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Abstract

After a thirty-year history of development, the polyhedral model has evolved into a powerful
solution to exploiting automatic parallelization and locality optimization. As bridging soft-
ware between the high-level description of programs and the underlying implementation of
hardware, polyhedral compilation is increasingly challenged by the diversity of programming
languages and heterogeneity of architectures. A long standing limitation of the model has
been its restriction to static control affine programs, resulting in an emergent demand for the
support of non-affine extensions. This is particularly acute in the context of heterogeneous
architectures where a variety of computation kernels need to be analyzed and transformed to
match the constraints of hardware accelerators and to manage data transfers across memory
spaces.

We explore multiple non-affine extensions of the polyhedral model, in the context of a well-
defined intermediate language combining affine and syntactic elements. The thesis is orga-
nized as follows.

In the first part, we explain the challenges faced by the polyhedral model with respect to
programming languages and architectures, and provide a brief introduction to polyhedral
compilation.

In the second part, we present a method to parallelize and optimize loop nests for an impor-
tant class of programs where counted loops have a dynamic data-dependent upper bound.
Such loops are amenable to a wider set of transformations than general while loops with
inductively defined termination conditions: for example, the substitution of closed forms for
induction variables remains applicable, removing the loop-carried data dependences induced
by termination conditions.

Our approach relies on affine relations only, as implemented in state-of-the-art polyhedral
libraries. Revisiting a state-of-the-art framework to parallelize arbitrary while loops, we
introduce additional control dependences on data-dependent predicates. Our method goes
beyond the state of the art in fully automating the process, specializing the code generation
algorithm to the case of dynamic counted loops and avoiding the introduction of spurious
loop-carried dependences. We conduct experiments on representative irregular computations,
from dynamic programming, computer vision and finite element methods to sparse matrix
linear algebra. We validate that the method is applicable to general affine transformations for
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locality optimization, vectorization and parallelization.

In the third part, we propose an automatic implementation of non-affine transformations
by revisiting overlapped tiling in polyhedral compilation. Polyhedral frameworks implement
classical forms of rectangular/parallelogram tiling affine transformations, but these forms lead
to pipelined start and rather inefficient wavefront parallelism. Some experimental branches
of existing polyhedral compilers evaluated sophisticated shapes such as trapezoid or diamond
tiles, enabling concurrent start along the axes of the iteration space, but leading to custom
scheduling and code generation methods insufficiently integrated with the general framework.
Overlapped tiling is a technique designed to eliminate pipelined start by modifying tile shapes
obtained from existing frameworks, but no implementations in a general-purpose polyhedral
framework has been available until now, preventing its application in general-purpose loop-
nest optimizers and hampering the fair comparison with other techniques.

We revisit overlapped tiling in polyhedral compilation and demonstrate how to derive tighter
tile shapes with less redundant computations, by enabling overlapped tiles in a schedule-
tree-based algorithm. Our method allows the generation of both acute and right trapezoid
shapes. It goes beyond the state of the art by avoiding the restriction to a domain-specific
language or introducing post-pass rescheduling and custom code generation. We conduct
experiments on the PolyMage benchmarks and representative iterated stencils, validating the
effectiveness and general applicability of our technique on both general-purpose multicores
and accelerators.

Finally, we summarize our work and present concluding remarks as well as future research
directions. We believe the contributions collected in this dissertation extend the reach fof
the polyhedral model to wider ranges of real-world programs. We also believe this work
contributes to the integration of polyhedral methods with other compilation techniques.
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Résumé

Apreés trente ans de développement, le modeéle polyédrique est devenu une solution puissante
pour exploiter la parallélisation automatique et I'optimisation de la localisation. En tant que
logiciel de transition entre la description de haut niveau des programmes et la mise en ceuvre
sous-jacente du matériel, la compilation polyédrique est de plus en plus remise en cause par
la diversité des langages de programmation et 'hétérogénéité des architectures. Un défaut
de longue date du modele est sa restriction aux programmes affines de contréle statique,
entralnant une demande émergente pour la prise en charge des extensions non affines, en
particulier a I’ere des architectures hétérogenes.

Nous étudions les extensions non affines dans le modeéle polyédrique en le combinant avec
un langage intermédiaire bien défini. La thése est organisée comme ci-dessous.

Dans la premieére partie, nous expliquons les défis rencontrés par le modele polyédrique en
ce qui concerne les langages de programmation et les architectures, et décrivons une breve
introduction a la compilation polyédrique pour aider les lecteurs a comprendre le principe du
travail.

Dans la seconde partie, nous présentons I'approche du traitement des applications non affines
en étudiant la compilation parallélisante et I’optimisation d’'imbrication en boucle d'une classe
importante de programmes ot les boucles comptées ont une limite supérieure dynamique
dépendante des données. De telles boucles se prétent a un ensemble de transformations plus
large que les boucles générales while avec des conditions de terminaison inductives : par
exemple, la substitution des formes fermées par les variables d'induction reste applicable,
éliminant les dépendances induites par les conditions de terminaison. Nous proposons une
méthode de compilation automatique pour paralléliser et optimiser les boucles comptées
dynamiques.

Notre approche repose uniquement sur des relations affines, mises en ceuvre dans des bi-
bliothéques polyédriques a la pointe de la technologie. En revisitant un cadre de pointe pour
paralléliser des boucles arbitraires while, nous introduisons des dépendances de controle
supplémentaires sur les prédicats dépendant des données. Notre méthode va au-dela de I'état
de la technique en automatisant complétement le processus, en spécialisant I’algorithme de
génération de code au cas des boucles comptées dynamiques et en évitant I'introduction de
dépendances parasites en boucle. Nous effectuons des expériences sur des calculs irréguliers
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représentatifs, allant de la programmation dynamique, de la vision par ordinateur et des
méthodes par éléments finis a ’algebre linéaire a matrice fragmentée. Nous validons que
la méthode est applicable aux transformations affines générales pour |'optimisation de la
localité, la vectorisation et la parallélisation.

Dans la troisieme partie, nous proposons une implémentation automatique des transforma-
tions non affines en revisitant les mosaiques superposées dans la compilation polyédrique. Les
structures polyédriques mettent en ceuvre des formes classiques de transformations affines
de carrelage rectangulaire/parallélogramme, mais ces formes conduisent a un démarrage en
pipeline et a un parallélisme de front d’onde plut6t inefficace. Certaines branches expérimen-
tales de compilateurs polyédriques existants ont évalué des formes sophistiquées telles que
des carreaux trapézoidaux ou diamantés, permettant un démarrage simultané sur les axes de
I'espace d’itération, mais conduisant a des méthodes de planification et de génération de code
insuffisamment intégrées au cadre général. Le pavage superposé est une technique congue
pour éliminer le démarrage en pipeline en modifiant les formes de pavés obtenues a partir de
structures existantes, mais aucune implémentation dans une structure polyédrique polyva-
lente n’était disponible jusqu’a présent, empéchant son application dans les optimiseurs de
boucle comparaison avec d’autres techniques.

Nous revisitons les mosaiques superposées dans la compilation polyédrique et montrons
comment obtenir des formes de mosaiques plus étroites avec des calculs moins redondants,
en activant des mosaiques superposées dans un algorithme basé sur un calendrier. Notre
méthode permet de générer des formes trapézoidales aigués et droites. Cela dépasse |'état de
la technique en évitant la restriction a un langage spécifique a un domaine ou en introduisant
une reprogrammation post-pass et une génération de code personnalisée. Nous effectuons
des expériences sur les reperes PolyMage et les gabarits itératifs représentatifs, validant ainsi
l'efficacité et 'applicabilité générale de notre technique sur les multicceurs et les accélérateurs
polyvalents.

Enfin, nous résumons notre travail et discutons de quelques remarques de conclusion pour
les futures directions de recherche. Le travail de cette thése met le modéle polyédrique en
application dans des programmes réels, en étendant les champs applicables du modele et en
soutenant I'intégration avec d’autres algorithmes de compilation.
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PART I

INTRODUCTION & BACKGROUND






|§ Introduction

In the early stage of high-performance computing, increasing clock frequencies was the main
source of performance gain. Since the breakdown of Dennard scaling a dozen years ago, most
CPU manufacturers have been focusing on multicore processors as an alternative of raising
clock frequencies from one generation to next. Figure 1.1 shows the semi-centennial trend of
clock frequency and number of cores per chip.

Multicore processors are nowadays ubiquitous on almost all platforms, ranging from super-
computers ranked on the TOP500 list to personal laptops and mobile devices. In addition, their
pervasiveness in the embedding computing domain of multimedia and image processing due
to the recent process of neural networks also validates the dominance of multicore processors
in all realms of computing.
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Figure 1.1 — The trend of clock frequency and number of cores per chip in the past 50 years
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Apart from the resulting improvements in performance due to the introduction of multicore
processors, one of the most challenging issues is the difficulty to effectively exploit parallelism
on such devices. On the one hand, a multicore processor is allowed to implement multipro-
cessing freely by coupling the cores on the device either tightly or loosely, leading to a variety
of memory hierarchies and resulting in the diversity in architectures. On the other hand, the
evolution of parallel architectures also calls for the innovation of programming languages
amenable to the memory hierarchy, giving rise to the design of both general-purpose and
domain-specific parallel programming languages and complicating the programmability issue
further.

Even though end users may be equipped with the knowledge of the high-level program-
ming language of a platform after a long-term study or training, it is still a complex and
error-prone task to deploy the code written by end users on the target architecture. An opti-
mizing compiler is not only responsible for translating the code implemented by a high-level
general-purpose/domain-specific language into a low-level executable program, but is also
expected to automatically apply both high-level and low-level transformations, especially
those performance-critical loop transformations, for exploiting parallelism and improving
locality, thus releasing the burden of end users from taking the hardware information into
consideration at the beginning of programming.

In the domain of scientific and engineering applications, a large number of computationally
intensive applications spend most of the execution time on nested loops, making the polyhe-
dral model [FL11] a very competitive and promising approach to solving the above problems.
The polyhedral model is a powerful mathematical abstraction of loop nests, providing a way to
reason about loop transformations by abstracting each iteration of a statement as an integer
point in a “polyhedron” and mapping a multi-dimensional logical execution date [Fea92b] for
defining its lexicographic execution order. As a role of bridging the gap between high-level
programming interfaces and underlying hardware, the polyhedral model has made a great
deal of progress in the past few decades, but it is now facing new emergent challenges brought
by both modern architectures and programming languages.

1.1 From General-purpose Languages to Domain-specific Languages

Thanks to the significant advances in dependence analysis [Fea91, Pug91, VBCG06, BCVT13],
schedule transformation [Fea92a, Fea92b, LL97, BHRS08, BAC16, UC13, ABC18] and code
generation [AI91, Che, QRW00, Bas04, VBC06, GVC15], the polyhedral model has been brought
to the front scene in automatic parallelization and locality optimization. There exist a large
number of mature polyhedral compilation frameworks and loop optimizers, including both
research projects [BHRS08, CCH08, VCJC* 13] and commercial productions [TCE" 10, GGL12,
CSG*05, BGDR10, LLS06]. Such compilers usually take a general-purpose (intermediate)
language as input and generate optimized high-level/low-level code amenable to the target
architecture as demand. Despite that, the optimality of the code generated by such polyhedral
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compilers still remains elusive, falling behind the performance of heavily hand-tuned codes
written by an expert.

Part of the reason of performance gap between the generated codes of optimizing compilers
and hand-written programs is due to the conservativeness that a compiler has to possess in
nature as system software, reducing the optimization space of automatic transformations.
Worse yet, the absence of the ability to reason about the domain knowledge about the imple-
mentation strategies from a piece of code also constraints such compilers, missing aggressive
and/or global optimizations that can be performed by hand.

Domain-specific languages (DSLs) are proposed to obtain high performance and now very
prevalent in many application domains. The polyhedral model was successfully integrated
with DSLs, such as those for optimizing DSLs for graphical dataflow language [BB13, SSPS16],
stencil computations [HVF*13], etc. Recently, due to the revolution in machine learning
caused by the success of deep learning, the polyhedral community is also expected to resolve
the problem of bridging neural network applications and high-performance hardware acceler-
ators. A DSL may be a standalone language or more often embedded in a general-purpose
language, like Halide [RKBA ™ 13] in C++, TensorComprehensions [VZT*18] and TVM [CM] 18]
in Python!, DeepDSL [ZHC17] in Scala, etc. A domain-specific compiler leverages specialized
internal representations for expressing domain-specific knowledge, extending its optimiza-
tion space by enabling such domain-specific high-level transformations. Representative DSL
compilers for such applications include the TensorComprehension framework for automating
the deployment of neural network applications on multicore platforms and the PolyMage
compiler [MVB15, MAS"16] for Halide [RKBA"13], a DSL for writing high-performance image
processing code.

While the polyhedral model eases the translation of both general-purpose languages and
DSLs on modern architectures, it often suffers from scalability challenges to various input
languages. Even though some internal representations like Hailde IR and PENCIL [BBC* 15]
were proposed as the solution to this problem, the polyhedral model still faces many painful
problems due to its incompetence for dynamic control and non-affine applications.

1.2 Architecture Diversity

Generally speaking, a multicore system is supposed as homogeneous if the system includes
only identical cores, or heterogeneous otherwise. The Pluto optimizer [BHRS08] provides a
systematic, end-to-end way for automatic parallelization and locality optimization on ho-
mogeneous multicore systems, taking into consideration the memory hierarchy problem by
automating simply/complex tile shapes [BBP17]. The emergence of Graphics Processing Units
(GPUs) brought new challenges not found in homogeneous systems to the polyhedral model,
calling for source-to-source polyhedral compilers capable of generating correct codes for both

I TensorComprehensions and TVM here are used to refer to the DSLs rather than the compiler stacks.
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host processors and device accelerators, further complicating the code generation issue.

Unlike CPUs that can run efficiently when data is resident in Caches, GPUs have a variety of
different kinds of processing units, leading to a more complicated memory hierarchy. For
instance, Table 1.1 lists the memory hierarchy of fastest NVIDIA Tesla GPUs in the past five
years.

Table 1.1 - The memory hierarchy of NVIDIA Tesla GPUs in the past five years

Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100
GPU GK180 (Kepler) GM200 (Maxwell) GP100 (Pascal) GV100 (Volta)
Memory Size Upto 12 GB Upto 24 GB 16 GB 16 GB
L2 Cache Size 1536 KB 3072 KB 4096 KB 6144 KB
Shared Memory Size ~ 16/32/48 KB 96 KB 64 KB 96 KB
Register File Size/SM 256 KB 256 KB 256 KB 256 KB
Register File Size/ GPU 3840 KB 6144 KB 14336 KB 20480 Kb

* The shared memory size of GV100 (Volta) is confinable up to 96 KB.

PPCG [VCJC*13] is considered as one of the most successful polyhedral compilers for heteroge-
neous systems, exploiting parallelism and locality optimization as in traditional homogeneous
systems but also automating the management of memory system on devices and communica-
tions between host and device. Like the diamond tiling technique in Pluto, a hybrid/hexagonal
tiling approach [GCH™ 14] is also implemented in PPCG for further improving the perfor-
mance of generated code. Some follow-up PPCG-based researches focus on parametric tiling
[JGTC14] and the mapping and separation of multi-level parallelisms in the accelerators of a
heterogeneous system [SHS17].

Besides shared memory strategy, message passing is also used as the inter-core communica-
tion method in distributed systems and heterogeneous systems, requiring the code generator
of an optimizing compiler to express the explicit communication with libraries like Message
Passing Interface (MPI). Polyhedral compilation frameworks targeting on minimizing com-
munication volume [Bon13, RB14] or handling the mixture of regular/irregular loop nests
[RDE*15] were proposed for such multicore systems.

Similarly, accelerators in heterogeneous systems are not restricted to GPUs. For example,
configurable devices like Field-Programmable Gate Array (FPGA) [BRS07, PZSC13] can also
be the target of an optimizing compiler, followed by some researches in high-level synthesis
area [ZLC™ 13, WLC14]. These together with the above mentioned architectures are calling
for a strict portability of the polyhedral model to multiple platforms. Recent work integrating
multicore parallelism and Single Instruction Multiple Data (SIMD) vectorization [TNC*09,
KVS*13] not only addressed the code generation issue but also implemented a different
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scheduling strategy in a tile.

Even though the advances made by the polyhedral community on so many accelerators,
there still exits a long way to achieving architectural portability. The emergence of artificial
intelligence applications has brought new challenges for this issue. For instance, Table 1.2
summarizes the latest xPUs used for modern artificial intelligence accelerators.

Table 1.2 — List of xPUs used for AI Accelerators

Abbreviation Full name Manufacturer Released year
APU Accelerated Processing Unit AMD 2011
BPU Brain Processing Unit Horizon Robotics 2017
DPU Deep Learning Processing Unit Deephi Tech 2016

Dataflow Processing Unit Wave Computing 2017

EPU Emotion Processing Unit Emoshape 2017
HPU Holographic Processing Unit Microsoft 2017
Intelligence Processing Unit GraphCore 2017

IPU Intelligence Processing Unit Mythic 2018
Image Processing Unit Google 2017

NPU Neural Network Processing Unit Vimicro 2016
SPU Stream Processing Unit AMD 2006
TPU Tensor Processing Unit Google 2016
VPU Vision Processing Unit Intel 2016
ZPU Zylin CPU Zylin AS 2015

1.3 Beyond Parallelization and Locality Optimization

On modern multicore processors, parallelism due to the increased core numbers on a single
chip and locality caused by memory hierarchy are the two main objectives considered by
compiler designers. As a result, optimizing compilers like a polyhedral optimizer are usually
expected to be capable of automatic parallelization and locality optimization. Unfortunately,
parallelization and locality optimization are sometimes contradictory with each other by
putting conflict constraints on the objective function of scheduling algorithms, forcing them
to make a tradeoff between parallelism and locality for achieving optimality of performance.

As aloop transformation aiming at improving locality while preserving the parallelism that
has been exploited by a scheduling algorithm, loop tiling [IT88] has been long considered as
foreign to optimizing compilers; even for the polyhedral model, it could not be easily expressed
using an affine function a decade ago. Thanks to its recent advances, the polyhedral model
has been proved to be promising in automating loop tiling. A cost-model-based scheduling
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algorithm like the Pluto scheduler [BHRS08] or its variants put into practice the automation of
simple tile shapes in the polyhedral model. A follow-up trend on the automatic tiling technique
focuses on more complex tile shapes like diamond [BBP17] and hexagonal [GCH™ 14] working
with arbitrary affine dependences, and overlapped and split shapes [KBB*07] restricted to
constant dependence vectors.

Loop fusion [KA02] is another loop transformation to enhance locality and reduce synchro-
nizations across multiple loop nests. There have also been successful advances on loop fusion
in the polyhedral model [BGDR10, MLY14, JB18], providing a variety of fusion heuristics to
modern optimizers.

Storage optimization is also a research direction of polyhedral compilation. Array contraction,
for example, is a long considered automatic memory footprint optimization in the polyhedral
world. The applicable domain is still constrained to special cases like stencil computations
although researchers made a lot of efforts in this direction, including the universal-occupancy-
vector-based [SCFS98], lattice-based [DSV05] and storage-hyperplane-based [BBC16] tech-
niques, etc.

In spite of the exciting progresses made by the polyhedral community on automatic paral-
lelization and locality optimization, there still exist a large number of opening issues awaiting
supports and efforts. The latest research trend also tried to integrate the polyhedral model
with dynamic/runtime techniques [KPP* 15, SRC15, BKP* 16, SPR17] for extending the scope
of the tool, leaving much room for the extensions in this field.

1.4 Combining Languages and the Polyhedral Model

The polyhedral model so far is successful in so-called “static control parts” (SCoPs) where
loop nests satisfy certain statically predictable restrictions. There is an increasingly emergent
demand on its applicability to non-affine domains to cope with the complexity of modern mul-
ticore architectures. A notable direction among the open challenges is the incompetence of
the polyhedral model to handle non-affine applications and transformations. Such non-affine
applications usually involve dynamic data-dependent control flow and/or non-affine expres-
sions that go beyond the scope of the polyhedral model, while non-affine transformations?

are usually not expressible using existing techniques.

A representative polyhedral-based approach on non-affine applications are the work of han-
dling while loops [BPCB10], along with a great deal of work with special focus on sparse
matrix computations [SGO13, VSHS14, VHS15, SLC* 16, VMP* 16]. The former misses more
aggressive optimizations when handling less expressive dynamic conditions than a general
while loop, while an inspector/executor scheme is usually constrained to a subset of sparse
matrix computations.

2An affine transformation should be “signle-valued”, i.e., an one-to-one mapping function of the integer points
on iteration space.
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With regard to non-affine transformations, overlapped tiling [KBB*07] is a representative
technique gaining much attentions recently due to its compatibility with other optimizations
like fusion, scratchpad memory allocation, etc. when optimizing image processing pipelines.
Unlike a standard tile shape exploited by current polyhedral compilers, additional overlapped
regions are introduced for exploiting inter-tile parallelism in such transformation by jointing
consecutive tiles. Unfortunately, no implementations of overlapped tiling in a general-purpose
polyhedral framework have been reported except PolyMage [MVB15] , a DSL compiler for
image processing pipelines.

This dissertation describes a combined language and polyhedral approach to extend the
application domain of the polyhedral model in non-affine applications and express non-affine
transformations in the model. On the one hand, we study the parallelizing compilation and
loop nest optimization of an important class of programs where counted loops have a dynamic
data-dependent upper bound. Such loops are amenable to a wider set of transformations
than general while loops with inductively defined termination conditions: for example, the
substitution of closed forms for induction variables remains applicable, removing the loop-
carried data dependences induced by termination conditions; such loops can also be viewed
a generalization of sparse matrix computations using compressed data layout stores nonzero
elements only as the latter can be easily generalized by subtracting the lower bound from the
upper bound.

On the other hand, we revisit overlapped tiling in polyhedral compilation and demonstrate
how to derive tighter tile shapes with less redundant computations, by enabling overlapped
tiles based on a well-defined general-purpose intermediate representation. It releases the
overlapped tiling in polyhedral model from being restricted to a domain-specific language
while not introducing sophisticated rescheduling and custom code generation in a polyhedral
framework.

Given the diversity of multicore architectures and the difficulty of programming on these
platforms, a polyhedral compilation approach has become a compelling alternative for writ-
ing parallel code on these targets. Our approach is driven by combining an intermediate
language and the polyhedral model, not only removing the conservativeness caused by using
a general-purpose language hindered by the difficulty of static analysis but also avoiding the
implementation of a DSL compiler for the portability to different architectures. By coupling
with such an intermediate language, one may define coding rules predominantly related to
restricting the non-statically predictable manners, allowing for better optimizations when
translating such programs into the code on target machines using a polyhedral framework.
More importantly, leveraging such an intermediate language also eases the code generation
for different architectures, making the portability issue a straightforward task.

Our method on counted loops with a dynamic data-dependent upper bound goes beyond the
state of the art in fully automating the process, specializing the code generation algorithm to
the case of dynamic counted loops and avoiding the introduction of spurious loop-carried
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dependences. The experimental results on representative irregular computations ranging
from dynamic programming, computer vision and finite element methods to sparse matrix
linear algebra validate that the method is applicable to general affine transformations for
locality optimization, vectorization and parallelization.

Our algorithm to generalize overlapped tiling allows for tighter overlapped tile shapes than the
state of the art, further improving the performance of image pipelines on both general-purpose
multicores and heterogeneous accelerators by integrating with transformations including
alignment and scaling of stages in the pipeline, loop fusion, scratchpad allocation, hybrid
tiling, etc. The experimental evaluation on the PolyMage benchmarks and representative
iterated stencils validates the effectiveness and general applicability of our technique on both
general-purpose multicores and accelerators.

The organization of the dissertation is as follows. In the first part, we described in this chapter
an introduction to the problem we aim at in this dissertation, followed by Chapter 2 providing
the technical background on the polyhedral model and the intermediate language used in
our approach. The second part presents our method to handle non-affine application, i.e.,
parallelization and optimization of counted loops with a dynamic data-dependent upper
bound, including the motivation and related work in Chapter 3, scheduling algorithm in
Chapter 4, code generation method in Chapter 5 and experimental results in Chapter 6. Gener-
alizing overlapped tiling in the polyhedral model regarding the non-affine transformations is
introduced in the third part, comprising Chapter 7 describing the motivation and related work,
Chapter 8 explaining the polyhedral implementation of the method and Chapter 9 evaluating
the proposed technique on both homogeneous and heterogeneous architectures. We finally
conclude the dissertation in the last part, Chapter 10, by summarizing the topics studied in
the dissertation and discussing directions for further research.

10



4 Background

After a thirty-year evolution, the polyhedral model has become a powerful optimizer in the
domain of automatic parallelization and optimization. There have been a great number of
open-source and/or commercial implementations of polyhedral compilation in both research
and industry worlds. Comparing with unimodular matrices [Ban93, WL91] used in parallelizing
compilers, the polyhedral model is equipped with (1) wider range of applications due to the
capability to transform imperfect loop nests, (2) more powerful expressiveness by modeling
almost each kind of loop transformations and (3) greater optimization space by compositing
more transformations at one time.

As a consequence, polyhedral compilation nowadays is gradually becoming the state of the art
of almost each domain of parallelizing compilers. In this chapter, we would first introduce the
background of polyhedral compilation for a better understanding of the underlying principle
of the polyhedral model. To cope with polyhedral compilation for non-affine applications and
transformations, we would next present the intermediate language used in the dissertation.

2.1 Polyhedral Compilation

As we introduced in the previous section, the polyhedral community so far has made a great
deal of progress in all realms of computing. Nonetheless, polyhedral compilation is long
considered as too abstract for those people outside the polyhedral world. Part of the reason
is due to the painfully theoretical descriptions in existing polyhedral publications; more
importantly, the underlying principle of the polyhedral model involves a variety of concepts
from linear algebra, static analysis, etc., making the use of the tools elusive for end users.

To make it easier to understand the polyhedral model, we introduce the background of poly-
hedral compilation in this section. One may refer to [FL11] for a much detailed description on
fundamental concepts and definitions. In general, we would first give an overview of modern
polyhedral compilation and then explain how programs are represented in the model. Next,
the transformations that can be modeled in the polyhedral model are presented by comparing

11
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with conventional methods used in parallelizing compilers, followed by an introduction to a
well-defined representation of the polyhedral model.

2.1.1 An Overview

The pioneer work of the polyhedral model is the contribution of Karp et al. on systems of
uniform recurrence equations [KMW67]. With the development of polyhedral compilation,
integer polyhedra [LW97] and Presburger relations [PW94a, PW94c] were also introduced
into the model for better expressiveness and flexibility purpose. Polyhedral compilation can
either be integrated as a building block into a general-purpose compiler, e.g., Polly in LLVM,
or serve as a standalone source-to-source translator like Pluto and PPCG. Such flexibility
and compatibility help itself construct a well-defined compilation workflow and extend its
application domain to a great extent.

To date, polyhedral compilation has reached maturity and emerged into a fully fledged work-
flow. Figure 2.1 shows a general compilation workflow of modern polyhedral compilers.
Polyhedral compilation can either take as input a high-level programming language when
serving as a standalone optimizer or an intermediate representation when embedded in a
general-purpose compiler. With regard to generated code, a high-level language wrapping
parallel programming APIs executable on target platforms can be generated; otherwise, the
optimized intermediate representation of the host compiler would be returned, possibly
followed by other transformation passes of the host compiler.

Intermediate
Representations

High-level Languages

Polyhedral
Extraction

l

Schedule Trans-
formation

1 Code Generation

Intermediate
Representations

High-level Languages

Figure 2.1 — A general workflow of polyhedral compilation

Typically, polyhedral compilation consists of three steps, as the three modules enclosed by the
dotted frame in Figure 2.1 show.

12
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Dependence analysis. First, polyhedral extraction is serving as the frontend, parsing the
code fragment of input languages and extracting polyhedral representations with regard to
statement instances and array elements for the program. The duty of a parser is checking
whether the input is a “SCoP”, meaning the code fragment is statically predictable and polyhe-
dral compilation would represent the input program with finite internal representations if true.
pet [VG12] and clan [cla] are two representative, practical parsers for polyhedral compilation,
generally used in a variety of mature polyhedral compilers. Such representations of statement
instances and their relationships with the array elements they access are used to compute
dependence relations by solving an integer linear programming (ILP) problem.

Polyhedral compilation differentiates dependence analysis from conventional methods by
refining the analysis from statement-wise to instance-wise [Fea91]. Dependence relations can
be further separated into value-based dependences, the result of data flow analysis [MAL93,
Mas94], used for preserving the semantic of programs, and memory-based dependences,
studied for the purpose of improving data reuse [PW92, VBCG06, BCVT13].

Schedule transformation. Secondly, schedule transformation is the core of polyhedral com-
pilation, producing a new schedule by taking into consideration target architectures. In other
words, schedule transformation is the process of mapping a new logical execution date for
each integer point in a polyhedron, accomplished by invoking the underlying ILP solver. The
process of schedule transformation could also be considered as a composition of different
loop transformations with the purpose to fully exploit parallelism and data locality.

We take the 1D iterated stencil shown in Figure 2.2(a) as an illustrative example. Iterated
stencils are a class of computations updating an array element using its neighbors, commonly
found in computational fluid dynamics, image processing, partial differential equations, etc.
The original iteration space of the 1D stencil code is shown in Figure 2.2(b), indicating the
computation proceed first along t axis and then i axis. Instead, the transformed iteration
space after schedule transformation in Figure 2.2(c) implies the computation should first
follow ¢t axis and then t + i axis. The instances of the statement are represented by integer
points in iteration space, coordinated with each other by a blue arrow denoting a dependence
relation.

Tiling along ¢ axis and i axis in Figure 2.2(b) is illegal since such tiling may produce dependence
cycles between tiles along i axis, prohibiting the data locality along ¢ axis of the original
iteration space. On the contrary, one may benefit from the data locality along both axes on the
transformed iteration space as tiling along the axes may not result in dependence conflicts.
In fact, schedule transformation could be understood as the reconstruction of the basis of
iteration space, attained by a scheduling algorithm like [Fea92a, Fea92b, LL97, BHRS08, BAC16,
UC13, ABC18] and their variants in libraries. While the scheduling algorithm proposed by
Feautrier [Fea92a, Fea92b] was complained due to the missing of considering communication

13
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for (t=0; t<T; t++)
for (i=1; i<N-1; i++)
Alt+1][i]1=0.25%(A[t] [i+1]+2.0%A[t] [i]+A[t] [i-11);

(a) 1d iterated stencil

(c) Transformed iteration space of the code in Figure 2.2(a)

Figure 2.2 — 1D iterated stencil and its iteration space before and after scheduling

overhead, the hyperplane! partitioning technique [LL97] also failed to minimize the order of
synchronization even though it takes into account communications. The cost-model-based
scheduler [BHRS08] developed in the Pluto compiler was designed to overcome such flaws
and has been demonstrated as effective in practice by a variety of implementations.

Schedule transformation is considered as the most difficult component of polyhedral com-
pilation. A scheduling algorithm is tightly coupled with dependence relations produced by
the frontend: while it should preserve the semantic of the program by being constrained to
dependence relations, it is also expected to minimize dependence distances for reuse pur-
poses, thereby improving data locality. A scheduling algorithm is not only responsible for
exploiting different compositions of loop transformations, e.g., the composition of loop tiling
and skewing could be triggered in the example of Figure 2.2, but also obligated to exploit
both fine-grained and coarse-grained parallelisms. Moreover, a scheduling algorithm should

1a hyperplane is the projection of an n dimensional space on its n — 1 dimensional sub-space.

14
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also take into consideration the requirements from follow-up code generation: for example,
schedule transformation should allow the insert of thread-/warp?-level synchronizations
when generating CUDA code on GPUs.

Code generation. Finally, code generation constitutes the backend of polyhedral compila-
tion, made up by two phases with one building abstract syntax trees (ASTs) from the results
of polyhedral extraction and schedule transformation while the other generating expected
high-performance code executable on target platforms. As code generation would not change
the execution order of programs, it is allowed to not take into consideration dependence
relations, scanning the iteration space and generating code according to execution dates
defined by the transformed schedule. As a consequence, code generation is also referred to as
polyhedral scanning.

When building ASTs from the results of previous steps, a code generator manages to determine
loop bounds and conditionals of control flow by seeking solutions for an optimization problem
subject to integers. The generated ASTs could then be passed to emit instructions amenable
to different programming models on target machines, facilitating the portability to different
architectures.

One representative implementation of code generation in polyhedral compilation is the
convex-based algorithm [AI91], generating code by first constructing a convex for all polyhedra
in the iteration space. Figure 2.3(a) shows an illustrative iteration space composed of two
polyhedra with one comprising all red square points and the other made of blue circle points,
followed by a diagram of convex-based algorithm in Figure 2.3(b). One of the flaws of this
algorithm is the generated code may include multiple nested if conditionals governing the
correct execution of each polyhedron in the iteration space, promoting some code generators
like Codegen+ working on hoisting if conditionals [Che]. The other code generation technique
was proposed by Quilleré et al. [QRWO00] and implemented in the CLooG generator and its
variants [Bas04, VBC06, GVC15]. Unlike the convex-based algorithm, the method used in
CLooG may first split the polyhedra into distinct regions as shown in Figure 2.3(c), producing
code by scanning each of such regions individually.

As one may also find in Figure 2.1, an ILP solver is at the core of polyhedral compilation, pro-
viding each step with minimal flexible integer solutions, thereby achieving the manipulation
of polyhedral transformations. There exist a variety of libraries for solving ILP, including is1
[Ver10], Omega [KMP™*96], PIP [Fea88], PolyLib [Loe99] and PPL [BHZ08], etc., differing each
other by using different algorithms and data structures.

2 A warp is a set of threads arranged lengthwise on a loom and crossed by the woof.
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Figure 2.3 — An illustrative diagram on different code generation algorithms

2.1.2 Polyhedral Representations

Intuitively, polyhedral compilation models one statement in loop nests as a polyhedron and
each instance of the statement as an integer point. One may understand those transforma-
tions enabled by polyhedral compilation as the process of reshaping such polyhedra. In
terms of implementing the polyhedral model in a parallelizing compiler, however, one may
have to resort to some polyhedral representations for both manipulation and optimization
purposes. Historically, there have been various compositions of different representations used
in polyhedral compilation, but we would like to introduce the following representations used
in the dissertation as they are sufficient to model polyhedra and have been implemented in
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some widely used optimizers like LLVM/Polly, PPCG, etc. One is without doubt free to choose
any other combinations of representations for their implementation, as such representations
could always be mutually transformed.

Before the introduction to polyhedral representations, we prefer to first present some mathe-
matical concepts. This is because such mathematical concepts are the underlying expressions
in integer manipulation libraries. More importantly, it would be a painful task to explain poly-
hedral representations if bypassing such mathematical concepts. If the readers are interested
in a more detailed description or some more concentrated examples on such mathematical
descriptions, we would suggest to refer to the work of Grosser [Gro14].

Integer sets. An integer set is a set of n-tuple integers subject to a group of affine constraints
relating such n-tuple integers with m-tuple constant parameters, with n representing the di-
mensionality of the set, m the dimensionality of the parameters in constraints. Mathematically,
an integer set can be written as

S = {(llr i2; ceey ln) : f((llr i2) ceey l}’l); (pl) p2; ey pm))} (21)

An integer set is called named integer set when assigning a name to the integer tuple. In
practice, one may think an n-tuple integer set as the collection of loop iterators, m-tuple
constant parameters the parameters of programs. A constraint function usually comes as the
conjunction of multiple inequalities.

Integer maps. An integer map is a binary relation mapping an n;-dimensional integer set,
i.e., the domain of the map, to another n,-dimensional integer set, i.e., the range of the map,
subject to a set of affine constraints on the integer sets and constant parameters. An integer
map can be generalized as

M= {(il» i2) () lnl) - (ilv i2’ ooy lnz) : f((llr i27 () inl); (il, i2) ooy ing)y (pl) p2,.., pm))} (2.2)

An integer map can be interpreted as the relation between statement instances with their
accessed data locations or dependence relations. In the same way, a named integer map
represents an integer map between two named integer tuples.

Named union sets and Named union maps. We use named union sets to refer to the union
of different named integer sets, and named union maps for the union of different named
integer maps. Named union sets can be used to express all statement instances of a SCoP,
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Chapter 2. Background

while named union maps may either define execution order on statement instances or relate
statements and the data they access.

Given the above mathematical concepts, we can explain polyhedral representations in a
much easier way. Following the previous subsection, we still use an illustrative example for
explanation. One may obtain the iteration space of the loop nest listed in Figure 2.4(a) as
shown in Figure 2.4(b), with one polyhedron for statement S1, composed of blue points, and
the other for statement S2, depicted with the collection of all red points. f and g are affine
functions of their indices. In our work, we would use the following representations.

i
4 ] A A A
3 "] A A
for (i=1; i<=4; i++) {
Si1: ali]l = £(i); 27 " ‘
for (j=1; j<=i; j++) 1! -
S2: blil [jl=g(alil);
; s
(b) The iteration space of the loop nest shown
(a) An illustrative loop nest in Figure 2.4(a)

Figure 2.4 — An illustrative loop nest and its iteration space in polyhedral compilation

Iteration Domain. Iteration domain is the collection of all statement instances, represented
using a named union set with each named component covering all instances of one statement
followed by a set of inequalities for bounds. The iteration domain of the code above can be
expressed with (2.3).

Domain=1{S;(i):1<i<4;Sy(i,j):1<i<4Al<j<i} 2.3)

Access Relations. Access relations are a set of relations coordinating statement instances
with the data locations they access, modeled by a set of named union maps together with
some inequalities for bounds. (2.4) describes the access relations of the example, consisting of
a Write relation and a Read relation. By refining access relations with read and write relations,
polyhedral compilation is free to compute dependence relations easily. Furthermore, a write
relation can also be split into may-write and must-write relations for the purpose of aggressive
optimizations.
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2.1. Polyhedral Compilation

Write=18,(i) — a(i): 1< i<4S(i,j) = b(i, ) : 1<i<4rl<j<i} o4
Read ={S;(i, ) — ai):1<i<4nl<j<i} '

Schedule. Aswe already mentioned in previous context, polyhedral compilation would map
a multi-dimensional logical execution date to each statement instance. Schedule is such a
multi-dimensional execution date assigned to a statement instance, expressed using a binary
relation between two different multi-dimensional integer tuples. A lexicographically smaller
schedule implies an earlier execution of the statement instance. An original schedule is the
execution date assigned to a statement instance before schedule transformation. For example,
the original schedule of the code in Figure 2.4(a) can be written as (2.5). A new schedule would
be computed after schedule transformation if the scheduling algorithm may find a better
execution date with respect to parallelism and data locality.

Schedule = {8 (i) — (i,0);S2(i, j) — (i, 1, )} (2.5)

Dependences. Dependences represent the access conflicts between statement instances,
written as named union maps and used for guaranteeing the execution date of a producer
be lexicographically smaller than that of the consumer, therefore enforcing the correctness
of any transformations enabled by polyhedral compilation. A refinement from traditional
statement-level dependences to instance-level dependences in the polyhedral model makes
the expression of dependences more complicated, like the constraints after the named maps
shown in (2.6) indicating the dependences are described with regard to statement instances.

Dependence=1{51(i) = S2(i,j):1<i<4nl<j<i} (2.6)

2.1.3 Loop Transformations

Given the polyhedral representations, one may apply any loop transformations and/or their
compositions. Loop transformations could be attained by schedule transformations, i.e.,
reordering the statement instances. Considering the example shown in Figure 2.2, schedule
transformation triggers loop skewing by specifying a new execution date to the statement
instances of 1D iterated stencil.

If we use the polyhedral representations introduced in the last subsection to express the
transformation, we may obtain the original schedule as {S;(t,i) — (¢,1)} and {S1(¢,7) — (¢, £+
i)} for the new schedule after applying loop skewing. As a result, a transformation could be
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Chapter 2. Background

expressed as (¢,1) — (t, t + i) for representing loop skewing. Suppose ¢ and i as variables, the
underlying principle of schedule transformation could be interpreted as seeking a coefficient
matrix and a constant vector such that

t
i

t
t+1i

+ 2.7)

C11 (12
C21 €22

Cio| _
C20

It is straightforward to solve the above system of linear equations by hand as the problem is
heavily simplified for the sake of illustration. However, polyhedral compilation may have to
solve it automatically by resorting to an ILP solver; worse yet, the practical problems faced by
the polyhedral model would be much more complicated. We would not go further into the
underlying structure of schedule transformation but invent the readers to refer to the work of
Bondhugula [Bon08] for a detailed mathematical explanation.

To generalize, schedule transformation can be understood as solving a coefficient matrix and
a constant vector such that a transformation between two integer tuples can be accomplished.
Each row of the coefficient matrix can be interpreted as a hyperplane. Note that the two
integer tuples could differ with regard to dimensionality: for example, a scalar dimension
could be introduced to achieve loop fusion. Besides, a more complex example of loop trans-
formation would be loop tiling, increasing the dimension of the input tuple by doubling those
components requiring tiling.

Schedule transformation by manipulating integer sets broadens the optimization space of
polyhedral compilation and simplifies the composition of different loop transformations
compared with traditional compilation models like unimodular matrices [Ban93, WL91],
while the latter applies loop transformations by means of elementary matrix operations.
Besides, the loop transformations covered by unimodular matrices are also very restricted,
including loop interchange, skewing and reversal; the polyhedral model is rather capable for
automating a wider set of loop transformations, widening the optimization space by enabling
loop fission, fusion, index set splitting [GFLO00], peeling, strip-mining [KP95], tiling, unroll
and jam [Bon08, BF03], unrolling, unswitching, etc.3 A recent work [YGK*13] also makes
it possible to model algorithmic changes which could not be achieved by other techniques,
further enriching the transformations of polyhedral compilation.

2.1.4 Schedule Trees

Apart from index set splitting, all the loop transformations modeled by polyhedral compilation
could be facilitated by operating on the schedule representation, i.e., named union maps.

3Some of these loop transformations, i.e., loop peeling, unrolling, unswitching, are achieved by code generation
rather than schedule transformation, since these transformations change the loop structure rather than reorder
statement instances.
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This, however, does not mean the operations on named union maps would be ease of use.
A typical drawback of such method can be found when comparing the lexicographic order
of two integer sets, since such operations can only be applied on integer sets with the same
dimension.

More importantly, the above mentioned schedule representation could not be easily extended
to handle non-affine transformations as named union maps hold the “injectivity” and “single-
valuedness” properties. “injectivity” indicates a schedule representation allows different
statement instances to be assigned the same logical execution date for expressing inner par-
allelism; “single-valuedness” refers to a schedule representation would only assign a single
execution date to a statement instance, preventing the statement instance from being exe-
cuted more than once. Clearly, the latter would not allow the implementation of non-affine
transformations like overlapped tiling requiring multiple executions of a statement instance.

In this dissertation, we rely on a well-defined schedule representation that would make the
expression of non-affine transformations possible in polyhedral compilation. As the schedule
construction may decompose a dependence graph recursively and compute a partial schedule
for each component independently, a schedule representation would naturally have the form
of a tree [GVC15]. The schedule representation is thus called “schedule tree”.

There have been some schedule representations proposed in the past, including the Kelly’s
abstraction [KPR95], “2d+1"-schedules [GVB*06], etc., that can be viewed as an encoding of
schedule trees. Like named union maps, such encoding methods are usually restricted due to
missing the ability to facilitate non-affine applications and transformations.

To give an intuitive impression on schedule trees, we depict the schedule tree representation
of the code shown in Figure 2.4(a) in Figure 2.5. A schedule tree is constructed by recursively
building partial schedule trees which in turn constructed by schedule nodes. For example, the
schedule tree in the figure is composed of two sub-trees rooted at one filter node representing
statement S; (i) and the other for statement S»(i, j). A partial schedule tree comprises one or
more schedule nodes for expressing different semantics. We would next introduce the basic
node types in schedule trees. For a complete description of schedule trees and nodes, please
refer to [GVC15].

Domain. A domain node in schedule trees is a named union set, appearing as the root of a
schedule tree and covering the collection of all statement instances that should be scheduled
by the schedule tree. For the sake of simplicity, we would sometimes represent a domain node
as “domain” like what we have done in Figure 2.5 rather than writing in the form like (2.3).

Context. A context node is used to introduce constraints on symbolic constants of the
schedule tree. Symbolic constants introduced by a context node could serve as parameters of
programs, usually omitted when they are only referenced by the domain node. In practice,
parameters passed to compilers like tiling sizes are usually introduced in a context node for
determining bounds of new schedules.
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domain

[So(2) = (1);S1(1, j) — (2)]

sequence
/ \
{So()} {S13, P}

[S1(5, j) = ()]

Figure 2.5 — The schedule tree of the code in Figure 2.4(a)

Filter. Afilter node can be the root of a partial schedule tree, expressed with a named union
set and representing the statement instances to be scheduled by its descendants. The partial
schedule tree rooted at a filter node has to be retained to another rooted at a domain node,
constructing the final schedule tree recursively. A filter node is guarded by a pair of braces.

Band. A band node is used to express the partial schedule on its parent node, written as a
named union map. A band node in schedule trees is also integrated with more operations
governing code generation, allowing for flexibility for more complicated cases. Named union
maps in a band node could be piecewise quasi-affine for expressing schedules like tiling. We
use square brackets to denote band nodes in schedule trees.

Sequencel/Set. A sequence/set node always appears as the parent node of a group of filter
nodes, forcing the children to be executed in a given/arbitrary order. An explicit support for a
sequence/set representation makes it possible to break up the instances of a statement into
separated parts.

Mark. A mark node can introduce any kinds of information to schedule trees. The use of
mark nodes provides a great compatibility to schedule trees with other intermediate represen-
tations. For example, one may use a mark node to attain the information about representation
mismatching, informing the follow-up code generator to handle this mark node with a custom
implementation.

We introduce the basic node types for schedule trees here because we believe they are sufficient
to understand the principle of schedule tree representation. Some other node types would be
introduced in the following context, together with their uses in our work. The readers may
also find more examples of schedule trees throughout the thesis.

2.2 A Platform-Neutral Compute Intermediate Language

In this subsection, we would introduce a platform-neutral compute intermediate language,
PENCIL [BBC*15], that we rely on to facilitate non-affine extensions. Combining languages
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with polyhedral approaches have been proved effective in many applications as we introduced
in Section 1. We choose PENCIL as an intermediate representation in addition to polyhedral
representations by taking into consideration the following properties.

PENCIL provides a sequential semantic in accordance with the philosophy of widely used
programming languages by hiding target-specific hardware information, allowing program-
mers to follow existing way of programming with such languages by only adding lightweight
annotations. This allows for the compatibility of integrating with both general-purpose and
domain-specific languages.

PENCIL simplifies the analysis of non-affine expressions and eases the implementation of
such extensions. With PENCIL, arrays must be declared through the C99 variable-length
array syntax [ISO99]. The C99 type qualifiers/keywords static const restrict or a macro
pencil_attributes expending to these type qualifiers/keywords must be used to declare the
array function arguments. This allows the polyhedral model know about the length of arrays,
and that arrays do not overlap during optimizations.

Pointer declarations and definitions are allowed in PENCIL, but pointer manipulation (in-
cluding arithmetic) is forbidden except that C99 array references are allowed as arguments in
function calls. Pointer dereferencing is neither allowed except for accessing C99 arrays. The
restricted use of pointers can essentially eliminate aliasing problems for moving data between
different address spaces of hardware accelerators.

A PENCIL for loop must have a single iterator, an invariant start value, an invariant stop
value and a constant increment (step). Invariant here requires the value must not change
in the loop body. To some extent, such structured for loops may simplify the polyhedral
transformations. Considering the fact that recursive calls are not supported by accelerator
programming languages like CUDA and OpenCL, recursive calls are excluded from PENCIL.
However, we are allowed to extend the semantic of PENCIL for such extensions as long as they
are needed.

As shown in Figure 2.6 is the high level overview of PENCIL compilation flow. PENCIL can
be the target of a domain-specific compiler, followed by a polyhedral framework, therefore
delivering information between a domain-specific language and polyhedral compilation. A
typical representative application in DSLs of PENCIL is its use in the early stage of TensorCom-
prehensions [VZT*18]%. One is also allowed to write a general-purpose language with PENCIL
specifications to model non-affine extensions, extending the polyhedral approaches to handle
more complex cases. For example, a combined polyhedral technique with PENCIL was used to
handle user-define reductions [RKC16] which would not be possible without PENCIL.

With regard to the code generation of the PENCIL compilation flow, there have already been

4PENCIL was introduced for bridging the Halide IR and polyhedral representations in the prototype imple-
mentation but was later removed from the framework due to simplification considerations. However, it helps the
developers construct the early prototype implementations and lays a solid foundation for follow-up development
of the framework.
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Figure 2.6 — A high level overview of the PENCIL compilation flow

a variety of backends supporting the generation of different parallel programming models,
including OpenMP directives and CUDA, OpenCL APIs, etc. Retargeting the compilation
flow to support other kinds of high-level APIs is straightforward thanks to the introduction of
generating ASTs in polyhedral compilation, providing a great portability to a large number of
modern multicore platforms.
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8] Dynamic Counted Loops

While a large number of computationally intensive applications spend most of their time in
static control loop nests—with affine conditional expressions and array subscripts, several
important algorithms do not meet such statically predictable requirements, going beyond the
scope of polyhedral compilation. A well-known non-affine extension to remove the limitation
of the polyhedral model in this direction is the work of Benabderrahmane et al. [BPCB10]
for handling general while loops. We are interested in the class of computational kernels
involving dynamic counted loops. These are regular counted loops with numerical constant
strides, iterating until a dynamically computed, data-dependent upper bound. Such bounds
are loop invariants, but often recomputed in the immediate vicinity of the loop they control;
for example, their definition may take place in the immediately enclosing loop.

Dynamic counted loops play an important role in numerical solvers, media processing appli-
cations, and data analytics, as we will see in the experimental evaluation. They can be seen as
a special case of while loop that does not involve an arbitrary, inductively defined termination
condition. The ability to substitute their counter with a closed form—an affine induction
variable—makes them amenable to a wider set of transformations than while loops. Dynamic
counted loops are commonly found in sparse matrix computations, but not restricted to this
class of algorithms. They are also found together with statically unpredictable, non-affine
array subscripts.

The purpose of this part is to further extend the ability of polyhedral compilation for handling
such non-affine applications by enabling a wider set of loop transformations. We will first
present the background along this research direction and then introduce our solution in the
next two chapters, followed by some experimental results and discussions.

3.1 Background and Motivation

The polyhedral framework of compilation unifies a wide variety of loop and array transforma-
tions using affine (linear) transformations. The availability of a general-purpose method to
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generate imperative code after the application of such affine transformations [QRW00, Bas04,
GVC15] brought polyhedral compilers to the front scene, in the well-behaved case of static
control loops.

3.1.1 Limitations of Previous Work

While significant amount of work targeted the affine transformation and parallelization of
while loops [GL94, Col94, GCI5, Col95, GGLI8, GGLIY, BPCB10, JCD*14], these techniques
face a painful problem: the lack of a robust method to generate imperative code from the
polyhedral representation. One representative approach to model while loops in a polyhedral
framework, and in the code generator in particular, is the work of Benabderrahmane et al.
[BPCB10].

This work uses over-approximations to translate a while loop into a static control loop iter-
ating from 0 to infinity that can be represented and optimized in the polyhedral model. It
introduces exit predicates and the associated data dependences to preserve the computation
of the original termination condition, and to enforce the proper termination of the generated
loops the first time this condition holds. These data dependences severely restrict the applica-
tion of loop transformations involving a while loop, since reordering of the iterations of the
latter is not permitted, and loop interchange is also restricted.

The framework was also not fully automated at the time of its publication, leaving much room
for the interpretation of its applicable cases and the space of legal transformations it effectively
models. Speculative approaches like the work of Jimborean et al. also addressed the issue
[JCD*14], but a general “while loop polyhedral framework” compatible with arbitrary affine
transformations has yet to emerge. In this dissertation, we make a more pragmatic, short term
step: we focus on the special case of dynamic counted loops where the most difficult of these
problems do not occur.

There has also been a significant body of research specializing on high-performance imple-
mentations of sparse matrix computations. Manually-tuned libraries [BAA™ 14, BG09, BG11,
LBG"12, MCGO04, VDY05] are a commonly used approach, but it is tedious to implement and
tune for each representation and target architecture. A polyhedral framework that can handle
non-affine subscripts has a greater potential to achieve transformations and optimizations on
sparse matrix computations, as illustrated by Venkat et al. [VHS15].

As aresult, we would like to propose an automatic polyhedral compilation approach to paral-
lelize and optimize dynamic counted loops that can express arbitrary affine transformations
and achieve performance portability. We are allowed to make full use of systems of affine
inequalities as implemented in state-of-the-art polyhedral libraries [Ver10] for our purpose.
Moreover, following what has been implemented in the work [SCF03, SLC* 16], we expect not
to resort to more expressive first-order logic with non-interpreted functions/predicates such
as the advanced analyses and code generation techniques of Wonnacott et al. [PW94b], while
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avoiding the complexity and overhead of speculative execution.

3.1.2 Static Control Parts

The polyhedral compilation framework was traditionally limited to static control loop nests. It
represents a program and its semantics using iteration domains, access relations, dependences
and schedules. The statement instances are included in iteration domains. Access relations
map statement instances to the array elements they access. Dependences capture the partial
order on statement instances accessing the same array element (one of which being a write).
The schedule implements a (partial or total) execution order on statement instances that is
compatible with dependences.

Consider the running example in Figure 3.1. The upper bounds, m and n, of the j-loop and
k-loop are computed in their common enclosing loop and updated dynamically as the i-
loop iterates. As a result, it is not possible to classify the whole loop nest as a SCoP, and
traditional polyhedral techniques do not directly apply. Tools aiming at a greater coverage of
benchmarks—such as PPCG or LLVM/Polly—will abstract the offending inner loops into a
black box, greatly limiting the potential for locality-enhancing and parallelizing optimizations.

#pragma scop //begin of our scop
for (i=0; i<100; i++) {
S0: m = f(i);
Si: n = g(i);
//begin of the scop of traditional techniques
for (j=0; j<m; j++)
for (k=0; k<n; k++)
S2: S(i, j, k);
//end of the scop of traditional techniques
}

#pragma endscop //end of our scop

Figure 3.1 — Example with dynamic counted loops

As an alternative, one may narrow the SCoP by only considering the j-/ k-loop nest and treating
the dynamic upper bounds as symbolic parameters, enabling polyhedral transformations
without problems. This, however, either introduces more frequent synchronizations by exploit-
ing fine-grained parallelism when targeting on CPU targets, or misses the data locality along
the outermost loop dimension and the opportunity to exploit full-dimensional parallelism on
GPU platforms.
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3.1.3 Our Solution

To extend the polyhedral framework to dynamic computed loops, we may need to address the
following problems.

Modeling Control Dependences. Undeniably, the polyhedral model in its current form
cannot handle dynamic counted loops. We would first derive a static upper bound for such
dynamic conditions to make dynamic counted loops amenable to polyhedral compilation. To
solve this problem, we may rely on the computation of an affine upper bound for all dynamic
trip counts that a given loop may reach, using a combination of additional static analysis and
dynamic inspection. Revisiting the polyhedral compilation framework [BPCB10] of arbitrary
while loops, we introduce exit predicates for dynamic counted loops, modeling the control
dependence of the original loop through additional data dependences from the definition of
these exit predicates to every statement in the loop body.

Achieving Exact Dependence Analysis. Dynamic counted loops are commonly found in
sparse matrix computations involving indirect array subscripts, preventing polyhedral model
from achieving exact dependence analysis. We leverage the PENCIL language for eliminat-
ing alias suspicion and ambiguous analysis in the polyhedral model, allowing for the exact
dependence analysis even in the presence of indirect array subscripts.

Eliminating the Effect of Over-approximations. Due to the over-approximation caused by
deriving a static upper bound, we need to eliminate the introduced empty iterations for per-
formance improvement. We extend the schedule-tree-based algorithm [GVC15] to enable the
full automation of imperative code generation after the application of affine transformations,
targeting both CPU and GPU architectures.

Our method goes beyond the state of the art [BPCB10, JCD" 14, VHS15] in fully automating the
process, specializing the code generation algorithm to the case of dynamic counted loops, and
avoiding the introduction of spurious loop-carried dependences or resorting to speculative
execution. We conduct experiments on representative irregular computations, including
dynamic programming, computer vision, finite element methods, and sparse matrix linear
algebra. We validate that the method is applicable to general affine transformations for locality
optimization, vectorization and parallelization.

3.2 Extension Nodes in Schedule Trees

Our work follows the idea behind the work of Benabderrahmane et al. [BPCB10] by using over-
approximations and modeling control dependences, the latter, however, misses a systematic
code generation algorithm. The difficulty to generate early exits for over-approximations is
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because such statements are not included in the iteration domain modeled by polyhedral com-
pilation. It is difficult to model such statements at the time of the publication of the approach
on general while loops. Fortunately, we may now leverage the schedule tree representation
for such purpose.

The schedule tree representation has the same expressiveness with traditional polyhedral rep-
resentations but it allows for the modeling of non-affine extensions in polyhedral compilation.
In the case of dynamic counted loops, we may rely on the extension node of schedule trees to
introduce additional domain elements to be scheduled.

Recall the mathematical concepts and polyhedral representations we introduced in Subsection
2.1.2, an extension node can be expressed using a named union map relating the outer
schedule dimensions with the set of array elements accessed by the statement. In our case,
we may abstract an early exit statement as a virtual statement accessing a scalar data named
“exit”. As a result, we may express a general extension node for such early exit statements as
the following

{(d1, da, ..., dy) — exit()} 3.1)

with (dy, do, ..., d;) representing the outer schedule dimensions and exit() for the data ac-
cessed by the statements.

A similar use of extension nodes in PPCG [VCJC* 13] is the creation of data copying statements
for locality optimization and the introduction of thread-level synchronization instructions. A
statement introduced by an extension node may be scheduled even it is originally excluded by
the iteration domain of schedule trees.

3.3 An Overview of Our Approach

We may explain our approach by starting with dependence analysis. As shown in Figure 3.1,
statement S, does not have data dependences on other statements. However, there are output
dependences among definition statements of dynamic parameters m and n. To faithfully
capture the scheduling constraints, one should also model the control dependences of S,
over both headers of the enclosing dynamic counted loops. Such control dependences can
be represented as data dependences between the definition statements of dynamic upper
bounds and S».

To establish such a dependence relation, an exit predicate may be introduced before each
statement of the loop body, like in the framework of Benabderrahmane et al. [BPCB10]. The
resulting dependence graph is shown in Figure 3.2. The solid arrows represent the origi-
nal (output) dependences between definition statements of dynamic parameters, and the
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dashed arrows represent the data dependences converted from the exit conditions’ control
dependences.

eSo—*SO esl — 81

\ -
~ -
-

~
~ -

€50— 5> \A@A/ €55,

Figure 3.2 — Dependence graph of the example

By capturing control dependences as affine relations from the definition of exit predicates to
dominated statements in loop bodies, one may build a sound abstraction of the scheduling
constraints for the loop nest. This technique is applicable to arbitrary while loops, in conjunc-
tion with a suitable code generation strategy to recover the exact control flow protected by the
exit predicate, and by over-approximating the loop upper bound as +oco. This is the approach
explored by Benabderrahmane et al., but the resulting polyhedral representation is plagued by
additional spurious loop-carried dependences to update the exit predicate, removing many
useful loop nest transformations from the affine scheduling space. In the more restricted
context of dynamic counted loops, it is possible to eliminate those loop-carried dependences
as the exit predicate only depends on loop-invariant data.

We base our formalism and experiments on the schedule tree representation [GVC15]. Sched-
ule trees can be flattened into a union of relations form, with each relation mapping the
iteration domain of individual statements to a unified logical execution time space.

Since dynamic counted loops cannot be appropriately represented in the iteration domain, a
state-of-the-art polyhedral compiler like PPCG may only model the outer loop, abstracting
away the j-loop and k-loop, as the schedule tree of Figure 3.3. Following Benabderrahmane’s
work [BPCB10], we can derive two static upper bounds, u; and uy, that are greater than or
equal to m and n. The domain and access relations of statement S, can be over-approximated
accordingly, and represented parametrically in 17 and uy. This representation can be used to
compute a conservative approximation of the dependence relation for the whole schedule
tree.

Based on this dependence information, one may derive a correct schedule using the Pluto
algorithm or one of its variants [BHRS08, VCJC" 13], to optimize locality and extract paral-
lelism. The resulting schedule tree may indeed be seen as a one-dimensional external domain
and schedule enclosing a two-dimensional inner domain and schedule controlled by two
additional parameters, u; and uy, as will be seen in Figure 4.4.

The final step is to generate code from the schedule tree to a high level program. The generation
of the abstract syntax tree (AST) follows the approach implemented in is1 [Ver10], traversing
the schedule tree and specializing the code generation algorithm to integrate target-specific
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constraints, e.g., nested data parallelism and constant bounds. Before encountering a filter
node associated with a dynamic counted loop, the exit predicate and its controlled loop body
is seen as a single black-box statement by the AST generation algorithm. When passing the
filter node constraining the dynamic upper bound, it is necessary to complement the standard
code generation procedure with dedicated “dynamic counted loop control flow”. This involves
either (on GPU targets) the reconstruction of the exit predicate and the introduction of an
early exit (goto) instruction guarded by the predicate or (on CPU targets) the replacing the
over-approximated static upper bound with the dynamic condition and the removing of the
introduced control flow. Our algorithm generates code in one single traversal of the schedule
tree!.

domain

[So (@) — (1);S1(1) — (1); S2(i) — ()]

sequence

{So ()} {S1()} {S2(1)}

Figure 3.3 — Original schedule tree of the example

3.4 Related Work

The polyhedral framework is a powerful compilation technique to parallelize and optimize
loops. It has become one of the main approaches for the construction of modern parallelizing
compilers. Its application domain used to be constrained to static control, regular loop nests.
But the extension of the polyhedral framework to handle irregular applications is increasingly
important given the growing adoption of the technique. The polyhedral community invested
significant efforts to make progress in this direction.

A representative application of irregular polyhedral techniques is the parallelization of while
loops. The polyhedral model is expected to handle loop structures with arbitrary bounds that
are typically regarded as while loops. Collard [Col94, Col95] proposed a speculative approach
based on the polyhedral model that extends the iteration domain of the original program and
performs speculative execution on the new iteration domain. Parallelism is exposed at the
expense of an invalid space-time mapping that needs to be corrected at run time.

Beyond polyhedral techniques, Rauchwerger [RP95] proposed a speculative code transfor-
mation and hybrid static-dynamic parallelization method for while loops. An alternative,
conservative technique, consists in enumerating a super-set of the target execution space
[GL94, GCI5, GGLI8, GGLIY], and then eliminating invalid iterations by determining termi-
nation detection on the fly. The authors present solutions for both distributed and shared

! Another difference with [BPCB10] where multiple traversals were needed.
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memory architectures.

Benabderrahmane et al. [BPCB10] introduce a general framework to parallelize and optimize
arbitrary while loops by modeling control-flow predicates. They transform a while loop
as a for loop iterating from 0 to +co. Compared to these approaches to parallelizing while
loops in the polyhedral model, our technique relies on systems of affine inequalities only, as
implemented in state-of-the-art polyhedral libraries. It does not need to resort to the first-order
logic such as non-interpreted functions/predicates, it does not involve speculative execution
features, and it makes dynamic counted loops amenable to a wider set of transformations
than general while loops.

A significant body of work addressed the transformation and optimization of sparse ma-
trix computations. The implementation of manually tuned libraries [BAA* 14, BG09, BG11,
LBG*12, MCG04, VDY05] is the common approach to achieve high-performance, but it is
difficult to port to each new representation and to different architectures.

Sparse matrix compilers based on polyhedral techniques have been proposed [VHS15], ab-
stracting the indirect array subscripts and complex loop-bounds in a domain-specific fashion,
and leveraging conventional Pluto-based optimizers on an abstracted form of the sparse
matrix computation kernel. We ought to extend the applicability of polyhedral techniques
one step further, considering general PENCIL code as input, and leveraging the semantical
annotations expressible in PENCIL to improve the generated code efficiency and to abstract
non-affine expressions.
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in the Polyhedral Model

4.1 Preparation

A dynamic counted loop with a dynamic counted upper bound and a static lower bound is
referred to as the normalized format of dynamic counted loops. For example, the code shown
in Figure 3.1 is such a normalized format.

for (i=0; i<M; i++)
for (j=idx[i]; j<idx[i+1]; j++)
y[il += A[jl*x[col[j1];

(a) An illustrative code of sparse matrix computation

1 200
3400
A‘0050
0 00 6

idx[5] =1{0,2,4,5,6}
col[6] ={0,1,0,1,2,3}

(b) Sparse representations
for (i=0; i<M; i++)

for (j=0; j<idx[i+1]-idx[il; j++)
YI:l:l = A[j+idX[i]]*x[col [j+idX[i]]];

(c) Normalized format

Figure 4.1 — A sparse matrix computation and its normalized format
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Sparse matrix computations represent an important class of dynamic counted loops. They are
a class of computations using compressed data layout stores nonzero elements only. Loops
iterating on the compressed layout may have dynamic lower and upper bounds. In practice,
such nonzero elements could be stored in different formats, leading to a variation among
different formats on the sparse matrix. However, most of such formats could be transformed
mutually, as explained by Venkat et al. [VHS15]. Figure 4.1(a) shows an example of such
computations using Compressed Sparse Row (CSR) format. One may represent the sparse
matrix as in Figure 4.1(b), with the additional arrays for storing the information about dynamic
conditions.

However, these loops can be easily normalized by subtracting the lower bound from the
upper bound, as shown in Figure 4.1(c). This transformation may introduce non-affine array
subscripts since the lower bound may not be affine; we assume the dependence analysis will
conservatively handle such subscripts, leveraging PENCIL annotations to refine its precision
[CBF95, BBC*15]; we may also symbolically eliminate identical non-affine expressions on the
left and right-hand side.

for (i=0; i<nodes; i++) {
Anext=. ..
Alast=...

while(Anext<Alast) {
S(i, Anext);
Anext++;

}

(a) A illustrative while loop

for (i=0; i<nodes; i++) {
Anext=...
Alast=...

for (j=0; j<Alast-Anext; j++) {

S(i, j+Anext);
}

(b) Normalized format

Figure 4.2 — Awhile loop and its normalized format
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Some forms of while loops may also be modeled, as long as an affine induction variable can
be identified and assuming the variant part of the exit condition reduces to this induction
variable. For example, the while loop shown in Figure 4.2(a) is extracted from the equake
program of SPEC2000 benchmarks. It could be normalized to the format shown in Figure
4.2(b) without changing the semantic of the program.

4.2 Deriving a Static Upper Bound

To make a dynamic counted loop amenable to a polyhedral representation, our approach
assumes that a static control upper bound u on the dynamic number of iterations is available.
The general idea is that a dynamic counted loop can always be converted into a static for loop
enclosing an if statement whose condition checks the dynamic bound.! One may determine
the u parameter statically or dynamically.

4.2.1 Static Approaches

The u parameter can be approximated statically, as the dynamic upper bounds are functions
of outer enclosing loop variables: a typical solution relies on Fourier-Motzkin elimination,
projecting out enclosing dimensions and eliminating non-affine constraints.

For instance, the following set of dynamic conditions is extracted from the HOG benchmark of
the PENCIL benchmark suite, which we may use Fourier-Motzkin elimination for eliminating
the max/min operations and finally deriving a static upper bound.

Iby =max(fy(x),1)
Iby = max(fy(y),1)
uby = min(gy(x),1)
uby =min(gy(y),1)

(4.1)

The u parameter can also be determined in other ways, from array size declarations or addi-
tional user-defined predicates in PENCIL [BBC*15]. We use the C99 type qualifiers/keywords
static const restrict when declaring an array argument of a PENCIL function, guarantee-
ing the array argument do not alias and thereby allowing for the static derivation of the u
parameter. When such static methods fail, MAXINT or any type-dependent bound remains a
valid approximation, but a tighter bound is preferable to avoid lifting induction variables to a
wider integral type.

I This is easier than a general while loop, since the dynamic bound check remains continuously false after its
first falsification.
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4.2.2 Dynamic Approaches

Besides static analysis, dynamic inspection prior ahead of the loop nest of interest may be
practical in some cases. For example, in sparse matrix computations, # may be computed
by inspecting the maximum number of non-zero entries in a CSR format. We may infer that
the static upper bound of the sparse matrix shown in Figure 4.1(b) is 2 with an inspection.
Alternatively, one may think about the transformation changes the sparse matrix into the form
of

S O W
[ S

Allin all, affine bounds on the u parameter can generally be derived automatically, at compila-
tion or run time, and the tightness of the approximation does not have an immediate impact
on performance.

4.3 Modeling Control Dependences

To model control dependences on dynamic conditions, we introduce additional data depen-
dences associated with exit predicates and their definition statements.

An exit predicate definition and check is inserted at the beginning of each iteration of a
dynamic counted loop. At code generation time, all statements in the body of the counted loop
will have to be dominated by an early exit instruction conditioned by its predicate. This follows
Benabderrahmane’s method for while loops [BPCB10], but without the inductive computation
and loop-carried dependence on the exit predicate. Of course, we delay the introduction of
goto instructions/changing back to the dynamic conditions until code generation, to keep
the control flow in a statically manageable form for a polyhedral compiler. For example, the
code in Figure 4.3(a) is preprocessed as the version in Figure 4.3(b) before constructing the
affine representation.

The control dependences are therefore converted into data dependences between definition
statements and the body of dynamic counted loops. Each statement in a dynamic counted
loop is associated with a list of exit predicates. These predicates should be attached to the
band node dominating the dynamic counted loop, and will be used to guard or terminate the
execution within the over-approximation iteration domain bounded by the u parameters.
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for (i=0; i<100; i++){
m=f (i) ;
n=g(i);
for (j=0; j<m; j++)
for (k=0; k<n; k++)
S(i, j, k);

(a) Dynamic counted loops

for (i=0; i<100; i++){
m=f (i) ;
n=g(i);
for (j=0; j<ul; j++)
for (k=0; k<u2; k++)
if (j<m && k<n)
S, 3, k);

(b) if conditional

Figure 4.3 — Conditional abstraction

4.4 Scheduling

The u parameter and conversion of control dependences make it possible to approximate
dynamic counted loops in the polyhedral model, at the expense of traversing a larger itera-
tion space. We may thus apply any affine scheduling on this “approximated static control
program’, to safely compute a correct schedule tree preserving all dependences. Based on the
result of scheduling, we may leverage the mark node and extension node for accomplishing
transformations for dynamic counted loops while preserving the correctness of the program.

4.4.1 Schedule Construction

The original domain node, as shown in Figure 3.3 can be expressed as

Domain={S5y(i); S1(i); S2(i) : 0 < i <100} 4.2)

Note that statement S, is modeled as an one-dimensional statement without our technique.
With the introduction of the u parameter and conversion of control dependences, we may
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obtain a new domain node as

Domain={5¢(i); S1(i): 0<1<100;S2(7, j, k) : 0= i <100A0< j<uy AO< k < up}
(4.3)

and a correct schedule tree representation shown as below.

domain

[So(2) — (0); S1(7) — (i); S2(i, j, k) — ()]

sequence

T

{So(D} {S1(0)} {S2(1, j, k)}

[S2(7, j, k) — (j); S2(i, j, k) — (k)]

Figure 4.4 — A correct schedule tree of the example

Note that this schedule tree has not been applied any transformations and can be viewed as the
original schedule tree representation. The dynamic parameters are assigned at their definition
statements, and then virtually read by statement S, implicitly guarded by the negation of the
exit predicates. This can be modeled as read and write (affine) access relations:

Read ={S2(i, j,k) > m[l110<i<100A0<j<uy AO<k<uy; .4
So(i, j,k) = nll10<i<100A0<j<u AO<k< us} '

Write={So(i) — n[];S1()) » m[] 10 <i <100} 4.5)

According to the variant of the Pluto algorithm implemented in isl [Ver10], one may set the
validity dependences, associated with semantics preservation, to

Validity= (Read ' oWrite' + Write ' oRead' + Write LoWrite)

(4.6)
N(Schedule < Schedule’)

and the proximity dependences, associated with locality enhancement, to
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4.4. Scheduling

Proximity = (Read Lo Write' + Write ! o Read' + Write 1 oWrite'

4.7)
+Read ' oRead')n (Schedule < Schedule')

where Schedule represents the original schedule constructed from the original code according
to the procedure above, and the ' (primed) maps distinguish iterations in dependence.

We can then compute a new schedule that applies the variant of the Pluto algorithm using

New_Schedule = schedule Domain under Schedule 4.8)
respecting Validity and minimizing Proximity '

In other words, the scheduling algorithm may safely compute a new schedule, starting from
the original one shown in Figure 4.4, preserving all dependences and attempting to minimize
the reuse distance.

4.4.2 Schedule Transformation

Once a correct schedule tree representation can be obtained, we are allowed to leverage any
types of schedule nodes to apply schedule transformations. Indeed, it is possible to apply
transformations and generate code without any special handlings on the current schedule
tree. However, the generated code would waste a great number of iterations due to the over-
approximations caused by the u parameters and conversion of control dependences, thereby
inhibiting performance improvements.

Marking Dynamic Counted Loops. As we introduced before, a mark node can be used for
retaining any pieces of information to schedule trees. We therefore are allowed to insert
mark nodes above the nodes representing the dynamic counted loops, implying the child
node would be considered as dynamic counted loops. As a consequence, one may obtain a
schedule tree with a mark node shown in Figure 4.5. The only information we need to retain to
amark node is a string, i.e., “dynamic_counted_loops”. The reason behind our intention
to leverage a mark node comes from the strategy used in PPCG [VCJC*13] for generating
thread-level synchronization instructions.

One may now use the schedule tree with mark nodes shown in Figure 4.5 for schedule trans-
formation. As there are two separated, tilable band nodes in the schedule tree, a scheduling
algorithm would identify the outer band node, corresponding the outermost i-loop in Figure
3.1, leading to a coarser parallelism. Without such abstraction, it would be impossible to
model the whole program as a SCoDP, as the polyhedral model could only obtain a schedule
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domain

[So(@) = (0); S1() — (0); S2(, J, k) — (D]

sequence
T
(So(1) S 120,400
|

mark: “dynamic_counted_loops"

[S2(7, j, k) — (j); S2(i, J, k) — (k)]

Figure 4.5 — Inserting mark nodes in the schedule tree

tree like Figure 3.3 shows, missing dependence information about S, and therefore failing to
identify the outer tilable band.

Recall that we have mentioned in the previous section, an alternative way is to narrow the
SCoP by only considering the j-/k-loop nest and treating the dynamic upper bounds as sym-
bolic parameters, but such modeling strategy may introduce more frequent synchronizations
by exploiting fine-grained parallelism or misses the data locality along the outermost loop
dimension.

After applying schedule transformation, we need to handle the introduced mark node. One
may notice that there exist two dynamic counted loops in the example, but we only introduce
one mark node since the j-loop and k-loop are combined into one band node. The Pluto
algorithm or its variants would always try to combine loops into one tilable band because
such combination would exploit nested parallelism and hereby creating opportunities for
more transformations. As transformations have been applied (for example, the scheduling
algorithm may strip-mine the outer band or tile the inner band), we are free to split such
combined band node. As a result, the schedule tree would be transformed into the following
format (we do not represent the transformations that may have been applied in the figure).

In other words, a mark node would be broadcast to each dimension of a combined band node
after splitting no matter whether such dimension is a dynamic counted loop. In case where a
normal loop is also marked with such mark node, one can determine by checking whether the
loop iterator appears in the predicates introduced for conversion of dynamic control. We will
explain this issue further in the next section.

Non-affine Extensions. Extension nodes can now be used to replace each occurrence of the
mark node. A mark node can only be used to attach additional information but not for custom
implementations. As can be found from Figure 4.6, the loop dimension information is not
present in a mark node as such information cannot be determined when introducing mark
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domain

[So(d) = (0); S1(2) — (i); S2(4, j, k) — ()]

sequence

i

{So()} {S1(0)} {S2(i, j, k)}

mark: “dynamic_counted_loops"

[S2(i, j, k) — ()]
|

mark: “dynamic_counted_loops"

Figure 4.6 — Mark nodes with split band nodes

nodes. Besides, a mark node may also be broadcast after schedule transformation, making the
retaining of further information like loop dimensions impractical at that stage.

domain

[So (D) — (); S1(2) — (); S2(i, J, k) — ()]

sequence

i

{So ()} {S1(} {8201, j, k)}

extension: [i, j] — exit()

extension: [i, j, k] — exit()

[S2(i, j, k) — (k)]

Figure 4.7 — Replace each mark node with an extension node

Figure 4.7 shows the schedule tree with each mark node being substituted by an extension
node. Unlike mark nodes, an extension node can be used for recording loop nest information,
calling for a custom implementation during code generation. We use an explicit expression in
each extension node for the illustrative purpose, followed by the context used in the imple-
mentation of schedule trees. An extension node can be represented with a map, relating the
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loop nest information to an early exit statement which implies an early exit instruction should
be emitted.

Emitting early exit statements could be implemented differently depending on the target
architecture. Generally, we force the code generator to change the introduced u parameters
back to the original dynamic conditions when targeting CPUs, while a goto statement would
be introduced for GPUs. The reason behind the different implementations is due to the
different programming models used on different targets, as we will explain in detail next
section.
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Generation of Imperative Code

Once a new schedule is produced, additional transformations can be applied on band nodes,
to implement loop tiling or additional permutations, strip-mining for vectorization, etc. Even-
tually, one needs to return to imperative code through a so-called code or AST generation
algorithm. AST generation is a performance-critical step in any polyhedral framework. We
extend the code generation scheme of Grosser et al. [GVC15], itself derived from the algorithm
by Quilleré et al. [QRWO00] and its CLooG enhancements and implementation [Bas04].

When the Grosser et al. algorithm traverses the band nodes in a schedule, it projects out the
local schedule constraints from the domain node. As the dynamic upper bounds are not
modeled in the iteration domain (the domain node in the schedule tree and subsequent filter
nodes), the generated loops will iterate from 0 to u. It is thus necessary to emit an early exit
statement (for GPU architectures) or change the over-approximated static upper bound back
to the original dynamic condition (for CPU architectures). Besides, the introduced control flow
can also be removed when generating code for CPU targets, reducing the control overhead.

5.1 Extending the Schedule Tree

Let us first recall the extensions we made to the schedule tree in the last section. The Grosser
et al. algorithm is not able in its original form to generate semantically correct code for our
extended schedule tree. However, it can be easily modified to handle the special case of exit
predicates that are homogeneous over all statements in a sequence or set node of the schedule
tree (e.g., all statements in a band of permutable loops).

This is facilitated through the syntactic annotation of dynamic counted loops using so-called
mark nodes in the schedule tree. A mark node may attach any kind of information to a subtree;
we used it here to specify which band nodes and which dimensions in those bands involve
dynamic counted loops. To account for affine transformations combining static and dynamic
counted loops (e.g., loop skewing), mark nodes are inserted at every dimension.

One may insert an extension node in a schedule tree to extend its iteration domain, e.g., to
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insert a new statement with a specific iteration domain. In our case, we replace each mark
node with an extension node, inserting a guard statement with the proper exit predicate. In
a first pass, all exit predicates are attached to the band node; a follow-up traversal through
the predicate list lets the AST generator detect whether a dimension of the band node is a
dynamic counted loop, and position early exits at the right level.

In fact, the code generation scheme is designed to complement the standard code generation
procedure with a dedicated “dynamic counted loop template”. This template serves as a
post-processing step after code generation, involving the reconstruction of the exit predicate.
To this stage, we may have to consider the features of target architectures and branch the code
generation template.

We generate CUDA code when targeting on GPU architectures. However, it does not mean
our technique is only restricted to such programming APIs. When launching a CUDA kernel,
a fix-length loop bound should be specified for execution configuration. We may therefore
emit an exit statement every time when an extension node is encountered to force the over-
approximated loops terminate correctly. When we implement a custom code generation
scheme for CPU architectures, we may generate loops amenable to OpenMP directives, im-
plying an exit statement is not allowed to jump out of the parallel region but a dynamic loop
bound is permitted. As a result, we choose to change the introduced u parameters back the
original dynamic computed bounds and remove the associated predicates for eliminating
control overheads.

5.2 Generating Early Exits

When scanning the schedule tree to generate early exits for GPU targets, the AST generator
creates a goto AST node for each of the above-mentioned extension nodes. A goto statement
can be generated from the AST node using the following steps.

Positioning a goto Statement. As shown in (3.1) and Figure 4.7, an extension node is ex-
pressed with a named union map, relating the outer schedule dimensions with the introduced
exit statement. Such outer schedule dimensions could be used for positioning the goto of
each exit statement.

Generating the Guard. During modeling control dependences, a predicate was introduced
at the beginning of each iteration of a dynamic counted loop. Such predicates would be
recorded and passed over to the AST generator. A goto statement should also be guarded
by a predicate by negating one of the conditions of the introduced predicate dominating the
body of the corresponding dynamic counted loop, as the conditions may be a conjunction of
multiple dynamic counted loops, e.g., the code shown in Figure 4.3(b). This can be attained by
checking the appearance of the loop iterator of current dimension in the conditions.
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Determining Whether the Loop is a Dynamic Counted Loop. As we explained in subsec-
tion 4.4.2, the band node with a mark node specifying dynamic counted loop would be split
after schedule transformation, with each dimension marked with the same mark node by
broadcasting the latter. This broadcast may also mark a static loop as dynamic. Of course, all of
the mark nodes would be replaced with extension nodes. When generating a goto statement
by checking each occurrence of such extension nodes, the AST generator should determine
whether the current dimension is a dynamic counted loop. Following the idea of generating
the guard, this can also be achieved by inspecting the appearance of the loop iterator of current
dimension in the conditions of the predicate. One may determine the current dimension is a
static, normal loop provided the loop iterator is not present in the conditions.

Counting Labels. A label destination is required when using a goto statement. As a result,
the AST generator should maintain a global 1abel counter, enforcing the exit statements jump
to the corresponding destinations. The 1abel counter is incremented each time a dynamic
counted loop is encountered, enforcing uniqueness.

5.3 Changing Back to Dynamic Conditions

When targeting on CPU architectures, it may not be allowed to jump in or out of the parallel
region using an early exit statement like goto, but one may change the over-approximated
static upper bound u back to the original dynamic condition. The information to facilitate
such replacement can be attached to an AST annotation node and be the same with those of
the goto AST node in GPU case except the 1abel counter. The code generation is similar to
the case of GPU case, being accomplished by the following steps.

Positioning Dynamic Counted Loops. Like what we have explained in GPU case, the AST
generator has to pick out dynamic counted loops from the band node due to the broadcast of
mark nodes. The method has been introduced above, and the AST generator can follow the
same scheme used in GPU case for recognizing such dynamic counted loops.

Substituting the u Parameters. The AST code generator may look up the predicate list and
extract the condition corresponding to the current dimension. The right-hand side of the
condition can be taken out to substitute the introduced u parameter of a dynamic counted
loop.

Removing Control Overheads. Similarly, each occurrence of the earlier introduced dynamic
conditions at the beginning of each iteration can now be degenerated for eliminating such
control overheads.
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5.4 Code Generation for a Single Loop

The final step is converting the AST to a high level program. When a goto AST node of a
dynamic counted loop is captured, a goto statement conditioned by its predicates is enforced
after the loop body, as well as a 1abel destination after the loop itself. The associated pred-
icates are gathered in a conjunction and wrapped as one conditional, with loop iterators
instantiated according to the loop level. A 1abel is inserted after each dynamic loop as a target
for a goto statement.

for (i =0; i<N; i++) {
for (j =0; j<ul; j ++) {
m=f (i) ;
if (j<m)
S1(i,3);
}
}
for (i =0; i<N; i++) {
for (j =0; j<u2; j ++) {
n=g(i);
if (j<n)
S2(i,3);

(a) Before fusion

for (i =0; i<N; i++) {
for (j =0; j< max (ul ,u2); j ++) {
m=f (i) ;
n=g(i);
if (j<m)
S1(i, ) ;
if (j<n);
$2(i, ) ;
if(j >=m && j >=n)
goto labelO ;
}
labelO : ;
}

(b) After fusion

Figure 5.1 — Fusing two dynamic counted loops
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Changing back to the dynamic condition for a dynamic counted loop is straightforward, but
special cares have to be taken to handle cases with multiple associated predicates. One may
construct a max operation comprising all the associated predicates as the upper bound of a
dynamic counted loop, without removing these introduced control flow since they have to be
there to preserve the semantic of the code.

This schedule-tree-based code generation algorithm enables all kinds of loop transformations,
with the most challenging one being loop fusion. When fusing two dynamic counted loops,
the two sets of predicates are considered, and the early exit statements/max-operation-based
dynamic upper bounds are guarded by/composed of their statementwise conjunction/them.
As shown in Figure 5.1 is the original and fusion result of two dynamic counted loops. One
may conclude from the figure for CPU architectures easily. A normal loop can be treated as a
specific case of dynamic counted loop by reasoning on its static upper bound as a predicate.

Unfortunately this scheme efficiently supports a single dynamic counted loop only, and does
not deal with the expression of parallelism in these loops.

5.5 Flat and Nested Parallelisms

As shown in Figure 4.4, the canonically constructed schedule tree isolates two nested band
nodes to represent different levels of the loop nest. This works fine when the target architecture
is a shared memory multiprocessor. As an illustrative example, Figure 5.2 is the generated
code for a shared memory multiprocessor after the application of loop tiling on the code in
Figure 3.1 with the outermost i-loop being parallelized. We also depict the corresponding
schedule tree representation in Figure 5.3 for reference.

#pragma omp parallel for
for (i=0; i<100; i++) {

m = f£(i);

n = g(i);

for (jj=0; jj<m/BB+1; jj++)

for (kk=0; kk<n/CC+1l; kk++)
for (j=0; j<min(m, jj*BB+BB); j++)
for (k=0; k<min(n, kk*CC+CC); k++)
S(i, jj, kk, j, k);

Figure 5.2 — Code generation with loop tiling for CPU

However, when targeting GPU accelerators or producing fix-length vector code, we usually
expect to combine nested bands to express parallelism at multiple levels, and a constant
iteration count may also be required for data-parallel dimensions. We therefore consider two
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cases depending on the need to extract parallelism across more than one band.

domain

[So(2) — (); S1(2) — (0); S2(i, J, k) — ()]

sequence
T
{So ()} {S1(2)} {S2(i, j, k)}
extension: [i, j/BB] — exit()
[S2(i, j, k) ‘—> (j/BB)]
extension: [i, j/BB, k/KK] — exit()
[S2(i, j, k) ‘—’ (k/CO))
extension: [i, j/BB,k/CC, j] — exit()
[S2(i, j, k) — ()]

extension: [i, j/BB,k/CC, j, k] — exit()

[S2(3, j, k) — (k)]

Figure 5.3 — The schedule tree representation of code shown in Figure 5.2

5.5.1 Flat parallelism within a band

Let us first discuss the case of regenerating imperative code for one or more nested dynamic
counted loops within a single band. As a first step, one may systematically generate condi-
tional statements on exit predicates at the innermost level. Figure 4.3(b) shows an example
illustrating this approach. The predicates of both loops are included in a single conditional,
and generated under the inner loop. Notice that this approach is compatible with affine loop
transformations such as loop interchange, not expressible in [BPCB10] due to the presence of
spurious loop-carried dependences.

Our approach is generally applicable in the context of loop interchange except when one
attempts to permute a dynamic counted loop with its enclosing affine loop governing the
dynamic condition. As we introduce redundant, empty iterations to dynamic counted loops,
we inject early exits for eliminating the effect of such over-approximation. In this special
interchange case, the introduction of early exits may not guarantee the semantic of original
programs. We therefore leave out the introduction of such early exits in this special interchange
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case. As an illustrative example, Figure 5.4(b) shows the result of permuting the dynamic
counted loop with its governing affine loop in the example of Figure 5.4(a). Such treatment
may not remove the empty iterations introduced by the over-approximation but the semantic
of the program could be preserved. In summary, our approach always tries to remove or
minimize the introduced empty iterations but puts the correctness of the program in the first
place, implying that we may have to sacrifice the performance by skipping the injection of
early exits in some rare cases.

for (i=0; i<N; i++) {
m= f£(i);

for (j=0; j<m; j++)
S(1,3);

(a) Original code

for (j=0; j<u; j++) {
for (i=0; i<N; i++) {
m= f(i);
if (j<m)
S(i,3);

(b) After interchange

Figure 5.4 — An interchange example

Yet one still needs to generate early exits in order to avoid traversing a potentially large number
of empty iterations. We may extract the iterators one by one from the predicate list and
generate the corresponding exit statements from the innermost outwards. The exit predicates
are generated in the form of multiple conditionals rather than else branches, as shown in
Figure 5.4 and 5.6. Unlike Jimborean et al. [[CD*14], we do not need speculation on the
number of iterations, since we do not deal with general while loops; our technique always
executes the same number of iterations as the original programs.

Loop tiling is a special case that should be taken into account. Loop tiling involves the insertion
of one or more additional schedule dimensions through strip-mining. When strip-mining
a dynamic counted loop, there should be an exit statement at both levels. For the point
loop—iterating within a tile—the common case above applies. For the tile loop—iterating
among tiles—we align its bounds and strides to follow the structure of the inner loop, so that
its counter can also be compared systematically with the same bound.
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5.5.2 Nested parallelism across bands

Targeting GPU accelerators or producing fix-length vector code motivates the exploitation of
data parallelism within dynamic counted loops, in combination with other nested loops. Since
dynamic counted loops result in nested bands in the schedule tree, the combined exploitation
of multiple levels of parallelism including one or more dynamic counted loops requires special
treatment that is not directly modeled by affine sets and relations. The constraints on the
grid of multi-level data parallelism require the collection of bound information across nested
bands: when launching a kernel, the parameters of the grid must be known and may not
evolve during the whole run of the kernel.

Unfortunately, the statements between nested bands that occur in dynamic counted loops are
used to initialize dynamic upper bounds. Statements in the body of these dynamic counted
loops depend on those definition statements, through the added dependences modeling the
original dependence of the dynamic loop. Still, one can sink these definition statements inside,
within the dynamic counted loops, as a preprocessing step. Figure 5.5(a) shows the code after
sinking the definition statements of the example in Figure 3.1, followed by a depiction on its
schedule tree in Figure 5.5(b).

Note that both dynamic definition statements change into 3-dimensional statements due

to the inward movement. In the schedule representation, we use a “band” to represent the
band node after such operation, which can be expressed as a piecewise schedule, [{Sy(i, j, k) —
(D); 81, j, k) = (0); S2(i, j, k) — (D}, {So (G, j, k) — (j); S1G, j, k) — (j); S2(i, j, k) — (D}, {So (G, j, k) —
(k); S1(i,J, k) — (k); S2(i, j, k) — (k)}]. As a result, the nested bands can be combined again,
with no intervening computation or control flow.

The inward movement of these definition statements is safe with the introduction of the upper
bound u-parameter. Yet as a side-effect of this movement, each definition will be redundantly
evaluated as many times as the number of iterations of the dynamic counted loop itself. This
is the price to pay for a fixed upper bound on the iterations.

Once again, this overhead may be mitigated with additional strip-mining of the outer loops,
to better control the value of u, effectively partitioning the loop nest into coarse-grain sub
computations amenable to execution on a heterogeneous target. Figure 5.6 shows an example
after the application of loop tiling on the code in Figure 3.1, and one may also refer to Figure
5.7 for the schedule representation.

As the nested bands are combined into a single one, a polyhedral framework would identify it
with multiple dimensions of parallelism, partitioning the loop nest into coarse sub-problems
that can be solved independently on heterogeneous platforms.
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for (i=0; i<100; i++)
for (j=0; j<ul; j++)
for (k=0; k<u2; k++){

m=f (1) ;
n=g(i);
if (j<m && k<n)
S, j, K);
}

(a) Sinking the dynamic definitions of the example in Figure 3.1
domain

band

sequence

| T

{SO(l)]»k)} {Sl(lyjyk)} {SZ(Z»]’k)}

(b) The schedule tree of the code shown in Figure 5.5(a)

Figure 5.5 — Sinking the dynamic definition and its schedule tree representation

5.6 General Applicability to Loop Transformations

One of the benefits of our approach with respect to Benabderrahmane et al.’s work [BPCB10]
is its compatibility to various loop transformations. We analyze in this subsection the general
applicability of our approach for each loop transformation presented in Subsection 2.1.3 and
their combinations.

5.6.1 Loop Transformations of Unimodular Matrices

We first analyze the case of loop transformations covered by unimodular matrices [Ban93,
WL91], i.e., loop interchange, skewing and reversal. One may view unimodular matrices as
loop transformations for a single statement because the loop body may always be abstracted
as a black box and the structure stays unchanged under such transformations.

Our approach is compatible to loop interchange, as we explained in Subsection 5.5.1 with a
special treatment designed for permuting dynamic counted loops with the enclosing affine
loop. Similarly, such strategy can also be applicable to loop reversal since the iterations of a
dynamic counted loop would be traversed in a reversed order, guaranteeing the correctness
of our technique by introducing over-approximations. Fortunately, such cases rarely happen
in practice as the control dependences caused by the dynamic conditions prevent such
permutation and they are not seen in our experiments.
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for (1i=0; 1ii<100/AA+1; ii++) {
for (jj=0; jj<ul/BB+1; jj++) {
for (kk=0; kk<u2/CC+1; kk++) {
for (i=ii*AA; i<min(100, ii*AA+AA); i++) {
for (j=jj*BB; j<min(ul, jj*BB+BB); j++) {
for (k=kk*CC; k<min(u2, kk*CC+CC); k++) {
m=f(i);
n = g(i);
if (j<m && k<n)
S, k);
if (k>=n)
goto labelO;
}
labelO: ;
if (j>=m)
goto labell;

}
labell: ;

X
if (kk*CC>=n)
goto label2;
b
label2: ;
if (jj*BB>=m)
goto label3;

}
label3: ;

¥

Figure 5.6 — Code generation with loop tiling for GPU

In fact, the injection of early exits may only be affected by the iteration reordering of a dy-
namic counted loop, i.e., loop reversal, and/or the change of the dynamic condition, i.e., the
interchange with the governing affine loop. As a result, the validation of the correctness of our
method on loop skewing is straightforward, as no such transformations happen in skewing
and the introduced predicates before each iteration of the dynamic counted loop would also
be updated with respect to the result of skewing.

To conclude, our method on dynamic counted loops are always correct for loop transforma-
tions covered by unimodular matrices, and any combinations of these transformations.
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domain

extension: [i/AA] — exit()

[So(i, j, k) — (i/ AA); S135, j, k) — (i/ AA); S2(i, j, k) — (i1 AA)]

extension: [i/AA, j/BB] — exit()

(So(i, j, k) — (j/BB); S1(i, j, k) — (j/BB); S2(i, j, k) — (j/ BB)]

extension: [i/AA, j/BB,k/CC] — exit()

[So(i, j, k) — (kICC); 81(i, j, k) — (k/ CC); S2(i, j, k) — (k/CC)]

extension: [i/AA, j/BB,k/CC,i] — exit()

extension: [i/AA, j/BB,k/CC,i, jl — exit()
|
[So(i, j, k) — (j); S1(Z, j, k) — (J); S2 (i, j, k) — ()]

extension: [ii/AA, j/BB,k/CC,i, j, k] — exit()

[So(Z, J, k) — (k); S1(Q, j, k) — (K); S2(i, j, k) — (K]

sequence

— | T~

{So(i, j, k)} {81, j, k)} {8201, j, k)}

Figure 5.7 — The schedule tree representation of the code shown in Figure 5.6

5.6.2 Loop Transformations in Code Generation

As we explained in Subsection 2.1.3, some loop transformations including loop peeling, un-
rolling, unswitching, are achieved by code generation. Our approach is valid for such cases
since the code generator may only change the loop structure instead of reordering statement
instances. For example, we are allowed to apply our method on each version after loop peeling
and/or unswitching, and the predicate may be introduced before each instance after unrolling.

Similar to the case of unimodular matrices, loop transformations achieved by code generation

can also be viewed as transformations applied on loop nests with a single statement, since the
loop body of each version after such transformations stays unchanged.
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5.6.3 Other Loop Transformations

The analysis on index set splitting [GFL00] can follow the case of loop transformations achieved
by code generation, as we always split the index set by introducing an affine parameter,
implying the loop structure after splitting may stay unchanged.

Strip-mining [KP95], unrolling-and-jam [Bon08, BF03] and loop tiling can be put together as
the first two transformations can be viewed as special case of loop tiling. The interchange
involved in tiling will not change the order of a dynamic counted loop and its governing loop,
neither the iterations of the dynamic counted loop, meaning the introduction of early exits
should always be correct.

The solution to loop fusion are discussed in Subsection 5.4 and the validation of the correctness
is therefore straightforward. One may see loop fission as a reverse transformation of fusion,
and the general applicability of our method for fission is also validated. Loop fusion and
fission are transformations that apply on multiple statements since they change the body of
the loop nest.

As our method is correct on each loop transformation, it should also be correct on all combi-
nations of these transformations.
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Our framework takes a C program as input, and resorts to PENCIL [BBC*15] extensions only
when dealing with indirect accesses (subscripts of subscripts), implying that all arrays are
declared through the C99 variable-length array syntax with the static const restrict quali-
fiers, allowing PPCG to derive the size of the arrays offloaded on the accelerator despite the
presence of indirect accesses, and telling that these arrays do not alias.

We use PPCG [VCJC™13] to generate target codes, a polyhedral compiler that performs loop
nest transformations, parallelization, data locality optimization, and generates OpenCL or
CUDA code. The version ppcg-0.05-197-ge774645-pencilcc is used in our work. In a
follow-up auto-tuning step, we look for optimal parameter values for tile sizes, block sizes,
grid sizes, etc. for a given application and target architecture.

The experiments are conducted on a 12-core, two-socket workstation with an NVIDIA Quadro
K4000 GPU. Each CPU is a 6-core Intel Xeon E5-2630 (Ivy Bridge). Sequential and OpenMP
code are compiled with the icc compiler from Intel Parallel Studio XE 2017, with the flags
-Ofast -fstrict-aliasing (-qopenmp). CUDA code is compiled with the NVIDIA CUDA 7.5 toolkit
with the -O3 optimization flag. We run each benchmark 9 times and retain the median value.
Median rather than the mean, for more stability. Long discussion there, this is not idea either
in general, but more suitable here. Note that the median pushes for an odd number of runs.

6.1 Dynamic Programming

Dynamic programming is an alternative method of greedy algorithms to guarantee an optimal
solution. In computer science, dynamic programming implies the optimal solution of the
given optimization problem can be obtained by the combination of optimal solutions of its sub-
problems, by solving the same sub-problems recursively rather generating new ones. Dynamic
counted loops are usually involved in these problems. We investigate two representative
dynamic programming problems—change-making and bucket sort.

Typically, the change-making problem is used to find the minimum number of coins that can
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add up to a certain amount W and to count how often a certain denomination is used, but
it has a much wider application than just currency. The algorithm is also used to count how
often a certain denomination is used.

Suppose N denominations are provided, each of which is d;(0 < i < N). As long as the given
amount W > d;, the frequency of the i-th denomination will be incremented by 1. As a result,
d; appears as a bound of the inner dynamic counted loop, enclosed by an outer loop iterating
over the total number of denominations. Our technique successfully parallelizes the inner
dynamic counted loop and generates the CUDA code in conjunction with a loop interchange
optimization. We show the performance with different number of denominations N under
different amount constraints W in Figure 6.1. It can be concluded from the figure that the
performance improvement grows with the rise of the the number of denominations.

]+W=128+W:256+W=512+W:1024\

10 | EREDESSENNES S e s S
B I e S-S

100 200 300 400 500 600 700 800 900 1000
N, # OF DENOMINATIONS

Speedup

Figure 6.1 — Performance of change-making on GPU

Bucket sort is a generalization of counting sort, sorting by first scattering the N elements of a
given array into a set of M buckets, sorting each bucket individually, and finally gathering the
sorted elements in each bucket in order. Due to the comparison operations, a sorting algorithm
is inherently not the candidate for parallelization. However, it is possible to parallelize and
optimize the gathering step of bucket sort.

We consider a uniform random distribution of elements of the input array. The algorithm
has to gather size[i] elements in the i-th bucket, whose static upper bound can be set as
N. The dynamic counted loop controlled by the bucket size is captured by our method and
parallelized in the form of CUDA code on GPUs. The performance with different array sizes N
and different bucket numbers M is shown in Figure 6.2, indicating the speedup rises along
with the increase of the number of buckets involved.
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Figure 6.2 — Performance of the bucket sort on GPU

6.2 HOG Benchmark

The HOG benchmark is extracted from the PENCIL benchmark suite!, a collection of appli-
cations and kernels for evaluating PENCIL compilers. The distribution of intensity gradients
or edge directions describe the local object appearance and shape within an image. When
processing an image, the HOG descriptor divides it into small connected regions called cells. A
histogram of gradient directions is then compiled for the pixels within each cell. The descriptor
finally concatenates these histograms together. The descriptor also contrast-normalize local
histograms by calculating an intensity measure across a block, a larger region of the image,
and then using this value to normalize all cells within the block to improve accuracy, resulting
in better invariance to changes in illumination and shadowing.

The kernel of the HOG descriptor contains two nested, dynamic counted loops. The upper
bounds of these inner loops are defined and vary as the outermost loop iterates. The dynamic
parameter is an expression of max and min functions of the outer loop iterator and an array
of constants. We derive the static upper bound parameter u from the BLOCK_SIZE constant, a
global parameter of the program to declare the size of an image block.

Since we target a GPU architecture, we ought to extract large degrees of parallelism from
multiple nested loops. As explained in the previous section, we sink the definition statements
of dynamic parameters within inner dynamic counted loops and apply our AST generation
scheme for a combined band for GPU architecture. We may then generate the CUDA code
with parameter values for tile sizes, block sizes, grid sizes, etc. We show performance results
with and without host-device data transfer time, in Figure 6.3, considering multiple block sizes.
The detection accuracy improves with the increase of the block size. Our algorithm achieves
a promising performance improvement for each block size, and our technique can obtain
a speedup ranging from 4.4 x to 23.3x while the PENCIL code suffers from a degradation by

https://github.com/pencil-language/pencil-benchmark
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