R. R. Gattass and E. Mazur, Femtosecond laser micromachining in transparent materials, Nat Photon, vol.2, pp.219-225, 2008.

M. Beresna, M. Gecevi?ius, and P. G. Kazansky, Ultrafast laser direct writing and nanostructuring in transparent materials, Adv. Opt. Photon, vol.6, pp.293-339, 2014.

D. Choudhury, J. R. Macdonald, and A. K. Kar, Ultrafast laser inscription: perspectives on future integrated applications, Laser Photon. Rev, vol.8, pp.827-846, 2014.

R. Taylor, C. Hnatovsky, and E. Simova, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass, Laser & Photon. Rev, vol.2, pp.26-46, 2008.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin et al., Ultrafast nanoporous silica formation driven by femtosecond laser irradiation, Laser & Photon. Rev, vol.7, pp.953-962, 2013.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo et al., Dynamics of femtosecond laser interactions with dielectrics, Appl Phys A, vol.79, pp.1695-1709, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00004161

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford et al., Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE?, Opt. Mater. Express, vol.3, pp.1161-1166, 2013.

F. Chen and J. R. De-aldana, Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining, Laser & Photon. Rev, vol.8, pp.251-275, 2014.

A. Saliminia, N. Nguyen, S. Chin, and R. Vallée, The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses, Opt. Commun, vol.241, pp.529-538, 2004.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu et al., Direct writing three-dimensional Ba 2 TiSi 2 O 8 crystalline pattern in glass with ultrashort pulse laser, Appl. Phys. Lett, vol.90, p.1109, 2007.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications, Prog. Mater Sci, vol.76, pp.154-228, 2016.

T. T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez et al., Controlling plasma distributions as driving forces for ion migration during fs laser writing, J Phys D Appl Phys, vol.48, p.155101, 2015.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Femtosecond laser irradiation stress induced in pure silica, Opt. Express, vol.11, pp.1070-1079, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00463650

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma et al.,

. Kashyap, Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics, Sci Rep, vol.5, p.10391, 2015.

B. Mcmillen, B. Zhang, K. P. Chen, A. Benayas, and D. Jaque, Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss, Opt. Lett, vol.37, pp.1418-1420, 2012.

E. Cartlidge, A photonic upgrade for computer memory?, Opt. Photon. News, vol.27, pp.24-31, 2016.

C. Fan, B. Poumellec, M. Lancry, X. He, H. Zeng et al., Threedimensional photoprecipitation of oriented LiNbO 3-like crystals in silica-based glass with femtosecond laser irradiation, Opt. Lett, vol.37, pp.2955-2957, 2012.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser, J. Non-Cryst. Solids, vol.351, pp.885-892, 2005.

A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass, Opt. Lett, vol.28, pp.716-718, 2003.

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon et al., Threedimensional direct femtosecond laser writing of second-order nonlinearities in glass, Opt. Lett, vol.37, pp.1029-1031, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00680393

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu et al., Femtosecond laser-induced oriented precipitation of Ba 2 TiGe 2 O 8 crystals in glass, Opt. Express, vol.16, pp.3912-3917, 2008.

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah et al., Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate, Opt. Express, vol.13, pp.4708-4716, 2005.

X. He, C. Fan, B. Poumellec, Q. Liu, H. Zeng et al., Size-controlled oriented crystallization in SiO 2-based glasses by femtosecond laser irradiation, J. Opt. Soc. Am. B, vol.31, pp.376-381, 2014.

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses, Opt. Lett, vol.25, pp.408-410, 2000.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta et al., Directionally controlled 3D ferroelectric single crystal growth in LaBGeO 5 glass by femtosecond laser irradiation, Opt. Express, vol.17, pp.23284-23289, 2009.

X. He, . Poumellec, F. Liu, M. Brisset, and . Lancry, One-step photoinscription of asymmetrically oriented fresnoite-type crystals in glass by ultrafast laser, Opt. Lett, vol.39, pp.5423-5426, 2014.

G. Beall and D. Duke, Transparent glass-ceramics, J. Mater. Sci, vol.4, pp.340-352, 1969.

H. Jain, Transparent ferroelectric glass-ceramics, Ferroelectrics, vol.306, pp.111-127, 2004.

H. Vigouroux, E. Fargin, S. Gomez, B. L. Garrec, G. Mountrichas et al.,

V. Dussauze and . Rodriguez, Synthesis and multiscale evaluation of LiNbO 3-containing silicate glassceramics with efficient isotropic SHG response, Adv. Funct. Mater, vol.22, pp.3985-3993, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00751543

C. Awada, Nature cohérente et incohérente de la réponse de second harmonique dans les nanostructures métalliques d'or et d'argent, 2009.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses, Phys. Rev. Lett, vol.91, p.247405, 2003.

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, Form birefringence and negative index change created by femtosecond direct writing in transparent materials, Opt. Lett, vol.29, pp.119-121, 2004.

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor et al., Optically produced arrays of planar nanostructures inside fused silica, Phys. Rev. Lett, vol.96, p.57404, 2006.

F. Zhang, H. Zhang, G. Dong, and J. Qiu, Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing, J. Opt. Soc. Am. B, vol.31, pp.860-864, 2014.

S. Richter, D. Möncke, F. Zimmermann, E. I. Kamitsos, L. Wondraczek et al., Ultrashort pulse induced modifications in ULE-from nanograting formation to laser darkening

, Mater. Express, vol.5, pp.1834-1850, 2015.

S. Fedotov, R. Drevinskas, S. Lotarev, A. Lipatiev, M. Beresna et al.,

. Kazansky, Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass, Appl. Phys. Lett, vol.108, p.71905, 2016.

H. Vigouroux, E. Fargin, A. Fargues, B. L. Garrec, M. Dussauze et al.,

E. Mountrichas, S. Kamitsos, and . Lotarev, Crystallization and second harmonic generation of lithium niobium silicate glass ceramics, J. Am. Ceram. Soc, vol.94, pp.2080-2086, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00932172

R. Weis and T. Gaylord, Lithium niobate: summary of physical properties and crystal structure, Appl. Phys. A, vol.37, pp.191-203, 1985.

M. M. Choy and R. L. Byer, Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals, Phys. Rev. B, vol.14, p.1693, 1976.

M. Paul, M. Tabuchi, and A. R. West, Defect structure of Ni, co-doped LiNbO 3 and LiTaO 3

. Mater, , vol.9, pp.3206-3214, 1997.

H. Sun and S. Kawata, Two-photon photopolymerization and 3D lithographic microfabrication, NMR 3D Analysis Photopolymerization, 2004.

U. Keller, Recent developments in compact ultrafast lasers, Nature, vol.424, pp.831-838, 2003.

P. Agostini and L. F. Dimauro, The physics of attosecond light pulses, Rep. Prog. Phys, vol.67, p.813, 2004.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic et al., Attosecond metrology, Nature, vol.414, pp.509-513, 2001.

G. Mourou, C. Labaune, M. Dunne, N. Naumova, and V. Tikhonchuk, Relativistic laser-matter interaction: from attosecond pulse generation to fast ignition, Plasma Phys Contr F, vol.49, p.667, 2007.

, Chirped Pulse Amplification, 2016.

D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun, vol.56, pp.219-221, 1985.

M. Pessot, P. Maine, and G. Mourou, 1000 times expansion/compression of optical pulses for chirped pulse amplification, Opt. Commun, vol.62, pp.419-421, 1987.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev et al., Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics, IEEE J. Sel. Top. Quantum Electron, vol.14, pp.1370-1381, 2008.

M. Beresna, Polarization engineering with ultrafast laser writing in transparent media, 2012.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett, vol.21, pp.1729-1731, 1996.

R. D. Guenther, Modern Optics, 1990.

, Gaussian beam optics, vol.54, 2016.

L. M. Osterink and J. D. Foster, Thermal effects and transverse mode control in a Nd:YAG Laser, Appl. Phys. Lett, vol.12, pp.128-131, 1968.

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner et al., High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations, J. Appl. Phys, vol.98, p.13517, 2005.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang et al., Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica, J OPT A PURE APPL OP, vol.7, p.655, 2005.

M. Gu, D. Day, O. Nakamura, and S. Kawata, Three-dimensional coherent transfer function for reflection confocal microscopy in the presence of refractive-index mismatch, J. Opt. Soc. Am. A, vol.18, 2001.

A. Marcinkevi?ius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, Effect of refractive indexmismatch on laser microfabrication in silica glass, Appl. Phys. A, vol.76, pp.257-260, 2003.

S. Hendy, Light scattering in transparent glass ceramics, Appl. Phys. Lett, vol.81, pp.1171-1173, 2002.

L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP, vol.20, pp.1018-1026, 1965.

I. Shchatsinin, Free clusters and free molecules in strong, shaped laser fields, Doctoral dissertation, 2009.

C. B. Schaffer, A. Brodeur, and E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Meas. Sci. Technol, vol.12, p.1784, 2001.

B. J. Buerke, Accurate measurement of tunneling ionization rates of atoms in a high-intensity laser field, 2000.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses, Phys. Rev. Lett, vol.74, pp.2248-2251, 1995.

I. Miyamoto, A. Horn, and J. Gottmann, Local melting of glass material and its application to direct fusion welding by ps-laser pulses, J. Laser Micro Nanoen, vol.2, pp.7-14, 2007.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, Fusion welding of glass using femtosecond laser pulses with high-repetition rates, J. Laser Micro Nanoen, vol.2, pp.57-63, 2007.

G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev, vol.52, p.191, 1937.

M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, and E. Hanamura, Excitonic processes in solids (Springer series in solid state sciences, 1986.

J. D. Musgraves, K. Richardson, and H. Jain, Laser-induced structural modification, its mechanisms, and applications in glassy optical materials, Opt Mater Express, vol.1, pp.921-935, 2011.

M. Lancry, B. Poumellec, A. Chahid-erraji, M. Beresna, and P. G. Kazansky, Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses, Opt. Mater. Express, vol.1, pp.711-723, 2011.

R. Wang, K. Saito, and A. Ikushima, Distributions of self-trapped hole continuums in silica glass, J. Appl. Phys, vol.100, p.13706, 2006.

C. Gee and M. Kastner, Intrinsic-defect photoluminescence in amorphous SiO 2, Phys. Rev. Lett, vol.42, p.1765, 1979.

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica, Phys. Rev. B, vol.60, pp.9959-9964, 1999.

C. M. Gee and M. Kastner, Intrinsic-defect photoluminescence in amorphous and crystalline SiO 2, J. Non-Cryst. Solids, vol.35, pp.927-932, 1980.

M. Lancry, B. Poumellec, R. Desmarchelier, and B. Bourguignon, Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica, Opt Mater Express, vol.2, pp.1809-1821, 2012.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner et al., Exciton-seeded multiphoton ionization in bulk SiO 2, Phys. Rev. B, vol.81, p.212301, 2010.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Study of damage in fused silica induced by ultrashort IR laser pulses, Opt. Commun, vol.191, pp.333-339, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00463712

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses, Phys. Rev. B, vol.71, p.125435, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00463614

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj et al., Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica, Appl. Phys. Lett, vol.87, p.14104, 2005.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond laser micromachining: Photonic and microfluidic devices in transparent materials, 2012.

B. Poumellec, M. Lancry, A. Chahid-erraji, and P. G. Kazansky, Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters, Opt Mater Express, vol.1, pp.766-782, 2011.

M. Lancry, E. Régnier, and B. Poumellec, Fictive temperature in silica-based glasses and its application to optical fiber manufacturing, Prog. Mater Sci, vol.57, pp.63-94, 2012.

V. Bhardwaj, P. Corkum, D. Rayner, C. Hnatovsky, E. Simova et al., Stress in femtosecondlaser-written waveguides in fused silica, Opt. Lett, vol.29, pp.1312-1314, 2004.

J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, Embedded anisotropic microreflectors by femtosecond-laser nanomachining, Appl. Phys. Lett, vol.81, pp.196-198, 2002.

M. Lancry, B. Poumellec, K. Cook, and J. Canning, Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica, Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim, p.229, 2011.

E. Bricchi and P. G. Kazansky, Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass, Appl. Phys. Lett, vol.88, p.111119, 2006.

R. Desmarchelier, B. Poumellec, F. Brisset, S. Mazerat, and M. Lancry, In the heart of femtosecond laser induced nanogratings: from porous nanoplanes to form birefringence, World J. Nano Sci. Eng, vol.5, p.115, 2015.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota et al., Systematic control of structural changes in GeO 2 glass induced by femtosecond laser direct writing, J. Am. Ceram. Soc, vol.98, pp.1471-1477, 2015.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, Ultrashort laser pulse induced nanogratings in borosilicate glass, Appl. Phys. Lett, vol.104, p.211107, 2014.

W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, Self-assembled periodic subwavelength structures by femtosecond laser direct writing, Opt. Express, vol.14, pp.10117-10124, 2006.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, The onset of ultrashort pulseinduced nanogratings, Laser Photon. Rev, vol.10, pp.327-334, 2016.

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her et al., Threedimensional optical storage inside transparentmaterials, Opt. Lett, vol.21, pp.2023-2025, 1996.

H. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe et al., Arbitrarylattice photonic crystals created by multiphoton microfabrication, Opt. Lett, vol.26, pp.325-327, 2001.

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu et al.,

. Nolte, Femtosecond laser written nanostructures in Ge-doped glasses, Opt. Lett, vol.41, pp.1161-1164, 2016.

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov et al., Pearl-chain waveguides written at megahertz repetition rate, Appl. Phys. B, vol.87, pp.21-27, 2007.

Y. Bellouard and M. Hongler, Femtosecond-laser generation of self-organized bubble patterns in fused silica, Opt. Express, vol.19, pp.6807-6821, 2011.

S. Maruo, O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photonabsorbed photopolymerization, Opt. Lett, vol.22, pp.132-134, 1997.

S. Kawata, H. Sun, T. Tanaka, and K. Takada, Finer features for functional microdevices, Nature, vol.412, pp.697-698, 2001.

D. Umstadter, Relativistic laser-plasma interactions, J. Phys. D: Appl. Phys, vol.36, p.151, 2003.

A. Scott, Encyclopedia of nonlinear science, 2006.

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Prog. Phys, vol.75, p.56401, 2012.

F. Träger, Springer handbook of lasers and optics, 2007.

A. L. Fussell, A. Isomaki, and C. J. Strachan, Non-linear optical imaging-Introduction and pharmaceutical applications, Am Pharmaceut Rev, vol.16, pp.54-63, 2013.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, Second harmonic generating (SHG) nanoprobes for in vivo imaging, Proc. Natl. Acad. Sci, vol.107, pp.14535-14540, 2010.

, Quasi-phase Matching, 2016.

J. Butet, I. Russier-antoine, C. Jonin, N. Lascoux, E. Benichou et al., Nonlinear Mie theory for the second harmonic generation in metallic nanoshells, J. Opt. Soc. Am. B, vol.29, pp.2213-2221, 2012.

P. Franken, A. Hill, C. E. Peters, and G. Weinreich, Generation of optical harmonics, Phys. Rev. Lett, vol.7, p.118, 1961.

P. S. Halasyamani and K. R. Poeppelmeier, Noncentrosymmetric oxides, Chem. Mater, vol.10, pp.2753-2769, 1998.

J. H. Marburger, Self-focusing: Theory, Prog Quant Electron, vol.4, pp.35-110, 1975.

A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep, vol.441, pp.47-189, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00454778

A. Brodeur and S. L. Chin, Ultrafast white-light continuum generation and self-focusing in transparent condensed media, J. Opt. Soc. Am. B, vol.16, pp.637-650, 1999.

M. Soileau, W. E. Williams, N. Mansour, and E. W. Van-stryland, Laser-induced damage and the role of self-focusing, Opt. Eng, vol.28, pp.281133-281133, 1989.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz et al., Self-guided propagation of ultrashort IR laser pulses in fused silica, Phys. Rev. Lett, vol.87, p.213902, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00463709

P. G. Debenedetti and F. H. Stillinger, Supercooled liquids and the glass transition, Nature, vol.410, pp.259-267, 2001.

H. Scholze, Glass: nature, structure, and properties, vol.117, p.22, 2012.

C. A. Angell, Formation of glasses from liquids and biopolymers, Science, vol.267, p.1924, 1995.

M. I. Ojovan, Viscosity and glass transition in amorphous oxides, Adv. Condens. Matter Phys, 2008.

P. Hrma, Glass viscosity as a function of temperature and composition: A model based on AdamGibbs equation, J. Non-Cryst. Solids, vol.354, pp.3389-3399, 2008.

T. Rouxel and J. Sangleboeuf, The brittle to ductile transition in a soda-lime-silica glass, J. NonCryst. Solids, vol.271, pp.224-235, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01148247

R. Brückner, Properties and structure of vitreous silica. I, J. Non-Cryst. Solids, vol.5, pp.123-175, 1970.

A. Mermillod-blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard et al.,

A. Rosenfeld, I. V. Husakou, R. Hertel, and . Stoian, Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates, Phys. Rev. B, vol.77, p.104205, 2008.
URL : https://hal.archives-ouvertes.fr/ujm-00267265

H. Zeng, B. Poumellec, C. Fan, G. Chen, A. Erraji-chahid et al., Preparation of glass-ceramics with oriented nonlinear crystals: A review, Advances in Materials Science Research, vol.12, pp.89-134, 2012.

K. Wasai, G. Kaptay, K. Mukai, and N. Shinozaki, Modified classical homogeneous nucleation theory and a new minimum in free energy change: 1. A new minimum and Kelvin equation, FFE, vol.254, pp.67-74, 2007.

S. B. Lee and N. J. Kim, Kinetics of crystallization in continuously cooled BMG, Mater. Sci. Eng., A, vol.404, pp.153-158, 2005.

V. M. Fokin, E. D. Zanotto, N. S. Yuritsyn, and J. W. Schmelzer, Homogeneous crystal nucleation in silicate glasses: a 40 years perspective, J. Non-Cryst. Solids, vol.352, pp.2681-2714, 2006.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma et al., Formation mechanism of element distribution in glass under femtosecond laser irradiation, Opt. Lett, vol.36, pp.2161-2163, 2011.

D. Uhlmann and H. Yinnon, The formation of glasses, Glass: Science and Technology, p.1, 1983.

P. Soares, E. Zanotto, V. Fokin, and H. Jain, TEM and XRD study of early crystallization of lithium disilicate glasses, J. Non-Cryst. Solids, vol.331, pp.217-227, 2003.

S. Claus, H. Kleykamp, and W. Smykatz-kloss, Phase equilibria in the Li 4 SiO 4 Li 2 SiO 3 region of the pseudobinary Li 2 O SiO 2 system, J. Nucl. Mater, vol.230, pp.8-11, 1996.

F. C. Kracek, The binary system Li 2 O-SiO 2, J. Phys. Chem, vol.34, pp.2641-2650, 1929.

A. R. West and F. P. Glasser, Crystallization of lithium trisilicate, Li 2 Si 3 O 7 , from Li 2 O|SiO 2 melts, Mater. Res. Bull, vol.5, pp.837-842, 1970.

R. I. Smith, R. A. Howie, A. R. West, A. Aragón-piña, and M. E. Villafuerte-castrejón, The structure of metastable lithium disilicate, Li 2 Si 2 O 5, Acta Cryst. C, vol.46, pp.363-365, 1990.

M. Ibrahim and N. F. Bright, The binary system Nb 2 O 5-SiO 2, J. Am. Ceram. Soc, vol.45, pp.221-222, 1962.

N. Umesaki, M. Takahashi, M. Tatsumisago, and T. Minami, Structure of rapidly quenched glasses in the system Li 2 O-SiO 2, J. Mater. Sci, vol.28, pp.3473-3481, 1993.

J. Stanworth, Tellurite glasses, Nature, vol.169, pp.581-582, 1952.

T. Komatsu, Design and control of crystallization in oxide glasses, J. Non-Cryst. Solids, vol.428, pp.156-175, 2015.

M. P. Graça, M. G. Ferreira-da-silva, and M. A. Valente, Structural and electrical characteristics of LiNbO 3 embedded in a 34% SiO 2 glass matrix, J. Eur. Ceram. Soc, vol.28, pp.1197-1203, 2008.

O. S. Maksimova, L. V. Korzunova, and Z. P. Milberg, Properties and structure of glasses of the system Li 2 O-Nb 2 O 5-SiO 2, Izv.Akad.Nauk Latv.SSR,Ser.Khim, vol.5, pp.530-534, 1975.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta et al., Formation of ferroelectric single-crystal architectures in LaBGeO 5 glass by femtosecond vs. continuous-wave lasers, J. Non-Cryst. Solids, vol.356, pp.3059-3065, 2010.

T. Komatsu, R. Ihara, T. Honma, Y. Benino, R. Sato et al., Patterning of non-linear optical crystals in glass by laser-induced crystallization, J. Am. Ceram. Soc, vol.90, pp.699-705, 2007.

T. Honma, Y. Benino, T. Fujiwara, and T. Komatsu, Transition metal atom heat processing for writing of crystal lines in glass, Appl. Phys. Lett, vol.88, pp.231105-231105, 2006.

T. Komatsu, K. Koshiba, and T. Honma, Preferential growth orientation of laser-patterned LiNbO 3 crystals in lithium niobium silicate glass, J. Solid State Chem, vol.184, pp.411-418, 2011.

R. Ihara, T. Honma, Y. Benino, T. Fujiwara, R. Sato et al., Writing of two-dimensional crystal curved lines at the surface of Sm 2 O 3-Bi 2 O 3-B 2 O 3 glass by samarium atom heat processing, Solid State Commun, vol.136, pp.273-277, 2005.

M. Saito, T. Honma, Y. Benino, T. Fujiwara, and T. Komatsu, Formation of nonlinear optical KSm(PO 3 ) 4 crystals in phosphate glasses by YAG laser irradiation, Solid State Sci, vol.6, pp.1013-1018, 2004.

S. Kawasaki, T. Honma, Y. Benino, T. Fujiwara, R. Sato et al., Writing of crystal-dots and lines by YAG laser irradiation and their morphologies in samarium tellurite glasses, J. Non-Cryst. Solids, vol.325, pp.61-69, 2003.

N. Chayapiwut, T. Honma, Y. Benino, T. Fujiwara, and T. Komatsu, Synthesis of Sm 3+-doped strontium barium niobate crystals in glass by samarium atom heat processing, J. Solid State Chem, vol.178, pp.3507-3513, 2005.

F. Suzuki, T. Honma, and T. Komatsu, Origin of periodic domain structure in Er 3+-doped ??(Sm,Gd) 2 (MoO4) 3 crystal lines patterned by laser irradiations in glasses, J. Solid State Chem, vol.183, pp.909-914, 2010.

M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, Writing of nonlinear optical Sm, vol.2, p.3

, crystal lines at the surface of glass by samarium atom heat processing, J. Appl. Phys, vol.97, p.123516, 2005.

T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, Technique for writing of nonlinear optical single-crystal lines in glass, Appl. Phys. Lett, vol.83, pp.2796-2798, 2003.

A. F. Maciente, V. R. Mastelaro, A. L. Martinez, A. C. Hernandes, and C. A. Carneiro, Surface crystallization of ?-BaB 2 O 4 phase using a CO 2 laser source, J. Non-Cryst. Solids, vol.306, pp.309-312, 2002.

R. Vaish, V. Rodriguez, M. Maglione, J. Etourneau, and K. B. Varma, Laser-induced periodic surface crystalline patterns on SrO-0.5Li 2 O-4.5B 2 O 3 and BaO-0.5Na 2 O-4.5B 2 O 3 glasses and optical second harmonic generation, Int J Appl Glass Sci, vol.1, pp.350-357, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00649653

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino et al., Creation of ferroelectric, single-crystal architecture in Sm 0. 5 La 0. 5 BGeO 5 glass, J. Am. Ceram. Soc, vol.91, pp.110-114, 2008.

P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, Creation of tailored features by laser heating of Nd 0.2 La 0.8 BGeO 5 glass, Opt. Mater, vol.29, pp.355-359, 2006.

B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin et al., Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses, Opt. Express, vol.15, pp.6069-6074, 2007.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu et al., Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser, Chem. Phys. Lett, vol.443, pp.253-257, 2007.

H. Sugita, T. Honma, Y. Benino, and T. Komatsu, Formation of LiNbO 3 crystals at the surface of TeO 2based glass by YAG laser-induced crystallization, Solid State Commun, vol.143, pp.280-284, 2007.

V. Rodriguez, B. H. Venkataraman, N. S. Prasad, K. Varma, M. Maglione et al.,

. Etourneau, Optical diffraction of second-harmonic signals in the LiBO 2-Nb 2 O 5 glasses induced by selforganized LiNbO 3 crystallites, Appl. Phys. Lett, vol.87, p.3, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00109099

T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, Writing of crystal lines and its optical properties of rare-earth ion (Er 3+ and Sm 3+ ) doped lithium niobate crystal on glass surface formed by laser irradiation, Opt. Mater, vol.31, pp.315-319, 2008.

Y. Ochi, T. Meguro, and K. Kakegawa, Orientated crystallization of fresnoite glass-ceramics by using a thermal gradient, J. Eur. Ceram. Soc, vol.26, pp.627-630, 2006.

N. M. Ferreira, F. M. Costa, R. N. Nogueira, and M. P. Graça, Lithium niobate bulk crystallization promoted by CO 2 laser radiation, Appl. Surf. Sci, vol.258, pp.9457-9460, 2012.

K. Gerth, C. Rüssel, R. Keding, P. Schleevoigt, and H. Dunken, Oriented crystallisation of lithium niobate containing glass ceramic in an electric field and determination of the crystallographic orientation by infrared spectroscopy, Phys. Chem. Glasses, vol.40, pp.135-139, 1999.

F. Luo, G. Lin, H. Pan, Q. Chen, J. Qiu et al., Elemental redistribution in glass induced by a 250-kHz femtosecond laser, J. Non-Cryst. Solids, vol.357, pp.2384-2386, 2011.

J. Hoyo, R. M. Vazquez, B. Sotillo, T. T. Fernandez, J. Siegel et al., Control of waveguide properties by tuning femtosecond laser induced compositional changes, Appl. Phys. Lett, vol.105, p.131101, 2014.

T. T. Fernandez, M. Hernandez, B. Sotillo, S. Eaton, G. Jose et al.,

. Solis, Role of ion migrations in ultrafast laser written tellurite glass waveguides, Opt. Express, vol.22, pp.15298-15304, 2014.

M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma et al., Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots, Opt. Lett, vol.38, pp.4939-4942, 2013.

B. Matthias and J. Remeika, Ferroelectricity in the ilmenite structure, Phys. Rev, vol.76, p.1886, 1949.

P. Bordui, R. Norwood, D. Jundt, and M. Fejer, Preparation and characterization of off-congruent lithium niobate crystals, J. Appl. Phys, vol.71, pp.875-879, 1992.

L. O. Svaasand, M. Eriksrud, G. Nakken, and A. P. Grande, Solid-solution range of LiNbO 3, J. Cryst. Growth, vol.22, pp.230-232, 1974.

H. M. O'bryan, P. K. Gallagher, and C. Brandle, Congruent composition and Li-rich phase boundary of LiNbO 3, J. Am. Ceram. Soc, vol.68, pp.493-496, 1985.

M. Wöhlecke, G. Corradi, and K. Betzler, Optical methods to characterise the composition and homogeneity of lithium niobate single crystals, Appl. Phys. B, vol.63, pp.323-330, 1996.

B. Ausrine, P. Valentina, A. Adulfas, S. Sandra, M. Samuel et al.,

J. , Identification of LiNbO 3 , LiNb 3 O 8 and Li 3 NbO 4 phases in thin films synthesized with different deposition techniques by means of XRD and Raman spectroscopy, J. Phys. Condens. Matter, vol.25, p.205901, 2013.

M. Lundberg, The crystal structure of LiNb 3 O 8, Acta Chem. Scand, vol.25, pp.3337-3346, 1971.

H. Akazawa and M. Shimada, Precipitation kinetics of LiNbO 3 and LiNb 3 O 8 crystalline phases in thermally annealed amorphous LiNbO 3 thin films, Phys. Status Solidi A, vol.203, pp.2823-2827, 2006.

R. Subasri and O. M. Sreedharan, Thermodynamic stability of Li 3 NbO 4 by emf measurements using a novel composite electrolyte, Solid State Ion, vol.93, pp.341-346, 1997.

N. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiiba, M. Ogawa et al., High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4-based system with cation-disordered rocksalt structure, Proc Natl Acad Sci U S A, vol.112, pp.7650-7655, 2015.

K. Ukei, H. Suzuki, T. Shishido, and T. Fukuda, Structure of Li 3 NbO 4, Acta Crystallogr., Sect. C: Cryst. Struct. Commun, vol.50, pp.655-656, 1994.

A. Glass, K. Nassau, and T. Negran, Ionic conductivity of quenched alkali niobate and tantalate glasses, J. Appl. Phys, vol.49, pp.4808-4811, 1978.

M. Tatsumisago, A. Hamada, T. Minami, and M. Tanaka, Preparation and properties of quenched Li 2 O-BaO-Nb 2 O 5 Glasses, J. Am. Ceram. Soc, vol.65, pp.575-577, 1982.

M. Tatsumisago, A. Hamada, T. Minami, and M. Tanaka, Structure and properties of rapidly quenched Li 2 O-Al 2 O 3-Nb 2 O 5 glasses, J. Am. Ceram. Soc, vol.66, pp.890-892, 1983.

, LiNbO 3 crystal basic properties, 2016.

D. E. Zelmon, D. L. Small, and D. Jundt, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate, J. Opt. Soc. Am. B, vol.14, pp.3319-3322, 1997.

U. Schlarb and K. Betzler, Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit, Phys. Rev. B, vol.48, p.15613, 1993.

M. Weber, CRC handbook of laser science and technology, Optical materials, vol.3, 1986.

M. Graça, M. Valente, and M. F. Silva, Electrical properties of lithium niobium silicate glasses, J. Non-Cryst. Solids, vol.325, pp.267-274, 2003.

V. Sigaev, N. Golubev, S. Y. Stefanovich, T. Komatsu, Y. Benino et al., Second-order optical non-linearity initiated in Li 2 O-Nb 2 O 5-SiO 2 and Li 2 O-ZnO-Nb 2 O 5-SiO 2 glasses by formation of polar and centrosymmetric nanostructures, J. Non-Cryst. Solids, vol.354, pp.873-881, 2008.

C. Fan, Contribution to nano or micro crystallization induction in silica-based glass by femtosecond laser irradiation, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00796219

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang et al., Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation, J. Laser Micro Nanoen, vol.6, pp.158-163, 2011.

E. Prasad, M. Sayer, and H. Vyas, Li + conductivity in lithium niobate: silica glasses, Vertical scanning interferometry, vol.40, pp.119-134, 1980.

C. Blanc, Y. Roques, and G. Mankowski, Application of phase shifting interferometric microscopy to studies of the behaviour of coarse intermetallic particles in 6056 aluminium alloy, Corros. Sci, vol.40, pp.1019-1035, 1998.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses, Appl. Phys. Lett, vol.93, p.231112, 2008.

M. Beresna, T. Gertus, R. Toma?i?nas, H. Misawa, and S. Juodkazis, Three-dimensional modeling of the heat-affected zone in laser machining applications, Laser Chem, 2008.

F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing, J. Laser Micro Nanoen, vol.10, p.29, 2015.

, Lithium oxide, p.29, 2016.

W. D. Kingery, Thermal Conductivity: XII, Temperature dependence of conductivity for single-phase ceramics, J. Am. Ceram. Soc, vol.38, pp.251-255, 1955.

K. Wong, Properties of lithium niobate, 2002.

R. A. Morgan, K. I. Kang, C. C. Hsu, C. L. Koliopoulos, and N. Peyghambarian, Measurement of the thermal diffusivity of nonlinear anisotropic crystals using optical interferometry, Appl. Opt, vol.26, pp.5266-5271, 1987.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya et al., Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses, J. Appl. Phys, vol.108, p.73533, 2010.

M. Lancry, B. Poumellec, and S. Guizard, Comparison between plasma properties and damage thresholds in doped silica exposed to IR femtosecond laser, J. Laser Micro Nanoen, vol.7, pp.217-225, 2012.

F. Zimmermann, M. Lancry, A. Plech, S. Richter, T. Ullsperger et al.,

. Nolte, Ultrashort pulse laser processing of silica at high repetition rates-from network change to residual strain, Int J Appl Glass Sci Accepted, 2016.

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau et al., Correlation of large SHG responses with structural characterization in borophosphate niobium glasses, Opt. Mater, vol.28, pp.1417-1422, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00108369

, The first order (full wave) retardation plate, 0206.

M. Shribak and R. Oldenbourg, Techniques for fast and sensitive measurements of two-dimensional birefringence distributions, Appl. Opt, vol.42, pp.3009-3017, 2003.

R. Salh, Defect related luminescence in silicon dioxide network: a review, 2011.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin et al., Scanning electron microscopy and X-ray microanalysis, 2013.

, How EBSD measurements work, p.7, 2016.

O. Engler and V. Randle, Introduction to texture analysis: macrotexture, microtexture, and orientation mapping, 2009.

L. Brewer and J. Michael, Risks of 'cleaning'electron backscatter diffraction data, Microsc, Today, vol.18, pp.10-15, 2010.

S. I. Wright and M. M. Nowell, EBSD image quality mapping, Microsc. Microanal, vol.12, pp.72-84, 2006.

R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert, Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique, Mater. Sci. Eng., A, vol.447, pp.285-297, 2007.

, The transmission electron microscope, vol.216, 2016.

, Transmission electron microscopy, vol.217, p.8, 2016.

C. Kim, S. Ahn, and D. Jang, Review: Developments in micro/nanoscale fabrication by focused ion beams, Vacuum, vol.86, pp.1014-1035, 2012.

R. Wirth, Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale, Chem. Geol, vol.261, pp.217-229, 2009.

A. Flank, G. Cauchon, P. Lagarde, S. Bac, M. Janousch et al.,

T. Langlois and . Moreno, LUCIA, a microfocus soft XAS beamline, Nucl. Instr. Meth. Phys. Res. B, vol.246, pp.269-274, 2006.

D. R. Neuville, L. Cormier, and D. Caurant, Du verre au cristal: Nucléation, croissance et démixtion, de la recherche aux applications, 2013.

B. Fultz and J. M. Howe, Transmission electron microscopy and diffractometry of materials, 2012.

P. W. Hawkes and J. C. Spence, Science of microscopy, vol.1, 2007.

Y. Llabador and P. Moretto, Applications of nuclear microprobe in the life sciences: An efficient analytical technique for the research in biology and medicine, 1998.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser induced breakdown spectroscopy, 2006.

, What is LIBS?, 2016.

D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc, vol.66, pp.347-419, 2012.

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset et al., Asymmetric orientational writing in glass with femtosecond laser irradiation, Opt. Mater. Express, vol.3, pp.1586-1599, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926558

I. Nakai, J. Akimoto, M. Imafuku, R. Miyawaki, Y. Sugitani et al., Characterization of the amorphous state in metamict silicates and niobates by EXAFS and XANES analyses, Phys. Chem. Miner, vol.15, pp.113-124, 1987.

C. Sugiura, M. Kitamura, and S. Muramatsu, Niobium L III and L II X-ray absorption-edge spectra of Nb 2 O 5 and NH 4 NbF 6, J. Phys. Chem. Solids, vol.49, pp.1095-1099, 1988.

T. Vitova, X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals, 2008.

D. Zhang, J. Gao, P. Hua, D. Yu, E. Y. et al., Appropriate solvent NaVO 3 for composition analysis of LiNbO 3 crystal using chemical method, Anal. Chem, vol.85, pp.1940-1944, 2013.

H. C. Zeng, K. Tanaka, K. Hirao, and N. Soga, Crystallization and glass formation in 50Li 2 O·50Nb 2 O 5 and 25Li 2 O·25Nb 2 O 5 ·50SiO 2, J. Non-Cryst. Solids, vol.209, pp.112-121, 1997.

H. Vigouroux, Etude de vitrocéramiques optiques pour le doublement de fréquence, 2012.

M. Beresna, M. Gecevi?ius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, Exciton mediated selforganization in glass driven by ultrashort light pulses, Appl. Phys. Lett, vol.101, p.53120, 2012.

M. Beresna, M. Gecevi?ius, and P. G. Kazansky, Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass, Opt Mater Express, vol.1, pp.783-795, 2011.

J. Wen, G. Peng, W. Luo, Z. Xiao, Z. Chen et al., Gamma irradiation effect on Rayleigh scattering in low water peak single-mode optical fibers, Opt. Express, vol.19, pp.23271-23278, 2011.

S. Loranger, M. Gagné, V. Lambin-iezzi, and R. Kashyap, Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre, Sci Rep, vol.5, 2015.

M. Lines, Scattering losses in optic fiber materials. I. A new parametrization, J. Appl. Phys, vol.55, pp.4052-4057, 1984.

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard et al., Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation, Opt. Lett, vol.40, pp.3623-3626, 2015.

A. Rudenko, J. Colombier, and T. E. Itina, From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser, Phys. Rev. B, vol.93, p.75427, 2016.
URL : https://hal.archives-ouvertes.fr/ujm-01344280

, Refractive index database, p.7, 2016.

A. Revcolevschi and G. Dhalenne, Engineering oxide-oxide and metal-oxide microstructures in directionally solidified eutectics, Adv. Mater, vol.5, pp.657-662, 1993.

B. Poumellec, G. Dhalenne, M. Lancry, R. Saint-martin, S. Ani et al., Elaboration of a Specific Class of Metamaterial: Glass in Single Crystal, 2012.

X. Ma and D. Li, The multi-scale discrete crystal growth in the solidification of 20SiMnMo5 Steel, Cryst. Growth Des, vol.16, pp.3163-3169, 2016.

W. Yang, P. G. Kazansky, and Y. P. Svirko, Non-reciprocal ultrafast laser writing, Nat Photon, vol.2, pp.99-104, 2008.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, CUP Archive, 2000.

I. H. Malitson, Interspecimen comparison of the refractive index of fused silica*, ?, J. Opt. Soc. Am, vol.55, pp.1205-1209, 1965.

E. Simova, C. Hnatovsky, R. S. Taylor, J. Liu, R. Pattathil et al., Rewritable nanogratings in fused silica using a focused femtosecond laser beam, Conference on Lasers and Electro-Optics, p.4, 2006.

M. Rose, A history of the laser: A trip through the light fantastic-Presenting a timeline of notable laser-related scientific accomplishments, Photonics Spectra, vol.44, p.58, 2010.

J. Hecht, Short history of laser development, Opt. Eng, vol.49, pp.91002-091002, 2010.

R. Paschotta, chirp' in the encyclopedia of laser physics and technology, 2008.

K. L. Vora, Three-dimensional nanofabrication of silver structures in polymer with direct laser writing, 2014.

L. Skuja, Optically active oxygen-deficiency-related centers in amorphous silicon dioxide, J. NonCryst. Solids, vol.239, pp.16-48, 1998.

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication, J. Opt. Soc. Am. B, vol.22, pp.2138-2143, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01552707

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson et al., Laserinduced defects in fused silica by femtosecond IR irradiation, Phys. Rev. B, vol.73, p.224117, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00111127

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study, J. Lumin, vol.109, pp.135-142, 2004.

R. Buividas, I. Aharonovich, G. Seniutinas, X. W. Wang, L. Rapp et al.,

. Juodkazis, Photoluminescence from voids created by femtosecond-laser pulses inside cubic-BN, Opt. Lett, vol.40, pp.5711-5713, 2015.

C. Zhang, Z. Dong, G. You, R. Zhu, S. Qian et al., Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires, Appl. Phys. Lett, vol.89, pp.42117-42500, 2006.

Y. Duan, H. Pfeiffer, B. Li, I. C. Romero-ibarra, D. C. Sorescu et al., CO 2 capture properties of lithium silicates with different ratios of Li 2 O/SiO 2 : an ab initio thermodynamic and experimental approach, Phys. Chem. Chem. Phys, vol.15, pp.13538-13558, 2013.

M. Tatsumisago, T. Minami, and M. Tanaka, Rapid quenching technique using thermal-image furnace for glass preparation, J. Am. Ceram. Soc, vol.64, pp.97-98, 1981.

P. Sarjeant and R. Roy, A new approach to the prediction of glass formation, Mater. Res. Bull, vol.3, pp.265-279, 1968.

T. Suzuki and A. Anthony, Rapid quenching on the binary systems of high temperature oxides, Mater. Res. Bull, vol.9, pp.745-753, 1974.

, Michel-Levy birefringence chart, vol.265, 2016.

, The European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO®/Europe-EQEC), 2017.

L. Journées, Verre, 2016.

, th International Symposium on Laser interaction with Matter, 2016.

, International School on Light Sciences and Technology, IS-LiST, 2016.

X. Stanford-pulse-ultrafast and . Seminar, , 2016.

, Workshop on Materials for Optics and Optoelectronics, 2016.

, th International Conference on the Physics of Non-Crystalline Solids, 2015.

, Advanced School on Glasses and Glass-Ceramics, 100 positions available for top-quality Masters and PhD students (50 Brazilians and 50 foreigner from all over the world), 2015.

, th Workshop for New Research in Glass Science and Technology, 2014.