. Bibliographie,

´. I. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, Parasol and greenswitch : Managing datacenters powered by renewable energy, ACM SIGARCH Computer Architecture News, vol.41, pp.51-64, 2013.

L. Liu, H. Wang, X. Liu, X. Jin, W. B. He et al., Greencloud : a new architecture for green data center, Proceedings of the 6th international conference industry session on Autonomic computing and communications industry session, pp.29-38, 2009.

Y. Li, A. Orgerie, and J. Menaud, Opportunistic scheduling in clouds partially powered by green energy, Data Science and Data Intensive Systems (DSDIS), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205911

, IEEE International Conference on, pp.448-455, 2015.

T. Guérout, S. Medjiah, G. D. Costa, and T. Monteil, Quality of service modeling for green scheduling in clouds, Sustainable Computing : Informatics and Systems, vol.4, pp.225-240, 2014.

Y. Kessaci, N. Melab, and E. Talbi, Optimisation multi-critère pour l'allocation de ressources sur clouds distribués avec prise en compte de l'´ energie, Rencontres Scientifiques France Grilles, 2011.

K. Kurowski, A. Oleksiak, W. Piatek, T. Piontek, A. Przybyszewski et al., Dcworms-a tool for simulation of energy efficiency in distributed computing infrastructures, Simulation Modelling Practice and Theory, vol.39, pp.135-151, 2013.

C. De-régulation-de-l'´-energie,

C. Reiss, J. Wilkes, and J. L. Hellerstein, Google cluster-usage traces : format + schema, 2011.

B. Lab, , 2016.

. Google,

A. Energia, , 2017.

H. Lei, T. Zhang, Y. Liu, Y. Zha, and X. Zhu, Sgeess : Smart green energy-efficient scheduling strategy with dynamic electricity price for data center, Journal of Systems and Software, vol.108, pp.23-38, 2015.

D. S. Palasamudram, R. K. Sitaraman, B. Urgaonkar, and R. Urgaonkar, Using batteries to reduce the power costs of internet-scale distributed networks, Proceedings of the Third ACM Symposium on Cloud Computing, p.11, 2012.

V. Kontorinis, J. Sampson, L. E. Zhang, B. Aksanli, H. Homayoun et al., Battery Provisioning and Associated Costs for Data Center Power Capping, 2012.

S. K. Garg, C. S. Yeo, and R. Buyya, Green cloud framework for improving carbon efficiency of clouds, European Conference on Parallel Processing, pp.491-502, 2011.

N. Beldiceanu, B. D. Feris, P. Gravey, S. Hasan, C. Jard et al., Towards energy-proportional clouds partially powered by renewable energy, Computing, vol.99, issue.1, pp.3-22, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01340318

T. Guérout and M. B. Alaya, Autonomic energy-aware tasks scheduling, Enabling Technologies : Infrastructure for Collaborative Enterprises (WETICE), pp.119-124, 2013.

F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler, Wide area cluster monitoring with ganglia, p.289, 2003.

M. L. Massie, B. N. Chun, and D. E. Culler, The ganglia distributed monitoring system : design, implementation, and experience, Parallel Computing, vol.30, issue.7, pp.817-840, 2004.

M. C. Doug-cutting,

X. U. , , 2008.

C. Li, W. Zhang, C. Cho, and T. Li, Solarcore : Solar energy driven multi-core architecture power management, High Performance Computer Architecture (HPCA), 2011.

, IEEE 17th International Symposium on, pp.205-216, 2011.

C. Stewart and K. Shen, Some joules are more precious than others : Managing renewable energy in the datacenter, Proceedings of the workshop on power aware computing and systems, pp.15-19, 2009.

Y. Zhang, Y. Wang, and X. Wang, Greenware : Greening cloud-scale data centers to maximize the use of renewable energy, ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing, pp.143-164, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01597757

S. Bird, A. Achuthan, O. A. Maatallah, W. Hu, K. Janoyan et al., Distributed (green) data centers : A new concept for energy, computing, and telecommunications, Energy for Sustainable Development, vol.19, pp.83-91, 2014.

Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew, Greening geographical load balancing, Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems, pp.233-244, 2011.

H. Li, W. Zhang, and D. Xu, High-reliability long-backup-time super ups with multiple energy sources, Energy Conversion Congress and Exposition (ECCE), pp.4926-4933, 2013.

W. Choi, P. Enjeti, and J. W. Howze, Fuel cell powered ups systems : design considerations, Power Electronics Specialist Conference, 2003. PESC'03, vol.1, pp.385-390, 2003.

K. Neuhaus, J. Dulout, and C. Alonso, Lvdc grid based on pv energy sources and multiple electrochemical storage technologies, Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress, pp.990-997, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01698934

D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy, Energy storage in datacenters : what, where, and how much ?, ACM SIGMETRICS Performance Evaluation Review, vol.40, pp.187-198, 2012.

J. Shim, R. Kostecki, T. Richardson, X. Song, and K. A. Striebel, Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature, Journal of power sources, vol.112, issue.1, pp.222-230, 2002.

E. M. Erickson, F. Schipper, R. Tian, J. Shin, C. Erk et al., Enhanced capacity and lower mean charge voltage of li-rich cathodes for lithium ion batteries resulting from low-temperature electrochemical activation, RSC Advances, vol.7, issue.12, pp.7116-7121, 2017.

M. Choi, S. Kim, and S. Seo, Energy management optimization in a battery/supercapacitor hybrid energy storage system, IEEE Transactions on Smart Grid, vol.3, issue.1, pp.463-472, 2012.

Y. Li, A. Orgerie, and J. Menaud, Balancing the use of batteries and opportunistic scheduling policies for maximizing renewable energy consumption in a cloud data center, PDP 2017-25th Euromicro International Conference on Parallel, Distributed, and NetworkBased Processing, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01432752

J. Münzberg, S. Baum, and I. Stadler, Economic evaluation, optimization and comparison of photovoltaic-battery-grid power supply system in single-and multi-family buildings with increasing share of renewable energy, Energy and Sustainability Conference (IESC), pp.1-11, 2016.

V. Villebonnet, G. D. Costa, L. Lefevre, J. Pierson, and P. Stolf, Towards generalizing" big little" for energy proportional hpc and cloud infrastructures, IEEE Fourth International Conference on, pp.703-710, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01075819

V. Villebonnet, G. D. Costa, L. Lefevre, J. Pierson, and P. Stolf, big, medium, little" : Reaching energy proportionality with heterogeneous computing scheduler, Parallel Processing Letters, vol.25, issue.03, p.1541006, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01206525

G. D. Costa and J. Pierson, Dvfs governor for hpc : Higher, faster, greener, Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on, pp.533-540, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01387826

T. Guerout, T. Monteil, G. D. Costa, R. N. Calheiros, R. Buyya et al., Energy-aware simulation with dvfs, Simulation Modelling Practice and Theory, vol.39, pp.76-91, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01128614

V. Villebonnet, G. D. Costa, L. Lefevre, J. Pierson, and P. Stolf, Energy proportionality in heterogeneous data center supporting applications with variable load, Parallel and Distributed Systems (ICPADS), pp.1023-1030, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396947

L. Kleinrock, Analysis of a time-shared processor, Naval Research Logistics (NRL), vol.11, issue.1, pp.59-73, 1964.

M. Yue, A simple proof of the inequality ffd (l)? 11/9 opt (l)+ 1,? l for the ffd binpacking algorithm, Acta Mathematicae Applicatae Sinica (English Series), vol.7, issue.4, pp.321-331, 1991.

A. Khosravi, S. K. Garg, and R. Buyya, Energy and carbon-efficient placement of virtual machines in distributed cloud data centers, European Conference on Parallel Processing, pp.317-328, 2013.

G. Grid, The green grid data center power efficiency metrics : Pue and dcie, 2007.

J. H. Holland, Adaptation in natural and artificial systems. an introductory analysis with application to biology, control, and artificial intelligence, 1975.

M. Srinivas and L. M. Patnaik, Genetic algorithms : A survey, computer, vol.27, issue.6, pp.17-26, 1994.

D. G. Feitelson, D. Tsafrir, and D. Krakov, Experience with using the parallel workloads archive, Journal of Parallel and Distributed Computing, vol.74, issue.10, pp.2967-2982, 2014.

T. Guérout, Y. Gaoua, C. Artigues, G. D. Costa, P. Lopez et al., Mixed integer linear programming for quality of service optimization in clouds, Future Generation Computer Systems, vol.71, pp.1-17, 2017.

H. Lei, R. Wang, T. Zhang, Y. Liu, and Y. Zha, A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center, Computers & Operations Research, vol.75, pp.103-117, 2016.

J. Tu, L. Lu, M. Chen, and R. K. Sitaraman, Dynamic provisioning in next-generation data centers with on-site power production, Proceedings of the fourth international conference on Future energy systems, pp.137-148, 2013.

M. Nattaf, C. Artigues, and P. Lopez, Programmation linéaire mixte et programmation par contraintes pour unprob`unprob`? eme d'ordonnancement a contraintes energétiques, p.12

, Journées Francophones de la Programmation par Contraintes (JFPC 2016), pp.209-212, 2016.

S. U. Ngueveu, C. Artigues, and P. Lopez, Scheduling under a non-reversible energy source : An application of piecewise linear bounding of non-linear demand/cost functions, Discrete Applied Mathematics, vol.208, pp.98-113, 2016.

N. B. Rizvandi, J. Taheri, A. Y. Zomaya, and Y. C. Lee, Linear combinations of dvfsenabled processor frequencies to modify the energy-aware scheduling algorithms, Cluster, Cloud and Grid Computing (CCGrid), pp.388-397, 2010.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul et al., Live migration of virtual machines, Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation, vol.2, pp.273-286, 2005.

H. Liu, H. Jin, C. Xu, and X. Liao, Performance and energy modeling for live migration of virtual machines, Cluster computing, vol.16, issue.2, pp.249-264, 2013.

A. Beloglazov and R. Buyya, Energy efficient allocation of virtual machines in cloud data centers, Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pp.577-578, 2010.

A. Khosravi, A. N. Toosi, and R. Buyya, Online virtual machine migration for renewable energy usage maximization in geographically distributed cloud data centers, Concurrency and Computation : Practice and Experience, 2017.

H. Casanova, A. Legrand, and M. Quinson, Simgrid : A generic framework for largescale distributed experiments, Tenth International Conference on, pp.126-131, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00260697

W. Liu, H. Li, W. Du, and F. Shi, Energy-aware task clustering scheduling algorithm for heterogeneous clusters, Proceedings of the 2011 IEEE/ACM International Conference on Green Computing and Communications, pp.34-37, 2011.

A. Lebre, A. Legrand, F. Suter, and P. Veyre, Adding storage simulation capacities to the simgrid toolkit : Concepts, models, and api, Cluster, Cloud and Grid Computing (CCGrid), pp.251-260, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01197128

J. Charr, R. Couturier, A. Fanfakh, and A. Giersch, Energy consumption reduction with dvfs for message passing iterative applications on heterogeneous architectures, Parallel and Distributed Processing Symposium Workshop (IPDPSW), pp.922-931, 2015.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De-rose, and R. Buyya, Cloudsim : a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Software : Practice and Experience, vol.41, issue.1, pp.23-50, 2011.

R. Buyya and M. Murshed, Gridsim : A toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing, Concurrency and computation : practice and experience, vol.14, pp.1175-1220, 2002.

´. I. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen et al., Greenslot : scheduling energy consumption in green datacenters, Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, p.20, 2011.

´. I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres et al., Greenhadoop : leveraging green energy in data-processing frameworks, Proceedings of the 7th ACM european conference on Computer Systems, pp.57-70, 2012.

M. Brown and J. Renau, Rerack : Power simulation for data centers with renewable energy generation, ACM SIGMETRICS Performance Evaluation Review, vol.39, issue.3, pp.77-81, 2011.

S. Bak, M. Krystek, K. Kurowski, A. Oleksiak, W. Piatek et al., Gssim-a tool for distributed computing experiments, Scientific Programming, vol.19, issue.4, pp.231-251, 2011.

K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Weglarz, Grid scheduling simulations with gssim, Parallel and Distributed Systems, 2007 International Conference on, vol.2, pp.1-8, 2007.

M. Kocaoglu, D. Malak, and O. B. Akan, Fundamentals of green communications and computing : Modeling and simulation, Computer, vol.45, issue.9, pp.40-46, 2012.

B. Aksanli, J. Venkatesh, T. , and ?. S. Rosing, Using datacenter simulation to evaluate green energy integration, Computer, vol.45, issue.9, pp.56-64, 2012.

D. Kliazovich, P. Bouvry, and S. U. Khan, Greencloud : a packet-level simulator of energyaware cloud computing data centers, The Journal of Supercomputing, vol.62, issue.3, pp.1263-1283, 2012.

J. Dulout, C. Alonso, L. Séguier, and B. Jammes, Development of a photovoltaic low voltage dc microgrid for buildings with energy storage systems, ELECTRIMACS 2017, vol.2017, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01526247

Y. Gu, X. Xiang, W. Li, and X. He, Mode-adaptive decentralized control for renewable dc microgrid with enhanced reliability and flexibility, IEEE Transactions on Power Electronics, vol.29, issue.9, pp.5072-5080, 2014.

U. Européenne,

J. Singer, Enabling Tomorrow's Electricity System : Report of the Ontario Smart Grid Forum. Independent Electricity System Operator, 2010.

S. Rivoire, P. Ranganathan, and C. Kozyrakis, A comparison of high-level full-system power models, HotPower, vol.8, pp.3-3, 2008.

F. Quesnel, H. K. Mehta, and J. Menaud, Estimating the power consumption of an idle virtual machine, Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things, pp.268-275, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00838982

O. Perpinan, E. Lorenzo, and M. Castro, On the calculation of energy produced by a pv grid-connected system, Progress in Photovoltaics : research and applications, vol.15, pp.265-274, 2007.

Y. Ru, J. Kleissl, and S. Martinez, Storage size determination for grid-connected photovoltaic systems, IEEE Transactions on Sustainable Energy, vol.4, issue.1, pp.68-81, 2013.

I. De-courchelle, T. Monteil, Y. Labit, and T. Guerout, A data model for supplying a Data Center with several energy sources, workshop WSSC, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01380994

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, Towards understanding heterogeneous clouds at scale : Google trace analysis, Intel Science and Technology Center for Cloud Computing, Tech. Rep, p.84, 2012.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, Heterogeneity and dynamicity of clouds at scale : Google trace analysis, Proceedings of the Third ACM Symposium on Cloud Computing, 2012.

F. Gbaguidi, S. Boumerdassi, ´. E. Renault, and E. Ezin, Characterizing servers workload in cloud datacenters, Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on, pp.657-661, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269580

Z. Liu and S. Cho, Characterizing machines and workloads on a google cluster, 2012 41st International Conference on Parallel Processing Workshops, pp.397-403, 2012.

M. Alam, K. A. Shakil, and S. Sethi, Analysis and clustering of workload in google cluster trace based on resource usage, 2015.

Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, Analysis and lessons from a publicly available google cluster trace, EECS Department, vol.94, 2010.

G. D. Costa, L. Grange, and I. De-courchelle, Modeling and Generating large-scale Google-like Workload, International Workshop on Resilience and/or Energy-aware techniques for High-Performance Computing, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01472021

. Google,

C. Garnier, M. Aggar, M. Banks, J. Dietrich, B. Shatten et al., Data centre life cycle assessment guidelines, vol.45, p.2, 2012.

T. G. Grid, , 2012.

K. Kritikos, B. Pernici, P. Plebani, C. Cappiello, M. Comuzzi et al., A survey on service quality description, ACM Computing Surveys (CSUR), vol.46, issue.1, p.1, 2013.

R. Buyya, A. Beloglazov, and J. Abawajy, Energy-efficient management of data center resources for cloud computing : a vision, architectural elements, and open challenges, 2010.

S. Islam, K. Lee, A. Fekete, and A. Liu, How a consumer can measure elasticity for cloud platforms, Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering, pp.85-96, 2012.

F. D. Rossi, M. G. Xavier, C. A. De-rose, R. N. Calheiros, and R. Buyya, E-eco : Performance-aware energy-efficient cloud data center orchestration, Journal of Network and Computer Applications, vol.78, pp.83-96, 2017.

F. Alvarruiz, C. De-alfonso, M. Caballer, and V. Hern'ndez, An energy manager for high performance computer clusters, Parallel and Distributed Processing with Applications (ISPA), pp.231-238, 2012.

M. Oswal, J. Paul, and R. Zhao, A comparative study of lithium-ion batteries, 2010.

E. Lorenz, J. Hurka, D. Heinemann, and H. G. Beyer, Irradiance forecasting for the power prediction of grid-connected photovoltaic systems, IEEE Journal of selected topics in applied earth observations and remote sensing, vol.2, pp.2-10, 2009.

A. Dolara, S. Leva, and G. Manzolini, Comparison of different physical models for pv power output prediction, Solar Energy, vol.119, pp.83-99, 2015.

K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, A distributed control strategy based on dc bus signaling for modular photovoltaic generation systems with battery energy storage, IEEE Transactions on Power Electronics, vol.26, issue.10, pp.3032-3045, 2011.

C. Voyant, G. Notton, S. Kalogirou, M. Nivet, C. Paoli et al., Machine learning methods for solar radiation forecasting : A review, Renewable Energy, vol.105, pp.569-582, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01426321

T. Kolpe, A. Zhai, and S. S. Sapatnekar, Enabling improved power management in multicore processors through clustered dvfs, Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.1-6, 2011.