preserves the notion of dual. Then there is a natural isomorphism
g:G _ !~ G given by

fge = (e- Gl(fgs) G(g):B2Dg (A4)
In particular, by de nition ( G;g) preserves the notion of dual.

Proof. The morphism g given in is a natural isomorphism if for every' 2 Homp (A;B), the diagram
G( &) G(fga) -
G(Ay) ——IG((FGN)-) —>—IGF (GA)-) ——(GA}-

G( ) 1) 6(Fe )-) 2) GF (6" )- 3) ©)-
G(B-) — -, G((FGB)-) — ——/GF ((GB)-) ——(GB)-
B GB) —

GB

commutes. But (1) commutes as is a natural isomorphism, (2) commutes asf is a natural isomorphism,
and (3) commutes as is a natural isomorphism. Hence

g=fgs = (cp.) G(fgs) G(g):B2Dg
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is a natural isomorphism

O

From now on, we suppose that for all objects inC (resp. D), we have a subsetPy, Hom(A;A-) of
“polarisations' such that for every isomorphismm : B! Ain C (resp. D), the map

Hom(A;A-) ! Hom(B; B-)
' 7! m-'m (A-5)
induces a bijection betweenP, and Pg.

De nition A.3. Suppose that (;f) preserves the notion of dual. We say that §;f) preserves the
notion of polarisation if for all objects A 2 C the map

Hom(A;A-) | Hom(F (A);F(A)-)
7! fa F()

induces a bijection betweenPa and Pg () .

Claim A.4. Suppose that (;f ) preserves the notions of dual and of polarisation. Then G; g) with g as
in (A.4) preserves the notion of polarisation.

Lemma A.5. Suppose that ;) preserves the notion of dual. Then EG;h) preserves the notions of
dual and of polarisation, where

h=fhg =fes F(gs):B 2 Dg (A.6)

and g is as in (A.4).

Proof. We have that (G; g) preserves the notion of dual by Claim[A.2, and it is easy to check that £G; h)
also preserves the notion of dual. Therefore it su ces to prove that the isomorphism

Homp (B;B-) ! Homp (FGB; (FGB)-)
7! he FG()
induces a bijection betweenPg and Pegg. By (A.5), the isomorphism
g . FGB!~ B gives an isomorphism
Homp(B:B-) !  Homp (FGB:(FGB)-)
7! B B,

which in turn induces a bijection between Pg and Prgg. Hence, it suces to show that for every
2 Homp (B; B-), we have that
hB FG( ): B B- (A7)

Note, by de nition of hg and gz, that
hB FG( ): fGB F(gB) FG( )

=fes F((ep.) FG(Ugs & )
andF( cg)-)= reop)-) by B3], so
he FG()=fee rqes.) FG(gs & ) (A.8)

Furthermore, asté B 2 Homp (B; F ((GB)-) and is a natural isomorphism, the diagram

feé B
IF((GB)-)

B F(GB)-)
FG(fer &
FGB Tee = Vegr((eB)-)
commutes, so that
Fqee)-) FG(feg & )=fgos & 8:
Plugging this into (A.8] gives (A.7] and the result follows. O
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Proof of Claim As (F;f) preserves the notion of dual, by Claim G:; g) also preserves the notion
of dual. Therefore, it su ces to show that the isomorphism

bs : Homp(B;B-) ! Homc (GB; (GB)-)
7! g G()

induces a bijection betweenPg and Pgg. But by Claim ( FG; h) preserves the notion of polarisation,
where h is as in {A.6), hence the isomorphism

cg . Homp(B;B-) ! Homp (FGB; (FGB)-)
7" fes F(®) FG()

induces a bijection betweenPg and Pggg, and as (F;f) preserves the notion of polarisation, the
isomorphism
des : Homc(GB;(GB)-) ! Homp (FGB; (FGB)-)
7! fee F()
induces a bijection betweenPgg and Prgg. Therefore the setsPg and Pgg are in bijection via the
isomorphism dGé Cs, Which is indeedbs as, for any 2 Homp (B;B-), we have that

dee(bs( )= dee(gs G())

fee F(e G())
fes F(g) FG()
cs( ):
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Summary

This thesis is primarily concerned with topics in and around the study of isogenies of abelian varieties.
The precise de nitions of both abelian varieties and isogenies are unfortunately beyond the scope of this
summary, but we aim to give the reader an intuitive notion of both.

The most common example of an abelian variety that occurs in number theory is that of arelliptic
curve. Let us consider the equation

E:y?=x% x+1:

This equation has a solution ;y) = (1;1), because 2 =12 1+ 1. Equation E is an example of an
elliptic curve, and if we plot it, then it looks like this:

We can also see from the picture that we have a solutionx;y) = (1 ;1) to the equation, because the point
with coordinates (1; 1) lies on the curve. We can also spot other points that lie on the curve with integral
(whole number) coordinates, such asX;y) =(0; 1), which also then give a solution to equationE.

Having found two points on the curve with integral coordinates, we can nd more: in this example,
drawing a straight line between the points (G 1) and (1; 1) yields the following picture:

The straight line then intersects the curve in a third point ( x;y) = (3 ;5), giving us a third solution to our
equation. As it happens, this third point still has integral coordinates, although the same construction
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starting from di erent points with integer coordinates could have yielded fractions (rational numbers).
For example, the straight line passing through (3 5) and (0; 1) intersects the curve in a third point
( %; %). However, this construction will never yield an irrational number like  or €

In fact, in this example, in nitely many rational solutions (i.e. x andy can be written as fractions)
to our equation can be found in this way - that is, by drawing a straight line between two points that
we already know (or their re ections in the x-axis) and looking for a third point of intersection with the
curve. Even better, in this example, it is possible to nd all the rational solutions to our equation in this
way as long as we use well-chosen points at each stage.

This is however, quite a “special' example in this regard - an abelian variety is a geometric object that
can be de ned by polynomial equations like the one above, for which the rational solutions are related to
one another in a prescribed way, for example by drawing straight lines and looking for intersection points
as above. However, it's not always easy to nd enough starting points to nd all the solutions in this way,
sometimes there are only nitely many solutions, and sometimes you don't even know if there should be a
nite number or an in nite number of solutions. Also, for equations with higher degree than the example
above (i.e. higher powers ofk and y), or more variables (or more di cult in other ways), the relations
between the points become more complicated.

Another way of nding solutions to such equations is via isogenies An isogeny is a map between
abelian varieties that “preserves the geometric structure’. We explain by example what we mean by this:
consider the map

(y) 70 (x  1Ly);
which sends the above equatiorE :y> = x> x+1to

y?=x3 33%?+362x 1319

which looks like this:

Above, we found three solutions (Q 1); (1;1), and (3;5) to our equation E that lie on the same straight
line. Note that if ( x;y) is a solution to equation E, then (x + 11;y) will be a solution to the new equation.
So, we can use our map to compute three corresponding solutions to the new equation:

0; 17 (11 1)
(1;1) 7' (12;,1)
(3;5) 7! (14;5):

If you plot them, they still all lie on a straight line:
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So the geometric relationship between these solutions is somehow preserved. This map is called an isogeny
because this happens.

So, an isogeny from an abelian varietyA to an abelian variety B not only maps points on A to points
on B but preserves the relations between those points. Most importantly, if you are given an abelian
variety A and asked to nd points on A or relations between those points, it may be easier to look for an
abelian variety B on which you can easily spot points, and an isogeny fronB to A.

The take home message is: we are interested in knowing, given two abelian varieties, whether there
exists an isogeny from one to the other. Normally, we are checking a bit more: whether or not there exists
an isogeny of a certain type (for mathematicians: in the case of elliptic curves, this type is the degree). In
Chapter 2, we give an algorithm to do this, which we have implemented for some “small' abelian varieties.
(Here “small' means abelian varieties coming from genus 2 curves, which will be explained shortly.)

Another approach to help understand, given two abelian varieties, whether or not there exists an
isogeny between them is to make a diagram of the information, called an isogeny graph. An isogeny graph
is a diagram with: nodes labelled as abelian varieties, and an arrow between two nodes if there is an
isogeny (of a certain prescribed type) from one node to the other.

For example, represent the equationE : y?> = x3 x + 1 as a white node, and the equation
EO:y?2=x3 33%%+362x 1319 as a black node. We saw already that there exists an isogeny frob to
ECgiven by (x;y) 7! (x 11;y). Also, there exists an isogeny fromE®to E given by (x;y) 7! (x +11;y)
so part of our diagram would look like this:

o >e

We could also draw one undirected line instead of the two arrows, giving the following diagram:
o—e

In Chapter 3, we show that for our type of isogenies an isogeny grapﬁ of abelian varieties consists of
volcano graphs an example of which is below:

LIn this thesis, we also equate some nodes (for mathematicians: we identify isomorphic nodes), and E and E° would
actually be represented by the same node. However, there do exist many graphs with lots of nodes even after equating some
of the nodes.
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This type of graph has become known as a volcano as it resembles the bird's eye view of a volcano:
the triangle in the centre is the “rim' of the volcano (this could be replaced by anyn-gon), and the lines
going away from the rim is the “lava’ owing down to the ground.

In Chapter 4 we study solutions of equations de ning curves of genus 2 Except for some special cases,
a genus 2 curve is given by an equatiory? = f (x), where f (x) is a degree 5 or 6 polynomial (this means
that the highest power of x that appears in f (x) is 5 or 6). For example the equation

y2=x°+1

represents a genus 2 curve. It looks like this:

We can associate an abelian variety to any genus 2 curve; the study of genus 2 curves lies within the
study of abelian varieties (in some sense). Also, instead of only looking for solutions of the equation given by
whole numbers or fractions, we choose a prime number, say 101, and try to nd integer coordinatex{y) on
the curve such thatx®+1 y? is divisible by 101, e.g.x = 6 and y = 0. One can count the number of choices
for (x;y)with 0  x;y < 101 that yield x>+1 y? divisible by 101 just by listing every possibility for x and
y and checking whether you get a solution (in this case there are 97 solutions). However, if the prime is not
101, but 115792089237316195423570985008687907853269984665640564039457584007913129640233, then
just counting all the solutions in this way cannot be done by modern computers, and many cryptographic
protocols are based on the di culty of this kind of problem. However, sometimes it is possible to count
more e ciently by using the abelian variety structure. In Chapter 4, we give an e cient algorithm to
count all the solutions (for a given large prime) for equations de ning certain genus 2 curves. Chapter 4 is
joint work with Sean Ballentine, Aurore Guillevic, Elisa Lorenzo-Garcia, Maike Massierer, Ben Smith,
and Jaap Top.
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Samenvatting

Dit proefschrift gaat hoofdzakelijk over isogeniesn en abelse varieteiten. De precieze de nities van de twee
begrippen zijn helaas te geavanceerd voor deze samenvatting, maar wij proberen om wat intutie te geven
voor beide concepten.

Het meest voorkomende voorbeeld van een abelse varieteit die zich in getaltheorie voordoet is een
elliptische kromme Beschouw de vergelijking

E:y?=x% x+1:

Deze vergelijking heeft een oplossingx(y) = (1;1), want 12 = 1% 1+ 1. De vergelijking E is een
voorbeeld van een elliptische kromme, en als we deze plotten krijgen we:

Wij zien ook direct uit de gra ek dat er een oplossing (x;y) = (1 ;1) is, omdat het punt met coerdinaten
(1;1) op de kromme ligt. Wij kunnen ook andere punten met geheeltallige cosrdinaten die op de kromme
liggen nu zien, zoals X;y) = (0; 1), en die geven nog meer oplossingen van de vergelijkirig.

Nu dat wij twee punten met geheeltallige cosrdinaten op de kromme hebben gevonden, kunnen wij er
meer vinden: in dit voorbeeld tekenen wij een rechte lijn tussen de punten (0 1) en (1;1). Dit geeft de
volgende gra ek:
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De rechte lijn snijdt de kromme in een derde punt &;y) = (3 ;5), dus wij krijgen een derde oplossing van
onze vergelijking. Het derde punt heeft weer geheeltallige coardinaten, maar dezelfde constructie kan ook
breuken geven. Bijvoorbeeld, de rechte lijn die door (3 5) en (0; 1) gaat, heeft een derde snijpunt met
de kromme op %; %). Aan de andere kant kan deze constructie nooit een irrationaal getal zoals of e
geven!

In dit voorbeeld kunnen wij op deze manier, dat is door het tekenen van een rechte lijn tussen twee
punten die wij al gevonden hebben (of hun re ecties in dex-as) en het zoeken naar een derde snijpunt, een
oneindig aantal rationale oplossingen vinden, dat wil zeggenx eny kunnen als breuk geschreven worden.

Beter zelfs: in dit voorbeeld is het mogelijk omalle rationale oplossingen van onze vergelijking op
deze manier te vinden, zolang wij op elk moment de beste punten kiezen om te gebruiken.

Aan de andere kant, dit voorbeeld is best wel “speciaal' { een abelse vareteit is een meetkundig object
dat door polynomen gede nieerd kan worden (de vergelijkingen hierboven zijn polynomen) waarvoor
bovendien de rationale oplossingen een voorgeschreven relatie hebben, bijvoorbeeld door het tekenen van
rechte lijnen die de kromme in drie rationale punten snijden. Vaak is het niet mogelijk om de beginpunten
te vinden, of er is maar een eindige hoeveelheid rationale oplossingen, en soms weten wij niet of er een
eindige of oneindige hoeveelheid rationale oplossingen is. Daarnaast worden voor vergelijkingen met een
hogere graad dan ons voorbeeld (i.e. hogere machten vaneny), of meer variabelen, de relaties tussen
de punten gecompliceerder.

Een andere manier van oplossingen vinden is vissogenieen Een isogenie is een afbeelding tussen
abelse varieteiten die "de meetkundige structuur bewaart' (voor wiskundigen: de groepsstructuur). Wij
leggen met een voorbeeld uit wat dit betekent: beschouw de afbeelding

(xy) 70 (x  1Ly);
die de vergelijkingE : y? = x® x + 1 van hierboven naar

y2=x%® 33?+362x 1319

stuurt. De gra ek van deze nieuwe vergelijking ziet er uit als:

Wij vonden hierboven drie oplossingen (0 1), (1;1), en (3;5) van onze vergelijkingE die op dezelfde
rechte lijn liggen. Merk op dat als (x; y) een oplossing van de vergelijkinge is, dan (x +11;y) een oplossing
van de nieuwe vergelijking wordt. Dus kunnen wij onze afbeelding gebruiken om drie overeenkomende
oplossingen van de nieuwe vergelijking te berekenen:

0; 1)7' (11, 1)
(1;1) 7! (12;1)
(3;5) 7! (14;5):

Laten wij hen plotten en zien we dat zij nog steeds op een rechte lijn liggen:
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Dus de meetkundige relatie tussen deze oplossingen is in zekere zin behouden. De afbeelding issmenie
omdat dit gebeurt.

Wij hebben gezien dat een isogenie van een abelse varietelt naar een abelse varieteitB niet alleen
maar punten van A naar punten van B stuurt, maar ook de relatie tussen de punten behoudt. Het is
belangrijk om in te zien dat als een abelse varieteitA gegeven is en u bent gevraagd om punten vaA
te vinden, of relaties tussen de punten, het dan makkelijker kan zijn om naar een abelse varieteB te
zoeken waar het makkelijk is om punten en relaties te vinden, en een isogenie v@h naar A te geven.

De boodschap is: wanneer twee abelse vareteiten zijn gegeven dan willen wij weten of er een isogenie
bestaat van de ene naar de andere. Normaalchecken wij nog een beetje meer: of er een isogenie bestaat
van een speci ek type (voor wiskundigen: in het geval van elliptische krommen is het type de graad). In
hoofdstuk 2 geven wij een algoritme om dit te doen, dat wij voor een paar “kleine' abelse varieteiten ook
hebben geimplementeerd. (Hier betekent “klein' abelse varieteiten die van geslacht twee krommen vandaan
komen, dit zullen wij straks uitleggen.)

Nog een manier die kan helpen om te zien of er een isogenie tussen twee abelse vareteiten bestaat, is
door een diagram te maken van de informatie; dit heet een isogenieengraaf. Een isogenieengraaf is een
diagram dat bestaat uit knopen gemarkeerd als abelse varieteiten, met steeds een pijl van een knoop naar
een andere als er een isogenie (van een gegeven type) bestaat van de ene abelse vareteit naar de andere.

Bijvoorbeeld, neem voor de vergelijkingE : y?> = x3 x +1 een witte knoop, en voor de vergelijking
EC:y?2=x3 33%2?+362x 1319 een zwarte knoop. Wij hebben al gezien dat er een isogenie v&n
naar E®is gegeven door X;y) 7! (x 11;y). Er bestaat ook een isogenie varkE° naar E gegeven door
(x;y) 7' (x +11;y) dus een deel van ons diagram ziet er als volgt uit:

o >e

Wij zouden ook een ongerichte lijn kunnen tekenen in plaats van de twee pijlen, zodat het diagram
wordt:

o——e

In hoofdstuk 3 bewijzen wij dat voor onze type isogenieen bestaat de isogenieengra@fuit vulkanen
Een vulkaan ziet er bijvoorbeeld als volgt uit:

2In dit proefschrift stellen we sommige knopen gelijk (voor de wiskundigen: wij stellen isomorfe knopen gelijk), en E en
E % worden eigenlijk door dezelfde knoop gerepresenteerd. Maar er bestaan wel grafen met heel veel knopen, zelfs na dit
gelijkstellen.
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Dit type graaf wordt vulkaan genoemd omdat het eruitziet als het bovenaanzicht van een vulkaan: de
driehoek in het centrum is de ‘rand' van de vulkaan (deze kan ook door iedeme-hoek vervangen worden),
en de lijnen die weg gaan van de rand stellen de lava voor dat naar beneden stroomt.

In hoofdstuk 4 bestuderen wij oplossingen van vergelijkingen digeslacht 2 krommende nieren. Buiten
wat speciale gevallen wordt een geslacht 2 kromme door een vergelijking = f (x) gegeven, waarf (x)
een polynoom is van graad 5 of 6 (dit betekent dat de hoogste macht var die in f (x) voorkomt 5 of 6
is). Bijvoorbeeld de vergelijking

y2=x%+1

is een geslacht 2 kromme. Deze ziet er uit als:

Wij kunnen met elke geslacht 2 kromme een abelse varieteit associeren; de studie naar geslacht 2
krommen is een substudie van die naar abelse varieteiten (in zekere zin). In plaats van alleen te zoeken
naar oplossingen die zijn gegeven door gehele getallen of breuken, kiezen wij daarnaast een priemgetal,
bijvoorbeeld 101, en proberen wij geheeltallige cosrdinatenx;y) te vinden zodat x> +1  y? gedeeld kan
worden door 101, bijvoorbeeldx =6 en y = 0.

Wij kunnen het aantal mogelijkheden tellen voor (x;y) met 0  x;y < 101 zodatx® +1 y?
gedeeld kan worden door 101 door elke optie voox eny op te sommen en te checken of het een
oplossing geeft (in dit geval er zijn 97 oplossingen). Aan de andere kant, als de priem niet 101 is, maar
115792089237316195423570985008687907853269984665640564039457584007913129640233, dan kan het op
deze manier tellen van alle oplossingen niet door moderne computers gedaan worden. Cryptographische
protocollen zijn op de moelijkheid van dit soort problemen gebaseerd. Maar soms is het e cienter om
te tellen door gebruik te maken van de structuur van de abelse varieteit. In hoofdstuk 4 geven wij een
e cient algoritme om alle oplossingen (voor een gegeven grote priem) te tellen voor vergelijkingen van
bepaalde geslacht 2 krommen. Hoofdstuk 4 is een samenwerking met Sean Ballentine, Aurore Guillevic,
Elisa Lorenzo-Garcia, Maike Massierer, Ben Smith, en Jaap Top.
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Resune

Dans cette these nousetudions les isogenies entre varees aleliennes. Les ¢k nitions pecises de varee
alelienne et d'isogenie epassent malheureusement le cadre de ce esune, mais nous essayons d'en donner

une icee intuitive.
L'exemple le plus commun d'une varet atelienne dans la treorie des nombres est celui decourbe

elliptique. Consicerons lequation

E:y?=x% x+1:
Cetteequation admet (x;y) = (1 ;1) pour solution car 1> =13 1+1. Lequation E est un exemple d'une
courbe elliptique, et si nous la dessinons, elle ressemblea ceci:

Il estevident sur I'image que (x;y) = (1; 1) est une solution de lequation, parce que le point de coordonrees
(1; 1) se trouve sur la courbe. Nous pouvons aussi trouver d'autres points sur la courbe avec des coordonrees
enteres (nombres entiers), telles que X;y) = (0; 1), qui donnent solutions de lequation E.

Ayant trouve deux points sur la courbe avec des coordonrees enteres, nous pouvons les utiliser pour
en trouver d'autres: dans notre exemple, tracons la ligne droite entre les points (0 1) et (1;1); nous
obtenons l'image suivante:
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La droite coupe la courbe en un troiseme point (X;y) = (3 ;5), ce qui nous fournit une troiseme solution
a notreequation. Dans cet exemple, ce troiseme point a lui aussi des coordonrees enteres, bien que la
meme constructiona partir de points dierents aurait pu donner des fractions (nombres rationnels). Par
exemple, la ligne droite passant par (3 5) et (0; 1) coupe la courbe en un troiseme point 19—1; % .
Cependant, cette construction ne donnera jamais un nombre irrationnel comme ou e!

En fait, dans cet exemple, il y a une in nie de solutions rationnelles (c'esta-dire que x et y sont
des fractions)a notreequation qui peuvent &tre trouvees de cette facon - en dessinant une ligne droite
entre deux points connu (ou leurs e exions par rapporta l'axe x) et en cherchant le troiseme point
d'intersection avec la courbe. Mieux encore, dans cet exemple, il est possible de trouvietes les solutions
rationnellesa notreequation de cette manéere pour peu que I'on utilise des points bien choisisa chaque
etape.

Cet exemple est, cependant, speciala cetegard - une varee akelienne est un objet geonetrique
qui peut etre ce ni par desequations polynémiales comme celle ci-dessus, pour lesquelles les solutions
rationnelles ont des relations prescrites, par exemple en dessinant des lignes droites et en recherchant les
points d'intersection comme ci-dessus. En gereral, ce n'est pas toujours possiblea trouver des points
de cepart pour cette construction, ou parfois il y a seulement un nombre ni de solutions, et parfois on
ne sait pas s'il y a un nombre ni ou in ni de solutions. De méme, pour desequations ayant un dege
superieura I'exemple ci-dessus (c'esta-dire des puissances sugerieures de et y) ou plus de variables (ou
qui sont plus compliqees d'une autre manere), les relations deviennent plus compligLees.

Une autre fecon de trouver des solutionsa de tellesequations est d'utiliser desisogenies. Une isogenie
est une application entre varees aleliennes qui peserve la structure georretrique . Expliquons ceci sur
un exemple: consicerer I'application

(y) 7 (x 1Ly);

qui envoie les solutions de lequationE :y? = x3  x + 1 vers des solutions de
y?2=x% 33x%+362x 1319

qui ressemblea:

Nous avons trouwe ci-avant trois solutions (0; 1); (1;1) et (3;5)a notreequation E et celles-si se trouvent
sur la méme droite. Notons que si X;y) est une solution de lequation E, alors (x + 11;y) sera bien une
solution de la nouvelleequation. Ainsi, on peut utiliser I'application pour exprimer les trois solutions

correspondantes de la nouvelleequation:

O; 17" (11; 1)
(1;1) 7! (12;1)
(3;5) 7! (14;5):

Si I'on ajoute ces trois solutions sur le dessin ci-dessus, on constate que les trois points sont aligres:
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Alors, parce que l'application est uneisogenie, la relation geonetrique (i.e. le fait d'etre aligrees) entre
ces solutions est pesenee.

A l'aide d'une isogenie d'une varet atelienne A vers une varek alelienne B, etetant donres des
points sur A, on peut trouver des points surB. L'isognie peserve de plus les relations entres ces points.
Plus important encore, si I'on se donne une varet atelienne A et que l'on veut trouver des points surA
ou des relations entre ces points, il peut étre plus facile de chercher une varet aleliennd sur laquelle
on peut plus facilement trouver des points et une isogenie deB a A.

Le message principal est donc: il est ineressant de savoir, etant donre deux varees aleliennes, s'il
existe une isogenie entre elles. En fait, on pose une question un peu plus pecise: existe-t-il une isognie
d'un type speci que entre deux varees ateliennes donrees? (Pour les mattematiciennes, dans le cas des
courbes elliptiques, le type d'une isogenie est son dege.) Dans le chapitre 2, nous donnons un algorithme
qui eponda cette question. Nous avons de plus impement celui-ci pour certaines petites varees
aleliennes. (Ici petit signi e des varees ateliennes qui viennent des courbes de genre 2, qui nous
e nissons plus loin.)

Une autre approche pour aidera voir,etant donrees deux varees atelienne, s'il existe ou pas une
isogenie entre elles, est de faire un diagramme de la situation, appek graphe d'isogenie. Un graphe
d'isogenie est un diagramme dont les sommets sont des varees aleliennes, et dans lequel deux sommets
sont reles par une aréte s'il y a une isogenie (d'un type donre) entre eux.

Par exemple, repesentons lequation E : y?> = x3 x + 1 par un sommet blanc, et lequation
EO:y2=x3 33%%+362x 1319 par un sommet noir. Nous avons cep vu qu'il existe une isogenie
de E vers E? donree par (x;y) 7! (x 11;y). De plus, il existe une isogenie deE° vers E donree par
(x;y) 7! (x +11;y). Une partie de notre graphe ressemblerait alorsa:

o >e

Nous aurions pu aussi dessiner une aréte non orienee au lieu des deux arétes orienees, ce qui donnerait
le graphe suivant:

o——e

Au chapitre 3, nous prouvons que pour notre type d'isogenie, le graphe d'isogani@ se compose de
volcans, dont un exemple est ci-dessous:

3 Dans cette these, nous aussi assimilons des sommets (pour les matteciennes: nous identi ons des sommets isomorphiques),
et en fait E et EO seraient repesent par la méme sommet. Cependant, céxiste des graphes avec beaucoup de sommets
méme apes en iden er un part des sommets.
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Ce type de graphe s'appelle un volcan car il ressemblea une vue arienne d'un volcan: le triangle au
centre correspond au crakre du volcan (on pourrait le remplacer par nimporte quel n-gone) et les
lignes qui skloignent du crakre sont la lave qui coule vers le sol.

Au chapitre 4, nousetudions des solutions dequations ce nissant des courbes de genre 2En dehors
de quelques cas particuliers, une courbe de genre 2 est donree par uneequatigi = f (x), as f (x) est un
polynéme de dege 5 ou 6 (c'esta-dire que la plus grande puissance de apparaissant dansf (x) est x° ou
x®). Par exemple lequation

y2=x%+1

repesente une courbe de genre 2. Elle ressemblea ceci:

On peut associer une varee ateliennea n'importe quelle courbe de genre 2; letude des courbes de
genre 2 se ramene donca letude de certaines varees ateliennes (dans un certain sens). Au lieu de chercher
seulement des solutions de lequation donree par des nombres entiers ou des fractions, on choisit un nombre
premier, disons 101, et on essaie de trouver des pointsa coordonrees enteres;fy) tels quex®+1  y?
est divisible par 101, par exemplex = 6 et y = 0. On peut compter le nombre des choix de X;y) avec
0 x;y < 101 qui donnentx®+1 y? divisible par 101, simplement enenunerant toutes les possibilies
pour X ety et en \eri ant si on a une solution (dans ce cas, il y a 97 solutions). Toutefois, si le premier n'est
pas 101, mais 115792089237316195423570985008687907853269984665640564039457584007913129640233,
alors le comptage de toutes les solutions ne peut pas etre e ectlte de cette manere par les ordinateurs
modernes, et de nombreux protocoles cryptographiques sont bases sur la di cule de ce type de probeme.
Cependant, parfois c'est possiblea compter le nombre de solutions si on utilise la structure de varet
alelienne. Au chapitre 4, nous donnons un algorithme e cace pour compter toutes les solutions (pour un
grand nombre premier donre) pour lesequations ¢ nissant des certaines courbes de genre 2. Le chapitre
4 est un travail en commun avec Sean Ballentine, Aurore Guillevic, Elisa Lorenzo-Garcia, Maike Massierer,
Ben Smith et Jaap Top.
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