G. W. Mccoy and C. W. , Further Observations on a Plague­Like Disease of Rodents with a Preliminary Note on the Causative Agent, Bacterium tularense, The Journal of Infectious Diseases, vol.10, issue.1, pp.61-72, 1912.

W. B. Wherry and B. H. Lamb, Infection of man with Bacterium tularense, J Infect Dis, vol.189, issue.7, pp.1321-1330, 1914.

E. Francis and B. M. Tulaeremia, Public Health Reports, vol.36, issue.30, pp.1731-1753, 1896.

P. Keim, A. Johansson, and D. M. Wagner, Molecular epidemiology, evolution, and ecology of Francisella, Ann N Y Acad Sci, pp.30-66, 1105.

M. E. Evans and . Francisella, Infect Control, vol.6, issue.9, pp.381-384, 1985.

J. Ellis, Tularemia. Clin Microbiol Rev, vol.15, issue.4, pp.631-677, 2002.

N. G. Olsufjev, Taxonomy and characteristic of the genus Francisella Dorofeev, J Hyg Epidemiol Microbiol Immunol, vol.14, issue.1, pp.67-74, 1947.

M. Forsman, G. Sandstrom, and A. Sjostedt, Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR, Int J Syst Bacteriol, vol.44, issue.1, pp.38-46, 1994.

K. F. Ottem, Elevation of Francisella philomiragia subsp. noatunensis Mikalsen et al. (2007) to Francisella noatunensis comb. nov. [syn. Francisella piscicida Ottem et al. (2008) syn. nov.] and characterization of Francisella noatunensis subsp. orientalis subsp. nov., two important fish pathogens, J Appl Microbiol, vol.106, issue.4, pp.1231-1274, 2009.

O. J. Brevik, Francisella halioticida sp. nov., a pathogen of farmed giant abalone (Haliotis gigantea) in Japan, J Appl Microbiol, vol.111, issue.5, pp.1044-56, 2011.

M. A. Larson, Reclassification of Wolbachia persica as Francisella persica comb. nov. and emended description of the family Francisellaceae, Int J Syst Evol Microbiol, vol.66, issue.3, pp.1200-1205, 2016.

P. H. Qu, Francisella guangzhouensis sp. nov., isolated from air­conditioning systems, Int J Syst Evol Microbiol, issue.63, pp.3628-3663, 2013.

B. Huber, Description of Francisella hispaniensis sp. nov., isolated from human blood, reclassification of Francisella novicida (Larson et al. 1955) Olsufiev et al. 1959 as Francisella tularensis subsp. novicida comb. nov. and emended description of the genus Francisella, Int J Syst Evol Microbiol, pp.1887-96, 2010.

A. Sjostedt, Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations, Ann N Y Acad Sci, pp.1-29, 1105.

M. K. Mclendon, M. A. Apicella, and L. A. Allen, Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare, Annu Rev Microbiol, vol.60, pp.167-85, 2006.

N. G. Olsufiev, O. S. Emelyanova, and T. N. Dunayeva, Comparative study of strains of B. tularense in the old and new world and their taxonomy, J Hyg Epidemiol Microbiol Immunol, vol.3, pp.138-187, 1959.

C. R. Molins, Virulence difference between the prototypic Schu S4 strain (A1a) and Francisella tularensis A1a, A1b, A2 and type B strains in a murine model of infection, BMC Infect Dis, vol.14, p.67, 2014.

C. L. Larson, W. Wicht, and W. L. Jellison, A new organism resembling P. tularensis isolated from water, vol.70, pp.253-261, 1955.

D. G. Hollis, Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease, J Clin Microbiol, vol.27, issue.7, pp.1601-1609, 1989.

L. C. Kingry and J. M. Petersen, Comparative review of Francisella tularensis and Francisella novicida, Front Cell Infect Microbiol, vol.4, p.35, 2014.

P. Larsson, Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen, PLoS Pathog, vol.5, issue.6, p.1000472, 2009.

J. D. Hall, Infected­host­cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112, Infect Immun, vol.76, issue.12, pp.5843-52, 2008.

J. E. Staples, Epidemiologic and molecular analysis of human tularemia, United States, Eur Respir J, vol.12, issue.7, pp.361-73, 2003.

D. A. Adams, T. K. Jajosky, and R. , Summary of Notifiable Infectious Diseases and Conditions-United States, 2014.

D. Aktas, Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July­September 2013. Emerg Infect Dis, vol.21, pp.2194-2200, 2015.

S. Kilic, Water as Source of Francisella tularensis Infection in Humans, Turkey. Emerg Infect Dis, vol.21, issue.12, pp.2213-2219, 2015.

A. Tarnvik, H. S. Priebe, and R. Grunow, Tularaemia in Europe: an epidemiological overview, Scand J Infect Dis, vol.36, issue.5, pp.350-355, 2004.

R. Reintjes, Tularemia outbreak investigation in Kosovo: case control and environmental studies, Emerg Infect Dis, vol.8, issue.1, pp.69-73, 2002.

R. Grunow and E. J. Finke, A procedure for differentiating between the intentional release of biological warfare agents and natural outbreaks of disease: its use in analyzing the tularemia outbreak in Kosovo in 1999 and, Clin Microbiol Infect, vol.8, issue.8, pp.510-531, 2000.

M. E. Evans, Tularemia: a 30­year experience with 88 cases. Medicine (Baltimore), vol.64, pp.251-69, 1985.

Y. H. Wang, A case of Francisella tularensis subspecies holarctica in China. Ticks Tick Borne Dis, vol.6, pp.802-806, 2015.

V. A. Mailles, Bilan de 10 années de surveillance de la tularémie chez l'Homme en France, p.16, 2013.

M. Aravena­roman, A. Merritt, and T. J. Inglis, First case of Francisella bacteraemia in Western Australia, New Microbes New Infect, vol.8, pp.75-82, 2015.

D. T. Dennis, Tularemia as a biological weapon: medical and public health management, JAMA, vol.285, issue.21, pp.2763-73, 2001.

A. Tarnvik, WHO Guidelines on tularemia, p.125, 2007.

F. R. Mccrumb, Aerosol Infection of Man with Pasteurella Tularensis, Bacteriol Rev, vol.25, issue.3, pp.262-269, 1961.

S. Gurcan, Epidemiology of tularemia, Balkan Med J, vol.31, issue.1, pp.3-10, 2014.

V. Barras and G. Greub, History of biological warfare and bioterrorism, Clin Microbiol Infect, vol.20, issue.6, pp.497-502, 2014.

R. Roffey, A. Tegnell, and F. Elgh, Biological warfare in a historical perspective, Clin Microbiol Infect, vol.8, issue.8, pp.450-454, 2002.

S. Riedel, Biological warfare and bioterrorism: a historical review, Proc (Bayl Univ Med Cent), vol.17, issue.4, pp.400-406, 2004.

W. Consultants, Health Aspects of Chemical and Biological Weapons, 1970.

F. Frischknecht, The history of biological warfare. Human experimentation, modern nightmares and lone madmen in the twentieth century, EMBO Rep, vol.4, pp.47-52, 2003.

Y. Buisson, Les Risques NRBC, savoir pour agir. Xavier Montauban SA ed2004

S. I. Trevisanato, The 'Hittite plague', an epidemic of tularemia and the first record of biological warfare. Med Hypotheses, vol.69, pp.1371-1375, 2007.

P. C. Oyston, A. Sjostedt, and R. W. Titball, Tularaemia: bioterrorism defence renews interest in Francisella tularensis, Nat Rev Microbiol, vol.2, issue.12, pp.967-78, 2004.

A. F. Kaufmann, M. I. Meltzer, and G. P. Schmid, The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis, vol.3, pp.83-94, 1997.

W. D. Tigertt, Soviet viable Pasteurella tularensis vaccines. A review of selected articles, Bacteriol Rev, vol.26, pp.354-73, 1962.

K. L. Elkins, S. L. Kurtz, and R. De-pascalis, Progress, challenges, and opportunities in Francisella vaccine development, Expert Rev Vaccines, vol.15, issue.9, pp.1183-96, 2016.

G. Sandstrom, The tularaemia vaccine, J Chem Technol Biotechnol, vol.59, issue.4, pp.315-335, 1994.

P. C. Oyston and J. E. Quarry, Tularemia vaccine: past, present and future, Antonie Van Leeuwenhoek, vol.87, issue.4, pp.277-81, 2005.

R. D. Pechous, T. R. Mccarthy, and T. C. Zahrt, Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development, Microbiol Mol Biol Rev, vol.73, issue.4, pp.684-711, 2009.

B. J. Mann and N. M. Ark, Rationally designed tularemia vaccines, Expert Rev Vaccines, vol.8, issue.7, pp.877-85, 2009.

R. Ireland, Francisella tularensis SchuS4 and SchuS4 lipids inhibit IL­12p40 in primary human dendritic cells by inhibition of IRF1 and IRF8, J Immunol, vol.191, issue.3, pp.1276-86, 2013.

J. F. Huntley, Native outer membrane proteins protect mice against pulmonary challenge with virulent type A Francisella tularensis, Infect Immun, vol.76, issue.8, pp.3664-71, 2008.

M. Maurin and M. Gyuranecz, Tularaemia: clinical aspects in Europe, Lancet Infect Dis, vol.16, issue.1, pp.113-137, 2016.

S. Boisset, New therapeutic approaches for treatment of tularaemia: a review, Front Cell Infect Microbiol, vol.4, p.40, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00986421

M. Pai, Tuberculosis. Nat Rev Dis Primers, vol.2, p.16076, 2016.

C. M. Bosio and S. W. Dow, Francisella tularensis induces aberrant activation of pulmonary dendritic cells, J Immunol, vol.175, issue.10, pp.6792-801, 2005.

D. J. Steiner, Y. Furuya, and D. W. Metzger, Host­pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity, vol.7, pp.239-51, 2014.

G. S. Schulert and L. A. Allen, Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor, J Leukoc Biol, vol.80, issue.3, pp.563-71, 2006.

A. Chong and J. Celli, The francisella intracellular life cycle: toward molecular mechanisms of intracellular survival and proliferation, Frontiers in Microbiology, vol.1, p.138, 2010.

M. Santic, Francisella tularensis travels a novel, twisted road within macrophages, Trends Microbiol, vol.14, issue.1, pp.37-44, 2006.

X. H. Lai, I. Golovliov, and A. Sjostedt, Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication, Infect Immun, vol.69, issue.7, pp.4691-4694, 2001.

L. S. Anthony, R. D. Burke, and F. E. Nano, Growth of Francisella­Spp in Rodent Macrophages, Infect Immun, vol.59, issue.9, pp.3291-3296, 1991.

C. A. Hall, A Bioluminescent Francisella tularensis SCHU S4 Strain Enables Noninvasive Tracking of Bacterial Dissemination and the Evaluation of Antibiotics in an Inhalational Mouse Model of Tularemia, Antimicrobial Agents and Chemotherapy, vol.60, issue.12, pp.7206-7215, 2016.

C. A. Mares, Initial delay in the immune response to Francisella tularensis is followed by hypercytokinemia characteristic of severe sepsis and correlating with upregulation and release of damage­associated molecular patterns, Infect Immun, vol.76, issue.7, pp.3001-3011, 2008.

J. Sharma, Features of sepsis caused by pulmonary infection with Francisella tularensis Type A strain, Microb Pathog, vol.51, issue.1­2, pp.39-47, 2011.

L. C. Kinkead and L. A. Allen, Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan, Immunol Rev, vol.273, issue.1, pp.266-281, 2016.

S. C. Cowley, Editorial: Proinflammatory cytokines in pneumonic tularemia: too much too late?, J Leukoc Biol, vol.86, issue.3, pp.469-70, 2009.

M. Santic, M. Molmeret, and Y. Abu-kwaik, Modulation of biogenesis of the Francisella tularensis subsp novicida­containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN­gamma, Cell Microbiol, vol.7, issue.7, pp.957-967, 2005.

K. L. Elkins, S. C. Cowley, and C. M. Bosio, Innate and adaptive immunity to Francisella

, Ann N Y Acad Sci, pp.284-324, 1105.

G. S. Kirimanjeswara, Humoral and cell­mediated immunity to the intracellular pathogen Francisella tularensis, Immunol Rev, vol.225, pp.244-55, 2008.

S. C. Cowley and K. L. Elkins, Immunity to Francisella. Frontiers in Microbiology, vol.2, p.26, 2011.

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity, vol.124, pp.783-801, 2006.

F. Hayashi, The innate immune response to bacterial flagellin is mediated by Toll­ like receptor 5, Nature, vol.410, issue.6832, pp.1099-103, 2001.

C. M. Collazo, Myeloid differentiation factor­88 (MyD88) is essential for control of primary in vivo Francisella tularensis LVS infection, but not for control of intra­ macrophage bacterial replication, Microbes Infect, vol.8, issue.3, pp.779-90, 2006.

S. Silva­gomes, A. Decout, and J. Nigou, Pathogen­Associated Molecular Pattern (PAMPs), in Encyclopedia of Inflammatory Diseases, pp.1-16, 2015.

A. Ray, Bacterial cell wall macroamphiphiles: pathogen­/microbe­associated molecular patterns detected by mammalian innate immune system, Biochimie, vol.95, issue.1, pp.33-42, 2013.

B. S. Park, The structural basis of lipopolysaccharide recognition by the TLR4­MD­ 2 complex, Nature, vol.458, issue.7242, pp.1191-1196, 2009.

B. Schilling, Characterization of lipid A acylation patterns in Francisella tularensis, Francisella novicida, and Francisella philomiragia using multiple­stage mass spectrometry and matrix­assisted laser desorption/ionization on an intermediate vacuum source linear ion trap, Anal Chem, vol.79, issue.3, pp.1034-1076, 2007.

N. A. Okan and D. L. Kasper, The atypical lipopolysaccharide of Francisella, Carbohydr Res, vol.378, pp.79-83, 2013.

A. M. Hajjar, Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll­like receptors, Infect Immun, vol.74, issue.12, pp.6730-6738, 2006.

M. S. Jin, Crystal structure of the TLR1­TLR2 heterodimer induced by binding of a tri­acylated lipopeptide, Cell, vol.130, issue.6, pp.1071-82, 2007.

J. Y. Kang, Recognition of lipopeptide patterns by Toll­like receptor 2­Toll­like receptor 6 heterodimer, Immunity, vol.31, issue.6, pp.873-84, 2009.

A. L. Abplanalp, TLR­Dependent Control of Francisella tularensis Infection and Host Inflammatory Responses, PLoS One, issue.4, 2009.

J. Katz, Toll­like receptor 2 is required for inflammatory responses to Francisella tularensis LVS, Infect Immun, vol.74, issue.5, pp.2809-2816, 2006.

M. Malik, Toll­like receptor 2 is required for control of pulmonary infection with Francisella tularensis, Infect Immun, vol.74, issue.6, pp.3657-62, 2006.

S. Thakran, Identification of Francisella tularensis lipoproteins that stimulate the toll­like receptor (TLR) 2/TLR1 heterodimer, J Biol Chem, vol.283, issue.7, pp.3751-60, 2008.

A. Sjostedt, Molecular cloning and expression of a T­cell stimulating membrane protein of Francisella tularensis, Microb Pathog, vol.6, issue.6, pp.403-417, 1989.

A. Sjostedt, A. Tarnvik, and G. Sandstrom, The T­cell­stimulating 17­kilodalton protein of Francisella tularensis LVS is a lipoprotein, Infect Immun, vol.59, issue.9, pp.3163-3171, 1991.

C. L. Jones, Repression of bacterial lipoprotein production by Francisella novicida facilitates evasion of innate immune recognition, Cell Microbiol, vol.14, issue.10, pp.1531-1574, 2012.

D. D. Crane, Lipids derived from virulent Francisella tularensis broadly inhibit pulmonary inflammation via toll­like receptor 2 and peroxisome proliferator­activated receptor alpha, Clin Vaccine Immunol, vol.20, issue.10, pp.1531-1571, 2013.
DOI : 10.1128/cvi.00319-13

URL : https://cvi.asm.org/content/20/10/1531.full.pdf

D. L. Clemens and M. A. Horwitz, Uptake and intracellular fate of Francisella tularensis in human macrophages, Ann N Y Acad Sci, pp.160-86, 1105.

A. Balagopal, Characterization of the receptor­ligand pathways important for entry and survival of Francisella tularensis in human macrophages, Infect Immun, vol.74, issue.9, pp.5114-5139, 2006.

L. M. Pierini, Uptake of serum­opsonized Francisella tularensis by macrophages can be mediated by class A scavenger receptors, Cell Microbiol, vol.8, issue.8, pp.1361-70, 2006.

W. Jia, New perspectives of physiological and pathological functions of nucleolin (NCL), Life Sci, 2017.

M. Barel, A novel receptor ­ ligand pathway for entry of Francisella tularensis in monocyte­like THP­1 cells: interaction between surface nucleolin and bacterial elongation factor Tu, BMC Microbiol, vol.8, p.145, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324631

D. L. Clemens, B. Y. Lee, and M. A. Horwitz, Francisella tularensis enters macrophages via a novel process involving pseudopod loops, Infect Immun, vol.73, issue.9, pp.5892-902, 2005.
DOI : 10.1128/iai.73.9.5892-5902.2005

URL : https://iai.asm.org/content/73/9/5892.full.pdf

H. Geier and J. Celli, Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis, Infect Immun, vol.79, issue.6, pp.2204-2218, 2011.

A. Chong, The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression, Infect Immun, vol.76, issue.12, pp.5488-99, 2008.

D. L. Clemens, B. Y. Lee, and M. A. Horwitz, Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages, Infect Immun, vol.72, issue.6, pp.3204-3221, 2004.

M. Santic, Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol, Infect Immun, vol.76, issue.6, pp.2671-2678, 2008.

M. R. Yeaman and N. Y. Yount, Mechanisms of antimicrobial peptide action and resistance, Pharmacol Rev, vol.55, issue.1, pp.27-55, 2003.

U. Piotrowska, M. Sobczak, and E. Oledzka, Current state of a dual behaviour of antimicrobial peptides­Therapeutic agents and promising delivery vectors, Chem Biol Drug Des, 2017.

D. Kanistanon, Role of Francisella lipid A phosphate modification in virulence and long­term protective immune responses, Infect Immun, vol.80, issue.3, pp.943-51, 2012.

X. Wang, Attenuated virulence of a Francisella mutant lacking the lipid A 4'­ phosphatase, Proc Natl Acad Sci, vol.104, issue.10, pp.4136-4177, 2007.

X. R. Bina, The AcrAB RND efflux system from the live vaccine strain of Francisella tularensis is a multiple drug efflux system that is required for virulence in mice, FEMS Microbiol Lett, vol.279, issue.2, pp.226-259, 2008.

C. L. Jones, Subversion of host recognition and defense systems by Francisella spp, Microbiol Mol Biol Rev, vol.76, issue.2, pp.383-404, 2012.

J. H. Barker, Metabolic labeling to characterize the overall composition of Francisella lipid A and LPS grown in broth and in human phagocytes, Innate Immunity, vol.20, issue.1, pp.88-103, 2014.

N. P. Mohapatra, Francisella acid phosphatases inactivate the NADPH oxidase in human phagocytes, J Immunol, vol.184, issue.9, pp.5141-50, 2010.

R. L. Mccaffrey, Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis, J Leukoc Biol, vol.88, issue.4, pp.791-805, 2010.

H. Lindgren, Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG, Infect Immun, vol.75, issue.3, pp.1303-1312, 2007.

A. A. Melillo, Identification of Francisella tularensis live vaccine strain CuZn superoxide dismutase as critical for resistance to extracellularly generated reactive oxygen species, J Bacteriol, pp.6447-56, 1920.

I. Golovliov, An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells, Infect Immun, vol.71, issue.10, pp.5940-50, 2003.

J. A. Edwards, Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN­gamma activation of macrophages. Microbiology, pp.327-366, 2010.

R. Pierini, AIM2/ASC triggers caspase­8­dependent apoptosis in Francisella­ infected caspase­1­deficient macrophages, Cell Death Differ, vol.19, issue.10, pp.1709-1730, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00965390

X. H. Lai, I. Golovliov, and A. Sjostedt, Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication, Infect Immun, vol.69, issue.7, pp.4691-4695, 2001.

H. Ashida, Cell death and infection: a double­edged sword for host and pathogen survival, J Cell Biol, vol.195, issue.6, pp.931-973, 2011.

M. J. Parmely, J. L. Fischer, and D. M. Pinson, Programmed cell death and the pathogenesis of tissue injury induced by type A Francisella tularensis, FEMS Microbiol Lett, vol.301, issue.1, pp.1-11, 2009.

S. Mariathasan, Innate immunity against Francisella tularensis is dependent on the ASC/caspase­1 axis, Journal of Experimental Medicine, vol.202, issue.8, pp.1043-1052, 2005.

J. W. Jones, Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis, Proc Natl Acad Sci, vol.107, issue.21, pp.9771-9777, 2010.

T. Henry, Type I interferon signaling is required for activation of the inflammasome during Francisella infection, Journal of Experimental Medicine, vol.204, issue.5, pp.987-94, 2007.

P. Wallet, B. Lagrange, and T. Henry, Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium. Inflammasome Signaling and Bacterial Infections, vol.397, pp.229-256, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01927023

C. L. Jones and D. S. Weiss, TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection, PLoS One, vol.6, issue.6, p.20609, 2011.

S. Periasamy, Inflammasome­Independent NLRP3 Restriction of a Protective Early Neutrophil Response to Pulmonary Tularemia, PLoS Pathog, vol.12, issue.12, p.1006059, 2016.

M. K. Atianand, Francisella tularensis reveals a disparity between human and mouse NLRP3 inflammasome activation, J Biol Chem, vol.286, issue.45, pp.39033-39075, 2011.

T. Henry and D. M. Monack, Activation of the inflammasome upon Francisella tularensis infection: interplay of innate immune pathways and virulence factors, Cell Microbiol, vol.9, issue.11, pp.2543-51, 2007.

J. Sharma, Lethal pulmonary infection with Francisella novicida is associated with severe sepsis, J Leukoc Biol, vol.86, issue.3, pp.491-504, 2009.

B. B. Mishra, Galectin­3 functions as an alarmin: pathogenic role for sepsis development in murine respiratory tularemia, PLoS One, vol.8, issue.3, p.59616, 2013.

A. L. Steichen, Alarmin function of galectin­9 in murine respiratory tularemia, PLoS One, vol.10, issue.4, p.123573, 2015.

E. S. Van-amersfoort, T. J. Van-berkel, and J. Kuiper, Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock, Clin Microbiol Rev, vol.16, issue.3, pp.379-414, 2003.

A. R. Glynn, Comparison of experimental respiratory tularemia in three nonhuman primate species, Comp Immunol Microbiol Infect Dis, vol.39, pp.13-24, 2015.

P. Kruger, Neutrophils: Between host defence, immune modulation, and tissue injury, PLoS Pathog, vol.11, issue.3, p.1004651, 2015.

J. W. Conlan, Different host defences are required to protect mice from primary systemic vs pulmonary infection with the facultative intracellular bacterial pathogen, Francisella tularensis LVS, Microb Pathog, vol.32, issue.3, pp.127-161, 2002.

A. Sjostedt, J. W. Conlan, and R. J. North, Neutrophils are critical for host defense against primary infection with the facultative intracellular bacterium Francisella tularensis in mice and participate in defense against reinfection, Infect Immun, vol.62, issue.7, pp.2779-83, 1994.

J. T. Schwartz, Francisella tularensis inhibits the intrinsic and extrinsic pathways to delay constitutive apoptosis and prolong human neutrophil lifespan, J Immunol, vol.188, issue.7, pp.3351-63, 2012.

M. Malik, Matrix metalloproteinase 9 activity enhances host susceptibility to pulmonary infection with type A and B strains of Francisella tularensis, J Immunol, vol.178, issue.2, pp.1013-1033, 2007.

, Global, regional, and national age-sex specific all­cause and cause­specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study, The Lancet, vol.385, issue.9963, pp.117-171, 2013.

R. I. Aminov, A brief history of the antibiotic era: lessons learned and challenges for the future, Frontiers in Microbiology, vol.1, p.134, 2010.

, Antimicrobial resistance: global report on surveillance, WHO, p.257, 2014.

D. J. Payne, Drugs for bad bugs: confronting the challenges of antibacterial discovery, Nat Rev Drug Discov, vol.6, issue.1, pp.29-40, 2007.

R. Tommasi, ESKAPEing the labyrinth of antibacterial discovery, Nat Rev Drug Discov, vol.14, issue.8, pp.529-571, 2015.

A. Zumla, Host­directed therapies for infectious diseases: current status, recent progress, and future prospects, Lancet Infect Dis, vol.16, issue.4, pp.47-63, 2016.

H. Muller­redetzky, Therapeutic strategies in pneumonia: going beyond antibiotics, Eur Respir Rev, vol.24, issue.137, pp.516-540, 2015.

S. C. Meijvis, Treatment with anti­inflammatory drugs in community­acquired pneumonia, J Intern Med, vol.272, issue.1, pp.25-35, 2012.

T. Rhen and J. A. Cidlowski, Antiinflammatory action of glucocorticoids­­new mechanisms for old drugs, N Engl J Med, vol.353, issue.16, pp.1711-1734, 2005.

P. Marik, Hydrocortisone and tumor necrosis factor in severe community­ acquired pneumonia. A randomized controlled study, Chest, vol.104, issue.2, pp.389-92, 1993.

S. C. Meijvis, Dexamethasone and length of hospital stay in patients with community­acquired pneumonia: a randomised, double­blind, placebo­controlled trial, Lancet, vol.377, issue.9782, pp.2023-2053, 2011.

M. Confalonieri, Hydrocortisone infusion for severe community­acquired pneumonia: a preliminary randomized study, Am J Respir Crit Care Med, vol.171, issue.3, pp.242-250, 2005.

E. S. Istvan and J. Deisenhofer, Structural mechanism for statin inhibition of HMG­CoA reductase, Science, vol.292, issue.5519, pp.1160-1164, 2001.

C. J. Vaughan, M. B. Murphy, and B. M. Buckley, Statins do more than just lower cholesterol, Lancet, vol.348, issue.9034, pp.1079-82, 1996.

L. M. Blanco­colio, Anti­inflammatory and immunomodulatory effects of statins, Kidney Int, vol.63, issue.1, pp.12-23, 2003.

M. Terblanche, Statins and sepsis: multiple modifications at multiple levels, Lancet Infect Dis, vol.7, issue.5, pp.358-68, 2007.

J. D. Chalmers, Prior statin use is associated with improved outcomes in community­acquired pneumonia, Am J Med, vol.121, issue.11, pp.1002-1007, 2008.

S. Kanoh and B. K. Rubin, Mechanisms of action and clinical application of macrolides as immunomodulatory medications, Clin Microbiol Rev, vol.23, issue.3, pp.590-615, 2010.

A. Kovaleva, Immunomodulatory effects of macrolides during community­ acquired pneumonia: a literature review, J Antimicrob Chemother, vol.67, issue.3, pp.530-570, 2012.

J. R. Vane and R. M. Botting, Mechanism of action of nonsteroidal anti­inflammatory drugs, Am J Med, vol.104, 1998.

J. Steinmeyer, Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti­inflammatory drugs, Arthritis Res, vol.2, issue.5, pp.379-85, 2000.

C. M. Ulrich, J. Bigler, and J. D. Potter, Non­steroidal anti­inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics, Nat Rev Cancer, vol.6, issue.2, pp.130-170, 2006.

G. R. Bernard, The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group, N Engl J Med, vol.336, issue.13, pp.912-920, 1997.

G. Voiriot, Nonsteroidal antiinflammatory drugs may affect the presentation and course of community­acquired pneumonia, Chest, vol.139, issue.2, pp.387-394, 2011.

M. Ferrer, Effect of acetylsalicylic acid on pulmonary gas exchange in patients with severe pneumonia: a pilot study, Chest, vol.111, issue.4, pp.1094-100, 1997.

C. Vilaplana, Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis, J Infect Dis, vol.208, issue.2, pp.199-202, 2013.

V. M. Kroesen, Non­Steroidal Anti­inflammatory Drugs As Host­Directed Therapy for Tuberculosis: A Systematic Review. Front Immunol, vol.8, p.772, 2017.

J. Nigou, Mannosylated lipoarabinomannans inhibit IL­12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor, J Immunol, vol.166, issue.12, pp.7477-85, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00177977

S. Pitarque, The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface, Tuberculosis (Edinb), vol.88, issue.6, pp.560-565, 2008.

T. B. Geijtenbeek, Mycobacteria target DC­SIGN to suppress dendritic cell function, Journal of Experimental Medicine, vol.197, issue.1, pp.7-17, 2003.
DOI : 10.1084/jem.20021229

URL : http://jem.rupress.org/content/197/1/7.full.pdf

E. Blattes, Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment, Proc Natl Acad Sci U S A, vol.110, issue.22, pp.8795-800, 2013.
DOI : 10.1073/pnas.1221708110

URL : https://hal.archives-ouvertes.fr/hal-00994589

J. Nigou, M. Gilleron, and G. Puzo, Lipoarabinomannans: from structure to biosynthesis, Biochimie, vol.85, issue.1­2, pp.153-66, 2003.
DOI : 10.1016/s0300-9084(03)00048-8

URL : https://hal.archives-ouvertes.fr/hal-00177973

M. Riviere, Highly ordered supra­molecular organization of the mycobacterial lipoarabinomannans in solution. Evidence of a relationship between supra­molecular organization and biological activity, J Mol Biol, vol.344, issue.4, pp.907-925, 2004.

Y. Van-kooyk and T. B. Geijtenbeek, DC­SIGN: escape mechanism for pathogens, Nature Reviews Immunology, vol.3, issue.9, pp.697-709, 2003.

H. Feinberg, Structural basis for selective recognition of oligosaccharides by DC­ SIGN and DC­SIGNR, Science, vol.294, issue.5549, pp.2163-2169, 2001.

H. Feinberg, Extended neck regions stabilize tetramers of the receptors DC­SIGN and DC­SIGNR, J Biol Chem, vol.280, issue.2, pp.1327-1362, 2005.

E. Blattes, Molecular basis of Mycobacterium tuberculosis recognition by the C­ type lectin DC­SIGN: from the modulation of innate immune response to the design of innovative anti­inflammatory drugs, in Carbohydrates in drug design and discovery, pp.64-88, 2015.

L. Tailleux, DC­SIGN induction in alveolar macrophages defines privileged target host cells for mycobacteria in patients with tuberculosis, PLoS Med, vol.2, issue.12, p.381, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00154028

T. B. Geijtenbeek, DC­SIGN, a dendritic cell­specific HIV­1­binding protein that enhances trans­infection of T cells, Cell, vol.100, issue.5, pp.587-97, 2000.

W. Van-breedam, Bitter­sweet symphony: glycan­lectin interactions in virus biology, FEMS Microbiol Rev, vol.38, issue.4, pp.598-632, 2014.

L. Tailleux, DC­SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells, Journal of Experimental Medicine, vol.197, issue.1, pp.121-128, 2003.
DOI : 10.1084/jem.20021468

URL : https://hal.archives-ouvertes.fr/pasteur-01372712

S. I. Gringhuis, C­type lectin DC­SIGN modulates Toll­like receptor signaling via Raf­1 kinase­dependent acetylation of transcription factor NF­kappaB, Immunity, vol.26, issue.5, pp.605-621, 2007.

C. G. Park, Five mouse homologues of the human dendritic cell C­type lectin, DC­ SIGN, Int Immunol, vol.13, issue.10, pp.1283-90, 2001.

A. S. Powlesland, Widely divergent biochemical properties of the complete set of mouse DC­SIGN­related proteins, J Biol Chem, vol.281, issue.29, pp.20440-20449, 2006.

A. Tanne, A murine DC­SIGN homologue contributes to early host defense against Mycobacterium tuberculosis, Journal of Experimental Medicine, vol.206, issue.10, pp.2205-2225, 2009.
DOI : 10.1084/jem.20090188

URL : http://jem.rupress.org/content/206/10/2205.full.pdf

M. Ohtani, Involvement of suppressor of cytokine signalling­1­mediated degradation of MyD88­adaptor­like protein in the suppression of Toll­like receptor 2­ mediated signalling by the murine C­type lectin SIGNR1­mediated signalling, Cell Microbiol, vol.14, issue.1, pp.40-57, 2012.

M. A. Pammit, Intranasal interleukin­12 treatment promotes antimicrobial clearance and survival in pulmonary Francisella tularensis subsp. novicida infection, Antimicrob Agents Chemother, vol.48, issue.12, pp.4513-4522, 2004.
DOI : 10.1128/aac.48.12.4513-4519.2004

URL : https://aac.asm.org/content/48/12/4513.full.pdf

R. B. Pyles, G. E. Jezek, and T. D. Eaves­pyles, Toll­like receptor 3 agonist protection against experimental Francisella tularensis respiratory tract infection, Infect Immun, vol.78, issue.4, pp.1700-1710, 2010.
DOI : 10.1128/iai.00736-09

URL : https://iai.asm.org/content/78/4/1700.full.pdf

A. Lembo, Administration of a synthetic TLR4 agonist protects mice from pneumonic tularemia, J Immunol, vol.180, issue.11, pp.7574-81, 2008.

R. Ireland, Effective, broad spectrum control of virulent bacterial infections using cationic DNA liposome complexes combined with bacterial antigens, PLoS Pathog, vol.6, issue.5, p.1000921, 2010.

J. A. Skyberg, Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections, PLoS Pathog, vol.8, issue.3, p.1002587, 2012.

D. Elia and R. V. , Targeting the "Rising DAMP" during a Francisella tularensis Infection, Antimicrob Agents Chemother, vol.57, issue.9, pp.4222-4228, 2013.

P. Zhang, J. Katz, and S. M. Michalek, Glycogen synthase kinase­3beta (GSK3beta) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice, Mol Immunol, vol.46, issue.4, pp.677-87, 2009.

E. Ramond, Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape, PLoS Pathog, vol.10, issue.1, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972072

S. Dai, Fine tuning inflammation at the front door: macrophage complement receptor 3­mediates phagocytosis and immune suppression for Francisella tularensis, PLoS Pathog, vol.9, issue.1, p.1003114, 2013.

J. P. Butchar, Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion, PLoS One, vol.3, issue.8, p.2924, 2008.

T. J. Cremer, MiR­155 induction by F. novicida but not the virulent F. tularensis results in SHIP down­regulation and enhanced pro­inflammatory cytokine response, PLoS One, vol.4, issue.12, p.8508, 2009.

H. Li, Innate immune response to Francisella tularensis is mediated by TLR2 and caspase­1 activation, J Leukoc Biol, vol.80, issue.4, pp.766-73, 2006.

N. Frison, Oligolysine­based oligosaccharide clusters: selective recognition and endocytosis by the mannose receptor and dendritic cell­specific intercellular adhesion molecule 3 (ICAM­3)­grabbing nonintegrin, J Biol Chem, vol.278, issue.26, pp.23922-23931, 2003.

J. W. Hovius, Salp15 binding to DC­SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization, PLoS Pathog, vol.4, issue.2, p.31, 2008.

V. Srivastava, Toll­like receptor 2 and DC­SIGNR1 differentially regulate suppressors of cytokine signaling 1 in dendritic cells during Mycobacterium tuberculosis infection, J Biol Chem, vol.284, issue.38, pp.25532-25573, 2009.

D. M. Underhill, Macrophage recognition of zymosan particles, J Endotoxin Res, vol.9, issue.3, pp.176-80, 2003.

T. B. Geijtenbeek, Identification of DC­SIGN, a novel dendritic cell­specific ICAM­3 receptor that supports primary immune responses, Cell, vol.100, issue.5, pp.575-585, 2000.

A. Ben-nasr, Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria, J Leukoc Biol, vol.80, issue.4, pp.774-86, 2006.

E. J. Soilleux, Constitutive and induced expression of DC­SIGN on dendritic cell and macrophage subpopulations in situ and in vitro, J Leukoc Biol, vol.71, issue.3, pp.445-57, 2002.

T. B. Geijtenbeek, Marginal zone macrophages express a murine homologue of DC­SIGN that captures blood­borne antigens in vivo, Blood, vol.100, issue.8, pp.2908-2924, 2002.

R. A. Trammell and L. A. Toth, Markers for predicting death as an outcome for mice used in infectious disease research, Comp Med, vol.61, issue.6, pp.492-500, 2011.

C. M. Lauriano, MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival, Proc Natl Acad Sci U S A, vol.101, issue.12, pp.4246-4255, 2004.

A. A. Bachmanov, Food intake, water intake, and drinking spout side preference of 28 mouse strains, Behav Genet, vol.32, issue.6, pp.435-478, 2002.

J. Steward, Comparison of gatifloxacin, moxifloxacin and ciprofloxacin for treatment of experimental Burkholderia pseudomallei infection, J Antimicrob Chemother, vol.55, issue.4, pp.523-530, 2005.

M. D. Sutherland, Post­exposure immunization against Francisella tularensis membrane proteins augments protective efficacy of gentamicin in a mouse model of pneumonic tularemia, Vaccine, vol.30, issue.33, pp.4977-82, 2012.

C. A. Mares, Attenuated response of aged mice to respiratory Francisella novicida is characterized by reduced cell death and absence of subsequent hypercytokinemia, PLoS One, vol.5, issue.11, p.14088, 2010.

D. L. Fritz, Mouse models of aerosol­acquired tularemia caused by Francisella tularensis types A and B, Comp Med, vol.64, issue.5, pp.341-50, 2014.

Y. Kawauchi, SIGNR1­mediated phagocytosis, but not SIGNR1­mediated endocytosis or cell adhesion, suppresses LPS­induced secretion of IL­6 from murine macrophages, Cytokine, vol.71, issue.1, pp.45-53, 2015.
DOI : 10.1016/j.cyto.2014.08.002

R. M. Kannan, Emerging concepts in dendrimer­based nanomedicine: from design principles to clinical applications, J Intern Med, vol.276, issue.6, pp.579-617, 2014.
DOI : 10.1111/joim.12280

C. R. Raetz and C. Whitfield, Lipopolysaccharide endotoxins, Annu Rev Biochem, vol.71, pp.635-700, 2002.

J. Y. Kang and J. O. Lee, Structural biology of the Toll­like receptor family, Annu Rev Biochem, vol.80, pp.917-958, 2011.

X. Wang, Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida, Biochemistry, vol.45, issue.48, pp.14427-14467, 2006.

N. J. Phillips, Novel modification of lipid A of Francisella tularensis, Infect Immun, vol.72, issue.9, pp.5340-5348, 2004.

M. Matsuura, Structural modifications of bacterial lipopolysaccharide that facilitate Gram­negative bacteria evasion of host innate immunity, Front Immunol, issue.4, 2013.

Y. Li, LPS remodeling is an evolved survival strategy for bacteria, Proc Natl Acad Sci, vol.109, issue.22, pp.8716-8737, 2012.
DOI : 10.1073/pnas.1202908109

URL : http://www.pnas.org/content/109/22/8716.full.pdf

S. A. Shaffer, Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A characterized by tandem mass spectrometry, J Am Soc Mass Spectrom, vol.18, issue.6, pp.1080-92, 2007.

A. J. Scott, Norharmane Matrix Enhances Detection of Endotoxin by MALDI­MS for Simultaneous Profiling of Pathogen, Host, and Vector Systems, 2016.

O. Neyrolles, Mycobacteria, metals, and the macrophage, Immunol Rev, vol.264, issue.1, pp.249-63, 2015.
DOI : 10.1111/imr.12265

URL : http://europepmc.org/articles/pmc4521620?pdf=render

E. Di-russo-case and J. E. Samuel, Contrasting Lifestyles Within the Host Cell. Microbiol Spectr, vol.4, issue.1, 2016.