. .. , 128 6.1.1 Significance and comparison with related work, Concluding remarks, significance and comparison with related work

, Contribution and Innovative aspect of Smart'GRADE

. .. Threats, 2.12.1 Evaluation of direct and indirect employment creation within a period 5 years, .1 Smart'GRADE project: Context, Services and Process

.. .. References,

.. .. Appendices,

.. .. Glossary,

A. ,

. Belsare, Histopathological Image Analysis Using Image Processing Techniques: An Overview, Int. J, vol.3, issue.4, pp.23-36, 2012.

D. Ameisen, Towards better digital pathology workflows: programming libraries for high-speed sharpness assessment of Whole Slide Images, Diagn. Pathol, vol.9, 2014.

, Compression of medical volumetric datasets: Physical and psychovisual performance comparison of the emerging JP3D standard and JPEG2000 -art

M. Veta, J. P. Pluim, P. J. Van-diest, and M. A. Viergever, Breast Cancer Histopathology Image Analysis: A Review, IEEE Trans. Biomed. Eng, vol.61, issue.5, pp.1400-1411, 2014.

V. Christlein, Tutorial: Deep Learning Advancing the State-of-the-Art in Medical Image Analysis, Bildverarbeitung für die Medizin, pp.6-7, 2017.

, CAP -Cancer Protocol Templates, College of American Pathologists

T. A. Longacre, Interobserver agreement and reproducibility in classification of invasive breast carcinoma: an NCI breast cancer family registry study, Mod. Pathol, vol.19, issue.2, pp.195-207, 2005.

C. Daniel, Standards and specifications in pathology: image management, report management and terminology, Stud Health Technol Inf, vol.179, pp.105-122, 2012.

G. Haroske and T. Schrader, A reference model based interface terminology for generic observations in Anatomic Pathology Structured Reports, Diagn. Pathol, vol.9, 2014.

T. M. Deserno, S. Antani, and R. Long, Ontology of gaps in content-based image retrieval, J. Digit. Imaging, vol.22, issue.2, pp.202-215, 2009.

A. E. Tutac, Formal representation and reasoning for microscopic medical imagebased prognosis

. Besançon, , 2010.

M. A. Musen, The National Center for Biomedical Ontology, J. Am. Med. Inform. Assoc, vol.19, issue.2, pp.190-195, 2012.

P. L. Whetzel, BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications, Nucleic Acids Res, vol.39, pp.541-545, 2011.

O. Bodenreider, The Unified Medical Language System (UMLS): integrating biomedical terminology, p.17, 2015.

, Semantic Types and Groups, p.17, 2016.

, Current Semantic Types, p.17, 2016.

B. Smith, Biomedical imaging ontologies: A survey and proposal for future work, J. Pathol. Inform, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212447

M. N. Gurcan, J. Tomaszewski, J. A. Overton, S. Doyle, A. Ruttenberg et al., Developing the Quantitative Histopathology Image Ontology (QHIO): A case study using the hot spot detection problem, J. Biomed. Inform, vol.66, pp.129-135, 2017.

C. C. Compton, D. R. Byrd, J. Garcia-aguilar, S. H. Kurtzman, A. Olawaiye et al.,

. Washington, AJCC Cancer Staging Atlas: A Companion to the Seventh Editions of the AJCC Cancer Staging Manual and Handbook, 2012.

, Grading vs Staging, Oncology Training International

C. W. Elston and I. O. Ellis, Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis, Histopathology, vol.19, issue.3a, pp.151-151, 1991.

A. A. Renshaw, M. Mena-allauca, and E. W. Gould, Reporting Gleason grade/score in synoptic reports of radical prostatectomies, J. Pathol. Inform, vol.7, p.7, 2015.

, National Cancer Institute, p.7, 2015.

L. Traore, C. Daniel, M. Jaulent, T. Schrader, D. Racoceanu et al., A sustainable visual representation of available histopathological digital knowledge for breast cancer grading, Diagn. Pathol, vol.2, issue.1, 2016.

, Cancer Protocol Frequently Asked Questions -College of American Pathologists, p.4, 2017.

K. A. Fleming, Editorial. Evidence-Based Pathology, J. Pathol, vol.179, issue.2, pp.127-128, 1996.

G. P. Pena, J. De, and S. Andrade-filho, How Does a Pathologist Make a Diagnosis?, ResearchGate, vol.133, issue.1, pp.124-156, 2009.

W. A. Wells, P. A. Carney, M. S. Eliassen, M. R. Grove, and A. N. Tosteson, Pathologists' agreement with experts and reproducibility of breast ductal carcinoma-in-situ classification schemes, Am. J. Surg. Pathol, vol.24, issue.5, pp.651-659, 2000.

C. Bozec, Gestion des connaissances multi-expertes en imagerie médicale IDEM: images et diagnostics par l'exemple en médecine, ANRT, 2001.

A. M. Marchevsky and M. R. Wick, Evidence-Based Pathology: Systematic Literature Reviews as the Basis for Guidelines and Best Practices, Arch. Pathol. Lab. Med, vol.139, issue.3, pp.394-399, 2014.

K. A. Fleming, Evidence-based cellular pathology, Lancet Lond. Engl, vol.359, issue.9312, pp.1149-1150, 2002.

O. C. Curé, H. Maurer, N. H. Shah, and P. L. Pendu, A formal concept analysis and semantic query expansion cooperation to refine health outcomes of interest, BMC Med. Inform. Decis. Mak, vol.15, p.8, 2015.

F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, Digital Imaging in Pathology: Whole-Slide Imaging and Beyond, vol.8, pp.331-359, 2013.

N. Farahani, A. V. Parwani, and L. Pantanowitz, Whole slide imaging in pathology: advantages, limitations, and emerging perspectives, Pathology and Laboratory Medicine International, vol.11, p.2, 2015.

D. Racoceanu and F. Capron, Towards Semantic-Driven High-Content Image Analysis. An Operational Instantiation for Mitosis Detection in Digital Histopathology, Comput. Med. Imaging Graph, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01139965

V. and D. Mea, 25 years of telepathology research: a bibliometric analysis, Diagn. Pathol, vol.6, issue.1, p.26, 2011.

, Digital Pathology and Virtual Microscopy Integration in E-Health Records: Medical & Healthcare IS&T Book Chapter, p.2, 2017.

, Sup145: Whole Slide Imaging -sup145_ft.pdf, p.5, 2017.

C. Daniel, Recent advances in standards for Collaborative Digital Anatomic Pathology, Diagn Pathol, vol.6, p.17, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00618716

M. García-rojo, B. Blobel, and A. Laurinavicius, Perspectives on Digital Pathology: Results of the COST Action IC0604 EURO-TELEPATH, 2012.

K. J. Kaplan and L. K. Rao, Digital Pathology: Historical Perspectives, Current Concepts & Future Applications, 2015.

T. Sawai, M. Uzuki, A. Kamataki, and I. Tofukuji, The state of telepathology in Japan, J. Pathol. Inform, vol.1, 2010.

, ResearchGate, Download Available), p.3, 2017.

, Anatomic Pathology Workflow -IHE Wiki, p.20, 2014.

, COPOLCO, 2017.

, IEC -Standards development > International Standards (IS), p.2, 2017.

B. Gibaud, The DICOM standard : a brief overview, pp.229-238, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00344389

W. D. Bidgood, S. C. Horii, F. W. Prior, and D. E. Van-syckle, Understanding and Using DICOM, the Data Interchange Standard for Biomedical Imaging, J. Am. Med. Inform. Assoc, vol.4, issue.3, pp.199-212, 1997.

M. Larobina and L. Murino, Medical Image File Formats, J. Digit. Imaging, vol.27, issue.2, pp.200-206, 2014.

A. Fedorov, DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research, PeerJ, vol.4, p.2057, 2016.

&. Dicom-homepage, , 2017.

, DICOM Controlled Terminology -10 Year CHD Risk -Classes | NCBO BioPortal

D. Semantic, |. Ontology--summary, and . Ncbo-bioportal, , p.4, 2017.

, Supp122: Specimen & Pathology -sup122_ft2.pdf, p.5, 2017.

&. Jpip and . Wikipedia, , 2016.

, Electronic Cancer Checklists -College of American Pathologists

, Microsoft PowerPoint -NAACCR09 Pitkus.ppt [Read-Only] -LinkClick.aspx

, Health Level Seven International -Homepage, p.5, 2017.

, 13th European Congress on Digital Pathology: Program Highlights, 2016.

, What is Clinical Document Architecture (CDA)? -Definition from WhatIs.com, p.27, 2016.

, Clinical Document Architecture, Wikipedia, the free encyclopedia, vol.24, 2014.

, HL7 Searchable Project Index -HL7 Attachment Supplement Specification: Request and Response Implementation guide Release 2, 2016.

R. E. Nakhleh, Patient safety and error reduction in surgical pathology, Arch. Pathol. Lab. Med, vol.132, issue.2, pp.181-185, 2008.

J. D. Goldsmith, G. P. Siegal, S. Suster, T. M. Wheeler, and R. W. Brown, Reporting guidelines for clinical laboratory reports in surgical pathology, Arch. Pathol. Lab. Med, vol.132, issue.10, pp.1608-1616, 2008.

K. O. Leslie and J. Rosai, Standardization of the surgical pathology report: Formats, templates, and synoptic reports, ResearchGate, vol.11, issue.4, pp.253-260, 1994.

, Société Française de Pathologie -La SFP, p.4, 2017.

, RCPA -The Royal College of Pathologists of Australasia, 2017.

, Fast Healthcare Interoperability Resources, Wikipedia, vol.22, 2016.

, Overview -FHIR v1.0.2, p.27, 2016.

&. Iso-standards, , p.28, 2016.

A. Goode, B. Gilbert, J. Harkes, D. Jukic, and M. Satyanarayanan, OpenSlide: A vendor-neutral software foundation for digital pathology, J. Pathol. Inform, vol.4, issue.1, p.27, 2013.

M. García-rojo, L. Gonçalves, and B. Blobel, The COST Action IC0604 'Telepathology Network in Europe' (EURO-?EPATH), vol.179, pp.3-12, 2012.

O. Bodenreider, Biomedical Ontologies in Action: Role in Knowledge Management, Data Integration and Decision Support, Yearb. Med. Inform, pp.67-79, 2008.

D. L. Rubin, N. H. Shah, and N. F. Noy, Biomedical ontologies: a functional perspective, Brief. Bioinform, vol.9, issue.1, pp.75-90, 2007.

, Project MICO (COgnitive MIcroscope: A cognition-driven visual explorer for histopathology, p.27, 2016.

, Project MICO (COgnitive MIcroscope: A cognition-driven visual explorer for histopathology. Application...) | ANR -Agence Nationale de la Recherche

P. Bertheau, Towards Efficient Collaborative Digital Pathology: A Pioneer Initiative Of The FlexMIm Project, Diagn. Pathol, vol.1, issue.8, 2016.

, FlexMIm -Collaborative Digital Pathology | Image & Pervasive Access Lab

, PlaNuCa -PLAteforme NUmérique de pathologie pour la prise en charge des CAncers, p.28, 2016.

, Tissuegnostics.com website informations, p.28, 2016.

, History -TissueGnostics, p.28, 2016.

M. Baatz, J. Zimmermann, and C. G. Blackmore, Automated analysis and detailed quantification of biomedical images using Definiens Cognition Network Technology

, Tissue Phenomics® | Definiens, Chem. High Throughput Screen, vol.12, issue.9, p.28, 2009.

&. Healthcare, , p.28, 2016.

, Présentation PowerPoint -Calopix_US_BD.pdf, p.28, 2016.

&. Research, , p.28, 2016.

, CytoProcessor -DATEXIM

, LinkedPath -DATEXIM

, VirtualMultihead -DATEXIM

K. Yu, Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features, Nat. Commun, vol.7, 2016.

J. Hipp, Computer aided diagnostic tools aim to empower rather than replace pathologists: Lessons learned from computational chess, J. Pathol. Inform, vol.2, 2011.

A. H. Beck, Systematic analysis of breast cancer morphology uncovers stromal features associated with survival, Sci. Transl. Med, vol.3, issue.108, pp.108-113, 2011.

T. R. Gruber, A Translation Approach to Portable Ontology Specifications, Knowl Acquis, vol.5, issue.2, pp.199-220, 1993.

D. L. Rubin, N. F. Noy, and M. A. Musen, Protégé: A Tool for Managing and Using Terminology in Radiology Applications, J. Digit. Imaging, vol.20, pp.34-46, 2007.

H. J. Bloom and W. W. Richardson, Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years, Br. J. Cancer, vol.11, issue.3, p.359, 1957.

E. A. Rakha, Prognostic Significance of Nottingham Histologic Grade in Invasive Breast Carcinoma, J. Clin. Oncol, vol.26, issue.19, pp.3153-3158, 2008.

Z. Ahmad, A. Khurshid, A. Qureshi, R. Idress, N. Asghar et al., Breast carcinoma grading, estimation of tumor size, axillary lymph node status, staging, and Nottingham Prognostic Index scoring on mastectomy specimens, Indian J. Pathol. Microbiol, vol.52, issue.4, pp.477-481, 2009.

, Image metadata reasoning for improved clinical decision support -Semantic Scholar

, Zillner-Sonntag/7c7acb00a58f529be04d5de2777e6cc918da85fd, p.18, 2017.

, Towards the Ontology-based Classification of Lymphoma Patients using Semantic Image Annotations, 2017.

, A Spatio-anatomical Medical Ontology and Automatic Plausibility Checks (PDF Download Available)," ResearchGate, 2017.

C. Kurtz, A. Depeursinge, S. Napel, C. F. Beaulieu, and D. L. Rubin, On combining image-based and ontological semantic dissimilarities for medical image retrieval applications, Med. Image Anal, vol.18, issue.7, pp.1082-1100, 2014.

, On the Feasibility of Predicting Radiological Observations from Computational Imaging Features of Liver Lesions in CT Scans, p.18, 2017.

A. P. Galton, G. Landini, D. Randell, and S. Fouad, Ontological Levels in Histological Imaging, 2016.

, Automatic-classification-of-cancer-tumors-using-image-annotations.pdf

B. Meriem and T. Yamina, Interpretation breast cancer imaging by using ontol ogy, Cyber Journals: Multidisciplinary Journals in Science and Technology, 2012.

G. Marquet, O. Dameron, S. Saikali, J. Mosser, and A. Burgun, Grading glioma tumors using OWL-DL and NCI Thesaurus, AMIA. Annu. Symp. Proc, p.17, 2007.

C. Jonquet, M. A. Musen, and N. H. Shah, Building a biomedical ontology recommender web service, J. Biomed. Semant, vol.1, p.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00489093

, Ontology Recommender Web service -NCBO Wiki, p.10, 2015.

|. Annotator and . Bioportal, , p.11, 2015.

N. H. Shah, N. Bhatia, C. Jonquet, D. Rubin, A. P. Chiang et al., Comparison of concept recognizers for building the Open Biomedical Annotator, BMC Bioinformatics, vol.10, p.14, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00492026

, UMLS REST API Home Page, p.26, 2016.

, MindMaple -Mind Mapping Software -Improve Brainstorming Techniques

, Welcome to Python.org," Python.org, p.26, 2016.

R. Emden and . Gansner, Graphviz | Graphviz -Graph Visualization Software

, JSON, p.26, 2016.

, International classification of diseases for oncology. -NLM Catalog -NCBI

, International Classification of Diseases for Oncology, p.28, 2017.

. Adicap--adicap_version5_4_1_2009 and . Pdf, , p.28, 2017.

, ADICAP-Association pour le Développement de l'Informatique en Cytologie et Anatomo-Pathologie

, Welcome to the NCBO BioPortal | NCBO BioPortal, p.11, 2015.

, BioPortal REST services -NCBO Wiki, p.24, 2017.

N. C. Information, U. S. Pike, and B. Md, A Portion of the UMLS Semantic Network: Relations] -UMLS® Reference Manual -NCBI Bookshelf, p.17, 2009.

, Fact SheetUMLS® Semantic Network, p.25, 2016.

B. Smith, The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration, Nat. Biotechnol, vol.25, issue.11, p.23, 2007.

|. Protege and . Dataone, , p.22, 2017.

&. Protegeproject/owlviz and . Github, , p.7, 2016.

&. Skosi-documentation, , p.17, 2017.

T. R. Fanshawe, A. G. Lynch, I. O. Ellis, A. R. Green, and R. Hanka, Assessing agreement between multiple raters with missing rating information, applied to breast cancer tumour grading, PloS One, vol.3, issue.8, p.2925, 2008.

G. Hripcsak and A. S. Rothschild, Agreement, the F-Measure, and Reliability in Information Retrieval, J. Am. Med. Inform. Assoc. JAMIA, vol.12, issue.3, p.25, 2005.

L. Toubiana and M. Cuggia, Big data and smart health strategies: findings from the health information systems perspective, Yearb. Med. Inform, vol.9, pp.125-127, 2014.

, Hans Hofstraat / Speakers / Home -Bigdata, p.13, 2015.

M. L. Mendelsohn, W. A. Kolman, B. Perry, and J. M. Prewitt, Morphological analysis of cells and chromosomes by digital computer, Methods Inf. Med, vol.4, issue.4, pp.163-167, 1965.

M. L. Mendelsohn, W. A. Kolman, B. Perry, and J. M. Prewitt, Computer Analysis of Cell Images, Postgrad. Med, vol.38, issue.5, pp.567-573, 1965.

&. J. Prewitt, i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?Refer enceID=967649, References -Scientific Research Publish, p.17, 1970.

C. Higgins, Applications and challenges of digital pathology and whole slide imaging, Biotech. Histochem. Off. Publ. Biol. Stain Comm, vol.90, issue.5, pp.341-347, 2015.

M. G. Hanna, L. Pantanowitz, and A. J. Evans, Overview of contemporary guidelines in digital pathology: what is available in 2015 and what still needs to be addressed?, J. Clin. Pathol, vol.68, issue.7, pp.499-505, 2015.

M. C. Lloyd, J. P. Monaco, and M. M. Bui, Image Analysis in Surgical Pathology, Surg. Pathol. Clin, vol.9, issue.2, pp.329-337, 2016.

A. Madabhushi and G. Lee, Image analysis and machine learning in digital pathology: Challenges and opportunities, Med. Image Anal, vol.33, pp.170-175, 2016.

L. Pantanowitz, Review of the current state of whole slide imaging in pathology, J. Pathol. Inform, vol.2, 2011.

L. He, L. R. Long, S. Antani, and G. R. Thoma, Histology Image Analysis for Carcinoma Detection and Grading, Comput Methods Prog Biomed, vol.107, issue.3, pp.538-556, 2012.

H. Roschzttardtz, Plant Cell Nucleolus as a Hot Spot for Iron, J. Biol. Chem, vol.286, issue.32, p.28, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00623165

, A-Brief-Survey-of-Color-Image-Preprocessing-and-Segmentation-Techniques.pdf

, Brief_Survey_of_Color_Image_Preprocessing_and_Segmentation_Techniques/links/0c9605 177abaf10060000000/A-Brief-Survey-of-Color-Image-Preprocessing-and-SegmentationTechniques.pdf, p.17, 2017.

A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution, IEEE Trans. Biomed. Eng, vol.61, issue.6, pp.1729-1738, 2014.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2007.

M. N. Gurcan, L. Boucheron, A. Can, A. Madabhushi, N. Rajpoot et al., Histopathological Image Analysis: A Review, IEEE Rev. Biomed. Eng, vol.2, pp.147-171, 2009.

S. Antani, R. Kasturi, and R. Jain, A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video, Pattern Recognit, vol.35, issue.4, pp.945-965, 2002.

I. B. Gurevich and I. V. Koryabkina, Comparative analysis and classification of features for image models, Pattern Recognit. Image Anal, vol.16, issue.3, pp.265-297, 2006.

, Vision systems.. segmentation and pattern recognition (I-Tech, 2007)(ISBN 390261305X)(546s)_CsIp_.pdf, Vision Systems -Segmentation and Pattern Recognition, p.15, 2017.

R. C. Veltkamp, M. Tanase, and D. Sent, Features in Content-Based Image Retrieval Systems: A Survey," in State-of-the-Art in Content-Based Image and Video Retrieval, pp.97-124, 2001.

B. Zitová and J. Flusser, Image registration methods: a survey, Image Vis. Comput, vol.21, issue.11, pp.977-1000, 2003.

J. Arevalo, A. Cruz-roa, G. O. , and F. , HISTOPATHOLOGY IMAGE REPRESENTATION FOR AUTOMATIC ANALYSIS: A STATE-OF-THE-ART REVIEW, Rev. Med, vol.22, issue.2, pp.79-91, 2014.

H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review #x2014;Current Status and Future Potential, Biomed. Eng. IEEE Rev. In, vol.7, pp.97-114, 2014.

D. Ag, Image Analysis in Breast Cancer, p.14, 2017.

T. M. Herr, Practical considerations in genomic decision support: The eMERGE experience, J. Pathol. Inform, vol.6, 2015.

J. Saltz, Towards Generation, Management, and Exploration of Combined Radiomics and Pathomics Datasets for Cancer Research, AMIA Summits Transl. Sci. Proc, vol.2017, pp.85-94, 2017.

, grand-challenges -Home, p.25, 2016.

K. Sirinukunwattana, Gland Segmentation in Colon Histology Images: The GlaS Challenge Contest, 2016.

, MITOS-ATYPIA-14 -MITOS & ATYPIA 14 Contest Home Page

, MICCAI Grand Challenge: Tumor Proliferation Assessment Challenge (TUPAC16), 2017.

, CAMELYON16 -Home, p.30, 2017.

D. C. Cire?an, A. Giusti, L. M. Gambardella, and J. Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks, Med. Image Comput. Comput.-Assist. Interv. MICCAI Int. Conf. Med. Image Comput. Comput.-Assist. Interv, vol.16, issue.2, pp.411-418, 2013.

A. Giusti, C. Caccia, D. C. Cire?ari, J. Schmidhuber, and L. M. Gambardella, A comparison of algorithms and humans for mitosis detection, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp.1360-1363, 2014.

, Assessment of algorithms for mitosis detection in breast cancer histopathology images, p.30, 2017.

L. E. Boucheron, Object-and Spatial-Level Quantitative Analysis of Multisp ectral Histopathology Images for Detection and Characterization of Cancer, 2008.

, Available: /paper/Review-on-Histopathological-Slide-Analysis-using-DBhattacharjee-Mukherjee, p.15, 2017.

R. Clouard, A. Renouf, and M. Revenu, An Ontology-Based Model for Representing Image Processing Objectives, Int. J. Pattern Recognit. Artif. Intell, vol.24, issue.8, pp.1181-1208, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00805699

L. W. Dalton, Histologic Grading of Breast Cancer: Linkage of Patient Outcome with Level of Pathologist Agreement, Mod. Pathol, vol.13, issue.7, pp.730-735, 2000.

, Improving Accuracy in Astrocytomas Grading by Integrating a Robust Least Squares Mapping Driven Support Vector Machine Classifier Into a Two Level Grade Classification Scheme, PubMed Journals, 2017.

D. Metaxas, 11th International Conference, 2008.

C. Bozec, Gestion des connaissances multi-expertes en imagerie médicale 'IDEM' : Images et Diagnostics par l'exemple en médecine, UPMC, vol.6, 2001.

A. M. Van-ginneken and J. Van-der-lei, Understanding differential diagnostic disagreement in pathology, Proc. Annu. Symp. Comput. Appl. Med. Care, pp.99-103, 1991.

B. Têtu, É. Perron, S. Louahlia, G. Paré, M. Trudel et al., The Eastern Québec Telepathology Network: a three-year experience of clinical diagnostic services, différenciées : la différenciation varie selon le type de blastème : elle peut être épithéliale (tubes rénaux primitifs dans un néphroblastome), neuronale, vol.9, p.1, 2014.

, La figure ci-après montre l'organisation détaillée des « Tumeur Basocellulaire » et « Tumeur Blastemateuse » dans la classification ADICAP actuelle