. .. Bmbpt-diagram, 72 3.3. A BMBPT diagram drawn with some propagators going downwards turned into an equivalent diagram with all its propagators going upwards, p.74

. , 78 3.6. Zero-, first-, second-and third-order TSDs corresponding to BMBPT diagrams generated from operators containing six legs at most, FeynMF instructions to draw the BMBPT diagram displayed in Fig. 2.9

. , Fourth-order TSDs corresponding to BMBPT diagrams generated from operators containing six legs at most, i.e., with deg_max = 6

. , A fifth-order non-tree TSD, Fully-labelled third-order BMBPT diagram displayed in Fig. 2.9 and its associated TSD

. .. Tsds, 100 4.1. Systematics along O, Ca and Ni isotopic chains: absolute binding energy, twoneutron separation energy, neutron-number dispersion, perturbative correction to the average neutron number

. , Observable BCC diagrams versus Feynman BMBPT diagrams contributing to them up to second-order, Grand potential BMBPT Feynman diagrams up to second order and their real or complex character

. , Number of time-ordered diagrams generated from operators containing at most four (deg_max = 4) or six (deg_max = 6) legs, Number of time-unordered diagrams generated from operators containing at most four (deg_max = 4) or six (deg_max = 6)

. , Number of TSDs and BMBPT diagrams per topological category generated from operators containing at most four legs (deg_max = 4), Number of partially-time-ordered diagrams generated from operators containing at most four (deg_max = 4) or six (deg_max = 6)

, Maximal degree of resummation of tree TSDs associated with BMBPT diagrams generated from operators containing at most four or six legs, p.98

N. Ishii, S. Aoki, and T. Hatsuda, The Nuclear Force from Lattice QCD, Phys. Rev. Lett, vol.99, issue.1, p.22001, 2007.

S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue et al., Lattice QCD approach to Nuclear Physics, PTEP, vol.2012, issue.1, pp.1-105, 2012.

U. Van-kolck, Few-Nucleon Systems in a Quirky World: Lattice Nuclei in Effective Field Theory, Few Body Syst, vol.56, issue.11-12, pp.745-752, 2015.

H. Witala, W. Gloeckle, D. Huber, J. Golak, and H. Kamada, The Cross-section minima in elastic Nd scattering: A 'Smoking gun' for three nucleon force effects, Phys. Rev. Lett, vol.81, issue.1, pp.1183-1186, 1998.

S. Nemoto, K. Chmielewski, S. Oryu, and P. U. Sauer, Discrepancy in the cross section minimum of elastic nucleon-deuteron scattering, Phys. Rev. C, vol.58, issue.1, pp.2599-2602, 1998.

S. Kistryn, Systematic study of three-nucleon force effects in the cross section of the deuteron-proton breakup at 130-MeV, Phys. Rev. C, vol.72, issue.1, p.44006, 2005.

A. Nogga, H. Kamada, and W. Gloeckle, Modern nuclear force predictions for the alpha particle, Phys. Rev. Lett, vol.85, issue.1, pp.944-947, 2000.

A. Nogga, S. K. Bogner, and A. Schwenk, Low-momentum interaction in few-nucleon systems, Phys. Rev. C, vol.70, issue.1, p.61002, 2004.

A. Faessler, S. Krewald, and G. J. Wagner, Is there evidence of three-body forces from violation of the Koltun energy sum rule?, Phys. Rev. C, vol.11, issue.1, pp.2069-2072, 1975.

J. Fujita and H. Miyazawa, Pion Theory of Three-Body Forces, Prog. Theor. Phys, vol.17, issue.1, pp.360-365, 1957.

B. A. Loiseau and Y. Nogami, Three-nucleon force, Nucl. Phys. B, vol.2, issue.1, pp.470-478, 1967.

W. Zuo, I. Bombaci, and U. Lombardo, Asymmetric nuclear matter from extended Brueckner-Hartree-Fock approach, Phys. Rev. C, vol.60, issue.1, p.24605, 1999.

A. Lejeune, U. Lombardo, and W. Zuo, Nuclear matter EOS with a three-body force, Phys. Lett. B, vol.477, issue.1, p.45, 2000.

W. Zuo, A. Lejeune, U. Lombardo, and J. F. Mathiot, Interplay of three-body interactions in the EOS of nuclear matter, Nucl. Phys. A, vol.706, issue.1, pp.418-430, 2002.
URL : https://hal.archives-ouvertes.fr/in2p3-00012044

W. Zuo, A. Lejeune, U. Lombardo, and J. F. Mathiot, Microscopic three-body force for asymmetric nuclear matter, Eur. Phys. J. A, vol.14, issue.1, pp.469-475, 2002.
URL : https://hal.archives-ouvertes.fr/in2p3-00012043

F. Coester, S. Cohen, B. Day, and C. M. Vincent, Variation in Nuclear-Matter Binding Energies with Phase-Shift-Equivalent Two-Body Potentials, Phys. Rev. C, vol.1, issue.1, pp.769-776, 1970.

R. Brockmann and R. Machleidt, Relativistic nuclear structure. 1: Nuclear matter, Phys. Rev. C, vol.42, 1965.

H. Muther, R. Machleidt, and R. Brockmann, Relativistic nuclear structure. 2: Finite nuclei, Phys. Rev. C, vol.42, issue.1, pp.1981-1988, 1990.

G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, The NUBASE2016 evaluation of nuclear properties, Chin. Phys. C, vol.41, issue.3, pp.30001-30002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555161

O. Sorlin and M. G. Porquet, Nuclear magic numbers: New features far from stability, Prog. Part. Nucl. Phys, vol.61, issue.2, pp.602-673, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00280392

I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa et al., Measurements of Interaction Cross-Sections and Nuclear Radii in the Light p Shell Region, Phys. Rev. Lett, vol.55, issue.2, pp.2676-2679, 1985.

I. Tanihata, Measurements of Interaction Cross-Sections and Radii of He Isotopes, Phys. Lett. B, vol.160, issue.2, pp.380-384, 1985.

M. Fukuda, Neutron halo in 11 Be studied via reaction cross sections, Phys. Lett. B, vol.268, issue.2, pp.339-344, 1991.

P. G. Hansen and B. Jonson, The Neutron halo of extremely neutron-rich nuclei, Europhys. Lett, vol.4, issue.2, pp.409-414, 1987.

A. S. Jensen, K. Riisager, D. V. Fedorov, and E. Garrido, Structure and reactions of quantum halos, Rev. Mod. Phys, vol.76, issue.2, pp.215-261, 2004.

B. Blank and M. Ploszajczak, Two-proton radioactivity, Rept. Prog. Phys, vol.71, issue.2, p.46301, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00324317

K. Blaum, High-accuracy mass spectrometry with stored ions, Phys. Rept, vol.425, issue.1, pp.1-78, 2006.

B. Schlitt, K. Beckert, T. Beha, H. Eickhoff, B. Franzke et al., Schottky mass spectrometry at the heavy ion storage ring ESR, Hyperfine Interactions, vol.99, issue.1, pp.117-125, 1996.

M. Wang, G. Audi, B. Pfeiffer, and F. G. Kondev, The atomic mass evaluation: Present and future, J. Phys. Conf. Ser, vol.312, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00652283

N. Paul, Are There Signatures of Harmonic Oscillator Shells Far from Stability? First Spectroscopy of 110 Zr, Phys. Rev. Lett, vol.118, issue.3, p.32501, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01449481

H. Frisk, Systematics of rotational bands with K=0 in odd-odd nuclei, Z. Phys. A, vol.330, issue.3, pp.241-248, 1988.

M. Ionescu-bujor, Shape coexistence in neutron-deficient Pb nuclei probed by quadrupole moment measurements, Phys. Lett. B, vol.650, issue.2, pp.141-147, 2007.

K. Heyde and J. L. Wood, Shape coexistence in atomic nuclei, Rev. Mod. Phys, vol.83, issue.2, pp.1467-1521, 2011.

K. H. Schmidt, Relativistic radioactive beams: A New access to nuclear fission studies, Nucl. Phys. A, vol.665, issue.2, pp.221-267, 2000.

M. A. Caprio, Structure of collective modes in transitional and deformed nuclei

D. Ackermann, Superheavy elements at GSI-present and future, Nucl. Phys. A, vol.787, issue.2, pp.353-362, 2007.

G. Royer and G. Gautier, Coefficients and terms of the liquid drop model and mass formula, Phys. Rev. C, vol.73, issue.2, p.67302, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00089830

J. L. Friar, G. L. Payne, V. G. Stoks, and J. J. De-swart, Triton calculations with the new Nijmegen potentials, Phys. Lett. B, vol.311, issue.3, p.4, 1993.

W. Glöckle and H. Kamada, Alpha-particle binding energies for realistic nucleon-nucleon interactions, Phys. Rev. Lett, vol.71, issue.3, pp.971-974, 1993.

A. Nogga, D. Huber, H. Kamada, and W. Gloeckle, Benchmark calculations for the triton binding energy for modern N N forces and the pi pi exchange three nucleon force, Phys. Lett. B, vol.409, issue.3, pp.19-25, 1997.

B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper, and R. B. Wiringa, Quantum Monte Carlo calculations of nuclei with A <= 7, Phys. Rev. C, vol.56, issue.3, pp.1720-1750, 1997.

R. B. Wiringa, Quantum Monte Carlo calculations for light nuclei, Nucl. Phys. A, vol.631, issue.3, pp.70-90, 1998.

R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R. Pandharipande, Quantum Monte Carlo calculations of A = 8 nuclei, Phys. Rev. C, vol.62, issue.3, p.14001, 2000.

P. Navratil and B. R. Barrett, Shell model calculations for the three nucleon system, Phys. Rev. C, vol.57, issue.3, pp.562-568, 1998.

P. Navratil and B. R. Barrett, Large basis shell model calculations for p shell nuclei, Phys. Rev. C, vol.57, issue.3, pp.3119-3128, 1998.

P. Navratil, G. P. Kamuntavicius, and B. R. Barrett, Few nucleon systems in translationally invariant harmonic oscillator basis, Phys. Rev. C, vol.61, issue.3, p.44001, 2000.

S. Quaglioni and P. Navratil, Ab initio no-core shell model and microscopic reactions: Recent achievements, Few Body Syst, vol.44, issue.3, pp.337-339, 2008.

P. Navratil, S. Quaglioni, I. Stetcu, and B. R. Barrett, Recent developments in no-core shell-model calculations, J. Phys. G, vol.36, p.83101, 2009.

K. Kowalski, D. J. Dean, M. Hjorth-jensen, T. Papenbrock, and P. Piecuch, Coupled cluster calculations of ground and excited states of nuclei, Phys. Rev. Lett, vol.92, p.113, 2004.

R. J. Bartlett and M. Musial, Coupled-cluster theory in quantum chemistry, Rev. Mod. Phys, vol.79, p.113, 2007.

G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-jensen, Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions, Phys. Rev. C, vol.82, p.113, 2010.

P. Piecuch, J. R. Gour, and M. W?och, Left-eigenstate completely renormalized equation-of-motion coupled-cluster methods: Review of key concepts, extension to excited states of open-shell systems, and comparison with electron-attached and ionized approaches, Int. J. Quantum Chem, vol.109, issue.14, p.113, 2009.

S. Binder, J. Langhammer, A. Calci, and R. Roth, Ab Initio Path to Heavy Nuclei, Phys. Lett. B, vol.736, issue.3, p.113, 2014.

W. H. Dickhoff and C. Barbieri, Selfconsistent Green's function method for nuclei and nuclear matter, Prog. Part. Nucl. Phys, vol.52, p.113, 2004.

A. Cipollone, C. Barbieri, and P. Navrátil, Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain, Phys. Rev. C, vol.92, issue.1, p.113, 2015.

A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls, Self-consistent Green's functions formalism with three-body interactions, Phys. Rev. C, vol.88, issue.5, p.113, 2013.

K. Tsukiyama, S. K. Bogner, and A. Schwenk, In-Medium Similarity Renormalization Group for Nuclei, Phys. Rev. Lett, vol.106, p.222502, 2011.

H. Hergert, S. K. Bogner, S. Binder, A. Calci, J. Langhammer et al., In-medium similarity renormalization group with chiral two-plus three-nucleon interactions, Phys. Rev. C, vol.87, issue.3, p.113, 2013.

T. D. Morris, N. Parzuchowski, and S. K. Bogner, Magnus expansion and in-medium similarity renormalization group, Phys. Rev. C, vol.92, issue.3, p.4, 2015.

H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tsukiyama, The In-Medium Similarity Renormalization Group: A Novel Ab Initio Method for Nuclei, Phys. Rept, vol.621, p.113, 2016.

I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge Molecular Science, vol.113, p.157, 1996.

K. A. Brueckner, Many-Body Problem for Strongly Interacting Particles. 2. Linked Cluster Expansion, Phys. Rev, vol.100, issue.3, pp.36-45, 1955.

J. Hubbard, The description of collective motions in terms of many-body perturbation theory, Proc. Roy. Soc. A, vol.240, issue.1223, pp.539-560, 1957.

F. Coester, Bound states of a many-particle system, Nucl. Phys, vol.7, issue.3, pp.421-424, 1958.

F. Coester and H. Kümmel, Short-range correlations in nuclear wave functions, Nucl. Phys, vol.17, issue.3, pp.477-485, 1960.

J. ?í?ek, On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods, J. Chem. Phys, vol.45, issue.11, pp.4256-4266, 1966.

J. ?í?ek, On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules, Advances in Chemical Physics, vol.14, issue.2, pp.35-89, 1969.

D. Mukherjee and S. Pal, Use of Cluster Expansion Methods in the Open-Shell Correlation Problem, Advances in Quantum Chemistry, vol.20, p.6, 1989.

B. Jeziorski and J. Paldus, Spin-adapted multireference coupled-cluster approach: Linear approximation for two closed-shell-type reference configurations, J. Chem. Phys, vol.88, issue.9, p.6, 1988.

X. Li and J. Paldus, Reduced multireference CCSD method: An effective approach to quasidegenerate states, J. Chem. Phys, vol.107, issue.16, pp.6257-6269, 1997.

J. Paldus and X. Li, A Critical Assessment of Coupled Cluster Method in Quantum Chemistry, pp.1-175, 1999.

M. Musia?, A. Perera, and R. J. Bartlett, Multireference coupled-cluster theory: The easy way, J. Chem. Phys, vol.134, issue.11, p.6, 2011.

B. Adams, K. Jankowski, and J. Paldus, Quasi-degeneracy and coupled-pair theories, Chem. Phys. Lett, vol.67, issue.1, pp.144-148, 1979.

B. G. Adams and J. Paldus, Symmetry-adapted coupled-pair approach to the many-electron correlation problem. i. LS-adapted theory for closed-shell atoms, Phys. Rev. A, vol.24, issue.4, pp.2302-2315, 1981.

B. G. Adams, K. Jankowski, and J. Paldus, Symmetry-adapted coupled-pair approach to the many-electron correlation problem. iii. approximate coupled-pair approaches for the be atom, Phys. Rev. A, vol.24, issue.4, pp.2330-2338, 1981.

T. Duguet, Symmetry broken and restored coupled-cluster theory: I. Rotational symmetry and angular momentum, J. Phys. G, vol.42, issue.2, p.114, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137926

T. Duguet and A. Signoracci, Symmetry broken and restored coupled-cluster theory. II. Global gauge symmetry and particle number, J. Phys. G, vol.44, issue.1, p.114, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01465782

A. Signoracci, T. Duguet, G. Hagen, and G. Jansen, Ab initio Bogoliubov coupled cluster theory for open-shell nuclei, Phys. Rev. C, vol.91, issue.6, p.113, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01119433

Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, Projected coupled cluster theory, J. Chem. Phys, vol.147, issue.6, p.6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01929197

Y. Qiu, T. M. Henderson, T. Duguet, and G. E. Scuseria, Particle-number projected Bogoliubov coupled cluster theory. Application to the pairing Hamiltonian
URL : https://hal.archives-ouvertes.fr/hal-01929197

S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Similarity renormalization group for nucleon-nucleon interactions, Phys. Rev. C, vol.75, p.106, 2007.

H. Hergert and R. Roth, The Unitary correlation operator method from a similarity renormalization group perspective, Phys. Rev. C, vol.75, p.106, 2007.

R. Roth, S. Reinhardt, and H. Hergert, Unitary Correlation Operator Method and Similarity Renormalization Group: Connections and Differences, Phys. Rev. C, vol.77, p.106, 2008.

S. K. Bogner, R. J. Furnstahl, and A. Schwenk, From low-momentum interactions to nuclear structure, Prog. Part. Nucl. Phys, vol.65, p.106, 2010.

R. Roth, J. Langhammer, A. Calci, S. Binder, and P. Navratil, Similarity-Transformed Chiral NN+3N Interactions for the Ab Initio Description of 12-C and 16-O, Phys. Rev. Lett, vol.107, p.106, 2011.

E. D. Jurgenson, P. Maris, R. J. Furnstahl, P. Navratil, W. E. Ormand et al., Structure of p-shell nuclei using three-nucleon interactions evolved with the similarity renormalization group, Phys. Rev. C, vol.87, issue.5, p.106, 2013.

R. J. Furnstahl and K. Hebeler, New applications of renormalization group methods in nuclear physics, Rept. Prog. Phys, vol.76, p.106, 2013.

H. Hergert, In-Medium Similarity Renormalization Group for Closed and Open-Shell Nuclei, Phys. Scripta, vol.92, issue.2, p.109, 2017.

H. Hergert, S. Binder, A. Calci, J. Langhammer, and R. Roth, Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions, Phys. Rev. Lett, vol.110, issue.24, p.6, 2013.

H. Hergert, S. K. Bogner, T. D. Morris, S. Binder, A. Calci et al., Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes, Phys. Rev. C, vol.90, issue.4, p.41302, 2014.

B. R. Barrett, P. Navratil, and J. P. Vary, Ab initio no core shell model, Prog. Part. Nucl. Phys, vol.69, issue.4, pp.131-181, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00831079

E. Gebrerufael, K. Vobig, H. Hergert, and R. Roth, Ab Initio Description of Open-Shell Nuclei: Merging No-Core Shell Model and In-Medium Similarity Renormalization Group, Phys. Rev. Lett, vol.118, issue.15, p.152503, 2017.

H. Hergert, J. Yao, T. D. Morris, N. M. Parzuchowski, S. K. Bogner et al., Nuclear Structure from the In-Medium Similarity Renormalization Group, Proceedings, 19th International Conference on Recent Progress in Many-Body Theories (RPMBT19): Pohang, vol.1041, p.157, 2017.

C. Barbieri and A. Carbone, Self-consistent Green's function approaches, Lect. Notes Phys, vol.936, p.157, 2017.

V. Somà, T. Duguet, and C. Barbieri, Ab-initio self-consistent Gorkov-Green's function calculations of semi-magic nuclei. I. Formalism at second order with a two-nucleon Bibliography interaction, Phys. Rev. C, vol.84, p.113, 2011.

V. Somà, A. Cipollone, C. Barbieri, P. Navrátil, and T. Duguet, Chiral two-and three-nucleon forces along medium-mass isotope chains, Phys. Rev. C, vol.89, issue.6, p.113, 2014.

M. Rosenbusch, Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K, Phys. Rev. Lett, vol.114, issue.5, p.202501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165237

T. Duguet, V. Somà, S. Lecluse, C. Barbieri, and P. Navrátil, Ab initio calculation of the potential bubble nucleus 34 si, Phys. Rev. C, vol.95, issue.5, p.34319, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01538563

V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J. D. Holt et al., Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces, Phys. Rev. Lett, vol.117, issue.5, p.52501, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01504955

J. Papuga, Shell structure of potassium isotopes deduced from their magnetic moments, Phys. Rev. C, vol.90, issue.3, p.34321, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01097952

T. Duguet, H. Hergert, J. D. Holt, and V. Somà, Nonobservable nature of the nuclear shell structure: Meaning, illustrations, and consequences, Phys. Rev. C, vol.92, issue.5, p.34313, 2015.

E. Caurier, G. Martinez-pinedo, F. Nowacki, A. Poves, and A. P. Zuker, The Shell model as unified view of nuclear structure, Rev. Mod. Phys, vol.77, issue.5, pp.427-488, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00023235

D. J. Dean, T. Engeland, M. Hjorth-jensen, M. Kartamyshev, and E. Osnes, Effective interactions and the nuclear shell-model, Prog. Part. Nucl. Phys, vol.53, issue.5, pp.419-500, 2004.

A. Tichai, E. Gebrerufael, and R. Roth, Open-Shell Nuclei from No-Core Shell Model with Perturbative Improvement, Phys. Lett. B, vol.786, issue.6, p.113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01914829

S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder et al., Nonperturbative shell-model interactions from the in-medium similarity renormalization group, Phys. Rev. Lett, vol.113, issue.6, p.142501, 2014.

G. R. Jansen, J. Engel, G. Hagen, P. Navratil, and A. Signoracci, Ab-initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes, Phys. Rev. Lett, vol.113, issue.14, p.142502, 2014.

G. R. Jansen, A. Signoracci, G. Hagen, and P. Navrátil, Open sd-shell nuclei from first principles, Phys. Rev. C, vol.94, issue.1, p.11301, 2016.

Q. Wu, F. R. Xu, B. S. Hu, and J. G. Li, Ab initio perturbation calculations of realistic effective interactions in the Hartree-Fock basis, vol.6, p.7

P. Ring and P. Schuck, The Nuclear Many-Body Problem, vol.13, p.31, 1980.

M. Bender, P. Heenen, and P. Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys, vol.75, issue.6, pp.121-180, 2003.

T. Duguet and J. Sadoudi, Breaking and restoring symmetries within the nuclear energy density functional method, J. Phys. G, vol.37, issue.6, p.64009, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00630016

T. Duguet, The nuclear energy density functional formalism, Lect. Notes Phys, vol.879, p.19, 2014.

V. Somà, C. Barbieri, and T. Duguet, Ab-initio Gorkov-Green's function calculations of open-shell nuclei, Phys. Rev. C, vol.87, issue.1, p.11303, 2013.

J. Goldstone, Derivation of the Brueckner many-body theory, Proc. Roy. Soc. A, vol.239, issue.1217, p.113, 1957.

N. Hugenholtz, Perturbation theory of large quantum systems, Physica, vol.23, issue.1, p.113, 1957.

A. Tichai, J. Langhammer, S. Binder, and R. Roth, Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States, Phys. Lett. B, vol.756, issue.7, p.113, 2016.

B. Hu, F. Xu, Z. Sun, J. P. Vary, and T. Li, Ab initio nuclear many-body perturbation calculations in the Hartree-Fock basis, Phys. Rev. C, vol.94, issue.1, p.113, 2016.

G. C. Wick, The Evaluation of the Collision Matrix, Phys. Rev, vol.80, p.34, 1950.

J. Paldus and H. Wong, Computer generation of Feynman diagrams for perturbation theory I. General algorithm, Comput. Phys. Comm, vol.6, issue.1, p.69, 1973.

H. Wong and J. Paldus, Computer generation of Feynman diagrams for perturbation theory II. Program description, Comput. Phys. Comm, vol.6, issue.1, p.69, 1973.

U. Kaldor, An algorithm for generating Goldstone and Bloch-Brandow diagrams, J. Comput. Phys, vol.20, issue.4, p.69, 1976.

Z. Csépes and J. Pipek, An effective recursive algorithm for generating many-body Hugenholtz and Goldstone diagrams, J. Comput. Phys, vol.77, issue.1, p.69, 1988.

J. Lyons, D. Moncrieff, and S. Wilson, Diagrammatic many body perturbation expansion for atoms and molecules: Automatic generation & analysis of 5th order Hugenholtz energy diagrams, Comput. Phys. Comm, vol.84, p.69, 1994.

P. D. Stevenson, Automatic Generation of Vacuum Amplitude Many-Body Perturbation Series, Int. J. Mod. Phys. C, vol.14, issue.8, p.69, 2003.

M. Kállay and P. R. Surján, Higher excitations in coupled-cluster theory, J. Chem. Phys, vol.115, issue.7, p.69, 2001.

M. Kállay, P. G. Szalay, and P. R. Surján, A general state-selective multireference coupled-cluster algorithm, J. Chem. Phys, vol.117, issue.3, p.69, 2002.

P. Arthuis, A. Tichai, and T. Duguet, Bogoliubov Many-Body Perturbation Theory formalism, vol.46, p.113

D. J. Thouless, Perturbation theory in statistical mechanics and the theory of superconductivity, Annals of Physics, vol.10, issue.4, p.30, 1960.

M. Bender, T. Duguet, and D. Lacroix, Particle-Number Restoration within the Energy Density Functional Formalism, Phys. Rev. C, vol.79, p.19, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00321220

R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer et al., Ab Initio Calculations of Medium-Mass Nuclei with Normal-Ordered Chiral NN+3N Interactions, Phys. Rev. Lett, vol.109, p.106, 2012.

S. Binder, J. Langhammer, A. Calci, P. Navratil, and R. Roth, AbInitio calculations of medium-mass nuclei with explicit chiral 3N interactions, Phys. Rev. C, vol.87, issue.2, p.109, 2013.

V. Rotival and T. Duguet, New analysis method of the halo phenomenon in finite many-fermion systems. First applications to medium-mass atomic nuclei, Phys. Rev. C, vol.79, p.29, 2009.

N. C. Handy, J. A. Pople, M. Head-gordon, K. Raghavachari, and G. W. Trucks, Size-consistent Brueckner theory limited to double substitutions, Chem. Phys. Lett, vol.164, issue.2, pp.185-192, 1989.

J. Dobaczewski, H. Flocard, and J. Treiner, Hartree-Fock-Bogolyubov descriptions of nuclei near the neutrino dripline, Nucl. Phys. A, vol.422, p.31, 1984.

C. Bloch, Sur la détermination de l'état fondamental d'un système de particules, Nucl. Phys, vol.7, pp.451-458, 1958.

K. Van-houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov et al., Feynman diagrams versus Fermi-gas Feynman emulator, Nature Phys, vol.8, p.69, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00721961

K. Van-houcke, F. Werner, N. Prokof&apos;ev, and B. Svistunov, Bold diagrammatic Monte Carlo for the resonant Fermi gas, p.69

A. Tichai, P. Arthuis, T. Duguet, H. Hergert, V. Somá et al., Bogoliubov Many-Body Perturbation Theory for Open-ShellNuclei, Phys. Lett. B, vol.786, issue.70, p.114, 2018.

T. Ohl, Drawing Feynman diagrams with Latex and Metafont, Comput. Phys. Comm, vol.90, pp.340-354, 1995.

A. A. Hagberg, D. A. Schult, and P. J. Swart, Exploring Network Structure, Dynamics, and Function using NetworkX, Proceedings of the 7th Python in Science Conference, p.75, 2008.

S. Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett. B, vol.251, issue.2, p.113, 1990.

S. Weinberg, Effective chiral lagrangians for nucleon-pion interactions and nuclear forces, Nucl. Phys. B, vol.363, issue.1, p.113, 1991.

E. Epelbaum, H. Hammer, and U. Meißner, Modern Theory of Nuclear Forces, Rev.Mod.Phys, vol.81, p.113, 2008.

U. Meißner, The long and winding road from chiral effective Lagrangians to nuclear structure, Phys. Scripta, vol.91, issue.3, p.113, 2016.

E. Epelbaum, Nuclear Chiral EFT in the Precision Era, 8th International Workshop on Chiral Dynamics (CD 2015), vol.105, p.113, 2015.

S. Weinberg, Phenomenological Lagrangians, Physica A, vol.96, issue.1-2, pp.327-340, 1979.

P. , Local three-nucleon interaction from chiral effective field theory, Few Body Syst, vol.41, p.106, 2007.

D. R. Entem and R. Machleidt, Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory, Phys. Rev. C, vol.68, p.106, 2003.

E. Epelbaum, H. Krebs, and U. G. Meißner, Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order, Eur. Phys. J. A, vol.51, issue.5, p.106, 2015.

D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory, Phys. Rev. C, vol.91, issue.1, p.106, 2015.

D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Dominant contributions to the nucleon-nucleon interaction at sixth order of chiral perturbation theory, Phys. Rev. C, vol.92, issue.6, p.106, 2015.

D. R. Entem, R. Machleidt, and Y. Nosyk, High-quality two-nucleon potentials up to fifth order of the chiral expansion, Phys. Rev. C, vol.96, issue.2, p.106, 2017.

A. Ekström, Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order, Phys. Rev. Lett, vol.110, issue.19, p.106, 2013.

A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T. Papenbrock et al., Accurate nuclear radii and binding energies from a chiral interaction, Phys. Rev. C, vol.91, issue.5, p.106, 2015.

B. D. Carlsson, A. Ekström, C. Forssén, D. F. Strömberg, G. R. Jansen et al., Uncertainty analysis and order-by-order optimization of chiral nuclear interactions, Phys. Rev. X, vol.6, issue.1, p.106, 2016.

J. Hoppe, C. Drischler, R. J. Furnstahl, K. Hebeler, and A. Schwenk, Weinberg eigenvalues for chiral nucleon-nucleon interactions, Phys. Rev. C, vol.96, issue.5, p.106, 2017.

S. D. Glazek and K. G. Wilson, Renormalization of Hamiltonians, Phys. Rev. D, vol.48, pp.5863-5872, 1993.

F. Wegner, Flow equations for Hamiltonians, Annalen der Physik, vol.3, issue.77, pp.77-91, 1994.

R. Roth and J. Langhammer, Pade-resummed high-order perturbation theory for nuclear structure calculations, Phys. Lett. B, vol.683, p.106, 2010.

G. Hagen, T. Papenbrock, D. J. Dean, A. Schwenk, A. Nogga et al., Coupled-cluster theory for three-body Hamiltonians, Phys. Rev. C, vol.76, p.106, 2007.

S. Binder, P. Piecuch, A. Calci, J. Langhammer, P. Navrátil et al., Extension of coupled-cluster theory with a noniterative treatment of connected triply excited clusters to three-body Hamiltonians, Phys. Rev. C, vol.88, issue.5, p.109, 2013.

M. Wang, G. Audi, A. Wapstra, F. Kondev, M. Maccormick et al., The AME2012 atomic mass evaluation, Chin. Phys. C, vol.36, issue.12, p.110, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00814234

A. Tichai, J. Müller, K. Vobig, and R. Roth, Natural orbitals for ab initio no-core shell modelcalculations

J. Schirmer, L. S. Cederbaum, and O. Walter, New approach to the one-particle Green's function for finite Fermi systems, Phys. Rev. A, vol.28, pp.1237-1259, 1983.

P. Piecuch and M. W?och, Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian, J. Chem. Phys, vol.123, issue.22, pp.224105-109, 2005.

P. Arthuis, T. Duguet, A. Tichai, R. Lasseri, and J. Ebran, ADG: Automated generation and evaluation of many-body diagrams I. Bogoliubov many-body perturbation theory, Comput. Phys. Comm, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01880793

F. Raimondi and C. Barbieri, Algebraic diagrammatic construction formalism with three-body interactions, Phys. Rev. C, vol.97, issue.5, p.114, 2018.

B. Bollobás, Modern Graph Theory, p.117, 1998.

C. Drischler, K. Hebeler, and A. Schwenk, Chiral interactions up to N 3 LO and nuclear saturation, p.144