Skip to Main content Skip to Navigation

Development of transparent electrodes by vacuum-free and low cost deposition methods for photovoltaic applications

Abstract : The thesis work involves the study of Indium-free Transparent Conductive Materials (TCMs), key components of many optoelectronic devices, using Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD). This new approach shares the main advantages of conventional ALD but allows open-air, very fast deposition of high-quality nanometer-thick materials over large surfaces. We focused on the optimization of the electrical properties of Aluminum doped Zinc Oxide (ZnO:Al) films, one of the most studied Transparent Conductive Oxides (TCOs). The effect of several experimental parameters on the physical properties of the deposited films has been evaluated. The carrier transport mechanism at grain boundaries was identified to be tunneling rather than thermionic emission in highly doped ZnO, thanks to a new model we have developed using the Airy Function Transfer Matrix Method. Accordingly, the electron trap density at grain boundaries for ZnO:Al samples (2.2×1020 cm-3) prepared by AP-SALD was estimated to be about 7.6×1013 cm-2. Our model shows that grain boundary scattering is the dominant scattering mechanism in our films. We found that UV assisted annealing (~ 200 °C) under vacuum was an efficient method to reduce grain boundary traps, resulting in an improvement of mobility from 1 cm2V-1s-1 to 24 cm2V-1s-1 for ZnO and to 6 cm2V-1s-1 for ZnO:Al. We have also used AP-SALD to fabricate high-performance, stable and flexible TCMs based on metallic nanowire network. For that, we developed composite electrodes by coating silver/copper nanowires (AgNWs/CuNWs) with ZnO, Al2O3, or ZnO:Al. A thin conformal coating deposited by AP-SALD technique enhanced drastically the thermal/electrical stability of the AgNWs/CuNWs network. High optoelectronic properties (resistivity ~ 10-4 Ωcm, transmittance ~ 90 %) of the AgNW/ZnO:Al composite make them very appropriate for application as TCM, especially for flexible devices.Finally, as a soft deposition technique, AP-SALD is completely compatible to the Silicon heterojunction (Si-HET) solar cell technology in terms of interface passivation. The integration of ZnO:Al and AgNWs based TCMs to Si-HET cell has also been explored.
Document type :
Theses
Complete list of metadatas

Cited literature [199 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01992223
Contributor : Abes Star :  Contact
Submitted on : Thursday, January 24, 2019 - 12:23:24 PM
Last modification on : Thursday, August 1, 2019 - 11:35:54 AM

File

NGUYEN_2018_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01992223, version 1

Collections

Citation

Viet Huong Nguyen. Development of transparent electrodes by vacuum-free and low cost deposition methods for photovoltaic applications. Electric power. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAI072⟩. ⟨tel-01992223⟩

Share

Metrics

Record views

263

Files downloads

161