D. Palma, M. Biziato, D. Petrova, and T. V. , Microenvironmental regulation of tumour angiogenesis, Nat Rev Cancer, vol.17, issue.8, pp.457-474, 2017.

C. A. Raybaud, C. M. Strother, and J. K. Hald, Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation, Neuroradiology, vol.31, issue.2, pp.109-128, 1989.

C. Raybaud, Normal and Abnormal Embryology and Development of the

. Intracranial-vascular and . System, Neurosurg Clin N Am, vol.21, issue.3, pp.399-426, 2010.

A. Ozanne, H. Alvarez, T. Krings, and P. Lasjaunias, Pathologie neurovasculaire malformative de l'enfant: malformations anévrismales de la veine de Galien (MAVG), malformations artérioveineuses piales (MAVP), malformations des sinus duraux

, Neuroradiol, vol.34, issue.3, pp.145-166, 2007.

B. Husson and ?. Lasjaunias, Malformations vasculaires cérébrales de l'enfant

B. Deloison, G. E. Chalouhi, and P. Sonigo, Hidden mortality of prenatally diagnosed vein of Galen aneurysmal malformation: retrospective study and review of the literature

, Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol, vol.40, issue.6, pp.652-658, 2012.

G. P. Frawley, P. A. Dargaville, P. J. Mitchell, B. M. Tress, P. Loughnan et al., Clinical course and medical management of neonates with severe cardiac failure related to vein of Galen 14, Neuroradiol J, vol.28, issue.1, pp.72-75, 2015.

G. Saliou, I. Vraka, and J. Teglas, Pseudofeeders on fetal magnetic resonance imaging predict outcome in vein of Galen malformations, Ann Neurol, vol.81, issue.2, pp.278-286, 2017.

H. Bouvaist, A. M. Rossignol, C. Rocca, P. Andrini, C. Durand et al., Aneurysm of the vein of Galen and cardiac insufficiency, vol.91, pp.637-643, 1998.

P. L. Lasjaunias, S. M. Chng, M. Sachet, H. Alvarez, G. Rodesch et al., The management of vein of Galen aneurysmal malformations, Neurosurgery, vol.59, issue.5, 2006.

D. Khullar, A. Andeejani, and K. R. Bulsara, Evolution of treatment options for vein of Galen malformations, J Neurosurg Pediatr, vol.6, issue.5, pp.444-451, 2010.

I. Eerola, L. M. Boon, and J. B. Mulliken, Capillary Malformation-Arteriovenous

, Malformation, a New Clinical and Genetic Disorder Caused by RASA1 Mutations, Am J Hum Genet, vol.73, issue.6, pp.1240-1249, 2003.

N. Revencu, L. M. Boon, and J. B. Mulliken, Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations, Hum Mutat, vol.29, issue.7, pp.959-965, 2008.

N. Revencu, L. M. Boon, and A. Mendola, RASA1 Mutations and Associated Phenotypes in 68 Families with Capillary Malformation-Arteriovenous Malformation

, Hum Mutat, vol.34, issue.12, pp.1632-1641, 2013.

M. Trahey, G. Wong, and R. Halenbeck, Molecular cloning of two types of GAP complementary DNA from human placenta, Science, vol.242, issue.4886, pp.1697-1700, 1988.

C. L. Hsieh, U. S. Vogel, R. A. Dixon, and U. Francke, Chromosome localization and cDNA sequence of murine and human genes for ras p21 GTPase activating protein (GAP), Somat Cell Mol Genet, vol.15, issue.6, pp.579-590, 1989.

M. Henkemeyer, D. J. Rossi, and D. P. Holmyard, Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein, Nature, vol.377, issue.6551, pp.695-701, 1995.

I. Eerola, L. M. Boon, S. Watanabe, H. Grynberg, J. B. Mulliken et al., Locus for susceptibility for familial capillary malformation ('port-wine stain') maps to 5q, Eur J Hum Genet EJHG, vol.10, issue.6, pp.375-380, 2002.

D. Hershkovitz, D. Bercovich, E. Sprecher, M. Lapidot, A. Heuchan et al., RASA1 mutations may cause hereditary capillary malformations without arteriovenous malformations, G25 RASA1 Mutations and Vein of Galen Arterial Malformations, vol.158, pp.16-17, 2008.

Y. Tsutsumi, R. Kosaki, and Y. Itoh, Vein of Galen aneurysmal malformation associated with an endoglin gene mutation, Pediatrics, vol.128, issue.5, pp.1307-1310, 2011.

A. Chida, M. Shintani, and H. Wakamatsu, ACVRL1 gene variant in a patient with vein of Galen aneurysmal malformation, J Pediatr Genet, vol.2, issue.4, pp.181-189, 2013.

D. S. Xu, A. A. Usman, M. C. Hurley, C. S. Eddleman, and B. R. Bendok, Adult presentation of a familial-associated vein of galen aneurysmal malformation: case report, Neurosurgery, vol.67, issue.6, pp.1845-1851, 2010.

M. Komiyama, S. Miyatake, A. Terada, T. Ishiguro, H. Ichiba et al., Vein of

, Galen Aneurysmal Malformation in Monozygotic Twin. World Neurosurg, vol.91, pp.672-683, 2016.

S. Steggerda, E. Lopriore, M. Sueters, M. Bartelings, F. Vandenbussche et al.,

, Twin-to-twin transfusion syndrome, vein of galen malformation, and transposition of the great arteries in a pair of monochorionic twins: coincidence or related association?

, Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatr Pathol Soc, vol.9, issue.1, pp.52-55, 2006.

H. Li and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinforma Oxf Engl, vol.26, issue.5, pp.589-595, 2010.

H. Li, B. Handsaker, and A. Wysoker, The Sequence Alignment/Map format and SAMtools, Bioinforma Oxf Engl, vol.25, issue.16, pp.2078-2079, 2009.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res, vol.38, issue.16, p.164, 2010.

S. Sunyaev, V. Ramensky, I. Koch, W. Lathe, A. S. Kondrashov et al., Prediction of deleterious human alleles, Hum Mol Genet, vol.10, issue.6, pp.591-597, 2001.

P. C. Ng and S. Henikoff, Predicting deleterious amino acid substitutions, Genome Res, vol.11, issue.5, pp.863-874, 2001.

S. Isogai, M. Horiguchi, and B. M. Weinstein, The Vascular Anatomy of the Developing Zebrafish: An Atlas of Embryonic and Early Larval Development, Dev Biol, vol.230, issue.2, pp.278-301, 2001.

R. N. Wilkinson and F. Van-eeden, The zebrafish as a model of vascular development and disease, Prog Mol Biol Transl Sci, vol.124, pp.93-122, 2014.

N. D. Lawson and B. M. Weinstein, In vivo imaging of embryonic vascular development using transgenic zebrafish, Dev Biol, vol.248, issue.2, pp.307-318, 2002.

T. Aurboonyawat, S. Suthipongchai, V. Pereira, A. Ozanne, and P. Lasjaunias, Patterns of cranial venous system from the comparative anatomy in vertebrates. Part I, introduction and the dorsal venous system, Interv Neuroradiol J Peritherapeutic Neuroradiol Surg Proced Relat Neurosci, vol.13, issue.4, pp.335-344, 2007.

M. Westerfield, The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish

S. J. Holland, N. W. Gale, and G. D. Gish,

, Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells, EMBO J, vol.16, issue.13, pp.3877-3888, 1997.

E. B. Pasquale, Eph-ephrin bidirectional signaling in physiology and disease, Cell, vol.133, issue.1, pp.38-52, 2008.

G. Mellitzer, Q. Xu, and D. G. Wilkinson, Eph receptors and ephrins restrict cell intermingling and communication, Nature, vol.400, issue.6739, pp.77-81, 1999.

R. H. Adams, F. Diella, S. Hennig, F. Helmbacher, U. Deutsch et al., Symmetrical Mutant Phenotypes of the Receptor EphB4 and Its Specific Transmembrane Ligand ephrin-B2 in Cardiovascular Development, Mol Cell, vol.104, issue.1, pp.403-414, 1999.

B. D. Bennett, F. C. Zeigler, and Q. Gu, Molecular cloning of a ligand for the EPHrelated receptor protein-tyrosine kinase Htk, Proc Natl Acad Sci, vol.92, issue.6, pp.1866-1870, 1995.

A. D. Bergemann, H. J. Cheng, R. Brambilla, R. Klein, and J. G. Flanagan, ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites, Mol Cell Biol, vol.15, issue.9, pp.4921-4929, 1995.

X. Yu and Y. V. Li, Zebrafish as an alternative model for hypoxic-ischemic brain damage

, Int J Physiol Pathophysiol Pharmacol, vol.3, issue.2, pp.88-96, 2011.

D. Li, T. L. Wenger, and C. Seiler, Pathogenic variant in EPHB4 results in central conducting lymphatic anomaly, Hum Mol Genet, 2018.

S. Martin-almedina, I. Martinez-corral, and R. Holdhus, EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis, J Clin Invest, vol.126, issue.8, pp.3080-3088, 2016.

C. A. Raybaud, C. M. Strother, and J. K. Hald, Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation, Neuroradiology, vol.31, pp.109-128, 1989.

H. Alvarez, R. Garcia-monaco, G. Rodesch, M. Sachet, T. Krings et al., Vein of Galen aneurysmal malformations, Neuroimaging Clin. N. Am, vol.17, pp.189-206, 2007.

A. Ozanne, H. Alvarez, T. Krings, and P. Lasjaunias, Pediatric neurovascular malformations: vein of Galen arteriovenous malformations (VGAM), pial arteriovenous malformations (pial AVM), dural sinus malformations (DSM), J. Neuroradiol, vol.3, pp.145-166, 2007.

M. M. Mortazavi, C. J. Griessenauer, P. Foreman, B. Shahripour, R. Shoja et al., Vein of Galen aneurysmal malformations: critical analysis of the literature with proposal of a new classification system, J. Neurosurg. Pediatr, vol.12, pp.293-306, 2013.

P. L. Lasjaunias, S. M. Chng, M. Sachet, H. Alvarez, G. Rodesch et al., The management of vein of Galen aneurysmal malformations, Neurosurgery, vol.59, pp.184-194, 2006.

P. F. Recinos, G. Rahmathulla, M. Pearl, V. R. Recinos, G. I. Jallo et al., Vein of Galen malformations: epidemiology, clinical presentations, management, Neurosurg. Clin. N. Am, vol.23, pp.165-177, 2012.

N. Revencu, L. M. Boon, J. B. Mulliken, O. Enjolras, M. R. Cordisco et al., Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations, Hum. Mutat, vol.29, pp.959-965, 2008.

M. Henkemeyer, D. J. Rossi, D. P. Holmyard, M. C. Puri, G. Mbamalu et al., Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein, Nature, vol.377, pp.695-701, 1995.

S. Martin-almedina, I. Martinez-corral, R. Holdhus, A. Vicente, E. Fotiou et al., EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis, J. Clin. Invest, vol.126, pp.3080-3088, 2016.

M. Amyere, N. Revencu, R. Helaers, E. Pairet, E. Baselga et al., Germline Loss-of-Function Mutations in EPHB4 Cause a Second Form of Capillary Malformation-Arteriovenous Malformation (CM-AVM2) Deregulating RAS-MAPK Signaling, Circulation, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01726521

P. Lasjaunias, K. G. Brugge, . Ter, and A. Berenstein, Clinical and Interventionnal Aspects in Children, Surgical neuroangiography, pp.105-226, 2006.

J. Zhou, M. Tawk, F. D. Tiziano, J. Veillet, M. Bayes et al., Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1, Am. J. Hum. Genet, vol.91, pp.5-14, 2012.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., Genome Project Data Processing Subgroup The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 1000.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res, vol.38, p.164, 2010.

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova et al., A method and server for predicting damaging missense mutations, Nat. Methods, pp.7-248, 2010.

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc, vol.4, pp.1073-1081, 2009.

M. Westerfield, The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 1995.

N. D. Lawson and B. M. Weinstein, In vivo imaging of embryonic vascular development using transgenic zebrafish, Dev. Biol, vol.248, pp.307-318, 2002.

D. Traver, B. H. Paw, K. D. Poss, W. T. Penberthy, S. Lin et al., Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants, Nat. Immunol, vol.4, pp.1238-1246, 2003.

J. Kawasaki, S. Aegerter, R. D. Fevurly, A. Mammoto, T. Mammoto et al., RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity, J. Clin. Invest, vol.124, pp.2774-2784, 2014.

A. Nasevicius and S. C. Ekker, Effective targeted gene 'knockdown' in zebrafish, Nat. Genet, vol.26, pp.216-220, 2000.

R. H. Adams, G. A. Wilkinson, C. Weiss, F. Diella, N. W. Gale et al., Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis, Genes Dev, vol.13, pp.295-306, 1999.

S. S. Gerety, H. U. Wang, Z. F. Chen, and D. J. Anderson, Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development, Mol. Cell, vol.4, pp.403-414, 1999.

S. Isogai, M. Horiguchi, and B. M. Weinstein, The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development, Dev. Biol, vol.230, pp.278-301, 2001.

M. C. Mckinney and B. M. Weinstein, Using the zebrafish to study vessel formation, Methods Enzymol, vol.444, pp.65-97, 2008.

S. Isogai, J. Hitomi, K. Yaniv, and B. M. Weinstein, Zebrafish as a new animal model to study lymphangiogenesis, Anat. Sci. Int, vol.84, pp.102-111, 2009.

S. P. Herbert, J. Huisken, T. N. Kim, M. E. Feldman, B. T. Houseman et al., Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation, Science, vol.326, pp.294-298, 2009.

T. Aurboonyawat, S. Suthipongchai, V. Pereira, A. Ozanne, and P. Lasjaunias, Patterns of cranial venous system from the comparative anatomy in vertebrates. Part I, introduction and the dorsal venous system, Interv Neuroradiol, vol.13, pp.335-344, 2007.

, Mutations in GLDN encoding gliomedin, a critical component of nodes of Ranvier, are responsible for lethal arthrogryposis

, Loic Quevarec 1 , Alexandre Vivanti 1 , Marie Gonzales 3 , Fabien Guimiot 4 , Florence Petit 5, Jérôme Maluenda, vol.1

, Anne Dieux Coeslier, vol.3

, Hôpital Trousseau, vol.75571, p.75019

, France. 7 Pathology Laboratory and NeoVasc Region-Inserm Team ERI28, Institute of Research for Innovation in Biomedicine, vol.37044

. Genomes,

, Online Mendelian Inheritance in Man

, ANNOVAR

, Genetic aspects of arthrogryposis, Clin. Orthop, vol.194, pp.44-53, 1985.

M. J. Fahy and J. G. Hall, A retrospective study of pregnancy complications among 828 cases of arthrogryposis, Genet. Couns, vol.1, pp.3-11, 1990.

J. G. Hall, Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics, and general principles, Eur. J. Med. Genet, vol.57, pp.464-72, 2014.

Y. Eshed, Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier, Neuron, vol.47, pp.215-229, 2005.

Y. Eshed, K. Feinberg, D. J. Carey, and E. Peles, Secreted gliomedin is a perinodal matrix component of peripheral nerves, J. Cell Biol, vol.177, pp.551-562, 2007.

B. Maertens, Cleavage and oligomerization of gliomedin, a transmembrane collagen required for node of ranvier formation, J. Biol. Chem, vol.282, pp.10647-10659, 2007.

M. Labasque, J. J. Devaux, C. Lévêque, and C. Faivre-sarrailh, Fibronectin type IIIlike domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier, J. Biol. Chem, vol.286, pp.42426-42434, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00755678

K. Feinberg, A glial signal consisting of gliomedin and NrCAM clusters axonal Na+ channels during the formation of nodes of Ranvier, Neuron, vol.65, pp.490-502, 2010.

A. Laquérriere, Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects, Hum. Mol. Genet, vol.23, pp.2279-89, 2014.

E. Peles, Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions, EMBO J, vol.16, pp.978-988, 1997.

J. C. Rios, Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination, J. Neurosci, vol.20, pp.8354-8364, 2000.

, µg of NF186-Fc was pre-incubated with Alexa 594 conjugated donkey antihuman IgG (1/100; Jackson ImmunoResearch) in Opti-MEM for 30 min. For surface expression, mouse monoclonal antibodies against Myc, p.50

, Roche) was pre-incubated with Alexa 594 conjugated donkey anti-mouse IgG (1/100

J. Immunoresearch,

, Living cells were then incubated for 20 min at 37°C with these mixtures. Cells were washed three times in PBS, fixed with 2% paraformaldehyde in 0.1 M PBS for 20 min

X. Triton, 100 in PBS for 30 min at room temperature. Cells were then incubated for 1 hour with mouse monoclonal antibodies against Myc (1/500; Roche). The cells were then washed and revealed with Alexa 488 conjugated donkey anti-mouse antibodies, p.500

J. Immunoresearch, Cells were stained with DAPI, mounted with Mowiol plus 2%

, DABCO, and examined using an ApoTome fluorescence microscope (Carl Zeiss MicroImaging GmbH). Digital images were manipulated into figures with CorelDraw

F. Ruschendorf and P. Nurnberg, ALOHOMORA: a tool for linkage analysis using 10K SNP array data, Bioinformatics, vol.21, pp.2123-2125, 2005.

G. R. Abecasis, S. S. Cherny, W. O. Cookson, and L. R. Cardon, Merlin-rapid analysis of dense genetic maps using sparse gene flow trees, Nat. Genet, vol.30, pp.97-101, 2002.

J. Zhou, Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1, Am. J. Hum. Genet, vol.91, pp.5-14, 2012.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res, vol.38, p.164, 2010.

I. A. Adzhubei, A method and server for predicting damaging missense mutations, Nat. Methods, vol.7, pp.248-249, 2010.

F. O. Desmet, Human Splicing Finder: an online bioinformatics tool to predict splicing signals, Nucleic Acids Res, vol.37, p.67, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00396239