
HAL Id: tel-01986122
https://theses.hal.science/tel-01986122

Submitted on 18 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adapting Communications in Cloud Games
Richard Ewelle Ewelle

To cite this version:
Richard Ewelle Ewelle. Adapting Communications in Cloud Games. Networking and Internet Archi-
tecture [cs.NI]. Université Montpellier, 2015. English. �NNT : 2015MONTS145�. �tel-01986122�

https://theses.hal.science/tel-01986122
https://hal.archives-ouvertes.fr

Délivré par L’UNIVERSITE DE MONTPELLIER

Préparée au sein de l’école doctoraleI2S

Et de l’unité de recherche LIRMM

Spécialité :INFORMATIQUE

Présentée par Richard EWELLE EWELLE

Date de soutenance : 28/08/2015 devant le jury composé de

Mr. Stefano CERRI,Pr,Université de Montpellier Directeur de thèse

Mr. Claude Frasson, Pr,University of Montréal Rapporteur

Mr. Abderrafiaa KOUKAM, Pr,Université de

Technologie de Belfort-Montbéliard" (UTBM),

Rapporteur

Mr. Abdelkader GOUAICH, MCf,Université

Montpellier,

Co-encadrant de thèse

Mr. Laurent LEFEVRE,HDR,Inria, École normale

supérieure de Lyon

Examinateur

Mr. Chouki TIBERMACINE, MCf,Université de

Montpellier

Examinateur

ADAPTER LES COMMUNICATIONS DES

JEUX DANS LE CLOUD

Académie de Montpellier

U n i v e r s i t é M o n t p e l l i e r II
Sciences et Techniques du Languedoc

Ph.D Thesis

présentée au Laboratoire d’Informatique de Robotique
et de Microélectronique de Montpellier pour

obtenir le diplôme de doctorat

Spécialité : Informatique
Formation Doctorale : Informatique

École Doctorale : Information, Structures, Systèmes

Adapting Communications in Cloud Games

par

Richard EWELLE EWELLE

Version du August 28, 2015

Supervisor

Stefano CERRI, Professor . LIRMM, Université Montpellier, France

Joint supervisor

Abdelkader GOUAICH, Associate professorLIRMM, Université Montpellier, France

Reviewers

Abderrafiaa KOUKAM, Professor . Université de Technologie de Belfort-Montbéliard, France
Claude FRASSON, Professor . Université de Montréal, Canada

Examinators

Laurent LEFEVRE, HDR Inria, École normale supérieure de Lyon, France
Chouki TIBERMACINE, Associate professor Université Montpellier, France

i

A la mémoire de mon papa ’Papson’

Contents

Contents iii

Remerciements 1

1 Introduction 3
1.1 Cloud computing and video games . 5
1.2 Cloud gaming advantages . 6
1.3 Cloud gaming limitations . 8

1.3.1 Quality of experience (QoE) . 8
1.3.2 Data security . 9

1.4 Problem statement . 10
1.5 Contributions . 11
1.6 Structure of the thesis . 12

2 Background 13
2.1 Video games . 14
2.2 Online video games . 16
2.3 Cloud gaming . 18

2.3.1 The video streaming approach . 20
2.3.2 The game objects replication approach 21

2.4 Quality of experience . 22
2.4.1 Lag in online games . 23
2.4.2 Causes of lags . 24
2.4.3 Attempts to fix the lag . 26

2.5 Adaptation . 29
2.5.1 Adaptation in video games . 29
2.5.2 Communications adaptation . 30

2.6 Conclusion . 31

3 Adapting Communications in Cloud Games 33
3.1 Inclusion criteria . 34
3.2 Analysis framework . 34
3.3 Related work . 36
3.4 Discussion . 46
3.5 Conclusion . 49

4 Framework Overview and Background 51
4.1 Framework overview . 52
4.2 Level of Detail . 56

iii

iv CONTENTS

4.3 Agents and organization . 58
4.4 Gameplay components . 62
4.5 Conclusion . 65

5 Communication Adaptation Process 67
5.1 Adapting game communications . 68

5.1.1 The network based LoD approach 68
5.1.2 QoE utility . 71
5.1.3 Theoretical properties . 72

5.2 Organizational level of detail . 75
5.2.1 The organization model . 75
5.2.2 LoD and organization . 76
5.2.3 Example . 77

5.3 GC based level of detail . 80
5.3.1 Initial importance distribution . 81
5.3.2 Updating importance . 83
5.3.3 LoD and GCs . 88
5.3.4 Example . 90

5.4 Conclusion . 96

6 Experimental Evaluation 97
6.1 Prototype . 98

6.1.1 Overall game architecture . 98
6.1.2 Game model . 99
6.1.3 ”My Duck Hunt” game . 102
6.1.4 ”Crazy runner” game . 104
6.1.5 Game communications adaptation 105

6.2 Experimentation . 107
6.2.1 Organization based adaptation 108
6.2.2 Gameplay components based adaptation 112
6.2.3 Overall discussion . 120

6.3 Conclusion . 120

7 Conclusion 123
7.1 Contributions . 124
7.2 Results . 125
7.3 Future works . 126

A List of publications 129

Bibliography 131

List of Figures 141

List of Tables 142

Remerciements

Une thèse est une route que l’on ne parcours pas seul. Pour cela avant de vous
présenter mon travail, je tiens à remercier tous ceux qui m’ont aidé à la réalisation de ce
travail.

Mes premiers remerciements vont à mes directeurs de thèse, le Professeur Stefano
A. Cerri et le Docteur Abdelkader GOUAÏCH, pour leurs conseils et encouragements
exprimés tout le long de mon parcours de thèse.

Je tiens également à remercier tous les membres de l’équipe SMILE du LIRMM, pour
leur amitié, leur soutien, leur accueil dans le groupe et les collaborations scientifiques.

Je ne saurais terminer sans remercier le seigneur mon Dieu sans qui rien de ceci ne
serait possible, les membres de ma grande famille au Cameroun pour leurs encourage-
ments, leurs prières et leur présence malgré la distance.

1

C
h
a
p
t
e
r

1
Introduction

Contents
1.1 Cloud computing and video games . 5

1.2 Cloud gaming advantages . 6

1.3 Cloud gaming limitations . 8

1.3.1 Quality of experience (QoE) 8

1.3.2 Data security . 9

1.4 Problem statement . 10

1.5 Contributions . 11

1.6 Structure of the thesis . 12

Cloud computing sector has received considerable attention from global and local In-
formation Technology (IT) stakeholders, national governments, and international agen-
cies. For example, IBM 1 has established cloud computing centres in China, India, Viet-
nam, Brazil, and South Korea. Other global IT majors such as Microsoft 2, VMware 3,
Salesforce 4, Dell 5, and Parallels 6 are actively searching for opportunities around the
world.

1. http://www.ibm.com/cloud-computing/
2. http://www.microsoft.com/enterprise/microsoftcloud/
3. http://www.vmware.com/cloud-computing/
4. https://www.salesforce.com/
5. http://www.dell.com/learn/us/en/555/dell-cloud-computing
6. http://sp.parallels.com

3

4 CHAPTER 1. INTRODUCTION

Many definitions of cloud computing exist and there seems to be no consensus on
what a cloud is. But, generally speaking, cloud computing could be understood as a
hardware and software infrastructure able to provide services at any traditional IT layer
: software, platform, and infrastructure, with minimal deployment time and reduced
costs. The National Institute of Standard and Technology defines cloud computing as
”a model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction” [Mell and Grance, 2011]. In software provisioning for exam-
ple, a high-performance web application can be easily deployed in a remotely virtualized
server running on a distributed hardware infrastructure. Charges are considered only for
resources actually used, while sharing the cloud infrastructure with other users.

It is difficult to talk about cloud computing without referring to the grid computing
paradigm because of their similarities and the fact that cloud computing originates from
grid computing. As a matter of fact, cloud computing can conceptually be viewed as a
kind of grid computing with respect to the definition of grid computing. Grid computing
pioneers Ian Foster and Carl Kesselman, define a grid as ”a system that coordinates
distributed resources using standard, open, general-purpose protocols and interfaces to
deliver nontrivial qualities of service” [Foster and Kesselman, 1999]. This definition shows
the similitude between grid and cloud computing in terms of hardware and software
infrastructure providing an inexpensive access to high-end computing resources for better
quality of service. Giving a detailed comparison of these notions is out of the scope of this
thesis but for further information about their similarities, refer to [Foster et al., 2008].

Video games increasingly gain attention from the entertainment industry and scien-
tific community. Beginning with basic games, they quickly evolved into rich, interactive,
animated and intricate virtual environments approaching movies in terms of visual ex-
citement. This popularity, led the adoption of video games in other training/teaching
disciplines and gave birth to what is now called serious games. Serious games refer to
using video games for serious purposes. They enable video games to become more than
just entertainment tools, but real assets to help increase the effectiveness of training and
teaching. Moving these game applications to the cloud will increase their accessibility
and therefore their popularity. This is referred to as cloud gaming. In fact, cloud gaming
is a type of online gaming that allows direct and on-demand streaming of games onto a
receiving device.

This chapter introduces the context of this research which is building video games with
cloud gaming paradigm. More precisely this thesis is about delivering player’s quality of
experience (QoE) by putting in place an intelligent client-server communications in cloud
gaming platforms. The end result is an adaptive communications scheme that deals with
network constraints while maintaining an acceptable user experience.

After exposing the motivations behind the use of cloud computing for video games,
we analyse and discuss the state of art of cloud gaming systems; the research question is
then stated and followed by an overall presentation of our proposition and contributions.

1.1. CLOUD COMPUTING AND VIDEO GAMES 5

1.1 Cloud computing and video games

The potential of cloud computing is vast, and current cloud computing application
sectors include academics, health-care, business and entertainment.

Why cloud computing

Depending on the sector, cloud computing adoption is motivated by many factors.
Here are some examples of institutions that embraced cloud computing:

— In scientific research, for some universities, high-end computing power avail-
ability through cloud computing for research purposes is welcomed. For instance,
researchers at the Medical College of Wisconsin Biotechnology and Bioengineer-
ing Center in Milwaukee are making protein research more affordable to scientists
worldwide [Susa, 2009]. They do this by renting processing time on Google’s power-
ful cloud-based servers. Since with cloud computing there is neither maintenance,
nor setup overhead, researchers are able to reduce the cost of their studies and
analyze their data in greater depth than it was previously attainable.

— In healthcare, as a good example of cloud computing utility, Max Healthcare,
a large hospital chain in India, moved its Health Information System (HIS) to
a private cloud-computing system provisioned by Dell. This makes it easier for
Max Healthcare to treat and follow up with patients from any of its locations
across the country. As Max Healthcare adds more hospitals to their network, the
cloud deployment gives a near plug-and-play capability for information technology
deployment [Groen, 2012].

In May 2009, Guang Dong Hospital of Traditional Chinese Medicine has imple-
mented a suite of healthcare data-sharing and analytics technologies, known as
Clinical and Health Record Analytics and Sharing (CHAS). Hospitals use CHAS to
share electronic medical records (EMRs), incorporating this data across the hospital
network [Kshetri, 2010].

Cloud computing adoption for health purpose have also generated a lot of interest
in the research community in the past few years. For instance [Doukas et al., 2010]
and [Rolim et al., 2010] , propose a telemedecine service that automates patient’s
information workflow from data collection to information processing and delivery
in healthcare institutions using cloud computing.

— In business and entertainment, just like in education and healthcare, infor-
mation technologies implementation in business organizations is a high resource-
consuming process. Using cloud computing in business has been an effective way to
deal with this issue. In media and entertainment industry, using cloud computing,
media companies are able to develop new and better ways to quickly and efficiently
deliver content to fine-grained targeted consumers while potentially reducing costs.
Companies such as Amazon, Apple, Google and Netflix are big players for deliver-
ing entertainment via the cloud. Some of the most used cloud applications nowa-
days include Google apps, Youtube, Instagram, Spotify, Netflix, Facebook, Twitter,
LinkedIn.

To summarize, it is clear that cloud computing can be beneficial for many industries.
Among others, the entertainment industry is particularly well suited for cloud comput-
ing. In fact, cloud gaming operators exploit cloud computing accessibility and ubiquity

6 CHAPTER 1. INTRODUCTION

features to deliver game content around the globe. Cloud gaming enables video games to
be played with various types of client devices and to be accessed as easily as movies and
music through the Internet.

Cloud gaming

Cloud gaming, also referred to as on-demand gaming [Nvidia, 2014], is a type of online
gaming that is similar to video on demand. It allows a direct and on-demand streaming
of video games using ”thin” clients. In the architecture point of view, cloud gaming is a
client-server system, where the actual game is stored and run on operator’s data center
(server) and graphics or game states are directly streamed to client devices. Clients game
states are therefore synchronized with the server, in order to replicate the game as it
is executed on the server. Massive computation and storage resources of data centres
enable users to shift their workload to remote servers. Consequently, with the supply
from remote servers, thin clients can be more convenient and also more powerful, than
traditional thick clients without the server’s supply.

Cloud gaming nowadays is a reality and companies such as Onlive 7, G-Cluster 8,
StreamMyGame 9, Gaikai 10 and T5-Labs 11 are already offering commercial cloud gaming
services.

This new sector is also seen as a serious competitor for traditional game market. This
has prompted video game majors such as Sega, Ubisoft, Epic Games, Atari, Warner Bros,
Disney Interactive studio to establish partnerships with Onlive to distribute their games
[Onlive, 2014].

1.2 Cloud gaming advantages

Besides computing power and storage volume, five main reasons can motivate usage
of cloud gaming:

— Flexibility: cloud gaming takes advantage of cloud computing flexibility to adjust
resources allocation based on dynamic demands, in a manner which is transparent
to players.

— Ubiquity: games are available at anytime from almost any device including thin
clients such as smart phones and tablets. With broadband internet connections, it
is even possible to access games from literally everywhere in the world.

— Cost : for game studios, cloud computing offers a cost and energy efficient cen-
tralization of gaming infrastructures. In fact, game studios are able to reduce their
operating cost by delegating the responsibility of operating and maintaining game
infrastructures to cloud gaming providers. For players, having to buy an expensive
PC or console to play good quality video games is no longer a necessity. Cheap thin
clients such as smartphones and tablets are already very popular, and can be used
to access these same games via cloud gaming.

7. http://www.onlive.com/
8. http://www.g-cluster.com/
9. http://streammygame.com/

10. https://www.gaikai.com/
11. http://www.t5labs.com/

1.2. CLOUD GAMING ADVANTAGES 7

— Security compliance and privacy: player’s game data (sensitive of not) are
collected in a single point of control. This centralized approach reduces hacking
and ”cheating” possibilities since only the server holds the game logic. Players are
able to access these data from everywhere and at any time. In health oriented
serious games for instance, patient’s clinical information and training curves are
strictly confidential, that is the reason why it is paramount to centralize these data
and host them on certified operator’s premises.

— Set up overheads and compatibility issues: trying new games sometimes
requires to install new softwares and deal with hardware incompatibility between
the game and player’s device. This can be a time consuming and dissuasive task
that can even prevent players from purchasing new games.

This problem is also present in most institutions adopting video games as a peda-
gogical tool in a large scale. For instance, we encountered this problem in MoJOS
project. MoJOS was a serious gaming project, started in 2009, with the objective
of creating a health-oriented game engine, with a focus on arm rehabilitation after
a stroke [MojOS, 2009]. During the course of this project, we deployed several re-
habilitation games in hospitals such as the hospital Lapeyronie in Montpellier and
the hospital of Grau du roi. The installation and the configuration of the whole
serious gaming system was a very time consuming task. Some therapists were even
reluctant to use this technology because of this setup overhead and the time it took
to start a training session. In addition, most healthcare institutions do not have
the finances to hire new personnel dedicated to setting up these games for patients.

With cloud gaming, video games are hosted and upgraded at the server level, rather
than on each individual client device. There is no need to constantly upgrade clients
computers and no compatibility issues when trying new games.

— A new economic model: with cloud gaming, video games are available online on
subscription. Players can start playing games right after the subscription, without
having to wait for games to be shipped or go to a physical store to purchase games.

Some of these features are exhibited in the onlive cloud gaming solution as shown in
figure 1.1.

Figure 1.1 – Onlive cloud gaming solution [Onlive, 2010]

8 CHAPTER 1. INTRODUCTION

1.3 Cloud gaming limitations

As promising as it is, cloud gaming is also facing many challenges that, if not well re-
solved, may prevent its adoption. The most important are related to quality of experience
perceived by players and data security.

1.3.1 Quality of experience (QoE)

In various formal and informal definitions, player experience has been framed as a
”subjective measure of the degree to which a system meets the target user’s tacit and
explicit expectations for experience” [Beauregard and Corriveau, 2007]. In video games,
player experience is a broad concept that determines player’s overall perception of a game.
It includes many subjective factors influencing the degree of satisfaction of the player with
a game. Some of these factors are: his/her feelings, his/her understanding of the game
rules, difficulty of the game, interactions, aesthetics, storytelling etc.

Quality of experience, can be considered as the objective component of player ex-
perience. It represents measurable technical aspects of game quality and has a direct
relationship with the traditional Quality of Service (QoS). In fact, in video games, it is
proven that QoS metrics such as video frame rate and response time have a direct influ-
ence on player’s perceived QoE [Wu et al., 2009]. Moreover factors such as the amount of
game entities in the virtual world and the resulting processing load have also been corre-
lated to the user QoE [Miller et al., 2014] . These QoS metrics are easy to measure and
have consistent thresholds beyond which player’s QoE is degraded [Miller et al., 2014].

In centralized networked games, as far as objective game quality is concerned, system
response time plays a significant role. It can be defined by the time needed to detect
a user-initiated input event, to send it to the server, to process it, to send the updated
game state to the client and to render the updated game state on the output device. This
definition shows that, along side with processing power, available bandwidth for inputs
and updates transmission can have a considerable impact on response time therefore on
player’s QoE.

As a matter of fact, there is a strong correlation between network conditions, game’s
responsiveness and video quality. Low bandwidth capacity and a drastic presence of
limiting network factors such as delay, jitter or packet loss, can cause important lag in
the player-game interaction and eventually decrease the smoothness of the game video.
That is one of the reasons why, depending on requested video quality, cloud gaming
providers always set a minimum bandwidth requirement to play a game. For instance,
Onlive [Onlive, 2010] requires a minimum bandwidth of 2 Mbps for all their games, which
are delivered only in HDTV 720p format. Unlike Onlive, StreamMyGame supports game
streaming in a variety of resolutions, from 240p to 1080p, requiring an Internet connection
between 256 Kbps(240p) and 30 Mbps(1080p).

We can see with these examples that, cloud gaming services have very strong require-
ments in terms of network resources. In fact in order to ensure the delivery of QoS for bulk
data transfer generated by cloud games, a certain amount of network resources should be
available on the receiving end.

The bandwidth related issues of cloud gaming can therefore be summarized as follows:

— Thin clients with low bandwidth capabilities as well as people located in areas with
limited network resources, can not take full advantage of cloud gaming at its current
state. Another example is people subscribed to a 3G/4G networks with limited data

1.3. CLOUD GAMING LIMITATIONS 9

connection per month can not afford playing games with bulk data transmissions.
An interesting alternative will be, letting clients with low bandwidth access these
games, and even better, allowing clients with different network capabilities to play
the same game with approximately the same QoE.

— In current cloud gaming systems, a client with unstable network resources, will see
its game session stopped if its network throughput drastically dropped bellow the
required minimum. These network conditions fluctuations can happen in case of
congested network due to the presence of concurrent network traffic for example.
Cloud gaming platforms therefore need to take into account network conditions
changes, while minimizing game disruption which is very detrimental to player
experience.

The objective of this thesis is then to make it possible for devices with low and/or
unstable network capabilities, to run cloud games with an acceptable QoE.

1.3.2 Data security

The recurrent dilemma presented by cloud computing for security professionals is to
be able to embrace its benefits while maintaining security controls over sensitive data
and assets. According to Vormetric [Vormetric, 2012], some of the most important data
security challenges of cloud include:

— There is a crucial need to protect confidential data. These sensitive data are gen-
erally protected by the law. Therefore cloud providers have to put in place the
adequate security (confidentiality, integrity, availability) policy in order to ensure
that sensitive data are kept safe. In practice, a cloud provider may have control
and visibility into your data, and this constitutes a violation of the law on personal
data. This is the main reason why, most healthcare institutions hesitate when it
comes to moving their systems in the cloud.

— In order to reduce costs, most cloud service providers share physical resources and
services between multiple consumers and client organizations (tenants). In this
scenario, a tenant can deliberately or inadvertently interfere with the security of
the other tenants. To prevent this to happen, there is a necessity to apply a logical
segregation and other controls between tenants.

— Data mobility worldwide is regulated by the law. There are often legal issues be-
tween cloud service providers and governments, relative to government rules such
as the EU Data Privacy Directives and the CNIL in France, with regards to sen-
sitive data. Cloud providers must have the required certifications and respect the
regulation in place, in order to store or process sensitive data.

— Lack of standards about how cloud service providers securely recycle disk space
and erase existing data. Meaning that your data may still be accessible even after
”deletion” from operator’s data base.

All these challenges make it difficult for cloud service providers to deliver their services
with adequate level of security. All over the world, there are regulations over sensitive
data like medical data to make the service providers (hosting or processing these data)
accountable for any security flaw. In this thesis, we will not focus on security concerns,
but it is worth noting that any public cloud gaming service needs to follow the guidelines
of the regulations in place concerning sensitive data. This includes meeting the security
challenges caused by the cloud. These challenges are even more present in serious gaming.

10 CHAPTER 1. INTRODUCTION

1.4 Problem statement

Our study focuses on the interaction between video games and cloud platform, more
precisely on the efficiency of the game data synchronization mechanism between client
and server for QoE support. Even though the motivations for this thesis was in serious
gaming, our approach and contributions have to be generic enough to be applied to
all game categories. We aim at building a distributed game engine for cloud games, and
application programming interfaces (APIs) with pre-defined network-based functions that
enable an efficient execution of video games in the cloud.

In cloud gaming, bandwidth issues represent an important challenge as explained in
section 1.3.1. Hence in the context of health oriented serious games for example, facilities
with lossy and/or unstable network access, will not be able to train their patients via
these traditional cloud gaming services. This is the reason why, in order to preserve
game accessibility and ubiquity, we need to: (i) weaken these network constraints; (ii)
minimize the effects of network conditions fluctuations on player’s QoE; (iii) ensure the
transmission of the game content.

Thus the general question guiding this thesis is:
✎

✍

☞

✌

– How to build cloud games that are accessible on devices with limited
and/or unstable network resources, while maintaining an acceptable
player’s QoE?

In order to respond to this question, we have identified the following research chal-
lenges: (i) a game model aware of game’s communications needs; (ii) game’s communi-
cations adaptation to network conditions.

Game model

In fact, in order to be able to decrease game’s network resources constraints and
respond to network fluctuations, game systems have to be able to control the amount of
network communications generated by games.

We consider a game as a collection of scenes populated with game objects. These
objects represent physical game entities that players see on the screen. They are the only
game elements that are synchronized between client and server, as they are sufficient to
reproduce game scenes in a client-server game architecture. The first step in attempting
to control game’s network communications is therefore to find a model representing the
game communications profile in terms of game objects and network resources. Actu-
ally, game objects can have different importance in game scene, therefore they may be
subjected to different network requirements vis-a-vis state updates transmission. Thus
the communications adaptation process needs to know this abstract representation of the
game in order to deliver appropriate QoS to each game object.

Communications adaptation

In shared networks, individual throughput of each user can change at any moment. In
addition, the ”best-effort” nature of Internet, makes it prone to delay, latency and jitter.
Each of these network factors can contribute to response time’s prolongation. In online
games, a prolonged response time creates lags in player’s interaction with the game and

1.5. CONTRIBUTIONS 11

consequently results to a bad player’s QoE. As a matter of fact, network delay, a cause of
lag in player-game interaction is considered as ”fun killer” in online games in general. We
therefore need a system capable of: (i) fostering player experience by controlling game’s
communications in low bandwidth networks in order to provide QoE support against lag
in cloud games; (ii) adapting game’s communications to current network conditions in
unstable network setups.

1.5 Contributions

The contributions of this thesis are summarized as follow:

Game models

During the course of this thesis, we presented two adaptive game models enabling us
to express different sensitivity to network lag, thus different communications needs among
game objects, depending on their importance in the game scene. These models are then
used to adjust objects’ importance as the game evolves. They are based on principles of
agents organizations and gameplay components.

With agent organization, the focus is made on objects’ functional role in the game
scene. Then a mapping is made between roles and importance values. In that way,
a change in object’s role changes the object’s importance. Our organizational model
clusters game objects with the same role in groups and the network resources attributed
to game objects are proportional to their role in the game organization.

With gameplay components (introduced in [Francillette et al., 2012]), complex game
mechanics are decomposed in simple components also known as OCR loops. These loops
are then combined hierarchically to form a gameplay components tree representing the
game. Each node of the tree is assigned an importance value that changes as the tree
evolves (nodes are added or removed) and each game object is associated with a node.
Each time a gameplay component is added or removed from the tree, and even when it
simply ends, the importance values of the rest of the tree are recalculated. This enables
nodes’ importance values to adapt to the changes in the game tree.

Adapting communications for cloud games

The main contribution of this thesis consists of a game’s communications adaptation to
maintain player’s QoE, inspired by level of detail principles [Wissner et al., 2010]. The idea
is to monitor current network conditions, and changes in game objects’ importance in the
game scene, and use our adaptation model to adjust game’s communications accordingly.
The game models presented above are used to manage changes in objects’ importance.

This communications adjustment is performed in two steps: the first step is reorga-
nizing the game model, in case of changes in game objects’ importance; and the second
is selecting appropriate communications levels for game objects. A communications level
identifies the amount of network resources attributed to the game objects (determined
by synchronization rate). This adaptation can affect game communications in two ways:
(i) it decreases game communications when network conditions are low, by replacing
objects’ current communications levels by levels with lower synchronization rate; (ii) it
increases game communications in case of favorable network conditions. This bidirec-
tional adaptation approach results in the maintenance of an acceptable QoE in case of

12 CHAPTER 1. INTRODUCTION

network resources shortage and the improvement of the QoE in case of better network
throughput.

We validate our approach using prototype games in a controlled environment and
assess user’s QoE in pilot experiments. Results show that the proposed adaptation
framework provides a significant QoE enhancements, compared to a solution without
adaptation.

1.6 Structure of the thesis

The rest of the document is organized as follows:

— Chapter 2 presents the backgrounds of the thesis by emphasizing on main concepts
such as video games, cloud gaming, quality of experience and game adaptation.

— Chapter 3 presents the state of the art in cloud gaming and the attempts to maintain
acceptable player’s QoE in constrained networks by adapting game communications
to the network conditions. This study enables us to point out the weaknesses of the
existing approaches and therefore support the need to propose a new one.

— Chapter 4 introduces the general framework used for adaptation, as well as the core
concepts on top of which our adaptation framework is built. This includes level of
detail in 3D graphics, agents organization and gameplay components.

— Chapter 5 presents our game’s communications adaptation approach, inspired by
the level of detail technique. Current network conditions and game objects’ impor-
tance are used as inputs for adaptation.

— Chapter 6 presents prototype implementations and experimental evaluations of our
proposition. We describe the pilot experiments carried out and show the results. We
conclude the chapter with a general discussion on the QoE enhancement provided
by our approach on lossy and congested networks.

— Chapter 7 draws the conclusions about the proposed approach and discusses some
future directions.

C
h
a
p
t
e
r

2
Background

Contents
2.1 Video games . 14

2.2 Online video games . 16

2.3 Cloud gaming . 18

2.3.1 The video streaming approach 20

2.3.2 The game objects replication approach 21

2.4 Quality of experience . 22

2.4.1 Lag in online games . 23

2.4.2 Causes of lags . 24

2.4.3 Attempts to fix the lag . 26

2.5 Adaptation . 29

2.5.1 Adaptation in video games . 29

2.5.2 Communications adaptation 30

2.6 Conclusion . 31

This chapter presents the background of our work. First, we discuss in section 2.1 and
2.2, the definitions of video games and present core concepts such as online games and
update/render game loop. Section 2.3 presents cloud gaming technologies such as video
streaming and game objects replication. Section 2.4 introduces the concept of quality
of experience (QoE) in games and discusses lag and its effects in online games. Finally,
adaptation is introduced in section 2.5.

13

14 CHAPTER 2. BACKGROUND

2.1 Video games

Different definitions of game can be found in literature. These definitions attempt to
capture different principal aspects of games: some focus purely on game as an activity with
characteristics such as uncertainty and unproductivity, others focus on rules governing
the game, and while others emphasize on game outcomes.

One commonly cited definition in this domain, is given by R. Caillois in 1961 [Caillois,
1961]. R. Caillois identifies a game as an activity and emphasizes the voluntary and un-
productive aspects of game as well as game rules. He defines a game as ”an activity which
is essentially: free (voluntary), separate (in time and space), uncertain, unproductive,
governed by rules, make-believe”.

Katie Salen and Eric Zimmerman consider a game as ”a system in which players
engage in an artificial conflict, defined by rules, that results in a quantifiable outcome”
[Salen and Zimmerman, 2003]

According to these definitions, a game can be viewed as a regulated activity with an
entertaining purpose in which players can act. Objectives in games are expressed as a
formal system of quantifiable goals.

Juul Jesper in 2003 emphasizes the player-game interaction, and puts players’ actions
and feelings as part of the outcome equation [Juul, 2003]. He describes a game as ”a rule-
based formal system with a variable and quantifiable outcome, where different outcomes
are assigned different values, the player exerts effort in order to influence the outcome,
the player feels attached to the outcome, and the consequences of the activity are optional
and negotiable.”

Games require also a set of artefacts, known as game media, to be played (e.g. minia-
tures, a ball, cards, a board and pieces, or a computer). However, the given definitions
above emphasise on the separation between the game as an abstract structure of actions
and as an artefact.

As a matter of fact, there is no single game medium, but rather a number of different
game media to play the same game. Furthermore, we know that many games actually
move between media. For example card games are played using playing cards or on
computers. The computer just happens to be one of the various existing game media.

This leads us to the definition of a video game which is simply a game that uses a
computer as medium [Hawes, 2004]. This definition of video game as computer-controlled
game is also shared by Zyda [Zyda, 2005]: ”A video game is a mental context, played with
a computer in accordance with specific rules that uses entertainment”.

So before presenting video game’s concepts such as the update/render game loop, we
should first describe the structure of a game independently from the technologies.

Game structure

A game, as any system, has a specific structure with well defined components. Game
engineering process starts by identifying and specifying these components explicitly to
produce a game design document.

The most important components of a game structure can be summarized as follow:

— Action: Players interact with game environment using a finite set of actions. In
video games for example, player’s actions are gathered through a controller device
such as a keyboard, a mouse or a console controller, connected to the game platform.

2.1. VIDEO GAMES 15

These low level inputs are translated to high level actions and interpreted to change
the game state according to dynamics rules.

— State: Every game has an explicit state represented with a specific formalism.
A state fully describes the game process at any time. In the game of chess for
example, game state is represented by squares on the chessboard and their contents.
Actions therefore allow players to navigate through the space of possible states. This
navigation is constrained by game’s rules.

— Rules: Rules in games are constitutive rules [Chauvier, 2007]: they regulate and
identify the game. Rules generally determine turn order, rights and responsibilities
of players, goals, rewards and penalties as well as game’s dynamics. Any alteration
of game’s rules changes the identity of the game. For instance, baseball can be
played with ”real” baseballs or with wiffleballs. So changing an element of the game
medium does not necessarily change the game. However, if players decide to play
with only three bases, they are arguably playing a different game.

— Goals: Goal characterizes particular states of the game where players are rewarded
(success state) or punished (failure state). Players have to mobilize all means al-
lowed to achieve game goals by reaching success state while avoiding failure states.
Goals have to be achievable; as soon as they become unattainable with certainty,
the game ends. The journey towards the achievement of a goal is usually referred
to as a quest. A game can have multiple quests with different goals.

— Challenge: Challenge represents a set of factors that can delay the player in
her/his quest and can ultimately contribute to his failure. Among these factors we
can name:

1. player’s skills and aptitudes,

2. other players or game entities which goals conflict with the player’s goals,

3. unpredictability, the dynamic and the non-deterministic nature of the game.

Game update/render loop

In a game engine, game loop can be considered as a repeating chain of events that
creates the game dynamics. The first step of a game loop is to update the game’s state
according to players’ inputs; this is followed by rendering a view of the game’s state.
This entire cycle of update and rendering is repeated a number of times per second. The
number of updates per second defines the update speed while the number of rendering
per second defines the FPS (frame per second).

A generic game loop is presented in figure 2.1. The game starts with an initialization
stage to create initial objects and load necessary assets. Once the initialization stage is
completed, the game loop is repeated until the player quits the game. When a terminal
state is reached, the end stage is executed to free used resources and quit the game
environment properly.

A detailed description of each stage is given by [Whitaker, 2014]:

— Initialization stage: It is the entry point of the game, where all required pre-game
setups need to be performed. This may includes loading content, preparing input
devices, and initializing game state. This stage is only executed once.

— Update stage: The update stage calculates the game’s state at the current time.
The common tasks done in this stage are: (i) gathering of player’s actions through

16 CHAPTER 2. BACKGROUND

initialization

Update

get player’s
input

update
game model

Rendering

update rate

render the
model

end

Figure 2.1 – Game loop.

inputs devices; (ii) updating object’s state within the game; (iii) executing game
logic and running the scripts controlling the behaviors of the Non Player Characters
(NPCs)(in the video games jargon, this is referred to as AI). The running frequency
of the update stage is generally referred to as the update rate, which is usually
around 20 times per second.

— Rendering stage: The rendering stage draws a snapshot of the entire game model
and renders it on a video output. The rendering frequency is defined as Frame Per
Second (FPS). A common concern around rendering is the ability to anticipate
this frequency so that, the game does not appear choppy and its smoothness is
maintained. 20 FPS is usually the minimum, and it relates to the eye perception
frequency limit.

— End stage: The end stage cleans up everything that is no longer needed. This
usually corresponds to disposing art assets (image, font, etc.) that were loaded by
the graphical processing unit (GPU). After the cleaning up, the game exits. This
stage is also executed once.

2.2 Online video games

Also known as networked games, online video games are video games played through
a network. Online gaming supports gaming over different kinds of networks (e.g: Local
Area Networks (LANs), Internet), and enables players to connect to multiplayer games
as well as monoplayer games.

Depending on realtime requirements of their gameplays, multi-player video games of-

2.2. ONLINE VIDEO GAMES 17

ten follow two synchronization patterns: asynchronous gameplay and synchronous game-
play. From these patterns result different network resources requirements.

In an asynchronous gameplay, players are not required to be online simultaneously. In
fact, their actions can be performed asynchronously at different times. Still, game state is
updated coherently and rules ensure that the rate of actions per player is fairly balanced.

Most online social games are asynchronous games where the player can interact with
a virtual environment without necessarily having other players connected and interacting
at the same time. FarmVille 1 is an example of such a model.

Unlike asynchronous gameplay, synchronous gameplay enables multiple players to be
online and to interact with the game world simultaneously. Synchronous multiplayer
games are the most greedy in processing and network resources, thus they are more likely
to be impacted by low and unstable network conditions. Because of these considerations,
online games with synchronous gameplay are the one that will benefit the most from an
efficient resources distribution for better performance.

Depending on the game and the level of control given to the players, different categories
of architectures are often utilized to build online games. client-server is the most common.
Here a server is responsible of running game logics and communicating updates to clients.
A client sends inputs to the server, receives game state updates from the server and
updates the game accordingly. This configuration can involve multiple clients connecting
to a single, central server which is required to have an important processing speed and a
high bandwidth capacity to process all clients’ inputs.

In an online game with the client-server architecture, several configurations are possi-
ble here. The server can be either a broadcast server (simply broadcasts players’ actions
from one client to others) or a centralized server(receiving players’ actions and running
the game logic). The inconvenient of the broadcast server is that, it offers ”cheating”
opportunities. In fact, with a broadcast server, a client runs and controls the game logic
locally. The player can therefore modify the game states in a way that gives him/her an
advantage over other players. A centralized game logic, where only the server knows the
actual state of the game, is a solution to most cheating problems. With this setup, the
client and the server have a representation of the game model. The client side periodically
synchronizes its local game model with the server side remote game model which is the
central one. This is done by receiving update messages about state changes in the central
game model.

As illustrated in figure 2.2, differences between single-system game loop of figure 2.1
and this client-server system with centralized game logic are:

1. On the client side: Two more tasks are added to the update stage: (i) client
gathers inputs from the controller device, and sends them to the server; (ii) client
receives update messages from the server, and then updates its local game model.

2. On the server side: There is no rendering stage. In fact the server only runs the
game logic which receives players’ inputs, updates the central game model accord-
ingly and then sends update messages to the client. All the update code (objects’
updates, Non Player Characters (NPCs)’ updates, collision detection, etc.) is exe-
cuted here.

If update messages from the server do not arrive at a fast enough rate, game data
on the client game model will be outdated and therefore rendering will not reflect the

1. Farmville is a farming social network game developed by zynga, allowing players to cultivate their
farms by plowing, planting and harvesting crops and trees. https://zynga.com/games/farmville

18 CHAPTER 2. BACKGROUND

initialization

Update

send player’s
input

receive updates

update
game model

Rendering

render the
model

end

CLIENT

initialization

Update

receive
player’s input

update
game model

send updates

end

SERVER

cloud

Figure 2.2 – Client-server game loop

current state of the game as it is on the server. These game loops show the effect that
can have network latency and server’s update frequency on the overall end-to-end lag.
This can decrease the perceived quality of the game, since updates and inputs have to
cross the network.

2.3 Cloud gaming

Cloud gaming can be defined as a client-server gaming paradigm where the game
logic is placed on the server’s side and managed as a cloud service. Another strong
characteristic of the cloud gaming paradigm is the ability to use low-end or thin devices
to play high quality games. Depending on how game’s workload is divided between cloud
servers and clients, four main trends can be defined:

1. 3D graphics streaming: In 3D graphics streaming approach [Eisert and Fechteler,
2008], [Jurgelionis et al., 2009], the server executes the game logic, intercepts graph-
ics commands, compresses these commands and streams them to clients. The client
renders the game scene by executing the received commands using its own graphics
chip. Client’s graphics chip must be not only compatible with streamed graphics
commands but also powerful enough to render game scenes in high quality and at
real time. Since rendering is done on client devices, this approach is less suitable to

2.3. CLOUD GAMING 19

resource-constrained devices, such as mobile devices and set-top boxes for television
sets.

2. Video streaming: In this approach the server renders all graphics, compresses
resulting videos and streams them to clients [Holthe et al., 2009; De Winter et al.,
2006]. Clients only decode and display the video stream. This approach relieves
clients from computationally intensive graphics rendering and is ideal for thin clients
on resource-constrained devices. Computational load is now paid with network
load since transmitting videos is more expensive than transmitting just graphic
commands.

3. File streaming: File streaming approach [cloudtweaks, 2013] makes it possible to
download game content in form of fragments. The actual game is executed on user’s
game device. A small part of the game, usually less than 5% of the total game size,
is downloaded initially so that players can start playing quickly. The rest of the
game content is downloaded while playing. File streaming uses advanced methods
of progressive downloading, data compression and prediction algorithms to provide
steady motions and smooth visuals.

File streaming has low bandwidth requirement to operate and is less sensitive to
problems associated with video streaming such as lag and the need of high network
resources. File streaming solutions for cloud gaming such as Kalydo 2 enable to
cache the downloaded content on user’s device, so that no download will be needed
the next time the user plays the game.

4. Objects replication: With game objects replication or state streaming approach
[Ferretti et al., 2007], the game is executed on the server. Game objects (game
model) states are collected and streamed to clients. Clients update their local game
model and render the resulting game scene using their graphics chip. This approach
shares advantages and disadvantages of the 3D graphic streaming approach since
clients are responsible for graphic rendering. Game objects replication is mostly
used on Massively Multiplayer Online Games (MMOGs) [Cronin et al., 2002], [Fer-
retti and Roccetti, 2005] systems to diminish the delivery time of game events, while
maintaining full consistency of game state.

These approaches have advantages and disadvantages, but depending on the context
of the game and the resources of the user device, one of them can be preferred to another.
3D graphics streaming and video streaming follow the same principles. However, gain
obtained by the 3D graphics streaming in network resources is compensated by GPU
resources since rendering is done on client device.

File streaming is a good solution for users with lower bandwidth devices. But with
the use of prediction algorithms, and client-side rendering, it results into a heavy client
(CPU and GPU) running the game which is not ideal for resource-constrained devices.
”Cheating” can also be an issue with file streaming, since for the next time the game is
played, no download is made and all game logic is executed on client device.

In this thesis we are only going to focus on video streaming and objects replication
approaches. Many reasons motivate this choice: their wide spread adoption in the cloud
gaming industry; they do not imply cheating and they keep their clients thin by offloading
all computations to the server. These approaches are presented in more details in following
sections.

2. http://kalydo.com/

20 CHAPTER 2. BACKGROUND

2.3.1 The video streaming approach

Most of industrial cloud gaming systems are based on video streaming [Onlive, 2010],
[G-Cluster, 2012], [StreamMyGame, 2007], [T5-Labs, 2007]. In this configuration, only
the server maintains a representation of the game model. The actual game is stored,
executed and rendered on the server. clients simply gather inputs from users and send
them to the server. clients receive video streams from the server and display them to their
screen. When launched client contacts the server to establish a connection and start the
game. As explained in [D. Barièeviæ et al., 2011], there are usually two connections for
each client: one connection to send the user’s controller inputs to the server and another
connection to receive video stream from the server. Figure 2.3 shows this game loop.

initialization

Update

send player’s
input

receive
the video

Video

display
the video

end

CLIENT

initialization

Update

receive
player’s input

update
game model

Rendering

render the
model

encode
the video

send the video

end

SERVER

cloud

Figure 2.3 – Cloud game loop: Video streaming

The client game loop runs two main stages: update stage and video stage. On the
update stage, the client polls for input events from the user. When an event is received
it is written into a packet and sent to the server. The client then receives packets from
the server, containing the video stream.

On the video stage, when a complete frame has been decoded, it is displayed in the
user’s screen.

2.3. CLOUD GAMING 21

A typical server game loop also runs two main stages. An update stage that receives
inputs from the client and passes those inputs to the game model. A rendering stage that
captures frames from the game, encodes them into a video, and then stream the video
output to the client.

2.3.2 The game objects replication approach

Game objects replication approach uses the same game loop as the client-server archi-
tecture presented in figure 2.2. Both client and server have a representation of the game
model and synchronization packets are sent repeatedly. The difference between a client-
server with the cloud gaming paradigm and a classic client-server setup are summarized
as follow:

— Client’s update stage: The idea of cloud gaming is to allow thin clients to run
complex games by limiting the amount of computation required on client devices.
So the client’s update stage should do as less computation as possible before handing
the game model for rendering. Therefore, there is no client-side prediction involved
here.

— Server’s update frequency: The frequency at which the server sends game up-
dates has to be fast enough to be greater than the client’s rendering frame rate.
Otherwise the client will notice a lag in the responsiveness of the game, in the
motions of game characters and in the smoothness of the game in general.

For example, for a game running at 60 FPS, normal client server games can have the
server sending an update every 200 ms (5 Hz without lag problems. This is possible
because the client uses techniques such as interpolation, extrapolation and client-
side prediction to predict game states. With the cloud gaming paradigm, there is no
prediction. The client simply updates the objects’ states with the received packets
and proceeds to the rendering stage.

So the server will need to send update at a rate closer to the client’s frame
rate(something greater or close to 60 Hz, or one update every 16,66 ms). We
can immediately see that the commonly used server update frequency for classic
client-server games (5 Hz) is not appropriate for a lag free game using cloud gam-
ing paradigm. A higher frequency and therefore more bandwidth are required on
server side for an acceptable QoE.

Both video streaming and objects replication have benefits when it comes to delivering
a good game experience in online games:

— With video streaming, games are accessible everywhere on different types of devices.
Even devices with low CPU capabilities since clients only plays a video stream. No
extra client side processing is required. The inconvenient is network bandwidth
needed to receive the video stream.

— With objects replication, games are also accessible from everywhere, but client
devices have to be powerful enough to do the processing required to render video
displays using their own GPU. The price paid in computational power is rewarded
by some gain in bandwidth requirements. In fact replicating game objects on clients
requires much less network resources than streaming video frames.

In this thesis we aim at using the object replication approach in the cloud gaming
paradigm by assuming no extra client-side processing. This way, clients with low pro-

22 CHAPTER 2. BACKGROUND

cessing power can run games using less bandwidth than with traditional video streaming
games.

2.4 Quality of experience

User experience is generally referred to when evaluating the quality of the interaction
of a user with an interactive system. In fact the ISO definition refers to user experience
as the result of user-system interaction that can be influenced by the system, the user
and the context of use [ISO, 2010].

Many concepts are used in the game community to refer to player experience. De-
velopers often describe a game and gameplay with words such as fun, feeling, scary,
atmosphere, feel, immersion, presence, satisfaction, having a good time etc. All these
words refer to subjective characteristics and, just like player experience, are not simple
components that can mechanically be built into the game.

A commonly cited user experience characterization is the one introduced by Mihaly
Csikszentmihaly in 1991: flow zone. Flow zone is a psychological state between anxiety
and boredom, where the user experiences a feeling of optimal focus and engagement on
an activity with great level on enjoyment [Csikszentmihalyi, 1991]. Some of the major
elements of flow are: challenge, direct and immediate feedback, concentration on a task,
sense of control, loss of self-consciousness and altered sense of time. Even though flow
refers to a subjective psychological state, most of its elements can be objectively evaluated
and correlated to perceived quality of experience.

Quality of experience provides an assessment of human expectations, feelings, percep-
tions, cognition and satisfaction with respect to a particular product, service or applica-
tion [Crespi et al., 2011]. User’s QoE of a service can evoke a wide range of emotions and
attitudes. These emotions and perceptions of human experience make it very challenging
to measure and analyze QoE factors with precision and accuracy. In general, there is
a direct correlation between the user’s QoE and the user’s experience. In video games
for example, player’s QoE is often considered as a more objective equivalent of player
experience. Many studies have tried to objectively characterize player’s QoE [Chen and
El Zarki, 2011], [Verdejo et al., 2010], but the individualistic nature of some aspects of
human experience makes a completely objective evaluation approach to QoE nearly un-
achievable. This is the reason why most evaluation models of QoE [Chen et al., 2009],
[Chang et al., 2010] have resorted to the subjective evaluation methodology called the
MOS (Mean Opinion Score) rating test [Rec, 1996], using players’ opinion rating to assess
players’ QoE.

Properties defining QoE can be multidimensional. For example, QoE for VoIp con-
versations includes criteria for sound quality such as voice loudness, noise levels, etc. In
online gaming, the main quality of experience properties that are found in the research
community [Chen et al., 2009; Ida et al., 2010; Chen and El Zarki, 2011] are:

— interactivity refers to the ability of the game to interact with the player, allowing
a two way flow of information between them.

— responsiveness refers to the time taken for the system to respond to an event.
This property represents the player’s perception of the game process.

— consistency or fairness refers to the degree of difference in the presentation of
the virtual world among all players for a multiplayer game.

2.4. QUALITY OF EXPERIENCE 23

— smoothness refers to how smooth the game visuals are. To what extent motions
in the game are smooth and steady. The number of FPS can play an important
role in determining the smoothness of a game.

— precision refers to the degree of accuracy required to complete an action success-
fully.

Fairness or consistency represents a shared property owned by all players in the game,
whereas interactivity, responsiveness, smoothness and precision are personal properties
related to each player.

Among those properties, the ones reported most frequently are no doubt interactivity
and responsiveness, and both can be heavily influenced by network parameters such as
network delay and packet loss. In fact, a lag perceived in the interactivity and the
responsiveness of the game as well as the smoothness for an online game can be caused
by various sources. The most recurrent of them will be disclosed in next section.

2.4.1 Lag in online games

In networked games, there is a misconception about terms such as delay, latency and
lag. In general, ”delays” are due to hold-ups in data being sent (e.g., packet processing,
queuing due to network congestion, or retransmission of data due to packet loss). On
the other hand, ”latency” basically means ”inherent delay” (e.i., delay caused by underly-
ing technology or network being used). It represents physical attributes of the network
medium. For example the latency of a Wide Area Network (WAN) is always greater than
the latency in a LAN. The overall transmission delay is therefore a combination of the
network delay and the underlying network latency.

”Lag” is used to characterize a perceived unexpected delay. For example, player’s
input transmission delay can be extended because of built-in latency of the network itself
and as a result the player can experience a lag in his/her interaction with the game.

In general, lag is strongly correlated to the time it takes to run the game loop. Two
main types of lag are most reported in interactive applications such as games: update lag
and input lag.

The main difference between both lags is that, the update lag is not directly related
to an action from the player, whereas the input lag is mostly associated with an action
performed by the player. This differentiation is supported by Matthias Wloka in virtual
reality in general [Wloka, 1995]. He defines input lag as: ”the time between when a user
performs an action and when the application displays the result of that action”. Input lag is
also known as the end-to-end lag (see figure 2.4). It hence influences game’s responsiveness
and interactivity, which (as we saw in the previous section) are very important for player’s
QoE and enjoyment of the game.

The update lag is more about the delays in the execution of the game logic. It concerns
the server’s update phase where actions of game objects are executed and game model is
updated. It is also referred to as the spectator lag, and can also be found in simulations,
since there is no user-system interaction.

As human beings, we are extremely sensitive to lag. For instance, depending on the
task and the surrounding environment, a lag of as little as 100 ms can degrade human
performance. In the same token, a lag exceeding 300 ms, causes the human to start to
dissociate his/her movements from displayed effects, thus destroying any flow state [Held
and Durlach, 1991].

24 CHAPTER 2. BACKGROUND

Client Server Model

sendInput()

updateModel()

Update lagUpdate lag

sendUpdate()

Input lagInput lag

Figure 2.4 – Input lag and update lag

The example of figure 2.5 illustrates input lag as it applies to targeting and shooting
at another character with an instant-hit weapon in an online game.

Lets imagine a scenario where a player with a weapon is trying to shoot at a game
character (Xaero in the figure). At the same time, s(he) is experiencing 200 ms of delay.
At this moment of the game, because of lag, the character will be seen at position (1)

on player’s screen instead of position (2) where it actually is on the server. If the player
presses the attack button, his/her command with the button pressed will reach the server
when the character is at position (3). Consequently, the player will miss it. To be able
to hit the character, the player will have to target the position (3) even though s(he) is
seeing it at the position (3).

With this example, we can see how a lag can affect the real-time nature of a game.
The responsiveness of the game is degraded and players with no precise control of the
game, will perceive their experiences more negatively.

2.4.2 Causes of lags

To understand the lag experienced by end-users, it is important to determine the
response time of network games. The interactive response time is defined as the elapsed
time between when an input of the player is captured by the system and when the result of
this trigger can be perceived by the player. [Choy et al., 2012] formulated the interactive
response time T of a cloud game. This overall delay includes several types of delays:

Formulation:
T = Tclient + Tnetwork + Tserver

— Tclient is the playout delay, which refers to time spent by the client to send controller
inputs, receive game updates and display the resulting scene on the screen. Client’s

2.4. QUALITY OF EXPERIENCE 25

Figure 2.5 – The Effects of lag on targeting [Unlagged, 2002]

hardware is responsible of Tclient; it is the notorious ”built-in 50 ms lag”. This delay
can be the consequence of bursty graphics (Central Processing Unit (CPU)/Graphic
Processing Unit (GPU) Interaction), bursty application (CPU/Memory), hard-drive
accesses, memory management/swapping and background apps/tasks.

— Tnetwork is communications delay referring to the time it takes for data transmission
from the client to the server and vice versa. Internet Service Providers (ISP) and
data centers of cloud providers are responsible for this delay. Communications delay
is affected by poor client bandwidth, long routes (hops), high latency, packet loss,
faulty equipment, ISP congestion, backbone congestion and bursty datagrams.

— Tserver is the processing delay which refers to time spent by the server to process
incoming information from the client, to update the game model and to transmit
the game state back to the client. This delay is affected by a number of compu-
tational parameters: input processing (validation of user actions), per-user calcu-
lations, output processing (per-object message passing), server network bandwidth
and back-end interactions (e.g Database).

[Beverly, 2009] illustrates the distribution of these main causes of lag. According
to this study, playout delay, communications delay and processing delay are in average
respectively responsible for 35%, 30% and 35% of the overall lag experienced by players.

These are average values that change from one game to another. In addition, studies
on traditional gaming systems have found that different styles of games tolerate different
thresholds for maximum latency before the QoE begins to degrade. [Claypool and Clay-
pool, 2006] introduces a novel categorization of the effects of latency on different player
actions based on two salient action properties: the precision required to complete the ac-
tion and the deadline by which the action must be completed. Using this categorization,
M. Claypool et al. classified games into two interaction models:

26 CHAPTER 2. BACKGROUND

— The Avatar model, where player controls a single character, and interacts with the
game world through that character. Generally, the character exists at a particular
location in the virtual world and can only influence its local vicinity. First person
shooter (FPS) games, role-playing games (RPGs), action games, sports games and
racing games are all examples of game genres that have an Avatar interaction model.
These games have actions with higher precision and tight deadlines, making them
sensitive to even modest latencies (e.g, first person shooter games, latency around
100 ms).

— The Omnipresent model, where player has the possibility to view and interact with
different aspects of the game world simultaneously. The player is said to be om-
nipresent controlling the entire set of resources under his/her control. The player’s
actions, thus have a more global influence than do actions in an Avatar model.
Real-time strategy games (RTS), and construction and simulation games (CMS)
are examples of game genres with Omnipresent interaction model. These games
have actions with lower precision and loose deadlines. Thus are nearly impervious
to typical Internet latencies (e.g, strategy games, latency around 200 ms).

2.4.3 Attempts to fix the lag

Both players and game developers are trying to find solutions for the lag damaging
online gaming experience. Figure 2.6 illustrates different attempts to limit delay and its
effects on QoE.

Client

35% of lag

Server

35% of lagInternet

30% of lag

What players do
— upgrade,

— get faster hardware
— improve your ISP,

— get more bandwidth,

— lower latency,

— use LAN

— find better server,

— closer, faster, less
load,

— local hosting

What developers do

— game design,

— network code optimi-
sation

— can not fix the Inter-
net

— proper infrastructure,

— scalable graphics,

— low requirements,

— network code optimi-
sation

Figure 2.6 – Fixing lag

2.4. QUALITY OF EXPERIENCE 27

1. Players: since they can only control their devices and the connection they can
have, the two obvious solutions for them are:

— For the playout delay: players can simply upgrade their devices by acquiring
faster hardwares (CPU and GPU).

— For the network delay: players can acquire more bandwidth from their ISPs
for lower latency or host the server on a LAN for less latency.

— For the server delay: players must find better game servers. These are servers
that are faster, have less load and are closer to their locations to minimize
the network latency. The servers may simply choose to drop clients with high
latencies in order to avoid having to deal with the resulting problems. They
can also decide to deploy their server locally on a LAN.

2. Game developers: they have no control over the internet, nor the client hardware,
but they have a range of techniques that they use to optimize their games against
lag issues. They can use:

— Game design: here two design principles are possible; structure the server
system to avoid lag and latency (restrict number of players par game server,
use asynchronous gameplay, partitioning/sharding 3, use lots of servers) or hide
the latency by using animation and prediction.

— Network code and protocol: the network code can implement some bandwidth
conservation techniques and some delay compensation techniques such as dead
reckoning. The description of these techniques will be presented in next sec-
tion.

— Server infrastructure: choose the ”best” server infrastructure possible to host
the game.

— Scalable graphic system with low system requirements: MMOGs such as World
of Warcraft tolerate very high latencies (500ms+) and have very low system
requirements because of their Last Gen 3D graphics [Dean and Kim, 1999].

Networking techniques

To optimize the network traffic, several state of the art techniques have been developed
empirically and are implemented in most networking game engines. They can be divided
into two groups: bandwidth conservation and delay compensation techniques.

Bandwidth conservation

This category gathers techniques that minimize bandwidth usage and cope gracefully
when bandwidth is constrained. Most known techniques are:

1. Encoding and compression: Compression means reducing message’s size by
finding a more compact way to represent it. Making messages smaller enables to
speed up transmissions by reducing bandwidth requirements [An et al., 2012]. In
video streaming for example, the performance of video encoding and compression
algorithm is very important in reducing transmission delay. The most used standard

3. The partitioning and sharding techniques exploit the geography of the game world, decomposing
the game into different areas, each of which can be mapped to a hosting server.

28 CHAPTER 2. BACKGROUND

of video compression in game systems is H.264/MPEG-4 4. H.264 specifies how
compressed video should be decoded; it does not specify how it should be encoded,
thus allowing encoder vendors to be innovative. There are many H.264 compliant
video encoders, with different features and strengths. One commonly used H.264
video encoder is X.264 5. It is a free award winning video encoder implementing the
H.264 standard.

2. Aggregation: Aggregation is a technique used to reduce the overhead associated
with each new transmission. Since messages sent by games are often small, before
being transmitted, they are packed and merged in larger ones thus reducing over-
head of sending multiple small messages rather than one coarse-grained message.

Delay compensation

The delay compensation method, also known as dead reckoning aims to reduce lags
by compensating delays. In fact, as explained in [Pantel and Wolf, 2002], delays are not
reduced directly, but their impacts on QoE can be limited.

In general, dead reckoning calculates a position obtained by measuring or deducing
displacements from a known starting point in accordance with the motion of an object
[Judd and Levi, 1996]. This method is used in many domains such as navigation, inter-
active simulations, military applications and online games.

In online gaming, dead reckoning refers to a method used to predict the state of a
game object (position, velocity, acceleration, etc...) using known states. Attempting
to limit the bandwidth required by the game, this scheme utilizes a reduced frequency
in sending state updates while compensating the lack of information with prediction
techniques [Valve, 2009]. Obviously, predicted movements and actions are not always
trustful and correction of the eventual errors is paramount to maintain a consistent game
state. These eventual restoring actions can further impact player’s QoE.

On the client-side, prediction primitives (interpolation and extrapolation) and anima-
tion are commonly used by the dead reckoning technique to hide the delay. Here is a
brief description of each of these notions:

1. Interpolation: interpolation is a method of constructing new data points between
a range of discrete set of known data points. In online games, clients render three
or more frames per update message. Interpolation systems prevent unsteady and
jumpy motions caused by network delay, by buffering server updates and playing
them back in increments, with smoothly interpolated gaps between.

It can also protect against malfunctions or irregularities caused by packet loss for
example [Valve, 2004].

2. Extrapolation: By contrast with interpolation, extrapolation is the process of
estimating a value of a variable using its last observed values. It is therefore subject
to greater uncertainty. In online gaming, extrapolation attempts to estimate a
future game state. As soon as a packet from the server is received, the position of
an object is updated to the new position. Until next update is received, positions are
extrapolated based on past positions. When a new update is received, extrapolated
positions may be corrected.

4. http://tools.ietf.org/html/rfc3984
5. http://www.videolan.org/developers/x264.html

2.5. ADAPTATION 29

3. Client-side prediction: It is similar to extrapolation, in that, client tries to guess
the state of an object owned by the server. In case of simple extrapolation, however,
the client does not have the benefit of user inputs. In fact, client-side prediction
is always conducted in response to user control inputs. It uses the inputs of the
user to make a better guess about the location of the user-controlled object. Thus,
the client does not just send the user input to the server and waits for an updated
game state in return. In parallel with this, the client also predicts the game state
locally, and gives the user feedbacks without awaiting an updated game state from
the server. Basically, the way this prediction works is that, the client performs
the same simulation that the server will eventually perform on that user input
[GarageGames, 2009].

4. Animation: This technique makes it possible to reduce the lag perception using
animations until receiving server’s updates. For example, in most MMOs, when an
”action” button is pressed to perform an action, a message is sent to the server for
the action, and an animation is played to gain some time until receiving the server’s
acknowledgement.

2.5 Adaptation

The term adaptation can be found in different domains with different semantics. But
in software systems adaptation can be defined as a process by which a system is able
”to adapt itself efficiently and fast to changed demands” [Andresen and Gronau, 2005].
Among the common perspectives of adaptation and adaptive systems, some definitions
refer to adaptive systems as systems with the ability to change their own characteristics
automatically according to the user’s needs [Oppermann, 1994].

Other definitions are more general and do not necessarily associate system adaptation
with user’s needs or preferences. In automatic systems for example, adaptation is con-
sidered as a key feature in developing self-managing, self-configuring, and self-regulating
systems. As a matter of fact, [Dobson et al., 2006] decomposes the system adaptation in
4 verbs that sum up the whole adaptation process: (i) ”collect”: information is collected
from a variety of sources including user needs, network sensors, user context, application
requirements etc. (ii) ”analyze”: collected information are analysed and transformed to
a model used as a basis for adaptation decisions. (iii) ”decide”: decisions are taken us-
ing techniques such as risk analysis, hypothesis generation, etc. (iv) ”act”: the system
acts upon the decisions and changes its behaviour accordingly. Depending on the system,
these changes can range anywhere from interface presentation, to core system behaviours.

2.5.1 Adaptation in video games

In video games, adaptation is often defined as the ability to dynamically change game
objects’ behaviors in accordance with changes in game information. Games generally
use adaptation to provide a better experience to players. This can happen through
game difficulty adjustment, game agents behaviors adaptation, game context adaptation,
unpredictability and challenge, personalized gameplay, etc.

Lopes and Bidarra propose a steering method to guide the adaptation algorithm in
deciding what, when and how to adapt the game [Lopes and Bidarra, 2011]:

30 CHAPTER 2. BACKGROUND

— ”the what” is the reason or the information that starts the need for adaptation. It
is also referred to as adaptation input. In difficulty adjustment for example, the
adaptation first recognizes that consecutive failures are a sign of high difficulty. The
difficulty level of the game must then be decreased [Hocine, 2013].

— ”the when” identifies when adaptation decisions are made. This can be online (dur-
ing the game session) or offline (before or after the game session). As example of
online game adaptation, the adjustment of game characters’ behaviours for better
usage of scarce resources such as computation power is introduced by Mahdi et al.
[Mahdi et al., 2013].

— ”the how” determines actions taken by the game as response to the recognized
information. This depends on the game and the game elements affected by the
adaptation. In the game difficulty example the result will be a generation of a less
difficult game level, whereas in the behaviour adjustment example game characters
will adopt simpler behaviours (with less computational requirements).

2.5.2 Communications adaptation

Nowadays, with the arrival of cloud gaming, real time game traffic over unstable
networks such as wireless and mobile networks is growing at a fast pace. However, inad-
equacy between networks’ capacities and amount of real time communications generated
by games are implying the need for a more dynamic and adaptive communications model.

As a matter fact, communications adaptation is not new to the online application
world. In autonomous systems and wireless networks for instance, the main objective of
communications adaptation is generally to avoid network congestion as much as possible
[El Masri et al., 2011], [Dobson et al., 2006]. In this model, adaptation inputs are col-
lected through network sensors and are used to estimate network congestion and trigger
appropriate adaptation actions.

The same model is applied to networked games. Most game libraries offer game devel-
oper services to adapt their games to network conditions. For example, Torque Network
Library (TNL) [GarageGames, 2009] implements primitives to monitor the amount of
bandwidth being used and enables the developer to build an adaptation strategy by of-
fering virtual methods specifically for reacting to network resources changes. An adaptive
flow control enables TNL to limit the bandwidth by adapting to the number of packets
currently in the network.

Limiting the amount of communication generated by the game, enforces developers
to use compensation techniques such as dead reckoning to replicate game objects’ be-
haviours. So the adaptation here is tailored to ensure an efficient distribution of a limited
resource. This implicitly brings forth the necessity of prioritization or scheduling among
game objects needing network communications for state updates. At the decision stage,
the adaptation process will therefore use these priorities to determine what game objects
need synchronization the most. The objective being that all objects do indeed meet their
communications requirements.

There are two common ways to assign priorities to game objects: static priority and
dynamic priorities. There are advantages and disadvantages to both paradigms, so that
one is more appropriate for certain games while the other is more appropriate for different
games:

— The static priority: game objects’ priorities are set before the game session by
the developer and do not change during the game. The (pre-game) static priority

2.6. CONCLUSION 31

assignment is best for games with simple game mechanics where game objects’
behaviors or role do not change during the game. Some of the main game networking
engines using static priority are, Raknet [JenkinsSoftware, 2011] and Unreal engine
[EpicGames, 2012].

— The dynamic priority: in games with constantly changing game mechanics where
for example an object might be very important at a moment and becomes quite
unimportant a minute later, the idea here is to calculate the priorities during the
game session. The goal is to dynamically adapt to the progression in the game. Ex-
amples of networking engines supporting dynamic priority include Zoidcom [Rüppel,
2011] and TNL [GarageGames, 2009].

2.6 Conclusion

In this chapter, we presented the pre-requisites needed to understand the rest of this
document. We began by defining essential concepts such as video games, online video
games. We showed the difference between two main cloud gaming approaches, namely
video streaming and objects replication and then showed how the quality of experience
is characterized in online video games in general. We presented the lag as the principal
problem of QoE in online games and ended by defining the concept of adaptation and
presenting different adaptation mechanisms in network communications for online games.

C
h
a
p
t
e
r

3
Adapting Communications in Cloud

Games

Contents
3.1 Inclusion criteria . 34

3.2 Analysis framework . 34

3.3 Related work . 36

3.4 Discussion . 46

3.5 Conclusion . 49

Two main approaches are currently used in cloud gaming technologies: video stream-
ing and objects replication. In both approaches, there is usually a fixed synchronisation
rate, and this parameter is set manually and sometimes is ad-hoc, therefore requiring
considerable development costs. Other characteristics of these approaches include:

— With video streaming, there are high bandwidth requirements but with the ad-
vantage of ubiquity and using thin clients. Therefore there is a need for better
alternatives to support low and dynamic network conditions for better player’s
QoE.

— With objects replication, games do not require as much bandwidth as in video
streaming. But there is also a need to minimize network resources usage and to
dynamically adapt to changing network parameters such as capacity limits, delay
and packet loss.

33

34 CHAPTER 3. ADAPTING COMMUNICATIONS IN CLOUD GAMES

As seen in previous chapters, network latency is an important problem to deal with in
the context of cloud gaming given that cloud games require more bandwidth than classical
online games. Consequently, dealing with QoE issues caused by network conditions is a
key problem and appropriate solutions need to be found.

To deal with this problem, two general approaches can be defined:

— lowering bandwidth requirements of cloud games. Thus, players with low bandwidth
networks can benefit from an acceptable QoE.

— being aware of the network conditions to adapt the game itself. In case of network
congestion for example, when the game is aware of network conditions, some el-
ements of the game structure can be adapted to consume less network resources
while maintaining an acceptable game experience.

The objective of this chapter is to present a survey of adaptation approaches used
in cloud games to deal with network constraints in order to maintain acceptable QoE.
We start by stating the inclusion criteria; then the analysis framework is presented. We
continue by presenting the analysis of selected works followed by an overall discussion.

3.1 Inclusion criteria

This survey involves studies found in the domain of game development and interac-
tive applications in general. We focused on scientific literature. Various keywords have
been used for search including: QoE, communications adaptation, game lag, bandwidth
control, online game, networking, game engine, game libraries, game middlewares, video
streaming and cloud gaming. The publication period was set from 2008 to 2014.

From this pool of studies, we have selected those highlighting efficient communications
adaptation in client-server video games with cloud gaming paradigm.

We are interested in game middlewares with generic models and patterns. It is impor-
tant to state that, the lack of openness of commercial systems makes it difficult to find
valuable information and scientific publications. Hence we resorted to a broader scope
of information, including domains such as video streaming which is predominant in the
cloud gaming research community. The sources of this survey come from academic papers
as well as studies and information published online on game developers’ websites, wiki
and blogs.

3.2 Analysis framework

As any control process, the communications adaptation receives some inputs and
produces control outputs. Inputs are variables defined for the player, the network or the
game itself. The output can affect game elements or communications parameters. In the
following we present the analysis criteria considered in this survey: adaptation inputs,
affected elements, message scheduling and models.

Adaptation inputs

With this criterion, we are interested in finding what information is collected to trigger
the adaptation process. In communications adaptation, two categories of inputs are often
found:

3.2. ANALYSIS FRAMEWORK 35

— Network inputs : the probed information here is related to the network layer. Ex-
amples of adaptation inputs are: bandwidth, packet loss rate, latency and delay.
Any change (exceeding a specified threshold) in these parameters usually initiates
the adaptation process.

— Game inputs : these are game data used by the adaptation process. For instance,
a commonly used information in object replication is the priority assigned to each
game object. In this case, when the priority of an object is changed this is reflected
by changing the amount of communications resources attributed to that object.

Affected elements

After analyzing collected inputs, the adaptation process makes decisions. Depending
on the cloud gaming approach, different elements can be affected by these decisions. This
criterion lists all elements potentially affected by adaptation decisions.

For video streaming the adaptation often adjusts game’s frame rate and/or stream
bit rate. This is how a fluctuation in the network conditions alters the resulting game
traffic. For object replication, the adaptation usually acts on the rate control and/or on
the flow control.

Rate control is the process of managing data transmission rate between two nodes to
prevent a fast sender from overwhelming a slow receiver. This rate control can be applied
at two levels: (i) at object level for games supporting objects replication with specific
synchronization rate for each object ”object rate control”; (ii) at network level where all
game objects are synchronized at the same rate ”network rate control”.

Concerning flow control, the objective is to adapt the number of packets currently in
the network to the available bandwidth, in order to limit the risks of congestion. This is
accomplished using a congestion window.

Depending on the streamed data and the nature of the game, different cloud gaming
approaches have different requirements in terms of bandwidth. These data are used to
replicate game sounds and the visual game scene. In this thesis, we are focusing on the
replication of the visual game scene, while leaving game audio data replication for future
works. Identifying the minimum bandwidth necessary for the player to play the game
using the adaptation approaches, is critical in determining to which extent each approach
is greedy in network resources.

Message scheduling

Different synchronization messages have different impacts on lag and different rele-
vance levels for a particular player. For this reason, several game networking engines
implement scheduling protocols to prioritize messages delivery.

Latency-sensitive messages for example, need to arrive before all other information
despite the possibility of delay and packet loss. One way of dealing with this scenario
is to associate each message with a priority value, thus a message with high prior-
ity (latency-sensitive) is sent before, and more often than a message with low priority
(latency-tolerant).

To complement the priority of game messages, most game networking middlewares
provide different levels of reliability to different game messages. In general, highly reli-
able, totally ordered messaging provides high fidelity. Multiple levels for ordering and

36 CHAPTER 3. ADAPTING COMMUNICATIONS IN CLOUD GAMES

delivery are possible using Transmission Control Protocol(TCP) 1 or/and User Datagram
Protocol(UDP) 2.

In some multiplayer game scenario, messages generated are relevant only for a small
fraction of players. Therefore, implementing an area-of-interest scheme for filtering mes-
sages, as well as a multi-cast protocol, could be beneficial. With Interest Management
technique [Morse et al., 2000], every packet is scheduled for transmission with the nodes
that really need to receive it and, consequently, both the traffic and processing burden at
each node are reduced. In addition to priority and reliability, we will also look at interest
management in our analysis of the state of the art.

Models

Adaptation methods present in cloud gaming platforms follow different models or
patterns. In addition, the way the game is structured in terms of game entities, and the
way those entities interact and progress for the accomplishment of the game objective,
can be organized and modeled for fast prototyping and reuse.

Hence we are interested in finding whether the gaming platforms enable any of these
three types of models:

— Adaptation model : depending on elements affected by the adaptation algorithm,
you can have either a rate-based adaptation (bit rate, frame rate, synchronization
rate) or a flow-based adaptation.

— Game model : some objects replication game engines provide developers with a game
structure, generic enough to be reused in other games.

— Priority model : refers to any model for automatic priority adjustment in the game
system with the objects replication approach.

3.3 Related work

This section presents each selected work of the state of the art.

[Rüppel, 2011]

Created in 2002 by Jörg Rüppel, Zoidcom is a network library designed for action
games. Zoidcom provides features for automatic replication and synchronization of game
objects over a network connection. With the latest release in 2011, Zoidcom is freely
available for non commercial use.

Zoidcom is used in several game projects such as My World 3 and Ethereal 4.
Ethereal, is a team-based online-multiplayer shooter game that can handle more than

20 players [Agar, 2012] (see screenshots in figure 3.1)
For message scheduling, Zoidcom supports object level priority and priorities are set

manually. Priorities allow objects with different characteristics to have different synchro-
nization rates. Zoidcom provides rate control functionalities using a dynamic bandwidth

1. http://www.rfc-base.org/rfc-793.html
2. http://www.rfc-base.org/rfc-768.html
3. http://www.sam-ko.com/en/projects/33-my-world-is-now-a-open-source-project
4. https://www.youtube.com/watch?v=455UnqQEqBU

3.3. RELATED WORK 37

Figure 3.1 – Screenshots of Ethereal: 2D multiplayer shooter game [Mogwai, 2012]

limitation and distribution, as well as a control of minimum and maximum synchroniza-
tion frequency for each data item. Object dependencies are used to define the order in
which the update messages are transmitted.

To avoid lags, Zoidcom incorporates latency reduction techniques such as dead reckon-
ing, custom and automatic interpolation between state updates as well as extrapolation
methods. Field of view is used as an interest management criterion, to adjust object
relevance per client. Zoidcom also implements object subscription groups for different,
distinct game areas for example. It uses different reliability levels for different commu-
nications types such as file transfer, session discovery, connection statistics and direct
communications.

Concerning adaptation, Zoidcom implements functionalities that enable the traffic
generated by the game to adapt to the available bandwidth.

In fact with ping 5 measurements, Zoidcom is able to accurately monitor available
network resources and adjust the game’s traffic accordingly.

Zoidcom implements both rate-based and flow-based adaptation. For the rate-based
adaptation, each object’s rate adapts to the current network conditions, varying within
the ranges specified by the developer. As regards to the flow-based adaptation, the
sending mechanism sends individual object updates from highest to lowest priority un-
til bandwidth limits are reached – at which point low priority unreliable messages are
dropped, and low-priority reliable messages must wait.

5. Ping is one of the most widely used active network performance measurement tool. It measures
the reaction time of a connection by sending an Internet Control Message Protocol (ICMP) echo request
packet and reporting the time it takes for the sender to receive the ICMP echo reply packet for its request.
Ping is measured in milliseconds

38 CHAPTER 3. ADAPTING COMMUNICATIONS IN CLOUD GAMES

Zoidcom is very generic, and it does not provide a specific structural model that
developers can use to build their games.

In addition, with Zoidcom there is no explicit reusable model for priorities adjust-
ments, thus the developer has to implement priority adjustment on his/her own if (s)he
needs it.

[JenkinsSoftware, 2011]

RakNet is a high-performance network library designed for games. Like Zoidcom, this
middleware provides features for efficient objects replication in online games with the
objective of reducing lags. RakNet supports many commercial platforms including the
Playstation 3, Xbox 360, PC, iPhone, and Android. RakNet has been integrated as a
network layer in many popular middleware engines such as Unity 6, Steamworks 7 and is
used by leading studios such as Foundation 9 8 and Sony Online Entertainment 9 [IGN,
2011]. It is also used in several commercial multiplayer projects such as: The Slant Six
Games’s multi-platform project [IGN, 2011] and Drakensang Online [Gamasutra, 2011]
by Bigpoint 10.

Network communications is provided by two interfaces: a UDP interface and a TCP
interface with 10 reliability levels. Raknet’s approach allows developers to handle their
own priority scheduling and supports four different priority levels to choose from: IMME-
DIATE PRIORITY, HIGH PRIORITY, MEDIUM PRIORITY and LOW PRIORITY.
Packets with each of these priorities are sent approximately two times more often than
packets with the priority below it.

Raknet does not state how packets with different priorities are processed by the appli-
cation. Instead, it provides several abstract methods that can optionally be implemented
by the game developer to define how the application processes messages of different pri-
orities.

Raknet can monitor available bandwidth and uses object level rate control to adapt
to current network conditions.

Just like Zoidcom, Raknet’s object rates vary within an interval specified by the
developer. In addition, Raknet implements an adaptive flow control using a window
size to limit bandwidth. In fact a congestion window is used similarly to the TCP flow
control, to monitor the amount of packets in the network link. The window size is used
as an indication of how many unreliable packets must be dropped(high drop probability).
Raknet drops all unreliable messages in case of congestion (when the window is full), to
make room for higher priority reliable messages (with low drop probability).

Raknet does not require any specific structural model for the game and since priorities
are static there is no incentive for priority adjustment during game sessions.

[Salzman, 2014]

Created by Lee Salzman in 2002, for Cube game engine 11, ENet is an objects repli-
cation system with a claimed simple, flexible and consistent C/C++ API. It is used by

6. http://unity3d.com/
7. http://www.steampowered.com/
8. http://www.f9e.com/
9. https://www.soe.com/

10. http://www.bigpoint.com/
11. http://cubeengine.com/

3.3. RELATED WORK 39

games such as the commercial SilentWings flight simulator 12 The SilentWings flight sim-
ulator enables players to practice their flight techniques; play online with other pilots in
virtual skies, replay real-flight GPS logs (see figure 3.2). With up to 32 players online
on a selection of several available servers, SilentWings enables also inter-player communi-
cations via online chat. It also features, advanced physics-based algorithms for accurate
simulation of aircraft movements even on poor internet connections [SilentWings, 2006].

Figure 3.2 – Screenshots of SilentWings flight simulator gameplay [SilentWings, 2006]

Enet is distributed as an open source library and provides both reliable
and unreliable transmission of messages. Each message is assigned a flag, with
any combination of the following flags: ENET PACKET FLAG RELIABLE,
ENET PACKET FLAG UNSEQUENCED, ENET PACKET FLAG NO ALLOCATE.
Each flag represents a different reliability level.

In terms of message scheduling, Enet uses the policy ”reliable messages first”, since re-
liable messages are more lag sensitive. Indeed, the reliability flag of a message determines
its level of priority and reliable messages have priority over unreliable messages.

Concerning adaptation, Enet implements a probability driven model for adaptive flow
control. With this model, in case of congestion, unreliable messages are held back to
make room for higher priority reliable messages. In fact, Enet also uses a congestion
window. The drop probability of unreliable packets increases as the window size grows.
When bandwidth is sufficient, all messages are sent; as available bandwidth decreases,
the probability of dropping unreliable messages increases until an equilibrium state with

12. http://www.silentwings.no/

40 CHAPTER 3. ADAPTING COMMUNICATIONS IN CLOUD GAMES

a stable window size is reached. Like the previous middlewares, the adaptation decision is
made on a static parameter assigned manually: the flag. Therefore no priority adjustment
feature is provided. As previous lightweight libraries, Enet is developed to be coupled
with a game engine. Hence it does not provide a specific model to structure game elements
such as scenes, characters and objects.

[GarageGames, 2009]

Torque Network Library (TNL) is a cross-platform C++ networking API designed for
online games.

This library has been used in many commercial projects and won many awards. The
Torque 3D 13 game engine uses TNL to manage bandwidth, delay and packet loss in
multiplayer networked games [GarageGames, 2007]. Derived from the network code of
the first person shooter games by GarageGames 14, Tribes and Tribes 2 [Gamespot, 2001],
the library was released in 2004 and the latest version 1.5.0 dates from January 2009.

Tribes 2 is a team-based game designed primarily for online multiplayers with up to
128 players [MobyGames, 2001]. The game may be played from both first and third
person perspectives. The player must achieve various objectives specified in the scenario,
ranging from attack-and-hold objective, to assaults on enemy fortresses, taking enemy
flags, and more. Weapons vary from the sniper laser rifle to chain guns, to grenade
launchers, to the massive mortar (see screenshoots in figure 3.3).

Using UDP, TNL allows at least 5 levels of reliability implemented at message level:
guaranteed ordered, guaranteed, unguaranteed, current state and quickest delivery.

TNL implements a very fine-grained prioritization scheme for synchronizing objects so
that important objects are updated with a greater frequency. Priorities are numerically
assigned and can be automatically adjusted. TNL also provides a multitude of scheduling
policies such as the ”quickest delivery” which gives a message the highest priority.

TNL does not provide built-in primitives for latency hiding strategies such as interpo-
lation, extrapolation, client side prediction or dead reckoning. Thus making the network
code less heavy for thin clients. TNL provides a mechanism for computing the average
round-trip time of a connection from which these connection latency strategies can be
implemented.

With respect to adaptation, TNL implements primitives to monitor the amount of
bandwidth being used. It also enables developers to build customized adaptation strate-
gies by providing virtual methods specifically for reacting to fluctuations in network
resources.

Similarly to Zoidcom and Racknet, TNL allows developers to setup a rate control
policy that maintains specified minimum and maximum synchronization frequencies.

Along side with this rate control, TNL also provides a receiver-driven adaptive flow
control to limit the amount of packets sent by adapting to the number of packets currently
in the network. For that, TNL uses a window size. When packets are received, it increases
the window size and when packets are lost, the send window is decreased [Dyck et al.,
2007]. A packet is therefore sent only if there is enough room to send another packet.

As a standalone library, TNL does not require a specific game model. Concerning
adaptation model, TNL provides a generic model through virtual classes and methods,
alongside with the receiver-driven control, to adapt to changes in network conditions.

13. http://www.garagegames.com/products/torque-3d
14. http://www.garagegames.com/

3.3. RELATED WORK 41

Figure 3.3 – Screenshots of Tribes 2 gameplay [Gamespot, 2001]

The priorities are adjustable, but just like Zoidcom, TNL does not provide a model for
priority adjustment.

[EpicGames, 2012]

The Unreal Engine is a C++ game engine used to develop ”Unreal” by Epic Games 15

(some screenshots of this game are shown in figure 3.4) Unreal is a first-person shooter
game with a multiplayer mode with more than ten maps [MobyGames, 1998].

The unreal engine has been used for all games developed by the Epic studio. It has
also been used by other studios such as Acony Games with the MMOFPS Hedone 16,
KTX Software with the third Person Action Horror The Haunted: Hells Reach 17 and
Gearbox Software with the first-person shooter Brothers in Arms: Hell’s Highway 18.

All networking service has been implemented an available since the version 3 released
in 2006. The networking architecture of Unreal Engine 3 (UE3) uses a custom multiplayer
client-server model. In this model, the server is still authoritative over game states;
however, clients maintains a subset of game states locally using prediction heuristics.
This is done by executing the same game code as the server, on approximately the same

15. http://www.epicgames.com/
16. http://www.gamespot.com/hedone/
17. http://www.hells-reach.com/
18. http://brothersinarmsgame.uk.ubi.com/hellshighway/

42 CHAPTER 3. ADAPTING COMMUNICATIONS IN CLOUD GAMES

Figure 3.4 – Screenshots of Unreal gameplay [MobyGames, 1998]

data, thus minimizing the amount of data that must be exchanged between the two
machines [EpicGames, 2012].

Unreal divides a game into a set of levels, which in turn contain a set of actors. An
actor is a game object capable of independently moving around in a level and interacting
with other actors in that level. The game state of a level refers to the complete set of all
actors that exist in that level and the current values of their attributes. Every actor has a
Role and a RemoteRole property, with different values on the server and the client. These
variables describe how much control local and remote machines, have over the actor. For
example every actor on a server has a Role set to ROLE Authority ; meaning that the
server has authoritative control over the actor.

With Unreal, message scheduling and communications adaptation are built on top
of this game structure. An Unreal level can be very large and interest management is
applied for bandwidth optimization. The set of actors that a server deems are visible to,
or capable of affecting a client are considered the relevant set of actors for that client.
The sever only informs clients about actors in their relevant set.

Unreal uses a load-balancing technique that prioritizes all actors and gives each one a
fair share of the bandwidth based on how important it is to the gameplay. These priorities
(floating point variable) are assigned by game developer. An actor with a priority of 2.0
will be updated exactly twice as frequently as an actor with priority 1.0.

The network code is based on three primitive low-level replication operations for com-
municating information about game state between the server and clients: actor replica-

3.3. RELATED WORK 43

tion, variable replication and function call replication. Each of these operations can be
processed reliably or unreliably using UDP transport protocol.

For adaptation, Unreal uses available bandwidth as input and actors’ synchronization
frequencies are adjusted according to actor priority. With this rate-based adaptation:
actors with a high priority are usually preferred when the bandwidth is limited. Because
these priorities are purely static and cannot be changed dynamically.

[Onlive, 2010]

Onlive is a commercial cloud gaming platform. It is based on video streaming for
on-demand game service. Game publishers such as Sega 19, Ubisoft 20, Epic Games 21,
Warner Bros. 22, Disney Interactive Studios 23 and others have partnered with OnLive.

Data and graphics are rendered at Onlive remote servers. These servers just take
player’s inputs and stream real-time video of games back to the player using H.264 video
compression standard.

A study of Onlive performance has been conducted by Mark Claypool et al. with
the goal of understanding traffic characteristics of Onlive [Claypool et al., 2014]. The
experimental testbed measured network conditions and frame rates. The authors analysed
the gathered network statistics and other performance data with the following conclusions:

— OnLive requires a considerable internet bandwidth. Indeed, games have high down-
stream bit rates, about 5 Mbps with 1000 byte packets, with much more moderate
upstream bit rates of about 100 Kbps with 150 byte packets.

— Onlive does adapt bit rates to capacity limits (which is a static characteristic of
the network defined by bandwidth capacity and receiver’s capabilities), but does
not adapt bit rates to loss, latency, nor to delay. This means that fluctuations
in network conditions due to congestion are not taken into account by Onlive’s
adaptation scheme.

— OnLive frame rates adapt to both capacity limits and loss, but not latency nor
delay. In fact, Onlive streams video games in different frame rates depending on
the bandwidth capacity.

Onlive recommends a 5 Mbps internet connection to achieve what they consider as
”good performance” and the minimum bandwidth required is 2 Mbps.

Onlive uses the scalability of the H.264 codec to fine tune the video compression rate
in order to adapt the resulting bit rate to the network conditions. This adaptation model
is known as the scalable encoder model. It reduces processing costs since the raw video
is encoded once and adapted by exploiting the scalability features of the encoder.

This frame rate adaptation follows the transcoding model. The transcoding-based
approach in video streaming adapts the video content to match a specific bit rate by
transcoding the raw content. This is usually done by regulating frame rate and/or reso-
lution.

19. http://www.sega.co.uk/
20. http://www.ubi.com/
21. http://www.epicgames.com/
22. http://www.wbgames.com/
23. http://www.disneyinteractive.com/

44 CHAPTER 3. ADAPTING COMMUNICATIONS IN CLOUD GAMES

[Tizon et al., 2011]

[Tizon et al., 2011] presents a framework for remote rendering of 3D and 2D interactive
content required for both gaming and professional applications called Kusanagi. The
architecture of the platform uses a ”lobby server” to act as an interface between users
and applications. The system optimizes the encoding and streaming method to improve
adaptability to available bandwidth. Two kinds of data are streamed: users’ inputs from
client to server and audio/video data from server to client.

The lobby server is responsible of achieving an acceptable QoE for user by implement-
ing resources management functionalities: latency measurement and adaptation.

In this framework, latency is used as input for the adaptation. The authors start
by distinguishing two components of the latency: the intrinsic delay of the network
infrastructure and the congestion related latency. They assume that congestion based
latency is due to an over-estimation of video bit rate compared with user’s available
bandwidth. The idea here is to measure this latency and adapt the video bit rate in
order to reduce the delay and consequently the game lag.

Similarly to Onlive, Kusanagi uses the scalable encoder approach. This approach uses
the video encoder’s features to change the quantization step Qp in the frame compression
process to adapt the resulting bit rate. Quantization in image processing is a lossy
compression technique achieved when the number of discrete symbols in a given image is
reduced. The quantization step determines the amount of compressed symbols for a single
quantum value [Richharya et al., 2014]. With color quantization for example, reducing
the number of colors required to represent an image makes it possible to reduce its size.

This bidirectional adaptation, is based on empirical data by using repeated round
trip time (RTT) 24 measurement to compute the variability of the latency and set a
threshold for the accepted latency. Thus when the latency grows above this threshold, the
quantization step increases and when the latency is bellow the threshold, the quantization
step decreases.

[De Cicco and Mascolo, 2010]

Akamai Technologies is an Internet content delivery network also offering high def-
inition video distribution using adaptive video streaming. Akamai’s streaming service
adapts the content bit rate given current available bandwidth. This makes it possible
for Akamai to provide acceptable QoE [De Cicco and Mascolo, 2010] even in presence of
abrupt changes of available bandwidth. This adaptation is based on the stream-switch
approach consisting of having multiple video levels with different bit rates to choose from.
As a matter of fact, Akamai’s system encodes any video at five different bit rates, pro-
ducing five video levels stored at the server. The client computes the available bandwidth
and sends a feedback signal to the server, that then selects the right video at the bit rate
matching the available bandwidth. The values of video level bit rate l(t) are in a set of
available video levels L = l0, ..., l4 at any given time t. H.264 codec is used and video
levels are encoded at 30 frames per second.

The client issues various commands (via a separated TCP connection) to capture and
send network conditions. The most frequently used are:

24. RTT measures the latency between the client and the server. It is the time it takes to send a packet
and to receive an acknowledgement of that packet.

3.3. RELATED WORK 45

— throttle: is the throttle percentage T(t) used to identify when the server is sending
the video at a rate that is greater than the video level encoding rate l(t).

— rtt-test is periodically issued to ask the server to send data in greedy mode in order
to actively estimate the end-to-end bandwidth.

— lvl1 is a string made of 12 feedback variables including received video frame rate,
estimated bandwidth, current level identifier and current level bit rate.

These information are used by the server to select the appropriate video level for the
user.

[De Cicco and Mascolo, 2010] evaluated Akamai’s video streaming platform ability
to adapt the video level in three different bandwidth variations scenario: (i) a step-like
change of the bottleneck capacity with the available bandwidth changing from 500 kbps
to 4000 kbps; (ii) a square-wave varying bottleneck capacity with available bandwidth
shaped as a square-wave function with a period of 200 ms; (iii) a concurrent greedy TCP
flow. The results show that, Akamai uses only video level to adapt the video source to
the available bandwidth, kipping a constant video frame rate of 30 fps. When a sudden
increase of the available bandwidth occurs, the matching of the new bandwidth is made
in roughly 150 s. In case of sudden bandwidth decrease, short interruption of the video
playback occur before adaptation is achieved.

[Prangl et al., 2008]

[Prangl et al., 2008] proposes a TCP-based mechanism for increasing the consumer’s
media experience under unstable network conditions. This approach is based on video
content adaptation to fit the actual network bandwidth continuously monitored by the
sender. The objective here is to enable clients with insufficient bandwidth capacity to
consume the original video. The video quality can be gracefully degraded in order to
meet the given resource constraints.

This adaptation can be achieved in two ways:

— A request is initially performed by the client to explicitly demand an adequate
content quality. A transcoding-based adaptation is used here. In fact the video
content is adapted by changing the resolution of each frame, and modifying the
number of frames per second. The way it works is that, a HTTP URL is dy-
namically created by the client according to the device capabilities and user pref-
erences, and it is used to formulate the transcoding request. For example, the
URL http://mediaserver.com:8080/starwars.avi?vc=h264&s=320x200&fr=30, is a
transcoding request for downscaling the video to 320x200 pixels, reducing the frame
rate to 30 fps and encoding it as an H.264 video.

— A dynamic adaptation process adjusts the video content to dynamically changing
network conditions. The scalability of the encoder is exploited here. The video is
changed in a signal-to-noise ratio domain, by modifying the encoder’s quantization
step for frame compression, resulting into reduced bit rate. Three variables are
measured to fuel this process: the available bandwidth bw, the actual delivery bit
rate dbr enforced by the client and the actual video stream bit rate br. There is
a delivery module between the client and the adaptation process, capturing the
delivery bit rate every second. In general rule, the br and the dbr are adjusted to
match the current bw.

46 CHAPTER 3. ADAPTING COMMUNICATIONS IN CLOUD GAMES

The proposed adaptation approach was evaluated by its authors, with a network link
limited at 6 Mbps and a bottleneck created with two simultaneous streams with a bit
rate of 3.8 Mbps each. At t=0s the player 1 requested the video stream, and at t=40s
the player 2 requested the same video. The result shows that, the adaptation leads to a
smoother playback at the client, compare to the normal, non adaptive approach.

3.4 Discussion

The following aspects have been identified when adapting communications in game:
adaptation inputs, elements affected by adaptation decisions, message scheduling and
adaptation model. In this section, we present a discussion for each surveyed networking
system regarding these four aspects and table 3.1 summarises this analysis.

In game communications adaptation, inputs triggering the adaptation process are
usually related to network conditions or/and to the game itself. For objects replication
approach, both network parameters and game parameters are used. Here available band-
width, object priority and message reliability are the most used parameters (Zoidcom,
Raknet, Enet, TNL and Unreal engine 3) For video streaming, since the structural con-
tent of a game is not modified, only network conditions are monitored. For example,
Onlive adapts to bandwidth capacity and the packet loss; Akamai and [Prangl et al.,
2008] use available bandwidth while Kusanagi is the only system adapting to congestion
based latency.

Adaptation decisions can affect a wide rage of elements. Since the goal of adaptation
is to adjust the amount of communications to current network conditions, rate and flow
control are very useful. All surveyed systems implement rate or/and flow control primi-
tives. The way rate control is performed in video streaming systems differs from objects
replication systems.

As regards to objects replication, the adaptation systems affects the objects’ syn-
chronization rates or/and the network flow. Objects’ synchronization rates are adjusted
in all the surveyed systems except for Enet. Zoidcom, TNL, Enet and Raknet provide
flow control features using a communications window to regulate the amount of messages
currently in the network.

Video streaming systems adaptation consists in adjusting the downstream bit rate
or/and the encoding frame rate. Here, unlike with objects replication, no different rates
are associated to different game objects. Actually, the entire game state is sent in a form
of a single video frame. Therefore the adaptation does not reorganize individual objects’
synchronization, but instead adjusts the global bit rate and/or frame rate to network
conditions. From the four video streaming systems, only Onlive is capable of adapting
both its frame rate and bit rate to the network limits. Akamai and Kusanagi only provide
bit rate adaptation, while [Prangl et al., 2008] provides only frame rate adaptation.

In terms of bandwidth requirements, it is clear that video streaming systems use much
more bandwidth than their objects replication counterparts.

For video streaming, the required downstream bit rate is around 2-5 Mbps. With
objects replication the required bandwidth depends on game content. In fact the num-
ber of objects in the game and their synchronization rates determine bandwidth usage.
Therefore there is no fixed minimum bandwidth requirements for the surveyed middle-
wares. But to have an idea of this value we looked at some of the most bandwidth

3.4. DISCUSSION 47

greedy games such as Battlefield 3 25 and found that they use about 42 MB/hour (0.031
Mbps) [Simmonds, 2011]. Thus video streaming approaches are quite expensive in terms
of bandwidth usage, and objects replication with cloud gaming paradigm could be an
alternative to video streaming.

In message scheduling, we found that numerically assigned priority is a common prac-
tice. In fact developers are able to assign a static priority to each replicated object in
most of middlewares (Zoidcom, Raknet, TNL, and Unreal engine). TNL and Zoidcom
also support automated or adjustable priority policies. Other middleware specific priori-
tization approaches can also be used. For Enet reliable messages are sent first and TNL
supports ”quickest delivery” strategy.

Using priority as input for adaptation, we can have either an adaptive object rate
control with static priorities or an adaptive object rate control with adjustable priorities.

Static priority adaptation works well in games where objects’ importance does not
change during the game session. But in case of gameplay with changing objects’ impor-
tance, a dynamic priority adaptation would be preferred.

Among the reviewed middlewares only TNL and Zoidcom support both static and
dynamic priorities in object rate adaptation. Raknet and Unreal engine implement only
the adaptive object rate control with static priority.

This lack of built-in adjustable priorities makes Raknet and Unreal engine, not gen-
uinely suitable for games where objects do not always have the same role or importance
in the game scene. Developers therefore have to implement this feature on their own.

Techniques such as interest management can be used to reduce both network load
and computational cost. Interest management are not always available in networking
middlewares. From our study, only two middlewares propose interest management primi-
tives: Zoidcom and Unreal engine. Meaning that, for other middlewares, developers have
to implement interest management on their own. In video streaming, there is nothing
to prioritize, since the whole game state is captured in a single video frame. Interest
management is implicit in video streaming because the user only receives the video frame
corresponding to his/her vicinity in the game scene.

Rate-based adaptation in video streaming follows three patterns: (i) the transcoding-
based approach, used by Onlive and [Prangl et al., 2008]; (ii) the scalable encoder ap-
proach, applied by Onlive, Kusanagi and [Prangl et al., 2008]; (iii) the stream-switching
approach, utilized by Akamai. Video streaming services do not access structural content
of the game, therefore there is no game model proposed, nor priority adjustment model.

With object replication, two adaptation models are often used: the rate-based adap-
tation and the flow-based adaptation. Except for Enet, all studied middlewares incorpo-
rate rate-based adaptation. For flow-based adaptation, an adaptive window size is used
to control the network flow. This flow control mechanism can be implemented following
two approaches: the receiver-driven approach used by TNL, and the probability-based
approach used by Zoidcom , Enet and Raknet.

25. http://www.battlefield.com/fr/battlefield3/

48
C
H
A
P
T
E
R

3
.

A
D
A
P
T
IN

G
C
O
M
M
U
N
IC

A
T
IO

N
S
IN

C
L
O
U
D

G
A
M
E
S

Adaptation inputs Affected elements Message scheduling Models

Zoidcom [Rüppel, 2011]
available bandwidth,

object priority

objects replication approach,

object rate

assigned and adjustable priority,

multiple levels, UDP ,

interest management

probability-based and rate-based adaptation,

no game model, no priority model

Raknet
[JenkinsSoftware, 2011] available bandwidth,

object priority

objects replication approach,

object rate

assigned and static priority,

multiple levels, mixed

probability-based and rate-based adaptation,

no game model, no priority model

Enet [Salzman, 2014]
available bandwidth,

message reliability

objects replication approach,

flow control

reliable messages first priority,

multiple levels, UDP

probability-based adaptation,

no game model, no priority model

TNL [GarageGames,
2009] available bandwidth,

object priority

objects replication approach,

object and network rate,

flow control

assigned and automated priority,

quickest delivery,

multiple levels, UDP

receiver-driven and rate-based adaptation,

no game model, no priority model

Unreal Engine
[EpicGames, 2012] available bandwidth,

object priority

objects replication approach,

object rate

assigned and static priority,

multiple levels, UDP ,

interest management

rate-based adaptation,

level-actor-role game model,

no priority model

Onlive [Onlive, 2010]
bandwidth capacity,

packet loss

video streaming approach,

frame rate and bit rate,

2 Mbps minimum

no priority,

implicit interest management

transcoding-based and scalable encoder

adaptation,

no game model, no priority model

Kusanagi [Tizon et al.,
2011] latency video streaming approach,

bit rate: quantization step,

2.5 Mbps

no priority,

implicit interest management

scalable encoder adaptation,

no game model, no priority model

Akamai [De Cicco and
Mascolo, 2010] available bandwidth video streaming approach,

bit rate,

from 0.5 Mbps to 4Mbps

no priority,

implicit interest management

stream switching adaptation,

no game model, no priority model

[Prangl et al., 2008]
available bandwidth video streaming approach,

frame rate and bit rate,

3.8 Mbps

no priority,

implicit interest management

transcoding-based and scalable encoder

adaptation,

no game model, no priority model

Table 3.1 – Analysis of the communications adaptation approaches in cloud games

3.5. CONCLUSION 49

Except for TNL and Unreal, most of these middlewares are low level libraries, designed
to be very generic and therefore do not provide a specific model upon which the developer
can build his/her game. Only Unreal networking architecture defines a game structure
to be used by replication and adaptation schemes. This game model structures the game
in terms of levels and actors and tells whether objects are autonomous or not, to identify
replicated objects. It does not take into account the changes in object’s requirements in
terms of communications resources.

None of the reviewed works have equipped game developer with a model for online
(during the game session) priority adjustment. For games with changing objects’ syn-
chronization needs, it is preferable to have an adaptation process powered by a dynamic
game model. The game model should therefore be able to consider the dynamic nature
of game objects roles and importance in the game, determining their communications
needs.

Figures 3.5 and 3.6 picture some essential points of communications adaptation in
surveyed systems. They do not attempt to classify these systems, but rather show a
visual map of the elements affected by the adaptation, as well as the adaptation models
present in these systems.

Objects
replication

Rate-based
adaptation

Static prior-
ities model

Dynamic pri-
orities model

Flow-based
adaptation

Receiver-
driven model

Probability-
based model

Zoidcom

TNL

Racknet

Unreal engine

TNL

Zoidcom

TNL Zoidcom

Enet

Racknet

Figure 3.5 – Visual map for communications adaptation in objects replication systems

3.5 Conclusion

This chapter presented the state of the art in communications adaptation approaches
in cloud games. Four main criteria captured our attention: adaptation inputs, elements
affected by the adaptation, message scheduling, adaptation model, and priority adjust-
ment.

The surveyed works propose approaches with the objective of enhancing the player’s
QoE by improving the responsiveness of the game and the smoothness of the game visuals.
This is achieved by making a better use of the available bandwidth between client and
server.

50 CHAPTER 3. ADAPTING COMMUNICATIONS IN CLOUD GAMES

Video
streaming

Rate-based
adaptation

Stream-
switching model

Scalable en-
coder model

Transcoding-
based model

Akamai Onlive

Kusanagi

[Prangl et al.,
2008]

Onlive

[Prangl et al.,
2008]

Figure 3.6 – Visual map for communications adaptation in video streaming systems

Adaptation to current network conditions is supported by most middlewares. But
in adaptive synchronization rate control policies of most of the surveyed middlewares,
the change in the rate of an object is driven by a static priority. This rigid priority
policy can be very inefficient in a dynamic game environment where the importance of
an object can fluctuate at any moment and several times during the game session. Thus
an interesting approach is to take into account the variability in the object priority and
the current capacity of the network. Only two middlewares proposed a dynamic priority
adaptation: Zoidcom and TNL. However there is no model for priority adjustment and
this has to be implemented from scratch by developers. What is advisable is to have a
generic model for dynamic priority adjustment for the adaptation process. In addition,
except for Unreal engine, the studied platforms do not provide the developers with a
specific game model to fine tune their adaptation techniques. Unreal’s game model does
not capture the variability of the objects’ synchronization needs.

C
h
a
p
t
e
r

4
Framework Overview and

Background

Contents
4.1 Framework overview . 52

4.2 Level of Detail . 56

4.3 Agents and organization . 58

4.4 Gameplay components . 62

4.5 Conclusion . 65

Our proposed framework for adaptive QoE support in cloud games is introduced in this
chapter. This framework adapts synchronisation schemes between server and clients to
maintain an acceptable QoE when network resources are limited. The approach is based
on three main concepts: level of detail, agents organizations, and gameplay components.

This chapter is organised as follow: first, an overview of the framework is presented
followed by a presentation of level of detail technique in 3D graphics. We then introduce
agents and organizations, and the gameplay components model for game design.

51

52 CHAPTER 4. FRAMEWORK OVERVIEW AND BACKGROUND

4.1 Framework overview

In classical online game with object replication, game objects of a scene are synchro-
nized repeatedly. Since each message consumes a certain amount of network resources,
the synchronization rate determines the amount of consumed bandwidth.

Our goal in this thesis is to make this synchronization mechanism between client and
server more effective in terms of QoE metrics when network conditions become limited.

Synchronization needs are different for different game objects. Some objects need high
synchronization rate while a low synchronization rate can be sufficient for others. For
instance, objects living in the background of a scene need less synchronization than objects
interacting with the player. We therefore need an efficient message passing protocol that
takes into account these differences to create priorities among update messages.

To tackle this problem, we suggest an adaptive system composed of different mod-
ules. These modules are responsible for probing changes in network conditions and game
objects’ importance within the scene and then adapting objects priorities accordingly.

Before presenting the adaptation framework, it is important to introduce the used
adaptation model. We use an approach called level of detail(LOD), first introduced by
James Clark [Clark, 1976]. In 3D graphics, this approach is meant to manage processing
load when representing a 3D object by modulating its complexity(number of polygon)
according to its distance to camera. We will introduce this technique in details in section
4.2. In our context of game objects synchronization, we use level of detail to manage
network load by regulating the amount of bandwidth consumed by each game object
according to its importance in the game scene and the network conditions. Figure 4.1
illustrates this adaptation model.

level1 level2 ... leveln−1 leveln(1)

r1 r2 ... rn−1 rn ri in Hz, synchronization rate

where ri > ri+1 and i = 1...n

(2) tj ∈ IR, QoE utility threshold

where tj < tj+1 and j = 1...n− 1t1 t2 ... tn−1

Figure 4.1 – Adaptation model

As shown in this figure, level of detail enables us to provide different synchronization
rates (ri) for each game object through different communications levels (leveli). A com-
munications level is an objects container, that determines the synchronization rate of its
objects. In fact each game object is assigned to a communications level configured with a
fixed synchronization rate. The selection of the communications level for a game object
is done using a composite metric that we called ”QoE utility”. This value is computed for
each game object using its importance and network conditions. This way, the selected
communications level and consequently the synchronization rate of each object depend
on its importance in the game scene and network conditions. We provided a set of QoE

4.1. FRAMEWORK OVERVIEW 53

utility thresholds (tj) in order to determine the communications level corresponding to
the calculated object’s QoE utility. With the example of figure 4.1, given n communi-
cations levels (level1 to leveln) and n − 1 QoE utility thresholds (t1 to tn−1), the level
selection for game objects is the following (see the mapping between (2) and (1) in figure
4.1):

— the level1 is used when the QoE utility is less or equal to t1,

— the level2 is used when the QoE utility is between t1 and t2,

— the leveln is used when the QoE utility is greater than tn−1.

This mapping is then made for each object each time there is a change in its QoE
utility value.

To complement figure 4.1, figure 4.2 summarizes the steps of the overall communica-
tions adaptation mechanism. They are the following:

— Current conditions of the network link between client and server are continuously
collected by a network module on the server system. Changes in objects’ importance
in the game scene are also monitored to serve as complementary input for the
adaptation (see (1) in figure 4.2).

— QoE is evaluated using the QoE utility value, in order to decide whether to trigger
the adaptation process or not (see (3) in figure 4.2). A drastic change in the current
QoE utility value (see (2) in figure 4.2), materialized by a change in objects’ impor-
tance, and/or a radical fluctuation in network conditions, automatically initiates
the adaptation process.

— The adaptation process updates LoD settings (see (4) in figure 4.2) using the new
network conditions and objects’ importance. LoD settings consist of all parameters
necessary for the LoD technique to work, namely communications levels, synchro-
nization rates and game objects.

— The game then uses these new LoD settings to configure the network module for
game objects synchronization between client and server.

In the remaining of this document we refer to level as a communications level in the
LoD system.

As shown in figure 4.2 the adaptation decision is made by evaluating the QoE utility
value, which is a function of network conditions and objects’ importance. Figure 4.3 shows
the big picture around all the adaptation inputs and the approaches used to manage those
inputs.

In order to manage objects importance, we studied two different approaches: the
first using an agents’ organization model and the second using gameplay components.
For network conditions we used a combination of the network delay and packet loss to
compute a composite network metric.

Objects’ importance

Different game objects have different behaviors and take different functions accord-
ing to their role in the game. The combination of these parameters can determine the
importance of some objects over others for a player in accomplishing his/her goal. In
a shooting game for example, the player will pay more attention to all the objects that

54 CHAPTER 4. FRAMEWORK OVERVIEW AND BACKGROUND

evaluate QoE

(3)

QoE utility

(2)

objects’
importance

(1)
network
conditions has QoE

changed?

update LoD
settings

(4)

game network

yes

Figure 4.2 – General framework

LoD selection

Game Network

QoE utility
value

Object importance
in a scene

Organizational
model

Gameplay
components

Current network
conditions

Network delay Packet loss

Figure 4.3 – Adaptation inputs

(s)he should shoot at, compare to simple background or decoration objects in the game
scene. The importance of an object for the player therefore depends on the game scenario.
Since player’s focus is on the most important objects, any lag affecting these objects will
impact the player’s QoE more severely than a lag on less important objects. Thus there
is a direct correlation between object’s importance in the game scene and its sensitivity
vis-a-vis of unfavorable network conditions creating the lag.

In our model, object’s importance is used to organize game objects in ”importance

4.1. FRAMEWORK OVERVIEW 55

sets”. This way any change in network conditions and any adaptation decision will affect
all objects in a set in the same way.

As shown in figure 4.2, for a game with dynamically changing objects’ importance,
each time a change occur, the communications adaptation process is triggered so that
importance sets are updated. To manage changes in objects’ importance, we used two
different models: (i) the first one is based on agents organization and focuses on objects’
functional role in the game rather than directly focusing on their importance (Agent,
Group, Role [Ferber et al., 2003]); (ii) the second one uses the semantics and the structure
of the game to determine game objects’ importance as the game progresses (gameplay
components [Francillette et al., 2012]).

Network conditions

As shown in section 2.4, QoE properties such as responsiveness and visual smoothness
are highly influenced by network capacity in online games in general. This explains why
there is a strong correlation between the perceived quality of a game by a player and
available bandwidth on the network. Most of the time these network resources are very
limited especially in case of lossy wired or wireless connections. In fact, the bandwidth
capacity of a network link limits its available bandwidth. For high traffic applications
such as cloud games, this shortage of resources can create network congestion, which
severely degrades player’s QoE. The first step in attempting to address this problem, is
to be able to accurately assess the current conditions of client-server network link.

This same notion is used by TCP in its congestion and flow control mechanism. Since
the whole point of flow control is to avoid flooding the connection and increasing round
trip time (RTT), it makes sense that one of the most important metrics as to whether or
not we are flooding our connection is the RTT itself. For this reason, to avoid network
congestion by adapting the amount of communications of the game, we need a way to
measure the RTT of our connection.

[Comer Douglas, 2000] defines the RTT as the time it takes for a signal to be sent
plus the time it takes for an acknowledgment of that signal to be received (see figure 4.4).

Following this definition, the following steps can be used to estimate the RTT:

— For each packet we send, we add an entry to a queue containing the sequence number
of the packet and the time it was sent.

— Each time we receive an ack, we look up this entry and note the difference in local
time between the time we receive the ack, and the time we sent the packet. This is
the RTT time for that packet.

receiver

sender
packet

ac
k

RTT

Figure 4.4 – RTT sequence diagram

The RTT value is then used as network delay by the communications adaptation
process to determine the communications profile that is appropriate for current network
situation.

56 CHAPTER 4. FRAMEWORK OVERVIEW AND BACKGROUND

The reliability provided by protocols such as TCP is not always needed for all applica-
tions. With synchronous video games for instance, it is more important to deliver recent
state updates quickly than to ensure that stale packets are delivered. This is the reason
why we also study the use of UDP as transfer protocol. In fact most game networking
middlewares ([Rüppel, 2011], [Salzman, 2014] and [GarageGames, 2009]) use UDP for
game object synchronization.

With UDP, busy or congested network are implicitly signaled by packet loss. As a
matter of fact, Internet Protocol allows for routers to simply drop packets if the router or
a network segment is too busy to deliver the data in a timely fashion. This is the reason
why our adaptation approach also has to take into account, packet loss, as a metric for
network conditions.

Our computation of the packet loss in a client-server connection is straightforward.
We send every 50 ms what we call ”monitoring packets” to the client, and count out the
responses we received from the client. The ratio between the responses received and the
monitoring packets sent gives us the percentage of packet loss in the client-server link,
which is used as input for the adaptation.

For the evaluation of our adaptation approach, we built two prototype games and
experimented them on two versions of the adaptation system. One using solely packet
loss as network conditions and the other combining network delay and packet loss to
compute a composite network metric.

In the following sections, we are going to introduce the concepts of level of detail,
agents and organization as well as the AGR model, and then gameplay components.
More detailed description about how these notions are used in our adaptation system,
will be presented in the next chapter.

4.2 Level of Detail

LoD is a technique that attempts to address the tradeoff in computer graphics between
complexity and performance. In fact despite the progress in graphics hardware, the
complexity of 3D models seems to grow faster than the ability of hardware to render
them. This problem of limited rendering resources is well known to video game and game
developers can therefore benefit from regulating the level of detail of their 3D objects.

The fundamentals

The LoD technique has been widely used in 3D graphics and simulations [Döllner and
Buchholz, 2005], [Chen et al., 2006]. The basic purpose of the technique is to modulate
the complexity of a 3D object representation according to the distance from which it
is viewed (or any other criterion) [Luebke et al., 2002]. As introduced by James Clark
[Clark, 1976], this technique is meant to manage the processing load on graphics pipeline
while delivering an acceptable quality of images. Generally, when an object in the scene
is far from the camera, the amount of details that can be seen on it is greatly reduced.
However, the same number of polygons will be used to render the object, even though
the details will not be noticed. The LoD technique suggests to reduce the number of
polygons rendered for an object as its distance from camera increases, resulting in great
gain in processing.

4.2. LEVEL OF DETAIL 57

Figure 4.5 presents four different representations of one 3D object with changing
number of polygons. The farther an object is from the camera, the less details its repre-
sentation will have.

Figure 4.5 – Four different representations by changing the number of polygons [Luebke
et al., 2002]

Geometric datasets are usually too large in data size and complex (in terms of time
and computational resource demands), so their rendering can become a tedious and time
consuming process. LoD approach suggests different representations of a 3D object model
by varying in the details and geometrical complexity. The geometrical complexity of an
object is determined by the number of polygons used for its representation. The more
complex an object is, the more time consuming its rendering will be.

The main idea of LoD is simple: when rendering, use a less detailed representation for
small and distant portions of the scene. This representation consists of a selection from
several versions of objects in the scene, each version less detailed and faster to render
than the one before.

At run time, the LoD technique selects the appropriate representation for each object,
based on certain metrics. The distance to the camera and size are the must used in 3D
graphics rendering.

LoD approaches

Depending on the smoothness of the transition between LoD representations and the
precision of the represented object, two main algorithm families are used for managing
level of detail: the discrete and the continuous LOD.

1. Discrete LoD is the traditional approach introduced by Clark in 1976 without
modification. It is the most used by 3D graphic applications nowadays and creates
multiple versions of every object (called levels), each at a different level of detail,

58 CHAPTER 4. FRAMEWORK OVERVIEW AND BACKGROUND

during off-line pre-process. This simplification therefore typically reduces detail
across the object [Chen et al., 2006]. The result is discrete number of detail levels
for each object. The appropriate version of the object is selected at run-time in
accordance with size, distance, etc. The advantage of discrete LoD is the decoupling
of simplification or levels creation, with rendering. This separation makes this model
simple to program, and the simplification can take as long as necessary to generate
LoDs while the run-time rendering simply needs to choose which LoD to render for
each object. A negative point of discrete LoD is that, sometimes there is no smooth
transition between LoD levels.

2. Continuous LoD: Rather than creating LoDs during preprocessing stage, the
simplification creates a data structure of the polygon mesh of the 3D object being
rendered. A polygon mesh is a collection of vertices, edges and faces that defines the
shape of an object. The desired level of detail is then extracted from this structure
at run-time by continuously evaluating the ”mesh” function of the structure with
some heuristics (usually distance) [Döllner and Buchholz, 2005]. One advantage of
this approach is smoothness, since the LoD of each object is specified exactly rather
than selected from pre-created options.

LoD technique has been utilized for efficient usage of scarce resources in fields other
than 3D graphics. In the artificial intelligence of video games for example, [Mahdi,
2013] applied the discrete LoD method to coordinate the distribution of computational
resources to game agents in order to provide an acceptable QoE to players. This is done by
providing different levels of behaviors to game agents. Different behaviors have different
computational needs according to their complexities. When the FPS of the game drops,
less complicated behaviors are adopted by the agent, and when the FPS increases, slightly
more complicated behaviors are selected.

Following these steps, the application of this technique for communications adaptation
is the ability to have different synchronization rates for each game object, and select one
at a particular time based on certain criteria. This way, only important objects will
get the maximum amount of network resources while others get less. This hierarchical
resource distribution is done through communications levels. A communications level is
an objects container. With its configured synchronization rate, it determines the amount
of network resources attributed to the game objects it contains. An object can move from
one level to another, in order to adapt to a change in network conditions and/or when
its importance in the game changes.

4.3 Agents and organization

[Castelfranchi, 1995] describes a multi-agent system (MAS) with four main concepts
which are: Agent, Environment, Interaction and Organization (AEIO). It defines agents
as the autonomous goal-directed entities that populate MAS. Agents evolve in an en-
vironment, perceive this environment and act in this environment. They have a set of
resources in this environment and interact with other agents in order to achieve their de-
sign goals. The flexibility of agents’ actions enables them to be either reactive, proactive
or social. Interaction is defined by [Ferber, 1999] as the set of mechanisms used by agents
either to share knowledge or to coordinate joint activities. Organization enables a society
of agents to cooperate effectively and makes it behave as a coherent whole by reducing
the lack of predictability.

4.3. AGENTS AND ORGANIZATION 59

In video games, agents are often used to model the behavior of Non-player characters
(NPCs). As a matter of fact, these game entities have many parallels with agents in MAS.
A NPC can be autonomous: it can operate without direct intervention of the player and
have a control over its actions. NPCs can also exhibit social abilities by interacting
with other game entities to achieve a common objective. They can also act and react
to changes in the game world. Many works in literature have coupled MAS with game
engines in order to control characters in game environments. Some of the motivations
behind this are:

— Reducing complexity and enabling modularity and reuse.

— Increasing effectiveness in entity’s behaviors in respects with human behavior
[Alvarez-Napagao et al., 2011].

— Enabling a reactive style of controlling and coordinating game entities [Gemrot
et al., 2009], [Briot et al., 2009].

— Adapting the game to the player or opponent skill level [Bakkes et al., 2009], [Westra
et al., 2011].

In this thesis, we are going to use agents not only to control the behavior of game
objects or game entities, but also to coordinate the whole structure of the game model.

Agents organization

Agents can be used in video game implementations as a means to reduce complexity
and provide autonomous game entities. But without some centralized coordination it
becomes difficult to follow the intended general behavior and the storyline of the game,
since each autonomous agent locally controls its state and behavior. This is probably
one of the reasons why agents frameworks such as [Hadad and Rosenfeld, 2011], [Westra
et al., 2011] and [Alvarez-Napagao et al., 2011] have been modeled based on organizational
theory to coordinate game agents using social structures.

What is an organization

An organization is a set of entities forming an interdependent unit, oriented towards
common objectives. According to [Bedeian and Zammuto, 1991], organizations are (on-
purpose) structured so that it is possible to systematically divide complex tasks among
multiple units to achieve a collective purpose. [Wooldridge et al., 2000] emphasizes on
the importance of roles in an organization by defining an organization as ”a collection of
roles, that stand in certain relationships to one another, and that take part in systematic
institutionalized patterns of interactions with other roles”.

These definitions of organization are used within MAS. In fact, alongside with inter-
action, organization is an essential concept of MAS. MAS are considered as ”societies of
agents”, meaning a set of agents that interact together to coordinate their behaviour and
often cooperate to achieve some collective goals.

[Ferber et al., 2003] conceptualizes an agent organization as a unit with the following
main features:

— Individuals: an organization is made of agents (individuals) that manifest a be-
haviour

— Partitions: the overall organization may be partitioned into groups (partitions or
teams) that may overlap

60 CHAPTER 4. FRAMEWORK OVERVIEW AND BACKGROUND

— Function: agent’s behaviors (roles) are functionally related to the overall organiza-
tion activity

— Agents are engaged into dynamic relationship which can be classified through a
taxonomy of roles, tasks or protocols, which suggests a kind of supra-individuality.

Now that we know what an organization is, let us see some examples of how this
structural concept is used in video games and simulations.

Agents organization frameworks in video games and simulations

Recently a particular interest has been given to the use of organizational concepts
within MAS in video games and simulations. Concepts of ‘organizations’, ‘groups’, ‘com-
munities’, ‘roles’, ‘functions’ are often utilized. For instance, [Hadad and Rosenfeld, 2011]
suggests to use abstraction hierarchies in order to succinctly model teamwork. The ob-
jective here was to control characters in a teamwork scenario, so that characters or agents
can effectively address teamwork in dynamic environments.

With the goal of making training applications and games suitable for trainees with dif-
ferent skill levels, [Westra et al., 2011] proposes the use of learning agents for adaptation.
Agent organizations coordinate agents and allow adaptation in very complex scenarios.
The proposed framework makes sure that both the storyline and the right difficulty level
for the trainee are preserved.

In the framework Alive, [Alvarez-Napagao et al., 2011] proposes to deliver the illusion
of ”intelligence” in the non-player characters’ behaviour. It provides methodology and
tools to model gaming scenarios using social structures based on organization, as well
as theoretical methods to control NPC’s behavior. Alive is developed as a framework
coupled with game engines allowing developers to think in terms of why-what-how when
defining the decision-making actions for NPCs.

Based on agents organizations’ concepts listed in previous subsection, [Ferber et al.,
2003], proposes a model to express organizational structure in MAS: Agent-Group-
Role(AGR) model. AGR model is based on three structurally connected primitives:
Agent, Group and Role.

The AGR model

AGR model’s primitives are defined as follow:
Agent: an agent is an active, communicating entity playing roles within groups. An

agent may hold multiple roles, and may be member of several groups. In the ”cheeseboard”
diagram of figure 4.6, agents are represented as skittles that stand on the board and
sometimes go through the board when they belong to several groups. A, B, C, D, E, F,
H and J are agents of the organization.

Group: a group is a set of agents sharing some common characteristics. A group is
used as a context for a pattern of activities, and is used for partitioning organizations by
assembling them under a collection. In the example of figure 4.6, a group is represented
as an oval that looks like a board. There are three groups: the group G1 formed by the
agents A, B, C and D, the group G2 formed by the agents F and J, and finally the group
G3 formed by the agents D, E,F and H. The example also shows how an agent can belong
to more than one group. D belongs to G1 and G3, while F belongs to G2 and G3. In
addition, two agents may communicate if and only if they belong to the same group.

4.3. AGENTS AND ORGANIZATION 61

Role: a role represents a functional position of an agent in a group. An agent may
play one or several roles in a group, and several agents can play one role. In our example
of figure 4.6, a role is represented as a hexagon and a line links this hexagon to agents.
Agent F for example has three different roles: roles R4 and R5 in group G3 and role R6 in
group G2. A role may be played by several agents as shown in the example with agents
A, B and C having role R1 in group G1.

Figure 4.6 – Basic primitives of AGR in the ”cheeseboard” notation [Ferber et al., 2003]

The summary of this organization is given by the equation below.

Organization

G1 where roles = {R1, R2}; agents ={A, B, C, D}
G2 where roles = {R6}; agents ={F, J}
G3 where roles = {R3, R4, R5}; agents ={D, E, F, H}

(4.1)

As example of systems using the AGR model, we can cite MadKit 1. MadKit is a
modular and scalable multiagent platform written in Java for designing and simulating
Multi-Agent Systems.

One of the main advantages of AGR is its simplicity. Its simply partitions the agents
society in groups then in roles, so that each agent has at least one role in at least one
group. The fact that AGR provides multiple groups and roles, makes it easier to define
importance and priorities of different game objects based on their role in the game.

In our proposition, to model the variability of object importance, we use an organi-
zation model inspired by the AGR model. As a matter of fact, our organization model
assembles game objects in groups of objects with similar role in the game. The role of a
game object is used to determine its relative importance in the game. Thus each role in
the organization is associated with an importance value. Meaning that most important
objects get more valuable roles, and a change in object’s role denotes a change in its
importance for synchronization.

Before any further description, it is essential to emphasize the difference between
an agent and an object. Ferber considers agents as a subset of objects with particular
abilities. Both agents and objects have states and behaviors, but here are some differences
[Ferber, 1999]:

1. http://www.madkit.org/

62 CHAPTER 4. FRAMEWORK OVERVIEW AND BACKGROUND

— An agent controls its state and its behavior, whereas an object only controls its
state.

— Agents interactions are wider and more diverse than methods calls between objects.

— In a MAS, several flows of control are possible (reactive, proactive, deliberative,
social, ...) whereas an objects system has only one.

In our model, we also differentiate game objects from agents controlling them. In
fact, a game object represents a physical artefact on the game scene. These artefacts
can be graphics or audio elements. In other words, all that a player sees or hears when
playing a game are game objects, not to be confused with game agents controlling them.
This differentiation enables us not only to build a game engine that can execute game
mechanics independently from the aesthetic aspects, but also to facilitate client-server
objects replication, since only physical objects are pertinent for synchronization.

Our organization will therefore focus on game objects instead of game agents and the
role of an object in an organization is the role of the agent controlling it.

4.4 Gameplay components

Rational game design is a method that aims to streamline and rationalize the design
of game levels by keeping things simple but significant, in order to create a good and
meaningful player experience. It advocates to introduce game mechanics in an orderly
and easily digestible fashion, and preserve the learning and difficulty curves of a game. A
game mechanic being a challenge based on a specific input and skill. For instance, game
designers at Ubisoft 2 consider rational game design as a valuable tool for producing
entertaining and thoroughly satisfying player experiences. They implement it in the
development process of most of their games [McEntee, 2012].

Rational game design has inspired researchers to introduce design methods for hier-
archical gameplay creation. Many definitions of gameplay can be found in the literature,
but in most of the cases, a gameplay is considered as a pattern defined through rules,
challenges and actions the player is permitted to take to address those challenges [Adams,
2013],[Salen and Zimmerman, 2004]. In 2011, [Albinet, 2011] presents a model of structur-
ing the different gameplay elements of a game using gameplay loops. The main idea here
is to decompose large and complex gameplay scenarios into small and simple gameplay
loops.

This game design approach is referred to as Objective Challenge Rewards(OCR) level
design. An OCR loop is defined by these three primitives: (i) objective is the game state
or the goal that the player needs to achieve to succeed; (ii) challenge consist of basically
all the obstacles that the player needs to face and overcome to achieve his/her end goal;
(iii) reward is the recompense that the player receives for achieving the objective.

OCR loops can be hierarchically composed to create different levels from simple micro
OCR loops to more complex OCR loops. In addition, OCR loops can also be used to
carry out gameplay related metrics adjustments, such as objects’ importance in the game.

[Francillette et al., 2012] proposes a formal language to model these OCR loops as
gameplay components (GC) and use them in game design. A gameplay component de-
fines player’s goal as objective, the various obstacles faced in accomplishing that goal as
challenges and the payoff of the accomplishment as reward. The reward can be either

2. https://www.ubisoft.com

4.4. GAMEPLAY COMPONENTS 63

explicit (such as gaining score points or items), or implicit (any game content adding fun
or excitement for example).

The lifecycle of a gameplay component is given by the state machine of figure 4.7.
Hereafter the description of this lifecycle:

— The component starts with the initialization where, it defines and initializes the
game elements needed for the loop.

— The evaluation state is where the component checks the objective of the loop. Three
scenarios are possible: (i) the objective can be achieved, in this case the component
moves to the success state; (ii) the objective can become unachievable, in this case
the component goes to the failure state; (iii) the objective can remain in progress,
meaning it is not failed nor achieved. In this case the component remains in progress
and stays in the same state.

— From the success state, a reward is attributed to the player and the component
moves to the end state.

— From the failure state, a penalty is attributed to the player and the component
moves to the end state.

initialization evaluation

success

failure

end

starting
point

in progress

achieved objective

failed objective

reward

penalty

Figure 4.7 – Gameplay component’s lifecycle

Using gameplay components, elementary building blocks of the game are set in a
game scene and are called atomic gameplay components. These are GCs that cannot be
decomposed to sub GCs. The reward determines whether a GC can be decomposed or
not, because each sub GC has to have a reward. For example in a shooting game, the
action of eliminating an object A (eliminate(A)), can be decomposed into the actions of
aiming, and then shooting. But because the aiming part does not give any reward, the
whole eliminating action only has one reward, which is the shooting reward. Therefore
the GC eliminate(A), is an atomic GC since it can not be decomposed in sub GCs with
distinct rewards.

Atomic GCs are provided by game designer at an early design phase, and the combi-
nation of these components is performed in later phases to create a GC tree representing

64 CHAPTER 4. FRAMEWORK OVERVIEW AND BACKGROUND

the game. An example of GCs is a game provided with three atomic GCs. The game
scene could be a composite GC combining the three atomic GCs using a set of operators.

Gameplay components operators

GC operators enable to combine existing GCs to create more complex GCs. To
illustrate the use of operators let’s take a basic shooting game as example. The game
designer provided two atomic GCs: eliminate(object) to eliminate the object and timer(x)
to initiate a count down of x seconds. Let’s say we want to build a game scene with the
objective to eliminate object1 and object2, while avoiding to be eliminated during a
period of 30 seconds. To do this we must introduce the operators (and) ∧ and (first) F
that are simply composed of two components running simultaneously; and the operator
(not) ¬ that is the negation of the component. The meanings of these operators are given
in next paragraph. The resulting GC tree will be:

∧

F

¬ eliminate(player) timer(30)

∧

eliminate(object1) eliminate(object2)

In their work, Francillette et al. introduced ten different GC operators that can be
used to design a game. During the course of this thesis, we had the occasion to put the
gameplay components model into practice, in an industrial project called village 3. In this
project, we co-developed six game prototypes using GCs. From that experience, eight GC
operators emerged as the most used. Here are these GC operators and their semantics:

— ”Parallel and” (∧): all sub-components are running simultaneously. When at
least one sub-component fails, the overall component fails. If all sub-components
succeed then the overall component succeeds.

— ”Parallel or” (∨): all sub-components are running simultaneously. When at least
one sub-component succeeds, the overall component succeeds. If all sub-components
fail, then the overall component fails.

— ”Sequential and” (−→∧): the evaluation of sub-components is done sequentially
from left to right. When a sub-component succeeds, the next sub-component is
activated and evaluated and so on. If any of the sub-components fails, the overall
component is considered failed and if all sub-components succeed then the overall
component succeeds.

— ”Sequential or” (
−→
∨): like the sequential and, the sub-components are acti-

vated and evaluated from left to right in a sequential manner. If at least one
sub-component succeeds, then the overall component succeeds, whereas if all sub-
components fail, then the overall component fails.

— ”First” (F): all sub-components are running simultaneously. If the first sub-
component to end succeeds, then the overall component succeeds and if it fails,

3. http://www.projet-village.fr/

4.5. CONCLUSION 65

then the parent component also fails. Thus the evaluation of the parent is equal to
the evaluation of the first child to end.

— ”Ignore” (I): it is an unary operator, defining a component for which the result
must not be considered in its parent’s evaluation. Therefore its success or failure
does not directly affect other components. It is often used to express optional
objectives in the game.

— ”Continuation” (Cf∈N): it is an unary operator that allows to continue with an-
other GC when the current GC has ended. The new GC is generated by a continu-
ation function. Schematically we can represent it with sub-components (see figure
below), but it is important to know that, only one sub-component is actually in the
GC tree at a given time. With the example below, only the first sub-component is
in the GC at the initialization state (the one with a bold arrow), the rest will be
inserted in the tree as game continues.

Cf∈N

eliminate(object1) eliminate(object2) eliminate(object3)

— ”Not” (¬): it is an unary operator that simply inverts the statement of its com-
ponent. If the component succeeds, the expression returns failure, and if the com-
ponent fails the expression returns success.

In our adaptation approach, we use gameplay components to capture changes in ob-
jects’ importance. As a matter of fact, gameplay components are suited for complex and
dynamic games, with lots of quests with different objectives and different challenges. In
these types of games, an object can go from being very important at one time, to become
less important at another time. Gameplay components and their operators enable our
adaptation to dynamically take in to account these types of game scenarios.

4.5 Conclusion

This chapter presented the building blocks of our adaptation approach. In fact, our
approach is based on key principles of level of detail technique, agents organization,
and gameplay components. Level of detail is the approach used to provide objects with
appropriate amount of communications resources according to their importance in the
organization and network conditions. With agents organization, game objects are repre-
sented in a virtual society of objects. The gameplay components model enables to design
game scenario in terms of OCR loops and can be used to dynamically adjust the impor-
tance of game objects as the game session progresses. The next chapter will deal with
the details of the adaptation process using each of these concepts.

C
h
a
p
t
e
r

5
Communication Adaptation Process

Contents
5.1 Adapting game communications . 68

5.1.1 The network based LoD approach 68

5.1.2 QoE utility . 71

5.1.3 Theoretical properties . 72

5.2 Organizational level of detail . 75

5.2.1 The organization model . 75

5.2.2 LoD and organization . 76

5.2.3 Example . 77

5.3 GC based level of detail . 80

5.3.1 Initial importance distribution 81

5.3.2 Updating importance . 83

5.3.3 LoD and GCs . 88

5.3.4 Example . 90

5.4 Conclusion . 96

We started the previous chapter by presenting an overview of our adaptation frame-
work. In this chapter, we are going to present the entire adaptation mechanism in detail.
We start with a presentation of our network based LoD approach for adapting game com-
munications. The focus is then made on associating this LoD technique with models for
object importance adjustment, and on the combination of fluctuating network conditions

67

68 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

and changing objects’ importance for game communications adaptation. In this context,
we present organizational LoD and gameplay components based LoD.

5.1 Adapting game communications

This section presents our network based LoD aiming to adapt game communications
to network conditions. The idea is to bring network conditions and objects’ characteristics
together, and use them simultaneously as a composite criterion for communications level
selection in the LoD system.

5.1.1 The network based LoD approach

Our adaptation approach uses LoD principles to manage network resources distribu-
tion to game entities. With the discrete approach, LoD enables us to define multiple
levels on which game objects can rely for state synchronization. Therefore instead of
utilizing the commonly used ”camera distance” as metric for level selection, object’s im-
portance and network conditions are used. This enables important game objects to use
more network resources than objects with less importance.

Regarding network conditions, an object will see its network resources diminished as
network congestion grows. This is done simply by moving it from its current communica-
tions level to a communications level with lower synchronization resources. The amount
of network resources is determined by synchronization rate in Hz which represents the
number of synchronization messages sent per second for each object.

The most important aspect of LoD management is to decide when to switch to a
lower or higher level. In fact, the basic observation that we use less resources for a
less important object or when network is congested seems straightforward. But how less
important should an object be or how high should be network congestion before switching
to a lower level? Implementing an LoD requires a data structure to store different levels
for each object, and a list of thresholds to indicate when each level should be used. Each
level is configured with a synchronization rate indicating the update frequency of the
objects in that level. Given such a structure, a simple pointer switch suffices to select
the most appropriate level for an object importance and/or for a particular network
condition. The thresholds can therefore be objects’ importance, a network related metric
or a combination of both.

To keep the level selection simple, we use a composite metric reflecting both object’s
importance and network conditions. We called it ”QoE utility”. A QoE utility (qoe util)
is a real value, indicating the factual importance of an object in the game hierarchy
with the current network settings. It determines the adequate communications level and
consequently the amount of synchronization resources deserved by each game object. The
rational guiding this communications level selection is presented in the next paragraph.

Communications level selection

Given n communications levels (level1 to leveln) and n − 1 thresholds (threshold1

to thresholdn−1) to specify QoE utilities at which to switch between communications
levels, the appropriate level to use for an object, given a QoE utility q is computed as:

5.1. ADAPTING GAME COMMUNICATIONS 69

level(q) =

level1 where q ≤ threshold1

leveli where thresholdi−1 < q ≤ thresholdi for 1 ≤ i < n− 1

leveln where q > thresholdn−1

For example, lets say we have QoE utilities in the range [0,1] with a QoE utility
threshold array of (1

4
, 2

4
, 3

4
) and four communications levels: optimal level, enhanced

level, medium level and degraded level, respectively configured with synchronization rates
r1, r2, r3 and r4. The level selection of this example is shown in figure 5.1. Following the
formula above, optimal level is selected when the QoE utility value is less or equal to 1

4

(a), enhanced level is selected when QoE utility value is between 1
4
and 2

4
(b), medium

level is selected when the QoE utility value is between 2
4
and 3

4
(c), and degraded level is

selected for all QoE utility values over 3
4
(d).

optimal enhanced medium degraded

r1 r2 r3 r4 ri, synchronization rate

decreasing rates

communications levels

QoE utility thresholds

decreasing importance1
4

2
4

3
4

(a) (b) (c) (d)

Figure 5.1 – Example of level of detail selection

Throughout the game, the system evaluates changes in game objects’ QoE utilities
and decides whether to start the adaptation process or not. To do this, it generates a
QoE utility value for each game object. The newly generated QoE utility is then used to
choose a new communications level for each object by using the QoE utility thresholds of
the levels. Then a comparison between the current level (the level the object is currently
mapped with), and this newly found level of each object is made (see Algorithm 1). Three
situations are possible:

— The new level is equal to the current level: In this case, current network
conditions are in concordance with current game’s traffic. The available network
resources plainly support the communications generated by the game. The current
level is appropriate and there is no need to change it.

— The new level is lower than the current level in synchronization rate: This
situation indicates that network conditions have degraded (This can be materialized
by packet loss and/or network delays or by a decrease in object importance). Hence
there is a need to accommodate the network resources distribution. In fact, lossy
network parameters negatively impact the perceived quality of the game. In order
to cope with this problem, we need to tighten the communications generated by the
game. We do this by moving the game object to the new inferior level.

70 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

— The new level is greater than the current level in synchronization rate:
Here the new network situation is very favorable or there is an increase in object
importance. This signifies that, there is still unused network resources available for
the game. For a better game responsiveness and a smooth video playout, game’s
communications profile has to be adjusted. This is accomplished by moving the
game object to the new superior level.

Algorithm updateLoD;
Data: objects, the list of game objects with their current importance and levels;
current network, the current network conditions

begin
/* Loop for all objects in the game scene */

foreach object in objects do
/* Compute the new level of the object */

qoe util ← getQoEutil(current network, object.getImportance());
new level ← generateLevel(qoe util);
if new level Ó= object.getLevel() then

/* Move from the current level to new_level */

object.getLevel().remove(object);
new level.add(object);

end

end

end
Algorithm 1: LoD framework update

The estimation of network conditions is very important for this adaptation scheme to
be efficient. Next paragraph details formulas used to compute the metrics representing
network link quality.

Network conditions

Network conditions are continuously probed to compute QoE utiliy and adapt game
communications accordingly. During the course of this thesis, we have considered two
network metrics: packet loss and network delay. We could use both criteria separately or
compute a composite network metric using the criteria together.

For the composite network metric, we use the weighted mean of network delay and
packet loss. A weighted mean is often used when we wish to average a number of values
by attaching more importance to some numbers than to others [Kozak, 2008]. This is
done by assigning different weights to the observations. This enables us to give different
contributions to network delay and packet loss for the composite network metric.

A formal definition of weighted mean is: given a set of non-empty set of data X1,...,Xn,
each with non-negative weights W1,...,Wn the weighted mean is given by the formula:

mean =

∑n
i=1Wi × Xi∑n

i=1Wi

(5.1)

The weights enable us to compromise between network delay and packet loss. They
represent the degree of influence each data has to the overall network metric. Hence we

5.1. ADAPTING GAME COMMUNICATIONS 71

define weights Wdelay and Wloss so that

Wdelay +Wloss = 1

Where Wdelay and Wloss are allocated weights for network delay and packet loss re-
spectively.

It is important to state that for weighted mean to be faithfully representative of
its various data, it is recommended for all data to be expressed in a normalized form
[Etzkorn, 2011]. However, whether normalized or not, weights associated with each data
can scale appropriately to adjust for the disparity in data sizes. But with normalized data,
the weights will reflect meaningful relative activity between each data and the degree to
which each data influences the objective function. For example, if we want to have equal
participation of network delay and packet loss in computing the network metric, we will
simply set the weights to 1

2
with normalized values of network delay and packet loss. But

if the values are not normalized it is more complicated to find adequate weights to reach
that equilibrium.

The resulting network metric is given by the formula:

network = Wdelay × delay+Wloss × loss (5.2)

Where delay and loss are normalized values of current network delay and packet loss
respectively.

For a better understanding of our approach, we will use only network delay as net-
work conditions when describing the adaptation steps, knowing that the same adaptation
principles apply when using the composite network metric or packet loss only.

5.1.2 QoE utility

We now know how to determine the network metric for the adaptation, let’s see how
it is used in order to compute QoE utility.

A communications level is configured with a synchronization rate and in order to
determine the adequate level for an object given its importance and current network
conditions, the LoD system uses object’s QoE utility.

We describe object’s qoe util as an abstract measurement unit for the notion of rel-
ative priority regarding communications resources for weighting objects communications
requirements. Object’s qoe util is calculated at runtime using a combination of current
network conditions and object’s importance. This way the object’s QoE utility is pro-
portional to the network load at running time. This qoe util is therefore represented as
a function of object’s importance and network conditions:

qoe util = function(importance, network)

This generic notion of qoe util is a value that defines the relative importance of an
object given the current network conditions. As the importance of an object depends on
game scenario and its role in the game, this notion can be exploited in many ways.

The qoe util formula is also used to compute composite thresholds using both network
parameters and object importance thresholds. These qoe util thresholds are then used
for communications level selection.

To compute qoe util we have used the weighted mean (see formula 5.1) of network
metric and object importance metric. In our context of composite metrics, weights enable

72 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

us to compromise between network parameters and object importance. They represent
the degree of influence each metric has to the QoE utility. Hence we define weights Wnet

and Wimp so that
Wnet +Wimp = 1

Where Wnet and Wimp are allocated weights for network conditions and object im-
portance respectively .

For this computation, we used normalized values of objects’ importance and network
conditions. The resulting object qoe util is given by the formula:

qoe util = Wnet × metricnet +Wimp × metricimp (5.3)

Where metricnet and metricimp are normalized values of current network conditions
and object importance respectively.

To get these normalized values, we convert raw values of network parameters and
objects importance by bringing them into a common range. Also called feature scaling
[wik], this data normalization can be generalized to restrict a set of values between any
arbitrary points a and b using the formula:

normalizedX = a+
(X− Xmin)(b− a)

Xmax − Xmin

Where Xmin and Xmax are respectively minimum and maximum values of variable X.
For simplicity, we chose the range [0,1]. We will then have:

normalizedX =
(X− Xmin)

Xmax − Xmin

The normalized metric for object’s importance, then becomes:

metricimp =
(imp− impmin)

impmax − impmin

(5.4)

Where imp represents object’s importance.
The same formula applies for normalized network metric.

metricnet =
(net− netmin)

netmax − netmin

(5.5)

Where net represents network parameter.

5.1.3 Theoretical properties

To further understand the principles guiding this communications level selection, we
formulated some properties using the following notation: we denote by i(o)|net the impor-
tance value of object o given a network situation net; and by r(o)|net the synchronization
rate of object o resulting from associating that object to appropriate communications level
in the LoD system, given a network conditions net. Here are the properties describing
this level of detail approach at any given time:

1. Synchronization rate: Given two objects of different importance and stable net-
work conditions, the most important one (with the smallest important value) is

5.1. ADAPTING GAME COMMUNICATIONS 73

always associated to a communications level with higher synchronization rate than
the less important one:

∀o1, o2 : Object,∀net : Network,

i(o1)|net < i(o2)|net ⇔ r(o1)|net ≥ r(o2)|net
(5.6)

Demonstration: The synchronization rate of an object is determined by its com-
munications level, which in turn is selected by comparing its qoe util with the
qoe util thresholds.

∀o : Object,∀net : Network,

qoe util(o) = wimp × i(o)|net +wnet × net,

∀o1, o2 : Object,

i(o1)|net < i(o2)|net ⇔ (wimp × i(o1)|net +wnet × net) < (wimp × i(o2)|net +wnet × net),

i(o1)|net < i(o2)|net ⇔ qoe util(o1) < qoe util(o2),

According to the qoe util to synchronization level mapping rule,

qoe util(o1) < qoe util(o2)⇔ r(o1)|net ≥ r(o2)|net,

then i(o1)|net < i(o2)|net ⇔ r(o1)|net ≥ r(o2)|net

2. Network fluctuations: The previous property (5.6) holds when network condi-
tions change from net to net+ d:

∀o1, o2 : Object,∀net : Network,∀d : R,

if (i(o1)|net > i(o2)|net ⇔ r(o1)|net ≥ r(o2)|net)

then (i(o1)|net+d > i(o2)|net+d ⇔ r(o1)|net+d ≥ r(o2)|net+d)

(5.7)

Where d quantifies the experienced change in network conditions.

3. End-to-end transmissions: Given two objects of different importance and stable
network conditions, the most important one is always guaranteed to achieve more
successful end-to-end packet transmissions than the less important one in a given
period t. In other words, more important objects are guaranteed to update their
states more frequently. We denote by E(o)t the mathematical expectation of the
object o in the mean number of successful packets transmissions during period t.

∀o1, o2 : Object,∀t : Period,

i(o1) < i(o2)⇔ E(o1)t ≥ E(o2)t
(5.8)

Demonstration:

Given network conditions, some synchronization messages may not arrive at the
destination. Let X represent the number of successful end-to-end packets trans-
missions during a period t. P(X) represents the probability of having X successful
transmissions during a period t. The mathematical expectation of an object o is
given by the formula:

E(o)t =

n∑

i=1

Xi × P(X = Xi)

74 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

Where n is the maximum number of successful transmissions for the object o during
the period t. Given a synchronization rate of r(o), n = r(o) × t.

Therefore,

∀o1, o2 : Object,∀t : Period,

i(o1) < i(o2)⇔ r(o1) ≥ r(o2),

r(o1) ≥ r(o2)⇔
∑r(o1)×t

i=1 Xi × P(X = Xi) ≥
∑r(o2)×t

i=1 Xi × P(X = Xi),

then i(o1) < i(o2)⇔ E(o1)t ≥ E(o2)t

4. Hunger probability: Given two objects of different importance and stable net-
work conditions, the most important one is less likely to experience a hunger con-
cerning network resources than the less important one in a given period t.

We denote by H(o)t the probability of object o to experience a hunger, meaning
the probability of having 0 end-to-end packet transmission during period t.

∀o1, o2 : Object,∀t : Period,

i(o1) < i(o2)⇔ H(o1)t < H(o2)t
(5.9)

Demonstration:

The probability of an object o to have at least 1 end-to-end transmission during a
period t is:

∑r(o)×t
i=1 P(X = Xi) therefore,

H(o)t = 1−

r(o)×t∑

i=1

P(X = Xi)

So,

∀o1, o2 : Object,∀t : Period,

i(o1) < i(o2)⇔ r(o1) ≥ r(o2),

r(o1) ≥ r(o2)⇔
∑r(o1)×t

i=1 P(X = Xi) ≥
∑r(o2)×t

i=1 P(X = Xi),

r(o1) ≥ r(o2)⇔ −
∑r(o1)×t

i=1 P(X = Xi) < −
∑r(o2)×t

i=1 P(X = Xi),

r(o1) ≥ r(o2)⇔ 1−
∑r(o1)×t

i=1 P(X = Xi) < 1−
∑r(o2)×t

i=1 P(X = Xi),

then i(o1) < i(o2)⇔ H(o1)t < H(o2)t

As a brief summary we can say that, our proposition theoretically guarantees some
important properties in network resources distribution. Levels with higher synchroniza-
tion rates are attributed in priority to most important game objects and this priority
is maintained in case of fluctuations in the network. In average, most important game
objects achieve more successful end-to-end transmissions and have a smaller probability
of hunger than less important objects.

Depending on how objects importance are managed, we utilized this LoD approach in
two ways during the course of this thesis: (i) with agents organizations, where objects’
importance are mapped with their roles in the game organization. Here a change in
object’s role ushers a change in object’s importance (see next section); (ii) with gameplay
components, enabling us to dynamically adjust object importance according to game
scenario(see section 5.3).

5.2. ORGANIZATIONAL LEVEL OF DETAIL 75

5.2 Organizational level of detail

Different objects play different functional roles in a game, and we assume that these
roles are correlated to levels of sensitivity of these objects to QoE factors. In this model,
objects’ roles are used as indicators of objects importance in a way that, there is a direct
mapping from an object’s role to its importance. Hence we used organizations to group
all game objects with the same role, since they have the same sensitivity to QoE factors.
Instead of focusing on objects’ importance, the focus is made here on their roles. A change
of role for an object therefore steers a change of its importance. With an organization,
instead of individually selecting communications levels of each object, we are going to
select the levels for all objects in a particular group at once. The importance of a group
is the importance of its objects which is determined with their role. The specificity of
this organization model is presented in the following section.

5.2.1 The organization model

We follow the main principles of AGR model to structure our game entities. AGR
model is a very simple organization framework, that just provides a way for partitioning
system entities through the concepts of group and role. Another advantage of AGR
architecture is that, it does not describe the ”how”, but only specifies the ”what” by
describing organizational structures made of groups and roles. The semantic behind the
notion of role is left open so that it can be used in different scenarios. In our context
of game, a role can determine the relative importance of an object for the game. With
multiple roles in the game, multiple levels of importance and priorities can therefore be
defined among game entities. The role of a game entity can change at any moment, and
as a result, its importance also changes.

As we explained in section 4.3, our framework synchronizes objects’ artifacts and not
agents, and the importance of an object is the importance of the agent controlling it.
Therefore instead of focusing on game agents, our organization assembles game objects
in groups according to their importance.

Still, compare to the original AGR, following are some simplifications made on our
organization model:

— Role: AGR defines roles within the scope of a group, hence entities with different
roles can be in the same group. In our model, roles are defined within the scope of
the game and are used to partition objects in groups of objects with the same role.
Hence, all game objects in a group have the same role.

— Group: AGR enables agents to belong to multiple groups simultaneously. This is
not possible in our model. In fact our model identifies a group with the functional
importance of its objects (role) and an object can not have two levels of importance
in the game at the same time.

To facilitate understanding and to formalize the structural aspects of our organization
model, we use a notation introduced by AGR to formalize the semantics behind their
model. Using this notation, we denote by plays(x, r) the statement that the object x

plays the role r. We also denote by member(x, g) the statement that an object x is a
member of a group g. gr denotes the statement that g is a group of objects playing the
role r. Here are the axioms describing our organization at any given time:

— Every object is member of one and only one group:

76 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

∀x : Object,∃!g : Group,member(x, g)

— Every object plays one and only one role in the game:

∀x : Object,∃!r : Role, plays(x, r)

— An object is a member of the group of objects playing the same role:

∀x : Object,∀r : Role, plays(x, r)⇔ ∃!gr : Group,member(x, gr)

— All objects in the same group play the same role in the game:

∀g : Group,∀x : Object,member(x, g)⇔ ∃!r : Role, plays(x, r)

5.2.2 LoD and organization

This combination of the LoD technique with agents organization is called organiza-
tional level of detail [Mahdi, 2013]. In fact, we are not the first to think about coupling
LoD and agents organization to manage an efficient distribution of scarce resources. For
instance, Mahdi Ghulam, in his PhD thesis defended in 2013, used organizational LoD
to deliver a QoE support, for maintaining an acceptable frame rate in video games. For
that, he used LoD to adapt the amount of CPU allocated to game agents depending
on their importance in the game organization. The evaluation conducted showed that,
organizational LoD enables significant QoE gains.

We are interested in using LoD to adapt the amount of network resources allocated
to game objects taking to account their role in the virtual society. We created several
communications levels, each configured with a synchronization rate for state updates of
all the groups of objects belonging to that level.

Game scene

objects

AB C

DE

F

GH

I J

K

Communications
levels

optimal

G1

medium

G2 G3

degraded

G4

Organization

Group1 / R1

K

Group2 / R2

GJ D

Group3 / R3

HF E

Group4 / R4

AB C I

(1) (2)

Figure 5.2 – Organizational level of detail

5.2. ORGANIZATIONAL LEVEL OF DETAIL 77

The example of figure 5.2 illustrates how game objects of a game scene are associated
to functional groups of the organization, according to their role (1). The groups are then
associated to appropriate communications levels (2) in the LoD system. Organization
and communications levels of this example can be summarized as follow:

Organization

G1 where objects ={K }
G2 where objects ={J, G, D}
G3 where objects ={F, H, E}
G4 where objects ={B, A, C, I}

levels

optimal groups ={G1}
medium groups ={G2, G3}
degraded groups ={G4}

When network resources are sufficient, all objects are assigned to the optimal level,
and are synchronized at the highest rate in the LoD system. When there is a shortage of
resources, the groups of objects are redistributed to degraded levels, according to their
functional role. The network communications module then uses the communications
levels to synchronize objects’ states.

5.2.3 Example

To illustrate this LoD and organization association, here is a simplified version of a
shooting game, ”My Duck Hunt”, developed to evaluate our adaptation approach with
organizations [Ewelle et al., 2013]. Figure 5.3 shows a screen shot of the game.

Figure 5.3 – Screenshot of the game ”My Duck Hunt”

Five kinds of game objects evolve in the game scene:

78 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

— Player controlled reticle, which is the round game object, highlighted with a square
in the screenshot. The player should point the reticle on a target, and shoot to
eliminate the target.

— Ducks are the flying game objects, highlighted with a star.

— Flamingos are the flying game objects, highlighted with a circle.

— Gombas are the game objects on the floor, highlighted with a diamond.

— Clouds are the game objects, highlighted with a rectangle.

The game is divided in 5 stages or quests and the player has to achieve the following
goals:

— Eliminate as many ducks as possible. For each duck eliminated, the player gains
points.

— Do not eliminate flamingos.

— Protect flamingos from gombas by eliminating gombas. Each flamingo eliminated
results in points loss.

From this description and the functional roles of these objects, the following organi-
zation can be formed:

Organization

G1 where role = {player}; objects ={reticle}
G2 where role = {target}; objects ={ducks}
G3 where role = {protect}; objects ={flamingos}
G4 where role = {enemy}; objects ={gombas}
G5 where role = {decoration}; objects ={clouds}

In order of importance, player’s reticle comes first, target objects come second, fol-
lowed by protects objects, then enemy objects and finally decoration objects. Network
resources distribution will then prioritize objects based on this order.

The LoD system is the following: (i) object importance variable is an integer value,
ranging from 0 to 10. 0 being the highest importance and 10 being the lowest importance.
For this example, we will use an object importance threshold array of (2, 5, 7); (ii) the
network metric here is the network delay specified in ms and ranges from 0 to 400 ms.
For this example we will use the network delay threshold array of (100, 160, 220); (iii)
four communications levels: optimal, enhanced, medium and degraded.

QoE utility thresholds are computed using both network and object importance
thresholds. This computation is done in 3 steps:

— Normalized importance metric: Using importance ranging from 0 to 10 and the
importance thresholds of (2,5,7), the normalized threshold array for level selection
using object importance will become (2

10
, 5
10
, 7
10
).

— Normalized network metric: With the range [0, 400] and the network thresholds of
(100,160,220), the normalized threshold array for level selection becomes (5

20
, 8
20
, 11
20
).

— QoE ulitily: After calculations, given equal weights of 1
2
for both metrics, the com-

posite threshold array of the overall level selection in the example will be (9
40
, 18
40
, 25
40
).

(
9

40
,
18

40
,
25

40
)⇔ (t1 = 0.22, t2 = 0.45, t3 = 0.62)

5.2. ORGANIZATIONAL LEVEL OF DETAIL 79

optimal enhanced medium degraded

100Hz 20Hz 10Hz 5Hz Synchronization rates

Communications levels

QoE utility thresholds

0.22 0.45 0.62

Figure 5.4 – Example of LoD selection

With these settings, appropriate communications levels for the composite metrics
are selected as shown in figure 5.4.

For simplicity, in this example, objects’ roles are static, thus the only input that
changes is the network delay. But provided a game with changing objects’ roles, the
same principles apply. Let’s consider the progression of figure 5.5:

— The game starts with a network delay of 10 ms.

— After 30 seconds the network delay increases to 190 ms.

— After 90 seconds the network delay decreases to 80 ms.

0 30 90 110

10

190

80

Time (s)

N
et
w
or
k
d
el
ay

(m
s)

Figure 5.5 – Example of network delay progression

The objective of this example is not to present the calculation details of object’s
qoe util, but rather it focuses on communications level changes for group of objects in
response to network condition fluctuations.

— At the starting point: the network delay of 10 ms is considered stable, and a
resulting level distribution could be the following:

80 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

levels

optimal where groups ={G1, G2, G3, G4, G5}
enhanced where groups ={}
medium where groups ={}
degraded where groups ={}

In this situation, the normalized qoe utils of all groups are below the threshold of
the optimal level, thus they will all be assigned to the optimal level, which is normal
given the ”favourable” network conditions.

— After 30 seconds: the delay goes to 190 ms. The qoe util of each group is
recalculated and the groups are reassigned to appropriate levels. LoD settings
could then be the following:

levels

optimal where groups ={G1, G2}
enhanced where groups ={G3}
medium where groups ={ G4}
degraded where groups ={G5}

Reticle and ducks stay on the optimal level, while other game objects are reallo-
cated to gracefully degraded levels. Clouds are the game objects with the lowest
importance, they are therefore assigned to the lowest level with a synchronization
rate of 5Hz. This level association verifies our property 5.6 about the coherence of
network resources distribution according to objects’ importance. We can already
see that, all game objects are not affected by network degradation in the same way,
unlike in a situation without LoD.

— After 90 seconds: the delay reverts back to 80 ms. With these network conditions,
levels are reorganized and the resulting settings could be:

levels

optimal where groups ={G1, G2}
enhanced where groups ={G3, G4}
medium where groups ={ G5}
degraded where groups ={}

Player and targets objects remain on the optimal level, the enemy group is moved
up to the enhanced level, while decoration game objects move from the lowest level
to the medium level. This verifies our property 5.7 about synchronization rate
distribution when network conditions change. The most important objects still get
a larger portion of the available network resources.

5.3 GC based level of detail

Section 5.2 presented how we use agents organization to manage objects importance in
the LoD system. In this section, we present a LoD system using the semantic of gameplay
components to determine the importance of game objects. The overall LoD system does
not change. We still have n communications levels with different synchronization rates,
n − 1 QoE utility thresholds and game objects are distributed to communications levels
according to their QoE utility values. The only thing that changes here is the way to
provide objects with importance values that are then used to compute QoE utility values.
Assuming that objects’ importance change as the game evolves, our objective here is to

5.3. GC BASED LEVEL OF DETAIL 81

use GCs to enable objects’ importance adjustment during game sessions. We do this by
associating an importance value to each node of the GC tree so that a change in the game
state is reflected by a change in this ”importance tree”.

As explained in section 4.4, when using gameplay components, a game is designed as
a set of atomic GCs combined together by GC operators. A game is therefore represented
as a GC tree. It is important to have in mind that, GCs represent the different game
mechanics around the concepts of objective, challenge and reward. In a game scene,
there are always some objects that do not participate in any of these game concepts.
Background objects are an example. In general, background objects are not related to a
specific game objective, nor add any challenge to the game, nor constitute a particular
reward to player’s actions. As a result, these objects are not represented in a game’s GC
tree.

Since our adaptation approach consists of associating each object in the game with
an importance value, we need to consider all objects. This is the reason why we assemble
game objects in two types: those that are present in a GC, we call them ”GC objects”;
those that are not present in any of the GCs and therefore are not in the GC tree. We call
them ”Non-GC objects”. As a basic rule, all Non-GC objects will be attributed a default
static importance value, whereas GC objects will see their importance values fluctuate
throughout the game session according to the game tree. This process is done in two
phases: (i) an inceptive phase where an initial importance value is attributed to each
node of the tree; (ii) a propagation phase where the importance values are updated.

5.3.1 Initial importance distribution

The importance value is a real number between 0 and 1, where 0 represents the lowest
importance and 1 represent the highest importance. The root of the GC tree has an
importance value of 1. This value is then distributed in a recursive manner to the rest of
the GC tree. For example, figure 5.6 illustrates how importance values are distributed in
the initialization phase of the GC tree.

Cf∈N:1

∧:1

¬ touch(black):1
2

−→
∧ :

1
2

kill(white):1
2

kill(green): 1
2

kill(red):1
2

F:1

¬ touch(red):1
2

∨:
1
2

kill(yellow):1
4

kill(blue):1
4

Figure 5.6 – Example of a GC tree with importance values at initialization

82 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

This importance distribution algorithm starts with the root node of the GC tree. The
root is attributed the global importance of 1 and this importance is recursively distributed
to the rest of the tree following the algorithm 2. The rule is that the importance of each
parallel composite GC is distributed to its children:

∑
childimportance = parentimportance

The unary and sequential composite GCs have the same importance as their children,
since only one child is active at a given time.

Algorithm distributeImportance;
Data: imp, the node’s importance;
node, the GC node

begin
/* Set the importance for the current node */

node.setImportance(imp);
children ← node.getChildren();
if children Ó= null then

/* Depending on the operator distribute importance to children

nodes */

switch node.operator do
/* Parallel nary operators */

case ∧, ∨, F
foreach child in children do

/* Distribute the importance according to child’s

weight */

childImp ← child.getWeight() × imp;
distributeImportance(childImp, child);

end

end
/* Sequential and unary operators */

case −→
∧ ,

−→
∨ , I, Cf∈N, ¬

/* Distribute the importance to the next or the only

child */

child ← children.getNext();
distributeImportance(imp, child);

end

endsw

end

end
Algorithm 2: Importance distribution at initialization

By default, we decided that all children of a node have the same importance value.
Therefore the same percentage of their parent’s importance (weight). But it is important
to state that, depending on the game scenario, some children can require more focus than
others, and therefore should have a bigger share of the parent’s importance. For example,
let’s consider the GC tree of figure 5.7.

5.3. GC BASED LEVEL OF DETAIL 83

∨:1

∧:2
3

touch(object1): 1
3

kill(object2): 1
3

∨: 1
3

kill(object3): 1
6

kill(object4): 1
6

2
3

1
3

Figure 5.7 – Example of a GC node with different importance weights on children

With the default settings, the ∧ node and the ∨ node will have the same importance
of 1

2
. But we know that the evaluation of both operators is not the same. With ∧, the

player must achieve both sub-objectives (touch(object1) and kill(object2)) to succeed.
Even though this can be very subjective, one can argue that, the player needs to be two
times more focused than, with ∨ operator where (s)he only has to kill only one of the
objects and thus has two chances to succeed. A possible distribution can be the one
proposed, assigning an importance of 2

3
to the ∧ operator and an importance of 1

3
to the

∨ operator.
In another situation, it could be that killing the object3 or the object4 is more chal-

lenging and more rewarding than touching the object1 and killing the object2. Thus with
this setup, it could be advisable to have a bigger importance on the ∨ operator.

These examples show that, importance values really depend on how the game designer
qualifies the level of challenge and/or reward for the GCs as well as the influence of the
GCs on the QoE.

To deal with these game dependent scenarios, we gave game designers the possibility
to manually set an importance weight of each child (wi). The weights are then used to
distribute parent’s importance value to children. These weights are real numbers between
0 and 1, and they are set in the way that their sum equals to 1.

childImportancei = wi × parentimportance where
∑

wi = 1

In the scenario above the weights of node ∧:2
3
and node ∨:1

3
, are attributed manually

by the game designer. But by default an equal distribution is applied and all weights are
equal to:

wi =
1

number of children
.

In figure 5.7, the importance weights are the numbers in the middle of the arrows.
In the remaining of this document, GC tree’s arrows without weights signify an equal
distribution of parent’s importance to children.

5.3.2 Updating importance

At the evaluation state, each active GC checks the return value of its evaluation
function. As we saw in figure 4.7, three cases are possible: success, failure and in progress.
The GC tree has to adapt to any of these situations and adjust the nodes’ importance
value accordingly (see the algorithm 3):

84 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

— In case of success, all sub-nodes’ importance are set to default. The GC calls
a reward script and the game objects manipulated by this script have the same
importance value as the GC.

— In case of failure, all sub-nodes’ importance are set to default. The GC calls
a penalty script and the game objects manipulated by this script have the same
importance value as the GC.

— In case of GC in progress, the evaluation function is used to ensure that any
progress toward the objective is taken into account in nodes’ importance adjust-
ment. As example, let’s say you have a GC sub-tree as the one below. At initializa-
tion state, its importance is 1

2
and all the sub-components have the same importance

of 1
6
.

∨:1
2

kill(object1):1
6

kill(object2):1
6

kill(object3):1
6

The evaluation function periodically checks the return value of each of the sub-
components. If the first sub-node (kill(object1)) fails, its parent still has 2 sub-nodes
to achieve its objective, thus its evaluation function will return in progress. But it
has to adjust the importance of its sub-components because, the first sub-objective
can no longer be achieved, the focus will now be on the other sub-components. The
way we deal with this situation is by redistributing the whole importance, only to
the remaining, unended sub-components. With this propagation phenomenon, the
termination of one sub-component, causes the change of importance values of its
remaining siblings. The objects involved in the ended GC now become Non-GC
objects, and therefore their importance is set to the default value. The resulting
sub-tree is the one below where the ended GC is identified by the dashed arrow and
the remaining GCs with the bold arrows.

∨:1
2

kill(object1):default kill(object2): 1
4

kill(object3): 1
4

The objective of the propagation algorithm is to adjust the importance of siblings
sub-nodes in reaction to the termination of a sub-node. The way these importance values
are propagated differs from one operator to another:

1. ”Parallel and” (∧) operator: With ∧ operator, if a child ends with a success, it
becomes less important and set its importance to the default value. The focus in
now on the other children to which the ended child’s importance is redistributed.
In case of child failure, the parent fails as well (see the algorithm 4).

2. ”Parallel or” (∨) operator: In case of child success, ∨ operator succeeds as well
and calls the reward script. When a sub-component fails, the operator continues
to evaluate the remaining sub-components. Therefore the ended sub-component
becomes less important and associated to the default importance value. The ended

5.3. GC BASED LEVEL OF DETAIL 85

Algorithm updateImportance;
Data: node, the GC node;
default, the default importance value for the Non-GC objects

begin
children ← node.getChildren();
/* Depending on the evaluation function */

if evaluation(node) = success then
/* All the sub-nodes are set to default */

foreach subnode in children do
distributeImportance(default, subnode);

end

else
if evaluation(node) = failure then

/* All the sub-nodes are set to default */

foreach subnode in children do
distributeImportance(default, subnode);

end

else
/* Check if any sub-component has terminated */

if children.lenght() > 0 then
foreach child in children do

/* Propagate the importance change in the siblings */

if evaluation(child) = success ∨ evaluation(child) = failure then
switch node.operator do

case ∧
propagateParallelAnd(child, node);

end
case ∨

propagateParallelOr(child, node);
end

case −→
∧

propagateSequentialAnd(child, node);
end

case
−→
∨

propagateSequentialOr(child, node);
end
case Cf∈N

propagateContituation(child, node);
end

endsw

end

end

end

end

end

end
Algorithm 3: Importance update at evaluation state

86 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

Algorithm propagateParallelAnd;
Data: child, the ended child node;
parent, the parent GC node

begin
if evaluation(child) = success then

children ← parent.getChildren();
children.remove(child);
/* Distribute the ended child’s importance equally */

foreach subnode in children do
extraImp ← child.getImportance()/children.lenght();
newImp ← extraImp + subnode.getImportance();
distributeImportance(newImp, subnode);

end
/* Set the ended child’s importance to default */

child.setImportance(default);

end

end
Algorithm 4: Importance propagation of the ”parallel and” operator

sub-component’s importance is redistributed to the remaining sub-components (see
the algorithm 5).

Algorithm propagateParallelOr;
Data: child, the ended child node;
parent, the parent GC node

begin
children ← parent.getChildren();
if evaluation(child) = failure then

children.remove(child);
/* Distribute the ended child’s importance equally */

foreach subnode in children do
extraImp ← child.getImportance()/children.lenght();
newImp ← extraImp + subnode.getImportance();
distributeImportance(newImp, subnode);

end
/* Set the ended child’s importance to default */

child.setImportance(default);

end

end
Algorithm 5: Importance propagation of the ”parallel or” operator

3. ”Sequential and” (−→∧) operator: The only difference in propagating −→
∧ in com-

parison with the ∧ is that, instead of redistributing parent’s importance to all
remaining children, with −→

∧ only the next child in the operator gets all the parent’s
importance. This happens because, with the sequential operators, only one child is
active at a given time (see the algorithm 6).

5.3. GC BASED LEVEL OF DETAIL 87

Algorithm propagateSequentialAnd;
Data: child, the ended child node;
parent, the parent GC node

begin
if evaluation(child) = success then

children ← parent.getChildren();
children.remove(child);
/* The importance is assigned to the next sub-node */

subnode ← children.getNext();
if subnode Ó= null then

distributeImportance(parent.getImportance(), subnode);
end
/* Set the ended child importance to default */

child.setImportance(default);

end

end
Algorithm 6: Importance propagation of the ”sequential and” operator

4. ”Sequential or” (
−→
∨) operator: Like with −→

∧ ,
−→
∨ differs from ∨ by only giving

all the parent’s importance to the next child (see the algorithm 7).

Algorithm propagateSequentialOr;
Data: child, the ended child node;
parent, the parent GC node

begin
if evaluation(child) = failure then

children ← parent.getChildren();
children.remove(child);
/* The importance is assigned to the next sub-node */

subnode ← children.getNext();
if subnode Ó= null then

distributeImportance(parent.getImportance(), subnode);
end
/* Set the ended child importance to default */

child.setImportance(default);

end

end
Algorithm 7: Importance propagation of the ”sequential or” operator

5. ”Continuation” (Cf∈N) operator: With Cf∈N operator, no matter the status of
the ended child, the parent’s importance is passed to the newly generated child in
a sequential way. The importance of the ended child is set to the default value (see
the algorithm 8).

Operators such as ”ignore” (I), ”negation” (¬) and ”First” (F) end when a sub-
component ends. Hence there is no incentive to propagate the importance. All sub-nodes’
importance values are set to default and the reward or penalty script is invoked.

88 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

Algorithm propagateContinuation;
Data: child, the ended child node;
parent, the parent GC node

begin
children ← parent.getChildren();
children.remove(child);
/* The importance is assigned to the next GC generated by the

continuation function */

newGC ← continuationFunction.getNext();
if newGC Ó= null then

children.add(newGC);
distributeImportance(parent.getImportance(), newGC);

end
/* Set the ended child importance to default */

child.setImportance(default);

end
Algorithm 8: Importance propagation of the ”continuation” operator

5.3.3 LoD and GCs

This subsection highlights the overall LoD system configuration and necessary trans-
formations made on GCs generated importance values for QoE utility computations.

Figure 5.8, presents an example of game objects mapping to adequate communications
levels using GCs. As with agents organization, game objects are clustered in sets of
objects with the same importance value (1) called ”importance sets”. These sets are then
associated to the appropriate communications level (2).

Since importance values are dynamic and are updated during game session, objects
can move from one set to another and sets can be created, and deleted at any moment.
Non-GC objects, do not influence the GC tree, they are therefore considered secondary
and clustered in a set called ”default”. Further decomposition within the default set can
be made, but for our experiment, we consider all Non-GC objects as part of one default
set. And as we saw in importance propagation algorithms, ended GCs’ objects become
Non-GC objects and are affected to the default set if they still exist in the game scene.
In case of object removal from the game scene, the objects are simply removed from the
LoD system.

The game designer also has the possibility to explicitly attribute the default impor-
tance to a GC-object (s)he deems less important. The default set is the set of objects
with the lowest importance in the organization, hence its importance value is the lowest.
In our model, the importance value for the default set is automatically generated at tree
initialization and it is half of the lowest generated importance.

defaultimp =
1

2
× (lowestimp).

This importance value can be manually modified by the game designer.

With GCs, we saw that generated importance values are in interval [0,1], where more
important objects have higher importance values. Since thresholds for LoD selection

5.3. GC BASED LEVEL OF DETAIL 89

Game scene

objects

AB C

DE

F

GH

I J

K

Communications
levels

level1

S1

level2

S2 S3

level3

S4

Importance sets

Set1 / imp1

K

Set2 / imp2

GJ D

Set3 / imp3

HF E

Set4 / imp4

AB C I

(1) (2)

Figure 5.8 – GC based level of detail

are given from the most important objects to the less important objects, we will have
decreasing importance thresholds (thresholdi > thresholdi+1) using GC. Thus, to be
used with the qoe util formula 5.3, a little transformation of importance values is needed.
In fact, for the level selection to work, we should have a threshold array of the same size as
the network threshold array (n− 1, where n is the number of levels), and with increasing
values (thresholdi < thresholdi+1). The array is defined, so that the smallest value
refers to the objects with the highest importance and the biggest value corresponds to
the lowest importance, as for the example in section 5.2.3, we had (2, 5, 7). We therefore
need to transform the importance values generated by GCs, in order to have increasing
values as object importance decreases while keeping the same proportion and disparity
between values.

We will use a simple transformation (tr) that keeps the disparity between importance
values but inverses their order in the [0,1] interval. A property for additive inverse state
that, for any real numbers a, b and c:

if a < b < c then − c ≤ −b ≤ −a thus 1− c ≤ 1− b ≤ 1− a

tr(x) = 1− x where x ∈ [0, 1]

Thus we use the transformation tr(x) where x is an importance value in the interval
[0, 1]. A threshold array of (9

45
, 6
45
, 2
45
) for example is transformed to (36

45
, 39
45
, 43
45
).

After this transformation, the values are already in the range [0,1], thus there is no
need for normalization.

90 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

5.3.4 Example

We are now able to adjust objects’ importance in accordance with the changes in the
gameplay. In this example we aim at illustrating step by step, how level of detail selection
is made using generated importance sets in conjunction with network conditions.

We will simulate the overall adaptation process using the game ”My Duck Hunt”
presented in the section 5.2.3. The overall game GC tree is given in figure 5.9. The game
is designed in sequential stages (Cf∈N). For this illustration example, each stage introduces
4 ducks, 2 flamingos and 3 gombas in the game scene. The atomic components provided
here are: (i) eliminate (object), enables the player to eliminate ducks and gombas; this
component is also used by gombas to eliminate flamingos; (ii) countdown, determines
the duration of a stage. According to game rules, a stage can end for 3 reasons:

— all ducks are eliminated,

— the count down has ended,

— all flamingos are eliminated.

The elimination of gombas can not end a stage; it is optional and simply enables the
player to protect flamingos and gain some score points. Let’s suppose that the game
designer provided different importance weights for children of the components stage(F)
and protection(∧) as seen in figure 5.9.

MyDuckHunt(Cf∈N)

stage(F)

eliminateAll(∧)

duck1
. . . duck4

count down protection(∧)

protect(¬)

eliminateAll(∧)

flamingo1 flamingo2

floor(I)

eliminateAll(∧)

gomba1 gomba3

2
5 1

5

2
5

2
3

1
3

Figure 5.9 – GC tree for the game My Duck Hunt

For this example, we will use the same communications levels as for the example
of subsection 5.2.3. Thus we will have four communications levels: optimal, enhanced,
medium and degraded, with respectively 100Hz, 20Hz, 10Hz, 5Hz as synchronization
rates. To compute qoe util threshold array, we need threshold arrays for both network
conditions and object importance.

For network delay, we will use the same array as in the example of section 5.2.3:
(100, 160, 220) in range [0, 400]. But once normalized in interval [0, 1] as show in formula
5.5, this array becomes (5

20
, 8
20
, 11
20
).

5.3. GC BASED LEVEL OF DETAIL 91

For object importance, the threshold array of (1
5
, 2
15
, 2
45
) (which is derived from im-

portance values of the game’s GC tree at the initialization, see figure 5.12) is considered.
After applying the transformation tr(x) = 1 − x in the interval [0, 1] as explained in the
subsection 5.3.3, object importance array becomes (36

45
, 39
45
, 43
45
).

From these threshold arrays the composite threshold for the overall level selection will
be:

(
189

360
,
228

360
,
271

360
)⇔ (t1 = 0.52, t2 = 0.63, t3 = 0.75)

The communications level selection semantic is shown in figure 5.10.

optimal enh medi degraded

100Hz 20Hz 10Hz 5Hz rates

levels

qoe util thresholds

0.52 0.63 0.75

Figure 5.10 – Example of LoD selection

Following the scenario of figure 5.11, the game’s progression steps are:

— the game starts with a network delay of 10 ms,

— after 30 seconds, network delay increases to 190 ms,

— after 50 seconds, eliminate(duck4) ends with a success.

0 30 90
10

190

80

Time (s)

N
et
w
or
k
d
el
ay

(m
s)

delay
eliminate(duck4)

Figure 5.11 – Example of game scenario progression

92 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

At game initialization with a delay of 10 ms

At game initialization, the importance distribution algorithm initializes each GC with
an appropriate importance value according to different weights as shown in figure 5.12.
With the given importance values, five different importance sets can emerge. The parti-
tioning of the equation 5.10 shows these various sets ordered by importance.

Sets

S1 where imp = 1
5
; objects ={count down, reticle}

S2 where imp = 2
15
; objects ={flamingo1, flamingo2}

S3 where imp = 1
10
; objects ={duck1, . . . , duck4}

S4 where imp = 2
45
; objects ={gomba1, . . . , gomba3}

S5 where imp = default; objects ={clouds}

(5.10)

The set S5 with an importance of default always contains Non-GC objects, at this
stage, the clouds. The lowest generated importance is 2

45
thus the default importance is

1
45
.

MyDuckHunt(Cf∈N):1

stage(F):1

eliminateAll(∧): 2
5

duck1:
1
10

duck4:
1
10

count down:1
5

protection(∧): 2
5

protect(¬): 4
15

eliminateAll(∧): 4
15

flamingo1:
2
15

flamingo2:
2
15

floor(I): 2
15

eliminateAll(∧): 2
15

gomba1:
2
45

gomba3:
2
45

2
5 1

5

2
5

2
3

1
3

Figure 5.12 – Initial importance distribution

Let’s now compute the qoe util of each set and then use it to determine the appropriate
communications level. With a delay of 10 ms, we have metricnet =

1
40
.

— For set S1, with an importance of 1
5
, the computed metricimp = 4

5
. The resulting

qoe util = 33
80

= 0.41, which is less than t1. Therefore the selected level is the
optimal level.

— For set S2, with an importance of 2
15
, the computed metricimp = 13

15
. The resulting

qoe util = 107
240

= 0.44, which is less than t1. Therefore the selected level is the
optimal level.

— For set S3, with an importance of 1
10
, the computed metricimp = 9

10
. The resulting

qoe util = 37
80

= 0.46, which is less than t1. Therefore the selected level is the
optimal level.

5.3. GC BASED LEVEL OF DETAIL 93

— For set S4, with an importance of 2
45
, the computed metricimp = 43

45
. The resulting

qoe util = 353
720

= 0.49, which is less than t1. Therefore the selected level is the
optimal level.

— For set S5, with an importance of 1
45
, the computed metricimp = 44

45
. The resulting

qoe util = 361
720

= 0.50, which is less than t1. Therefore the selected level is the
optimal level.

The results of these calculations are given below, where q represents the qoe util:

S1 q1 = 0.41, level = optimal

S2 q2 = 0.44, level = optimal

S3 q3 = 0.46, level = optimal

S4 q4 = 0.49, level = optimal

S5 q5 = 0.50, level = optimal

Figure 5.13 shows the obtained level selection at this point.

optimal enh medi degraded

100Hz 20Hz 10Hz 5Hz rates

levels

qoe util thresholds

0.52 0.63 0.75

Figure 5.13 – LoD selection at initialization

We can see that, only one level is occupied and all objects have the biggest share of the
communications resources(see the circled interval on the qoe util axis). Even the Non-GC
objects of the default set are in a communications level with high synchronization rate.

After 30s, the delay goes to 190 ms

At this point, the sets have not changed, we calculate a new network metric using 190
ms. We have metricnet =

19
40
.

The results of qoe util calculations with these new settings are given below:

S1 q1 = 0.62, level = enhanced

S2 q2 = 0.67, level = medium

S3 q3 = 0.68, level = meduim

S4 q4 = 0.71, level = meduim

S5 q5 = 0.72, level = meduim

Figure 5.14 shows the obtained level selection at this point.
This configuration shows how the LoD reacts to bad network conditions. We can

notice that our approach guarantees that, important objects have more synchronization

94 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

optimal enh medi degraded

100Hz 20Hz 10Hz 5Hz rates

levels

qoe util thresholds

0.52 0.63 0.75

Figure 5.14 – LoD selection when the delay goes to 190 ms

resources(see property 5.6). Unlike our approach, a naive solution without LoD will have
all the game objects synchronizing their states at the highest possible rate despite the
network condition. They will evenly compete for network resources, therefore will be
impacted the same way by any network congestion. Whereas with the LoD adaptation,
less important objects are assigned to communications levels with gracefully lowered syn-
chronization rates. This demonstrates the validity of our property 5.7 about adaptability
to network resources fluctuations.

After 50s, eliminate(duck4) ends with a success

At this point, the network delay has not changed. When a GC ends, its importance
goes back to the default value. The GC tree importance is shown in figure 5.15. In this
example, eliminated objects are removed from the game scene. Therefore there is no need
to set their importance to default, nor to transfer them to the default set. The remaining
siblings (with dashed arrows in figure 5.15) ducks1, duck2 and duck3 benefit from this
and see their importance go from 1

10
to 2

15
. They are therefore moved to the S2, and the

S3 with an importance of 1
10

is dissolved. The resulting sets are the ones below.

Sets

S1 where imp = 1
5
; objects ={count down, reticle}

S2 where imp = 2
15
; objects ={flamingo1, flamingo2, duck1, . . . , duck3}

S3 where imp = 2
45
; objects ={gomba1, . . . , gomba3}

S4 where imp = 1
45
; objects ={clouds}

The network metric has not changed, metricnet =
19
40
.

The results of qoe util calculations with these new settings are given below:

S1 q1 = 0.62, level = enhanced

S2 q2 = 0.67, level = medium

S3 q3 = 0.71, level = medium

S4 q4 = 0.72, level = meduim

Figure 5.16 shows the obtained level selection at this point.
This levels-objects mapping shows that, as the game progresses the importance values

of game objects change and as a result their associations with communications levels

5.3. GC BASED LEVEL OF DETAIL 95

MyDuckHunt(Cf∈N):1

stage(F):1

eliminateAll(∧): 2
5

duck1:
2
15

. . . duck3:
2
15

count down:1
5

protection(∧): 2
5

protect(¬): 4
15

eliminateAll(∧): 4
15

flamingo1:
2
15

flamingo2:
2
15

floor(I): 2
15

eliminateAll(∧): 2
15

gomba1:
2
45

gomba3:
2
45

2
5 1

5

2
5

2
3

1
3

Figure 5.15 – GC tree after eliminate(duck4) succeeded

optimal enh medi degraded

100Hz 20Hz 10Hz 5Hz rates

levels

qoe util thresholds

0.52 0.63 0.75

Figure 5.16 – LoD selection when eliminate(duck4) ends with a success

change. We can see that our invariant axioms 5.6 about objects importance and their
network resources is always respected even when objects importance change.

As a summary for this example, we can see how objects importance are dynamically
recalculated and objects are assigned to appropriate sets as the game progresses. As the
importance sets change, the members of the communications levels also change. This ver-
ifies our axioms 5.6 and 5.7. It is important to know that the efficiency of this adaptation
approach highly depends on the LoD setup: the synchronization rates and the threshold
arrays for both network conditions and object importance must therefore be set carefully.

96 CHAPTER 5. COMMUNICATION ADAPTATION PROCESS

5.4 Conclusion

This chapter presented our LoD based communications adaptation approach for cloud
games. The game’s communications is dynamically adapted to the network conditions as
well as the importance of the game objects as the game scenario progresses. To model the
structure of the game and changes in objects importance two approaches are used: agents
organizations and gameplay components to model the structure of a game. With agent
organizations, we exploited the roles of game objects in the organization to determine
their importance. Therefore, a change in object’s role steers a change in its importance.
Using gameplay components, the game is modeled as an OCR tree, that changes as the
game progresses. From this OCR tree, we create an importance tree by associating an
importance value to each node of the tree. A change in the game state is therefore
reflected by a change in the importance tree.

In the next chapter, we will present the game prototypes and the pilot experiments
carried out to evaluate the benefits of our adaptation scheme.

C
h
a
p
t
e
r

6
Experimental Evaluation

Contents
6.1 Prototype . 98

6.1.1 Overall game architecture . 98

6.1.2 Game model . 99

6.1.3 ”My Duck Hunt” game . 102

6.1.4 ”Crazy runner” game . 104

6.1.5 Game communications adaptation 105

6.2 Experimentation . 107

6.2.1 Organization based adaptation 108

6.2.2 Gameplay components based adaptation 112

6.2.3 Overall discussion . 120

6.3 Conclusion . 120

This chapter presents the implementation and experimental evaluation of our adap-
tation approach. In the implementation part, we present the game architecture of the
game engines used to develop our games. We then present two games and their designs,
followed by the design of the game communication adaptation. For the evaluation, we de-
scribe pilot experiments carried out to assess the benefits of our proposition. We conclude
the chapter with a general discussion on QoE maintenance provided by our approach on
lossy and congested networks.

97

98 CHAPTER 6. EXPERIMENTAL EVALUATION

6.1 Prototype

Prototypes developed over the course of this thesis were implemented in JAVA, using
game libraries such as Slick2D 1 and libGDX 2. We present the overall game architecture
and the final implementation of each game prototype.

6.1.1 Overall game architecture

At the highest level, the basic architectural pattern is a simple client-server model
with the cloud gaming paradigm. This configuration involves multiple clients connecting
to a single central server. As shown in figure 6.1, the used architecture consists of four
major components: client, connection server, game server, and persistence server.

client 1

client n

Server system

game server
instance 1

game server
instance k

persistence
server

cloud connection
server

.

(1)

(2)

Figure 6.1 – The overall game architecture

On the frontend, we have a game client, representing the game itself. It interacts
with a game server system by sending controller inputs and receiving game state updates
through the network using standard Internet communications protocols (TCP and UDP).

On the backend, we have:

— Connection server: clients connect to the game via a connection service (see the
link (1) in figure 6.1). It is in charge of authenticating clients (if necessary) and
creating new game server instances (also known as shards) to host new game ses-
sions. For multiplayer game sessions, the connection server redirects clients joining
an existing game session to the appropriate game server instance. Once the connec-
tion is established, clients directly communicate with their respective game server
instances (see the link (2) in figure 6.1).

— Game server instance: it is an instance of game server created for a specific game
session. It contains the central game model and runs the game logic as explained

1. http://slick.ninjacave.com/
2. http://libgdx.badlogicgames.com/

6.1. PROTOTYPE 99

in the section 2.2 of the chapter 2. It is responsible for receiving players’ inputs,
updating the game model and sending game state updates to clients.

— Persistence server: it holds all information that need to be persisted. Mainly
user’s information and credentials, as well as game statistics and some game events.

We adopted this same architecture in the Village project using the RedHat’s 3

cloud application platform OpenShift 4, to deploy and test the game prototypes we co-
developed. MongoDB 5 was used as persistence server. For the evaluation of our adapta-
tion technique, all the components of the server system were hosted on a single machine.
So we had a server machine and a client machine connected to a LAN.

6.1.2 Game model

Our focus in this thesis is adapting state synchronization of all game entities in the
vicinity area of the player. This view area is based on the game model. We chose a core
game model, where a game is divided into a set of scenes containing game entities (see
figure 6.2). The number of scenes is variable and depends on the game scenario. A scene
is a part of a play in a single location in the game, in which a particular action or activity
occurs. It defines player’s view of the virtual environement with game entities.

EntitySceneGame
1 1..∗ 1 1..∗

Figure 6.2 – Core game model

With this game model, the synchronization module will simply periodically cycle
through the list of entities in the current game scene, and send their state updates to
clients.

In the course of this thesis, we have co-developed two game engines using this game
model as a basis for game structure: the Agent Game Development Engine (AGDE) and
the Game Agent Mechanics Engine (GAME).

AGDE

AGDE [SMILE, 2012] is a game engine developed by the SMILE research team at
LIRMM, with the aim of using artificial agents for fast 2D game prototyping. It is a Java
based framework, developed using the game library Slick2D. Slick2D provides a set of tools
and utilities wrapped around LWJGL and OpenGL bindings. Slick2D includes support
for images, animations, particles, sounds, music and more utilities for game development.
The game structure of AGDE is illustrated in figure 6.3, and it is the following:

— Structure: it is the container class of all the structure of a game, it holds a table of
game levels. A particular level is considered active.

— Level: it represents a game level and can contain multiple game scenes, with only
one active scene.

— Scene: it represents a game scene and belongs to only one game level.

3. http://www.redhat.com/en
4. https://www.openshift.com/
5. http://www.mongodb.org/

100 CHAPTER 6. EXPERIMENTAL EVALUATION

— Layer: it represents a layer in a game scene. A game scene can have one or more
layers, but only one is considered active.

— Entity: it is a game agent with a state that can be updated and a behavior that
can be controlled. Entities have a set of scripts and actions that enable them to
control their states and behaviors. Scripts play a major part in this framework,
because they implement the logic and control flows of game entities. An entity’s
functional role in the game is assigned through the script associated to the entity.
An entity can also have one or multiple graphic and audio representations that
can be rendered. In our context of objects replication, only entities with physical
representation are synchronized: they represent the replicated game objects.

Scene Layer EntityLevelStructure
1 1..∗ 1 1..∗ 1 1..∗ 1 1..∗

Figure 6.3 – AGDE’s game structure

On the implementation side, AGDE is based on the concept of ”Activity”. An activity
represents every game activity with state management. As shown in the class diagram of
figure 6.4, each activity has a life cycle and predefined methods to call upon activity cre-
ation and destruction, insertion and suppression, activation and deactivation from game
tree (See the interface ActivityLifeCycle in figure 6.4). As its name suggests, Structure-
Base class is the base class for all game structure elements. Elements such as Structure,
Level and Scene, inherit from the StructureBase class. Each of these elements therefore
has a special entity controlling its behavior, namely game director, level director and
scene director respectively. Only entities and scripts have an update cycle, while only
entities, levels and scene have rendering capabilities.

We used AGDE to develop the shooting game called ”My Duck Hunt”, for the evalu-
ation of our communications adaptation technique with organization.

GAME

GAME [SMILE, 2013] is a Java framework for fast game mechanics implementation
and multi-agent behavior. Also developed by the SMILE research team at LIRMM,
core modules of the engine are designed so that the engine can build and run game
mechanics independently from aesthetic aspects. This characteristic enables GAME to be
plugged into a variety of game graphics libraries (back-end engines) for graphics rendering.
LibGDX is the back-end game library provided by default with GAME.

Libgdx allows developers to write his/her code once and deploy it to multiple platforms
without modification using the GWT technology. It currently supports Windows, Linux,
Mac OS X, Android, iOS and HTML5 as target platforms. Just like Slick2D, Libgdx ties
in many third party libraries such as LWJGL and OpenGL to provide its functionalities.
Its powerful set of APIs helps developers with common game tasks such as rendering
sprites and texts, building user interfaces, playing back sound effects and music streams.
It also features linear algebra and trigonometry calculations, parsing JSON and XML,
etc [LibGDX, 2013].

The game structure of GAME is illustrated in figure 6.5, and it is the following:

— Game: a game is simply a sequence of scenes. At game creation, an initial agent
called ”game director” is created and associated with the initial script, responsible

6.1. PROTOTYPE 101

StructureBase

myDirector

buildDirector()

Entity

myScripts

myRepresentations

update(delta)

render(object)

Layer

parentScene

myEntities

layerIndex

Script

myEntity

role

update(delta)

isDone()

Activity

state

«interface»

ActivityInterface

create()

destroy()

activate()

deactivate()

pause()

resume()

restart()

«interface»

ActivityLifeCycle

onCreate(context)

onEnterTree(context)

onLeaveTree(context)

onPause(context)

onResume(context)

onRestart(context)

onDestroy(context)

Level

myScenes

activeScene

render(object)

quit()

Structure

myGameLevelTable

activeLevel

Scene

layers

parentLevel

defaultLayer

render(object)

Figure 6.4 – AGDE’s core inheritance class diagram

for loading the first game scene. As for AGDE, only one scene is active at a given
point in time.

— Scene: it represents a game scene, and contains a sequence of game agents in the
scene and an artifact container used to store artifacts of the scene. A scene is
inserted in the game tree, by a script, owned by a game agent.

— Agent: it is a game agent responsible for implementing the game mechanics and
the game objects’ behaviors. It can be a proactive agent or only a reactive agent.
It maintains a list of scripts that enable it to interact with its environment. It can
perceive changes in its environment and maintain a list of events received over the
update cycles. An agent can control one or multiple game artifacts. The importance
of an agent in the game determines the importance of its artifacts.

— Artifact: it represents an object of the back-end engine, used as a buffer between
GAME scripts and back-end objects. An artifact is associated with a ”Content”
object, that can be used either by the scripts or the back-end engine as a placeholder
for graphic and audio assets. For our objects replication, game artifacts are the only
game objects synchronized between clients and server.

On the implementation point of view, the class diagram of figure 6.6 illustrates the
core concepts of the engine. All game elements are based on the concept of ”GameObject”.
A GameObject represents an identified game object. All these game elements are capable

102 CHAPTER 6. EXPERIMENTAL EVALUATION

AgentSceneGame Artifact
1 1..∗ 1 1..∗ 1 1..∗

Figure 6.5 – GAME’s game structure

of updating their states, while only artifacts have rendering capabilities and only agents
can receive perception events from the game.

Scene

agents

artefacts

updateAdd()

updateRemove()

Agent

importance

scripts

percepts

onBegin()

onEnd()

Script

agent

onInit()

onBegin()

onEnd()

onDispose()

Artifact

attributes

content

inSync

GameObject

id

getId()

«interface»

PerceptReceiver

receive(percept)

«interface»

RenderListener

onRender()

«interface»

UpdateListener

onUpdate(delta)

Figure 6.6 – GAME’s core inheritance class diagram

We used GAME to develop the game called ”Crazy Runner”, for the evaluation of our
communications adaptation with gameplay components.

6.1.3 ”My Duck Hunt” game

As introduced in 5.2.3, My Duck Hunt is a single player shooting video game we
developed for evaluation purposes. In this game, player has to eliminate or protect entities
moving at different paces and directions in the game scene. The basic game mechanic for
the player is to move its reticle to reach target objects and try to eliminate them in order
to gather the most points. As illustrated in the screenshoot of figure 6.7. The game has
five types of entities:

— Player controlled reticle, which is the round entities, highlighted with a red square
in the screenshot.

— Ducks are flying entities, highlighted with a star.

— Flamingos are flying entities, highlighted with a circle.

— Gombas are entities, highlighted with a diamond.

— Clouds are entities, highlighted with a rectangle.

The game is structured in stages or quests containing each a certain amount of these
game objects. To go to the next stage, the player has to eliminate all ducks while
protecting flamingos from gombas. Each stage has a timer, and when the timer expires,

6.1. PROTOTYPE 103

Figure 6.7 – ”My Duck Hunt”’s game objects

regardless of the game state, the current stage ends and the next stage is automatically
loaded.

Script

FlyScriptReticleScript

FlamingoScriptDuckScript

GombaScript CloudScript

Entity Representation

FlamingoDuckReticle Gomba Cloud

1

1..∗

1

1..∗

Figure 6.8 – A simplified class diagram of ”My duck hunt”’s game objects

104 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.8 shows a simplified class diagram of the game. Each game object is an entity
associated with a graphical representation and a script. For example, a duck is a kind
of flying object, which graphical representation is an animation (denoted by the star in
the screenshot of figure 6.7). The script Duckscript associated with this type of objects,
enables them to carry a set of actions and move around the game screen at a specified
speed. Through ReticleScript, the player is able to control the reticle object using the
mouse, in order to aim and shoot at its targets. GombaScript, enables gombas to move
and also to detect and attack flamingos.

The organization used for the adaptation is the one below.

Org

G1 where role = {player}; objects ={reticle}
G2 where role = {target}; objects ={ducks}
G3 where role = {protect}; objects ={flamingos}
G4 where role = {enemy}; objects ={gombas}
G5 where role = {decoration}; objects ={clouds}

(6.1)

6.1.4 ”Crazy runner” game

Crazy-Runner is a memory and card game asking players to rapidly identify a card
among a set of cards. A screenshot of this game is shown in figure 6.9. The player has a
protege, that is a game character continuously running in the game scene with the aim
of reaching a finish line. We call him the ”runner” (highlighted with the diamond in the
screenshot). Player’s goal is to assist his protege by making him achieve the best race
time possible. Along the way the runner faces some obstacles in form of game objects,
and any collision with an obstacle slows him down. Among those obstacles, you can
have grenades (highlighted with the circle in the screenshot), turtles (highlighted with
the square in the screenshot) and birds (highlighted with the rectangle in the screenshot).
The game scene also contains background objects such as trees, benches and boxes.

The player has the ability to eliminate turtles moving on the ground floor and flying
birds simply by shooting at them using his reticle(highlighted with the star in the screen-
shot). As it refers to the grenade, the player should respond to a memory assignment
in order to eliminate the grenade. The way it works is, the name of a card is first an-
nounced. After a few moments, three cards are presented in the game screen (as shown
in the screenshot). The player must quickly select the previously announced card among
presented cards. If (s)he chooses the wrong card or if (s)he takes too long to respond, the
runner collides with the grenade and loses speed. If (s)he chooses the right card, all the
obstacles are eliminated and a new wave of obstacles is generated for the next assignment.

We implemented this game using gameplay components to handle changing objects’
importance. Figure 6.10 shows the GC tree of Crazy Runner. Three atomic GC are
provided:

— select enables the player to select a card among presented cards.

— reach enables the runner to reach a given position. This GC can be used to
represent the fact of reaching the finish line (finishline), and also the fact of reaching
a grenade posted in the runner’s path grenade.

— eliminate enables the player to protect the runner by shooting at birds and turtles
attempting to slow the runner down.

6.1. PROTOTYPE 105

Figure 6.9 – ”Crazy runner”’s game objects

As composite GC, we have stepmarks a step in the ultimate goal of reaching the finish
line. Thus to reach the finish line, the runner has to go through n steps. In each game
step, the player has to respond to m card assignments materialized by the composite
GC find. Find represents a card assignment and has three components: k obstacles to
eliminate provided by the GC eliminate; a grenade moving toward the runner provided
by the GC grenade and 3 cards to select from presented in the top right corner of the
scene and provided by the GC select.

Figure 6.11 presents a simplified class diagram of game objects of Crazy Runner game.
Each game artifact, is manipulated by an agent through scripts. We therefore have an
agent for player’s reticle, runner, grenades and other obstacles such as turtles and birds.
This game was part of the 6 serious games we co-developed in the ”Village” project to
explore game mechanics that are suitable for cognitive stimulation [Village, 2013].

6.1.5 Game communications adaptation

The adaptation scheme focuses on adapting network resources distribution according
to game objects’ importance and network conditions. Figure 6.12 shows the class diagram
of importance sets and communications levels. The rational behind this diagram is that:
objects are assembled in sets according to their importance in the game, and each set
of objects belongs to a specific communications level at a given point in time. The

106 CHAPTER 6. EXPERIMENTAL EVALUATION

CrazyRunner(∧)

checkPoint(−→∧)

step1(
−→
∧)

find1(∨)

¬assign(∨)

I(select(∨))

cards(∨) grenade

eliminate(∧)

finishround

. . . findm(∨)

. . . stepn(∨)

finishrace

card1
. . . card3

obstacle1 . . . obstaclek

Figure 6.10 – GC tree of the game ”Crazy Runner”

Script

Agent Artifact

GrenadeRunnerReticle Turtle Bird

1

1..∗

1

1..∗

Figure 6.11 – A simplified class diagram of Crazy Runner’s game objects

selection of the appropriate communications level for a set is made by comparing objects’
QoE utilities with QoE utility thresholds of the LoD system. As showed in previous
chapter, these QoE utilities are computed and updated during game session using objects’
importance and current network conditions.

Once a level is selected for an object, object’s states is synchronized at a rate deter-
mined by the level.

Of course, there is no limit in the number of objects, sets and levels, but for the

6.2. EXPERIMENTATION 107

prototypes used in the experimental evaluation, we defined four communications levels
sorted by synchronization resources:

— Optimal level: provides objects with the highest communications resources. In this
level the synchronization rate of an object is 100Hz.

— Enhanced level: provides objects with relatively high communications resources but
lesser than the optimal level. rate = 20Hz.

— Medium level: provides objects with average network resources. rate = 10Hz.

— Degraded level: provides objects with the lowest communications resources. rate =
5Hz.

Set

importance

Level

synchro-rate

Object

importance

MediumEnhancedOptimal Degraded

1

1..∗

1

1..∗

Figure 6.12 – A class diagram of the communications levels

Experiments conducted with the games ”My Duck Hunt” and ”Crazy runner” use this
adaptation mechanism and are presented in next section.

6.2 Experimentation

The objective of these experiments is to evaluate the impact of our LoD based adap-
tation in cloud gaming on player’s QoE. In order to determine this impact, we assess and
compare players’ QoE during game sessions with and without the proposed approach.
Due to the subjective nature of human experience, it is very difficult to objectively evalu-
ate player’s QoE. Most works in the literature [Chen et al., 2009], [Chang et al., 2010] use
the subjective methodology called the MOS (Mean Opinion Score) rating test, to obtain
player’s view of game quality. In this thesis we used MOS measurements to evaluate our
proposition. Using MOS, players are required to give each game session a rate using the
rating scheme of table 6.1:

MOS Quality Impairment
5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Table 6.1 – MOS rating scheme

108 CHAPTER 6. EXPERIMENTAL EVALUATION

We used the paired Student’s t-test to determine whether the two game versions are
significantly different from each other in terms of players’ QoE. This test is also referred
to as ”repeated measures” t-test. Student t-test is a statistical test which is widely used to
compare the mean of two groups of samples. In fact, t-test is suitable for any statistical
hypothesis test in which test statistics follow a Student’s t-distribution. Student’s t-
distribution is a family of continuous probability distributions that arise when estimating
the mean of a normally distributed population in situations where the sample size is
small [Hurst, 1995]. This definition fits with the population and the observations of our
experiment as well as what we are trying to demonstrate with this statistical study. This
explains why we chose this test.

6.2.1 Organization based adaptation

This subsection presents the experimental evaluation of the adaptation using organi-
zation to manage objects’ importance.

Participants

The test was conducted with 9 participants aged between 21 and 30 years with an
average age of 25.33. The distribution of participants, based on their playing frequencies
is given in table 6.2. Only one participant reported that he does not play video games.
Most participants play games at least once per week.

Never 1 per year 1 per month 1 per week everyday
1 1 2 5 0

Table 6.2 – Playing frequencies distribution

Protocol

The study follows a repeated-measures design, using the same participants and col-
lecting their assessment of perceived QOE while playing two versions of My Duck hunt
game: one including our LoD inspired proposition and the other without our proposition.
In the later version, all the entities are synchronized at the same rate. Using a limited
number of participants, repeated measure designs are very suitable for pilot experiments,
allowing statistical inference to be made with fewer participants.

The experiment proceeds as follows:

— Participants get a quick introduction of game’s rules through a demo version of
the game. We also tell them what criteria to look for in qualifying the QoE for
game sessions: responsiveness, video and motion smoothness and any other factor
influencing their enjoyment of the game.

— Participants play one version then the other (the order in which versions are played
is permuted from one player to the next). Participants are not acquainted with the
difference between the two versions. During the game, participants have to report
when they perceive any decrease in QoE or any responsiveness shortage. They do
so by holding the space key on the keyboard.

6.2. EXPERIMENTATION 109

— At the end of each stage, participants evaluate the QoE for the stage by attributing
a rate between 1 and 5. Following the MOS rating scheme, 1 indicates a bad QoE
whine 5 indicates an excellent QoE.

— At the end of the experiment, participants are individually interviewed and asked
to rate the global QoE for each game version using the MOS rating scheme.

Figure 6.13 shows some photos of participants playing the game during the experiment.

Figure 6.13 – The participants playing the game during the experiment

Network conditions

To be able to control the network environment, the pilot experiment is performed on
a LAN. In this LAN we have the game server machine and the client machine. Since we
did not deploy the server on a real cloud with WAN (Wide Area Network) connections,
we need to simulate the instability and poor capacity of network conditions of some
WANs. For this reason, we implemented a proxy. For this experiment, we used packet
loss as metric of network conditions. The proxy is therefore used for network congestion
simulation through packet loss simulation. The proxy forwards all packets from the client
to the server and vice-versa. We utilized UDP connections for the client-server link to
send state updates. The proxy simulates a congested network by ignoring (dropping)
all packets received when a threshold of packets sent per second is reached (when the
link reaches its peak capacity). This threshold represents the bandwidth capacity of the
communications link. It is the number of packets transmitted per second (in Hz). Thus to
artificially change network conditions for the game, we just need to change this threshold
value and the dropped packets percentage will change accordingly.

The proxy is started at the same time as the game and it is launched with a con-
figuration file determining the network capacity variations during the game. The first
210 seconds of the settings used for this experiment are given in table 6.3. From 0 to 30
seconds, the proxy forwards 6000 packets per second; from 30s to 60s, it forwards 3000
packet per second, so on and so forth. This network conditions variation is used for both
game versions.

Time (s) 0 30 60 90 120 150 180 210
Capacity (Hz) 6000 3000 5000 2900 7000 2500 3500 3100

Table 6.3 – Proxy configuration for network capacity

110 CHAPTER 6. EXPERIMENTAL EVALUATION

Objects importance

The organization handling object importance is the one below. A mapping is made
between objects’ functional roles and their importance values. The attributed importance
values are in the range [0,1].

Org

G1 where role = {player}; imp = {1}; objects ={reticle}

G2 where role = {target}; imp = {5
7
}; objects ={ducks}

G3 where role = {protect}; imp = { 5
14
}; objects ={flamingos}

G4 where role = {enemy}; imp = { 5
28
}; objects ={gombas}

G5 where role = {decoration}; imp = {0}; objects ={clouds}

(6.2)

Environment

The game server is a Dell Precision M6500 with the following configuration: an Intel
Core i7 Q 720 CPU and 4 Go of RAM. This is an experimental setup with a mono player
game, meaning that processing cost of the game can be handled by a single server machine
with these specifications. The only bottleneck we have is the one simulated by the proxy
on the network link. For this experimentation, the game organization remains stable
during the game sessions. But we assume that, provided with a changing organization
the same results are held.

Hypotheses

In order to evaluate the impact of the proposition, using the Student’s t-test, we have
stated the following null hypotheses:

— H.A.0: There is no difference in player’s QoE between the two game versions during
each stage.

— H.B.0: There is no difference concerning player’s QoE between the two game
versions for the overall game session.

— H.C.0: There is no difference in the ratio of time spent holding the space key per
session duration between the two game versions.

Experimental results

The statistical analysis was performed using R 6, version 2.15.0. A repeated measure
t-test is used to reject the null hypotheses.

The hypothesis H.A.0 is rejected for the five game stages with p − value < 0.5.
Meaning that the difference between player’s QoE during each stage when using LoD and
without LoD is statistically significant. The results of the t-test are summarized in table
6.4.

The hypothesisH.B.0 is rejected by the t-test. The difference of player’s QoE between
the game with LoD based adaptation and the game without LoD for the overall game
session is statistically significant. With a mean M = 1.777778, t(8)=8.6298, p − value

= 2.521e – 05.

6. http://www.r-project.org

6.2. EXPERIMENTATION 111

Stage number M t(8) p-value
stage 1 1,1111 3.5921 0.007063
stage 2 1.5555 6.4236 0.0002039
stage 3 2 5.3666 0.0006724
stage 4 1.6667 3.5355 0.00767
stage 5 1.4444 3.5058 0.00801

Table 6.4 – Results

The hypothesis H.C.0 is also rejected by the t-test. We can therefore conclude that
the difference in the ratio of time spent holding the space key per game session duration
between the two game versions is statistically significant. With a mean M = -0.1197444,
t(8) =-2.4535 and p− value = 0.03972.

Discussion

The results of this experiment, enable us to evaluate the effects of our approach on
players’ QoE under critical network conditions. In fact QoE plays a significant role in the
perceived player experience and the ability of a game to retain the interest of players. All
three null hypotheses of the study were rejected. This means that players have perceived a
significant enhancement on QoE with the version with the adaptation technique compared
to the version without adaptation. The instability introduced by changing the degree of
congestion of the network had less impact on the game quality for all participants not
only for each game stage but also for overall game sessions.

T-test results have also rejected the hypothesis H.C.0, but with a higher p − value

than the others. Because we chose a p-value threshold of 0.5, we were able to reject
this hypothesis, but we can see that the results are not as ”strong” as in the two first
hypothesis. A reason for this is that during the experiment, not all participants were
following the guidelines we gave them in the experimental protocol. Some of them did
not press the space key every time they noticed a loss of responsiveness or a decrease
in the playability of the game. They were complaining verbally instead. Thus for some
participants the data we gathered from the space key, did not reflect the QoE they actually
experienced.

These results validate our approach on improving the overall player’s QoE. They show
that adapting the communications load generated by the game to the current network
conditions while taking in to account the roles of each game entities, significantly increases
the perceived quality of the game. Thus the approach keeps the game playable and
enjoyable even in case of drastic variation in network congestion.

One limitation is that, the whole adaptation can be very subjective, since the configu-
ration of the platform is done manually by the game designer. This delicate configuration
includes setting entities’ roles, mapping roles to importance values and setting QoE util-
ity thresholds. A bad setting of this system can result to an unpleasant player’s QoE. In
our work, we suppose that the game designer knows what he is doing (the role of each
entity) and the LoD parameters are well set.

The number of participants for this experiment was very limited. In fact only 9

112 CHAPTER 6. EXPERIMENTAL EVALUATION

participants were recruited for the pilot study. To consolidate our results, a large scale
experimentation can be conducted in the future.

In next subsection, we present the experimental protocol used for the evaluation of
the adaptation approach with gameplay components.

6.2.2 Gameplay components based adaptation

To complement the validation of our adaptation approach as a whole, it is necessary
to also evaluate the impact of our gameplay components based adaptation on player’s
QoE. For that we designed an experimental methodology similar to the one used for the
organization based adaptation.

Participants

As in the previous experiment, we recruited participants with different levels of expo-
sure to video games. The table 6.5 shows the profiles of the 10 participants, aged from 25
to 42 years with an average of 30.4 years. Most of them play video games at least once
per week and are aware of lag problems in online games.

Player Age Gender Gaming habits
1 26 F 1 per month
2 32 F 1 per month
3 27 F 1 per month
4 33 M 1 per month
5 32 M 1 per week
6 25 M 1 per week
7 31 M 1 per week
8 29 M 1 per week
9 42 M 1 per week
10 27 M 1 per week

Table 6.5 – Participants’ characteristics

In the figure 6.14, you can see a participant playing the crazy runner game during the
experiment.

Protocol

They were asked to play two different versions of the game ”Crazy Runner”: One of
the version used a GCs based objects’ importance adaptation, and the other version ran
without adaptation. A game session is divided into five sub-races ”against time” of the
runner. Participants, were introduced to the game, and got to train on a demo version
of the game without QoE degradation. After the introduction, participants proceeded to
play the two game versions, one after another and were asked to give their feedback on
QoE. This was done in two ways:

— During the game session: At the end of each sub-race, the participants were asked
to rate the QoE of the sub-race.

6.2. EXPERIMENTATION 113

Figure 6.14 – A participant playing crazy runner

— After the game session, through questionnaires: The participants rated the overall
QoE of each game version.

Similarly to the previous experimentation, MOS rating scheme is used. The figure
6.15 shows the QoE rating screen at the end of the game session.

Network conditions

Unlike in the previous experiment, we used a free BSD dummynet for network con-
ditions simulation. Dummynet is a live network emulation tool, originally designed for
testing networking protocols, and used for a variety of applications including bandwidth
management [Carbone and Rizzo, 2010]. Dummynet is very powerful and makes it pos-
sible to simulate a wide range of network settings: bandwidth, delay, packet loss, queue
size and network protocols. In this experiment, dummynet enabled us to set three net-
work parameters: delay, packet loss and available bandwidth of the network link between
the client and the server machines. These settings are dynamically changed during the
game session to simulate an unstable network and evaluate how our adaptation technique
reacts to various network conditions. For that, we divided the game in 5 steps, each with
different network settings:

— For the step 1, there is an abundance of network resources. No network related
lag is introduced here. This step introduces the player to the game by letting him
(her) enjoy the game without network problems and get the feeling of the game
with what we consider a ”good” QoE.

— For step 2, network delay is introduced. Using the dummynet command ipfw pipe
3 config delay %delay%ms on the server machine we were able to set the delay for
outgoing packets (state updates). Where %delay% represents the requested network
delay. The figure 6.16 shows the 3 changes made to network delay for this step.

The length in time of each step depends on the player’s performance. Since the
race distance for each step is the same, the player’s ability to eliminate obstacles

114 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.15 – ”Crazy runner”’s QoE screen

0 60 120 150

15

5

10

Time (s)

N
et
w
or
k
d
el
ay

(m
s)

Figure 6.16 – Network configuration for step 2

determine the time it will take him to complete the step. But on average, each step
last around 150 s.

— For step 3, packet loss is introduced. Using the dummynet command ipfw add prob
%loss% deny proto tcp out on the server machine we were able to set the packet loss

6.2. EXPERIMENTATION 115

percentage for state updates. Where %loss% represents the percentage of packet
loss requested. The figure 6.17 shows the 3 changes made to packet loss for this
step.

0 60 120 150

5

3

Time (s)

P
ac
ke
t
lo
ss

(%
)

Figure 6.17 – Network configuration for step 3

— For step 4, the available bandwidth is changed. Using the dummynet command
ipfw pipe 3 config bw %bw%Kbit/s on the server machine we were able to set the
available bandwidth for state updates. Where %bw% corresponds to the requested
available bandwidth on the client-server connection. The figure 6.18 shows the 3
changes made to the available bandwidth for this step.

0 60 120 150

1.5

2.5

2

Time (s)

A
va
il
ab

le
b
an

d
w
id
th

(M
b
p
s)

Figure 6.18 – Network configuration for step 4

— For the 5th step, we combined network delay and packet loss. The network delay
and packet loss progression for this step is the same as the one of the step 2 and 3
respectively.

Of course at the end of each step, the network conditions are reset to normal, before
loading the network configuration of the next step.

116 CHAPTER 6. EXPERIMENTAL EVALUATION

Objects importance

As regards to the change in object importance, the distribution of importance values
to the gameplay components tree nodes is given by figure 6.19. For this prototype, we
have 5 game steps (n=5) with 3 card assignments each (m=3). For each assignment, we
have 1 grenade and 11 birds and turtles to eliminate (k=11). An assignment can end
for 3 reasons: a card is selected, the runner collides with the grenade, all obstacles are
eliminated.

CrazyRunner(∧:1)

checkPoint(−→∧):3
4

step1(
−→
∧):3

4

find1(∨): 3
4

¬assign(∨):2
4

I(select(∨)): 1
4

cards(∨): 1
8

grenade :
1
8

eliminate(∧):1
4

finishround:
1
4

. . . find3(∨):3
4

. . . step5(∧): 3
4

finishrace:
1
4

3
4

1
4

2
3

1
3

card1:
1
24

. . . card3:
1
24

obstacle1:
1
44

. . . obstacle11:
1
44

Figure 6.19 – GC tree of the game ”Crazy Runner” at initialization

Background elements such as trees, benches and boxes are in the default set, with an
importance value of 1

2
× 1

44
.

Given this initial GC tree, we have the initial importance sets below:

Sets

S1 where imp = 1
4
; objects ={grenade, reticle}

S2 where imp = 1
12
; objects ={card1, . . . , card3}

S3 where imp = 1
44
; objects ={obstacle1, . . . , obstacle11}

S4 where imp = 1
88
; objects ={trees, benches, boxes}

Environment

The server machine is a Dell Precision M6500 running Windows 7 with the following
configuration: an Intel Core i7 Q 720 CPU and 4 Gb of RAM. The client machine is an
ASUS laptop running Windows 8, equipped with an Intel Core i7 - 4710HQ CPU and
8 Gb of RAM. An ad-hoc wired connection was made between the machines, and only

6.2. EXPERIMENTATION 117

transmitted data is the game traffic and the monitoring traffic. For this experimental
setup the only bottleneck we have is the one simulated by the dummy net on the server’s
network adapter. We used the ping command to measure the network delay and the
packet loss, and the wget command to measure the available bandwidth.

Hypotheses

Similarly to the previous experiment, we will use the null hypotheses below to inves-
tigate the effects of GCs based adaptation:

— H.A.0 There is no difference in player’s QoE between the two game versions during
each sub-race.

— H.B.0 There is no difference in the number of obstacles eliminated by the player
(successful shot attempts) per sub-race between the two game versions.

— H.C.0 There is no difference concerning player’s QoE between the two game ver-
sions for the overall game session.

To carry this analysis, the following measures we recorded during game sessions:

— Kinematics measures: Here we monitored the number of obstacles eliminated by
the player per sub-race and the time taken to complete each sub race.

— QoE measures: For each sub-race and for the overall game session, players are asked
to rate the QoE they perceived.

Experimental results

For the paired student t-test, we have selected a p− value threshold of 5%. Meaning
that, all null hypotheses with a p − value < 0.05, will be rejected. Following are the
results of the experiment conducted on 10 participants using the MOS rating scheme.

The hypothesis H.A.0 was rejected for four of the five stages. The sub-races 2, 3 ,4
and 5 had p− values < 0.05. This indicates that, there is a significant difference in the
mean of the rates reported by the players concerning they QoE they experience during
the four sub-races between the two game versions. The table 6.6 represents the summary
of the t-test results regarding this null hypothesis by giving the mean difference between
the two versions, the degree of freedom for the t-statistic, the t-statistic and the p-value
for the test. As you can see, the null hypothesis has not been rejected for the first stage.
In fact with a p − value of 0.7263 and a mean difference of 0.1, we can conclude that
the average QoE of two versions in the first sub-race are significantly similar. Which is
normal, because in this sub-race, the network settings were favourable: no latency, no
packet loss and sufficient bandwidth. Therefore both game versions perform the same.

Sub-race number Mdiff t(9) p-value
sub-race 1 0.1 0.3612 0.7263
sub-race 2 2.1 6.0343 0.0001942
sub-race 3 1.2 2.8823 0.01811
sub-race 4 1,9 5.4596 0.0004006
sub-race 5 1.5 3.5032 0.006689

Table 6.6 – Results for QoE rates per sub-race

118 CHAPTER 6. EXPERIMENTAL EVALUATION

The null hypothesis H.B.0 was rejected as well for four sub-races. This means there is
a statistically significant difference between the two versions in the number of successful
shot attempts for sub-races 2, 3, 4 and 5. With a p−values < 0.05 and a mean difference
> 3.0, the adaptation provides a better player-game interaction, enabling players to better
control their actions and therefore to eliminate more enemies. The complete results are
given in tables 6.7.

Sub-race number Mdiff t(9) p-value
sub-race 1 1.4 1.2206 0.2533
sub-race 2 6.5 4.8079 0.0009631
sub-race 3 3.1 2.72 0.02361
sub-race 4 18.8 5.1973 0.0005661
sub-race 5 24.8 13.4585 2.882e-07

Table 6.7 – Results for number of eliminated obstacles per sub-race

H.C.0 was rejected and the results show that the gameplay component based adapta-
tion has significantly increased the QoE for the overall game session with mean difference
= 1.7 , t(9) = 3.7908, p− value = 0.004277. Table 6.8 complements these results.

Mean Standard deviation
adaptation 3 1.3333

no adaptation 1.3 0.6749

Table 6.8 – Results for the overall game session

Discussion

The results of the repeated-measures analyses indicate significant mean differences in
participants’ QoE for the two game versions under insufficient network resources. Partic-
ipant’s QoE is significantly higher with the gameplay based adaptation compared with
the game version without adaptation. This means that our approach effectively adapts
to network resources shortage and changes, in order to maintain an adequate player’s
QoE. With adaptation, players were able to play with no major impairment in the QoE,
except for the sub-race 3. As you can see it on the tables 6.7 and 6.6, the sub-race 3 is
the one with the highest p− value. In this sub-race, packet loss was the added network
deterioration, and even though the null hypothesis is rejected, the gain introduced by the
adaptation is less effective than with delay and low bandwidth.

This experiment enabled us to notice that, network delay and available bandwidth
have almost the same influence on player’s QoE in an online game with cloud gaming
paradigm. In fact, we found that, there is a cause and effect relationship between both.
The diminution of the available bandwidth on a network link causes network congestion on
that link. Network equipments such as routers and switches enqueue incoming packets
and wait until there is enough space on the link to send new packets. This queueing
process results into packets being delayed. Therefore, during our experiment, when we

6.2. EXPERIMENTATION 119

lowered the available bandwidth, the network delay increased as well. But the inverse
of this statement is not necessarily true, meaning that an increase in delay, does not
necessarily denote the available bandwidth has decreased.

The effects of delay and available bandwidth were very severe for player’s QoE. Given
that we are in a cloud gaming paradigm, no dead reckoning and client side prediction is
utilized. The game client updates its game scene at the same rhythm the state updates are
sent. With TCP’s control mechanism, the initial delay increases as the game progresses
and more packets are enqueued. So at times, we had more than 10 seconds of delay
in the displayed game scene. And of course this results in an unplayable game and
players were very frustrated. This shows us that, network parameters such as delay
and bandwidth can be tolerated in video streaming scenario without any interaction (eg.
youtube, dailymotion). But in interactive applications such as cloud games they are less
tolerated, because players can have an outdated state of the game and feel as if their
actions are not taken into account.

Unlike the normal game version in this study, our adaptation regulates update frequen-
cies by decreasing the update rate of less important game objects, keeping the bottleneck
on the network link small with no expanded delay effects. This results into a smooth
gameplay and an adequate level of interaction with the game. Some players enjoyed
this game version in a point where they were able to develop some strategies to quickly
complete the game with the best race time while eliminating more obstacles.

From the questionnaire we carried at the end of the experiment with each participant,
9 of 10 participants reported that the version without adaptation was more difficult and
took more time to complete the game objectives. More importantly they also expressed
their frustration toward this version because they did not have control of their actions,
and did not feel like they are impacting the game, especially in sub-races 2 and 4. This
behaviour can be explained by the incapacity of this version to react to bad network
conditions and effectively distribute the available network resources. In fact, in sub-race
2 and 4 , delay and low bandwidth were drastically changed and only the version with
LoD based adaptation was able to positively cope with these delay which could even reach
10 seconds in the version without adaptation. Meaning that without adaptation, in the
sub-races 2 and 4, the player was seeing a replay of the game state as it was 10 seconds
ago. Hence there were no interactivity and no direct response to players’ actions. This is
probably the reason why most cloud gaming systems, have a limit in the tolerable QoE
deterioration. Any QoE below that limit, is considered inconsistent and the service is not
delivered.

Participants also gave some suggestions for the game itself:

— They suggest to give more importance to player’s character and its reticle, because
lag affecting other game entities is not as frustrating as the lag affecting player’s
reticle. We then explained to them the importance hierarchy used in the adaptive
game version.

— Some suggest to change the reticle by making it bigger or bolder so that it will be
easily visible. Noting that with the version without adaptation, the players had
difficulty to determine the position of their reticle.

— Some suggested to have a full screen game, so that they could easily determine the
position of their reticle.

120 CHAPTER 6. EXPERIMENTAL EVALUATION

— Some went far and proposed to bring more fun to the game by adding different
backgrounds and ambiances, different behaviours for game entities as well as differ-
ent game levels. They also proposed different feedbacks to different actions. And
the reported that the game at this stage is a prototype good for demonstration and
experimentation, but it needs some improvements to reach a production level. And
we completely agreed.

6.2.3 Overall discussion

Cloud gaming has become very popular over the last few years. Most of it due to
the ubiquity, the computing power and the high availability of cloud services. The per-
ceived QoE of a cloud game depends not only on psychological concepts such as emotion,
immersion and feeling, but also rather objective parameters such as network conditions,
and video frame rate. In constrained network circumstances, two main aspects can af-
fect player’s QoE: the responsiveness of the game and the smoothness of the video. Our
contribution in these studies is therefore to enable people with low network capabili-
ties to enjoy cloud games while maintaining an acceptable QoE. The proposed technique
therefore consists of a LoD inspired communications adaptation with the objective of
maintaining player’s QoE in acceptable range. Our approach adapts objects’ synchro-
nization rates, to the network conditions while taking into account their importance in
the game. Two versions of adaptation were studied here: an organization based adap-
tation and a gameplay component based adaptation. Experimental studies focused on
assessing the QoE metrics such as responsiveness and smoothness of motion and video.

The first pilot experiment focused on the evaluation of the organization based adap-
tation. The results demonstrated that, under scarce network conditions the adaptation
strategy positively influence the player’s QoE compare to a version without adaptation.
In fact the MOS ratings the players provided showed that they experienced less lag in
their actions and in the game in general with the game running our adaptation technique.

The second experiment, dealt with the gameplay component based adaptation. It
revealed that our approach performs better than a version without adaptation under
restricted network conditions. Even with low network conditions, players were able to
enjoy the game with an adequate QoE. Through a comparison with multiple network
metrics, we found that some network parameters cause more damages than others. For
the game version without adaptation, low bandwidth and network delay was the most
severe compare to packet loss. But paradoxically with the enhancements of our gamplay
component based adaptation, packet loss was the most difficult parameter to handle.

It is also important to state that, while this approach reduces the bandwidth needed
for an acceptable game quality, it does not eliminate the requirement of a minimum
bandwidth for an enjoyable game. It certainly requires less bandwidth than classic cloud
gaming services. For instance, we were able to have a good quality game with just 1.5
Mbps as available bandwidth with is not possible with Onlive cloud gaming system for
example.

6.3 Conclusion

We focused in this chapter on the design and prototyping of our proposed communi-
cations adaptation technique as well as on its experimental evaluation. We used a simple
game model implemented in different ways on two game engines. These game engines

6.3. CONCLUSION 121

enabled us to develop two games to evaluate the contributions of our proposition, namely
a communications adaptation approach using organizations and a communications adap-
tation approach using gameplay components.

The experimental validation, involved participants with different gaming histories.
The experiments showed that the suggested adaptation minimizes the effects of low and/or
unstable network conditions in maintaining game responsiveness and player’s QoE. The
next chapter will present the contributions’ summary, the results and some future works.

C
h
a
p
t
e
r

7
Conclusion

Contents
7.1 Contributions . 124

7.2 Results . 125

7.3 Future works . 126

In this thesis, we have presented a level of detail based communications adaptation
technique for cloud games. This technique enables game developers to build games that
adapt to network resources for the maintenance of an adequate player’s QoE. On behalf
of this work, we have studied many approaches for online gaming, ranging from cloud
gaming with video streaming to cloud gaming with objects replication. We have also
identified the potential challenges faced by video streaming cloud game systems namely:
the delivery of an adequate QoE in presence of unstable and low network resources. This
study convinced us that these problems could be overcome by adapting the game com-
munications to network conditions. Most existing approaches use fixed priority systems
to guide the communications adaptation. The objective is to reduce the amount of re-
sources needed for games, without introducing any lagging effect of insufficient network
conditions on important (high priority) game entities. However, we believe that a fine
grained adaptation with dynamic priorities is possible by exploiting the game structure
and scenario. To the best of our knowledge this issue has not yet been addressed by
existing approaches.

We answer to this issue by designing a communications adaptation scheme using ob-
jects’ importance in the game scene and network conditions as adaptation inputs. We be-
lieve that, communications adaptation is a key factor in maintaining an adequate player’s

123

124 CHAPTER 7. CONCLUSION

QoE in unfavourable network circumstances. For some games, in order to achieve game
objectives, objects’ importance can change by time. Our adaptation provides models
for dynamic importance adjustment as the game progresses. Unlike existing work using
static priority for game objects, this dynamic importance opens the possibility to take
into account the dynamic nature of game mechanics in adapting game communications.

The study made in chapter 2 enabled us to identify the core concepts of video games
and cloud gaming, as well as the QoE delivery principles in cloud gaming paradigm. We
then used these concepts as foundations for our proposition on player’s QoE maintenance.
Core optimization techniques including bandwidth conservation and latency compensa-
tion provides game developers with tools to specify an optimized architecture during the
design phase. Our communications adaptation technique will then stand on top of this
architecture.

7.1 Contributions

Our contributions in the domain of video games and network communications can be
summarized as follow:

Game models

Our first contribution consist of game models expressing game objects and their com-
munications needs represented by their importance in the game. We provided two differ-
ent ways to manage objects’ importance. These dynamic object importance adaptation
models enable us to extend the reach of our proposition by encompassing video games
with changing game mechanics during game sessions:

— Organization based adaptation: Assuming that each game object has a precise
functional role in the game, we designed this version of the adaptation around the
notion objects’ functional role in the game scene. Each role is mapped with an
importance value, therefore a change in object’s role steers a change in object’s im-
portance. To manage objects’ roles in a game scene, we used agents organization.
This combination of level of detail and agents organization is known as organiza-
tional level of detail. We followed the main principles of AGR organizational model
by, assembling game objects with the same functional role in groups. Objects with
major roles in the game organization are generally more sensitive to lag impacting
player’s QoE. Thus our model enables these objects to have more importance than
other objects. With our organization, all game objects in a group will receive the
same amount of network resources to synchronize their states. Upon changed role,
object’s importance also changes and game objects can moves from one group to
another at any moment.

— Gameplay components based adaptation: This model decomposes complex
game scenarios into components with simpler objectives called gameplay compo-
nents. The simplicity and semantics of gameplay components and its operators
make it possible to hierarchically design a game in terms of OCR loops. The re-
sult is a gameplay components tree also known as OCR tree. Each node of the
tree is assigned an importance value that changes as the tree evolves. Each time a
gameplay component is added or removed from the tree, and even when it simply
ends, the importance values of the rest of the tree are recalculated. Therefore the

7.2. RESULTS 125

importance values adapt to the changes in the gameplay components tree. Game
objects are then regrouped by importance values to create importance sets, that
are used for the selection of the communications level in the level of detail system.

Adapting communications for cloud games

We provided a level of detail approach for managing network resource distribution
based on objects importance in the game scene and network conditions. We exploited
the dynamic objects importance adjustment models presented above to propose LoD
systems adapting to changes during game sessions.

— Network based level of detail: The main contribution of this thesis consists
of the network oriented level of detail, enabling communications adaptation. The
approach proposes an innovative reuse of the level of detail principles in the context
of network resources distribution by associating different synchronization rates to
game objects through different communications levels. The communications level
of an object thus determines the amount of network resources the object gets.
Adaptation inputs, used for level selection are network conditions and game objects’
importance. These parameters are continuously monitored to compute a composite
metric called QoE utility. A list of QoE utility thresholds is provided to determine
to which communications level map each game object given the current network
situation. As result, when network conditions are favourable, all game objects are
updated using high synchronization rates. But when network capacity degrades,
only important objects keep a high synchronization rate while less important objects
see their network resources gracefully degraded.

— Dynamic objects importance: In our adaptation model, object importance
can change from one time to another. Unlike existing adaptation schemes with
fixed and manually assigned objects importance, we propose models for dynamic
adjustment of objects importance during game sessions. Based on concepts of agent
organizations and gameplay components, we are able to adapt objects’ importance
to the game progression. We used the game structure as well as the game objects’
roles in the game scene. As the game progresses, its internal structure changes,
game objects can appear and disappear or simply change their functional roles
in the game scene. These changes are reflected in objects’ importance, and steer
a reorganization of the level of detail model. From this reorganization, results a
redistribution of network resources according to the current state of the game and
current network conditions.

7.2 Results

An experimental evaluation of the adaptation approach with organization has been
conducted. This evaluation was based on pilot studies including participants with dif-
ferent video game backgrounds. Tests were made with two versions of the game ”My
Duck Hunt” developed for evaluation purposes. A version with adaptation, and a version
without adaptation. The experimental protocol consisted of making participants play
both versions of the game in a poor and unstable network. Participants’ feedbacks on
QoE they experienced during game sessions were collected and statistically studied. Data
was collected based on questionnaires and quantitative measures of players’ QoE. Game

126 CHAPTER 7. CONCLUSION

sessions were partitioned in stages at the end of which the player is asked to evaluate the
QoE for the completed stage. Three null hypotheses were formulated on the difference
between QoE of the two versions of the game for : (i) game stages; (ii) overall game
sessions; (iii) quantitative data collected during game sessions (see section 6.2.1).

Using a repeated measure t-test, we found that the three hypotheses we stated were
rejected by the test (p−value < 0.5). This suggests that, there is a significant difference
in player’s QoE, between the game versions. This shows that, the version with the LoD
communications adaptation technique copes more effectively with low and/or unstable
network conditions.

The second experiment evaluated the effects of our gameplay component based adap-
tation on player’s QoE. The tests were carried on two versions of a game we developed
called ”Crazy runner”. One version were using the gameplay component based adaptation
and the other one had no adaptation(all game objects were synchronized at the same
optimal rate). The experimental protocol was the same as in the previous experiment.
The null hypotheses concerned the difference between player’s QoE of the versions for
each game stage (sub-race) and for the overall game session. We added a null hypothesis
on the number of successful shot attempts by players. The network parameters were
different per game stage. The first stage was normal, with favourable network conditions;
in the second, we added network delay; in the third we added packet loss, in the fourth
we diminished the available bandwidth and in the last, we combined network delay with
packet loss.

The results we had using a student t-test, demonstrated that, all the null hypotheses
were rejected except the one on the first stage. Which is the expected behaviour. We
a choosen p − value threshold of 5%, all the results showed significant difference in
the player’s QoE between the two game versions. Meaning that the adaptation brings
significant enhancements on the player’s QoE. Delay and available bandwidth caused
more lagging effects than packet loss for the version without adaptation. But with our
adaptation, we were able to cope with that, and bring the available bandwidth down to
1.5 Mbps while keeping an enjoyable game experience.

7.3 Future works

Our proposition only takes into account object’s importance and network conditions as
inputs for adaptation. But we believe that, there is no conceptual lock to the integration
of new adaptation metrics such as object’s distance to camera, object’s size, etc. In fact,
the distance to the camera is a very popular approach generally used in graphic level of
detail. Applied for network resources distribution, the distance to the camera will enable
closer objects to have more communications resources than farther objects. This can be
very beneficial in certain game scenarios.

Multiplayer support for video games is very important nowadays for game engines. In
serious games for example, the acquisition of some serious contents may require to play
with others in order to complete a collaborative or competitive quest. Therefore extending
our adaptation scheme for multiplayer game sessions could be very rewarding. To do that,
it is necessary to extend our adaptation model, to enable multiple LoD managers (one
for each client) to cohabit on the server system.

In fact, since different players will have different game objects in the game scene (de-

7.3. FUTURE WORKS 127

pending on their positions and their camera angles), objects can have different importance
for different players. As far as network conditions is concerned, each client has its own
network link with different conditions than the other clients’ networks. The adaptation
will then deliver to each player a QoE corresponding to his network conditions. Thus
two players with different network capabilities can join the same game session, and have
different QoE, while the game content remains the same.

Another future objective is to perform a large scale experimentation in a multiplayer
cloud gaming environment where each player has his own network condition, his own
camera and sees different angles of the game scene. This experiment will enable us to
increase the number of participants and have a more quantitative study of the effects
of the communications adaptation on a large variety of players with different network
settings. Participants should be selected in a random manner while ensuring a variety of
gaming backgrounds, genders and ages.

The target of our adaptation technique is the game developer, meaning that, even
though our objective is to deliver an adequate QoE to players, game developers are those
who will eventually use our technique to build adaptive video games. In the experiments
carried out, we only evaluated the benefits of our proposition for the player. But it
is also important to assess the usability and acceptability of our framework with game
developers. The objective here will be to carry an experiment, letting developers use
this framework and get their feedbacks on the ease of utilization, the reusability and the
general understanding of the framework.

A
p
p
e
n
d
i
x

A
List of publications

— Richard Ewelle Ewelle, Yannick Francillette, Mahdi Ghulam, Abdelkader Gouäıch
et Nadia Hocine. Level of detail based network adapted synchronization for cloud
gaming. In proceedings of the 18th International Conference on Computer Games :
AI, Animation, Mobile, Interactive Multimedia, Educational & Serious Games
(CGAMES), IEEE, 2013.

— Richard Ewelle Ewelle, Yannick Francillette, Mahdi Ghulam et Abdelkader Gouäıch.
Network Traffic Adaptation For Cloud Games. In International Journal on Cloud
Computing : Services and Architecture (IJCCSA), vol. 3, October, 2013.

— Richard Ewelle Ewelle, Yannick Francillette, Abdelkader Gouäıch, Mahdi Ghulam,
Nadia Hocine et Julien Pons. Network Aware Traffic Adaptation for Cloud Games.
In International Conference on Cloud Computing and Big Data (CloudCom-Asia),
IEEE, 2013.

129

Bibliography

Cited page 72.

Ernest Adams. Fundamentals of game design. Pearson Education, 2013. Cited page 62.

Jacob Agar. Ethereal, 2012. URL http://jacobagar.com/Ethereal.htm. [Online; accessed
16-August-2014]. Cited page 36.

M. Albinet. Concevoir un jeu vidéo: Les méthodes et les outils des professionnels expliqués
à tous ! Entreprendre: Développement professionnel. FYP éditions, 2011. ISBN
9782916571638. URL http://books.google.fr/books?id=iwOFZwEACAAJ. Cited page
62.

Sergio Alvarez-Napagao, Fernando Koch, Ignasi Gómez-Sebastià, and Javier Vázquez-
Salceda. Agents for games and simulations ii. chapter Making Games ALIVE: An Or-
ganisational Approach, pages 179–191. Springer-Verlag, Berlin, Heidelberg, 2011. ISBN
978-3-642-18180-1. URL http://dl.acm.org/citation.cfm?id=1985721.1985737. Cited
pages 59 and 60.

Baik Song An, Manhee Lee, Ki Hwan Yum, and Eun Jung Kim. Efficient data packet
compression for cache coherent multiprocessor systems. In Proceedings of the 2012
Data Compression Conference, DCC ’12, pages 129–138, Washington, DC, USA, 2012.
IEEE Computer Society. ISBN 978-0-7695-4656-8. doi: 10.1109/DCC.2012.21. URL
http://dx.doi.org/10.1109/DCC.2012.21. Cited page 27.

K Andresen and N Gronau. Seeking optimal it strategies by the determination of adapt-
ability in domain-specific software applications. in managing modern organizations with
information technology. In Proceedings of the 2005 Information RecourcesManagement
Association International Conference, pages 15–22. Idea Group Publishing, 2005. Cited
page 29.

Sander CJ Bakkes, Pieter HM Spronck, and H Jaap van den Herik. Opponent modelling
for case-based adaptive game ai. Entertainment Computing, 1(1):27–37, 2009. Cited
page 59.

Russell Beauregard and Philip Corriveau. User experience quality: a conceptual frame-
work for goal setting and measurement. In Digital Human Modeling, pages 325–332.
Springer, 2007. Cited page 8.

A.G. Bedeian and R.F. Zammuto. Organizations: Theory and Design. Dryden Press,
1991. ISBN 9780030125836. URL http://books.google.fr/books?id=u7iLMQEACAAJ.
Cited page 59.

131

132 BIBLIOGRAPHY

Harlan Beverly. Lag, the barrier to innovation in online gaming. In Proceedings of the
Game developers conference 2009, 2009. URL http://www.slideshare.net/hbombers/
harlan-beverly-lag-the-barrier-to-innovation-gdc-austin-2009. [Online; accessed 20th-
Febuary-2014]. Cited page 25.

Jean-Pierre Briot, Alessandro Sordoni, Eurico Vasconcelos, Marta de Azevedo Irving,
Gustavo Melo, Vińıcius Sebba-Patto, and Isabelle Alvarez. Design of a decision maker
agent for a distributed role playing game–experience of the simparc project. In Agents
for Games and Simulations, pages 119–134. Springer, 2009. Cited page 59.

Roger Caillois. Man, play, and games. The Free Press, Glencoe, New York, USA, 1961.
Cited page 14.

Marta Carbone and Luigi Rizzo. Dummynet revisited. ACM SIGCOMM Computer
Communication Review, 40(2):12–20, 2010. Cited page 113.

Cristiano Castelfranchi. Guarantees for autonomy in cognitive agent architecture. In
Michael Wooldridge and Nicholas Jennings, editors, Intelligent Agents, volume 890 of
Lecture Notes in Computer Science, pages 56–70. Springer Berlin / Heidelberg, 1995.
ISBN 978-3-540-58855-9. URL http://dx.doi.org/10.1007/3-540-58855-8 3. 10.1007/3-
540-58855-8 3. Cited page 58.

Yu-Chun Chang, Kuan-Ta Chen, Chen-Chi Wu, Chien-Ju Ho, and Chin-Laung Lei. On-
line game qoe evaluation using paired comparisons. In Communications Quality and
Reliability (CQR), 2010 IEEE International Workshop Technical Committee on, pages
1–6. IEEE, 2010. Cited pages 22 and 107.

Stéphane Chauvier. Qu’est-ce qu’un jeu? Vrin, 2007. Cited page 15.

Hung-Kuang Chen, Chin-Shyurng Fahn, Jeffrey JP Tsai, Rong-Ming Chen, and Ming-Bo
Lin. Generating high-quality discrete lod meshes for 3d computer games in linear time.
Multimedia Systems, 11(5):480–494, 2006. Cited pages 56 and 58.

Kuan-Ta Chen, Cheng-Chun Tu, and Wei-Cheng Xiao. Oneclick: A framework for mea-
suring network quality of experience. In INFOCOM 2009, IEEE, pages 702–710. IEEE,
2009. Cited pages 22 and 107.

Peng Chen and Magda El Zarki. Perceptual view inconsistency: an objective evaluation
framework for online game quality of experience (qoe). In Proceedings of the 10th
Annual Workshop on Network and Systems Support for Games, page 2. IEEE Press,
2011. Cited page 22.

S. Choy, B. Wong, G. Simon, and C. Rosenberg. The brewing storm in cloud gaming:
A measurement study on cloud to end-user latency. In Network and Systems Support
for Games (NetGames), 2012 11th Annual Workshop on, pages 1–6, Nov 2012. doi:
10.1109/NetGames.2012.6404024. Cited page 24.

James Clark. Hierarchical geometric models for visible surface algorithms. Communica-
tions of the ACM, 19(10):547–554, 1976. Cited pages 52 and 56.

Mark Claypool and Kajal Claypool. Latency and player actions in online games. Com-
mun. ACM, 49(11):40–45, November 2006. ISSN 0001-0782. doi: 10.1145/1167838.
1167860. URL http://doi.acm.org/10.1145/1167838.1167860. Cited page 25.

BIBLIOGRAPHY 133

Mark Claypool, David Finkel, Alexander Grant, and Michael Solano. On the performance
of onlive thin client games. Multimedia Systems, pages 1–14, 2014. Cited page 43.

cloudtweaks. Cloud gaming: Benefits of kalydo cloud and file stream-
ing game technology, 2013. URL http://cloudtweaks.com/2013/08/
cloud-gaming-kalydo-cloud-and-file-streaming-game-technology/. [Online; accessed
20th-Febuary-2014]. Cited page 19.

E Comer Douglas. Internetworking with tcp/ip. Vol. III-Prentice Hall, 2000. Cited page
55.

Noel Crespi, B Molina, CE Palau, et al. Qoe aware service delivery in distributed environ-
ment. In Advanced Information Networking and Applications (WAINA), 2011 IEEE
Workshops of International Conference on, pages 837–842. IEEE, 2011. Cited page 22.

Eric Cronin, Burton Filstrup, Anthony R. Kurc, and Sugih Jamin. An efficient syn-
chronization mechanism for mirrored game architectures. In Proceedings of the 1st
Workshop on Network and System Support for Games, NetGames ’02, pages 67–73,
New York, NY, USA, 2002. ACM. ISBN 1-58113-493-2. doi: 10.1145/566500.566510.
URL http://doi.acm.org/10.1145/566500.566510. Cited page 19.

Mihaly Csikszentmihalyi. Flow: The psychology of optimal experience, volume 41. Harper-
Perennial New York, 1991. Cited page 22.

D. RavindraKumarI D. Barièeviæ, , and M. Chandrashekar. Gameon: Analysis and
implementation of cloud gaming, 2011. URL http://www.cs.ucsb.edu/˜manasa/cs276.
pdf. [Online; accessed 31-Octobre-2012]. Cited page 20.

Luca De Cicco and Saverio Mascolo. An experimental investigation of the Akamai adaptive
video streaming. Springer, 2010. Cited pages 44, 45, and 48.

D. De Winter, P. Simoens, L. Deboosere, F. De Turck, J. Moreau, B. Dhoedt, and
P. Demeester. A hybrid thin-client protocol for multimedia streaming and interactive
gaming applications. In Proceedings of the 2006 International Workshop on Network
and Operating Systems Support for Digital Audio and Video, NOSSDAV ’06, pages
15:1–15:6, New York, NY, USA, 2006. ACM. ISBN 1-59593-285-2. doi: 10.1145/
1378191.1378210. URL http://doi.acm.org/10.1145/1378191.1378210. Cited page 19.

Macri Dean and Pallister Kim. Building scalable 3d games for the pc, 1999. URL http://
www.gamasutra.com/view/feature/3403/building scalable 3d games for the .php. [On-
line; accessed 20th-Febuary-2014]. Cited page 27.

Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol Gelenbe,
Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco Zambonelli.
A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst., 1(2):
223–259, December 2006. ISSN 1556-4665. doi: 10.1145/1186778.1186782. URL
http://doi.acm.org/10.1145/1186778.1186782. Cited pages 29 and 30.

Jürgen Döllner and Henrik Buchholz. Continuous level-of-detail modeling of buildings
in 3d city models. In Proceedings of the 13th annual ACM international workshop on
Geographic information systems, pages 173–181. ACM, 2005. Cited pages 56 and 58.

134 BIBLIOGRAPHY

Charalampos Doukas, Thomas Pliakas, and Ilias Maglogiannis. Mobile healthcare infor-
mation management utilizing cloud computing and android os. Conf Proc IEEE Eng
Med Biol Soc, 1:1037–40, 2010. ISSN 1557-170X. URL http://www.biomedsearch.com/
nih/Mobile-healthcare-information-management-utilizing/21097207.html. Cited page 5.

Jeff Dyck, Carl Gutwin, T.C. Nicholas Graham, and David Pinelle. Beyond the lan:
Techniques from network games for improving groupware performance. In Proceedings
of the ACM Conference on Organizational Computing and Groupware Technologies,
pages 291–300, 2007. Cited page 40.

P. Eisert and P. Fechteler. Low delay streaming of computer graphics. In Image Process-
ing, 2008. ICIP 2008. 15th IEEE International Conference on, pages 2704–2707, Oct
2008. doi: 10.1109/ICIP.2008.4712352. Cited page 18.

Ali El Masri, Ahmad Sardouk, Lyes Khoukhi, and Dominique Gaiti. A preventive traffic
adaptation model for wireless mesh networks using fuzzy logic. In Networking, Archi-
tecture and Storage (NAS), 2011 6th IEEE International Conference on, pages 73–81.
IEEE, 2011. Cited page 30.

EpicGames. Unreal networking architecture, 2012. URL http://udn.epicgames.com/
Three/NetworkingOverview.html. [Online; accessed 20th-Febuary-2014]. Cited pages
31, 41, 42, and 48.

Ben Etzkorn. Data normalization and standardization, 2011. URL http://www.
benetzkorn.com/2011/11/data-normalization-and-standardization/. [Online; accessed 27-
August-2014]. Cited page 71.

Richard Ewelle Ewelle, Yannick Francillette, Ghulam Mahdi, Abdelkader Gouaich, and
Nadia Hocine. Level of detail based network adapted synchronization for cloud gaming.
In Computer Games: AI, Animation, Mobile, Interactive Multimedia, Educational &
Serious Games (CGAMES), 2013 18th International Conference on, pages 111–118.
IEEE, 2013. Cited page 77.

Jacques Ferber. Multi-agent systems: an introduction to distributed artificial intelligence,
volume 1. Addison-Wesley Reading, 1999. Cited pages 58 and 61.

Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From agents to organizations:
An organizational view of multi-agent systems. In AOSE, pages 214–230, 2003. Cited
pages 55, 59, 60, 61, and 141.

S. Ferretti, M. Roccetti, and C. E. Palazzi. An optimistic obsolescence-based approach to
event synchronization for massively multiplayer online games. Int. J. Comput. Appl.,
29(1):33–43, January 2007. ISSN 1206-212X. URL http://dl.acm.org/citation.cfm?id=
1735675.1735680. Cited page 19.

Stefano Ferretti and Marco Roccetti. Fast delivery of game events with an optimistic
synchronization mechanism in massive multiplayer online games. In Proceedings of the
2005 ACM SIGCHI International Conference on Advances in Computer Entertainment
Technology, ACE ’05, pages 405–412, New York, NY, USA, 2005. ACM. ISBN 1-
59593-110-4. doi: 10.1145/1178477.1178570. URL http://doi.acm.org/10.1145/1178477.
1178570. Cited page 19.

BIBLIOGRAPHY 135

Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.
ISBN 1-55860-475-8. Cited page 4.

Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid computing
360-degree compared. In Grid Computing Environments Workshop, 2008. GCE’08,
pages 1–10. Ieee, 2008. Cited page 4.

Yannick Francillette, Abdelkader Gouaich, Nadia Hocine, and Julien Pons. A gameplay
loops formal language. In Proceedings of the 2012 17th International Conference on
Computer Games: AI, Animation, Mobile, Interactive Multimedia, Educational & Se-
rious Games (CGAMES), CGAMES ’12, pages 94–101, Washington, DC, USA, 2012.
IEEE Computer Society. ISBN 978-1-4673-1120-5. doi: 10.1109/CGames.2012.6314558.
URL http://dx.doi.org/10.1109/CGames.2012.6314558. Cited pages 11, 55, and 62.

G-Cluster. G-cluster official web page, 2012. URL http://www.gcluster.com. [Online;
accessed 31-Octobre-2012]. Cited page 20.

Gamasutra. Raknet chosen by bigpoint as networking solution for upcoming multiplayer
rpg drakensang online, 2011. URL http://www.gamasutra.com/view/pressreleases/
148567/RakNet Chosen by Bigpoint as Networking Solution for UpcomingMultiplayer
RPG Drakensang Online.php. [Online; accessed 20th-Febuary-2014]. Cited page 38.

Gamespot. Tribes 2, 2001. URL http://www.gamespot.com/tribes-2/. [Online; accessed
27-August-2014]. Cited pages 40, 41, and 141.

GarageGames. Torque3d- multi-player made easy, 2007. URL http://www.garagegames.
com/products/torque-3d/overview/networking. [Online; accessed 20th-Febuary-2014].
Cited page 40.

GarageGames. Tnl - official website, 2009. URL http://www.opentnl.org/. [Online; ac-
cessed 20th-Febuary-2014]. Cited pages 29, 30, 31, 40, 48, and 56.

Jakub Gemrot, Rudolf Kadlec, Michal B́ıda, Ondřej Burkert, Radek Ṕıbil, Jan Havĺıček,
Lukáš Zemčák, Juraj Šimlovič, Radim Vansa, Michal Štolba, et al. Pogamut 3 can
assist developers in building ai (not only) for their videogame agents. In Agents for
Games and Simulations, pages 1–15. Springer, 2009. Cited page 59.

Peter Groen. Max healthcare is 1st hospital in india to receive ’stage 6’
recognition from himss, 2012. URL http://www.openhealthnews.com/hotnews/
max-healthcare-1st-hospital-india-receive-stage-6-recognition-himss. [Online; accessed
22th-January-2014]. Cited page 5.

Meirav Hadad and Avi Rosenfeld. Adapt: abstraction hierarchies to succinctly model
teamwork. In AAMAS, pages 1177–1178. IFAAMAS, 2011. Cited pages 59 and 60.

N.A. Hawes. Anytime deliberation for computer game agents. PhD thesis, University of
Birmingham, 2004. Cited page 14.

Richard Held and Nathaniel Durlach. Telepresence, time delay and adaptation. Pictorial
communication in virtual and real environments, pages 232–246, 1991. Cited page 23.

136 BIBLIOGRAPHY

Nadia Hocine. Adaptation dans les jeux sérieux pour la rééducation fonctionnelle. PhD
thesis, Université de Montpellier 2, 2013. Cited page 30.

Ole-Ivar Holthe, Ola Mogstad, and Leif Arne Rønningen. Geelix livegames: Remote
playing of video games. In Proceedings of the 6th IEEE Conference on Consumer
Communications and Networking Conference, CCNC’09, pages 758–759, Piscataway,
NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-2308-8. URL http://dl.acm.org/citation.
cfm?id=1700527.1700724. Cited page 19.

Simon Hurst. The characteristic function of the student t distribution. Research report:
statistics research report/Centre for mathematics and its applications (Canberra), 1995.
Cited page 108.

Yoshiaki Ida, Yutaka Ishibashi, Norishige Fukushima, and Shinji Sugawara. Qoe assess-
ment of interactivity and fairness in first person shooting with group synchronization
control. In Proceedings of the 9th Annual Workshop on Network and Systems Support
for Games, page 10. IEEE Press, 2010. Cited page 22.

IGN. Slant six games chooses raknet for multi-platform project, 2011. URL http://uk.
ign.com/articles/2011/02/08/slant-six-games-chooses-raknet-for-multi-platform-project.
[Online; accessed 20th-Febuary-2014]. Cited page 38.

ISO. Ergonomics of Human-system Interaction: Part 210: Human-centred Design for
Interactive Systems. ISO, 2010. Cited page 22.

JenkinsSoftware. Raknet - official website, 2011. URL http://www.raknet.com/. [Online;
accessed 20th-Febuary-2014]. Cited pages 31, 38, and 48.

Thomas Judd and Robert W Levi. Dead reckoning navigational system using accelerom-
eter to measure foot impacts, December 10 1996. US Patent 5,583,776. Cited page
28.

A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P. Laulajainen,
R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä, A. De Gloria, and C. Bouras.
Platform for distributed 3d gaming. Int. J. Comput. Games Technol., 2009:1:1–1:15,
January 2009. ISSN 1687-7047. doi: 10.1155/2009/231863. URL http://dx.doi.org/10.
1155/2009/231863. Cited page 18.

Jesper Juul. The game, the player, the world - looking for the heart of gameness. In
Marinka Copier and Joost Raessens, editors, Level up: Digital games research confer-
ence., pages 30–47+. Utrecht University, 2003. Cited page 14.

Antal Kozak. Introductory probability and statistics: applications for forestry and natural
sciences. CABI, 2008. Cited page 70.

Nir Kshetri. Cloud computing in developing economies. Computer, 43(10):47–55, 2010.
ISSN 0018-9162. doi: http://doi.ieeecomputersociety.org/10.1109/MC.2010.212. Cited
page 5.

LibGDX. Libgdx introduction, 2013. URL https://github.com/libgdx/libgdx/wiki/
Introduction. [Online; accessed 27-August-2014]. Cited page 100.

BIBLIOGRAPHY 137

Ricardo Lopes and Rafael Bidarra. Adaptivity challenges in games and simulations: a
survey. Computational Intelligence and AI in Games, IEEE Transactions on, 3(2):
85–99, 2011. Cited page 29.

David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and Amitabh
Varshney. Level of Detail for 3D Graphics. Elsevier Science Inc., New York, NY,
USA, 2002. ISBN 1558608389. Cited pages 56, 57, and 141.

Ghulam Mahdi. Level of Detail in Agent Societies for Video Games. PhD thesis, Univer-
sité de Montpellier 2, 2013. Cited pages 58 and 76.

Ghulam Mahdi, Yannick Francillette, Abdelkader Gouaich, Fabien Michel, Nadia Hocine,
et al. Level of detail based ai adaptation for agents in video games. In ICAART’2013:
5th International Conference on Agents and Artificial Intelligence, 2013. Cited page
30.

Chris McEntee. Rational design: The core of rayman origins, 2012. URL http://www.
gamasutra.com/view/feature/167214/rational design the core of .php. [Online; accessed
22-July-2014]. Cited page 62.

Peter Mell and Tim Grance. The nist definition of cloud computing. 2011. Cited page 4.

Alan Henry David Miller, John Philip McCaffery, Colin Allison, Lisa Dow, and Iain Angus
Oliver. Measuring server qos in open virtual worlds: relating qos to qoe for opensim
servers on the hyper-grid. Proceedings of pgNET 2014, 2014. Cited page 8.

MobyGames. Unreal, 1998. URL http://www.mobygames.com/game/game/unreal. [On-
line; accessed 16-August-2014]. Cited pages 41, 42, and 141.

MobyGames. Tribes 2, 2001. URL http://www.mobygames.com/game/tribes-2. [Online;
accessed 16-August-2014]. Cited page 40.

Mogwai. Ethereal - 2d multiplayer action game, 2012. URL https://www.youtube.
com/watch?v=455UnqQEqBU&feature=youtu.be. [Online; accessed 20th-Febuary-2014].
Cited pages 37 and 141.

MojOS. Stroke patients addicted to video games, 2009. URL http://euromov.eu/site/
2012/02/609/. [Online; accessed 31-Octobre-2013]. Cited page 7.

Katherine L. Morse, Lubomir Bic, and Michael Dillencourt. Interest management in
large-scale virtual environments. Presence: Teleoper. Virtual Environ., 9(1):52–68,
February 2000. ISSN 1054-7460. doi: 10.1162/105474600566619. URL http://dx.doi.
org/10.1162/105474600566619. Cited page 36.

Nvidia. The power of cloud gaming, 2014. URL http://www.nvidia.com/object/
cloud-gaming.html. [Online; accessed 27-August-2014]. Cited page 6.

Onlive. Onlive official web page, 2010. URL http://www.onlive.com. [Online; accessed
31-Octobre-2012]. Cited pages 7, 8, 20, 43, 48, and 141.

Onlive. Onlive’s partners, 2014. URL http://www.onlive.be/corporate/partners. [Online;
accessed 27-August-2014]. Cited page 6.

138 BIBLIOGRAPHY

Reinhard Oppermann. Adaptive user support: ergonomic design of manually and auto-
matically adaptable software. CRC Press, 1994. Cited page 29.

Lothar Pantel and Lars C Wolf. On the suitability of dead reckoning schemes for games.
In Proceedings of the 1st workshop on Network and system support for games, pages
79–84. ACM, 2002. Cited page 28.

Martin Prangl, Ingo Kofler, and Hermann Hellwagner. Towards qos improvements of
tcp-based media delivery. In Networking and Services, 2008. ICNS 2008. Fourth In-
ternational Conference on, pages 188–193. IEEE, 2008. Cited pages 45, 46, 47, 48,
and 50.

ITUT Rec. P. 800: Methods for subjective determination of transmission quality. Inter-
national Telecommunication Union, Geneva, 1996. Cited page 22.

Vineet Richharya, Shweta Shrivastava, and Naman Agrawal. Image compression tech-
nique using different wavelet function. IJRCCT, 3(5):617–621, 2014. Cited page 44.

Carlos Oberdan Rolim, Fernando Luiz Koch, Carlos Becker Westphall, Jorge Werner,
Armando Fracalossi, and Giovanni Schmitt Salvador. A cloud computing solution for
patient’s data collection in health care institutions. In Proceedings of the 2010 Second
International Conference on eHealth, Telemedicine, and Social Medicine, ETELEMED
’10, pages 95–99, Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-
0-7695-3950-8. doi: 10.1109/eTELEMED.2010.19. URL http://dx.doi.org/10.1109/
eTELEMED.2010.19. Cited page 5.

Jörg Rüppel. zoidcom - zoidcom automated networking system, 2011. URL http://www.
zoidcom.com/. [Online; accessed 20th-Febuary-2014]. Cited pages 31, 36, 48, and 56.

Katie Salen and Eric Zimmerman. Rules of Play: Game Design Fundamentals. The MIT
Press, 2003. ISBN 0262240459, 9780262240451. Cited page 14.

Katie Salen and Eric Zimmerman. Rules of play: Game design fundamentals. MIT press,
2004. Cited page 62.

Lee Salzman. Enet - official website, 2014. URL http://enet.bespin.org/. [Online; accessed
20th-Febuary-2014]. Cited pages 38, 48, and 56.

SilentWings. Silent wings simulator, 2006. URL http://www.silentwings.no/article/
articleview/96/1/2//. [Online; accessed 16-August-2014]. Cited pages 39 and 141.

Nic Simmonds. Battlefield 3 pc bandwidth usage, 2011. URL http://mygaming.co.
za/news/features/15417-battlefield-3-pc-bandwidth-usage.html. [Online; accessed 15-
August-2014]. Cited page 47.

SMILE. Agent game development engine, 2012. URL http://gforge-lirmm.lirmm.fr/gf/
project/agde/frs. [Online; accessed 27-August-2014]. Cited page 99.

SMILE. Game agent mechanics engine, 2013. URL http://info-depot.lirmm.fr/repos/
SMILE/GAMEDEV. [Online; accessed 27-August-2014]. Cited page 100.

StreamMyGame. Streammygame official web page, 2007. URL http://www.
streammygame.com. [Online; accessed 31-Octobre-2012]. Cited page 20.

BIBLIOGRAPHY 139

Eileen La Susa. Cloud computing brings cost of protein research down to earth,
2009. URL http://www.eurekalert.org/pub releases/2009-04/mcow-ccb040909.php. [On-
line; accessed 22th-January-2014]. Cited page 5.

T5-Labs. T5-labs official web page, 2007. URL http://www.t5labs.com. [Online; accessed
31-Octobre-2012]. Cited page 20.

Nicolas Tizon, Christina Moreno, Mihai Cernea, and Marius Preda. Mpeg-4-based adap-
tive remote rendering for video games. In Proceedings of the 16th International Con-
ference on 3D Web Technology, pages 45–50. ACM, 2011. Cited pages 44 and 48.

Unlagged. A solution, 2002. URL http://www.ra.is/unlagged/solution.html. [Online; ac-
cessed 20th-Febuary-2014]. Cited pages 25 and 141.

Valve. Source multiplayer networking, 2004. URL https://developer.valvesoftware.com/
wiki/Source Multiplayer Networking. [Online; accessed 20th-Febuary-2014]. Cited page
28.

Valve. Latency compensating methods in client/server in-game protocol design and opti-
mization, 2009. URL https://developer.valvesoftware.com/wiki/Latency Compensating
Methods in Client/Server In-game Protocol Design and Optimization. [Online; accessed
20th-Febuary-2014]. Cited page 28.

Adrián Juan Verdejo, Katrien De Moor, Istvan Ketyko, Karen Torben Nielsen, Jeroen
Vanattenhoven, Toon De Pessemier, Wout Joseph, Luc Martens, and Lieven De Marez.
Qoe estimation of a location-based mobile game using on-body sensors and qos-related
data. In Wireless Days (WD), 2010 IFIP, pages 1–5. IEEE, 2010. Cited page 22.

Village. Projet village, official site, 2013. URL http://www.projet-village.fr/. [Online;
accessed 27-August-2014]. Cited page 105.

Vormetric. Data security in the cloud, 2012. URL http://www.vormetric.com/sites/
default/files/wp-data-security-in-the-cloud.pdf. [Online; accessed 22th-January-2014].
Cited page 9.

Joost Westra, Frank Dignum, and Virginia Dignum. Scalable adaptive serious games
using agent organizations. In The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 3, AAMAS ’11, pages 1291–1292, Rich-
land, SC, 2011. International Foundation for Autonomous Agents and Multiagent Sys-
tems. ISBN 0-9826571-7-X, 978-0-9826571-7-1. URL http://dl.acm.org/citation.cfm?
id=2034396.2034531. Cited pages 59 and 60.

Whitaker. The game loop, 2014. URL http://rbwhitaker.wikidot.com/the-game-loop. [On-
line; accessed 22-July-2014]. Cited page 15.

Michael Wissner, Felix Kistler, and Elisabeth Andre. Level of detail ai for virtual charac-
ters in games and simulation. In Proceedings of the Third international conference
on Motion in games, MIG’10, pages 206–217, Berlin, Heidelberg, 2010. Springer-
Verlag. ISBN 3-642-16957-0, 978-3-642-16957-1. URL http://dl.acm.org/citation.cfm?
id=1948395.1948423. Cited page 11.

Matthias Wloka. Lag in multiprocessor virtual reality. Presence, 4:50–63, 1995. Cited
page 23.

140 BIBLIOGRAPHY

Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia methodology for
agent-oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3:285–312, 2000. Cited page 59.

Wanmin Wu, Ahsan Arefin, Raoul Rivas, Klara Nahrstedt, Renata Sheppard, and Zhenyu
Yang. Quality of experience in distributed interactive multimedia environments: toward
a theoretical framework. In Proceedings of the 17th ACM international conference on
Multimedia, pages 481–490. ACM, 2009. Cited page 8.

M. Zyda. From visual simulation to virtual reality to games. Computer, 38(9):25–32,
2005. Cited page 14.

List of Figures

1.1 Onlive cloud gaming solution [Onlive, 2010] 7

2.1 Game loop. 16
2.2 Client-server game loop . 18
2.3 Cloud game loop: Video streaming . 20
2.4 Input lag and update lag . 24
2.5 The Effects of lag on targeting [Unlagged, 2002] 25
2.6 Fixing lag . 26

3.1 Screenshots of Ethereal: 2D multiplayer shooter game [Mogwai, 2012] 37
3.2 Screenshots of SilentWings flight simulator gameplay [SilentWings, 2006] . . 39
3.3 Screenshots of Tribes 2 gameplay [Gamespot, 2001] 41
3.4 Screenshots of Unreal gameplay [MobyGames, 1998] 42
3.5 Visual map for communications adaptation in objects replication systems . . 49
3.6 Visual map for communications adaptation in video streaming systems . . . 50

4.1 Adaptation model . 52
4.2 General framework . 54
4.3 Adaptation inputs . 54
4.4 RTT sequence diagram . 55
4.5 Four different representations by changing the number of polygons [Luebke

et al., 2002] . 57
4.6 Basic primitives of AGR in the ”cheeseboard” notation [Ferber et al., 2003] . 61
4.7 Gameplay component’s lifecycle . 63

5.1 Example of level of detail selection . 69
5.2 Organizational level of detail . 76
5.3 Screenshot of the game ”My Duck Hunt” . 77
5.4 Example of LoD selection . 79
5.5 Example of network delay progression . 79
5.6 Example of a GC tree with importance values at initialization 81
5.7 Example of a GC node with different importance weights on children 83
5.8 GC based level of detail . 89
5.9 GC tree for the game My Duck Hunt . 90
5.10 Example of LoD selection . 91
5.11 Example of game scenario progression . 91
5.12 Initial importance distribution . 92
5.13 LoD selection at initialization . 93
5.14 LoD selection when the delay goes to 190 ms 94

141

5.15 GC tree after eliminate(duck4) succeeded 95
5.16 LoD selection when eliminate(duck4) ends with a success 95

6.1 The overall game architecture . 98
6.2 Core game model . 99
6.3 AGDE’s game structure . 100
6.4 AGDE’s core inheritance class diagram . 101
6.5 GAME’s game structure . 102
6.6 GAME’s core inheritance class diagram . 102
6.7 ”My Duck Hunt”’s game objects . 103
6.8 A simplified class diagram of ”My duck hunt”’s game objects 103
6.9 ”Crazy runner”’s game objects . 105
6.10 GC tree of the game ”Crazy Runner” . 106
6.11 A simplified class diagram of Crazy Runner’s game objects 106
6.12 A class diagram of the communications levels 107
6.13 The participants playing the game during the experiment 109
6.14 A participant playing crazy runner . 113
6.15 ”Crazy runner”’s QoE screen . 114
6.16 Network configuration for step 2 . 114
6.17 Network configuration for step 3 . 115
6.18 Network configuration for step 4 . 115
6.19 GC tree of the game ”Crazy Runner” at initialization 116

List of Tables

3.1 Analysis of the communications adaptation approaches in cloud games . . . 48

6.1 MOS rating scheme . 107
6.2 Playing frequencies distribution . 108
6.3 Proxy configuration for network capacity . 109
6.4 Results . 111
6.5 Participants’ characteristics . 112
6.6 Results for QoE rates per sub-race . 117
6.7 Results for number of eliminated obstacles per sub-race 118
6.8 Results for the overall game session . 118

142

Abstract

With the arrival of cloud computing technology, game accessibility and ubiquity have
a bright future. Games can be hosted in a centralize server and accessed through the
Internet by a thin client on a wide variety of devices with modest capabilities: cloud
gaming. Some of the advantages of using cloud computing in game context includes:
device ubiquity, computing flexibility, affordable cost and lowered set up overheads and
compatibility issues. However, current cloud gaming systems have very strong require-
ments in terms of network resources, thus reducing their widespread adoption. In fact
devices with little bandwidth and people located in area with limited network capacity,
cannot take advantage of these cloud services. In this thesis we present an adaptation
technique inspired by the level of detail (LoD) approach in 3D graphics. It is based on
a cloud gaming paradigm in other to maintain user’s quality of experience (QoE) by
reducing the impact of poor network parameters (delay, loss, bandwidth) on game inter-
activity. Our first contribution consist of game models expressing game objects and their
communications needs represented by their importance in the game. We provided two
different ways to manage objects’ importance using agents organizations and gameplay
components. We then provided a level of detail approach for managing network resource
distribution based on objects importance in the game scene and network conditions. We
exploited the dynamic objects importance adjustment models presented above to propose
LoD systems adapting to changes during game sessions. The experimental validation of
both adaptation models showed that the suggested adaptation minimizes the effects of
low and/or unstable network conditions in maintaining game responsiveness and player’s
QoE.

Keywords: Level of detail, quality of experience, cloud gaming, agents organizations,
gameplay components, network, communication, synchronization

Résumé

144 List of Tables

Le Cloud computing émerge comme le nouveau paradigme informatique dans lequel la
virtualisation des resources fournit des services fiables correspondant aux demandes des
utilisateurs. De nos jours, la plupart des applications interactives et utilisant beaucoup
de données sont développés sur le cloud: Le jeu vidéo en est un exemple. Avec l’arrivée
du cloud computing, l’accessibilité et l’ubiquité du jeu ont un brillant avenir; Les jeux
peuvent être hébergés dans un serveur centralisé et accessibles via l’Internet par un client
léger sur une grande variété de dispositifs avec des capacités modestes: c’est le cloud ga-
ming. Le Cloud computing dans le contexte de jeu vidéo a beaucoup attiré l’attention en
raison de ses facilités d’évolution, de disponibilité et capacité de calcul. Cependant, les
systèmes de cloud gaming actuels ont des exigences très fortes en termes de ressources
réseau, réduisant ainsi l’accessibilité et l’ubiquité des jeux dans le cloud, car les dispo-
sitifs clients avec peu de bande passante et les personnes situées dans la zone avec des
conditions de réseau limitées et/ou instables, ne peuvent pas bénéficier de ces services
de cloud computing. Dans cette thèse, nous présentons une technique d’adaptation ins-
pirée par l’approche du niveau de détail (Level of detail) dans les graphiques 3D. Elle
est basée sur un paradigme du cloud gaming dans l’objectif de fournir une accessibilité
multi-plateforme, tout en améliorant la qualité d’expérience (QoE) du joueur en rédui-
sant l’impact des mauvaises conditions réseau (delai, perte, gigue) sur l’interactivité et
réactivité du jeu. Notre première contribution se compose de modèles de jeu reliant les
objets du jeu à leurs besoins en termes de communication représentés par leurs impor-
tances dans le jeu. Nous avons ensuite fourni une approche de niveau de détail pour gérer
la distribution des ressources réseau basée sur l’importance des objets dans la scène et
les conditions réseau. Nous validons notre approche en utilisant des jeu prototypes et
evaluons la QoE du joueur, par des expériences pilotes. Les résultats montrent que le
framework proposé fournit une importante amélioration de la QoE.

Mots clefs : Niveau de detail, qualité d’expérience, cloud gaming, organisations d’agents,
composants de gameplay, réseau, communication, synchronisation

LIRMM — 161, rue Ada — 34095 Montpellier cedex 5 — France

