, Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains, Cell, vol.149, issue.1, pp.124-136, 2012.

G. B. Bulut, R. Sulahian, H. Yao, L. J. Huang, and .. , Cbl ubiquitination of p85 is essential for Epo-induced EpoR endocytosis, Blood, vol.122, issue.24, pp.3964-3972, 2013.

K. N. Burger, R. A. Demel, S. L. Schmid, and B. De-kruijff, Dynamin is membraneactive: lipid insertion is induced by phosphoinositides and phosphatidic acid, Biochemistry, vol.39, issue.40, pp.12485-12493, 2000.

D. J. Busch, J. R. Houser, C. C. Hayden, M. B. Sherman, E. M. Lafer et al., Intrinsically disordered proteins drive membrane curvature, Nature Communications, vol.6, issue.3, pp.191-201, 2015.

S. D. Conner and S. L. Schmid, Regulated portals of entry into the cell, Nature, vol.422, issue.6927, pp.37-44, 2003.

J. F. Danielli and H. Davson, A contribution to the theory of permeability of thin filmsDanielli-1935, Journal of Cellular Physiology, pp.495-508, 1935.

O. Daumke, R. Lundmark, Y. Vallis, S. Martens, P. J. Butler et al., Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling, Nature, issue.7164, pp.923-927, 2007.

O. Daumke, A. Roux, and V. Haucke, BAR Domain Scaffolds in Dynamin-Mediated Membrane Fission, Cell, vol.156, issue.5, pp.882-892, 2014.
DOI : 10.1016/j.cell.2014.02.017

URL : https://doi.org/10.1016/j.cell.2014.02.017

P. De-camilli, H. Chen, J. Hyman, E. Panepucci, A. Bateman et al., The ENTH domain, FEBS Letters, vol.513, issue.1, pp.11-18, 2002.

P. F. Devaux, A. Herrmann, N. Ohlwein, and M. M. Kozlov, How lipid flippases can modulate membrane structure, Biochimica Et Biophysica Acta (BBA)-Biomembranes, vol.1778, issue.7-8, pp.1591-1600, 2008.
DOI : 10.1016/j.bbamem.2008.03.007

URL : https://doi.org/10.1016/j.bbamem.2008.03.007

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi et al., Lipid Rafts Reconstituted in Model Membranes, Biophysical journal, vol.80, issue.3, pp.1417-1428, 2001.
DOI : 10.1016/s0006-3495(01)76114-0

URL : https://doi.org/10.1016/s0006-3495(01)76114-0

G. J. Doherty and H. T. Mcmahon, Mechanisms of Endocytosis, Annual Review of Biochemistry, vol.78, issue.1, pp.857-902, 2009.

R. Dominguez, Actin filament nucleation and elongation factors-structure-function relationships, Critical Reviews in Biochemistry and Molecular Biology, vol.44, issue.6, pp.351-366, 2009.
DOI : 10.3109/10409230903277340

URL : http://europepmc.org/articles/pmc2787778?pdf=render

G. Drin, J. Casella, R. Gautier, T. Boehmer, T. U. Schwartz et al., A general amphipathic ?-helical motif for sensing membrane curvature, Nature Structural & Molecular Biology, vol.14, issue.2, pp.138-146, 2007.
DOI : 10.1038/nsmb1194

URL : https://hal.archives-ouvertes.fr/hal-00171994

E. E. Farge, D. M. Ojcius, A. A. Subtil, and A. A. Dautry-varsat, Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells, American Journal of Physiology-Legacy Content, vol.276, issue.3, pp.725-733, 1999.

S. Fath, J. D. Mancias, X. Bi, and J. Goldberg, Structure and Organization of Coat Proteins in the COPII Cage, Cell, vol.129, issue.7, pp.1325-1336, 2007.

,

S. Ferguson, A. Raimondi, S. Paradise, H. Shen, K. Mesaki et al., Coordinated Actions of Actin and BAR Proteins Upstream of Dynamin at Endocytic Clathrin-Coated Pits, Developmental Cell, vol.17, issue.6, pp.811-822, 2009.

,

M. G. Ford, Simultaneous Binding of PtdIns(4,5)P2 and Clathrin by AP180 in the Nucleation of Clathrin Lattices on Membranes, Science, issue.5506, pp.1051-1055, 2001.

M. G. Ford, S. Jenni, and J. Nunnari, The crystal structure of dynamin, Nature, vol.477, issue.7366, pp.561-566, 2011.

M. G. Ford, I. G. Mills, B. J. Peter, Y. Vallis, G. J. Praefcke et al., Curvature of clathrin-coated pits driven by epsin, Nature, issue.6905, pp.361-366, 2002.

A. Frost, V. M. Unger, and P. De-camilli, The BAR Domain Superfamily: MembraneMolding Macromolecules, Cell, vol.137, issue.2, pp.191-196, 2009.
DOI : 10.1016/j.cell.2009.04.010

URL : https://doi.org/10.1016/j.cell.2009.04.010

,

S. L. Gaffen, Signaling domains of the interleukin 2 receptor, Cytokine, vol.14, issue.2, pp.63-77, 2001.

J. L. Gallop, C. C. Jao, H. M. Kent, P. J. Butler, P. R. Evans et al., Mechanism of endophilin N-BAR domain-mediated membrane curvature, The EMBO Journal, vol.25, issue.12, pp.2898-2910, 2006.

J. L. Gallop, P. J. Butler, and H. T. Mcmahon, Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission, Nature Cell Biology, vol.438, issue.7068, pp.675-678, 2005.

F. Gesbert, N. Sauvonnet, and A. Dautry-varsat, Clathrin-lndependent endocytosis and signalling of interleukin 2 receptors IL-2R endocytosis and signalling, Current Topics in Microbiology and Immunology, vol.286, pp.119-148, 2004.

F. Gesbert, V. Malardé, and A. Dautry-varsat, Ubiquitination of the common cytokine receptor ?c and regulation of expression by an ubiquitination/deubiquitination machinery, Biochemical and Biophysical Research Communications, vol.334, issue.2, pp.474-480, 2005.

L. Girnita, ?-Arrestin Is Crucial for Ubiquitination and Down-regulation of the Insulinlike Growth Factor-1 Receptor by Acting as Adaptor for the MDM2 E3 Ligase, Journal of Biological Chemistry, vol.280, issue.26, pp.24412-24419, 2005.

F. M. Goñi, The basic structure and dynamics of cell membranes: An update of the Singer-Nicolson model, Biochimica et Biophysica Acta. BBA-Biomembranes, vol.1838, issue.6, pp.1467-1476, 2014.

A. Gortat, M. J. San-roman, C. Vannier, and A. A. Schmidt, Single Point Mutation in Bin/Amphiphysin/Rvs (BAR) Sequence of Endophilin Impairs Dimerization, Membrane Shaping, and Src Homology 3 Domain-mediated Partnership, Journal of Biological Chemistry, vol.287, issue.6, pp.4232-4247, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00658474

A. Grassart, A. Dujeancourt, P. B. Lazarow, A. Dautry-varsat, and N. Sauvonnet, , 2008.

, Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2, EMBO Reports, vol.9, issue.4, pp.356-362

A. Grassart, V. Meas-yedid, A. Dufour, J. Olivo-marin, A. Dautry-varsat et al., Pak1 phosphorylation enhances cortactin-N-WASP interaction in clathrincaveolin-independent endocytosis, Traffic, issue.8, pp.1079-1091, 2010.

A. Grassart, A. T. Cheng, S. H. Hong, F. Zhang, N. Zenzer et al., Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis, The Journal of Cell Biology, 2014.
DOI : 10.1083/jcb.201403041

URL : http://jcb.rupress.org/content/jcb/205/5/721.full.pdf

S. A. Green and S. B. Liggett, A proline-rich region of the third intracellular loop imparts phenotypic beta 1-versus beta 2-adrenergic receptor coupling and sequestration, The Journal of Biological Chemistry, vol.269, issue.42, pp.26215-26219, 1994.

C. Gu, S. Yaddanapudi, A. Weins, T. Osborn, J. Reiser et al., Direct dynamin-actin interactions regulate the actin cytoskeleton, The EMBO Journal, vol.29, issue.21, pp.3593-3606, 2010.
DOI : 10.1038/emboj.2010.249

URL : http://emboj.embopress.org/content/embojnl/29/21/3593.full.pdf

C. G. Hansen, G. Howard, and B. J. Nichols, Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis, Journal of Cell Science, vol.124, issue.16, pp.2777-2785, 2011.
DOI : 10.1242/jcs.084319

URL : http://jcs.biologists.org/content/124/16/2777.full.pdf

S. C. Harrison and T. Kirchhausen, STRUCTURAL BIOLOGY Conservation in vesicle coats, Nature, vol.466, issue.7310, pp.1048-1049, 2010.
DOI : 10.1038/4661048a

R. J. Haslam, H. B. Koide, and B. A. Hemmings, Pleckstrin domain homology, Nature, vol.363, issue.6427, pp.309-310, 1993.
DOI : 10.1038/363309b0

V. Haucke, Cell biology: On the endocytosis rollercoaster, Nature, vol.517, issue.7535, pp.446-447, 2015.
DOI : 10.1038/nature14081

J. R. Henley, E. W. Krueger, B. J. Oswald, and M. A. Mcniven, Dynamin-mediated Internalization of Caveolae, The Journal of Cell Biology, vol.141, issue.1, pp.85-99, 1998.

W. M. Henne, E. Boucrot, M. Meinecke, E. Evergren, Y. Vallis et al., FCHo proteins are nucleators of clathrin-mediated endocytosis, Science, issue.5983, pp.1281-1284, 2010.

W. M. Henne, H. M. Kent, M. G. Ford, B. G. Hegde, O. Daumke et al., Structure and Analysis of FCHo2 F-BAR Domain: A Dimerizing and Membrane Recruitment Module that Effects Membrane Curvature, Structure, vol.15, issue.7, pp.839-852, 1993.

A. Hershko and A. Ciechanover, The ubiquitin system, Annual Review of Biochemistry, vol.67, pp.425-479, 1998.

A. Hémar, M. Lieb, A. Subtil, J. P. Disanto, and A. Dautry-varsat, Endocytosis of the beta chain of interleukin-2 receptor requires neither interleukin-2 nor the gamma chain, European Journal of Immunology, vol.24, issue.9, pp.1951-1955, 1994.

,

A. Hémar, A. Subtil, M. Lieb, E. Morelon, R. Hellio et al., Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains, The Journal of Cell Biology, vol.129, issue.1, pp.55-64, 1995.

S. S. Holkar, S. C. Kamerkar, and T. J. Pucadyil, Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature, Journal of Biological Chemistry, vol.290, issue.23, pp.14267-14276, 2015.

R. A. Hom, M. Vora, M. Regner, O. M. Subach, W. Cho et al., pH-dependent Binding of the Epsin ENTH Domain and the AP180 ANTH Domain to PI(4,5)P2-containing Bilayers, Journal of Molecular Biology, vol.373, issue.2, pp.412-423, 2007.

S. H. Hong, C. L. Cortesio, and D. G. Drubin, Machine-Learning-Based Analysis in Genome-Edited Cells Reveals the Efficiency of Clathrin-Mediated Endocytosis, Cell Reports, vol.12, issue.12, pp.2121-2130, 2015.

C. A. Horvath, D. Vanden-broeck, G. A. Boulet, J. Bogers, and M. J. Wolf, Epsin: Inducing membrane curvature, The International Journal of Biochemistry & Cell Biology, vol.39, issue.10, pp.1765-1770, 2007.
DOI : 10.1016/j.biocel.2006.12.004

W. B. Huttner and A. Schmidt, Lipids, lipid modification and lipid-protein interaction in membrane budding and fission-insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis, Current Opinion in Neurobiology, 2000.

T. Itoh, K. S. Erdmann, A. Roux, B. Habermann, H. Werner et al., Dynamin and the Actin Cytoskeleton Cooperatively Regulate Plasma Membrane Invagination by BAR and F-BAR Proteins, Developmental Cell, vol.9, issue.6, pp.791-804, 2005.

T. Itoh, S. Koshiba, T. Kigawa, A. Kikuchi, S. Yokoyama et al., Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis, Science, issue.5506, pp.1047-1051, 2001.

,

M. Jacob, L. Todd, M. F. Sampson, and E. Pure, Dual role of Cbl links critical events in BCR endocytosis, International Immunology, vol.20, issue.4, pp.485-497, 2008.

P. Y. Jean-charles, N. J. Freedman, and S. K. Shenoy, Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination, Progress in Molecular Biology and Translational Science, vol.141, pp.339-369, 2016.

G. M. Jenkins and M. A. Frohman, Phospholipase D: a lipid centric review, Cellular and Molecular Life Sciences, vol.62, pp.2305-2316, 2005.

D. Jensen and R. Schekman, COPII-mediated vesicle formation at a glance, Journal of Cell Science, vol.124, issue.1, pp.1-4, 2011.

T. Kanaseki and K. Kadota, The "Vesicule in a basket": A Morphological Study of the Coated Vesicle Isolated from the Nerve Endings of the Guinea Pig Brain, with Special Reference to the Mechanism of Membrane Movements, The journal of cell biology, vol.42, pp.202-220, 1969.

T. Kaneko, A. Maeda, M. Takefuji, H. Aoyama, M. Nakayama et al., Rho mediates endocytosis of epidermal growth factor receptor through phosphorylation of endophilin A1 by Rho-kinase-Kaneko-2005-Genes to Cells-Wiley Online Library, Genes to Cells, vol.10, issue.10, pp.973-987, 2005.

M. Karbowski, S. Y. Jeong, and R. J. Youle, Endophilin B1 is required for the maintenance of mitochondrial morphology, The Journal of Cell Biology, vol.166, issue.7, pp.1027-1039, 2004.

N. Kassas, P. Tryoen-tóth, M. Corrotte, T. Thahouly, M. Bader et al., Genetically encoded probes for phosphatidic acid, Methods in Cell Biology, vol.108, pp.445-459, 2012.

B. K. Kay, M. Yamabhai, B. Wendland, and S. D. Emr, Identification of a novel domain shared by putative components of the endocytic and cytoskeletal machinery, Protein Science, vol.8, issue.2, pp.435-438, 1999.

J. F. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics, British Journal of Cancer, vol.26, issue.4, pp.239-257, 1972.

H. M. Kim, H. Choo, S. Jung, Y. Ko, W. Park et al., A TwoPhoton Fluorescent Probe for Lipid Raft Imaging: C-Laurdan, ChemBioChem, vol.8, issue.5, pp.553-559, 2007.

J. H. Kim, J. M. Han, S. Lee, Y. Kim, T. G. Lee et al., Phospholipase D1 in Caveolae: Regulation by Protein Kinase C? and Caveolin-1 ?, Biochemistry, vol.38, issue.12, pp.3763-3769, 1999.

T. Kirchhausen, Three ways to make a vesicle, Nature Reviews. Molecular Cell Biology, vol.1, issue.3, pp.187-198, 2000.

M. Kirkham, A. Fujita, R. Chadda, S. J. Nixon, T. V. Kurzchalia et al., Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles, The Journal of Cell Biology, vol.168, issue.3, pp.465-476, 2005.

E. E. Kooijman, V. Chupin, B. De-kruijff, and K. N. Burger, Modulation of Membrane Curvature by Phosphatidic Acid and Lysophosphatidic Acid, Traffic, vol.4, issue.3, pp.162-174, 2003.

E. E. Kooijman, V. Chupin, N. L. Fuller, M. M. Kozlov, B. De-kruijff et al., Spontaneous Curvature of Phosphatidic Acid and Lysophosphatidic Acid ?, Biochemistry, vol.44, issue.6, pp.2097-2102, 2005.

R. D. Kornberg and H. M. Mcconnell, Lateral Diffusion of Phospholipids in a Vesicle Membrane, vol.68, pp.2564-2568, 1971.

L. Krabben, A. Fassio, V. K. Bhatia, A. Pechstein, F. Onofri et al., , 2011.

, Synapsin I Senses Membrane Curvature by an Amphipathic Lipid Packing Sensor Motif, Journal of Neuroscience, vol.31, issue.49, pp.18149-18154

,

C. Krasel, M. B. Bunemann, K. Lorenz, and M. J. Lohse, beta-arrestin binding to the beta(2)-adrenergic receptor requires both receptor phosphorylation and receptor activation, The Journal of Biological Chemistry, vol.280, issue.10, pp.9528-9535, 2005.

,

M. Krause and A. Gautreau, Steering cell migration: lamellipodium dynamics and the regulation of directional persistence, Nature Reviews. Molecular Cell Biology, vol.15, issue.9, pp.577-590, 2014.

S. Kumari and S. Mayor, ARF1 is directly involved in dynamin-independent endocytosis, Nature Cell Biology, vol.10, issue.1, pp.30-41, 2007.

C. Lai, C. C. Jao, E. Lyman, J. L. Gallop, B. J. Peter et al., Membrane Binding and Self-Association of the Epsin N-Terminal Homology Domain, Journal of Molecular Biology, vol.423, issue.5, pp.800-817, 2012.

R. Lakshminarayan, C. Wunder, U. Becken, M. T. Howes, C. Benzing et al., Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrinindependent carriers, Nature Cell Biology, vol.16, issue.6, pp.595-606, 2014.

C. Lamaze, A. Dujeancourt, T. Baba, C. G. Lo, A. Benmerah et al., Interleukin 2 Receptors and Detergent-Resistant Membrane Domains Define a ClathrinIndependent Endocytic Pathway, Molecular Cell, vol.7, issue.3, pp.661-671, 2001.

C. Lamaze, L. M. Fujimoto, H. L. Yin, and S. L. Schmid, The Actin Cytoskeleton Is Required for Receptor-mediated Endocytosis in Mammalian Cells, Journal of Biological, vol.272, issue.33, pp.20332-20335, 1997.

R. Lasserre, X. Guo, F. Conchonaud, Y. Hamon, O. Hawchar et al., Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation, Nature Chemical Biology, vol.4, issue.9, pp.538-547, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00318983

L. Roy, C. Wrana, and J. L. , Clathrin-and non-clathrin-mediated endocytic regulation of cell signalling, Nature Reviews. Molecular Cell Biology, vol.6, issue.2, pp.112-126, 2005.

E. Lee and D. A. Knecht, Visualization of Actin Dynamics During Macropinocytosis, 2002.

W. H. Lewis, J. Li, B. Barylko, J. P. Eichorst, J. D. Mueller et al., Association of Endophilin B1 with Cytoplasmic Vesicles, Biophysical Journal, vol.111, issue.3, pp.565-576, 1931.

J. Li, X. Mao, L. Q. Dong, F. Liu, and L. Tong, Crystal Structures of the BAR-PH and PTB Domains of Human APPL1, Structure, vol.15, issue.5, pp.525-533, 1993.

P. Liberali, E. Kakkonen, G. Turacchio, C. Valente, A. Spaar et al., The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS, Embo Journal, vol.27, issue.7, pp.970-981, 2008.

S. Linder, Podosomes at a glance, Journal of Cell Science, vol.118, issue.10, pp.2079-2082, 2005.

D. Lingwood and K. Simons, Lipid rafts as a membrane-organizing principle, Science, issue.5961, pp.46-50, 2010.

A. P. Liu, F. Aguet, G. Danuser, and S. L. Schmid, Local clustering of transferrin receptors promotes clathrin-coated pit initiation, The Journal of Cell Biology, vol.191, issue.7, pp.1381-1393, 2010.

L. Liu and P. F. Pilch, A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization, The Journal of Biological Chemistry, vol.283, issue.7, pp.4314-4322, 2008.

S. Loebrich, M. R. Benoit, J. A. Konopka, J. R. Cottrell, J. Gibson et al., CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors, Current Biology, vol.26, issue.3, pp.296-308, 2016.

,

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman et al., Cargo and dynamin regulate clathrin-coated pit maturation, PLoS Biology, vol.7, issue.3, 2009.

M. Lowe and T. E. Kreis, In vitro assembly and disassembly of coatomer, The Journal of Biological Chemistry, vol.270, issue.52, pp.31364-31371, 1995.

A. Ludwig, B. J. Nichols, and S. Sandin, Architecture of the Caveolar Coat Complex, The compagny of biologists, Journal of cell science, vol.129, pp.3077-3083, 2016.

A. Ludwig, G. Howard, C. Mendoza-topaz, T. Deerinck, M. Mackey et al., Molecular Composition and Ultrastructure of the Caveolar Coat Complex, PLoS Biology, vol.11, issue.8, p.1001640, 2013.

R. Lundmark, G. J. Doherty, M. T. Howes, K. Cortese, Y. Vallis et al., The GTPase-Activating Protein GRAF1 Regulates the CLIC/GEEC Endocytic Pathway, Current Biology, vol.18, issue.22, pp.1802-1808, 2008.
DOI : 10.1016/j.cub.2008.10.044

URL : https://doi.org/10.1016/j.cub.2008.10.044

,

E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner et al., , 2006.

, Dynasore, a cell-permeable inhibitor of dynamin, Developmental Cell, vol.10, issue.6, pp.839-850

N. Malecz, P. C. Mccabe, C. Spaargaren, R. Qiu, Y. Chuang et al., Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis, Current Biology, vol.10, issue.21, pp.1383-1386, 2000.

Y. X. Mao, J. Chen, J. A. Maynard, B. Zhang, and F. A. Quiocho, A novel all helix fold of the AP180 amino-terminal domain for phosphoinositide binding and clathrin assembly in synaptic vesicle endocytosis, Cell, vol.104, issue.3, pp.433-440, 2001.

M. Masuda, S. Takeda, M. Sone, T. Ohki, H. Mori et al., , 2006.

, Endophilin BAR domain drives membrane curvature by two newly identified structurebased mechanisms, Abstract: The EMBO Journal. The EMBO Journal, vol.25, issue.12, pp.2889-2897

M. Masuda and N. Mochizuki, Structural characteristics of BAR domain superfamily to sculpt the membrane, Seminars in Cell & Developmental Biology, vol.21, issue.4, pp.391-398, 2010.

S. Matta, K. Van-kolen, R. Da-cunha, G. Van-den-bogaart, W. Mandemakers et al., LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis, Neuron, vol.75, issue.6, pp.1008-1021, 2012.

P. K. Mattila, A. Pykäläinen, J. Saarikangas, V. O. Paavilainen, H. Vihinen et al., Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism, The Journal of Cell Biology, vol.176, issue.7, pp.953-964, 2007.

S. Mayor and R. E. Pagano, Pathways of clathrin-independent endocytosis, Nature Reviews. Molecular Cell Biology, vol.8, issue.8, pp.603-612, 2007.

C. Mccrae, L. Maxwell, and R. Ceredig, Intracellular pathway of interleukin-2 receptors studied using immunogold electron microscopy, Immunology and Cell Biology, vol.66, issue.3, pp.185-191, 1988.

M. Mcniven, The dynamin family of mechanoenzymes: pinching in new places, Trends in Biochemical Sciences, vol.25, issue.3, pp.115-120, 2000.

M. Meinecke, E. Boucrot, G. Camdere, W. Hon, R. Mittal et al., Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission, The Journal of Biological Chemistry, vol.288, issue.9, pp.6651-6661, 2013.

C. J. Merrifield, M. E. Feldman, L. Wan, and W. Almers, Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits, Nature Cell Biology, vol.4, issue.9, pp.691-698, 2002.

C. J. Merrifield, D. Perrais, and D. Zenisek, Coupling between Clathrin-Coated-Pit Invagination, Cortactin Recruitment, and Membrane Scission Observed in Live Cells, Cell, vol.121, issue.4, pp.593-606, 2005.

B. Mesmin, G. Drin, S. Levi, M. Rawet, D. Cassel et al., Two Lipid-Packing Sensor Motifs Contribute to the Sensitivity of ArfGAP1 to Membrane Curvature ?, Biochemistry, vol.46, issue.7, pp.1779-1790, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00171990

T. H. Millard, G. Bompard, M. Y. Heung, T. R. Dafforn, D. J. Scott et al., Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53, Embo Journal, vol.24, issue.2, pp.240-250, 2005.

E. Morelon, A. Dautry-varsat, F. Le-deist, S. Hacein-bay, A. Fischer et al., T-lymphocyte differentiation and proliferation in the absence of the cytoplasmic tail of the common cytokine receptor gamma c chain in a severe combined immune deficiency X1 patient, Blood, vol.88, issue.5, pp.1708-1717, 1996.

E. Morelon and A. Dautry-varsat, Endocytosis of the Common Cytokine Receptor cChain: Identification of sequences involved in internalization and degradation, Journal of Biological Chemistry, vol.273, issue.34, pp.22044-22051, 1998.

,

B. Moren, C. Shah, M. T. Howes, N. L. Schieber, H. T. Mcmahon et al., EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization, Molecular Biology of the Cell, vol.23, issue.7, pp.1316-1329, 2012.

S. Morlot, V. Galli, M. Klein, N. Chiaruttini, J. Manzi et al., Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction, Cell, vol.151, issue.3, pp.619-629, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01138988

P. Oh, D. P. Mcintosh, and J. E. Schnitzer, Dynamin at the Neck of Caveolae Mediates Their Budding to Form Transport Vesicles by GTP-driven Fission from the Plasma Membrane of Endothelium, The Journal of Cell Biology, vol.141, issue.1, pp.101-114, 1998.

L. Orci, B. S. Glick, and J. E. Rothman, A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack, Cell, vol.46, issue.2, pp.90734-90742, 1986.

S. Ory, M. Ceridono, F. Momboisse, S. Houy, S. Chasserot-golaz et al., Phospholipid Scramblase-1-Induced Lipid Reorganization Regulates Compensatory Endocytosis in Neuroendocrine Cells, Journal of Neuroscience, vol.33, issue.8, pp.3545-3556, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00939386

D. Papahadjopoulos, G. Poste, and B. E. Schaeffer, Fusion of Mammalian-Cells by Unilamellar Lipid Vesicles : Influence of Lipid Surface Charge, Fluidity and Cholesterol, vol.323, pp.23-42, 1973.

R. Park, H. Shen, L. Liu, X. Liu, S. M. Ferguson et al., Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors, Journal of Cell Science, vol.126, pp.5305-5312, 2013.

B. M. Pearse, Coated Vesicles From Pig Brain: Purification and Biochemical Characterization, Journal of Molecular Biology, vol.97, issue.1, pp.93-98, 1975.
DOI : 10.1016/s0022-2836(75)80024-6

B. M. Pearse, Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles, vol.73, pp.1255-1259, 1976.

D. Perrais and C. J. Merrifield, Dynamics of Endocytic Vesicle Creation, Developmental Cell, vol.9, issue.5, pp.581-592, 2005.

B. J. Peter, H. M. Kent, I. G. Mills, Y. Vallis, P. J. Butler et al., BAR domains as sensors of membrane curvature: the amphiphysin BAR structure, Science, issue.5657, pp.495-499, 2004.

,

L. Picas, J. Viaud, K. Schauer, S. Vanni, K. Hnia et al., BIN1/MAmphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin, Nature Communications, vol.5, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02289097

B. J. Poorthuis and K. Y. Hostetler, Studies on the subcellular localization and properties of bis(monoacylglyceryl)phosphate biosynthesis in rat liver, The Journal of Biological Chemistry, issue.15, pp.4596-4602, 1976.

K. R. Poudel, Y. Dong, H. Yu, A. Su, T. Ho et al., A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes, Molecular Biology of the Cell, vol.27, issue.13, pp.2119-2132, 2016.

P. Putta, J. Rankenberg, R. A. Korver, R. Van-wijk, T. Munnik et al., Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties, Biochimica et Biophysica Acta. BBA-Biomembranes, vol.1858, issue.11, pp.2709-2716, 2016.

A. Pykäläinen, M. Boczkowska, H. Zhao, J. Saarikangas, G. Rebowski et al., Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures, Nature Structural & Molecular Biology, vol.18, issue.8, pp.902-907, 2011.

O. Pylypenko, R. Lundmark, E. Rasmuson, S. R. Carlsson, and A. Rak, The PX-BAR membrane-remodeling unit of sorting nexin 9, The EMBO Journal, vol.26, issue.22, pp.4788-4800, 2007.

B. Qualmann and R. B. Kelly, Syndapin isoforms participate in receptor-mediated endocytosis and actin organization, The Journal of Cell Biology, vol.148, issue.5, pp.1047-1061, 2000.

B. Qualmann, D. Koch, and M. M. Kessels, Focus ReviewLet's go bananas: revisiting the endocytic BAR code, The EMBO Journal, vol.30, issue.17, pp.3501-3515, 2011.

R. Ramachandran and S. L. Schmid, Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane, EMBO journal, vol.27, issue.1, pp.27-37, 2008.

Y. Rao and V. Haucke, Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily, Cellular and Molecular Life Sciences, vol.68, issue.24, pp.3983-3993, 2011.

H. Renard, M. Simunovic, J. Lemière, E. Boucrot, M. D. Garcia-castillo et al., Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis, Nature, vol.517, issue.7535, pp.493-496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219767

A. Rocca, C. Lamaze, A. Subtil, and A. Dautry-varsat, Involvement of the Ubiquitin/Proteasome System in Sorting of the Interleukin 2 Receptor Chain to Late Endocytic Compartments, Molecular Biology of the Cell, vol.12, issue.5, pp.1293-1301, 2001.

J. A. Rosenthal, H. Chen, V. I. Slepnev, L. Pellegrini, A. E. Salcini et al., The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module, The Journal of Biological Chemistry, vol.274, issue.48, pp.33959-33965, 1999.

T. F. Roth and K. R. Porter, Yolk protein uptake in the oocyte of the mosquito aedes aegypti, L. The Journal of Cell Biology, vol.20, pp.313-332, 1964.

K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney et al., Caveolin, a Protein-Component of Caveolae Membrane Coats, Cell, vol.68, issue.4, pp.673-682, 1992.

A. E. Roux and J. Plastino, Actin takes its hat off to dynamin, The EMBO Journal, vol.29, issue.21, pp.3591-3592, 2010.

J. Saarikangas, H. Zhao, A. Pykäläinen, P. Laurinmäki, P. K. Mattila et al., Molecular mechanisms of membrane deformation by I-BAR domain proteins, Current Biology: CB, vol.19, issue.2, pp.95-107, 2009.

S. Sabharanjak, P. Sharma, R. G. Parton, and S. Mayor, GPI-Anchored Proteins Are Delivered to Recycling Endosomes via a Distinct cdc42-Regulated, Clathrin-Independent Pinocytic Pathway, Developmental Cell, vol.2, issue.4, pp.145-149, 2002.

K. Salim, M. J. Bottomley, E. Querfurth, M. J. Zvelebil, I. Gout et al., Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase, Embo Journal, vol.15, issue.22, pp.6241-6250, 1996.

N. Sauvonnet, A. Dujeancourt, and A. Dautry-varsat, Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor, The Journal of Cell Biology, vol.168, issue.1, pp.155-163, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00166944

M. Schlame and M. L. Greenberg, Biosynthesis, remodeling and turnover of mitochondrial cardiolipin, Biochimica et Biophysica Acta. BBA-Molecular and Cell Biology of Lipids, pp.1-5, 2016.

K. S. Schluns and L. Lefrançois, Cytokine control of memory T-cell development and survival, Nature Reviews Immunology, vol.3, issue.4, pp.269-279, 2003.

A. Schmidt, M. Wolde, C. Thiele, W. Fest, H. Kratzin et al., , 1999.

, Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid, Nature, vol.401, issue.6749, pp.133-141

V. A. Sciorra, S. A. Rudge, G. D. Prestwich, M. A. Frohman, J. Engebrecht et al., Identification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes, The EMBO Journal, vol.18, issue.21, pp.5911-5921, 1999.

K. Segawa, S. Kurata, Y. Yanagihashi, T. R. Brummelkamp, F. Matsuda et al., Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure, Science, issue.6188, pp.1164-1168, 2014.

G. Semenzato, G. Pizzolo, and R. Zambello, The Interleukin-2 Interleukin-2 Receptor System-Structural, Immunological, and Clinical-Features, International Journal of Clinical & Laboratory Research, vol.22, issue.3, pp.133-142, 1992.

E. Sezgin, H. Kaiser, T. Baumgart, P. Schwille, K. Simons et al., Elucidating membrane structure and proteinbehavior using giant plasma membrane vesicles, Nature Protocols, vol.7, issue.6, pp.1042-1051, 2012.

E. Sezgin, T. Gutmann, T. Buhl, R. Dirkx, M. Grzybek et al., Adaptive Lipid Packing and Bioactivity in Membrane Domains, pp.1-14, 2015.

N. Shin, N. Ahn, B. Chang-ileto, J. Park, K. Takei et al., SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2, Journal of Cell Science, vol.121, pp.1252-1263, 2008.

N. Shinozaki-narikawa, T. Kodama, and Y. Shibasaki, Cooperation of Phosphoinositides and BAR Domain Proteins in Endosomal Tubulation, Traffic, vol.7, issue.11, pp.1539-1550, 2006.

S. J. Singer and G. L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes, pp.720-731, 1972.

,

K. Simons and J. L. Sampaio, Membrane Organization and Lipid Rafts, Cold Spring Harbor Perspectives in Biology, vol.3, issue.10, pp.4697-004697, 2011.

,

E. Solomaha and H. C. Palfrey, Conformational changes in dynamin on GTP binding and oligomerization reported by intrinsic and extrinsic fluorescence, Biochemical Journal, pp.601-611, 2005.

P. Soubeyran, K. Kowanetz, I. Szymkiewicz, W. Y. Langdon, and I. Dikic, CblCIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors, Nature, vol.416, issue.6877, pp.183-187, 2002.

F. Soulet, D. Yarar, M. Leonard, and S. L. Schmid, SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis, Molecular Biology of the Cell, vol.16, issue.4, pp.2058-2067, 2005.

R. V. Stahelin, F. Long, B. J. Peter, D. Murray, P. De-camilli et al., Contrasting Membrane Interaction Mechanisms of AP180 N-terminal Homology (ANTH) and Epsin N-terminal Homology (ENTH) Domains, Journal of Biological Chemistry, vol.278, issue.31, pp.28993-28999, 2003.

M. Stoeber, I. K. Stoeck, C. H. Hänni, C. K. Bleck, G. Balistreri et al., Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin, The EMBO Journal, vol.31, pp.2350-2364, 2012.

,

. Straub, Studies, vol.II, pp.1-15, 1942.

F. B. Straub and G. Feuer, Adenosinetriphosphate the functional group of actin, Biochimica Et Biophysica Acta, vol.4, pp.455-470, 1950.

A. Suarez, T. Ueno, R. Huebner, J. M. Mccaffery, and T. Inoue, Bin/Amphiphysin/Rvs (BAR) family members bend membranes in cells, 2014.

A. Subtil, A. Rocca, and A. Dautry-varsat, Molecular characterization of the signal responsible for the targeting of the interleukin 2 receptor beta chain toward intracellular degradation, The Journal of Biological Chemistry, vol.273, issue.45, pp.29424-29429, 1998.

A. Subtil, M. Delepierre, and A. Dautryvarsat, An alpha-helical signal in the cytosolic domain of the interleukin 2 receptor beta chain mediates sorting towards degradation after endocytosis, The Journal of Cell Biology, vol.136, issue.3, pp.583-595, 1997.
URL : https://hal.archives-ouvertes.fr/pasteur-00372797

A. Subtil, A. Hémar, and A. Dautry-varsat, Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited, Journal of Cell Science, vol.107, pp.3461-3468, 1994.

S. Suetsugu, K. Murayama, A. Sakamoto, K. Hanawa-suetsugu, A. Seto et al., The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation, The Journal of Biological Chemistry, vol.281, issue.46, pp.35347-35358, 2006.

A. Sundborger, C. Soderblom, O. Vorontsova, E. Evergren, J. E. Hinshaw et al., An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling, Journal of Cell Science, vol.124, issue.1, pp.133-143, 2011.

T. C. Sung, Y. M. Altshuller, A. J. Morris, and M. A. Frohman, Molecular Analysis of Mammalian Phospholipase D2, Journal of Biological Chemistry, vol.274, issue.1, pp.494-502, 1999.

T. C. Sung, Y. Zhang, A. J. Morris, and M. A. Frohman, Structural Analysis of Human Phospholipase D1, Journal of Biological Chemistry, vol.274, issue.6, pp.3659-3666, 1999.

A. Tagawa, A. Mezzacasa, A. Hayer, A. Longatti, L. Pelkmans et al., Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargotriggered, vesicular transporters, The Journal of Cell Biology, vol.170, issue.5, pp.769-779, 2005.

Y. Takahashi, C. L. Meyerkord, and H. Wang, Bif-1/Endophilin B1: a candidate for crescent driving force in autophagy, vol.16, pp.947-955, 2009.

K. Takano, K. Toyooka, and S. Suetsugu, EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization, The EMBO Journal, vol.27, issue.24, pp.2817-2828, 2008.

Y. Tang, L. A. Hu, W. E. Miller, N. Ringstad, R. A. Hall et al., Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1adrenergic receptor, pp.12559-12564, 1999.

, Endophilin B1 during mitophagy, pp.1-13

,

M. G. Waters, T. Serafini, and J. E. Rothman, Coatomer": a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles, Nature, vol.349, issue.6306, pp.248-251, 1991.

B. Wendland, S. D. Emr, and H. Riezman, Protein traffic in the yeast endocytic and vacuolar protein sorting pathways, Current Opinion in Cell Biology, vol.10, issue.4, pp.513-522, 1998.

W. T. Wong, C. Schumacher, A. E. Salcini, A. Romano, P. Castagnino et al., A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution, vol.92, pp.9530-9534, 1995.

X. Y. Wu, S. Suetsugu, L. A. Cooper, T. Takenawa, and J. L. Guan, Focal adhesion kinase regulation of N-WASP subcellular localization and function, The Journal of Biological Chemistry, vol.279, issue.10, pp.9565-9576, 2004.

X. Wu, B. Gan, Y. Yoo, and J. Guan, FAK-Mediated Src Phosphorylation of Endophilin A2 Inhibits Endocytosis of MT1-MMP and Promotes ECM Degradation, Developmental Cell, vol.9, issue.2, pp.185-196, 2005.

S. Yamashiro-matsumura and F. Matsumura, Purification and Characterization of an FActin-Bundling 55-Kilodalton Protein From Hela-Cells, The Journal of Biological Chemistry, vol.260, issue.8, pp.5087-5097, 1985.

Y. Yin, A. Arkhipov, and K. Schulten, Simulations of Membrane Tubulation by Lattices of Amphiphysin N-BAR Domains, Structure/Folding and Design, vol.17, issue.6, pp.882-892, 2009.

M. Yoon, G. Du, J. M. Backer, M. A. Frohman, and J. Chen, Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway, The Journal of Cell Biology, vol.195, issue.3, pp.435-447, 2011.

Y. Yoon, J. Tong, P. J. Lee, A. Albanese, N. Bhardwaj et al., , 2010.

, Molecular Basis of the Potent Membrane-remodeling Activity of the Epsin 1 N-terminal Homology Domain, Journal of Biological Chemistry, vol.285, issue.1, pp.531-540

C. Zhang, A. Li, X. Zhang, and H. Xiao, A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation, Journal of Biological Chemistry, 2011.

J. Zhang, X. Zheng, X. Yang, and K. Liao, CIN85 associates with endosomal membrane and binds phosphatidic acid, Cell Research, vol.19, issue.6, pp.733-746, 2009.

,

N. Zheng, P. Wang, P. D. Jeffrey, and N. P. Palvetich, Structure of a c-CBL-UbcH7 complex: RING Domain Function in Ubiquitin-Protein Ligases, Cell, vol.102, pp.533-535, 2000.

H. Zhao, A. Michelot, E. V. Koskela, V. Tkach, D. Stamou et al., Membrane-sculpting BAR and F-BAR domains generate stable lipid microdomains, Cell reports, vol.4, pp.1213-1223, 2012.

Q. Zhou, P. J. Sims, and T. Wiedmer, Identity of a conserved motif in phospholipid scramblase that is required for Ca2+-accelerated transbilayer movement of membrane phospholipids, Biochemistry, vol.37, issue.8, pp.2356-2360, 1998.

N. Ringstad, Y. Nemoto, and P. De-camilli, The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain, Proc. Natl Acad. Sci. USA, vol.94, pp.8569-8574, 1997.

A. Guichet, Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction, EMBO J, vol.21, pp.1661-1672, 2002.

P. Verstreken, Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release, Cell, vol.109, pp.101-112, 2002.

K. R. Schuske, Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin, Neuron, vol.40, pp.749-762, 2003.

I. Milosevic, Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission, Neuron, vol.72, pp.587-601, 2011.

N. Ringstad, Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis, Neuron, vol.24, pp.143-154, 1999.

H. Gad, Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin, Neuron, vol.27, pp.301-312, 2000.

F. Andersson, P. Low, and L. Brodin, Selective perturbation of the BAR domain of endophilin impairs synaptic vesicle endocytosis, Synapse, vol.64, pp.556-560, 2010.

A. Sundborger, An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling, J. Cell Sci, vol.124, pp.133-143, 2011.

R. M. Perera, R. Zoncu, L. Lucast, P. De-camilli, and D. Toomre, Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages, Proc. Natl Acad. Sci. USA, vol.103, pp.19332-19337, 2006.

S. M. Ferguson, Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits, Dev. Cell, vol.17, pp.811-822, 2009.

M. J. Taylor, D. Perrais, and C. J. Merrifield, A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis, PLoS Biol, vol.9, p.1000604, 2011.

M. Meinecke, Cooperative recruitment of dynamin and BIN/amphiphysin/ Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission, J. Biol. Chem, vol.288, pp.6651-6661, 2013.

W. J. Jockusch, G. J. Praefcke, H. T. Mcmahon, and L. Lagnado, Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells, Neuron, vol.46, pp.869-878, 2005.

A. Llobet, Endophilin drives the fast mode of vesicle retrieval in a ribbon synapse, J. Neurosci, vol.31, pp.8512-8519, 2011.

Y. Tang, Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor, Proc. Natl Acad. Sci. USA, vol.96, pp.12559-12564, 1999.

A. Petrelli, The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met, Nature, vol.416, pp.187-190, 2002.

P. Soubeyran, K. Kowanetz, I. Szymkiewicz, W. Y. Langdon, and I. Dikic, Cbl-CIN85endophilin complex mediates ligand-induced downregulation of EGF receptors, Nature, vol.416, pp.183-187, 2002.

O. Cremona, Essential role of phosphoinositide metabolism in synaptic vesicle recycling, Cell, vol.99, pp.179-188, 1999.

R. G. Parton and M. A. Del-pozo, Caveolae as plasma membrane sensors, protectors and organizers, Nature Rev. Mol. Cell Biol, vol.14, pp.98-112, 2013.

O. O. Glebov, N. A. Bright, and B. J. Nichols, Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells, Nature Cell Biol, vol.8, pp.46-54, 2006.

R. Lundmark, The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway, Curr. Biol, vol.18, pp.1802-1808, 2008.

S. Sigismund, Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation, Dev. Cell, vol.15, pp.209-219, 2008.

C. Lamaze, Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway, Mol. Cell, vol.7, pp.661-671, 2001.

N. Sauvonnet, A. Dujeancourt, and A. Dautry-varsat, Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor, J. Cell Biol, vol.168, pp.155-163, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00166944

L. Maldonado-báez, C. Williamson, and J. G. Donaldson, Clathrin-independent endocytosis: a cargo-centric view, Exp. Cell Res, vol.319, pp.2759-2769, 2013.

A. Grassart, A. Dujeancourt, P. B. Lazarow, A. Dautry-varsat, and N. Sauvonnet, Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2, EMBO Rep, vol.9, pp.356-362, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00332556

R. Fritsch and J. Downward, SnapShot: Class I PI3K isoform signaling, Cell, vol.154, p.940, 2013.

G. Servant, Polarization of chemoattractant receptor signaling during neutrophil chemotaxis, Science, vol.287, pp.1037-1040, 2000.

M. S. Song, L. Salmena, and P. P. Pandolfi, The functions and regulation of the PTEN tumour suppressor, Nature Rev. Mol. Cell Biol, vol.13, pp.283-296, 2012.

J. Xie, C. Erneux, and I. Pirson, How does SHIP1/2 balance PtdIns(3,4)P 2 and does it signal independently of its phosphatase activity?, Bioessays, vol.35, pp.733-743, 2013.

I. H. Batty, The control of phosphatidylinositol 3,4-bisphosphate concentrations by activation of the Src homology 2 domain containing inositol polyphosphate 5-phosphatase 2, SHIP2, Biochem. J, vol.407, pp.255-266, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478793

C. Gewinner, Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling, Cancer Cell, vol.16, pp.115-125, 2009.

Y. Posor, Spatiotemporal control of endocytosis by phosphatidylinositol-3,4bisphosphate, Nature, vol.499, pp.233-237, 2013.

Y. Yoon, X. Zhang, and W. Cho, Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2 ) specifically induces membrane penetration and deformation by Bin/amphiphysin/Rvs (BAR) domains, J. Biol. Chem, vol.287, pp.34078-34090, 2012.

M. Krause, Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics, Dev. Cell, vol.7, pp.571-583, 2004.

A. Vehlow, Endophilin, Lamellipodin, and Mena cooperate to regulate F-actindependent EGF-receptor endocytosis, EMBO J, vol.32, pp.2722-2734, 2013.

N. L. Kononenko, Clathrin/AP-2 mediate synaptic vesicle reformation from endosome-like vacuoles but are not essential for membrane retrieval at central synapses, Neuron, vol.82, pp.981-988, 2014.

S. Watanabe, Ultrafast endocytosis at mouse hippocampal synapses, Nature, vol.504, pp.242-247, 2013.

H. T. Mcmahon and E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis, Nature Rev. Mol. Cell Biol, vol.12, pp.517-533, 2011.

E. Boucrot, Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains, Cell, vol.149, pp.124-136, 2012.

W. Rö-mer, Shiga toxin induces tubular membrane invaginations for its uptake into cells, Nature, vol.450, pp.670-675, 2007.

H. Ewers, GM1 structure determines SV40-induced membrane invagination and infection, Nature Cell Biol, vol.12, pp.11-18, 2010.

H. Renard, Endophilin-A2 functions in membrane scission in clathrinindependent endocytosis, Nature, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01219767

, IMAGE 5197246) genes were cloned into pDONR201 (Invitrogen) and transferred into pEGFP, pTagRFP-T 45 (called 'RFP' elsewhere), pTagBFP (called 'BFP' elsewhere) or pGEX-6P2 vectors converted into the Gateway system (pDEST vectors). Mouse b 1 adrenergic receptor (ADRB1, IMAGE 9055582) full length, third intracellular loop (TIL, amino acids (aa) 246-315) and C terminus (C-term, aa 370end), human b 2 adrenergic receptor (ADRB2, IMAGE 5217922) full length, TIL (aa 220-274) and C-term (aa 330-end), human b 3 adrenergic receptor (ADRB3, IMAGE 30915407) TIL (aa 225-294) and C-term (aa 350-end), human a 2a adrenergic receptor (ADRA2A, IMAGE 6198830) full length, TIL (aa 218-374), 85011422) and HEK293 cells (ATCC CRL-1573) were cultured in DMEM (Sigma) supplemented with 10% fetal bovine serum (FBS, Gold PAA), 1 mM GlutaMAX-I (Gibco). Normal human epithelial cells hTERT-RPE1 (ATCC CRL-4000) were cultured in DMEM:F12 HAM (1:1 v/v) (Sigma), 0.25% sodium bicarbonate (w/v) (Sigma)

C. , IMAGE 40112299) full length, TIL (aa 210-329), mouse dopamine receptor 4 (DRD4, IMAGE 6492837) full length, TIL (aa 309-314), human dopamine receptor 5 (DRD5, IMAGE 3928370) full length, TIL (aa 247-296) and C-term (aa 361-end), human serotonin receptor 6 (HTR6, IMAGE 30915608) TIL (aa 209-265) and C-term (aa 321-end), human serotonin receptor 7 (HTR7, IMAGE 5297325) TIL (aa 258-325) and C-term (aa 389-end), human muscarinic acetylcholine receptor M1 (CHRM1, IMAGE 4931283) full length, TIL (aa 210-366), human muscarinic acetylcholine receptor M2 (CHRM2, IMAGE 40017105) full length, TIL (aa 208-388), human muscarinic acetylcholine receptor M4 (CHRM4, IMAGE 9021535) full length, TIL (aa 217-401), human histamine receptor 1 (HRH1, IMAGE 30340368) TIL (aa 211-418) and human histamine receptor 3 (HRH3, IMAGE 6971899) TIL (aa 218-359), human CIN85 (SH3BP1, IMAGE 3906722) SH3(3) (aa 1-328), PRD (aa 327-428), and PCC (aa 327-end), human Cbl-PRD (aa 477-end), human RhoGDI (ARHDIA, IMAGE, vol.4867857

E. , H. A. -b-2, A. Ha-a-2a, A. Haa-2b, A. et al., HA-mAchR4-EGFP plasmids were cloned by inserting a HA tag at the N terminus (thus at the extracellular extremity) into the pDONR201 clones containing full-length receptors described above and then transferred into a pEGFP-C DEST vector, PAK1-inhibitory domain PID (aa 89-149) were cloned into pDONR201 and transferred into pEGFP DEST vectors. Double-tagged HA-b1AR

D. K293e,

D. R3236d-r237e and R. , K255/256E and P331E were introduced by site-directed mutagenesis in the entry or expression clones containing the TIL of the respective receptors. Alix R757E (ref. 46) was introduced into the PRD clone, Human RhoA, vol.25, p.1

T. Cdc42, T. Rac1, and Q. , RhoA Q63L and Cdc42 Q61L mutants were cloned into pEGFP-expressing vectors. Rat EGFP-LCa (clathrin light chain a) was pro

P. Mcniven-;-were-gifts-of and . De-camilli, Gene transfection. For live-cell imaging localization experiments, cells seeded on 35 mm glass bottom dishes (MatTek) were transfected using Lipofectamine 2000 (Invitrogen) or Nanofectin (PAA) and 50-250 ng DNA (the levels of each plasmid were titrated down to levels allowing good detection but limiting side effects of overexpression). For dominant-negative mutants, 1 mg of plasmids were used. For endogenous staining on fixed samples, cells seeded on 13 mm coverslips (placed in 24-well plates) were transfected using Lipofectamine 2000 (Invitrogen) or Nanofectin (PAA) and 0.5-50 ng DNA depending on the plasmids and the experiments (low or high overexpression), mutant 10 ) was introduced by quickchange mutagenesis. EGFP-Flotillin-1 was provided by B. Nichols, EGFP-Eps15 D95/295 (called 'Eps15-DN' here) was a gift from A. Benmerah and EGFP-lamellipodin was a gift from M. Krause, the DPH domain version of lamellipodin was generated by quickchange mutagenesis. GRAF1-EGFP, vol.22

, targeting human PTEN); PI3K-C2a: Dharmacon ON-TARGETplus SMARTpool (mix of J-006771-08, J-006771-07, J-006771-06 and J-006771-05 targeting human PI3KC2A); INPP4A: Dharmacon ON-TARGETplus SMARTpool (mix of J-011299-06, J-011299-07, J-011299-08 and J-011299-09 targeting human INPP4A); INPP4B: Dharmacon ON-TARGETplus SMARTpool (mix of J-011539-17, J-011539-18, J-011539-19 and J-011539-08 targeting human INPP4B); synaptojanin 1: Dharmacon ON-TARGETplus SMARTpool (mix of J-019486-07, PTEN: Dharmacon ON-TARGETplus SMARTpool (mix of J-003023-09

, Cells were lysed using an Emulsiflex C3, spun at 140,000g for 40 min at 4 uC in a Beckman Ti45 rotor, and the supernatant was bound to glutathione beads for 30 min. The beads were washed extensively with 150 mM NaCl, 20 mM HEPES pH 7.4, 2 mM DTT, 2 mM EDTA, including RESEARCH ARTICLE Macmillan Publishers Limited. All rights reserved ©2015 2 washes with 500 mM NaCl. GST-proteins were eluted from the GST-sepharose beads with 10 mM glutathione, further purified by Superdex 200 gel filtration, and rebound to a minimal volume of fresh GST-sepharose beads (to achieve saturation) for use in pull downs. HEK293 cells expressing various EGFP-tagged constructs were quickly washed with cold PBS, lysed in ice-cold lysis buffer (150 mM NaCl, 20 mM HEPES, 5 mM DTT, 0.1% Triton X-100 and a protease and phosphatase inhibitor cocktail (Thermo Scientific)), briefly sonicated and spun at 14,000g for 10 min. Bead-bound proteins were then exposed to cell lysates for 1 h, Invitrogen Stealth control (scrambled) oligo 138782 or a mixture of Invitrogen Stealth 'high GC' 45-2000 and 'low GC' 45-2002 oligos

. Antibodies, antiendophilin A2 clones H-60 and A-11 (rabbit polyclonal sc-25495 and mouse monoclonal sc-365704, respectively, Santa Cruz Biotechnology), anti-EGFR antibody clone D38B1 used for total staining (rabbit polyclonal, Cell Signaling Technologies 4267), anti-a-adaptin clone 8 (mouse monoclonal, BD Bioscience 610501) and clone AP6 (mouse monoclonal, Thermo Scientific MA1-064), anti-clathrin heavy chain X22 (Thermo Scientific MA1-065), anti-vinculin clone hVIN-1 (mouse monoclonal, Sigma V9264), anti-Arp3 (rabbit polyclonal, Millipore 07-277), anti-cortactin p80/85 clone 4F11 (mouse monoclonal, Millipore 05-180), anti-dynamin clone 41 (mouse monoclonal, BD Transduction Laboratories 610245), anti-caveolin-1 (mouse monoclonal, BD Transduction Laboratories 610059), anti-lamellipodin (mouse monoclonal clone H-5, Santa Cruz sc-390050 and rabbit polyclonal Atlas Antibodies HPA020027), anti-SHIP1 clone D1163 (rabbit polyclonal, Cell Signaling Technologies 2728), anti-SHIP2 clone C76A7 (rabbit polyclonal, Cell Signaling Technologies 2839), anti-synaptojanin (rabbit polyclonal, Abcam 84309), antiLAMP-1 clone H4A3 (Developmental Studies Hybridoma Bank), anti-calnexin H60 (rabbit polyclonal, The following antibodies were used for immunostaining, flow cytometry or immunoblotting: pan anti-endophilin Ra74 (in-house affinity purified rabbit polyclonal raised against the SH3 domain of rat endophilin A1 15 ), vol.4706, p.44, 12271.

, AbCam 290), anti-Myc tag clone 9E10 (mouse monoclonal, AbGent AM1007a) and clone 9B11 (mouse monoclonal, Cell Signaling Technologies 2276), anti-Flag tag clone M2 (mouse monoclonal, Sigma F1804 and rabbit polyclonal Cell Signaling Technologies 2368), anti-GAPDH clone 0411 (mouse monoclonal, Santa Cruz Biotechnology sc-47724) and clone 14C10 (rabbit polyclonal, Cell Signaling Technologies 2118). The following antibodies were used for receptor uptake assays ('antibody feeding assays'): anti-HA clone 16B12 used for 'HA-GPCR-EGFP' chimaera uptake assays (mouse monoclonal Covance), anti-EGFR antibody clone 13A9 (mouse monoclonal raised against the ectodomain of EGFR that does not compete with EGF binding, a gift from Genentech), anti-IL-2R clone 561 (mouse monoclonal, recognizing the extracellular portion of IL-2R but does not compete with IL-2 (ref. 51)), anti-NGFR antibody clone 165131 (mouse monoclonal raised against the ectodomain of TrkA, R&D systems MAB2148), anti-TfR clone CBL47 (rabbit polyclonal, Millipore CBL47), anti-LDLR (mouse monoclonal, R&D systems MAB2148), anti-CD36 clone 5-271 (mouse monoclonal, BioLegend 336202), antiCD44 clone BJ18 (mouse monoclonal, BioLegend 338802), anti-CD47 clone CC2C6 (mouse monoclonal, BioLegend 323102), anti-CD54 (also called ICAM-1) clone HA58 (mouse monoclonal, BioLegend 353101), anti-CD55 clone JS11 (mouse monoclonal, BioLegend 311302), anti-CD58 clone LFA-3 (mouse monoclonal, BioLegend 330902), anti-CD59 clone H19 (mouse monoclonal, BioLegend 304702), anti-CD68 clone Y/82A (mouse monoclonal, MAPK (total Erk1/2) (rabbit polyclonal, Cell Signaling Technologies 9102), anti-phosphorylated Elk1 (Ser 383) (rabbit polyclonal, Cell Signaling Technologies 9181), anti-phosphorylated cJun (Ser 73) clone D47G9 (rabbit polyclonal, Cell Signaling Technologies 3270), anti-phosphorylated CREB (Ser 133) clone 87G3 (rabbit polyclonal, Cell Signaling Technologies 9198), anti-PtdIns(3,4)P 2 (mouse monoclonal, Echelon Bioscience Z-P034b), anti-PtdIns(4,5)P 2 (mouse monoclonal, vol.333801

, Before immunostaining, fixed cells were permeabilized with 0.05% saponin, apart from staining of activated transcription factors (CREB, Elk1 and Jun) which was done after permeabilization with 0.1% Triton X-100 and for phosphoinositide staining which was done as described below. The following secondary antibodies were used: Alexa Fluor 488 and Alexa Fluor 555 goat anti-mouse IgG, Alexa Fluor 488 and Alexa Fluor 555 goat anti-rabbit IgG, Alexa Fluor 488 goat anti-rat IgG, Alexa Fluor 488 donkey anti-goat IgG and Alexa Fluor 555 donkey anti-rabbit (all from Life Technologies) and goat anti-mouse IgG-HRP conjugate and goat anti-rabbit IgG-HRP conjugate (both from

, and was used at 10 mM), ML141 (Cdc42 allosteric inhibitor, called 'CDC42i 2' in this study, Tocris 4266, used at 10 mM), CK548 (Arp2/3 inhibitor, called 'Arp2/3i 1' in this study, Sigma C7499, used at 50 mM), CK636 (Arp2/3 inhibitor, called 'Arp2/3i 2' in this study, Sigma C7374, used at 50 mM), methyl-bcyclodextrin (extracts cholesterol, called 'MßCD' in this study, Sigma 332615, used at 50 mM for three incubations of 10 min each), filipin (sequesters cholesterol, Sigma F4767, used at 1 mg ml 21 ), nystatin (sequesters cholesterol, Sigma N3503, used at 10 mg ml 21 ), simvastatin (sequesters cholesterol, Sigma S6196, used at 10 mM), dynasore (dynamin inhibitor 53 , a gift of T. Kirchhausen (Harvard Medical School) and used at 80 mM), Dyngo-4a (dynamin inhibitor 54 , a gift of P. Robinson (Univ. of Sydney) and used at 20 mM), dynole 34-2 (dynamin inhibitor 55 , Tocris 4222, used at 20 mM), MitMAB (dynamin inhibitor 56 , Calbiochem 324411, used at 20 mM), OctMAB (dynamin inhibitor 56 , Tocris 4225, used at 20 mM), monodansylcadaverine (clathrin-mediated endocytosis inhibitor 57 , called 'MDC' in this study, Sigma D4008, used at 100 mM), chlorpromazine (clathrin-mediated endocytosis inhibitor 58 , called 'CPZ' in this study, Sigma C8138, used at 10 mg ml 21 ), phenylarsine oxide PAO (clathrin-mediated endocytosis inhibitor 59 , Sigma P3075, used at 10 mM), GDC-0941 (broad and specific PI(3)K inhibitor, called 'PI(3)Ki 1' or 'PI(3)Ki' in this study, Symansis SYGDC0941, used at 50 nM), GSK2126458 (broad and specific PI(3)K inhibitor, called 'PI(3)Ki 2' in this study, BioVision 1961, used at 25 nM), LY294002 (broad PI(3)K inhibitor, called 'PI(3)Ki 39 in this study, Tocris 1130, used at 50 mM), wortmannin (broad PI(3)K inhibitor, called 'PI(3)Ki 4' in this study, Cell Signaling Technologies 9951, used at 500 nM), A66 S (PI(3)K p110a specific inhibitor, Selleckchem S2636, used at 50 nM), TGX-221 (PI(3)K p110b specific inhibitor, Cayman 10007349, used at 25 nM), CAL-101 (PI(3)K p110d specific inhibitor, Selleckchem S2226, used at 50 nM), AS-252424 (PI(3)K p110c specific inhibitor, Cayman 10009052, used at 100 nM), 5-(N-ethyl-N-isopropyl) amiloride (macropinocytosis inhibitor, called 'EIPA' in this study, Sigma A3085, used at 25 mM), PF-3758309 (broad PAK inhibitor, called 'PAKi' in this study, Calbiochem 500613, used at 1 mM), IPA-3 (PAK1 inhibitor, called 'IPA' in this study, Sigma I2285, used at 20 mM) and PIR 3.5 (IPA-3 inactive analogue, called 'PIR' in this study, Tocris 4212, used at 20 mM), AS 19499490 (SHIP2 inhibitor, called 'SHIP2i' in this study, Tocris 3718, used at 1 mM), bpV(Hopic) (protein tyrosine phosphatase inhibitor with selectivity for PTEN (IC 50 5 14 nM), called 'PTENi 1' in this study, Cayman 14433, used at 200 nM), bpV(Phen) (protein tyrosine phosphatase inhibitor with selectivity for PTEN (IC 50 5 38 nM), called 'PTENi 2' in this study, Santa Cruz Biotechnology sc-221378, used at 200 nM), SF1670 (PTEN inhibitor, called 'PTENi 3' in this study, Cayman 15368, used at 10 mM), PD153035 (EGFR inhibitor, called 'EGFRi' in this study, Tocris 1037, used at 5 mM), SB590885 (RAF inhibitor, called 'RAFi' in this study, Tocris 2650, used at 5 mM), PD032591 (MEK inhibitor, called 'MEKi 1' in this study, Tocris 4192, used at 0.5 mM), U0126 (MEK inhibitor, called 'MEKi 2' in this study, Cell Signaling Technologies 99035, used at 10 mM). Sucrose hypertonic treatment (inhibiting clathrin-mediated endocytosis 60 ) was performed by incubating cells at 37 uC with a 0.45 M sucrose solution, Chemicals, growth factors and small inhibitors. Pre-treatments with small inhibitors before stimulation were performed for 5 min at 37 uC, unless specified otherwise, and the inhibitors were kept during the stimulation or assay periods in all cases. Cytochalasin D (actin depolymerizer, Tocris 1233, used at 100 nM), latrunculin A (actin depolymerizer, Tocris 3973, used at 200 nM), jasplakinolide (actin stabilizer, Tocris 2792, used at 100 nM), rhosin (RhoA inhibitor called 'RHOi' in this study, vol.3872

, Statistical testing was performed using Prism 6 (GraphPad Software). Data were tested for Gaussian distribution with Kolmogorov-Smirnov test with the DallalWilkinson-Lillie for corrected P value. In case of Gaussian distribution, the following parametric tests were used: Student's t-test (2 groups) or one-way ANOVA and Dunnett's test (21 groups), as appropriated. In case of non-Gaussian distribution, the following non-parametric tests were used: two-tailed Mann-Whitney U-test (2 groups) or Kruskal-Wallis one-way ANOVA, All rights reserved ©2015 1,410 V for 30 ms. Cells were immediately transferred to warmed medium containing or not NGF

*. ,

*. ,

*. , No statistical methods were used to predetermine sample size

N. C. Shaner, Improving the photostability of bright monomeric orange and red fluorescent proteins, Nature Methods, vol.5, pp.545-551, 2008.

Y. Usami, S. Popov, and H. G. Gottlinger, Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site, J. Virol, vol.81, pp.6614-6622, 2007.

M. G. Ford, Simultaneous binding of PtdIns(4,5)P 2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes, Science, vol.291, pp.1051-1055, 2001.

B. Marks, GTPase activity of dynamin and resulting conformation change are essential for endocytosis, Nature, vol.410, pp.231-235, 2001.

W. M. Henne, FCHo proteins are nucleators of clathrin-mediated endocytosis, Science, vol.328, pp.1281-1284, 2010.

A. Motley, N. A. Bright, M. N. Seaman, and M. S. Robinson, Clathrin-mediated endocytosis in AP-2-depleted cells, J. Cell Biol, vol.162, pp.909-918, 2003.

A. Subtil, A. Hemar, and A. Dautry-varsat, Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited, J. Cell Sci, vol.107, pp.3461-3468, 1994.

H. E. Pelish, Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro, Nature Chem. Biol, vol.2, pp.39-46, 2006.

E. Macia, Dynasore, a cell-permeable inhibitor of dynamin, Dev. Cell, vol.10, pp.839-850, 2006.

M. T. Howes, Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells, J. Cell Biol, vol.190, pp.675-691, 2010.

T. A. Hill, Inhibition of dynamin mediated endocytosis by the dynolessynthesis and functional activity of a family of indoles, J. Med. Chem, vol.52, pp.3762-3773, 2009.

S. Joshi, The dynamin inhibitors MiTMAB and OcTMAB induce cytokinesis failure and inhibit cell proliferation in human cancer cells, Mol. Cancer Ther, vol.9, 1995.

R. Schlegel, R. B. Dickson, M. C. Willingham, and I. H. Pastan, Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of alpha 2-macroglobulin, Proc. Natl Acad. Sci. USA, vol.79, pp.2291-2295, 1982.

L. H. Wang, K. G. Rothberg, and R. G. Anderson, Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation, J. Cell Biol, vol.123, pp.1107-1117, 1993.

A. E. Gibson, R. J. Noel, J. T. Herlihy, and W. F. Ward, Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization, Am. J. Physiol, vol.257, pp.182-184, 1989.

J. E. Heuser and R. G. Anderson, Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation, J. Cell Biol, vol.108, pp.389-400, 1989.

J. M. Larkin, M. S. Brown, J. L. Goldstein, and R. G. Anderson, Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts, Cell, vol.33, pp.273-285, 1983.

S. C. Yip, Quantification of PtdIns(3,4,5)P 3 dynamics in EGF-stimulated carcinoma cells: a comparison of PH-domain-mediated methods with immunological methods, Biochem. J, vol.411, pp.441-448, 2008.

R. M. Perera, R. Zoncu, L. Lucast, P. De-camilli, and D. Toomre, Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages, Proc Natl Acad Sci U S A, vol.103, 2006.

M. J. Taylor, D. Perrais, and C. J. Merrifield, A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis, PLoS Biol, vol.9, 2011.

I. Milosevic, Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission, Neuron, vol.72, pp.587-601, 2011.

O. Cremona, Essential role of phosphoinositide metabolism in synaptic vesicle recycling, Cell, vol.99, pp.179-188, 1999.

M. Galic, External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane, Nat Cell Biol, vol.14, pp.874-881, 2012.

R. Fritsch and J. Downward, SnapShot: Class I PI3K isoform signaling, Cell, vol.154, pp.940-940, 2013.

S. Watanabe, Ultrafast endocytosis at mouse hippocampal synapses, Nature, vol.504, pp.242-247, 2013.

A. Llobet, Endophilin drives the fast mode of vesicle retrieval in a ribbon synapse, J Neurosci, vol.31, pp.8512-8519, 2011.

M. T. Howes, Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells, J Cell Biol, vol.190, pp.675-691, 2010.

R. G. Parton and M. A. Del-pozo, Caveolae as plasma membrane sensors, protectors and organizers, Nat Rev Mol Cell Biol, vol.14, pp.98-112, 2013.

O. O. Glebov, N. A. Bright, and B. J. Nichols, Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells, Nat Cell Biol, vol.8, pp.46-54, 2006.

R. Lundmark, The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway, Curr Biol, vol.18, pp.1802-1808, 2008.

L. Maldonado-baez, C. Williamson, and J. G. Donaldson, Clathrin-independent endocytosis: a cargo-centric view, Exp Cell Res, vol.319, pp.2759-2769, 2013.

S. Sabharanjak, P. Sharma, R. G. Parton, and S. Mayor, GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42regulated, clathrin-independent pinocytic pathway, Dev Cell, vol.2, pp.411-423, 2002.

S. Kumari, Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway, J Cell Biol, vol.181, pp.1179-1193, 2008.

, CME, thus decreasing the complexity and facilitating speed

. Lamaze, Caveolin, flotillin and GRAF1, proposed markers of other clathrinindependent pathways S10-12 , do not colocalize with endophilin and their depletion did not affect the FEME pathway. Many receptors are known to enter cells in a clathrin-independent manner but the identity of the endocytic carriers they use is unknown S13. Some of these cargoes such as GPI-anchored proteins or the nicotinic acetylcholine receptor are Cdc42-dependent and dynamin-independent, respectively S14,15 , and thus are not expected to use the FEME pathway. best-studied pathway is clathrin-mediated endocytosis (CME) but clathrin-independent (CIE) processes exist although much less characterized. IL-2R (? and ?) were among the first physiological examples of cargos taken up by a CIE, The FEME pathway is morphologically distinct from macropinocytosis and is strictly dynamin-dependent and so is not the classical CLIC/GEEC pathway S9, 1994.

D. Subtil, ;. Dautryvarsat, . Hémar, . Lieb, . Subtil et al., 2015); thereby raising the general interest about this CIE mechanism. IL-2R presents the unique feature for a CIE cargo, to be internalized upon ligand induction and coupled to signalization or constitutively. So far, around 15 factors are implicated in the uptake of IL-2R constitutively or induced, or upon cytokine (IL-2) stimulation, leading the induction of signaling cascades promoting cell proliferation in the immune response (Gaffen, 1994.

. Basquin, Some, like dynamin, endophilin, cortactin, NWASP, actin, arp2/3 are implicated in multiple endocytic routes whereas others such as rac1, phosphatidylinositol-3 kinase (PI-3K), vav2, the kinases PAKs and the WAVE complex are specifically required in this route, 2005.

. Basquin, , 2015.

. Frost, . Unger, and . De-camilli-;-ferguson, The role of the BAR domain protein endophilin has been recently the subject of many investigations and debates, 2009.

(. Meinecke, Indeed, endophilin is an actor of CME that was proposed to trigger dynamin recruitment and to act on the vesicle scission, 2001.

. Antonny, )), the membrane curvature at early stage of the process via its BAR domain and the vesicle fission via its amphipathic helices. Many in vitro data reported all these putative roles, Recently endophilin was also shown to be preferentially associated to CIE, 1999.

. However, CCP) lifetimes, the only pathway for which we have some pieces of data, is very heterogeneous. Moreover, most of the analyses were done using the overexpression of the studied factors (ex: clathrin light chain (CLC), Dnm2, EndoA2) thereby probably inducing side effects. This is particularly true for BAR domain proteins that are known to induce aberrant tubulation in overexpressing cells. In this work we investigate the orchestration of endophilin A (EndoA2) and dynamin 2 (Dnm2) in two endocytic processes: CME (CLC) and in CIE (constitutive uptake of IL-2R?). For this we engineered genome-edited cells for EndoA2-GFP, Dnm2-GFP and CLC-RFP and developed a robust image analysis software and a classification method to reveal active endocytic tracks for CME and CIE. Overall our results show that the rules governing dynamin and endophilin recruitment are different between CIE and CME and explain why EndoA2 is dispensable for CME and not for CIE

. Grassart, We simultaneously followed the uptake of IL-2R? and transferrin (Tf) by incubating cells with fluorescent antibody against IL-2R? and fluorescent Tf for 15 minutes at 37°C (Grassart et al, 2008) (Fig. 1). We observed that the depletion of EndoA1 or EndoA2 clearly inhibited IL-2R? entry up to 50 and 60 % respectively as quantified by ICY software ((Basquin et al, 2013); (de Chaumont et al, 2012)) (Fig. 1). In contrast, EndoA1/A2 depletion has a mild effect on CME since a maximum 20% decrease was seen for Tf uptake (Fig. 1). These results show the involvement of endophilin in constitutive endocytosis of IL-2R? and confirm the preferential implication of EndoA in CIE rather than CME. Generation of genome edited cells for EndoA2-GFP, Dnm2-GFP, CLC-RFP Although overexpression of endocytic factors has been widely used to analyze their dynamic recruitment in CME (merrifield, danuser), this strategy was not appropriate for our study, To study the constitutive endocytosis we used Hep2? cells, epithelial cells expressing stably only IL-2R?, vol.26, pp.279-291, 2013.

,

B. Antonny, Membrane deformation by protein coats, Current Opinion in Cell Biology, vol.18, issue.4, pp.386-394, 2006.
DOI : 10.1016/j.ceb.2006.06.003

URL : https://hal.archives-ouvertes.fr/hal-00085622

B. Antonny, C. Burd, P. De-camilli, E. Chen, O. Daumke et al., , 2016.

, Membrane fission by dynamin: what we know and what we need to know, The EMBO Journal

C. Basquin, V. Malarde, P. Mellor, D. H. Anderson, V. Meas-yedid et al., The signalling factor PI3K is a specific regulator of the clathrin-independent dynamin-dependent endocytosis of IL-2 receptors, Journal of Cell Science, vol.126, issue.5, pp.1099-1108, 2013.

C. Basquin, M. Trichet, H. Vihinen, V. Malardé, T. Lagache et al., , 2015.

, Membrane protrusion powers clathrin-independent endocytosis of interleukin-2 receptor

, Embo Journal, vol.34, issue.16, pp.2147-2161

E. Boucrot, A. P. Ferreira, L. Almeida-souza, S. Debard, Y. Vallis et al., Endophilin marks and controls a clathrin-independent endocytic pathway, Nature, vol.517, issue.7535, pp.460-465, 2015.

E. Boucrot, A. Pick, G. Camdere, N. Liska, E. Evergren et al., Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains, Cell, vol.149, issue.1, pp.124-136, 2012.

N. Chenouard, I. Bloch, and J. C. Olivo-marin, Multiple hypothesiss tracking for cluttered biological image sequences, IEEE Trans Pattern Anal Intell, vol.35, issue.11, pp.2736-3750, 2013.
DOI : 10.1109/tpami.2013.97

,

N. Chenouard, I. Smal, F. De-chaumont, M. Ma?ka, I. F. Sbalzarini et al., , 2014.

, Objective comparison of particle tracking methods, Nature Methods, vol.11, issue.3, pp.281-289

,

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Herve, S. Pop et al., Icy: an open bioimage informatics platform for extended reproducible research, Nature Methods, vol.9, issue.7, pp.690-696, 2012.

J. B. Doyon, B. Zeitler, J. Cheng, A. T. Cheng, J. M. Cherone et al., , 2011.

, Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells, Nature Cell Biology, vol.13, issue.3, pp.331-337

K. Farsad, N. Ringstad, K. Takei, S. R. Floyd, K. Rose et al., , 2001.

, Generation of high curvature membranes mediated by direct endophilin bilayer interactions, The Journal of Cell ?, vol.155, issue.2, pp.193-200

S. Ferguson, A. Raimondi, S. Paradise, H. Shen, K. Mesaki et al., , 2009.

, Coordinated Actions of Actin and BAR Proteins Upstream of Dynamin at Endocytic ClathrinCoated Pits, Developmental Cell, vol.17, issue.6, pp.811-822

A. Frost, V. M. Unger, and P. De-camilli, The BAR Domain Superfamily: MembraneMolding Macromolecules, Cell, vol.137, issue.2, pp.191-196, 2009.

S. L. Gaffen, SIGNALING DOMAINS OF THE INTERLEUKIN 2 RECEPTOR, 2001.

, Cytokine, vol.14, issue.2, pp.63-77

J. L. Gallop, C. C. Jao, H. M. Kent, P. J. Butler, P. R. Evans et al., Mechanism of endophilin N-BAR domain-mediated membrane curvature, The EMBO Journal, vol.25, issue.12, pp.2898-2910, 2006.

,

F. Gesbert, N. Sauvonnet, and A. Dautry-varsat, Clathrin-lndependent endocytosis and signalling of interleukin 2 receptors IL-2R endocytosis and signalling, Current Topics in Microbiology and Immunology, vol.286, pp.119-148, 2004.

A. Grassart, A. Dujeancourt, P. B. Lazarow, A. Dautry-varsat, and N. Sauvonnet, , 2008.

, Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2, EMBO Reports, vol.9, issue.4, pp.356-362

A. Grassart, V. Meas-yedid, A. Dufour, J. Olivo-marin, A. Dautry-varsat et al., Pak1 phosphorylation enhances cortactin-N-WASP interaction in clathrin-caveolinindependent endocytosis, Traffic, issue.8, pp.1079-1091, 2010.

,

A. Hémar, M. Lieb, A. Subtil, J. P. Disanto, and A. Dautry-varsat, , 1994.

, European Journal of Immunology, vol.24, issue.9, pp.1951-1955

A. Hémar, A. Subtil, M. Lieb, E. Morelon, R. Hellio et al., Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains, The Journal of Cell Biology, vol.129, issue.1, pp.55-64, 1995.

,

S. H. Hong, C. L. Cortesio, and D. G. Drubin, Machine-Learning-Based Analysis, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02018918

, Genome-Edited Cells Reveals the Efficiency of Clathrin-Mediated Endocytosis. Cell Reports, vol.12, issue.12, pp.2121-2130

C. Lamaze, A. Dujeancourt, T. Baba, C. G. Lo, A. Benmerah et al., , 2001.

, Interleukin 2 Receptors and Detergent-Resistant Membrane Domains Define a ClathrinIndependent Endocytic Pathway, Molecular Cell, vol.7, issue.3, pp.661-671

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman et al., Cargo and dynamin regulate clathrin-coated pit maturation, PLoS Biology, vol.7, issue.3, 2009.

M. M. Masuda, S. S. Takeda, M. M. Sone, T. T. Ohki, and H. H. Mori,

N. N. Mochizuki, Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms, Abstract : The EMBO Journal. The EMBO Journal, vol.25, issue.12, pp.2889-2897, 2006.

M. Meinecke, E. Boucrot, G. Camdere, W. Hon, R. Mittal et al., , 2013.

, Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission, The Journal of Biological Chemistry, vol.288, issue.9, pp.6651-6661

R. M. Perera, R. Zoncu, L. Lucast, P. De-camilli, and D. Toomre, Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages, Proceedings of the National Academy of Sciences, vol.103, issue.51, pp.19332-19337, 2006.

B. J. Peter, H. M. Kent, I. G. Mills, Y. Vallis, P. J. Butler et al.,

, BAR domains as sensors of membrane curvature: the amphiphysin BAR structure, 2004.

, Science, issue.5657, pp.495-499

K. R. Poudel, Y. Dong, H. Yu, A. Su, T. Ho et al., A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes, 2016.

, Molecular Biology of the Cell, vol.27, issue.13, pp.2119-2132

H. Renard, M. Simunovic, J. Lemière, E. Boucrot, M. D. Garcia-castillo et al., Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis, Nature, vol.517, issue.7535, pp.493-496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219767

N. Sauvonnet, A. Dujeancourt, and A. Dautry-varsat, Cortactin and dynamin are required for the clathrin-independent endocytosis of ?c cytokine receptor, The Journal of Cell Biology, vol.168, issue.1, pp.155-163, 2005.

A. Subtil, M. Delepierre, and A. Dautryvarsat, Journal of Cell Biology, vol.136, issue.3, pp.583-595, 1997.

A. Subtil, A. Hémar, and A. Dautry-varsat, Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited, Journal of Cell Science, 1994.

S. Suetsugu, Higher-order assemblies of BAR domain proteins for shaping membranes, Microscopy, vol.65, issue.3, pp.201-210, 2016.

Y. Tang, L. A. Hu, W. E. Miller, N. Ringstad, R. A. Hall et al., , 1999.

, Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1adrenergic receptor, pp.12559-12564