C. Stampfl and C. G. Van-de-walle, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Physical Review B, vol.59, pp.5521-5535, 1999.

T. Lei, T. D. Moustakas, R. J. Graham, Y. He, and S. J. Berkowitz, Epitaxial growth and characterization of zinc-blende gallium nitride on (001) silicon, Journal of Applied Physics, vol.71, pp.4933-4943, 1992.

S. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen et al., An investigation of the properties of cubic GaN grown on GaAs by plasma-assisted molecular-beam epitaxy, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures Processing, vol.9, pp.1924-1929, 1991.

M. A. Caro, S. Schulz, and E. P. O'reilly, Comparison of stress and total energy methods for calculation of elastic properties of semiconductors, Journal of Physics : Condensed Matter, vol.25, issue.2, p.25803, 2013.

M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski et al., Lattice parameters of gallium nitride, Applied Physics Letters, vol.69, pp.73-75, 1996.

W. Paszkowicz, S. Podsiad?o, and R. Minikayev, Rietveld-refinement study of aluminium and gallium nitrides, Journal of Alloys and Compounds, vol.382, pp.100-106, 2004.

W. Paszkowicz, X-ray powder diffraction data for indium nitride, Powder Diffraction, vol.14, pp.258-260, 1999.

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat et al., Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy, Journal of Applied Physics, vol.109, p.103522, 2011.

I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-containing semiconductors, Journal of Applied Physics, vol.94, pp.3675-3696, 2003.

Q. Guo and A. Yoshida, Temperature Dependence of Band Gap Change in InN and AlN, Japanese Journal of Applied Physics, vol.33, p.2453, 1994.

I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-containing semiconductors, Journal of Applied Physics, vol.94, pp.3675-3696, 2003.

T. P. Chow and M. Guezzo, SiC power devices, vol.423, pp.9-21, 1996.

N. Baron, Optimisation de l'épitaxie sous jets moléculaires d'hétérostructures à base de GaN : application aux transistors à haute mobilité d'électrons sur substrat silicium, 2009.

L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Zeitschrift für Physik, vol.5, pp.17-26, 1921.

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager et al., Effects of the narrow band gap on the properties of InN, Physical Review B, vol.66, p.201403, 2002.

J. Wu, When group-III nitrides go infrared : New properties and perspectives, Journal of Applied Physics, vol.106, p.11101, 2009.

V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov et al., Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap, physica status solidi (b), vol.229, pp.1-3, 2002.

G. Steude, D. M. Hofmann, B. K. Meyer, H. Amano, and I. Akasaki, The Dependence of the Band Gap on Alloy Composition in Strained AlGaN on GaN," physica status solidi (b), vol.205, pp.7-8, 1998.

S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han et al., The band-gap bowing of AlxGa1-xN alloys, Applied Physics Letters, vol.74, pp.3344-3346, 1999.

S. Bloom, G. Harbeke, E. Meier, I. B. Ortenburger, . Reflectivity et al., physica status solidi (b), vol.66, pp.161-168, 1974.

H. Morkoç, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth, 2009.

B. Gil, O. Briot, and R. Aulombard, Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry, Physical Review B, vol.52, pp.17028-17031, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00547098

M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R. Aulombard, Optical properties of GaN epilayers on sapphire, Journal of Applied Physics, vol.80, pp.5352-5360, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00547002

E. Feltin, Hétéro-épitaxie de Nitrure de Gallium sur substrat de silicium (111) et applications, 2003.

W. Shan, R. J. Hauenstein, A. J. Fischer, J. J. Song, W. G. Perry et al.,

B. Davis and . Goldenberg, Strain effects on excitonic transitions in GaN : Deformation potentials, Physical Review B, vol.54, pp.13460-13463, 1996.

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan et al., Correlation of biaxial strains, bound exciton energies, and defect microstructures in gan films grown on

, AlN/6h-SiC(0001) substrates, Journal of Electronic Materials, vol.26, pp.224-231, 1997.

A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata et al., Biaxial strain dependence of exciton resonance energies in wurtzite GaN, Journal of Applied Physics, vol.81, pp.417-424, 1997.

H. Lahrèche, M. Leroux, M. Laügt, M. Vaille, B. Beaumont et al., Buffer free direct growth of GaN on 6h-SiC by metalorganic vapor phase epitaxy, Journal of Applied Physics, vol.87, pp.577-583, 1999.

L. Royer, Recherches expérimentales sur l'épitaxie ou orientation mutuelle des cristaux d'espèces différentes. Sté. Génér. d'Imprimerie et d'Edition, 1928.

M. L. Frankenheim, Ueber die Verbindung verschiedenartiger Krystalle, Annalen der Physik, vol.113, pp.516-522, 1836.

J. Karpi?ski, J. Jun, and S. Porowski, Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN, Journal of Crystal Growth, vol.66, pp.1-10, 1984.

J. A. Van-vechten, Quantum Dielectric Theory of Electronegativity in Covalent Systems

, Pressure-Temperature Phase Diagrams, Heats of Mixing, and Distribution Coefficients, Physical Review B, vol.7, issue.4, p.1479, 1972.

H. Amano, Progress and Prospect of Growth of Wide-Band-Gap Group III Nitrides, III-Nitride Based Light Emitting Diodes and Applications, Topics in Applied Physics, pp.1-9, 2017.

W. C. Johnson, J. B. Parson, and M. C. Crew, Nitrogen Compounds of Gallium. III, The Journal of Physical Chemistry, vol.36, pp.2651-2654, 1931.

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Applied Physics Letters, vol.48, pp.353-355, 1986.

S. Nakamura, GaN Growth Using GaN Buffer Layer, Japanese Journal of Applied Physics, vol.30, p.1705, 1991.

Y. Mori, M. Imade, M. Maruyama, and M. Yoshimura, Growth of GaN Crystals by Na Flux Method, ECS Journal of Solid State Science and Technology, vol.2, pp.3068-3071, 2013.

R. Dwili?ski, R. Doradzi?ski, J. Garczy?ski, L. P. Sierzputowski, A. Puchalski et al., Bulk ammonothermal GaN, Journal of Crystal Growth, vol.311, pp.3015-3018, 2009.

S. S. Park, I. Park, and S. H. Choh, Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy, Japanese Journal of Applied Physics, vol.39, p.1141, 2000.

G. , Croissance sélective de pseudo-substrats de GaN sur silicium pour des applications optoélectroniques. phdthesis, 2017.

H. Lahrèche, P. Vennéguès, O. Tottereau, M. Laügt, P. Lorenzini et al., Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si (1 1 1), Journal of Crystal Growth, vol.217, pp.13-25, 2000.

S. Guha and N. A. Bojarczuk, Ultraviolet and violet GaN light emitting diodes on silicon, Applied Physics Letters, vol.72, pp.415-417, 1998.

A. Polian, M. Grimsditch, and I. Grzegory, Elastic constants of gallium nitride, Journal of Applied Physics, vol.79, pp.3343-3344, 1996.

A. F. Wright, Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN, Journal of Applied Physics, vol.82, pp.2833-2839, 1997.

K. Kim, W. R. Lambrecht, and B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN, Physical Review B, vol.53, pp.16310-16326, 1996.

K. Shimada, T. Sota, and K. Suzuki, First-principles study on electronic and elastic properties of BN, AlN, and GaN, Journal of Applied Physics, vol.84, pp.4951-4958, 1998.

C. Kim, I. K. Robinson, J. Myoung, K. Shim, M. Yoo et al., Critical thickness of GaN thin films on sapphire (0001), Applied Physics Letters, vol.69, pp.2358-2360, 1996.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai et al., Direct Evidence that Dislocations are Non-Radiative Recombination Centers in GaN, Japanese Journal of Applied Physics, vol.37, p.398, 1998.

P. Gibart, Metal organic vapour phase epitaxy of GaN and lateral overgrowth, Reports on Progress in Physics, vol.67, issue.5, p.667, 2004.

J. E. Northrup, J. Neugebauer, and L. T. Romano, Inversion Domain and Stacking Mismatch Boundaries in GaN, Physical Review Letters, vol.77, pp.103-106, 1996.

J. E. Northrup and J. Neugebauer, Theory of GaN (10-10) and (11-20) surfaces, Physical Review B, vol.53, pp.10477-10480, 1996.

E. Feltin, B. Beaumont, M. Laügt, P. De-mierry, P. Vennéguès et al., Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.79, pp.3230-3232, 2001.

A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, Growth of blue GaN LED structures on 150-mm Si, vol.297, pp.279-282, 2006.

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken et al., Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 ?m in Thickness, Japanese Journal of Applied Physics, vol.39, p.1183, 2000.

A. Dadgar, T. Hempel, J. Bläsing, O. Schulz, S. Fritze et al., Improving GaN-on-silicon properties for GaN device epitaxy, physica status solidi c, vol.8, pp.1503-1508, 2011.

S. Nagahama, N. Iwasa, M. Senoh, T. Matsushita, Y. Sugimoto et al., High-Power and Long-Lifetime InGaN Multi-Quantum-Well Laser Diodes Grown on Low-Dislocation

D. Gan-substrates, Japanese Journal of Applied Physics, vol.39, p.647, 2000.

B. Beaumont, P. Vennéguès, and P. Gibart, Epitaxial Lateral Overgrowth of GaN, physica status solidi (b), vol.227, pp.1-43, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01303258

P. Vennéguès, B. Beaumont, V. Bousquet, M. Vaille, and P. Gibart, Reduction mechanisms for defect densities in GaN using one-or two-step epitaxial lateral overgrowth methods, Journal of Applied Physics, vol.87, pp.4175-4181, 2000.

P. Vennéguès, B. Beaumont, S. Haffouz, M. Vaille, and P. Gibart, Influence of in situ sapphire surface preparation and carrier gas on the growth mode of GaN in MOVPE, Journal of Crystal Growth, vol.187, pp.167-177, 1998.

J. Hertkorn, F. Lipski, P. Brückner, T. Wunderer, S. B. Thapa et al., Process optimization for the effective reduction of threading dislocations in MOVPE grown GaN using in situ deposited SiNx masks, Journal of Crystal Growth, vol.310, pp.4867-4870, 2008.

A. Koma, K. Sunouchi, and T. Miyajima, Fabrication and characterization of heterostructures with subnanometer thickness, Microelectronic Engineering, vol.2, pp.129-136, 1984.

A. Koma, K. Saiki, and Y. Sato, Heteroepitaxy of a two-dimensional material on a threedimensional material, Applied Surface Science, vol.41, pp.451-456, 1990.

T. Löher, Y. Tomm, C. Pettenkofer, and W. Jaegermann, Van der Waals epitaxy of threedimensional CdS on the two-dimensional layered substrate MoTe2(0001), Applied Physics Letters, vol.65, pp.555-557, 1994.

J. Hwang, M. Kim, D. Campbell, H. A. Alsalman, J. Y. Kwak et al.,

, Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst, ACS Nano, vol.7, pp.385-395, 2013.

Y. Shi, W. Zhou, A. Lu, W. Fang, Y. Lee et al.,

L. Yang, J. Li, J. Idrobo, and . Kong, van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates, Nano Letters, vol.12, pp.2784-2791, 2012.

J. Kim, C. Bayram, H. Park, C. Cheng, C. Dimitrakopoulos et al., Principle of direct van der Waals epitaxy of singlecrystalline films on epitaxial graphene, Nature Communications, vol.5, p.4836, 2014.

K. Chung, C. Lee, and G. Yi, Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices, Science, vol.330, issue.6004, pp.655-657, 2010.

Z. Y. Balushi, T. Miyagi, Y. Lin, K. Wang, L. Calderin et al., The impact of graphene properties on GaN and AlN nucleation, Surface Science, vol.634, pp.81-88, 2015.

S. Fernández-garrido, M. Ramsteiner, G. Gao, L. A. Galves, B. Sharma et al., Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene, Nano Letters, 2017.

D. Mun, H. Bae, S. Bae, H. Lee, J. Ha et al., Stress relaxation of GaN microstructures on a graphene-buffered Al2o3 substrate, Physica Status Solidi -Rapid Research Letters, vol.8, issue.4, pp.341-344, 2014.

V. Kumaresan, L. Largeau, A. Madouri, F. Glas, H. Zhang et al., Epitaxy of GaN Nanowires on Graphene, Nano Letters, vol.16, pp.4895-4902, 2016.

M. Heilmann, G. Sarau, M. Göbelt, M. Latzel, S. Sadhujan et al., Growth of GaN micro-and nanorods on graphene-covered sapphire : Enabling conductivity to semiconductor nanostructures on insulating substrates, Crystal Growth and Design, vol.15, issue.5, pp.2079-2086, 2015.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek et al., Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer, Nano Letters, 2016.

S. Kang, A. Mandal, J. Park, D. Um, J. Chu et al., Effects of growth temperatures on the characteristics of n-GaN nanorods-graphene hybrid structures, Journal of Alloys and Compounds, vol.644, pp.808-813, 2015.

M. I. Utama, Q. Zhang, J. Zhang, Y. Yuan, F. J. Belarre et al., Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy, Nanoscale, vol.5, pp.3570-3588, 2013.

A. Yamada, K. P. Ho, T. Akaogi, T. Maruyama, and K. Akimoto, Layered compound substrates for GaN growth, Journal of Crystal Growth, pp.332-335, 1999.

N. Matsuki, T. Kim, J. Ohta, and H. Fujioka, Heteroepitaxial growth of gallium nitride on muscovite mica plates by pulsed laser deposition, Solid State Communications, vol.136, pp.338-341, 2005.

R. Puybaret, G. Patriarche, M. B. Jordan, S. Sundaram, Y. E. Gmili et al.,

W. A. Voss, C. De-heer, A. Berger, and . Ougazzaden, Nano selective area growth of GaN by MOVPE on 4h-SiC using epitaxial graphene as a mask : towards integrated III-nitride / graphene / SiC electronics and optoelectronics, 2015.

Z. Zhao, B. Wang, W. Xu, H. Zhang, Z. Chen et al., Hydride vapor phase epitaxy of GaN on self-organized patterned graphene masks, Materials Letters, vol.153, pp.152-154, 2015.

P. R. Wallace, The Band Theory of Graphite, Physical Review, vol.71, pp.622-634, 1947.

A. J. Van-bommel, J. E. Crombeen, and A. Van-tooren, LEED and Auger electron observations of the SiC(0001) surface, Surface Science, vol.48, pp.463-472, 1975.

H. P. Boehm, R. Setton, and E. Stumpp, Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994), Pure and Applied Chemistry, vol.66, issue.9, pp.1893-1901, 1994.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi et al.,

P. N. Conrad, W. A. First, and . De-heer, Ultrathin Epitaxial Graphite : 2d Electron Gas Properties and a Route toward Graphene based Nanoelectronics, The Journal of Physical Chemistry B, vol.108, 2004.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.438, pp.197-200, 2005.

R. Heyrovska, Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon, 2008.

Y. Baskin and L. Meyer, Lattice Constants of Graphite at Low Temperatures, Physical Review, vol.100, pp.544-544, 1955.

A. H. Castro-neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, pp.109-162, 2009.

J. Hass, W. A. Heer, and E. H. Conrad, The growth and morphology of epitaxial multilayer graphene, Journal of Physics : Condensed Matter, vol.20, issue.32, p.323202, 2008.

S. Latil and L. Henrard, Charge Carriers in Few-Layer Graphene Films, Physical Review Letters, vol.97, p.36803, 2006.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al.,

A. A. Grigorieva and . Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, pp.666-669, 2004.

X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, vol.324, pp.1312-1314, 2009.

H. Zheng, K. Amina, K. Dipankar, A. Adrien, A. Hadi et al., Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils, Advanced Functional Materials, vol.24, pp.964-970, 2013.

J. Kedzierski, P. L. Hsu, P. Healey, P. W. Wyatt, C. L. Keast et al., Epitaxial Graphene Transistors on SiC Substrates, IEEE Transactions on Electron Devices, vol.55, pp.2078-2085, 2008.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nature Materials, vol.8, pp.203-207, 2009.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters, vol.100, p.16602, 2008.

W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen et al., Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition, Nano Letters, vol.10, pp.1645-1651, 2010.

J. H. Los, K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino, Melting temperature of graphene, Physical Review B, vol.91, p.45415, 2015.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.321, pp.385-388, 2008.

B. C. Banerjee, T. J. Hirt, and P. L. Jun, Pyrolytic Carbon Formation from Carbon Suboxide, Nature, vol.192, pp.450-451, 1961.

A. E. Karu and M. Beer, Pyrolytic Formation of Highly Crystalline Graphite Films, Journal of Applied Physics, vol.37, pp.2179-2181, 1966.

R. A. Schultz, M. C. Jensen, and R. C. Bradt, Single crystal cleavage of brittle materials, International Journal of Fracture, vol.65, pp.291-312, 1994.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al., Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences, vol.102, pp.10451-10453, 2005.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology, vol.3, pp.563-568, 2008.

S. Pei and H. Cheng, The reduction of graphene oxide, Carbon, vol.50, pp.3210-3228, 2012.

Y. Mahajan, Challenges and Opportunities for the Mass Production of High Quality Graphene : An Analysis of Worldwide Patents

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Wettability and Surface Free Energy of Graphene Films, Langmuir, vol.25, pp.11078-11081, 2009.

C. V. Raman and K. S. Krishnan, A new class of spectra due to secondary radiation Part I, Indian Journal of Phisics, pp.379-396, 1928.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, vol.473, pp.51-87, 2009.

M. Lazzeri, C. Attaccalite, L. Wirtz, and F. Mauri, Impact of the electron-electron correlation on phonon dispersion : Failure of LDA and GGA DFT functionals in graphene and graphite, Physical Review B, vol.78, p.81406, 2008.

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology, vol.8, pp.235-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

N. Ferralis, Probing mechanical properties of graphene with Raman spectroscopy, Journal of Materials Science, vol.45, pp.5135-5149, 2010.

A. Tiberj, N. Camara, P. Godignon, and J. Camassel, Micro-Raman and microtransmission imaging of epitaxial graphene grown on the Si and C faces of 6h-SiC, Nanoscale Research Letters, vol.6, p.478, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00666152

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, p.187401, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

J. S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus et al., G'band Raman spectra of single, double and triple layer graphene, Carbon, vol.47, pp.1303-1310, 2009.

K. Grodecki, I. Jozwik, J. M. Baranowski, D. Teklinska, and W. Strupinski, SEM and Raman analysis of graphene on SiC(0001), Micron, vol.80, pp.20-23, 2016.

S. Latil, V. Meunier, and L. Henrard, Massless fermions in multilayer graphitic systems with misoriented layers : Ab initio calculations and experimental fingerprints, Physical Review B, vol.76, p.201402, 2007.

F. Tuinstra and J. L. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.53, pp.1126-1130, 1970.

L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim et al.,

R. Coelho, M. A. Magalhães-paniago, and . Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Applied Physics Letters, vol.88, p.163106, 2006.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete et al.,

A. Moutinho, T. S. Lombardo, A. C. Kulmala, and . Ferrari, Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies, Nano Letters, vol.11, pp.3190-3196, 2011.

A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, pp.14095-14107, 2000.

L. G. Cançado, M. G. Silva, E. H. Ferreira, F. Hof, K. Kampioti et al., Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials, 2D Materials, vol.4, issue.2, p.25039, 2017.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus et al., Raman spectroscopy as probe of nanometre-scale strain variations in graphene, Nature Communications, vol.6, p.8429, 2015.

N. S. Mueller, S. Heeg, M. P. Alvarez, P. Kusch, S. Wasserroth et al., Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy, 2D Materials, vol.5, issue.1, p.15016, 2018.

C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen et al., Raman imaging of doping domains in graphene on SiO2, Applied Physics Letters, vol.91, p.241907, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00283188

G. Froehlicher and S. Berciaud, Raman spectroscopy of electrochemically gated graphene transistors : Geometrical capacitance, electron-phonon, electron-electron, and electrondefect scattering, Physical Review B, vol.91, p.205413, 2015.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nature Nanotechnology, vol.3, pp.210-215, 2008.

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, Optical separation of mechanical strain from charge doping in graphene, Nature Communications, vol.3, p.1024, 2012.

M. Mohr, J. Maultzsch, and C. Thomsen, Splitting of the Raman 2d band of graphene subjected to strain, Physical Review B, vol.82, 2010.

T. M. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by Raman spectroscopy : G peak splitting, Grüneisen parameters, and sample orientation, Physical Review B, vol.79, p.205433, 2009.

D. Metten, F. Federspiel, M. Romeo, and S. Berciaud, All-Optical Blister Test of Suspended Graphene Using Micro-Raman Spectroscopy, Physical Review Applied, vol.2, p.54008, 2014.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr et al., Stretchable Graphene : A Close Look at Fundamental Parameters through Biaxial Straining, Nano Letters, vol.10, pp.3453-3458, 2010.

J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim et al., Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain : Bubbles and Balloons, Nano Letters, vol.12, pp.617-621, 2012.

A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche et al., Science and technology roadmap for graphene, Nanoscale, vol.7, pp.4598-4810, 2015.

X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling, Nano Letters, vol.9, pp.4268-4272, 2009.

H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu et al., Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire, ACS Nano, vol.4, pp.7407-7414, 2010.

H. An, W. Lee, and J. Jung, Graphene synthesis on Fe foil using thermal CVD, Current Applied Physics, vol.11, pp.81-85, 2011.

J. Coraux, A. T. N'diaye, C. Busse, and T. Michely, Structural Coherency of Graphene on Ir, vol.8, issue.111, pp.565-570, 2008.

E. V. Rut'kov, A. V. Kuz'michev, and N. R. Gall, Carbon interaction with rhodium surface : Adsorption, dissolution, segregation, growth of graphene layers, Physics of the Solid State, vol.53, pp.1092-1098, 2011.

L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang et al.,

X. Peng, H. Bao, and . Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature Communications, vol.3, p.699, 2012.

T. Oznuluer, E. Pince, E. O. Polat, O. Balci, O. Salihoglu et al., Synthesis of graphene on gold, Applied Physics Letters, vol.98, p.183101, 2011.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letters, vol.9, pp.4359-4363, 2009.

J. Hass, F. Varchon, J. E. Millán-otoya, M. Sprinkle, N. Sharma et al., Why Multilayer Graphene on 4h-SiC, pp.0-1
URL : https://hal.archives-ouvertes.fr/hal-00995748

, Behaves Like a Single Sheet of Graphene, Physical Review Letters, vol.100, p.125504, 2008.

N. Srivastava, G. He, P. C. Luxmi, R. M. Mende, Y. Feenstra et al., Graphene formed on SiC under various environments : comparison of Si-face and C-face, Journal of Physics D : Applied Physics, vol.45, issue.15, p.154001, 2012.

I. Forbeaux, J. Themlin, and J. Debever, Heteroepitaxial graphite on 6h-SiC (0001) : Interface formation through conduction-band electronic structure, Physical Review B, vol.58, pp.16396-16406, 1998.

W. Chen, H. Xu, L. Liu, X. Gao, D. Qi et al., Atomic structure of the 6h-SiC(0001) nanomesh, Surface Science, vol.596, pp.176-186, 2005.

K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces : A comparative photoelectron spectroscopy study, Physical Review B, vol.77, p.155303, 2008.

A. Al-temimy, C. Riedl, and U. Starke, Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation, Applied Physics Letters, vol.95, p.231907, 2009.

M. E. , F. F. , V. D. , G. S. , and W. , Graphene growth by molecular beam epitaxy using a solid carbon source, physica status solidi (a), vol.207, pp.300-303, 2010.

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Quasi-free Standing Epitaxial Graphene on SiC by Hydrogen Intercalation, Physical Review Letters, vol.103, 2009.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek et al., Graphene Epitaxy by Chemical Vapor Deposition on SiC, Nano Letters, vol.11, pp.1786-1791, 2011.

J. Hwang, V. B. Shields, C. I. Thomas, S. Shivaraman, D. Hao et al., Epitaxial growth of graphitic carbon on C-face SiC and Sapphire by chemical vapor deposition (CVD), Journal of crystal growth, vol.312, pp.3219-3224, 2010.

A. Michon, S. Vézian, A. Ouerghi, M. Zielinski, T. Chassagne et al., Direct growth of few-layer graphene on 6h-SiC and 3c-SiC/Si via propane chemical vapor deposition, Applied Physics Letters, vol.97, p.171909, 2010.

M. Portail, A. Michon, S. Vézian, D. Lefebvre, S. Chenot et al., Growth mode and electric properties of graphene and graphitic phase grown by argon-propane assisted CVD on 3c-SiC/Si and 6h-SiC, Journal of Crystal Growth, vol.349, pp.27-35, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00803559

A. Michon, S. Vézian, E. Roudon, D. Lefebvre, M. Zielinski et al., Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition, Journal of Applied Physics, vol.113, p.203501, 2013.

R. Dagher, Direct growth of graphene by chemical vapor deposition on silicon carbide and III-nitrides. phdthesis, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01686791

S. Nakamura, GaN Growth Using GaN Buffer Layer, Japanese Journal of Applied Physics, vol.30, p.1705, 1991.

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Applied Physics Letters, vol.48, pp.353-355, 1986.

J. Kim, C. Bayram, H. Park, C. Cheng, C. Dimitrakopoulos et al., Principle of direct van der Waals epitaxy of singlecrystalline films on epitaxial graphene, Nature Communications, vol.5, p.4836, 2014.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Properties of Sapphire, Sapphire, Micro-and Opto-Electronic Materials, Structures, and Systems, pp.55-176, 2009.

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Wettability and Surface Free Energy of Graphene Films, Langmuir, vol.25, pp.11078-11081, 2009.

U. Haboeck, H. Siegle, A. Hoffmann, and C. Thomsen, Lattice dynamics in GaN and AlN probed with first-and second-order Raman spectroscopy, physica status solidi (c), vol.0, pp.1710-1731, 2003.

Z. Han, A. Kimouche, D. Kalita, A. Allain, H. Arjmandi-tash et al., Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils, Advanced Functional Materials, vol.24, pp.964-970, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00880874

K. Nakada and A. Ishii, Migration of adatom adsorption on graphene using DFT calculation, Solid State Communications, vol.151, pp.13-16, 2011.

D. Mun, H. Bae, S. Bae, H. Lee, J. Ha et al., Stress relaxation of GaN microstructures on a graphene-buffered Al2o3 substrate, Physica Status Solidi -Rapid Research Letters, vol.8, issue.4, pp.341-344, 2014.

D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, and H. Yang, Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6h-SiC(0001), and c-plane sapphire, Applied Physics Letters, vol.83, pp.677-679, 2003.

H. Geng, A. A. Yamaguchi, H. Sunakawa, N. Sumi, K. Yamamoto et al., Residual Strain Evaluation by Cross-Sectional Micro-Reflectance Spectroscopy of Freestanding GaN Grown by Hydride Vapor Phase Epitaxy, Japanese Journal of Applied Physics, vol.50, pp.1-01, 2011.

B. Gil, O. Briot, and R. Aulombard, Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry, Physical Review B, vol.52, pp.17028-17031, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00547098

D. Gogova, E. Talik, I. G. Ivanov, and B. Monemar, Large-area free-standing GaN substrate grown by hydride vapor phase epitaxy on epitaxial lateral overgrown GaN template, Physica B : Condensed Matter, vol.371, pp.133-139, 2006.

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Quasi-free Standing Epitaxial Graphene on SiC by Hydrogen Intercalation, Physical Review Letters, vol.103, 2009.

C. Yu, X. Chen, F. Zhang, L. Sun, T. Li et al., Uniform coverage of quasifree standing monolayer graphene on SiC by hydrogen intercalation, Journal of Materials Science : Materials in Electronics, vol.28, pp.3884-3890, 2017.

X. J. Chen, G. Perillat-merceroz, D. Sam-giao, C. Durand, and J. Eymery, Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates, Applied Physics Letters, vol.97, p.151909, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00601864

V. N. Bessolov, E. V. Konenkova, S. A. Kukushkin, A. V. Osipov, and S. N. Rodin, Semipolar Gallium Nitride on Silicon : Technology and Properties, vol.38, pp.75-93, 2014.

R. Puybaret, G. Patriarche, M. B. Jordan, S. Sundaram, Y. E. Gmili et al.,

W. A. Voss, C. De-heer, A. Berger, and . Ougazzaden, Nano selective area growth of GaN by MOVPE on 4h-SiC using epitaxial graphene as a mask : towards integrated III-nitride / graphene / SiC electronics and optoelectronics, 2015.

K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika et al., Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides : Effects of Reactor Pressure in MOVPE Growth, physica status solidi (a), vol.176, pp.535-543

Z. Fang and J. Kang, Self-Organization of 3d Triangular GaN Nanoislands and the Shape Variation to Hexagonal, The Journal of Physical Chemistry C, vol.111, pp.7889-7892, 2007.

L. G. Cançado, M. G. Silva, E. H. Ferreira, F. Hof, K. Kampioti et al., Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials, 2D Materials, vol.4, issue.2, p.25039, 2017.

V. Kumaresan, L. Largeau, A. Madouri, F. Glas, H. Zhang et al., Epitaxy of GaN Nanowires on Graphene, Nano Letters, vol.16, pp.4895-4902, 2016.

Y. Kim, S. S. Cruz, K. Lee, B. O. Alawode, C. Choi et al., Remote epitaxy through graphene enables two-dimensional material-based layer transfer, Nature, vol.544, pp.340-343, 2017.

K. Inaba, S. Kobayashi, K. Uehara, A. Okada, S. L. Reddy et al., High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO 3 /ZnO/Sapphire(0001) Double Heteroepitaxial Films, vol.2013, 2013.

L. Liu and J. H. Edgar, Substrates for gallium nitride epitaxy, Materials Science and Engineering : R : Reports, vol.37, pp.61-127, 2002.

K. Barghout and J. Chaudhuri, Calculation of residual thermal stress in GaN epitaxial layers grown on technologically important substrates, Journal of Materials Science, vol.39, pp.5817-5823, 2004.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek et al., Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer, Nano Letters, 2016.

A. M. Munshi, D. L. Dheeraj, V. T. Fauske, D. Kim, A. T. Van-helvoort et al.,

H. Fimland and . Weman, Vertically Aligned GaAs Nanowires on Graphite and Few-Layer Graphene : Generic Model and Epitaxial Growth, Nano Letters, vol.12, pp.4570-4576, 2012.

A. M. Munshi and H. Weman, Advances in semiconductor nanowire growth on graphene, physica status solidi (RRL) -Rapid Research Letters, vol.7, issue.10, pp.713-726, 2013.

A. V. Kolobov, P. Fons, J. Tominaga, B. Hyot, and B. André, Instability and Spontaneous Reconstruction of Few-Monolayer Thick GaN Graphitic Structures, Nano Letters, vol.16, pp.4849-4856, 2016.

B. Bauer, J. Hubmann, M. Lohr, E. Reiger, D. Bougeard et al., Direct detection of spontaneous polarization in wurtzite GaAs nanowires, Applied Physics Letters, vol.104, p.211902, 2014.

I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-containing semiconductors, Journal of Applied Physics, vol.94, pp.3675-3696, 2003.

S. Y. Davydov, Estimates of the spontaneous polarization and permittivities of AlN, GaN, InN, and SiC crystals, Physics of the Solid State, vol.51, pp.1231-1235, 2009.

B. Beaumont, S. Haffouz, and P. Gibart, Magnesium induced changes in the selective growth of GaN by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.72, pp.921-923, 1998.

X. Zhang, P. D. Dapkus, and D. H. Rich, Lateral epitaxy overgrowth of GaN with NH3 flow rate modulation, Applied Physics Letters, vol.77, pp.1496-1498, 2000.

R. S. Qhalid-fareed, J. W. Yang, J. Zhang, V. Adivarahan, V. Chaturvedi et al., Vertically faceted lateral overgrowth of GaN on SiC with conducting buffer layers using pulsed metalorganic chemical vapor deposition, Applied Physics Letters, vol.77, pp.2343-2345, 2000.

S. Grade?ak, P. Stadelmann, V. Wagner, and M. Ilegems, Bending of dislocations in GaN during epitaxial lateral overgrowth, Applied Physics Letters, vol.85, pp.4648-4650, 2004.

Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy, Journal of Crystal Growth, vol.144, pp.133-140, 1994.

P. Vennéguès, B. Beaumont, S. Haffouz, M. Vaille, and P. Gibart, Influence of in situ sapphire surface preparation and carrier gas on the growth mode of GaN in MOVPE, Journal of Crystal Growth, vol.187, pp.167-177, 1998.

J. Hertkorn, F. Lipski, P. Brückner, T. Wunderer, S. B. Thapa et al., Process optimization for the effective reduction of threading dislocations in MOVPE grown GaN using in situ deposited SiNx masks, Journal of Crystal Growth, vol.310, pp.4867-4870, 2008.

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Wettability and Surface Free Energy of Graphene Films, Langmuir, vol.25, pp.11078-11081, 2009.

Y. Hirota, Y. Shirai, H. Iha, Y. Kito, M. Suzuki et al., Selective growth of (001) GaAs using a patterned graphene mask, Journal of Crystal Growth, vol.401, pp.563-566, 2014.

R. Puybaret, G. Patriarche, M. B. Jordan, S. Sundaram, Y. E. Gmili et al.,

W. A. Voss, C. De-heer, A. Berger, and . Ougazzaden, Nano selective area growth of GaN by MOVPE on 4h-SiC using epitaxial graphene as a mask : towards integrated III-nitride / graphene / SiC electronics and optoelectronics, 2015.

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Quasi-free Standing Epitaxial Graphene on SiC by Hydrogen Intercalation, Physical Review Letters, vol.103, 2009.

C. Yu, X. Chen, F. Zhang, L. Sun, T. Li et al., Uniform coverage of quasifree standing monolayer graphene on SiC by hydrogen intercalation, Journal of Materials Science : Materials in Electronics, vol.28, pp.3884-3890, 2017.

J. Kunc, M. Rejhon, and P. Hlídek, Hydrogen intercalation of epitaxial graphene and buffer layer probed by mid-infrared absorption and Raman spectroscopy, AIP Advances, vol.8, p.45015, 2018.

F. Varchon, P. Mallet, J. Veuillen, and L. Magaud, Ripples in epitaxial graphene on the Si-terminated SiC(0001) surface, Physical Review B, vol.77, p.235412, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00726728

P. Lauffer, K. V. Emtsev, R. Graupner, T. Seyller, L. Ley et al., Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy, Physical Review B, vol.77, p.155426, 2008.

S. Goler, C. Coletti, V. Piazza, P. Pingue, F. Colangelo et al., Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene, Carbon, vol.51, pp.249-254, 2013.

N. P. Guisinger, G. M. Rutter, J. N. Crain, C. Heiliger, P. N. First et al., Atomic-scale investigation of graphene formation on 6h-SiC(0001), Journal of Vacuum Science & Technology A, vol.26, pp.932-937, 2008.

D. Du, D. J. Srolovitz, M. E. Coltrin, and C. C. Mitchell, Systematic Prediction of Kinetically Limited Crystal Growth Morphologies, Physical Review Letters, vol.95, p.155503, 2005.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. Al-suleiman et al.,

A. Wehmann, W. Waag, M. Bergbauer, and . Strassburg, Polarity and Its Influence on Growth Mechanism during MOVPE Growth of GaN Sub-micrometer Rods, Crystal Growth & Design, vol.11, pp.1573-1577, 2011.

X. J. Chen, G. Perillat-merceroz, D. Sam-giao, C. Durand, and J. Eymery, Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates, Applied Physics Letters, vol.97, p.151909, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00601864

J. E. Northrup and J. Neugebauer, Strong affinity of hydrogen for the GaN (000-1) surface : Implications for molecular beam epitaxy and metalorganic chemical vapor deposition, Applied Physics Letters, vol.85, pp.3429-3431, 2004.

R. M. Feenstra, Y. Dong, C. D. Lee, and J. E. Northrup, Recent developments in surface studies of GaN and AlN, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures Processing, vol.23, pp.1174-1180, 2005.

K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika et al., Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides : Effects of Reactor Pressure in MOVPE Growth, physica status solidi (a), vol.176, pp.535-543

S. Kitamura, K. Hiramatsu, and N. Sawaki, Fabrication of GaN Hexagonal Pyramids on Dot-Patterned GaN/Sapphire Substrates via Selective Metalorganic Vapor Phase Epitaxy, Japanese Journal of Applied Physics, vol.34, p.1184, 1995.

B. Beaumont, S. Haffouz, and P. Gibart, Magnesium induced changes in the selective growth of GaN by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.72, pp.921-923, 1998.

X. Zhang, P. D. Dapkus, and D. H. Rich, Lateral epitaxy overgrowth of GaN with NH3 flow rate modulation, Applied Physics Letters, vol.77, pp.1496-1498, 2000.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul et al., Phonon dispersion and Raman scattering in hexagonal GaN and AlN, Physical Review B, vol.58, pp.12899-12907, 1998.

V. Y. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina et al., Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6h-SiC, Journal of Applied Physics, vol.82, pp.5097-5102, 1997.

S. Tripathy, S. J. Chua, P. Chen, and Z. L. Miao, Micro-Raman investigation of strain in GaN and AlxGa1-xN/GaN heterostructures grown on Si(111), Journal of Applied Physics, vol.92, pp.3503-3510, 2002.

M. A. Reshchikov and H. Morkoç, Luminescence properties of defects in GaN, Journal of Applied Physics, vol.97, p.61301, 2005.

J. Lähnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan et al., Luminescence associated with stacking faults in GaN, Journal of Physics D : Applied Physics, vol.47, issue.42, p.423001, 2014.

P. C. Chang, C. L. Yu, Y. W. Jahn, S. J. Chang, and K. H. Lee, Effect of Growth Temperature on the Indium Incorporation in InGaN Epitaxial Films, Advanced Materials Research, pp.1456-1459, 2011.

G. B. Stringfellow, Microstructures produced during the epitaxial growth of InGaN alloys, Journal of Crystal Growth, vol.312, pp.735-749, 2010.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann et al., Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells, Semiconductor Science and Technology, vol.27, p.24014, 2012.

H. Yu, L. K. Lee, T. Jung, and P. C. Ku, Photoluminescence study of semipolar {101-1} InGaN GaN multiple quantum wells grown by selective area epitaxy, Applied Physics Letters, vol.90, p.141906, 2007.

X. Zhang, P. D. Dapkus, D. H. Rich, I. Kim, J. T. Kobayashi et al., InGaN/GaN quantum well growth on pyramids of epitaxial lateral overgrown GaN, Journal of Electronic Materials, vol.29, pp.10-14, 2000.

W. Feng, V. V. Kuryatkov, A. Chandolu, D. Y. Song, M. Pandikunta et al., Green light emission from InGaN multiple quantum wells grown on GaN pyramidal stripes using selective area epitaxy, Journal of Applied Physics, vol.104, p.103530, 2008.

Y. Ko, J. Kim, L. Jin, S. Ko, B. Kwon et al., Electrically Driven Quantum Dot/Wire/Well Hybrid Light-Emitting Diodes, Advanced Materials, vol.23, issue.45, pp.5364-5369

M. Kelly, R. Vaudo, V. Phanse, L. Görgens, O. Ambacher et al., Large FreeStanding GaN Substrates by Hydride Vapor Phase Epitaxy and Laser-Induced Liftoff, Japanese Journal of Applied Physics, vol.38, p.217, 1999.

C. Lin, J. Dai, G. Wang, and M. Lin, Chemical Lift-Off Process for Blue LightEmitting Diodes, Applied Physics Express, vol.3, p.92101, 2010.

D. J. Rogers, F. Hosseini-teherani, A. Ougazzaden, S. Gautier, L. Divay et al., Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN, Applied Physics Letters, vol.91, p.71120, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00492030

J. Park, K. M. Song, S. Jeon, J. H. Baek, and S. Ryu, Doping selective lateral electrochemical etching of GaN for chemical lift-off, Applied Physics Letters, vol.94, p.221907, 2009.

S. W. Bedell, C. Bayram, K. Fogel, P. Lauro, J. Kiser et al., Vertical Light-Emitting Diode Fabrication by Controlled Spalling, Applied Physics Express, vol.6, p.112301, 2013.

R. Cheng, Y. Wen, L. Yin, F. Wang, F. Wang et al., Ultrathin Single-Crystalline CdTe Nanosheets Realized via Van der Waals Epitaxy, Advanced Materials, vol.29, issue.35, p.1703122

Y. Kobayashi, K. Kumakura, T. Akasaka, and T. Makimoto, Layered boron nitride as a release layer for mechanical transfer of GaN-based devices, Nature, vol.484, pp.223-227, 2012.

T. Ayari, S. Sundaram, X. Li, Y. E. Gmili, P. L. Voss et al., Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN, Applied Physics Letters, vol.108, p.171106, 2016.

T. Makimoto, K. Kumakura, Y. Kobayashi, T. Akasaka, and H. Yamamoto, A Vertical InGaN/GaN Light-Emitting Diode Fabricated on a Flexible Substrate by a Mechanical Transfer Method Using BN, Applied Physics Express, vol.5, p.72102, 2012.

J. Kim, C. Bayram, H. Park, C. Cheng, C. Dimitrakopoulos et al., Principle of direct van der Waals epitaxy of singlecrystalline films on epitaxial graphene, Nature Communications, vol.5, p.4836, 2014.

J. Kim, H. Park, J. B. Hannon, S. W. Bedell, K. Fogel et al., Layer-Resolved Graphene Transfer via Engineered Strain Layers, Science, vol.342, pp.833-836, 2013.

N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich et al., Stacking and Registry Effects in Layered Materials : The Case of Hexagonal Boron Nitride, Physical Review Letters, vol.105, p.46801, 2010.

S. W. Bedell, P. Lauro, J. A. Ott, K. Fogel, and D. K. Sadana, Layer transfer of bulk gallium nitride by controlled spalling, Journal of Applied Physics, vol.122, p.25103, 2017.

A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche et al., Science and technology roadmap for graphene, Nanoscale, vol.7, pp.4598-4810, 2015.

J. Park, Y. H. Ahn, and C. Ruiz-vargas, Imaging of Photocurrent Generation and Collection in Single-Layer Graphene, Nano Letters, vol.9, pp.1742-1746, 2009.

E. J. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, Contact and edge effects in graphene devices, Nature Nanotechnology, vol.3, pp.486-490, 2008.

F. Xia, T. Mueller, R. Golizadeh-mojarad, M. Freitag, Y. Lin et al., Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor, Nano Letters, vol.9, pp.1039-1044, 2009.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.320, pp.1308-1308, 2008.

E. Muñoz, E. Monroy, J. L. Pau, F. Calle, F. Omnès et al., III nitrides and UV detection, Journal of Physics : Condensed Matter, vol.13, issue.32, p.7115, 2001.

X. Zhang, Q. Liu, B. Liu, W. Yang, J. Li et al., Giant UV photoresponse of a GaN nanowire photodetector through effective Pt nanoparticle coupling, Journal of Materials Chemistry C, vol.5, pp.4319-4326, 2017.

X. Zhang, B. Liu, Q. Liu, W. Yang, C. Xiong et al., Ultrasensitive and Highly Selective Photodetections of UV-A Rays Based on Individual Bicrystalline GaN Nanowire, ACS Applied Materials & Interfaces, vol.9, pp.2669-2677, 2017.

S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, Multifunctional Graphene Optoelectronic Devices Capable of Detecting and Storing Photonic Signals, Nano Letters, vol.15, pp.2542-2547, 2015.

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. Loy et al., Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene, Small, vol.9, pp.3031-3036, 2013.

Y. Lu, Z. Wu, W. Xu, and S. Lin, ZnO quantum dot-doped graphene/h-BN/GaNheterostructure ultraviolet photodetector with extremely high responsivity, Nanotechnology, vol.27, issue.48, pp.48-51, 2016.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea et al., Hybrid graphene-quantum dot phototransistors with ultrahigh gain, Nature Nanotechnology, vol.7, pp.363-368, 2012.

Z. Sun, Z. Liu, J. Li, G. Tai, S. Lau et al., Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity, Advanced Materials, vol.24, pp.5878-5883, 2012.

X. J. Chen, G. Perillat-merceroz, D. Sam-giao, C. Durand, and J. Eymery, Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates, Applied Physics Letters, vol.97, p.151909, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00601864

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus et al., Raman spectroscopy as probe of nanometre-scale strain variations in graphene, Nature Communications, vol.6, p.8429, 2015.

Y. Lin, C. Lin, and P. Chiu, Controllable graphene N-doping with ammonia plasma, Applied Physics Letters, vol.96, p.133110, 2010.

H. E. Romero, P. Joshi, A. K. Gupta, H. R. Gutierrez, M. W. Cole et al., Adsorption of ammonia on graphene, Nanotechnology, vol.20, issue.24, p.245501, 2009.

Y. , Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy, Applied Physics Letters, vol.101, p.22105, 2012.

Y. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim et al., Tuning the graphene work function by electric field effect, Nano Letters, vol.9, pp.3430-3434, 2009.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nature Nanotechnology, vol.3, pp.210-215, 2008.

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol.438, pp.201-204, 2005.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.438, pp.197-200, 2005.

F. Veliev, Interfacing neurons with nanoelectronics : from silicon nanowires to carbon devices, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01281637

Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian et al.,

H. Han, Q. Wang, T. Xia, T. Ma, F. Mueller et al., Black Phosphorus Mid-Infrared Photodetectors with High Gain, Nano Letters, vol.16, pp.4648-4655, 2016.

, Le graphène épitaxié sur SiC apparait comme le substrat le plus stable et est ainsi retenu pour l'examen de l'épitaxie, dans les atmosphères requises pour l'épitaxie du GaN diffère

, L'étude proposée dans ce document est focalisée sur la germination du GaN sur le graphène

, Le procédé en trois étapes (recuit, préparation de la surface du graphène et germination) que nous avons développé, permet la synthèse de cristaux de GaN à la surface du graphène. Ces cristaux microniques constitués de GaN dans sa structure wurtzite, de polarité Ga, sont d'une très grande qualité cristalline et entièrement relaxés. La croissance VdW, i.e. la croissance avec une interface régie par des forces faibles, tient donc ses promesses. La présence du gap de VdW tout au long de l'interface graphène / GaN, confirmée par les observations TEM, ne s'oppose pas à la formation de cristaux mais permet, Comme dans tout procédé d'hétéroépitaxie, cette première étape en est le coeur et sa maitrise est indispensable à son développement

. Gan, ce travail nous avons démontré l'influence de l'injection d'ammoniac au cours de l'étape dite de préparation de surface sur la mosaïcité des germes de GaN. L'injection de ce gaz permet en effet l'obtention d'un alignement cristallographique dans le plan de tous les cristaux, sans modifier l'interface de croissance. Cette modification est attribuée à une amélioration de l'état de propreté de la surface du graphène. Dans ce cas, les germes présentent à la fois une interface de croissance faible et une orientation cristallographique commune ; l'épitaxie VdW de GaN est alors démontrée ! Comment la relation d'épitaxie est-elle définie dans le cas où l'interface de croissance n'est régie que par des liaisons faibles ? Dans ce travail, nous avons tenté d'apporter des éléments de réponse à cette question qui nous parait centrale. Tandis qu'une orientation commune hors plan des cristaux de GaN est toujours observée, leur alignement dans le plan est moins stable et son obtention requiert un procédé bien spécifique. Cette observation nous a conduit à considérer qu'une interaction avec le substrat sous-jacent au graphène devait être prépondérante dans la relation d'épitaxie. La direction dans laquelle l'alignement des cristaux est récurrente coïncide en fait avec la direction de la polarisation spontanée des deux matériaux en jeu (substrat sousjacent au graphène (SiC) et matériau déposé (GaN)). Les calculs théoriques, menés en parallèle du travail expérimental, confirment la possibilité d'une épitaxie à distance à travers le feuillet de graphène

, Alors que conventionnellement ils prennent soit une forme prismatique hexagonale soit pyramidale à base hexagonale, dans notre étude les germes de GaN sont majoritairement té-traédraux. Dans ce document, nous avons fournit des arguments démontrant que la morphologie des germes de GaN est intimement liée au type d'interface de croissance

F. Fromm, M. H. Jr, A. Molina-sánchez, M. Hundhausen, J. M. Lopes et al., Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001), New Journal of Physics, vol.15, issue.4, p.43031, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00823434

A. Tiberj, J. R. Huntzinger, N. Camara, P. Godignon, and J. Camassel, Raman spectrum and optical extinction of graphene buffer layers on the Si-face of 6h-SiC, 2012.

W. Strupinski, K. Grodecki, P. Caban, P. Ciepielewski, I. Jozwik-biala et al., Formation mechanism of graphene buffer layer on SiC(0001), Carbon, vol.81, pp.63-72, 2015.