
HAL Id: tel-01984997
https://theses.hal.science/tel-01984997

Submitted on 17 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Détection de ruptures multiples – application aux
signaux physiologiques.

Charles Truong

To cite this version:
Charles Truong. Détection de ruptures multiples – application aux signaux physiologiques.. Analyse
fonctionnelle [math.FA]. Université Paris Saclay (COmUE), 2018. Français. �NNT : 2018SACLN030�.
�tel-01984997�

https://theses.hal.science/tel-01984997
https://hal.archives-ouvertes.fr

Détection de ruptures multiples –
application aux signaux

physiologiques

Thèse de doctorat de l'Université Paris-Saclay
préparée à l’École Normale Supérieure

École doctorale n°574 Mathématiques Hadamard (EDMH)
Spécialité de doctorat: Mathématiques appliquées

Thèse présentée et soutenue à Cachan, le 29 novembre 2018, par

 M. Charles Truong

Composition du Jury :

M. P. Gallinari
Professeur, Sorbonne Université (LIP6) Président
M. Z. Harchaoui
Maître de Conférences, University of Washington Rapporteur
M. F. Rossi
Professeur, Université Paris 1 Panthéon-Sorbonne (SAMM) Rapporteur
Mme C. Lévy-Leduc
Professeure, AgroParisTech (MMIP) Examinateur
M. N. Vayatis
Professeur, École Normal Supérieure Paris-Saclay (CMLA) Directeur de thèse
M. L. Oudre
Maître de Conférences, Université Paris 13 (L2TI) Co-Directeur de thèse

NNT : 2018SACLN030

Contents

Introduction générale (en français) 15

1 Introduction 31
1 Context of the thesis . 31

2 Motivations . 32

2.1 From raw data to knowledge . 32

2.2 Motivating examples . 33

3 Change point detection for physiological data 37

3.1 General principles . 37

3.2 Learning from experts . 38

4 Change point detection framework . 39

4.1 Generic detection methods . 40

4.2 Designing detection methods . 41

5 Contributions . 42

6 Overview of the manuscript . 43

7 Publications . 44

I Literature review and evaluation framework 47

2 A selective review of change point detection methods 49
1 Framework of the thesis . 50

1.1 Problem statement . 50

1.2 Structure of change point detection methods 51

1.3 Asymptotic consistency . 52

1.4 Outline of this chapter . 53

2 Models and cost functions . 53

2.1 Parametric models . 53

2.2 Non-parametric models . 58

2.3 Summary table . 63

3 Search methods . 63

3.1 Optimal detection . 64

3.2 Approximate detection . 67

4 Estimating the number of changes . 72

4.1 Linear penalty . 72

4.2 Fused lasso . 74

4.3 Complex penalties . 74

5 Summary table . 75

6 Conclusion . 75

3 Evaluation framework: metrics and data sets 77

4 CONTENTS

1 Motivations . 77

2 Evaluation framework . 78

2.1 Evaluation metrics . 78

2.2 Presentation of the data sets . 80

3 Summary tables . 88

II Greedy change point detection 89

4 Greedy change point detection 91
1 Statistical model for change point detection 92

1.1 Problem formulation . 92

1.2 Related work . 92

1.3 Contributions of the chapter . 93

2 Change point detection as a sparse regression task 93

2.1 The Heaviside decomposition . 94

2.2 Equivalence to a sparse regression task 95

2.3 Greedy change point detection: the gCPD algorithm 95

2.4 Heuristics for gCPD . 97

2.5 Complexity analysis . 98

2.6 Stopping criterion . 99

3 Conclusion . 99

Appendices . 99

4.A Theoretical Analysis . 99

4.A.1 Model and technical assumptions 100

4.A.2 Asymptotic consistency . 100

4.A.3 Sketch of proof of Theorem 4.1 . 101

5 Greedy kernel change point detection 105
1 The rkhs setup for change point detection 105

1.1 Problem formulation . 105

1.2 Related work . 106

1.3 Contributions of the chapter . 107

2 A kernel version of gCPD . 107

2.1 Reformulation of gCPD with ckernel 107

2.2 The gkCPD algorithm . 108

2.3 Complexity analysis . 109

2.4 Examples of kernels . 109

3 Conclusion . 110

6 Numerical experiments and evaluation 111
1 Experimental setting . 111

2 Results on the MeanShift data set . 112

3 Results on the FreqShift data set . 116

4 Results on the Gait data set . 119

4.1 Global results . 120

4.2 Results by change point type . 123

5 Discussion . 124

CONTENTS 5

5.1 Execution time comparison . 124

5.2 Estimation of the number of change points with gCPD 125

III Supervised change point detection 127

7 Calibrating the smoothing parameter through supervised learning 129
1 Penalized change point detection model . 130

1.1 Problem formulation . 130

1.2 Related work . 130

1.3 Contributions of the chapter . 131

2 Properties of the excess risk . 131

3 Adaptive Linear Penalty INference: the Alpin algorithm 132

4 Experiments . 133

4.1 Setting . 133

4.2 MeanShift data set . 134

4.3 FreqShift data set . 135

4.4 Execution time comparison . 136

5 Discussion . 137

5.1 Comments on the excess risk . 137

5.2 Double labels . 139

6 Conclusion . 140

8 Metric learning for change point detection 141
1 Change point detection with a Mahalanobis-type pseudo-norm 142

1.1 Problem formulation . 142

1.2 Related work . 143

1.3 Contributions of the chapter . 143

2 Metric learning with a kernel-based approach 144

2.1 From labels to constraints . 144

2.2 Kernel metric learning . 145

2.3 Computing the learned cost function 145

2.4 Intuition behind the cost function cH,M 146

3 Experiments . 147

3.1 Supervised segmentation of new signals 147

3.2 Segmentation completion . 150

4 Discussion: double labels . 151

5 Conclusion . 153

IV Statistical software 155

9 ruptures : change point detection in Python 157
1 Introduction . 157

2 Change point detection framework . 159

3 Library overview . 159

3.1 Main features . 159

3.2 Availability and requirements . 160

6 CONTENTS

3.3 Illustrative example . 161

4 Conclusion . 161

Conclusion and perspectives 163

A Documentation of ruptures 167

B An automated recordingmethod in clinical consultation to rate the limp
in lower limb osteoarthritis 221

C Template-based step detection from accelerometer signals 239

Bibliography 251

Acknowledgements

First, I would like to thank my advisers Nicolas Vayatis and Laurent Oudre, for giving me

this unique opportunity to work and learn in such a wonderful environment. I would also

like to thank Fabrice Rossi and Zaid Harchaoui for doing me the honor of reviewing this

thesis. I am also grateful to Céline Lévy-Leduc and Patrick Gallinari, for participating in

my thesis committee and taking interest in my work. It is an honor to have you all on my

committee.

I would also like to thank all the team at CMLA for all the good moments that we shared:

Julien Audi�ren, Mounir Atiq, Ioannis Bargiotas, Miguel Colom, Emile Contal, Rémy

Degenne, Thomas Douillet-Grellier, Mathilde Fekom, Kumar Gaurav, Pierre Humbert,

Mathieu Jedor, Argyris Kalogeratos, Batiste Le Bars, Rémi Lemonnier, Zhijin Li, Myrto

Limnios, Cédric Malherbe, Juan Mantilla, Steven Masfaraud, Ludovic Minvielle, Thomas

Moreau, Alice Nicolaï, Vianney Perchet, Théo Saillant, Dripta Sarkar, Kevin Scaman, Asma

Toumi and more generally the whole lab, Véronique Almadovar, Micheline Brunetti, Sandra

Doucet, Atman Kendira, Christophe Labourdette, Delphine Laverne, Alina Müller, Virginie

Pauchont, and Massil Achab. It has been a pleasure working with you over the years and I

hope our paths will cross again.

I would also like to express my gratitude to all the people from the Cognac-G team with

whom I had the chance to collaborate: Eric Krejci, Damien Ricard, Pierre-Paul Vidal, Alain

Yelnik, Catherine De Waele as well as Rémi Barrois-Müller, Stéphane Bu�at, Clément

Provost, Alfredo Pulini.

Abstract

This work addresses the problem of detecting multiple change points in (univariate or

multivariate) physiological signals. Well-known examples of such signals include elec-

trocardiogram (ECG), electroencephalogram (EEG), inertial measurements (acceleration,

angular velocities, etc.). The objective of this thesis is to provide change point detection

algorithms that (i) can handle long signals, (ii) can be applied on a wide range of real-world

scenarios, and (iii) can incorporate the knowledge of medical experts. In particular, a

greater emphasis is placed on fully automatic procedures which can be used in daily clinical

practice. To that end, robust detection methods as well as supervised calibration strategies

are described, and a documented open-source Python package is released.

The �rst contribution of this thesis is a sub-optimal change point detection algorithm that

can accommodate time complexity constraints while retaining most of the robustness of

optimal procedures. This algorithm is sequential and alternates between the two following

steps: a change point is estimated then its contribution to the signal is projected out. In the

context of mean-shifts, asymptotic consistency of estimated change points is obtained. We

prove that this greedy strategy can easily be extended to other types of changes, by using

reproducing kernel Hilbert spaces. Thanks this novel approach, physiological signals can be

handled without making assumption of the generative model of the data. Experiments on

real-world signals show that those approaches are more accurate than standard sub-optimal

algorithms and faster than optimal algorithms.

The second contribution of this thesis consists in two supervised algorithms for automatic

calibration. Both rely on labelled examples, which in our context, consist in segmented

signals. The �rst approach learns the smoothing parameter for the penalized detection of

an unknown number of changes. The second procedure learns a non-parametric transfor-

mation of the representation space, that improves detection performance. Both supervised

procedures yield �nely tuned detection algorithms that are able to replicate the segmen-

tation strategy of an expert. Results show that those supervised algorithms outperform

unsupervised algorithms, especially in the case of physiological signals, where the notion

of change heavily depends on the physiological phenomenon of interest.

All algorithmic contributions of this thesis can be found in ruptures , an open-source

Python library, available online. Thoroughly documented, ruptures also comes with a

consistent interface for all methods.

Notations

General

|X| Number of elements of a set X

{yt}T
t=1 Rd

-valued signal with T samples

b·c Integer part function

1{·} Indicator function taking values in {0,1}

P(A) Probability of event A

E(Y) Expected value of the random variable Y

Xn
p−→ X Convergence in probability of the sequence of random

variables (Xn)n to the random variable X

Matrix

M′ Transpose matrix of M

Mi,j, Mi,• and M•,j (i, j)-entry, i-th row and j-th column of a matrix M

‖·‖ Frobenius norm

tr(·) Trace operator

‖M‖0,1 Number of non-zero rows of M

M†
Moore–Penrose pseudoinverse of a matrix M

1a×b Vector of size a× b with all entries equal to 1

In Identity matrix in Rn×n

diag(M1, M2, . . .) Block diagonal matrix with blocks M1, M2, . . .

Introduction générale (en français)

1 Contexte de la thèse

Contexte général. Au cours des dernières décennies, les applications de mesure de soi

sont devenues de plus en plus répandues dans la population. De nombreuses solutions

commerciales sont disponibles pour calculer des quantités liées à la santé telles que le

nombre de pas, la distance parcourue, les variations de poids, l’énergie dépensée, etc. Ce

changement remarquable des habitudes de santé est rendu possible par la progression

stupé�ante des capteurs intégrés aux appareils mobiles. Dans le contexte médical, la même

tendance a été observée, grâce à la montée en puissance de capteurs bon marché, faciles à

porter et à manipuler. En conséquence, de plus en plus de signaux physiologiques, tels que

l’électrocardiogramme (ECG), l’électroencéphalogramme (EEG), les accélérations du corps

et des membres, peuvent être collectés. Cette tendance présente de nombreux avantages:

faciliter le diagnostic précoce, promouvoir la télémédecine, rendre les soins de santé plus

abordables, etc. Avant de récolter les fruits de cette avancée technologique, il convient

de concevoir des méthodes automatiques et objectives pour extraire des informations de

cet important volume de données brutes. La transition de signaux bruts à des données

intelligibles est cruciale pour le succès de la médecine nouvelle génération et est devenue

un véritable sujet d’intérêt.

Collaboration avec Cognac-G. Au cours de ma thèse, j’ai collaboré avec Cognac-G,

une équipe de recherche regroupant des chercheurs en apprentissage statistique et des

chercheurs en médecine, réunis autour de la quanti�cation du comportement humain

et animal. À cette �n, plusieurs protocoles expérimentaux ont été développés pour un

large éventail de problèmes cliniques allant de la respiration de souris ou de la locomo-

tion humaine aux mouvements oculaires du nourrisson. Chaque protocole est surveillé

avec un ou plusieurs capteurs a�n de fournir une quanti�cation objective du phénomène

d’intérêt. Les séries temporelles résultantes (univariées ou multivariées), appelées signaux

physiologiques, sont ensuite étudiées. Le premier dé� consiste à extraire des informations

pertinentes de ces signaux, a�n de les interpréter et d’aider à comprendre les mécanismes

physiologiques, biologiques ou biomécaniques qui les ont produits. Le deuxième dé� con-

siste à automatiser le processus de quanti�cation a�n de fournir des outils pouvant être

utilisés par les médecins pour le suivi longitudinal et la comparaison interindividuelle de

leurs patients.

16 CONTENTS

2 Motivations

2.1 Comprendre les données brutes

Dans la grande majorité des situations, le contexte clinique impose des contraintes pratiques

au processus d’acquisition des données. Par exemple, les cliniciens n’ont peut-être pas la

possibilité d’activer et de désactiver librement les capteurs, au début et à la �n du phénomène

considéré. En outre, les sujets surveillés peuvent être invités à e�ectuer successivement

di�érentes activités physiques. Dans ces situations, les signaux collectés sont constitués de

phases consécutives et les informations précises sur le début et la �n de chaque phase ne

sont pas toujours disponibles. La segmentation de signal ou détection de ruptures est une

étape cruciale pour pré-traiter une grande quantité de séries temporelles. (Les deux termes

sont utilisés de manière équivalente.) Elle consiste à trouver les limites temporelles des

régimes successifs du signal, pour pouvoir les supprimer ou les analyser. Cette étape est

essentielle pour la contextualisation de longues séries temporelles.

Dans la pratique clinique quotidienne, cette situation se rencontre souvent, lorsque des

sujets sont surveillés pendant qu’ils suivent un protocole médical. Généralement, un

clinicien demande à un patient d’e�ectuer plusieurs exercices physiques consécutifs pendant

que certains capteurs enregistrent certaines variables physiologiques et biomécaniques

(par exemple, la fréquence cardiaque, l’absorption d’oxygène, l’accélération du corps). A�n

de quanti�er l’évolution du patient au cours du protocole, le signal de surveillance est

segmenté, ce qui signi�e qu’il est divisé en sous-signaux, chacun correspondant à une phase

cohérente (par exemple, un seul exercice). Certaines caractéristiques intéressantes sont

ensuite calculées pour chaque phase. Ce schéma est utilisé pour l’étude de la locomotion

humaine (plus précisément, l’analyse de la marche) présentée plus loin dans ce manuscrit

et illustrée sur la �gure 0.1.

D’un point de vue pratique, la segmentation du signal peut être réalisée manuellement

par les cliniciens. Par exemple, ils peuvent enregistrer les temps de début et de �n des

phénomènes d’intérêt, ou marquer le moment des changements en analysant la série

temporelle brute. Cependant, les deux approches peuvent s’avérer fastidieuses si le protocole

est complexe et nécessite toute l’attention du clinicien, ou si les modi�cations ne sont pas

facilement visibles à partir des signaux bruts. En e�et, même si des spécialistes quali�és sont

en mesure d’évaluer l’état du patient à l’œil nu, il est di�cile d’appliquer cette expertise sur

des séries temporelles. De même, lors des essais cliniques, il peut être essentiel de réduire

le nombre d’opérations manuelles, qui sont sujettes à interprétation et donc subjectives.

Ceci motive l’étude des méthodes de segmentation automatique du signal. Pour faire face à

la diversité des séries temporelles physiologiques, des algorithmes robustes et polyvalents

sont nécessaires, ainsi que des procédures systématiques pour les calibrer. L’objectif est de

capturer l’expertise médicale des cliniciens, avec le moins d’intervention humaine possible.

De plus, les algorithmes ne doivent générer que peu ou pas de surcoût informatique s’ils

doivent être utilisés en routine clinique quotidienne.

2.2 Exemples motivants

Nous décrivons maintenant trois exemples motivants, tous issus d’une coopération entre

des chercheurs en apprentissage statistique et des chercheurs en médecine de Cognac-G.

Un accent particulier est mis sur le premier exemple (analyse de la marche humaine) car il

2. MOTIVATIONS 17

Signal brut

Surveillance

Sujet

Détection de ruptures

Régime 1 Régime 2 Régime 3 Régime 4 Régime 5

Extraction de descripteurs à partir de régimes homogènes

Figure 0.1: Schéma d’une étude médicale pour l’analyse de la marche.

est présent tout au long de ce manuscrit et constitue la pierre de touche de la précision de

la segmentation pour les contributions de cette thèse.

2.2.1 Analyse de la marche humaine

Contexte. Le mouvement humain résulte d’un processus complexe, qui nécessite la co-

ordination de nombreux muscles. Certaines pathologies (telles que la maladie de Parkinson,

l’arthrite, les accidents vasculaires cérébraux, l’obésité, le diabète,. . .) peuvent altérer la

locomotion, augmenter le risque de chute et menacer l’autonomie des patients. La quanti�-

cation et l’évaluation objectives de la locomotion est donc un problème crucial qui a été

abordé dans la littérature en mesurant le mouvement à l’aide de plusieurs types de cap-

teurs tels que des capteurs inertiels, des tapis instrumentés, des plates-formes de force, un

système de suivi caméra-optique ou des résistances sensibles à la force placées à l’intérieur

de semelles. Les signaux obtenus à partir de ces capteurs sont traités (automatiquement ou

manuellement) a�n d’extraire certaines caractéristiques qui caractérisent la locomotion

(vitesse, variabilité, régularité, . . .).

Protocole. Dans ce contexte, un protocole clinique a été conçu et mis en œuvre au

sein de Cognac-G pour l’étude de la locomotion humaine à l’aide d’unités de mesure

inertielle, composées d’accéléromètres 3D, de gyroscopes 3D et de magnétomètres 3D. Ils

sont relativement peu coûteux, ne nécessitent pas de salle réservée aux expériences et que

18 CONTENTS

Figure 0.2: Schéma du protocole utilisé pour l’analyse de la marche humaine. Les points

rouges indiquent les positions des capteurs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.50

0.25

0.00

0.25

0.50

0.75

(a) Sujet sain.

0 10 20 30 40 50 60 70 80
Time (s)

0.2

0.1

0.0

0.1

0.2

(b) Patient atteint d’arthrose.

Figure 0.3: Accélération verticale (m/s
2
) en fonction du temps (s), pour le capteur placé

au bas du dos, pour deux sujets di�érents. Les couleurs alternées marquent les phases

consécutives: «Debout», «Marche», «Demi-tour», «Marche» et «Arrêt».

leur petite taille les rend faciles à manipuler dans des situations cliniques quotidiennes.Les

données utilisées pour la conception et l’évaluation des méthodes présentées dans cette

thèse ont été fournies par les services médicaux suivants: Service de chirurgie orthopédique

et de traumatologie de l’Hôpital Européen Georges Pompidou, Assistance Publique des

Hôpitaux de Paris, Service de médecine physique et de réadaptation de l’Hôpital Fernand

Widal, Assistance Publique des Hôpitaux de Paris, Service de neurologie de l’Hôpital

d’Instruction des Armées du Val de Grâce, Service de Santé des Armées. L’étude a été

validée par un comité d’éthique local et tous les sujets ont donné leur consentement écrit

pour y participer. Tous les signaux ont été acquis à 100 Hz avec des capteurs XSens
TM

sans �l situés dans le bas du dos et �xés à l’aide d’une bande velcro conçue par XSens
TM

.

On a demandé à tous les sujets de rester immobiles pendant 6 secondes, de marcher 10

mètres à la vitesse de marche préférée sur une surface plane, de faire demi-tour, de revenir

en arrière et de rester immobiles pendant 2 secondes (voir Figure 0.2). Deux exemples de

2. MOTIVATIONS 19

signaux enregistrés au cours de ce protocole sont visibles sur la �gure 0.3. Les deux phases

plates aux extrémités du signal correspondent aux périodes pendant lesquelles le sujet est

immobile. Les motifs répétés représentent les pas. En fonction de la pathologie (ou son

absence), la longueur du signal varie de 20 secondes à 90 secondes. En outre, les pas et le

demi-tour sont moins visibles sur le signal pour le patient atteint d’arthrose.

Application de la détection de rupture. Les propriétés spectrales des signaux collectés

peuvent fournir aux cliniciens des informations adaptées à l’analyse de la marche [26].

En e�et, comme indiqué sur la �gure 0.4, les phases de marche montrent une structure

harmonique forte. Cependant, en comparant la densité spectrale de puissance (psd) de

chaque régime «Marche», des di�érences avec la psd de l’ensemble du signal sont observées.

Cela est dû au fait que la structure harmonique de l’enregistrement complet est corrompue

par des phases non périodiques, à savoir «Debout», «Demi-tour» et «Arrêt». De plus,

les deux régimes «Marche» (aller et retour) n’ont pas la même distribution de fréquence.

Plus précisément, les pics de fréquence pour les premier et deuxième «Marche» sont

respectivement situés autour de 2,6 Hz et de 1,4 Hz. Ce décalage de fréquence, qui peut

servir à mesurer la fatigue du sujet, ne peut être détecté que grâce à la segmentation du

signal.

0 5 10 15 20 25 30 35
Time (s)

0.1

0.0

0.1

0.2

0.3

(a) Accélération verticale (m/s
2
) en fonction du temps (s).

0 10 20 30 40 50
frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PS
D

[V
**

2/
Hz

]

1e 3
Whole signal
Walk 1
Walk 2

(b) Densité spectrale de puissance en fonction de la fréquence (Hz).

Figure 0.4: Exemple de signal. (Haut) Accélération verticale (m/s
2
) du capteur (placé au bas

du dos). Les couleurs alternées marquent les phases consécutives: «Debout», «Marche»,

«Demi-tour», «Marche» et «Arrêt». (Bas) Densité spectrale de puissance pour le signal

complet, la première phase «Marche» et la seconde phase «Marche».

20 CONTENTS

2.2.2 Autres exemples de signaux physiologiques

Deux autres exemples de collaborations au sein de Cognac-G sont présentés. Dans les deux

cas, la segmentation du signal est une étape de prétraitement cruciale.

Analyse du contrôle respiratoire chez la souris. L’acétylcholine (ACh) est un neuro-

transmetteur (un produit chimique organique libéré par le système nerveux pour envoyer

des signaux) activant les muscles qui participent à un grand nombre de fonctions cor-

porelles, parmi lesquelles la respiration. Les substances cholinergiques (qui altèrent la

capacité de libération ou d’activation de l’ACh) peuvent être retrouvées dans de nombreux

médicaments, toxines et agents nerveux chimiques, et peuvent entraîner des défaillances

respiratoires. La quanti�cation et l’évaluation objectives des comportements respiratoires

lors d’une crise cholinergique peuvent permettre de mieux comprendre l’in�uence de l’ACh

sur le contrôle respiratoire. Dans la littérature, cette question a été abordée en surveillant

les souris après leur exposition à des mélanges de gaz spéci�ques.

Dans ce contexte, un protocole a été conçu et mis en œuvre par des chercheurs de Cognac-G,

conformément aux lois de protection des animaux de l’Union européenne et du gouverne-

ment français. Plusieurs variables physiologiques liées à la respiration (telles que la durée

d’inspiration et d’expiration, la fréquence respiratoire,. . .) sont enregistrées chez des souris

présentant des dé�cits particuliers des fonctions cholinergiques. Les souris ont été placées

dans une chambre de pléthysmographie (une chambre scellée utilisée pour mesurer les

changements de volume dans les poumons) pendant 15 à 20 minutes, puis sorties pour être

exposées au gaz et replacées dans la chambre. Un exemple illustratif est présenté sur la

�gure 0.5. La première période du signal (les 20 premières minutes) fournit les valeurs

de référence pour les variables enregistrées. Dans la seconde période du signal, di�érents

régimes peuvent être observés, correspondant à di�érents états de la souris: calme au début,

puis stressée avec des di�cultés respiratoires prononcées.

0 10 20 30 40 50
Time (min)

0

1

2

3

Figure 0.5: Évolution de la durée d’expiration (en seconde) d’une souris, en fonction du

temps, en minute (fréquence d’échantillonnage 5 Hz). Après 20 minutes, la souris est

exposée à un mélange de gaz spéci�que. La période sans échantillon correspond à la

manipulation de la souris.

Analyse de conscience pendant l’anesthésie. L’anesthésie générale consiste en un

coma médicalement provoqué et est obligatoire pour certaines chirurgies. Pour réduire

les risques associés à une telle procédure, il est courant de surveiller la profondeur de

conscience des patients au moyen d’électroencéphalogrammes (EEG). L’état du patient

(éveillé, sous sédation,. . .) est ensuite déduit à l’aide d’un algorithme approprié. L’objectif

3. DÉTECTION DE RUPTURES POUR LES DONNÉES PHYSIOLOGIQUES 21

est de prévenir tout événement indésirable pendant et après la chirurgie et de réduire la

consommation de médicaments. Cependant, l’analyse des signaux enregistrés sou�re de

plusieurs limitations, parmi lesquelles la sensibilité de l’EEG aux appareils électroniques

externes.

Dans ce contexte, Cognac-G développe un protocole de suivi des patients anesthésiés. Il

consiste en plusieurs dispositifs (notamment un EEG, un électrocardiogramme, un oxymètre

de pouls) et des traitements algorithmiques des signaux collectés. L’un des problèmes que ce

protocole vise à résoudre est la détection d’artefacts de champ électromagnétique externe

dans l’environnement. Un exemple illustratif est présenté sur la �gure 0.6. Plusieurs

échantillons aberrants et périodes de forte amplitude de tension peuvent être observés dans

cet enregistrement. Ils sont la conséquence des dispositifs électro-chirurgicaux utilisés pour

couper et cautériser les tissus. La suppression de ces périodes est une étape cruciale pour

déduire l’état du patient.

0 1000 2000 3000 4000 5000
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1e4

Figure 0.6: Électroencéphalogrammes (µV) en fonction du temps (s) d’un patient pendant

une anesthésie (fréquence d’échantillonnage 100 Hz).

3 Détection de ruptures pour les données physiologiques

Plusieurs principes généraux ont émergé du contexte décrit précédemment. Ces principes

ont fortement in�uencé la forme des algorithmes de détection de points de changement

proposés dans ce manuscrit. Ils nous ont notamment amenés à envisager des stratégies

basées sur l’apprentissage supervisé.

3.1 Principes généraux

Nous énumérons les principes généraux qui servent de lignes directrices pour les contribu-

tions algorithmiques de cette thèse.

Coût de calcul et robustesse. La surveillance d’un sujet soumis à un protocole spéci-

�que peut générer un volume considérable de données brutes. En e�et, un protocole peut

durer longtemps (dans Cognac-G, ils vont de quelques secondes à quelques heures), les cap-

teurs peuvent avoir une fréquence d’échantillonnage élevée pour capturer un phénomène

de haute fréquence (jusqu’à 1000 Hz dans les études ophtalmologiques) ou il peut y avoir

de nombreux capteurs collectant simultanément plusieurs caractéristiques physiologiques.

22 CONTENTS

Cependant, dans la pratique clinique courante, les cliniciens s’attendent à ce que les informa-

tions extraites des données brutes soient rapidement disponibles, de sorte qu’elles puissent

être visualisées et interprétées dans les délais de consultation. De plus, pour des raisons

pratiques et juridiques, les ressources de calcul nécessaires à l’exécution des algorithmes

sont souvent limitées aux ordinateurs portables ou aux périphériques intégrés des cliniciens.

En conséquence, pour traiter les données brutes dans un délai raisonnable, nous devons

envisager des méthodes de segmentation sous-optimales, aux temps de calcul restreints.

En contrepartie, ces algorithmes sont moins robustes que les méthodes optimales. Par

conséquent, dans cette thèse, nous nous concentrons sur le développement d’un algorithme

sous-optimal, capable de gérer les contraintes en temps de calcul tout en conservant la

majeure partie de la robustesse des procédures optimales.

Versatilité. Au sein de l’écosystème Cognac-G, le type de signaux collectés varie con-

sidérablement. Cela est dû au fait qu’un grand nombre de sujets ont été surveillés et

que plusieurs paramètres de surveillance sont utilisés, ce qui donne un large éventail de

valeurs de paramètres cliniques (âge, poids ou pathologie, par exemple) et de capteurs.

Selon le contexte, les signaux peuvent avoir des caractéristiques (dimensions, des taux

d’échantillonnage, des unités, des distributions, etc.) très di�érentes. En raison de cette vari-

abilité, nous ne pouvons considérer qu’une classe générale de méthodes de segmentation

qui en font que peu, voire aucune hypothèse, sur la forme du modèle de signal sous-jacent

ou sur l’emplacement des points de rupture. De plus, ces algorithmes doivent pouvoir

détecter un nombre de changements connu ou inconnu, car les deux situations peuvent se

produire dans notre contexte.

Calibration automatique. Habituellement, les collaborations au sein de Cognac-G com-

mencent par une longue période de discussion entre chercheurs en mathématiques ap-

pliquées et chercheurs en médecine. Au cours de cette période, un modèle statistique

approprié est choisi et calibré en fonction des données disponibles. Ce processus peut

être di�cile et prendre beaucoup de temps, en fonction de la formation statistique des

cliniciens et de la formation médicale des statisticiens. En e�et, même si les cliniciens

comprennent parfaitement le phénomène physiologique surveillé, la traduction de leur

expertise médicale en termes statistiques est un exercice complexe. L’un des objectifs de

ce travail est de progresser vers une automatisation de cette opération. Plus précisément,

nous visons à concevoir des mécanismes pour calibrer automatiquement les méthodes de

segmentation, éliminant ainsi la nécessité d’un réglage manuel fastidieux des paramètres

(souvent e�ectué par tâtonnement).

3.2 Apprendre d’experts

En conséquence des principes généraux décrits ci-dessus, nous proposons dans cette thèse

d’appliquer des procédures d’apprentissage supervisé à la détection de ruptures. De manière

générale, de telles procédures peuvent déduire des règles de décision complexes uniquement

à l’aide d’exemples pertinents. Dans notre contexte, les cliniciens sont en mesure de fournir

de tels exemples: ils consistent en des signaux, segmentés manuellement par les cliniciens.

Notre objectif est d’utiliser ces exemples pour concevoir une méthode de détection capable

de reproduire la stratégie de segmentation des cliniciens. Ici, deux types d’annotations

(ou étiquettes, dans la terminologie de l’apprentissage supervisé) sont considérés: complet

4. CADRE MATHÉMATIQUE POUR LA DÉTECTION DE RUPTURE 23

et partiel. Pour un signal complètement annoté, les temps de toutes les ruptures sont

fournis par un expert. Pour un signal partiellement annoté, l’expert marque uniquement

certaines parties du signal comme homogènes, c’est-à-dire qu’elles ne contiennent aucun

point de changement. Dans cette situation, les emplacements exacts des modi�cations

ne sont pas connus. Les deux types d’annotations sont illustrés sur la �gure 0.7. Deux

scénarios d’utilisation sont couramment rencontrés dans le contexte de Cognac-G. Dans le

premier scénario, un clinicien fournit un ou plusieurs signaux annotés (complètement ou

partiellement). L’objectif est de segmenter tout nouveau signal issue du même contexte

clinique. À cette �n, un algorithme de détection est calibré, de manière supervisée, à l’aide

de l’ensemble (d’apprentissage) de signaux d’annotation, puis appliqué à de nouveaux

signaux. Dans le second scénario, un clinicien fournit un ou plusieurs signaux partiellement

annotés. L’objectif est de compléter les segmentations partielles de ces signaux, c’est-à-dire

de récupérer tous les points de rupture. Ici, un algorithme de détection est calibré, de

manière supervisée, sur chaque signal (partiellement annoté), puis appliqué sur le même

signal.

0 5 10 15 20 25
Time (s)

0.2

0.0

0.2

0.4

(a) Annotation complète

0 5 10 15 20 25
Time (s)

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

(b) Annotation partielle

Figure 0.7: Deux types d’annotation (pour un signal utilisé pour l’analyse de la marche).

(Gauche) Les couleurs alternées marquent les régimes consécutifs. (Droite) Les zones bleues

désignent des parties de signaux considérées comme homogènes (ne contenant aucun

changement).

4 Cadre mathématique pour la détection de rupture

Dans cette thèse, nous nous concentrons sur la tâche de détection de rupture. Nous

proposons une formulation générale dans laquelle nous considérons un processus aléatoire

multivarié non stationnaire y = {y1, . . . ,yT} à valeurs dans Rd
(d ≥ 1). Le signal y

est supposé stationnaire par morceaux, ce qui signi�e que certaines caractéristiques du

processus changent abruptement à des instants inconnus t?1 < t?2 < · · · < t?K . La détection

de rupture consiste à estimer les indices t?k . Selon le contexte, le nombre K de ruptures

peut être connu ou inconnu, auquel cas il doit également être estimé. Il est important de

noter que, dans notre contexte, les deux situations sont d’importance égale. En e�et, le

nombre de changements est souvent déterminé par le protocole de récolte des données.

De plus, comme dans les applications qui ont motivé cette thèse, l’analyse du signal est

toujours e�ectuée a posteriori, nous nous concentrons donc sur la détection dite hors ligne

(également rétrospective ou a posteriori). Inversement, le cadre dit en ligne, dans lequel

les échantillons du signal sont révélés progressivement, a été introduit pour l’analyse de

signal en temps réel et dépasse notre cadre.

La littérature sur la détection de ruptures est riche et les applications, nombreuses. Les

premiers travaux sur ce sujet remontent aux années 50 [130, 131]: le but était de localiser un

24 CONTENTS

saut dans la moyenne des variables gaussiennes indépendantes et identiquement distribuées

(i.i.d.). La principale application de ces méthodes était le contrôle de qualité industrielle.

Depuis lors, ce problème a été activement étudié, donnant lieu à une littérature riche et

diversi�ée. Nous donnons des références à des recueils de synthèse complets consacrés

exclusivement à la détection de ruptures et couvrant une grande partie de ce domaine de

recherche, d’un point de vue paramétrique et non paramétrique [29, 36, 45, 52, 102]. (Plus

de références sont données dans le chapitre 2.)

4.1 Méthodes de détection génériques

Une partie de nos contributions couvre le choix et la calibration des méthodes de détection

de ruptures. L’objectif est de rendre cette étape cruciale automatique pour un praticien qui

n’est pas un expert en modélisation de séries temporelles non stationnaires. À cette �n,

nous formulons les hypothèses méthodologiques nécessaires sur la forme des méthodes de

détection. Ceci dé�nit un cadre qui englobe de nombreuses procédures de la littérature et

a été explicitement utilisé dans plusieurs contributions pratiques [98, 121, 139] ainsi que

théoriques [107, 110].

Notations. Dans la suite du chapitre, nous utilisons les notations suivantes. Pour un

signal donné y = {yt}T
t=1, le sous-signal {yt}b

t=a+1 (1≤ a < b ≤ T) est simplement noté

ya..b; le signal complet est donc y = y0..T . Un ensemble d’indices est désigné par une lettre

calligraphique: T = {t1, t2, . . .} ⊂ {1, . . . , T} et son cardinal est |T |. Pour un ensemble

d’indices T = {t1, . . . , tK}, les indices factices t0 := 0 et tK+1 := T seront implicitement

dé�nis.

Stratégie méthodologique. La détection de ruptures est un outil d’analyse de séries

temporelles non stationnaires, à l’aide de modèles simples sur chaque sous-segment. Le but

est de trouver des périodes d’homogénéité dans le comportement du signal, ou de manière

équivalente, pour trouver des moments de changement. Lorsqu’elle est exprimée comme

un problème de sélection de modèle, la détection de ruptures revient à choisir la meilleure

segmentation possible T selon un critère quantitatif V(T ,y) à minimiser. (La fonction

V(T ,y) est simplement notée V(T) quand il est évident d’après le contexte qu’elle fait

référence au signal y.) Le choix d’un critère V(·) dépend de connaissances préalables

de la tâche à accomplir. Dans ce travail, nous supposons que le critère V(T) pour une

segmentation particulière est la somme des coûts de tous les segments qui dé�nissent la

segmentation :

V(T ,y) :=
K

∑
k=0

c(ytk ..tk+1) (1)

où c(·) est une fonction de coût qui mesure la qualité d’ajustement sur le sous-signal

ytk ..tk+1 = {yt}tk+1
tk+1 pour modèle donné. La “meilleure segmentation” T̂ est celle qui min-

imise le critère V(T). En pratique, les méthodes de détection se répartissent en deux

catégories selon que le nombre de ruptures K est connu ou non. Si K est connu (grâce à une

connaissance a priori), l’estimation de l’indice T̂ est le minimum du problème d’optimisation

discrète.

min
|T |=K

V(T). (2)

4. CADRE MATHÉMATIQUE POUR LA DÉTECTION DE RUPTURE 25

Si K est inconnu et doit être estimé, l’estimation de la rupture T̂ est le minimum du problème

d’optimisation discrète pénalisé:

min
T

V(T) + pen(T) (3)

où pen(T) est une mesure appropriée de la complexité d’une segmentation T . Toutes les

méthodes de détection de ruptures considérées dans ce travail donnent une solution exacte

ou approximative à (2) ou à (3), avec la fonction V(T ,y) qui respecte le format (1).

Exemples. Parmi les exemples de procédures qui suivent ce format, on trouve l’estimation

par maximum de vraisemblance (EMV) et la régression par morceaux. Dans le contexte

de EMV, on suppose que les échantillons suivent une distribution P(·|θ) paramétrée par

θ. Entre deux ruptures, le paramètre θ est constant et il n’y a pas de dépendance entre les

segments. Ici, nous aimerions détecter le moment où la valeur du paramètre θ change. La

EMV est exécuté en résolvant soit les formulations (2) ou (3), en dé�nissant la fonction de

coût c(·) égale à la fonction de probabilité de journal négative minimale, ce qui signi�e

cette

c(ya..b) := min
θ

[− log P(ya..b|θ)]. (4)

En régression (paramétrique ou non paramétrique), le signal y est appelé une variable de

réponse et nous considérons un signal x = {xt}T
t=1 de variables explicatives : l’objectif est

de rechercher une fonction (le predicteur) f dans un sous-ensemble d’un espace fonctionnel

(par exemple, des fonctions linéaires, des fonctions polynomiales, etc.) telle que les résidus

carrés ‖yt − f (xt)‖2
soient aussi aussi petit que possible. En régression par morceaux, le

prédicteur peut changer d’un segment à l’autre. Pour rechercher les ruptures associées,

plusieurs régression sont e�ectuées séparément sur chaque segment. En dé�nissant la

fonction de coût c(·) comme égale à la somme des résidus au carré

c(ya..b) := min
f

[b

∑
t=a+1

‖yt − f (xt)‖2
]

, (5)

les problèmes de détection de ruptures (2) et (3) sont équivalents à la régression par

morceaux.

Limitations. Le cadre décrit, aussi général soit-il, est introduit pour traiter les problèmes

rencontrés dans Cognac-G. Certaines approches ne rentrent pas dans ce cadre. En particulier,

les approches bayésiennes ne sont pas prises en compte dans la suite de cette thèse, même

si elles fournissent des résultats de pointe dans plusieurs domaines, tels que le traitement

de la parole et du son. L’algorithme bayésien le plus connu est le modèle de Markov

caché (HMM) [138]. Ce modèle a ensuite été étendu, par exemple avec les processus de

Dirichlet [99, 123] ou les modèles produit de partition [27, 28]. Une caractéristique commune

des méthodes bayésiennes est la nécessité de spéci�er un a priori sur l’emplacement des

points de rupture. Cependant, dans le contexte de Cognac-G, ces a priori ne se sont pas

justi�és expérimentalement. Le lecteur intéressé pourra trouver des revues d’approches

bayésiennes dans [36] et [45].

26 CONTENTS

4.2 Conception de méthodes de détection

Les hypothèses précédentes ont une conséquence importante sur la structure des méthodes.

Les méthodes de détection de point de changement qui respectent le format (2) ou (3) sont

caractérisées par trois éléments.

Type de ruptures. Le type de rupture qu’une méthode est capable de détecter est carac-

térisé par sa fonction de coût c(·). Par exemple, dé�nir la fonction de coût comme dans (4)

permet à une méthode de détecter les changements de la valeur du paramètre θ de la

distribution P(·|θ). La recherche de la fonction de coût pertinente pour une tâche donnée

est une partie essentielle de l’analyse qu’un expert en détection de ruptures doit e�ectuer.

Nombre de ruptures. Le nombre de ruptures à détecter peut être connu (grâce à des

informations a priori) ou inconnu. Lorsqu’il est inconnu, il doit être estimé avec les em-

placements des ruptures. À cette �n, un pénalité de complexité pen(·) (3) est introduit pour

équilibrer le terme d’ajustement V(T ,y). La complexité peut par exemple être proportion-

nelle au nombre de ruptures. Dans ce cas, la pénalité est appelée «linéaire». Le choix de la

pénalité de complexité est lié à l’amplitude des changements à détecter: avec une pénalité

trop «petite» (comparée à la qualité d’ajustement) dans (3), beaucoup de changements sont

détectés, même ceux qui résultent d’un bruit. À l’inverse, trop de pénalisation ne permet la

détection que les changements les plus signi�catifs, voire aucun.

Temps de calcul La dernière brique d’une procédure de détection est la méthode de

recherche : c’est la procédure de résolution des problèmes d’optimisation (2) et (3). Dans (2),

la minimisation est e�ectuée sur l’ensemble {T s.c. |T | = K} qui contient (T−1
K−1) éléments.

Dans (3), la minimisation est e�ectuée sur l’ensemble {T s.c. 1≤ |T | < T} qui contient

∑T−1
K=1 (

T−1
K−1) éléments. Dans les deux cas, une énumération exhaustive de toutes les seg-

mentations possibles n’est pas prohibitive en pratique. La littérature contient plusieurs

méthodes pour résoudre e�cacement ces problèmes, de manière exacte [30, 98] ou ap-

proximativement [29, 146]. Chaque méthode réalise un certain équilibre entre complexité

de calcul et précision. Dans cette thèse, nous nous concentrons sur la fourniture d’un

algorithme rapide sous-optimal capable de conserver la majeure partie de la robustesse des

procédures optimales.

5 Contributions

Nous résumons les contributions de cette thèse comme suit.

• Détection gloutonne de ruptures. Nous développons une nouvelle méthode de

recherche gloutonne pour la détection de rupture qui représente un compromis

entre précision et rapidité d’exécution. Il s’agit d’une approximation séquentielle de

méthodes de détection exactes (pour un nombre de modi�cations connu et inconnu)

pouvant être combinées à des fonctions de coût basées sur un noyau. Nous prouvons

sa consistance asymptotique et montrons qu’il est plus précis que les méthodes

approximatives standard et plus rapide que les méthodes exactes, sur des signaux

simulés et réels.

6. VUE D’ENSEMBLE DU MANUSCRIT 27

• Détection supervisée de ruptures. L’objectif est de fournir des procédures au-

tomatiques pour choisir et calibrer des méthodes de détection pour une tâche donnée.

À cette �n, nous développons des méthodes supervisées qui reposent sur un ensemble

de signaux annotés d’apprentissage, ce qui signi�e que les emplacements des ruptures

ont été localisés manuellement au préalable.

- Calibrer le paramètre de lissage par apprentissage supervisé. Cette con-

tribution couvre l’un des éléments déterminants des méthodes de détection: la

pénalité de complexité. Un algorithme est développé pour calibrer la valeur

du paramètre de lissage pour les fonctions de pénalité linéaires, de manière

supervisée. Nous utilisons une formulation convexe qui reste valable pour

toutes les fonctions de coût, par opposition aux autres méthodes supervisées de

la littérature.

- Apprentissage de métrique. Cette contribution traite d’un autre composant

des méthodes de détection: la fonction de coût. Une fonction de coût, paramétrée

par une pseudo-métrique de type Mahalanobis, est apprise à partir d’un ensem-

ble de signaux annotés. La procédure d’apprentissage de métrique choisie peut

également être combinée à un noyau, a�n de fournir un traitement non linéaire

des échantillons de signaux. Une fois que la fonction de coût est apprise, elle

peut être utilisée avec n’importe laquelle des méthodes de recherche et des

pénalités de complexité de la littérature.

• Revue de littérature via une implémentation Python. Nous développons une

bibliothèque Python, appelée ruptures , dédiée à la détection de ruptures. Elle

s’insère dans au cadre introduit précédemment et s’appuie fortement sur la revue

de littérature de cette thèse. Les fonctions de coût, les méthodes de recherche et les

contraintes de complexité sont codées séparément, de sorte que tous ces éléments

peuvent être combinés et utilisés pour créer une méthode de détection. Grâce à son

interface modulaire et cohérente, de nombreux algorithmes peuvent être exécutés

simplement en modi�ant quelques paramètres.

Une documentation complète est disponible sur ctruong.perso.math.cnrs.fr/ruptures.

Le code peut être trouvé en ligne à l’adresse reine.cmla.ens-cachan.fr
1
.

6 Vue d’ensemble du manuscrit

Le reste du manuscrit est structuré en quatre parties.

• Part I : Literature review and evaluation framework

– Chap. 2 : A selective review of change point detection methods. Il s’agit d’une

revue de littérature dans laquelle sont décrits des algorithmes de pointe, d’un

point de vue algorithmique et théorique. Les lecteurs peuvent trouver des

tableaux de synthèse: tableau 2.1 on page 63 et tableau 2.2 on page 76

– Chap. 3 : Evaluation framework: metrics and data sets. Ce chapitre présente

le cadre d’évaluation dans lequel les performances des méthodes de détection

1https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/
latest/archive.zip

http://ctruong.perso.math.cnrs.fr/ruptures
https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip
https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip
https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip

28 CONTENTS

sont évaluées. Les ensembles de données et les mesures décrits dans ce chapitre

sont utilisés tout au long de ce manuscrit.

De nombreuses notations et paramètres expérimentaux sont dé�nis dans ces deux

chapitres et utilisés dans le reste du manuscrit.

• Part II : Greedy change point detection.

– Chap. 4 : Greedy change point detection. Une méthode gloutonne de détection

de ruptures est décrite. Son objectif est de trouver un compromis entre précision

et rapidité d’exécution pour la segmentation des signaux de marche.

– Chap. 5 : Greedy kernel change point detection. Une extension, basée sur des

noyaux, de l’algorithme précédent est présentée. L’objectif est de pouvoir

détecter des ruptures plus générales.

– Chap. 6 : Numerical experiments and evaluation. Ce chapitre contient les com-

paraisons expérimentales de méthodes de segmentation gloutonnes, avec des

algorithmes standards.

• Part III : Supervised change point detection.

– Chap. 7 : Calibrating the smoothing parameter through supervised learning. Un

algorithme supervisé d’apprentissage de pénalité est présenté. Ici, le nombre de

ruptures est inconnu.

– Chap. 8 : Metric learning for change point detection. Une procédure supervisée

pour calibrer la fonction de coût en utilisant des signaux annotés est présentée.

• Part IV : Statistical software.

– Chap. 9 : ruptures : change point detection in Python. La librairie ruptures est

décrite. La documentation détaillée est disponible en ligne, mais est également

reproduite dans A : Documentation of ruptures . Ce chapitre peut être lu

indépendamment.

• Appendices.

– A : Documentation of ruptures . Une version est disponible en ligne
2
.

– B : An automated recording method in clinical consultation to rate the limp in

lower limb osteoarthritis. Un travail publié, écrit dans le cadre de la collaboration

avec Cognac-G, est inclus:

∗ R. Barrois-Müller, T. Gregory, L. Oudre, T. Moreau, C. Truong, A. Aram

Pulini, A. Vienne, C. Labourdette, N. Vayatis, S. Bu�at, A. Yelnik, C. de Waele,

S. Laporte, P.-P. Vidal, and D. Ricard. An automated recording method in

clinical consultation to rate the limp in lower limb osteoarthritis. PLoS One,

11(10):e0164975, 2016.

– C : Template-based step detection from accelerometer signals. Un rapport

technique est inclus. Il décrit un algorithme de détection de pas pour l’analyse

de la marche.

2
Disponible à ctruong.perso.math.cnrs.fr/ruptures

http://ctruong.perso.math.cnrs.fr/ruptures

1
Introduction

Contents

1 Context of the thesis . 31

2 Motivations . 32

2.1 From raw data to knowledge . 32

2.2 Motivating examples . 33

3 Change point detection for physiological data 37

3.1 General principles . 37

3.2 Learning from experts . 38

4 Change point detection framework . 39

4.1 Generic detection methods . 40

4.2 Designing detection methods . 41

5 Contributions . 42

6 Overview of the manuscript . 43

7 Publications . 44

1 Context of the thesis

General context. In the last decades, quanti�ed-self applications have become more and

more widespread in the population. More and more commercial solutions are available to

compute health-related quantities such as the number of steps, the travelled distance, weight

loss, energy spent, etc. This remarkable change the public’s health habits is allowed by the

stunning progression of sensors embedded in mobile devices. In the medical context, the

same trend has been observed, thanks to the rise of cheap, wearable and easy to manipulate

sensors. As a result, more and more physiological signals, such as electrocardiogram (ECG),

electroencephalogram (EEG), body and limb accelerations, are being collected. There are

many bene�ts to this trend: facilitating early diagnosis, promoting telemedicine, making

healthcare more a�ordable, etc. Before reaping the fruits of this technological step forward,

automatic and objective methods to extract information from this substantial volume of

raw data must be designed. The transition from raw signals to actionable data is crucial in

the success of next-generation healthcare and has become a real subject of interest.

32 CHAPTER 1. INTRODUCTION

Collaboration with Cognac-G. During my PhD, I have collaborated with Cognac-G, a

research team regrouping machine learning researchers and medical researchers, gathered

around the quanti�cation of human and animal behaviour. To that end, several experimental

protocols have been developed for a wide range of clinical problems from mice breathing

or human locomotion to young infant eye movements. Each protocol is monitored with

one or several sensors to provide an objective quanti�cation of the phenomenon of interest.

Resulting univariate or multivariate time series, known as physiological signals, are then

studied. The �rst challenge consists in extracting the relevant information from these

signals, in order to interpret them and to help understanding the physiological, biological

or bio-mechanical mechanisms that produced them. The second challenge is to automatize

the quanti�cation process in order to provide tools that can be used by doctors for the

longitudinal follow-up and the inter-individual comparison of their patients.

2 Motivations

2.1 From raw data to knowledge

In the vast majority of situations, the clinical context imposes practical constraints on the

data acquisition process. For instance, clinicians might not have the possibility to repeatedly

turn on and o� the sensors at the beginning and end of the phenomena of interest. Also,

subjects that are being monitored might be asked to perform successively di�erent physical

activities. In those situations, collected signals are made of consecutive phases, and precise

information about the start and end of each phase is not always available. One crucial step

to pre-process the large amount of such time series is called signal segmentation or change

point detection. (Both terms are equivalently used in the remainder of the manuscript.) It

consists in �nding the temporal boundaries of the successive regimes of the signal, so that

they can either be removed or further studied. This step is critical in the contextualization

of long time series.

This setting is often encountered in daily clinical practice, when subjects can be monitored

while they undergo a medical protocol. Typically, a clinician ask a patient to perform

several consecutive physical exercises while some sensors record some physiological and

bio-mechanical variables (e.g. heart rate, oxygen uptake, body acceleration). In order to

quantify the evolution of the patient during the protocol, the monitoring signal is segmented,

meaning that it is split in sub-signals, each corresponding to a coherent phase (for instance,

a single exercise). Certain features of interest are then computed for each phase. This

scheme is used for the study in human locomotion (more precisely, gait analysis) which is

presented later in this manuscript and is illustrated on Figure 1.1.

From a practical standpoint, signal segmentation can be carried out manually by clinicians.

For instance, they can record start and end timestamps of phenomena of interest, or mark a

posteriori the time of changes by analysing the raw time series. However, both approaches

can be cumbersome, if the protocol is complex and requires the full attention of the clinician,

or if the changes are not easily visible from the raw signals. Indeed, even though trained

specialists are able to assess a patient’s state by eye, applying this expertise on time series

is challenging. Also, in clinical trials, it can be critical to reduce the number of manual

operations, which are open to interpretation and therefore subjective.

This motivates the study of automatic signal segmentation methods. To cope with the

diversity of physiological time series, robust and versatile algorithms are needed, along with

2. MOTIVATIONS 33

systematic procedures to calibrate them. The objective is to capture the medical expertise

of clinicians, with as little human intervention as possible. In addition, algorithms must

bring little to no computational overhead if they are to be used in daily clinical routine.

Raw signal

Monitoring

Subject

Change point detection

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5

Feature extraction on homogeneous regimes

Figure 1.1: Flowchart of a study scheme, for gait analysis.

2.2 Motivating examples

We now describe three motivating examples, all originating from a cooperation between

machine learning researchers and medical researchers, in Cognac-G. Special emphasis is

put on the �rst example (analysis of human gait) because it was, at the beginning, the

project at the most advanced stage, in terms of collected data, annotations and publications.

It is present throughout this manuscript and is the touchstone of segmentation accuracy,

for the contributions of this thesis.

2.2.1 Analysis of human gait

Context. The human motion results from a complex process, which requires the coordi-

nation of many muscles. Certain pathologies (such as Parkinson’s disease, arthritis, stroke,

obesity, diabetes,. . .) may alter the locomotion, threatening the autonomy of patients and

increasing the risk of fall. The objective quanti�cation and assessment of locomotion is

therefore a crucial problem, that has been addressed in the literature by measuring the

movement with several types of sensors such as inertial sensors, instrumented mat, force

34 CHAPTER 1. INTRODUCTION

platforms, camera-optical tracking system or force-sensitive resistors insoles. The signals

obtained from these sensors are processed (automatically or manually) so as to extract

some features that characterize the locomotion (speed, variability, smoothness,. . .).

Figure 1.2: Scheme of the protocol used for the analysis of the human gait. Red dots indicate

sensor positions.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.50

0.25

0.00

0.25

0.50

0.75

(a) Healthy control subject.

0 10 20 30 40 50 60 70 80
Time (s)

0.2

0.1

0.0

0.1

0.2

(b) Osteoarthritis patient.

Figure 1.3: Vertical acceleration (m/s
2
) of the lower back sensor for two di�erent subjects.

Alternating colours mark the consecutive phases: “Stand”, “Walk”, “Turnaround”, “Walk”

and “Stop”.

Protocol. In this context, a clinical protocol has been conceived and implemented within

Cognac-G for the study of human locomotion using Inertial Measurement Units (IMUs)

which are composed of 3D accelerometers, 3D gyroscopes and 3D magnetometers. The

main advantages of these sensors is that they are relatively low-cost, they do not require

a dedicated room for the experiments, and their small size make them easy to handle

in day-to-day clinical situations. The data used for the conception and testing of the

method presented in this thesis has been provided by the following medical departments:

2. MOTIVATIONS 35

Service de chirurgie orthopédique et de traumatologie de l’Hôpital Européen Georges

Pompidou, Assistance Publique des Hôpitaux de Paris, Service de médecine physique et

de réadaptation de l’Hôpital Fernand Widal, Assistance Publique des Hôpitaux de Paris,

Service de neurologie de l’Hôpital d’Instruction des Armées du Val de Grâce, Service de

Santé des Armées. The study was validated by a local ethic committee and all subjects gave

their written consent to participate. All signals have been acquired at 100 Hz with wireless

XSens MTw
TM

sensors located at lower back and �xed using a Velcro band designed by

XSens
TM

. All subjects were asked to stand still for 6 seconds, walk 10 meters at preferred

walking speed on a level surface, turn around, walk back, stand still 2 seconds (illustrated

on Figure 1.2). Two examples of recorded signals are displayed on Figure 1.3. The two �at

parts at the extremities of the signal correspond to periods when the subject is standing still.

The repeated patterns represent the footsteps. Depending on the pathology (or absence

of), the length of the signal varies from 20 seconds to 90 seconds. Also, footsteps and the

turnaround are less visible on the signal for the osteoarthritis patient.

Application of signal segmentation. Spectral properties of the collected signals can

provide to the clinicians features adapted to gait analysis [26]. Indeed, as displayed on

Figure 1.4, walking phases show a strong harmonic structure. However, when comparing

the power spectral density (psd) of each “Walk” regime, di�erences with the psd of the

whole signal are observed. This is due to the fact that the harmonic structure of the

complete recording is corrupted by non-periodic phases, namely “Stand”, “Turnaround”

and “Stop”. In addition, the two “Walk” regimes (forward and back) do not have the same

frequency distribution. More precisely, the frequency peaks for the �rst and second “Walk”

are respectively located around 2.6 Hz and 1.4 Hz. This frequency shift, which can serve

as a measure of the subject’s fatigue, can only be detected thanks to the segmentation of

the signal.

2.2.2 Other examples of physiological signals

Two other examples of collaborations within Cognac-G are presented. In both situations,

signal segmentation is a crucial pre-processing step.

Analysis of mouse respiratory control. Acetylcholine (ACh) is a muscle-activating

neurotransmitter (an organic chemical released by the nervous system to send signals) that

participates in a large number of body functions, among which respiration. Cholinergic

substances (meaning that they alter the release or activation capability of ACh) can be

found in numerous drugs, toxins and chemical nerve agents, and cause respiratory failures.

The objective quanti�cation and assessment of breathing behaviours during cholinergic

crisis can lead to a better understanding of the in�uence of ACh on respiratory control.

In the literature, this issue has been addressed by monitoring mice after they have been

exposed to speci�c gas mixtures.

In this context, a protocol has been conceived and implemented by researchers from

Cognac-G, in accord with European Union and French Government animal protection laws.

Several physiological variables related to breathing (such as the duration of inspiration

and expiration, breathing frequency,. . .) are recorded in mice with particular de�cits in

cholinergic functions. Mice were placed in a plethysmograph chamber (a sealed chamber

used to measure volume changes within the lungs) for 15-20 minutes, taken out to be

36 CHAPTER 1. INTRODUCTION

0 5 10 15 20 25 30 35
Time (s)

0.1

0.0

0.1

0.2

0.3

(a) Vertical acceleration of the lower back sensor.

0 10 20 30 40 50
frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PS
D

[V
**

2/
Hz

]

1e 3
Whole signal
Walk 1
Walk 2

(b) Power spectral density.

Figure 1.4: Signal example. (Top) Vertical acceleration (m/s
2
) of the lower back sensor for

a subject. Alternating colours mark the consecutive phases: “Stand”, “Walk”, “Turnaround”,

“Walk” and “Stop”. (Bottom) Power spectral density for the whole signal, the �rst “Walk”

phase and the second “Walk” phase.

exposed to gas and put back in the chamber. An illustrative example is displayed on

Figure 1.5. The �rst period of the signal (the �rst 20 minutes) provides baseline values for

the recorded variables. In the second period of the signal, di�erent regimes can be observed,

corresponding to di�erent states of the mouse: calm in the beginning, then stressed with

pronounced respiratory di�culties.

0 10 20 30 40 50
Time (min)

0

1

2

3

Figure 1.5: Evolution of the duration (in seconds) of expiration of a mouse (sampling

frequency: 5 Hz). After 20 minutes, the mouse is exposed to a speci�c gas mixture. The

gap in the signal corresponds to the manipulation of mouse.

3. CHANGE POINT DETECTION FOR PHYSIOLOGICAL DATA 37

Analysis of consciousness during anaesthesia. General anaesthesia consists in a

medically induced coma, and is mandatory for certain surgeries. To reduce the risks associ-

ated with such a procedure, it is common practice to monitor the depth of consciousness of

patients, with electroencephalogram (EEG) signals. The patient’s state (awake, sedated,. . .)

is then inferred using a suitable algorithm. The objective is to prevent any adverse event

during and after the surgery and to reduce drug consumption. However, the analysis of

recorded signals su�ers several limitations, among which the sensitivity of the EEG to

external electronic devices.

In this context, Cognac-G is developing a protocol for the monitoring of anaesthetized

patients. It consists in several devices (that include an EEG, an electrocardiogram, a pulse

oximeter, among other sensors) and algorithmic treatments of the collected signals. One

of the issues this protocol aims at solving is the detection of artefacts from external elec-

tromagnetic �eld in the environment. An illustrative example is displayed on Figure 1.6.

Several outliers and periods of high voltage amplitude can be seen in this recording. They

are the consequence of electrosurgical devices that are used to cut and cauterize tissue.

Removing such periods is a crucial step in order to infer the patient’s state.

0 1000 2000 3000 4000 5000
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1e4

Figure 1.6: EEG recording (in µV) of a patient during anaesthesia (sampling frequency: 100

Hz).

3 Change point detection for physiological data

Several general principles have emerged from the previously described context. Those

principles have heavily in�uenced the shape of change point detection algorithms proposed

in this manuscript. In particular, they have lead us to consider strategies based on supervised

learning.

3.1 General principles

We list the general principles that serve as guidelines for the algorithmic contributions of

this thesis.

Computational cost and robustness. Monitoring a subject undergoing a speci�c pro-

tocol can result in a substantial volume of raw data. Indeed, a protocol can last for a

signi�cant period of time (in Cognac-G, they range from seconds to hours), the sensors

38 CHAPTER 1. INTRODUCTION

can have a high sampling frequency to capture a high frequency phenomenon (up to 1000

Hz in ophthalmic studies) or there can be many sensors collecting simultaneously several

physiological characteristics. However, in routine clinical practice, clinicians expect the

information extracted from the raw data to be available quickly, so that it can be viewed

and interpreted within the consultation time. Also, for practical and legal reasons, the

computational resources to run the algorithms are often limited to the clinicians’ laptops or

embedded devices. As a consequence, in order to process the raw data in a reasonable time,

we have to consider sub-optimal segmentation methods, that impose little computational

overhead. The trade-o� is that such algorithms are less robust, comparatively to optimal

methods. Therefore, in this thesis, we focus on providing a sub-optimal algorithm, that

can accommodate time complexity constraints while retaining most of the robustness of

optimal procedures.

Versatility. Within the Cognac-G ecosystem, there is a great deal of variability in the

type of signals that are collected. This is due to the fact that a large number of subjects

have been monitored and several monitoring settings are used, resulting in a wide range of

clinical parameter values (e.g. age, weight or pathology) and sensors. Depending on the

context, signals can have very di�erent dimensions, sampling rates, units, distributions, etc.

Because of this variability, we can only consider a general class of segmentation methods

that requires little to no assumption about the form of the underlying signal model or the

location of change points. Also, those algorithms must be able to detect either a known or

unknown number of changes, as both situations can arise in our context.

Automatic calibration. Ordinarily, collaborations within Cognac-G start with a long

period of discussion between computer scientists and medical researchers. During this

period, a suitable statistical model is chosen and calibrated to the data at hand. This

process can be di�cult and time-consuming, depending on the statistical education of the

clinicians and the medical education of the statisticians. Indeed, even though clinicians

have a deep understanding of the monitored physiological phenomenon, translating their

medical expertise into statistical terms is a complex exercise. One of the objectives of this

work is to move towards an automatization of this operation. More precisely, we aim at

designing mechanisms to automatically calibrate segmentation methods, thus removing

the need for a time-consuming hand-tuning of parameters (often done by trial and error).

3.2 Learning from experts

As a result of the general principles described above, we propose in this thesis to apply

supervised learning procedures to change point detection. Generally speaking, such pro-

cedures can infer complex decision rules only using relevant examples. In our context,

clinicians are able to provide such examples: they consist in signals, manually segmented

by clinicians. Our objective is to use those examples to design a change point detection

method able to replicate the segmentation strategy of the clinicians. Here, two types of

annotations (or labels, in the supervised learning terminology) are considered: full and

partial. For a fully annotated signal, the timestamps of all changes are provided by an

expert. For a partially annotated signal, the expert only marks portions of the signal as

homogeneous, meaning that they do not contain any change point. In this situation, exact

locations of the changes are not known. The two types of annotations are illustrated on

4. CHANGE POINT DETECTION FRAMEWORK 39

Figure 1.7. Two use-case scenarios are commonly found in the context of Cognac-G. In the

�rst scenario, a clinician provides one or several (fully or partially) annotated signals. The

objective is to segment any new signal that comes from the same monitoring setting. To

that end, a detection algorithm is calibrated, in a supervised fashion, using the (training) set

of annotation signals, and then applied on new signals. In the second scenario, a clinician

provides one or several partially annotated signals, that might not come from the same

monitoring settings. The objective is to complete the partial segmentations of those signals,

i.e. recover all change points. Here, a detection algorithm is calibrated, in a supervised

fashion, on each (partially annotated) signal, and then applied on the same signal.

0 5 10 15 20 25
Time (s)

0.2

0.0

0.2

0.4

(a) Full annotation

0 5 10 15 20 25
Time (s)

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

(b) Partial annotation

Figure 1.7: Two types of signal annotation (for a signal example, used for gait analysis).

(Left) Alternating colours mark consecutive regimes. (Right) Blue areas denote portions of

signals considered as homogeneous (i.e. not containing any change point).

4 Change point detection framework

In this thesis we focus on the change point detection task. We propose a general formulation

in which we consider a multivariate non-stationary random process y = {y1, . . . ,yT} that

takes value in Rd
(d ≥ 1). The signal y is assumed to be piecewise stationary, meaning

that some characteristics of the process change abruptly at some unknown instants t?1 <
t?2 < · · · < t?K. Change point detection consists in estimating the indexes t?k . Depending

on the context, the number K of changes may be known or unknown, in which case it

has to be estimated too. It is important to note that, in our context, both situations are

equally important. Indeed, the number of changes is often determined by the monitoring

protocol. Also, in the applications that motivated this thesis in the �rst place, signal analysis

is always performed a posteriori, therefore we focus on o�ine (also retrospective or a

posteriori) change point detection. Conversely, the so-called on-line setting, in which the

signal samples are assumed to be revealed progressively, was originally introduced for

real-time signal analysis and is beyond our scope.

Change point detection literature is rich and applications are numerous. The �rst works

on this subject go back to the 50s [130, 131]: the goal was to locate a shift in the mean of

independent and identically distributed (i.i.d.) Gaussian variables. The main application of

those methods was industrial quality control. Since then, this problem has been actively

investigated, resulting in a rich and diverse literature. We give references to comprehensive

review books that are dedicated exclusively to change point detection and cover a large span

of this research area, from a parametric and non-parametric standpoints [29, 36, 45, 52, 102].

(More references can be found in the following review chapter.)

40 CHAPTER 1. INTRODUCTION

4.1 Generic detection methods

Parts of our contributions cover the choice and calibration of change point detection

methods. The objective is to make this crucial step automatic for a practitioner who is

not an expert in non-stationary time series modelling. To that end, we make necessary

methodological assumptions on the shape of change detection methods. This de�nes a

framework, which encompasses many settings from the literature and has explicitly been

used in several practical contributions [98, 121, 139] as well as theoretical [107, 110].

Notations. In the remainder of the chapter, we use the following notations. For a given

signal y = {yt}T
t=1, the (b − a)-sample long sub-signal {yt}b

t=a+1 (1 ≤ a < b ≤ T) is

simply denoted ya..b; the complete signal is therefore y = y0..T . A set of indexes is denoted

by a calligraphic letter: T = {t1, t2, . . .} ⊂ {1, . . . , T}, and its cardinal is |T |. For a set

of indexes T = {t1, . . . , tK}, the dummy indexes t0 := 0 and tK+1 := T are implicitly

available.

Methodological strategy. Change point detection is a modelling tool for analysis of non-

stationary time series using simple models on each sub-segment. The goal is to �nd periods

of homogeneity in the behaviour of the signal, or equivalently, to �nd moments of change.

When cast as a model selection problem, change point detection amounts to choosing the

best possible segmentation T according to a quantitative criterion V(T ,y) that must be

minimized. (The function V(T ,y) is simply denoted V(T) when it is obvious from the

context that it refers to the signal y.) The choice of the criterion function V(·) depends on

preliminary knowledge on the task at hand. In this work, we make the assumption that the

criterion function V(T) for a particular segmentation is a sum of costs of all the segments

that de�ne the segmentation:

V(T ,y) :=
K

∑
k=0

c(ytk ..tk+1) (1.1)

where c(·) is a cost function which measures goodness-of-�t of the sub-signal ytk ..tk+1 =

{yt}tk+1
tk+1 to a speci�c model. The “best segmentation” T̂ is the minimizer of the criterion

V(T). In practice, depending on whether the number K of change points is known

beforehand, change point detection methods fall into two categories. If K is known (based

on preliminary knowledge), the change point estimate T̂ is the minimizer of the discrete

optimization problem

min
|T |=K

V(T). (1.2)

If K is not known and has to be estimated, the change point estimation T̂ is the minimizer

of the penalized discrete optimization problem

min
T

V(T) + pen(T) (1.3)

where pen(T) is an appropriate measure of the complexity of a segmentation T . All

change point detection methods considered in this work yield an exact or an approximate

solution to either (1.2) or (1.3), with the function V(T ,y) adhering to the format (1.1).

4. CHANGE POINT DETECTION FRAMEWORK 41

Examples. Examples of procedures that follow this format include maximum likelihood

estimation (MLE) and piecewise regression. In the context of MLE, the signal samples are

assumed to follow a process distribution P(·|θ) parametrized by θ. Between two change

points, the parameter θ is constant, and there is no inter-segment dependence. Here, we

would like to detect when the value of parameter θ changes. MLE carried out by solving

either the formulations (1.2) or (1.3), upon setting the cost function c(·) to be equal to the

minimum negative log likelihood function, meaning that

c(ya..b) := min
θ

[− log P(ya..b|θ)]. (1.4)

In (parametric or non-parametric) regression analysis, the signal y is called a response

variable, and we consider a signal x = {xt}T
t=1 of explanatory variables: the objective is

to �nd a predictor function f within a subset of a functional space (for instance, linear

functions, polynomial functions, etc.) such that the squared residuals ‖yt − f (xt)‖2
are

as small as possible. In the piecewise regression setting, the predictor can change from

one segment to the next. To �nd the associated change points, several regression tasks are

separately performed on each segment. Upon setting the cost function c(·) equal to the

sum of squared residuals

c(ya..b) := min
f

[b

∑
t=a+1

‖yt − f (xt)‖2
]

, (1.5)

the change point detection problems (1.2) or (1.3) are equivalent to piecewise regression

tasks.

Limitations. The described framework, however general, is introduced to tackle issues

encountered in Cognac-G. Certain approaches do not �t in this framework. In particular,

Bayesian approaches are not considered in the remainder ofthis thesis, even though they

provide state-of-the-art results in several domains, such as speech and sound processing.

The most well-known Bayesian algorithm is the Hidden Markov Model (HMM) [138].

This model was later extended, for instance with Dirichlet processes [99, 123] or product

partition models [27, 28]. A common feature of Bayesian methods is the need to specify a

prior on the location of change points. However, in the context of Cognac-G, such priors

have not proven to be experimentally justi�ed. The interested reader can �nd reviews of

Bayesian approaches in [36] and [45].

4.2 Designing detection methods

The previous assumptions have an important consequence on the structure of methods

within the adopted framework: change point detection methods which adhere to the

format (1.2) or (1.3) are characterized by three elements.

Type of changes. The type of change a method is able to detect is encoded by its cost

function c(·). For instance, setting the cost function as in (1.4) allows a method to detect

changes in the value of the parameter θ of the process distribution P(·|θ). Finding the

relevant cost function for a given task is a critical part of the analysis a change point

detection expert has to carry out.

42 CHAPTER 1. INTRODUCTION

Number of changes. The number of changes to detect can either be known (through

a priori knowledge) or unknown. When it is unknown, it must be estimated along with

the change point locations. To that end, a complexity penalty pen(·) (1.3) is introduced to

balance out the goodness-of-�t term V(T ,y). Complexity can be for instance proportional

to the number of change points, in which case the penalty is called “linear”. The choice of

the complexity penalty is related to the amplitude of the changes to detect: with too “small”

a penalty (compared to the goodness-of-�t) in (1.3), many change points are detected, even

those that are the result of noise. Conversely, too much penalization only detects the most

signi�cant changes, or even none.

Computational complexity. The last brick of a detection procedure is the searchmethod:

it is the resolution procedure for the optimization problems (1.2) and (1.3). In (1.2), min-

imization is performed over the set {T s.t. |T | = K} which contains (T−1
K−1) elements.

In (1.3), minimization is performed over the set {T s.t. 1 ≤ |T | < T} which contains

∑T−1
K=1 (

T−1
K−1) elements. In both situations, exhaustive enumeration of all possible segmen-

tations is impractical. The literature contains several methods to e�ciently solve those

problems, in an exact fashion [30, 98] or in an approximate fashion [29, 146]. Each method

achieves a certain balance between computational complexity and accuracy. In this thesis,

we focus on providing fast sub-optimal algorithm able to retain most of the robustness of

optimal procedures.

5 Contributions

We summarize the contributions of this thesis as follows.

• Greedy change point detection. We develop a novel greedy search method for

change detection that is a trade-o� between accuracy and (execution) speed. It is a

sequential approximation of exact detection methods (for a known and unknown

number of changes) that can be combined with kernel-based cost functions. We prove

its asymptotic consistency and show it is more accurate than standard approximate

methods and faster than exact methods, on simulated and real-world signals.

• Supervised change point detection. The objective is to provide automatic proce-

dures to �nd and calibrate change point detection methods for a given task. To that

end, we develop supervised methods that rely on a training set of annotated signals,

meaning that change point locations have been manually located beforehand.

- Calibrating the smoothing parameter through supervised learning. This

contribution covers one of the de�ning elements of detection methods: the

tuning of the complexity penalty. An algorithm is developed to calibrate the

smoothing parameter value for linear penalty functions in a supervised fashion.

We use a convex formulation which remains valid for any cost functions, as

opposed to other supervised methods from the literature.

- Metric learning. This contribution deals with another component of detection

methods: the cost function. A cost function, parametrized by a Mahalanobis-

type pseudo-metric, is learned from a set of annotated signals. The chosen

metric learning procedure can also be combined a kernel, to provide a non-linear

6. OVERVIEW OF THE MANUSCRIPT 43

treatment of the signal samples. Once the cost function is learned, it can be

used with any of the search methods and complexity penalties of the literature.

• Literature review through a Python implementation. We develop a Python

library, called ruptures , dedicated to change point detection. It is implemented

according to the previously introduced framework, and relies heavily on the literature

review of this thesis. Cost functions, search methods and complexity constraints

are implemented separately, so that all those elements can be combined and used

to create a detection method. Thanks to its modular and consistent interface, many

algorithms can be run by simply changing a few parameters.

A complete documentation is available at ctruong.perso.math.cnrs.fr/ruptures. The

code can be found online at reine.cmla.ens-cachan.fr
1
.

6 Overview of the manuscript

The remainder of the manuscript is structured in four parts.

• Part I : Literature review and evaluation framework

– Chap. 2 : A selective review of change point detection methods. This is a litera-

ture review in which state-of-the-art algorithms are described, from a compu-

tational and a theoretical point of view. Readers can �nd synthetic summary

tables: Table 2.1 on page 63 and Table 2.2 on page 76

– Chap. 3 : Evaluation framework: metrics and data sets. This chapter presents

the evaluation framework in which the performances of detection methods

are assessed. The data sets and metrics described in this chapter are used

throughout this manuscript.

Many notations and experimental settings are de�ned in these two chapters and used

in the remainder of the manuscript.

• Part II : Greedy change point detection.

– Chap. 4 : Greedy change point detection. A greedy change point detection

method is described. It aims at providing a trade-o� between accuracy and

(execution) speed for the segmentation of gait signals.

– Chap. 5 : Greedy kernel change point detection. A kernel-based extension of

the previous algorithm is presented. The objective is to be able to detect more

general change points.

– Chap. 6 : Numerical experiments and evaluation. This chapter contains the

experimental comparisons of greedy segmentation methods, with standard

algorithms.

• Part III : Supervised change point detection.

1https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/
latest/archive.zip

http://ctruong.perso.math.cnrs.fr/ruptures
https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip
https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip
https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip

44 CHAPTER 1. INTRODUCTION

– Chap. 7 : Calibrating the smoothing parameter through supervised learning. A

supervised penalty learning algorithm is presented. Here the number of change

points is unknown.

– Chap. 8 : Metric learning for change point detection. A supervised procedure to

calibrate the cost function using annotated signals is presented.

• Part IV : Statistical software.

– Chap. 9 : ruptures : change point detection in Python. The library ruptures is

described. The detailed documentation is available online, but is also reproduced

in A : Documentation of ruptures . This chapter can be read independently.

• Appendices.

– A : Documentation of ruptures . A version is available online
2
.

– B : An automated recording method in clinical consultation to rate the limp in

lower limb osteoarthritis. A published work, written as part of the collaboration

with Cognac-G, is included:

∗ R. Barrois-Müller, T. Gregory, L. Oudre, T. Moreau, C. Truong, A. Aram

Pulini, A. Vienne, C. Labourdette, N. Vayatis, S. Bu�at, A. Yelnik, C. de Waele,

S. Laporte, P.-P. Vidal, and D. Ricard. An automated recording method in

clinical consultation to rate the limp in lower limb osteoarthritis. PLoS One,

11(10):e0164975, 2016.

– C : Template-based step detection from accelerometer signals. A technical

report is included. It describes a step detection algorithm for gait analysis.

7 Publications

• C. Truong, L. Oudre, and N. Vayatis. Segmentation de signaux physiologiques

par optimisation globale. In Proceedings of the Groupe de Recherche et d’Etudes en

Traitement du Signal et des Images (GRETSI), Lyon, France, 2015

• L. Oudre, T. Moreau, and C. Truong. Détection de pas à partir de données d’accélérométrie.

In Proceedings of the Groupe de Recherche et d’Etudes en Traitement du Signal et des

Images (GRETSI), Lyon, France, 2015

• R. Barrois-Müller, L. Oudre, T. Moreau, C. Truong, N. Vayatis, S. Bu�at, A. Yelnik,

C. de Waele, T. Gregory, S. Laporte, P. P. Vidal, and D. Ricard. Quantify osteoarthritis

gait at the doctor’s o�ce: a simple pelvis accelerometer based method indepen-

dent from footwear and aging. Computer Methods in Biomechanics and Biomedical

Engineering, 18 Suppl 1:1880–1881, 2015

• L. Oudre, R. Barrois-Müller, T. Moreau, C. Truong, R. Dadashi, T. Grégory, D. Ricard,

N. Vayatis, C. De Waele, A. Yelnik, and P.-P. Vidal. Détection automatique des pas

à partir de capteurs inertiels pour la quanti�cation de la marche en consultation.

Neurophysiologie Clinique/Clinical Neurophysiology, 45(4-5):394, 2015

2
Available at ctruong.perso.math.cnrs.fr/ruptures

http://ctruong.perso.math.cnrs.fr/ruptures

7. PUBLICATIONS 45

• R. Barrois-Müller, T. Gregory, L. Oudre, T. Moreau, C. Truong, A. Aram Pulini, A. Vi-

enne, C. Labourdette, N. Vayatis, S. Bu�at, A. Yelnik, C. de Waele, S. Laporte, P.-P.

Vidal, and D. Ricard. An automated recording method in clinical consultation to rate

the limp in lower limb osteoarthritis. PLoS One, 11(10):e0164975, 2016

• J. Audi�ren, R. Barrois-Müller, C. Provost, É. Chiarovano, L. Oudre, T. Moreau,

C. Truong, A. Yelnik, N. Vayatis, P.-P. Vidal, C. De Waele, S. Bu�at, and D. Ricard.

Évaluation de l’équilibre et prédiction des risques de chutes en utilisant une Wii

board balance. Neurophysiologie Clinique/Clinical Neurophysiology, 45(4-5):403, 2015

• C. Truong, L. Oudre, and N. Vayatis. Penalty learning for changepoint detection.

In Proceedings of the European Signal Processing Conference (EUSIPCO), Kos, Greece,

2017

• C. Truong, L. Oudre, and N. Vayatis. ruptures, change point detection in Python,

2018. URL http://mloss.org/software/view/700/

• C. Truong, L. Oudre, and N. Vayatis. ruptures: change point detection in Python.

ArXiv e-prints arXiv:1801.00826, pages 1–5, 2018

• C. Truong, L. Oudre, and N. Vayatis. A review of change point detection. arXiv

preprint arXiv:1801.00718, pages 1–31, 2018

• C. Truong, L. Oudre, and N. Vayatis. Greedy kernel change point detection with an

application to physiological signals. Submitted, pages 1–5, 2018

http://mloss.org/software/view/700/

Part I

Literature review and evaluation
framework

47

2
A selective review of change point

detection methods
Contents

1 Framework of the thesis . 50

1.1 Problem statement . 50

1.2 Structure of change point detection methods 51

1.3 Asymptotic consistency . 52

1.4 Outline of this chapter . 53

2 Models and cost functions . 53

2.1 Parametric models . 53

2.2 Non-parametric models . 58

2.3 Summary table . 63

3 Search methods . 63

3.1 Optimal detection . 64

3.2 Approximate detection . 67

4 Estimating the number of changes . 72

4.1 Linear penalty . 72

4.2 Fused lasso . 74

4.3 Complex penalties . 74

5 Summary table . 75

6 Conclusion . 75

Abstract

This chapter presents a review of change point detection methods that are adapted

to the challenges of Cognac-G. A general yet structuring methodological strategy is

adopted to organize this vast body of work. More precisely, detection algorithms are

characterized by three elements: a cost function, a search method and a constraint on

the number of changes. Each of those elements is reviewed separately. Implementation

of the main algorithms, examples of applications and theoretical results are provided.

50 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

1 Framework of the thesis

The �rst works on change point detection go back to the 50s [130, 131]: the goal was to lo-

cate a shift in the mean of independent and identically distributed (i.i.d.) Gaussian variables.

The main application was industrial quality control. Since then, this problem has been

actively investigated, and is periodically the subject of in-depth monographs [29, 36, 45, 52].

Nevertheless, it is important to provide a review that is adapted to the challenges encoun-

tered in Cognac-G (see previous chapter). To that end, in this chapter, we propose a survey

of algorithms for the o�ine detection of multiple change points in multivariate time series.

Both parametric and non-parametric methods are presented. Practical implementations are

also provided, for optimal approaches as well as fast heuristics that are able to handle large

signals. Procedures to estimate the number of changes, when it is unknown, are described.

The objective of this chapter is to facilitate the search of a suitable detection method for a

given application. To that end, all reviewed detection algorithms are organized according

to a comprehensive typology.

Notations. In the remainder of the chapter, we use the following notations. For a given

signal y = {yt}T
t=1, the (b − a)-sample long sub-signal {yt}b

t=a+1 (1 ≤ a < b ≤ T) is

simply denoted ya..b; the complete signal is therefore y = y0..T . A set of indexes is denoted

by a calligraphic letter: T = {t1, t2, . . .} ⊂ {1, . . . , T}, and its cardinal is |T |. For a set

of indexes T = {t1, . . . , tK}, the dummy indexes t0 := 0 and tK+1 := T are implicitly

available.

1.1 Problem statement

In the remainder ofthis chapter, we consider a multivariate non-stationary random process

y = {y1, . . . ,yT} that takes value in Rd
(d ≥ 1). The signal y is assumed to be piecewise

stationary, meaning that some characteristics of the process change abruptly at some

unknown instants t?1 < t?2 < · · · < t?K? . Change point detection consists in estimating

the indexes t?k . Depending on the context, the number K?
of changes may or may not be

known, in which case it has to be estimated too. It is important to note that, in the context

of Cognac-G, both situations are equally important. We focus on o�ine (also retrospective

or a posteriori) change point detection, in which segmentation is performed after the signal

has been collected.

Formally, change point detection is cast as a model selection problem, which consists in

choosing the best possible segmentation T according to a quantitative criterion V(T ,y)
that must be minimized. (The function V(T ,y) is simply denoted V(T) when it is obvious

from the context that it refers to the signal y.) The choice of the criterion function V(·)
depends on preliminary knowledge on the task at hand. In this work, we make the assump-

tion that the criterion function V(T) for a particular segmentation is a sum of costs of all

the segments that de�ne the segmentation:

V(T ,y) :=
K

∑
k=0

c(ytk ..tk+1) (2.1)

where c(·) is a cost function which measures goodness-of-�t of the sub-signal ytk ..tk+1 =

{yt}tk+1
tk+1 to a speci�c model. The “best segmentation” T̂ is the minimizer of the criterion

1. FRAMEWORK OF THE THESIS 51

V(T). In practice, depending on whether the number K?
of change points is known

beforehand, change point detection methods fall into two categories.

Problem 1 The change point detection problem with a �xed number K of change

points consists in solving the following discrete optimization problem

min
|T |=K

V(T). (2.2)

Problem 2 The change point detection problem with an unknown number of change

points consists in solving the following discrete optimization problem

min
T

V(T) + pen(T) (2.3)

where pen(T) is an appropriate measure of the complexity of a segmen-

tation T .

All change point detection methods considered in this work yield an exact or an approximate

solution to either Problem 1 or Problem 2, with the function V(T ,y) adhering to the

format (2.1).

1.2 Structure of change point detection methods

Cost function Search method Constraint

Change point detection

Figure 2.1: Typology of change point detection methods described in Chapter 2. Reviewed

algorithms are de�ned by three elements: a cost function, a search method and a constraint

(on the number of change points).

To better understand the strengths and weaknesses of change point detection methods, we

propose to classify algorithms according to a comprehensive typology. Precisely, detection

methods are expressed as the combination of the following three elements.

• Cost function. The cost function c(·) is a measure of “homogeneity”. Its choice

encodes the type of changes that can be detected. Intuitively, c(ya..b) is expected to

be low if the sub-signal ya..b is “homogeneous” (meaning that it does not contain any

change point), and large if the sub-signal ya..b is “heterogeneous” (meaning that it

contains one or several change points).

• Search method. The search method is the resolution procedure for the discrete

optimization problems associated with Problem 1 and Problem 2. The literature

contains several methods to e�ciently solve those problems, in an exact fashion or

in an approximate fashion. Each method strikes a balance between computational

complexity and accuracy.

52 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

• Constraint (on the number of change points). When the number of changes is

unknown (Problem 2), a constraint is added, in the form of a complexity penalty

pen(·) (2.3), to balance out the goodness-of-�t term V(T ,y). The choice of the

complexity penalty is related to the amplitude of the changes to detect: with too

“small” a penalty (compared to the goodness-of-�t) in (2.3), many change points are

detected, even those that are the result of noise. Conversely, too much penalization

only detects the most signi�cant changes, or even none.

This typology of change point detection methods is schematically shown on Figure 2.1.

1.3 Asymptotic consistency

A natural question when designing detection algorithms is the consistency of estimated

change point indexes, as the number of samples T goes to in�nity. In the literature, the

“asymptotic setting” is intuitively described as follows: the observed signal y is regarded as

a realization of a continuous-time process on an equispaced grid of size 1/T, and “T goes

to in�nity” means that the spacing of the sampling grid converges to 0. Precisely, for all

τ ∈ [0,1], let Y(τ) denote an Rd
-valued random variable such that

yt = Y(t/T) ∀t = 1, . . . , T. (2.4)

The continuous-time process undergoes K?
changes in the probability distribution at the

time instants τ?
k ∈ (0,1). Those τ?

k are related to the change point indexes t?k through the

following relationship:

t?k = bTτ?
k c. (2.5)

Generally, for a given change point index tk, the associated quantity τk = tk/T ∈ (0,1)
is referred to as a change point fraction. In particular, the change point fractions τ?

k
(k = 1, . . . , K?

) of the time-continuous process Y are change point indexes of the discrete-

time signal y. Note that in this asymptotic setting, the lengths of each regime of y increase

linearly with T. The notion of asymptotic consistency of a change point detection method

is formally introduced as follows.

De�nition 2.1 (Asymptotic consistency). A change point detection algorithm is said to be

asymptotically consistent if the estimated segmentation T̂ = {t̂1, t̂2, . . .} satis�es the following
conditions, when T −→ +∞:

(i) P(|T̂ | = K?) −→ 1,

(ii)
1
T

∥∥∥T̂ − T ?
∥∥∥

∞

p−→ 0,

where the distance between two change point sets is de�ned by

∥∥∥T̂ − T ?
∥∥∥

∞
:= max {max

t̂∈T̂
min
t?∈T ?

|t̂− t?|, max
t?∈T ?

min
t̂∈T̂
|t̂− t?| }. (2.6)

Remark 2.1. In De�nition 2.1, the �rst condition is trivially veri�ed when the number K?
of

change points is known beforehand. As for the second condition, it implies that the estimated

change point fractions are consistent, and not the indexes themselves. In general, distances

|t̂− t?| between true change point indexes and their estimated counterparts do not converge

to 0, even for simple models [19, 35, 40, 160]. As a result, consistency results in the literature

only deal with change point fractions.

2. MODELS AND COST FUNCTIONS 53

1.4 Outline of this chapter

The organization of this review chapter re�ects the typology of change point detection

methods, which is schematically shown on Figure 2.1. Precisely, the three de�ning elements

of a detection algorithm are reviewed separately. In Section 2, cost functions from the

literature are presented, along with the associated signal model and the type of change

that can be detected. Whenever possible, theoretical results on asymptotic consistency are

also given. Section 3 lists search methods that e�ciently solve the discrete optimizations

associated with Problem 1 and Problem 2. Both exact and approximate methods are

described. Constraints on the number of change points are reviewed in Section 4. A

summary table of the literature review can be found in Section 5.

2 Models and cost functions

This section presents the �rst de�ning element of change detection methods, namely the

cost function. In most cases, cost functions are derived from a signal model. In the following,

models and their associated cost function are organized in two categories: parametric and

non-parametric, as schematically shown in Figure 2.2. For each model, the most general

formulation is �rst given, then special cases, if any, are described. A summary table of all

reviewed costs can be found at the end of this section.

Cost function Search method Constraint

Change point detection

Parametric Non-parametric

Maximum
likehood
estimation

Multiple linear
model

Mahalanobis-type
metric

Non-parametric
maximum
likehood
estimation

Rank-based
detection

Kernel-based
detection

ci.i.d., cL2
, cΣ,

cPoisson

clinear, cAR,
clinear,L1

cM cF̂ crank
ckernel, crbf,

cH,M

Figure 2.2: Typology of the cost functions described in Section 2.

2.1 Parametric models

Parametric detection methods focus on changes in a �nite-dimensional parameter vector.

Historically, they were the �rst to be introduced, and remain extensively studied in the

literature.

54 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

2.1.1 Maximum likelihood estimation

Maximum likelihood procedures are ubiquitous in the change point detection literature.

They generalize a large number of models and cost functions, such as mean-shifts and scale

shifts in normally distributed data [107, 131], changes in the rate parameter of Poisson

distributed data [99], etc. In the general setting of maximum likelihood estimation for

change detection, the observed signal y = {y1, . . . ,yT} is composed of independent random

variables, such that

yt ∼
K?

∑
k=0

f (·|θk)1(t?k < t ≤ t?k+1) (M1)

where the t?k are change point indexes, the f (·|θ) are probability density functions parametrized

by the vector-valued parameter θ, and the θk are parameter values. In other words, the

signal y is modelled by i.i.d. variables with piecewise constant distribution. The parameter

θ represents a quantity of interest whose value changes abruptly at the unknown instants

t?k , which are to be estimated. Under this setting, change point detection is equivalent

to maximum likelihood estimation if the sum of cost V(T ,y) is equal to the negative

log-likelihood. The corresponding cost function, denoted ci.i.d., is de�ned as follows.

De�nition 2.2 (ci.i.d.). For a given parametric family of distribution densities { f (·|θ)|θ ∈ Θ}
where Θ is a compact subset of Rp

(for a certain p), the cost function ci.i.d. is de�ned by

ci.i.d.(ya..b) := −sup
θ

b

∑
t=a+1

log f (yt|θ). (C1)

Model M1 and the related cost function ci.i.d. encompasses a large number of change point

methods. Note that, in this context, the family of distributions must be known before

performing the detection, usually thanks to prior knowledge on the data. Historically, the

Gaussian distribution was �rst used, to model mean-shifts [102, 109, 146] and scale shifts [7,

99]. A large part of the literature then evolved towards other parametric distributions, most

notably resorting to distributions from the general exponential family [62, 63, 120].

From a theoretical point of view, asymptotic consistency, as described in De�nition 2.1, has

been demonstrated, in the case of a single change point, �rst with Gaussian distribution

(�xed variance), then for several speci�c distributions, e.g. Gaussian with mean and scale

shifts [29, 45], discrete distributions [107], etc. The case with multiple change points has

been tackled later. For certain distributions (e.g. Gaussian), the solutions of the change point

detection problems (2.2) (known number of change points) and (2.3) (unknown number of

change points) have been proven to be asymptotically consistent [1, 68]. The general case

of multiple change points and a generic distribution family has been addressed decades

after the change detection problem has been introduced: the solution of the change point

detection problem with a known number of changes and a cost function set to ci.i.d. is

asymptotically consistent [79]. This is true if certain assumptions are satis�ed: (i) the signal

follows the model (M1) for a distribution family that veri�es some regularity assumptions

(which are no di�erent from the assumptions needed for generic maximum likelihood

estimation, without any change point) and (ii) technical assumptions on the value of the

cost function on homogeneous and heterogeneous sub-signals. As an example, distributions

from the exponential family satisfy those assumptions.

2. MODELS AND COST FUNCTIONS 55

Related cost functions. The general model (M1) has been applied with di�erent families

of distributions. We list below three notable examples and the associated cost functions:

change in mean, change in mean and scale, and change in the rate parameter of count data.

• The mean-shift model is the earliest and one of the most studied model in the change

point detection literature [47, 116, 122, 131, 146]. Here, the distribution is Gaussian,

with �xed variance. In other words, the signal y is simply a sequence of independent

normal random variables with piecewise constant mean and same variance. In this

context, the cost function ci.i.d. becomes cL2 , de�ned below. This cost function is also

referred to as the quadratic error loss and has been applied for instance on DNA

array data [63] and geology signals [43].

De�nition 2.3 (cL2). The cost function cL2 is given by

cL2(ya..b) :=
b

∑
t=a+1

‖yt − ȳa..b‖2
2 (C2)

where ȳa..b is the empirical mean of the sub-signal ya..b.

• A natural extension to the mean-shift model consists in letting the variance abruptly

change as well. In this context, the cost function ci.i.d. becomes cΣ, de�ned below.

This cost function can be used to detect changes in the �rst two moments of random

(not necessarily Gaussian) variables, even though it is the Gaussian likelihood that

is plugged in ci.i.d. [90, 107]. It has been applied for instance on stock market time

series [107], biomedical data [43], and electric power consumption monitoring [80].

De�nition 2.4 (cΣ). The cost function cΣ is given by

cΣ(ya..b) := (b− a) logdet Σ̂a..b +
b

∑
t=a+1

(yt − ȳa..b)
′Σ̂−1

a..b(yt − ȳa..b) (C3)

where ȳa..b and Σ̂a..b are respectively the empirical mean and the empirical covariance

matrix of the sub-signal ya..b.

• Change point detection has also be applied on count data modelled by a Poisson

distribution [48, 99]. More precisely, the signal y is a sequence of independent Poisson

distributed random variables with piecewise constant rate parameter. In this context,

the cost function ci.i.d. becomes cPoisson, de�ned below.

De�nition 2.5 (cPoisson). The cost function cPoisson is given by

cPoisson(ya..b) := −(b− a)ȳa..b log ȳa..b (C4)

where ȳa..b is the empirical mean of the sub-signal ya..b.

Remark 2.2. Amodel slightly more general than (M1) can be formulated by letting the signal

samples to be dependant and the distribution function f (·|θ) to change over time. This can in

particular model the presence of unwanted changes in the statistical properties of the signal

56 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

(for instance in the statistical structure of the noise [107]). The function f (·|θ) is replaced
in (M1) by a sequence of distribution functions ft(·|θ) which are not assumed to be identical

for all indexes t. Changes in the functions ft are considered nuisance parameters and only the

variations of the parameter θ must be detected. Properties on the asymptotic consistency of

change point estimates can be obtained in this context. We refer the reader to [107, 108] for

theoretical results.

2.1.2 Piecewise linear regression

Piecewise linear models are often found, most notably in the econometrics literature, to

detect so-called “structural changes” [8–10]. In this context, a linear relationship between

a response variable and covariates exists, and this relationship changes abruptly at some

unknown instants. Formally, the observed signal y follows a piecewise linear model with

change points located at the t?k :

∀ t, t?k < t ≤ t?k+1, yt = x′tuk + z′tv + εt (k = 0, . . . , K?) (M2)

where the uk ∈Rp
and v ∈Rq

are unknown regression parameters and εt is noise. Under

this setting, the observed signal y is regarded as a univariate response variable (i.e. d = 1)

and the signals x = {xt}T
t=1 and z = {zt}T

t=1 are observed covariates, respectively Rp
-

valued and Rq
-valued. In this context, change point detection can be carried out by �tting

a linear regression on each segment of the signal. To that end, the sum of costs is made

equal to the sum of squared residuals. The corresponding cost function, denoted clinear, is

de�ned as follows.

De�nition 2.6 (clinear). For a signal y (response variable) and covariates x and z, the cost
function clinear is de�ned by

clinear(ya..b) := min
u∈Rp,v∈Rq

b

∑
t=a+1

(yt − x′tu− z′tv)
2. (C5)

In the literature, Model (M2) is also known as a partial structural change model because the

linear relationship between y and x changes abruptly, while the linear relationship between

y and z remains constant. The pure structural change model is obtained by removing

the term z′tv from (M2). This formulation generalizes several well-known models such as

the autoregressive (AR) model [3, 15], multiple regressions [10, 12], etc. A more general

formulation of (M2) that can accommodate a multivariate response variable y exists [137],

but is more involved, from a notational standpoint.

From a theoretical point of view, piecewise linear models are extensively studied in the

context of change point detection by a series of important contributions [8–10, 12–18, 18,

132]. When the number of changes is known, the most general consistency result can be

found in [17]. A multivariate extension of this result has been demonstrated in [137]. As

for the more di�cult situation of an unknown number of changes, statistical tests have

been proposed for a single change [21] and multiple changes [14]. All of those results are

obtained under various sets of general assumptions on the distributions of the covariates

and the noise. The most general of those sets can be found in [133]. Roughly, in addition

to some technical assumptions, it imposes the processes x and z to be weakly stationary

within each regime, and precludes the noise process to have a unit root.

2. MODELS AND COST FUNCTIONS 57

Related cost functions. In the rich literature related to piecewise linear models, the

cost function clinear has been applied and extended in several di�erent settings. Two related

cost functions are listed below.

• The �rst one is clinear,L1 , which was introduced in order to accommodate certain noise

distributions with heavy tails [9, 13] and is de�ned as follows.

De�nition 2.7 (clinear,L1). For a signal y (response variable) and covariates x and z,
the cost function clinear,L1 is de�ned by

clinear,L1(ya..b) := min
u∈Rp,v∈Rq

b

∑
t=a+1

|yt − x′tu− z′tv|. (C6)

The di�erence between clinear,L1 and clinear lies in the norm used to measure errors:

clinear,L1 is based on a least absolute deviations criterion, while clinear is based on

a least squares criterion. As a result, clinear,L1 is often applied on data with noise

distributions with heavy tails [90, 120]. In practice, the cost function clinear,L1 is

computationally less e�cient than the cost function clinear, because the associated

minimization problem (C6) has no analytical solution. Nevertheless, the cost function

clinear,L1 is often applied on economic and �nancial data [8–10]. For instance, changes

in several economic parameters of the G-7 growth have been investigated using a

piecewise linear model and clinear,L1 [58].

• The second cost function related to clinear has been introduced to deal with piecewise

autoregressive signals. The autoregressive model is a popular representation of

random processes, where each variable depends linearly on the previous variables.

The associated cost function, denoted cAR, is de�ned as follows.

De�nition 2.8 (cAR). For a signal y and an order p ≥ 1, the cost function cAR is

de�ned by

cAR(ya..b) := min
u∈Rp

b

∑
t=a+1

∥∥yt − x′tu
∥∥2

(C7)

where xt := [yt−1,yt−2, . . . ,yt−p] is the vector of lagged samples.

The piecewise autoregressive model is a special case of the generic piecewise linear

model, where the term z′tv is removed (yielding a pure structural change model) and

the covariate signal x is equal to the signal of lagged samples. The resulting cost func-

tion cAR is able to detect shifts in the autoregressive coe�cients of a non-stationary

process [15, 41]. This model has been applied on EEG/ECG time series [137], func-

tional magnetic resonance imaging (fMRI) time series [124] and speech recognition

tasks [3].

2.1.3 Mahalanobis-type metric

The cost function cL2 (C2), adapted for mean-shift detection, can be extended through the

use of Mahalanobis-type pseudo-norm. Formally, for any symmetric positive semi-de�nite

matrix M ∈Rd×d
, the associated pseudo-norm ‖·‖M is given by:

‖yt‖2
M := y′t Myt (2.7)

58 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

for any sample yt. The resulting cost function cM is de�ned as follows.

De�nition 2.9 (cM). The cost function cM, parametrized by a symmetric positive semi-

de�nite matrix M ∈Rd×d
, is given by

cM(ya..b) :=
b

∑
t=a+1

‖yt − ȳa..b‖2
M (C8)

where ȳa..b is the empirical mean of the sub-signal ya..b.

Intuitively, measuring distances with the pseudo-norm ‖·‖M is equivalent to applying a

linear transformation on the data and using the regular (Euclidean) norm ‖·‖. Indeed,

decomposing the matrix M = U′U yields:

‖yt − ys‖2
M = ‖Uyt −Uys‖2 . (2.8)

Originally, the metric matrix M was set equal to the inverse of the covariance matrix,

yielding the Mahalanobis metric [119], i.e.

M = Σ̂−1
(2.9)

where Σ̂ is the empirical covariance matrix of the signal y. By using cM, shifts in the mean

of the transformed signal can be detected. In practice, the transformation U (or equivalently,

the matrix M) is chosen to highlight relevant changes. This cost function generalizes all

linear transformations of the data samples. In the context of change point detection, most of

the transformations are unsupervised, for instance principal component analysis or linear

discriminant analysis [76]. Supervised strategies are more rarely found, even though there

exist numerous methods to learn a task-speci�c matrix M in the context of supervised

classi�cation [55, 76, 165]. Those strategies fall under the umbrella of metric learning

algorithms. In the change point detection literature, there is only one work that proposes a

supervised procedure to calibrate a metric matrix M [105]. In this contribution, the authors

use a training set of annotated signals (meaning that an expert has provided the change

point locations) to learn M iteratively. Roughly, at each step, a new matrix M is generated

in order to improve change point detection accuracy on the training signals. However,

using the cost function cM is not adapted to certain applications, where a linear treatment

of the data is insu�cient. In that situation, a well-chosen non-linear transformation of the

data samples must be applied beforehand [105].

2.2 Non-parametric models

When the assumptions of parametric models are not adapted to the data at hand, non-

parametric change point detection methods can be more robust. Three major approaches

are presented here, each based on di�erent non-parametric statistics, such as the empirical

cumulative distribution function, rank statistics and kernel estimation.

Signal model. Assume that the observed signal y = {y1, . . . ,yT} is composed of inde-

pendent random variables, such that

yt ∼
K?

∑
k=0

Fk 1(t?k < t ≤ t?k+1) (M3)

2. MODELS AND COST FUNCTIONS 59

where the t?k are change point indexes and the Fk are cumulative distribution functions

(c.d.f.), not necessarily parametric as in (M1). Under this setting, the sub-signal yt?k ..t?k+1
,

bounded by two change points, is composed of i.i.d. variables with c.d.f. Fk. When the Fk
belong to a known parametric distribution family, change point detection is performed

with the MLE approach described in Section 2.1.1, which consists in applying the cost

function ci.i.d.. However, this approach is not possible when the distribution family is either

non-parametric or not known beforehand.

2.2.1 Non-parametric maximum likelihood

The �rst non-parametric cost function example, denoted cF̂, has been introduced for the

single change point detection problem in [59] and extended for multiple change points

in [171]. It relies on the empirical cumulative distribution function (c.d.f.), estimated on

sub-signals. Formally, the signal is assumed to be univariate (i.e. d = 1) and the empirical

c.d.f. on the sub-signal ya..b is given by

∀u ∈R, F̂a..b(u) :=
1

b− a

[b

∑
t=a+1

1(yt < u) + 0.5× 1(yt = u)
]

. (2.10)

In order to derive a log-likelihood function that does not depend on the probability dis-

tribution of the data, i.e. the f (·|θk), the authors use the following fact: for a �xed u ∈R,

the empirical c.d.f. F̂ of n i.i.d. random variables, distributed from a certain c.d.f. F is such

that nF̂(u) ∼ Binomial(n, F(u)) [171]. This observation, combined with careful summa-

tion over u, allows a distribution-free maximum likelihood estimation. The resulting cost

function cF̂ is de�ned as follows. Interestingly, this strategy was �rst introduced to design

non-parametric two-sample statistical tests, which were experimentally shown to be more

powerful than classical tests such as Kolmogorov-Smirnov and Cramér-von Mises [59, 169].

De�nition 2.10 (cF̂). The cost function cF̂ is given by

cF̂(ya..b) := −(b− a)
T

∑
u=1

F̂a..b(u) log F̂a..b(u) + (1− F̂a..b(u)) log(1− F̂a..b(u))
(u− 0.5)(T − u + 0.5)

(C9)

where the empirical c.d.f. F̂a..b is de�ned by (2.10).

From a theoretical point of view, asymptotic consistency of change point estimates is

veri�ed, when the number of change points is either known or unknown [171]. However,

solving either one of the detection problems can be computationally intensive, because

calculating the value of the cost function cF̂ on one sub-signal requires to sum T terms,

where T is the signal length. As a result, the total complexity of change point detection is

of the order of O(T3) [171]. To cope with this computational burden, several preliminary

steps are proposed. For instance, irrelevant change point indexes can be removed before

performing the detection, thanks to a screening step [171]. Also, the cost function cF̂ can

be approximated, by summing, in (C9), over a few (carefully chosen) terms, instead of T
terms originally [78]. Thanks to those implementation techniques, the cost function cF̂ has

been applied on DNA sequences [171] and heart-rate monitoring signals [78].

60 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

2.2.2 Rank-based detection

In statistical inference, a popular strategy to derive distribution-free statistics is to replaced

the data samples by their ranks within the set of pooled observations [50, 64, 114]. In the

context of change point detection, this strategy has �rst been applied to detect a single

change point [114, 117], and then has been extended by [118] to �nd multiple change points.

The associated cost function, denoted crank, is de�ned as follows. Formally, it relies on the

centered Rd
-valued “rank signal” r = {rt}T

t=1, given by

rt,j :=
T

∑
s=1

1(ys,j ≤ yt,j) −
T + 1

2
, ∀1≤ t ≤ T, ∀1≤ j ≤ d. (2.11)

In other words, rt,j is the (centered) rank of the jth coordinate of the tth
sample, i.e. yt,j,

among the {y1,j,y2,j, . . . ,yT,j}.

De�nition 2.11 (crank). The cost function crank is given by

crank(ya..b) := −(b− a) r̄′a..b Σ̂−1
r r̄a..b (C10)

where the signal r is de�ned in (2.11) and Σ̂r ∈Rd×d
is the following matrix

Σ̂r :=
1
T

T

∑
t=1

(rt + 1/2)′(rt + 1/2). (2.12)

Intuitively, crank measures changes in the joint behaviour of the marginal rank statistics of

each coordinate, which are contained in r. One of the advantages of this cost function is

that it is invariant under any monotonic transformation of the data. Several well-known

statistical hypothesis testing procedures are based on this scheme, for instance the Wilcoxon-

Mann-Whitney test [163], the Friedman test [113], the Kruskal-Wallis test [93], and several

others [50, 64]. From a computational point of view, two steps must be performed before

the change point detection: the calculation of the rank statistics, inO(dT log T) operations,

and the calculation of the matrix Σ̂r, in O(d2T + d3) operations. The resulting algorithm

has been applied on DNA sequences [118] and network tra�c data [114, 117].

2.2.3 Kernel-based detection

A kernel-based method has been proposed by [72] to perform change point detection in a

non-parametric setting. To that end, the original signal y is mapped onto a reproducing

Hilbert space (rkhs)H associated with a user-de�ned kernel function k(·, ·) : Rd×Rd→R.

The mapping function φ : Rd→H onto this rkhs is implicitly de�ned by φ(yt) = k(yt, ·) ∈
H, resulting in the following inner-product and norm:

〈φ(ys)|φ(yt)〉H = k(ys,yt) and ‖φ(yt)‖2
H = k(yt,yt) (2.13)

for any samples ys,yt ∈ Rd
. The associated cost function, denoted ckernel, is de�ned as

follows. This kernel-based mapping is central to many machine learning developments

such as support vector machine or clustering [70, 142].

2. MODELS AND COST FUNCTIONS 61

De�nition 2.12 (ckernel). For a given kernel function k(·, ·) : Rd×Rd→R, the cost function

ckernel is given by

ckernel(ya..b) :=
b

∑
t=a+1

‖φ(yt)− µ̄a..b‖2
H (C11)

where µ̄a..b ∈ H is the empirical mean of the embedded signal {φ(yt)}b
t=a+1 and ‖·‖H is

de�ned in (2.13).

Remark 2.3 (Computing the cost function). Thanks to the well-known “kernel trick”, the

explicit computation of the mapped data samples φ(yt) is not required to calculate the cost
function value [39]. Indeed, after simple algebraic manipulations, ckernel(ya..b) can be rewritten
as follows:

ckernel(ya..b) =
b

∑
t=a+1

k(yt,yt) −
1

b− a

b

∑
s,t=a+1

k(ys,yt). (2.14)

Remark 2.4 (Intuition behind the cost function). Intuitively, the cost function ckernel is able
to detect mean-shifts in the transformed signal {φ(yt)}t. Its use is motivated in the context

of Model M3 by the fact that, under certain conditions on the kernel function, changes in the

probability distribution coincide with mean-shifts in the transformed signal. This connection

has been investigated in several works on kernel methods [70, 142, 147, 150]. Formally, let

P denote a probability distribution de�ned over Rd
. Then there exists a unique element

µP ∈ H [150], called the mean embedding (of P), such that

µP = EX∼P [φ(X)]. (2.15)

In addition, the mapping P 7→ µP is injective (in which case the kernel is said to be character-

istic), meaning that

µP = µQ⇐⇒ P = Q, (2.16)

where Q denotes a probability distribution de�ned over Rd
. In order to determine if a kernel is

characteristic (and therefore, useful for change point detection), several conditions can be found

in the literature [70, 142, 150]. For instance, if a kernel k(·, ·) is translation invariant, meaning

that k(ys,yt) = ψ(ys − yt) ∀s, t, where ψ is a bounded continuous positive de�nite function

on Rd
, then it is characteristic [150]. This condition is veri�ed by the commonly used Gaussian

kernel. As a consequence, two transformed samples φ(ys) and φ(yt) are distributed around
the same mean value if they belong to the same regime, and around di�erent mean-values if

they each belong to two consecutive regimes. To put it another way, a signal that follows (M3)

is mapped by φ(·) to a random signal with piecewise constant mean.

From a theoretical point of view, asymptotic consistency of the change point estimates

has been demonstrated for both a known and unknown number of change points in the

recent work of [69]. This result, as well as an important oracle inequality on the sum of

cost V(T) [5], also holds in a non-asymptotic setting. In addition, kernel change point

detection was experimentally shown to be competitive in many di�erent settings, in an

unsupervised manner and with very few parameters to manually calibrate. For instance,

the cost function ckernel was applied on the Brain-Computer Interface (BCI) data set [72],on

a video time series segmentation task [5] and DNA sequences [39].

62 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

Related cost functions. The cost function ckernel can be combined with any kernel to

accommodate various types of data (not just Rd
-valued signals). Notable examples of kernel

functions include [147]:

• The linear kernel k(x,y) = 〈x|y〉 with x,y ∈Rd
.

• The polynomial kernel k(x,y) = (〈x|y〉+ C)deg
with x,y ∈Rd

, and C and deg are

parameters.

• The Gaussian kernel k(x,y) = exp(−γ‖x− y‖2) with x,y ∈Rd
and γ > 0 is the

so-called bandwidth parameter.

• The χ2
-kernel k(x,y) = exp(−γ ∑i[(xi − yi)

2/(xi + yi)]) with γ ∈R a parameter.

It is often used for histogram data.

Arguably, the most commonly used kernels for numerical data are the linear kernel and the

Gaussian kernel. When combined with the linear kernel, the cost function ckernel is formally

equivalent to cL2 . As for the Gaussian kernel, the associated cost function, denoted crbf, is

de�ned as follows.

De�nition 2.13 (crbf). The cost function crbf is given by

crbf(ya..b) := (b− a) − 1
b− a

b

∑
s,t=a+1

exp(−γ‖ys − yt‖2) (C12)

where γ > 0 is the so-called bandwidth parameter.

The parametric cost function cM (based on a Mahalanobis-type norm) can be extended to

the non-parametric setting through the use of a kernel. Formally, the Mahalanobis-type

norm ‖·‖H,M in the feature spaceH is de�ned by

‖φ(ys)− φ(yt)‖2
H,M = (φ(ys)− φ(yt))

′M (φ(ys)− φ(yt)) (2.17)

where M is a (possibly in�nite dimensional) symmetric positive semi-de�nite matrix de�ned

onH. The associated cost function, denoted cH,M, is de�ned below. Intuitively, using cH,M
instead of cM introduces a non-linear treatment of the data samples.

De�nition 2.14 (cH,M). For a given kernel function k(·, ·) : Rd ×Rd→R and M a sym-

metric positive semi-de�nite matrix de�ned on the associated rkhsH, the cost function cH,M
is given by

cH,M(ya..b) :=
b

∑
t=a+1

‖φ(yt)− µ̄a..b‖2
H,M (C13)

where µa..b is the empirical mean of the transformed sub-signal {φ(yt)}b
t=a+1 and ‖·‖H,M is

de�ned in (2.17).

3. SEARCH METHODS 63

2.3 Summary table

Reviewed cost functions (parametric and non-parametric) are summarized in Table 2.1. For

each cost, the name, expression and parameters of interest are given.

Name c(ya..b) Parameters

c
i.i.d.

(C1) −supθ ∑b
t=a+1 log f (yt|θ) θ: changing parameter; density func-

tion: f (·|θ)

cL2 (C2) ∑b
t=a+1 ‖yt − ȳa..b‖2

2 ȳa..b : empirical mean of ya..b

cΣ (C3) (b− a) logdet Σ̂a..b + ∑b
t=a+1(yt − ȳa..b)

′Σ̂−1
a..b(yt − ȳa..b) Σ̂a..b : empirical covariance of ya..b

cPoisson (C4) −(b− a)ȳa..b log ȳa..b ȳa..b : empirical mean of ya..b

c
linear

(C5) minu∈Rp ,v∈Rq ∑b
t=a+1(yt − x′tu− z′tv)

2 xt ∈Rp,zt ∈Rq
: covariates

c
linear,L1 (C6) minu∈Rp ,v∈Rq ∑b

t=a+1 |yt − x′tu− z′tv| xt ∈Rp,zt ∈Rq
: covariates

cAR (C7) minu∈Rp ∑b
t=a+1(yt − x′tu)

2 xt = [yt−1,yt−2, . . . ,yt−p]: lagged

samples

cM (C8) ∑b
t=a+1 ‖yt − ȳa..b‖2

M M ∈ Rd×d
: positive semi-de�nite

matrix

cF̂ (C9) −(b− a) ∑T
u=1

F̂a..b(u) log F̂a..b(u)+(1−F̂a..b(u)) log(1−F̂a..b(u))
(u−0.5)(T−u+0.5) F̂: empirical c.d.f. (2.10)

c
rank

(C10) −(b− a) r̄′a..b Σ̂−1
r r̄a..b r: rank signal (2.11); Σ̂r : empirical co-

variance of r (2.12)

c
kernel

(C11) ∑b
t=a+1 k(yt,yt) − 1

b−a ∑b
s,t=a+1 k(ys,yt) k(·, ·) : Rd × Rd 7→ R: kernel

function

c
rbf

(C12) (b− a) − 1
b−a ∑b

s,t=a+1 exp(−γ‖ys − yt‖2) γ > 0: bandwidth parameter

cH,M (C13) ∑b
t=a+1 ‖yt − ȳa..b‖2

H,M M: positive semi-de�nite matrix (in

the feature spaceH)

Table 2.1: Summary of cost reviewed functions

3 Search methods

This section presents the second de�ning element of change detection methods, namely

the search method. Reviewed search methods are organized in two general categories,

as shown on Figure 2.3: optimal methods, that yield the exact solution to the discrete

optimization of Problem 1 and Problem 2, and the approximate methods, that yield an

approximate solution. Described algorithms can be combined with cost functions from

Section 2. Note that, depending on the chosen cost function, the computational complexity

of the complete algorithm changes. As a consequence, in the following, complexity analysis

is done with the assumption that applying the cost function on a sub-signal requires O(1)
operations. Also, the practical implementations of the most important algorithms are given

in pseudo-code.

64 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

Cost function Search method Constraint

Change point detection

Optimal Approximate

Window-sliding
Binary

segmentation
Bottom-up

segmentation

Opt, Pelt

Win BinSeg BotUp

Figure 2.3: Typology of the search methods described in Section 3.

3.1 Optimal detection

Optimal detection methods �nd the exact solutions of Problem 1 and Problem 2. A naive

approach consists in enumerating all possible segmentations of a signal, and returning

the one that minimizes the objective function. However, for Problem 1, minimization is

carried out over the set {T s.t. |T | = K} (which contains (T−1
K−1) elements), and for Problem

2, over the set {T s.t. 1≤ |T | < T} (which contains ∑T−1
K=1 (

T−1
K−1) elements). This makes

exhaustive enumeration impractical, in both situations. We describe in this section two

major approaches to e�ciently �nd the exact solutions of Problem 1 and Problem 2.

3.1.1 Solution to Problem 1: Opt

In Problem 1, the number of change points to detect is �xed to a certain K ≥ 1. The optimal

solution to this problem can be computed e�ciently, thanks to a method based on dynamic

programming. The algorithm, denoted Opt, relies on the additive nature of the objective

function V(·) to recursively solve sub-problems. Precisely, Opt is based on the following

observation:

min
|T |=K

V(T ,y = y0..T) = min
0=t0<t1<···<tK<tK+1=T

K

∑
k=0

c(ytk ..tk+1)

= min
t≤T−K

[
c(y0..t) + min

t=t0<t1<···<tK−1<tK=T

K−1

∑
k=0

c(ytk ..tk+1)

]

= min
t≤T−K

[
c(y0..t) + min

|T |=K−1
V(T ,yt..T)

]

(2.18)

Intuitively, Equation 2.18 means that the �rst change point of the optimal segmentation

is easily computed if the optimal partitions with K − 1 elements of all sub-signals yt..T

3. SEARCH METHODS 65

are known. The complete segmentation is then computed by recursively applying this

observation. This strategy, described in detail in Algorithm 2.1, has a complexity of the

order ofO(KT2) [20, 92]. Historically, Opt was introduced for a non-related problem [30]

and later applied to change point detection, in many di�erent contexts, such as EEG

recordings [106, 108], DNA sequences [39, 139], tree growth monitoring [71], �nancial

time-series [107, 132], radar waveforms [86], etc.

Algorithm 2.1 Algorithm Opt

Input: signal {yt}T
t=1, cost function c(·), number of regimes K ≥ 2.

for all (u,v), 1≤ u < v ≤ T do
Initialize C1(u,v)← c({yt}v

t=u).
end for
for k = 2, . . . , K− 1 do

for all u,v ∈ {1, . . . , T},v− u ≥ k do
Ck(u,v)← min

u+k−1≤t<v
Ck−1(u, t) + C1(t + 1,v)

end for
end for
Initialize L, a list with K elements.

Initialize the last element: L[K]← T.

Initialize k← K.

while k > 1 do
s← L(k)
t?← arg min

k−1≤t<s
Ck−1(1, t) + C1(t + 1, s)

L(k− 1)← t?

k← k− 1
end while
Remove T from L
Output: set L of estimated breakpoint indexes.

Related search methods. Several extensions of Opt have been proposed in the litera-

ture. The proposed methods still �nd the exact solution to Problem 1.

- The �rst extension is the “forward dynamic programming” algorithm [71]. Con-

trary to Opt, which returns a single partition, the “forward dynamic programming”

algorithm computes the top L (L ≥ 1) most probable partitions (i.e. with lowest

sum of costs). The resulting computational complexity is O(LKT2) where L is the

number of computed partitions. This method is designed as a diagnostic tool: change

points present in many of the top partitions are considered very likely, while change

points present in only a few of the top partitions might not be as relevant. Thanks

to “forward dynamic programming”, insigni�cant change points are trimmed and

overestimation of the number of change point is corrected [71], at the expense of a

higher computational burden. It is applied on tree growth monitoring time series [71]

that are relatively short with around a hundred samples.

- The “pruned optimal dynamic programming” procedure [139] is an extension of

Opt that relies on a pruning rule to discard indexes that can never be change points.

66 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

Thanks to this trick, the set of potential change point indexes is reduced. All described

cost functions can be plugged into this method. As a result, longer signals can be

handled, for instance long array-based DNA copy number data (up to 106
samples,

with the quadratic error cost function) [139]. However, worst case complexity remains

of the order of O(KT2).

3.1.2 Solution to Problem 2: Pelt

In Problem 2, the number of changes point is unknown, and the objective function to

minimize is the penalized sum of costs. A naive approach consists in applying Opt for

K = 1, . . . ,Kmax for a su�ciently large Kmax, then choosing among the computed segmen-

tations the one that minimizes the penalized problem. This would prove computational

cumbersome because of the quadratic complexity of the resolution method Opt. Fortu-

nately a faster method exists for a general class of penalty functions, namely linear penalties.

Formally, linear penalties are linear functions of the number of change points, meaning

that

pen(T) = β|T | (2.19)

where β > 0 is a smoothing parameter. (More details on such penalties can be found in

Section 4.1.) The algorithm Pelt (for “Pruned Exact Linear Time”) [98] was introduced

to �nd the exact solution of Problem 2, when the penalty is linear (2.19). This approach

considers each sample sequentially and, thanks to an explicit pruning rule, may or may

not discard it from the set of potential change points. Precisely, for two indexes t and s
(t < s < T), the pruning rule is given by:

if

[
min
T

V(T ,y0..t) + β|T |
]
+ c(yt..s) ≥

[
min
T

V(T ,y0..s) + β|T |
]

holds,

then t cannot be the last change point prior to T. (2.20)

This results in a considerable speed-up: under the assumption that regime lengths are

randomly drawn from a uniform distribution, the complexity of Pelt is of the order

O(T). The detailed algorithm can be found in Algorithm 2.2. An extension of Pelt
is described in [77] to solve the linearly penalized change point detection for a range of

smoothing parameter values [βmin, βmax]. Pelt has been applied on DNA sequences [83,

121], physiological signals [78], and oceanographic data [98].

Algorithm 2.2 Algorithm Pelt

Input: signal {yt}T
t=1, cost function c(·), penalty value β.

Initialize Z a (T + 1)-long array; Z[0]←−β.

Initialize L[0]← ∅.

Initialize χ← {0}. . Admissible indexes.

for t = 1, . . . , T do
t̂← arg mins∈χ

[
Z[s] + c(ys..t) + β

]
.

Z[t]←
[
Z[t̂] + c(yt̂..t) + β

]

L[t]← L[t̂] ∪ {t̂}.
χ← {s ∈ χ : Z[s] + c(ys..t) ≤ Z[t]} ∪ {t}

end for
Output: set L[T] of estimated breakpoint indexes.

3. SEARCH METHODS 67

3.2 Approximate detection

When the computational complexity of optimal methods is too great for the application

at hand, one can resort to approximate methods. In this section, we describe three major

types of approximate segmentation algorithms, namely window-based methods, binary

segmentation and bottom-up segmentation. All described procedures fall into the category

of sequential detection approaches, meaning that they return a single change point estimate

t̂(k) (1≤ t̂(k) < T) at the k-th iteration. (In the following, the subscript ·(k) refers to the k-th

iteration of a sequential algorithm.) Such methods can be used to solve (approximately)

either Problem 1 or Problem 2. Indeed, if the number K?
of changes is known, K?

iterations

of a sequential algorithm are enough to retrieve a segmentation with the correct number of

changes. If K?
is unknown, the sequential algorithm is run until an appropriate stopping

criterion is met.

3.2.1 Window sliding

The window-sliding algorithm, denoted Win, is a fast approximate alternative to optimal

methods. It consists in computing the discrepancy between two adjacent windows that slide

along the signal y. For a given cost function c(·), this discrepancy between two sub-signals

is given by

d(ya..t,yt..b) = c(ya..b)− c(ya..t)− c(yt..b) (1≤ a < t < b ≤ T). (2.21)

When the two windows cover dissimilar segments, the discrepancy reaches large values,

resulting in a peak. In other other words, for each index t, Win measures the discrepancy

between the immediate past (“left window”) and the immediate future (“right window”).

Once the complete discrepancy curve has been computed, a peak search procedure is per-

formed to �nd change point indexes. The complete Win algorithm is given in Algorithm 2.3

and a schematic view is displayed on Figure 2.4. The main bene�ts of Win are its low

complexity (linear in the number of samples) and ease of implementation.

Original Signal

Discrepancy Curve

Peak Detection

Figure 2.4: Schematic view of Win

68 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

Algorithm 2.3 Algorithm Win

Input: signal {yt}T
t=1, cost function c(·), half-window width w, peak search procedure

PKSearch.

Initialize Z← [0,0, . . .] a T-long array �lled with 0. . Score list.

for t = w, . . . , T − w do
p← (t− w)..t.
q← t..(t + w).
r← (t− w)..(t + w).
Z[t]← c(yr)− [c(yp) + c(yq)].

end for
L← PKSearch(Z) . Peak search procedure.

Output: set L of estimated breakpoint indexes.

In the literature, the discrepancy measure d(·, ·) is often derived from a two-sample sta-

tistical test (see Remark 2.5), and not from a cost function, as in (2.21). However, the two

standpoints are generally equivalent: for instance, using cL2 , ci.i.d. or ckernel is respectively

equivalent to applying a Student t-test [29], a generalized likelihood ratio (GLR) [44] test

and a kernel Maximum Mean Discrepancy (MMD) test [70]. As a consequence, practi-

tioners can capitalize on the vast body of work in the �eld of statistical tests to obtain

asymptotic distributions for the discrepancy measure [42, 70, 114, 117], and sensible cali-

bration strategies for important parameters of Win (such as the window size or the peak

search procedure). Win has been applied in numerous contexts: for instance, on biological

signals [37, 61, 75, 91, 162], on network data [114, 117], on speech time series [2, 57, 75]

and on �nancial time series [29, 46, 95]. It should be noted that certain window-based

detection methods in the literature rely on a discrepancy measure which is not related to a

cost function, as in (2.21) [74, 75, 96, 115]. As a result, those methods, initially introduced

in the online detection setting, cannot be extended to work with optimal algorithms (Opt,

Pelt).

Remark 2.5 (Two-sample test). A two-sample test (or homogeneity test) is a statistical

hypothesis testing procedure designed to assess whether two populations of samples are identical

in distribution. Formally, consider two sets of i.i.d. Rd
-valued random samples {xt}t and

{zt}t. Denote by Px the distribution function of the xt and by Pz, the distribution function of

the zt. A two-sample test procedure compares the two following hypotheses:

H0 : Px = Pz

H1 : Px ,Pz.
(2.22)

A general approach is to consider a probability (pseudo)-metric d(·, ·) on the space of probability
distributions on Rd

. Well-known examples of such a metric include the Kullback-Leibler

divergence, the Kolmogorov-Smirnov distance, the Maximum Mean Discrepancy (MMD), etc.

Observe that, under the null hypothesis, d(Px,Pz) = 0. The testing procedure consists in

computing the empirical estimates P̂x and P̂z and rejecting H0 for “large” values of the statistics

d(P̂x,P̂z). This general formulation relies on a consistent estimation of arbitrary distributions

from a �nite number of samples. In the parametric setting, additional assumptions are made

on the distribution functions: for instance, Gaussian assumption [29, 42, 43], exponential

family assumption [63, 136], etc. In the non-parametric setting, the distributions are only

3. SEARCH METHODS 69

assumed to be continuous. They are not directly estimated; instead, the statistics d(P̂x,P̂z)
are computed [50, 70, 75, 115].

In the context of single change point detection, the two-sample test setting is adapted to assess

whether a distribution change has occurred at some instant in the input signal. Practically,

for a given index t, the homogeneity test is performed on the two populations {ys}s≤t and

{ys}s>t. The estimated change point location is given by

t̂ = arg max

t
d(P̂•≤t,P̂•>t) (2.23)

where P̂•≤t and P̂•>t are the empirical distributions of respectively {ys}s≤t and {ys}s>t.

3.2.2 Binary segmentation

Binary segmentation, denoted BinSeg, is a well-known alternative to optimal meth-

ods [146], because it is conceptually simple and easy to implement [43, 98, 126]. BinSeg
is a greedy sequential algorithm, outlined as follows. The �rst change point estimate t̂(1) is

given by

t̂(1) := arg min

1≤t<T−1
c(y0..t) + c(yt..T)

V(T = {t})
. (2.24)

This operation is “greedy”, in the sense that it searches the change point that lowers the most

the sum of costs. The signal is then split in two at the position of t̂(1); the same operation is

repeated on the resulting sub-signals until a stopping criterion is met. A schematic view of

the algorithm is displayed on Figure 2.5 and an implementation is given in Algorithm 2.4.

The complexity of BinSeg is of the order of O(T log T). This low complexity comes at

the expense of optimality: in general, BinSeg’s output is only an approximation of the

optimal solution. As argued in [11, 98], the issue is that the estimated change points t̂(k)

are not estimated from homogeneous segments and each estimate depends on the previous

ones. Change points that are close are imprecisely detected especially [90]. Applications of

BinSeg range from �nancial time series [11, 42, 43, 67, 111] to context recognition for

mobile devices [81] and array-based DNA copy number data [126, 134].

Related search methods. Several extensions of BinSeg have been proposed to im-

prove detection accuracy.

- Circular binary segmentation [126] is a well-known extension of BinSeg. This

method is also a sequential detection algorithm that splits the original at each step.

Instead of searching for a single change point in each sub-signal, circular binary

segmentation searches two change points. Within each treated sub-segment, it

assumes a so-called “epidemic change model”: the parameter of interest shifts from

one value to another at the �rst change point and returns to the original value at the

second change point. The algorithm is dubbed “circular” because, under this model,

the sub-segment has its two ends (�guratively) joining to form a circle. Practically, this

method has been combined with cL2 C2, to detect changes in the mean of array-based

DNA copy number data [104, 126, 164]. A faster version of the original algorithm is

described in [159].

70 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

Step 0

Step 1

Step 2

Figure 2.5: Schematic example of BinSeg

Algorithm 2.4 Algorithm BinSeg

Input: signal {yt}T
t=1, cost function c(·), stopping criterion.

Initialize L← { }. . Estimated breakpoints.

repeat
k← |L|. . Number of breakpoints

t0← 0 and tk+1← T . Dummy variables.

if k > 0 then
Denote by ti (i = 1, . . . ,k) the elements (in ascending order) of L, i.e. L =

{t1, . . . , tk}.
end if
Initialize G a (k + 1)-long array. . list of gains

for i = 0, . . . , k do
G[i]← c(yti ..ti+1)− min

ti<t<ti+1
[c(yti ..t) + c(yt..ti+1)] .

end for
î← arg maxi G[i]
t̂← arg min

tî<t<tî+1

[c(ytî ..t) + c(yt..tî+1
)].

L← L ∪ {t̂}
until stopping criterion is met.

Output: set L of estimated breakpoint indexes.

- Another extension of BinSeg is the wild binary segmentation algorithm [67]. In

a nutshell, a single point detection is performed on multiple intervals with start

and end points that are drawn uniformly. Small segments are likely to contain at

most one change but have lower statistical power, while the opposite is true for long

segments. After a proper weighting of the change score to account for the di�erences

on sub-signals’ length, the algorithm returns the most “pronounced” ones, i.e. those

that lower the most the sum of costs. An important parameter of this method is

3. SEARCH METHODS 71

the number of random sub-segments to draw. Wild binary search is combined with

cL2 C2 to detect mean-shifts of univariate piecewise constant signals (up to 2000

samples) [67].

3.2.3 Bottom-up segmentation

Bottom-up segmentation, denoted BotUp, is the natural counterpart of BinSeg. Con-

trary to BinSeg, BotUp starts by splitting the original signal in many small sub-signals

and sequentially merges them until there remain only K change points. At every step,

all potential change points (indexes separating adjacent sub-segments) are ranked by the

discrepancy measure d(·, ·), de�ned in 2.21, between the segments they separate. Change

points with the lowest discrepancy are then deleted, meaning that the segments they sepa-

rate are merged. BotUp is often dubbed a “generous” method, by opposition to BinSeg,

which is “greedy” [94]. A schematic view of the algorithm is displayed on Figure 2.6 and

an implementation is provided in Algorithm 2.5. Its bene�ts are its linear computational

complexity and conceptual simplicity. However, if a true change point does not belong to

the original set of indexes, BotUp never considers it. Moreover, in the �rst iterations, the

merging procedure can be unstable because it is performed on small segments, for which

statistical signi�cance is smaller. In the literature, BotUp is somewhat less studied than its

counterpart, BinSeg: no theoretical convergence study is available. It has been applied

on speech time series to detect mean and scale shifts [46]. Besides, the authors of [94] have

found that BotUp outperforms BinSeg on ten di�erent data sets such as physiological

signals (ECG), �nancial time-series (exchange rate), industrial monitoring (water levels),

etc.

Step 0

step 6

step 8 step 1 step 4 step 2 step 3 step 5 step 7

Steps 1, 2, . . .

Result

Figure 2.6: Schematic view of BotUp

72 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

Algorithm 2.5 Algorithm BotUp

Input: signal {yt}T
t=1, cost function c(·), stopping criterion, grid size δ > 2.

Initialize L← {δ,2δ, . . . , (bT/δc − 1)δ}. . Estimated breakpoints.

repeat
k← |L|. . Number of breakpoints

t0← 0 and tk+1← T . Dummy variables.

Denote by ti (i = 1, . . . ,k) the elements (in ascending order) of L, i.e. L = {t1, . . . , tk}.
Initialize G a (k− 1)-long array. . list of gains

for i = 1, . . . , k− 1 do
G[i− 1]← c(yti−1..ti+1)− [c(yti−1..ti) + c(yti ..ti+1)] .

end for
î← arg mini G[i]
Remove tî+1 from L.

until stopping criterion is met.

Output: set L of estimated breakpoint indexes.

4 Estimating the number of changes

This section presents the third de�ning element of change detection methods, namely the

constraint on the number of change points. Here, the number of change points is assumed

to be unknown (Problem 2). Existing procedures are organized by the penalty function that

they are based on. Common heuristics are also described. The organization of this section

is schematically shown in Figure 2.7.

Cost function Search method Constraint

Change point detection

Known K? Unknown K?

Penalty l0 Penalty l1 Other methods

penl0
, penBIC,

penBIC,L2
,

penBIC,L2

penl1

Stopping
criterion,
penLeb,
penmBIC

Figure 2.7: Typology of the constraints (on the number of change points) described in

Section 4.

4.1 Linear penalty

Arguably the most popular choice of penalty [98], the linear penalty (also known as l0
penalty) generalizes several well-known criteria from the literature such as the Bayesian

4. ESTIMATING THE NUMBER OF CHANGES 73

Information Criterion (BIC) and the Akaike Information Criterion (AIC) [166, 167]. The

linear penalty, denoted penl0 , is formally de�ned as follows.

De�nition 2.15 (penl0). The penalty function penl0 is given by

penl0(T) := β|T | (2.25)

where β > 0 is the smoothing parameter.

Intuitively, the smoothing parameter controls the trade-o� between complexity and goodness-

of-�t (measured by the sum of costs): low values of β favour segmentations with many

regimes and high values of β discard most change points.

Calibration. From a practical standpoint, once the cost function has been chosen, the

only parameter to calibrate is the smoothing parameter. Several approaches, based on

model selection, can be found in the literature: they assume a model on the data, for in-

stance (M1), (M2), (M3), and choose a value of β that optimizes a certain statistical criterion.

The best-known example of such an approach is BIC, which aims at maximizing the con-

strained log-likelihood of the model. The exact formulas of several linear penalties, derived

from model selection procedures, are given the following paragraph. Conversely, when no

model is assumed, di�erent heuristics are applied to tune the smoothing parameter. For

instance, one can use a procedure based on cross-validation [4] or the slope heuristics [33].

In [82], an original supervised algorithm is proposed: the chosen β is the one that minimizes

an approximation of the segmentation error on an annotated set of signals.

Related penalties. A number of model selection criteria are special cases of the linear

penalty penl0 . For instance, under Model (M1) (i.i.d. with piecewise constant distribution),

the constrained likelihood that is derived from the BIC and the penalized sum of costs are

formally equivalent, upon setting c = ci.i.d. and pen = pen
BIC

, where pen
BIC

is de�ned as

follows.

De�nition 2.16. The penalty function pen
BIC

is given by

pen
BIC

(T) :=
p
2

log T |T | (2.26)

where p ≥ 1 is the dimension of the parameter space in (M1).

In the extensively studied model of an univariate Gaussian signal, with �xed variance σ2
and

piecewise constant mean, the penalty pen
BIC

becomes penL2
, de�ned below. Historically, it

was one of the �rst penalties introduced for change point detection [144, 166].

De�nition 2.17. The penalty function pen
BIC,L2

is given by

pen
BIC,L2

(T) := σ2 log T |T |. (2.27)

where σ is the standard deviation and T is the number of samples.

In the same setting, AIC, which is a generalization of Mallows’ Cp [122], also yields a linear

penalty, namely pen
AIC,L2

, de�ned as follows.

De�nition 2.18. The penalty function pen
AIC,L2

is given by

pen
AIC,L2

(T) := σ2 |T |. (2.28)

where σ is the standard deviation.

74 CHAPTER 2. A SELECTIVE REVIEW OF CHANGE POINT DETECTION METHODS

4.2 Fused lasso

For the special case where the cost function is cL2 , a faster alternative to penl0 can be used.

To that end, the l0 penalty is relaxed to a l1 penalty [73, 160]. The resulting penalty function,

denoted penl1 , is de�ned as follows.

De�nition 2.19 (penl1). The penalty function penl1 is given by

penl1(T) := β
|T |
∑
k=1

∥∥ȳtk−1..tk − ȳtk ..tk+1

∥∥
1 (2.29)

where β > 0 is the smoothing parameter, the tk are the elements of T and ȳtk−1..tk is the

empirical mean of sub-signal ytk−1..tk .

This relaxation strategy (from l0 to l1) is shared with many developments in machine

learning, for instance sparse regression, compressive sensing, sparse PCA, dictionary

learning [76], where penl1 is also referred to as the fused lasso penalty. In numerical

analysis and image denoising, it is also known as the total variation regularizer [73, 145, 160].

Thanks to this relaxation, the optimization of the penalized sum of costs (2.3) in Problem 2 is

transformed into a convex optimization problem, which can be solved e�ciently using Lars

(for “least absolute shrinkage and selection operator”) [73, 160]. The resulting complexity is

of this order of O(T log T) [76, 151]. From a theoretical standpoint, under the mean-shift

model (piecewise constant signal with Gaussian white noise), the estimated change point

fractions are asymptotically consistent [73]. This result is demonstrated for an appropriately

converging sequence of values of β. This consistency property is obtained even though

classical assumptions from the Lasso regression framework (such as the irrepresentable

condition) are not satis�ed [73]. In the literature, penl1 , combined with cL2 , is applied on

DNA sequences [83, 160] and speech signals [3].

4.3 Complex penalties

Several other penalty functions can be found in the literature. However they are more

complex, in the sense that the optimization of the penalized sum of cost is not tractable.

In practice, the solution is found by computing the optimal segmentations with K change

points, with K = 1,2, . . . ,Kmax for a su�ciently large Kmax, and returning the one that

minimizes the penalized sum of costs. When possible, the penalty can also be approximated

by a linear penalty, in which case, Pelt can be used. In this section, we describe two

examples of complex penalties. Both originate from theoretical considerations, under

the univariate mean-shift model, with the cost function cL2 . The �rst example is the

modi�ed BIC criterion (mBIC) [170], which consists in maximizing the asymptotic posterior

probability of the data. The resulting penalty function, denoted pen
mBIC

, depends on the

number and repartition of the change point indexes: intuitively, it favours evenly spaced

change points.

De�nition 2.20 (pen
mBIC

). The penalty function pen
mBIC

is given by

pen
mBIC

(T) := 3|T | log T +
|T |+1

∑
k=0

log(
tk+1 − tk

T
) (2.30)

where the tk are the elements of T .

5. SUMMARY TABLE 75

In [112], a model selection procedure leads to another complex penalty function, namely

pen
Leb

. Upon using this penalty function, the penalized sum of costs satis�ed a so-called

oracle inequality, which holds in a non-asymptotic setting, contrary to the other penalties

previously described.

De�nition 2.21 (pen
Leb

). The cost function pen
Leb

is given by

pen
Leb

(T) :=
|T |+ 1

T
σ2(a1 log

|T |+ 1
T

+ a2) (2.31)

where a1 > 0 and a2 > 0 are positive parameters and σ2
is the noise variance.

5 Summary table

This chapter of literature review is summarized in Table 2.2. When applicable, each publi-

cation is associated with a search method (such as Opt, Pelt, BinSeg or Win); this is

a rough categorization rather than an exact implementation. Note that Pelt (introduced

in 2012) is sometimes associated with publications prior to 2012. It is because some linear

penalties [122, 170] were introduced long before Pelt was, and authors then resorted to

quadratic (at best) algorithms. Nowadays, the same results can be obtained faster with

Pelt. A guide of computational complexity is also provided. Quadratic methods are the

slowest and have only one star while linear methods are given three stars. Algorithms

for which the number of change points is an explicit input parameter work under the

“known K” assumption. Algorithms that can be used even if the number of change points is

unknown work under the “unknown K” assumption. (Certain methods can accommodate

both situations.) Some methods are implemented and available online. We refer the reader

to Table 9.1 in Chapter 9 for a detailed summary of available libraries.

6 Conclusion

In this chapter, we have reviewed numerous methods to perform change point detec-

tion, organized within a common framework. Precisely, all methods are described as a

collection of three elements: a cost function, a search method and a constraint on the

number of changes to detect. This approach is intended to facilitate prototyping of change

point detection methods: for a given segmentation task, one can pick among the de-

scribed elements to design an algorithm that �ts its use-case. Most detection procedures

described above are available within the Python language from the package ruptures

(ctruong.perso.math.cnrs.fr/ruptures). Additional information can be found in Chapter 9,

which is dedicated to the description of this package.

http://ctruong.perso.math.cnrs.fr/ruptures

P
u

b
l
i
c
a
t
i
o

n
S
e
a
r
c
h

m
e
t
h

o
d

C
o

s
t

f
u

n
c
t
i
o

n
K

n
o
w

n
K

S
c
a
l
a
b
i
l
i
t
y

(
w

.r
.t

.
T

)
P

a
c
k

a
g
e

A
d

d
i
t
i
o

n
a
l

i
n

f
o

r
m

a
t
i
o

n

Y
e
s

N
o

S
e
n

a
n

d
S
r
i
v
a
s
t
a
v
a

(
1
9
7
5
)
,
V

o
s
t
r
i
k

o
v
a

(
1
9
8
1
)

B
i
n
S
e
g

c L
2

3
-

H
H

H
3

Y
a
o

(
1
9
8
8
)

O
p
t

c L
2

-
3

H
I

I
-

B
a
y

e
s
i
a
n

i
n

f
o

r
m

a
t
i
o

n
c
r
i
t
e
r
i
o

n
(
B

I
C

)

B
a
s
s
e
v
i
l
l
e

a
n

d
N

i
k

i
f
o

r
o
v

(
1
9
9
3
)

O
p
t

c i.
i
.d

.
,c

L 2
-

-
H

H
H

-
s
i
n

g
l
e

c
h

a
n

g
e

p
o

i
n

t

B
a
i

(
1
9
9
4
)
,
B

a
i

a
n

d
P

e
r
r
o

n
(
2
0
0
3
)

O
p
t

c li
n

e
a
r
,L

2
-

-
H

H
I

-
s
i
n

g
l
e

c
h

a
n

g
e

p
o

i
n

t

B
a
i

(
1
9
9
5
)

O
p
t

c li
n

e
a
r
,L

1
-

-
H

H
I

-
s
i
n

g
l
e

c
h

a
n

g
e

p
o

i
n

t

L
a
v
i
e
l
l
e

(
1
9
9
8
)

O
p
t

c A
R

3
-

H
I

I
-

B
a
i

(
2
0
0
0
)

O
p
t

c A
R

3
-

H
I

I
-

B
i
r
g
é

a
n

d
M

a
s
s
a
r
t

(
2
0
0
1
)
,
B

i
r
g
é

a
n

d
M

a
s
s
a
r
t

(
2
0
0
7
)

O
p
t

c L
2

-
3

H
I

I
-

m
o

d
e
l

s
e
l
e
c
t
i
o

n

B
a
i

a
n

d
P

e
r
r
o

n
(
2
0
0
3
)

O
p
t

c L
2

3
-

H
I

I
-

O
l
s
h

e
n

e
t

a
l
.
(
2
0
0
4
)
,
V

e
n

k
a
t
r
a
m

a
n

a
n

d
O

l
s
h

e
n

(
2
0
0
7
)

B
i
n
S
e
g

c L
2

3
3

H
H

H
3

L
e
b
a
r
b
i
e
r

(
2
0
0
5
)

O
p
t

c L
2

-
3

H
I

I
-

m
o

d
e
l

s
e
l
e
c
t
i
o

n

D
e
s
o

b
r
y

e
t

a
l
.
(
2
0
0
5
)

W
i
n

c k
er

ne
l

-
3

H
H

H
-

d
i
s
s
i
m

i
l
a
r
i
t
y

m
e
a
s
u

r
e

(
o

n
e
-
c
l
a
s
s

S
V

M
)
,
s
e
e

R
e
m

a
r
k

2
.5

H
a
r
c
h

a
o

u
i

a
n

d
C

a
p

p
é

(
2
0
0
7
)

O
p
t

c k
er

ne
l,

c r
bf

3
-

H
I

I
-

Z
h

a
n

g
a
n

d
S
i
e
g
m

u
n

d
(
2
0
0
7
)

P
e
l
t

c L
2

-
3

H
H

I
-

m
o

d
i
�

e
d

B
I
C

H
a
r
c
h

a
o

u
i

e
t

a
l
.
(
2
0
0
9
)

W
i
n

-
3

3
H

H
H

-
d

i
s
s
i
m

i
l
a
r
i
t
y

m
e
a
s
u

r
e

(
F
i
s
h

e
r

d
i
s
c
r
i
m

i
n

a
n

t
)
,
s
e
e

R
e
m

a
r
k

2
.5

L
é
v

y
-
L

e
d

u
c

a
n

d
R

o
u

e
�

(
2
0
0
9
)
,
L

u
n

g
-
Y

u
t
-
F
o

n
g

e
t

a
l
.
(
2
0
1
2
)

W
i
n

c r
a
n

k
3

3
H

H
H

3
d

i
s
s
i
m

i
l
a
r
i
t
y

m
e
a
s
u

r
e

(
r
a
n

k
-
b
a
s
e
d

)
,
s
e
e

R
e
m

a
r
k

2
.5

B
a
i

(
2
0
1
0
)

O
p
t

c L
2
,c

Σ
-

-
H

H
I

-
s
i
n

g
l
e

c
h

a
n

g
e

p
o

i
n

t

V
e
r
t

a
n

d
B

l
e
a
k

l
e
y

(
2
0
1
0
)

F
u

s
e
d

L
a
s
s
o

c L
2

-
3

H
H

H
-

T
i
k

h
o

n
o
v

r
e
g
u

l
a
r
i
z
a
t
i
o

n

H
a
r
c
h

a
o

u
i

a
n

d
L

é
v

y
-
L

e
d

u
c

(
2
0
1
0
)

F
u

s
e
d

L
a
s
s
o

c L
2

-
3

H
H

H
-

t
o

t
a
l

v
a
r
i
a
t
i
o

n
r
e
g
r
e
s
s
i
o

n
(
p

e
n

l 1
)

A
r
l
o

t
e
t

a
l
.
(
2
0
1
2
)

O
p
t

c k
er

ne
l,

c r
bf

3
3

H
I

I
-

K
i
l
l
i
c
k

e
t

a
l
.
(
2
0
1
2
)

P
e
l
t

a
n

y
c(
·)

-
3

H
H

I
3

A
n

g
e
l
o

s
a
n

t
e

a
n

d
G

i
a
n

n
a
k

i
s

(
2
0
1
2
)

F
u

s
e
d

L
a
s
s
o

c A
R

-
3

H
H

H
-

T
i
k

h
o

n
o
v

r
e
g
u

l
a
r
i
z
a
t
i
o

n

L
i
u

e
t

a
l
.
(
2
0
1
3
)

W
i
n

-
-

3
H

H
H

-
d

i
s
s
i
m

i
l
a
r
i
t
y

m
e
a
s
u

r
e

(
d

e
n

s
i
t
y

r
a
t
i
o

)
,
s
e
e

R
e
m

a
r
k

2
.5

H
o

c
k

i
n

g
e
t

a
l
.
(
2
0
1
3
)

P
e
l
t

c L
2

-
3

H
H

I
-

s
u

p
e
r
v
i
s
e
d

m
e
t
h

o
d

t
o

l
e
a
r
n

a
p

e
n

a
l
t
y

l
e
v
e
l

(
p

e
n

l 0
)

F
r
y

z
l
e
w

i
c
z

(
2
0
1
4
)

B
i
n
S
e
g

c L
2

3
3

H
H

H
3

u
n

i
v
a
r
i
a
t
e

s
i
g
n

a
l

L
a
j
u

g
i
e

e
t

a
l
.
(
2
0
1
4
)

O
p
t

c M
3

-
H

I
I

-
s
u

p
e
r
v
i
s
e
d

m
e
t
h

o
d

t
o

l
e
a
r
n

a
s
u

i
t
a
b
l
e

m
e
t
r
i
c

F
r
i
c
k

e
t

a
l
.
(
2
0
1
4
)

B
i
n
S
e
g

c i.
i
.d

.
3

3
H

H
H

3
e
x
p

o
n

e
n

t
i
a
l

d
i
s
t
r
i
b
u

t
i
o

n
s

f
a
m

i
l
y

L
u

n
g
-
Y

u
t
-
F
o

n
g

e
t

a
l
.
(
2
0
1
5
)

O
p
t

c r
a
n

k
3

-
H

I
I

3

G
a
r
r
e
a
u

a
n

d
A

r
l
o

t
(
2
0
1
7
)

P
e
l
t

c k
er

ne
l,

c r
bf

3
3

H
I

I
-

H
a
y

n
e
s

e
t

a
l
.
(
2
0
1
7
)

P
e
l
t

a
n

y
c(
·)

-
3

H
H

I
-

C
h

a
k

a
r

e
t

a
l
.
(
2
0
1
7
)

P
e
l
t

c A
R

3
3

H
I

I
3

T
a
b
l
e

2
.2

:
S
u

m
m

a
r
y

t
a
b
l
e

o
f

l
i
t
e
r
a
t
u

r
e

r
e
v
i
e
w

.

3
Evaluation framework: metrics and data

sets
Contents

1 Motivations . 77

2 Evaluation framework . 78

2.1 Evaluation metrics . 78

2.2 Presentation of the data sets . 80

3 Summary tables . 88

Abstract

This chapter presents the evaluation framework that is used throughout this manuscript

to experimentally compare segmentation algorithms. The shape of this framework

is largely motivated by the challenges met by Cognac. In addition to several error

metrics, three data sets are described: Gait, MeanShift and FreqShift. The Gait data

set contains real-world signals collected by Cognac-G for the study of the human

walking motion. MeanShift and FreqShift contain synthetic signals. Both can be seen

as idealized approximations of Gait.

1 Motivations

As described in Chap. 1 : Introduction, signals collected in the context of Cognac-G are

from monitored subjects who undergo a medical protocol. Typically, a clinician asks

a patient to perform several consecutive physical exercises while some sensors record

some physiological and bio-mechanical variables (e.g. heart rate, oxygen uptake, body

acceleration). Those time series are made of consecutive phases, whose temporal boundaries

must be estimated, thanks to change point detection methods. In order to quantify the

evolution of the patient during the protocol, the monitoring signal is segmented, meaning

that it is split in sub-signals, each corresponding to a coherent phase (for instance, a single

exercise). Certain features of interest are then computed for each phase. This segmentation

step is critical in the contextualization of long time series.

The objective of this thesis is to provide detection algorithms that follow the general

principles that have emerged in the context of Cognac-G (see, in the introductory chapter,

Sec. 3 : Change point detection for physiological data). In order to compare our contributions

78 CHAPTER 3. EVALUATION FRAMEWORK: METRICS AND DATA SETS

to state-of-the-art methods, a crucial element is a consistent evaluation framework. We

list below the important criteria by which segmentation performances are assessed, in this

framework.

- Depending on the clinical protocol, the number of change points may be unknown, in

which case it must be estimated by the segmentation algorithm. Missing or adding a

change can respectively result in heterogeneous sub-signals and shorter sub-signals.

Both of those situations can adversely in�uence any subsequent data treatment, if it

relies on homogeneous regimes.

- Accuracy of a detection method is the quality of correctly estimating the location

of change points, on average. If a set of changes points is inaccurately estimated,

the associated regimes are not homogeneous, which, again, adversely in�uences any

subsequent data treatment.

- In an e�ort to develop automatic procedures, a great emphasis is put on robustness.

In order to be applied on large data sets without human supervision, algorithms must

be able to operate in a wide range of settings.

- The execution time of algorithms must comply with the constraints of daily clinical

practice. This is even more important for change point detection methods, which are

only a pre-processing step, and are followed by a number of other data treatments.

2 Evaluation framework

The evaluation framework is composed of evaluation metrics and three data sets. Each

metric is a measure of the error made when estimating the segmentation of a signal. As for

the data sets, one contains real-world time series collected in the context of Cognac-G, and

the other two are synthetic approximations of the �rst one.

The general process by which a segmentation method is evaluated is outlined as follows.

First, the algorithm at hand is applied on a testing data set of signals y(l) (l = 1, . . . , L). The

change point estimates are denoted T̂ (l)
. Then, the change point estimates are compared to

the true segmentation, denoted T (l)
, using one of the metrics described below. The mean

and standard deviation of the metric values (over the data set) are reported for comparison.

2.1 Evaluation metrics

Several metrics from the literature are presented below. Each metric correspond to one

of the previously listed criteria by which segmentation performances are assessed. In the

following, the set of true change points is denoted by T ? = {t?1 , . . . , t?K?}, and the set of

estimated change points is denoted by T̂ = {t̂1, . . . , t̂K̂}. Note that that the cardinals of

each set, K?
and K̂, are not necessarily equal.

2.1.1 AnnotationError

The AnnotationError is simply the di�erence between the predicted number of change

points |T̂ | and the true number of change points |T ?|:

AnnotationError := |K̂− K?|. (3.1)

2. EVALUATION FRAMEWORK 79

This metric can be used to discriminate detection method when the number of changes is

unknown.

2.1.2 Hausdorff

The Hausdorff metric measures the robustness of detection methods [35, 73]. Formally, it

is equal to the greatest temporal distance between a change point and its prediction:

Hausdorff(T ?, T̂) := max {max
t̂∈T̂

min
t?∈T ?

|t̂− t?|, max
t?∈T ?

min
t̂∈T̂
|t̂− t?| }.

It is the worst error made by the algorithm that produced T̂ and is expressed in number of

samples. If this metric is equal to zero, both breakpoint sets are equal; it is large when a

change point from either T ?
or T̂ is far from every change point of T̂ or T ?

respectively.

Over-segmentation as well as under-segmentation is penalized. An illustrative example is

displayed on Figure 3.1.

∆t1
∆t2 ∆t3

Figure 3.1: Hausdorff. Alternating gray areas mark the segmentation T ?
; dashed lines

mark the segmentation T̂ . Here, Hausdorff is equal to ∆t1 = max(∆t1,∆t2,∆t3).

2.1.3 RandIndex

Accuracy can be measured by the RandIndex, which is the average similarity between

the predicted breakpoint set T̂ and the ground truth T ?
[105]. Intuitively, it is equal to

the number of agreements between two segmentations. An agreement is a pair of indexes

which are either in the same segment according to both T̂ and T ?
or in di�erent segments

according to both T̂ and T ?
. Formally, for a breakpoint set T , the set of grouped indexes

and the set of non-grouped indexes are respectively gr(T) and ngr(T):

gr(T) := {(s, t),1≤ s < t ≤ T s.t. s and t belong to the same segment according to T },
ngr(T) := {(s, t),1≤ s < t ≤ T s.t. s and t belong to di�erent segments according to T }.

The RandIndex is then de�ned as follows:

RandIndex(T ?, T̂) :=
|gr(T̂) ∩ gr(T ?)|+ |ngr(T̂) ∩ ngr(T ?)|)

T(T − 1)
. (3.2)

It is normalized between 0 (total disagreement) and 1 (total agreement). Originally, RandIn-

dex has been introduced to evaluate clustering methods [35, 105]. An illustrative example

is displayed on Figure 3.2.

80 CHAPTER 3. EVALUATION FRAMEWORK: METRICS AND DATA SETS

True partition Computed partition Disagreement

Figure 3.2: RandIndex. Top: alternating gray areas mark the segmentation T ?
; dashed

lines mark the segmentation T̂ . Below: representations of associated adjacency matrices

and disagreement matrix. The adjacency matrix of a segmentation is the T × T binary

matrix with coe�cient (s, t) equal to 1 if s and t belong to the same segment, 0 otherwise.

The disagreement matrix is the T× T binary matrix with coe�cient (s, t) equal to 1 where

the two adjacency matrices disagree, and 0 otherwise. RandIndex is equal to the white

area (where coe�cients are 0) of the disagreement matrix.

2.1.4 F1 score

Another measure of accuracy is the F1 score. Precision is the proportion of predicted

change points that are true change points. Recall is the proportion of true change points

that are well predicted. A breakpoint is considered detected up to a user-de�ned margin of

error M > 0; true positives Tp are true change points for which there is an estimated one

at less than M samples, i.e.

Tp(T ?, T̂) := {t? ∈ T ? | ∃ t̂ ∈ T̂ s.t. |t̂− t?| < M}. (3.3)

Precision Prec and recall Rec are then given by

Prec(T ?, T̂) := |Tp(T ?, T̂)|/K̂ and Rec(T ?, T̂) := |Tp(T ?, T̂)|/K?. (3.4)

Precision and Recall are well-de�ned (i.e. between 0 and 1) if the margin M is smaller

than the minimum spacing between two true change point indexes t?k and t?k+1. Over-

segmentation of a signal causes the precision to be close to zero and the recall close to

one. Under-segmentation has the opposite e�ect. The F1 score is the harmonic mean of

precision Prec and recall Rec:

F1 score(T ?, T̂) := 2× Prec(T ?, T̂)× Rec(T ?, T̂)
Prec(T ?, T̂) + Rec(T ?, T̂)

. (3.5)

Its best value is 1 and its worse value is 0. An illustrative example is displayed on Figure 3.3.

2.2 Presentation of the data sets

The corpus is composed of a real-world data set, Gait, and two synthetic data sets, MeanShift

and FreqShift. The two synthetic data sets provide a controlled environnement, to assess

2. EVALUATION FRAMEWORK 81

X× X

Figure 3.3: F1 score. Alternating gray areas mark the segmentation T ?
; dashed lines mark

the segmentation T̂ ; dashed areas mark the allowed margin of error around true change

points. Here, Prec is 2/3, Rec is 2/2 and F1 score is 4/5.

the in�uence of certain parameters (such as the number of samples, the noise, etc.) on the

segmentation e�ciency. Both MeanShift and FreqShift are designed to so as to resemble the

shapes of signals from Gait. Each data set contains L signals y(l) (L depends on the data

set), possibly grouped into sub-sets of equal segmentation di�culty. Each signal y(l) has a

“true” segmentation T (l)
, which is either the one used to simulate the signal for MeanShift

and FreqShift or the manual segmentation provided by the medical researchers for Gait.

2.2.1 The Gait data set

Context. Human locomotion is a complex mechanism composed of a succession of strides,

steps, and phases [24, 26]. Some pathologies (such as Parkinson’s disease, arthritis, stroke,

obesity, diabetes, etc.) may alter the locomotion, threatening the autonomy of patients

and increasing the risk of fall. Objective quanti�cation and assessment of locomotion

is therefore a crucial problem, that has been addressed in the literature by measuring

the movement with several types of sensors such as inertial sensors, instrumented mat,

force platforms, camera-optical tracking system or force-sensitive resistors insoles. The

signals obtained from these sensors are processed (automatically or manually) to extract

some features that characterize locomotion (speed, variability, smoothness, etc.). In this

context, the COGNAC G team has conceived and implemented a clinical protocol for the

analysis of human gait using Inertial Measurement Units (IMUs) which are composed of

3D accelerometers, 3D gyroscopes and 3D magnetometers. The main advantages of these

sensors are that they are relatively low-cost, they do not require a dedicated room for the

experiments, and their small size make them easy to handle in day-to-day clinical situations.

The data used for the conception and testing of the method presented in this thesis has

been provided by several medical departments
1
. The study was validated by a local ethic

comity and both patients and control subjects gave their written consent to participate. All

signals have been acquired at 100 Hz with wireless XSens MTw
TM

sensors located at lower

back and �xed using a Velcro band designed by XSens
TM

. All subjects were asked to (1)

stand still for 6 seconds, (2) walk 10 meters at preferred walking speed on a level surface, (3)

turn around, (4) walk back, (5) stand still for 2 seconds. There are 54 subjects, monitored on

1
Service de chirurgie orthopédique et de traumatologie de l’Hôpital Européen Georges Pompidou, Assis-

tance Publique des Hôpitaux de Paris, Service de médecine physique et de réadaptation de l’Hôpital Fernand

Widal, Assistance Publique des Hôpitaux de Paris, Service de neurologie de l’Hôpital d’Instruction des Armées

du Val de Grâce, Service de Santé des Armées

82 CHAPTER 3. EVALUATION FRAMEWORK: METRICS AND DATA SETS

multiple occasions, resulting in a data set of 262 signals. Two examples of recorded signals

are displayed on Figure 3.4. The two �at parts at the extremities of the signal correspond

to periods when the subject is standing still. The repeated patterns represent the footsteps.

Depending on the pathology (or absence of), the length of the signal varies from 20 seconds

to 90 seconds.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.50

0.25

0.00

0.25

0.50

0.75

(a) Healthy control subject.

0 10 20 30 40 50 60 70 80
Time (s)

0.2

0.1

0.0

0.1

0.2

(b) Osteoarthritis patient.

Figure 3.4: Vertical acceleration (m/s
2
) of the lower back sensor for two di�erent subjects.

Alternating colours mark the consecutive phases: “Stand”, “Walk”, “Turnaround”, “Walk”

and “Stop”.

Data set description. This data set contains L = 262 signals. For this study, we use

d = 2 dimensions: the angular velocity around the vertical axis (“Rot. Z”) and the ac-

celeration in the vertical direction (“Acc. Z”). The segmentations T (l)
are the manual

segmentations provided by the medical researchers. Each of them has K = 4 change points:

“Stand/Walk”, “Walk/Turnaround”, “Turnaround/Walk” and “Walk/Stop”. In the remainder

of the manuscript, the time-frequency representation of signals from Gait is de�ned as the

absolute value of coe�cients of the short-term Fourier transform (STFT), computed with

300 samples per segment and an overlap of 299 samples (to retain the best time resolution

possible). Only the 0− 5 Hz frequency band, where phenomena of interest are contained,

is kept. Change point detection algorithms presented in this work sometimes take as

input the stacked amplitudes of the STFTs. In this representation, the signals have d = 32
dimensions.

A representative example of a signal and its time-frequency representation is displayed on

Figure 3.5. Several comments can be made. The two �at parts at the extremities of “Rot. Z”

and “Acc. Z” correspond to the moments when the subject is standing still. The repeated

patterns represent the footsteps. The turnaround is especially visible on the angular velocity.

In the time-frequency domain, there is a piecewise constant structure. Both “Walk” phases

2. EVALUATION FRAMEWORK 83

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(a) Rot. Z

0 5 10 15 20 25
Time (s)

0

1

2

3

4

5

Fr
eq

ue
nc

y
(H

z)

0.0

0.5

1.0

1.5

(b) Rot. Z (Spectrogram)

5 10 15 20 25
Time (s)

0.4

0.2

0.0

0.2

0.4

0.6

Ac
c.

 Z
 (m

/s
^2

)

(c) Acc. Z

0 5 10 15 20 25
Time (s)

0

1

2

3

4

5

Fr
eq

ue
nc

y
(H

z)

0.0

0.5

1.0

1.5

(d) Acc. Z (Spectrogram)

Figure 3.5: Signal example from Gait. The acceleration and rotation on axis (Oz) (time

and time-frequency representation) are shown. Alternating colours mark the consecutive

phases: “Stand”, “Walk”, “Turnaround”, “Walk” and “Stop”.

are periodic, resulting in energy peaks are visible, around 2 Hz, for the displayed signal.

The “Turnaround” regime is a break in the periodicity, as evidenced by the drop in energy

at the footstep frequencies, on the time-frequency representation of the acceleration.

2.2.2 Synthetic data sets: MeanShi� and FreqShi�

Two synthetic data sets are simulated: MeanShift and FreqShift. In both situations, simula-

tion parameters are chosen so that the signals approximate the ones from Gait. Precisely,

MeanShift, which contains noisy piecewise constant signals, is an idealized description of

the time-frequency representation of Gait signals. As for FreqShift, which contains noisy

piecewise periodic signals, it is an idealized description of Gait signals, in both the time

domain and the time-frequency domain. Each set is composed of 400 signals, grouped into

four subsets of similar characteristics (same length and same noise level).

Simulation strategy. For both data sets, the simulation strategy is the same. Precisely,

for a given number K of change points, a number of samples T, a noise level σ, and a signal

model (piecewise constant or piecewise periodic), the simulation strategy of a signal is

outlined as follows:

1. randomly draw K change point indexes from {1, . . . , T} using a Dirichlet distribution

(see Remark 3.1),

2. simulate a signal according to the chosen model, using the already drawn change

points,

3. randomly draw and add a Gaussian white noise (of standard deviation σ) to each

dimension of the signal.

The distribution of the change point locations, displayed on Figure 3.6, is arbitrarily chosen

to match the segmentations found in the Gait data set.

84 CHAPTER 3. EVALUATION FRAMEWORK: METRICS AND DATA SETS

Remark 3.1 (Dirichlet distribution). The Dirichlet distribution, denoted Dir(α), is a contin-
uous multivariate probability distribution parametrized by a vector α = [α1, . . . ,αn]. Its

support is the set of [0,1]n-valued vectors x whose coordinates sum to 1, meaning that

x1 + · · ·+ xn = 1. The probability density function fα(·) is given by

fα(x1, . . . , xn) =
1

B(α)

n

∏
i=1

xαi−1
i (∀xi > 0 s.t. x1 + · · ·+ xn = 1) (3.6)

where B(α) is a normalization function. The Dirichlet distribution is used to model the

K + 1 regime durations t1/T, (t2 − t1)/T, . . . , (T − tK)/T associated with a segmentation

T = {t1, . . . , tK} (durations are normalized by the number of samples T). More precisely,

to construct K random change point indexes, simply draw (x1, . . . , xK+1) from a Dirichlet

distribution Dir(α). The change point indexes are given by

tk = bTx1 + · · ·+ Txkc (3.7)

For all synthetic signals, the parameter α is arbitrarily set to (5,5,3,5,1)× 2000 to match

the segmentations found in the Gait data set.

0 100 200 300 400 500

0

10

20

30

40

%

0 500 1,000 1,500 2,000

0

10

20

30

40

%

Figure 3.6: Change point repartition for all simulated signals. Left: 500-sample long signals.

Right: 2000-sample long signals.

TheMeanShi� data set. The MeanShift data set contains Rd
-valued (d = 20) piecewise

constant signals with K = 4 change points, T ∈ {500,2000} samples and a noise level

σ ∈ {1,3}. We consider four scenarios for di�erent values of (T,σ): Scenario 1, 2, 3 and 4

respectively correspond to (T,σ) equal to (500,1), (500,3), (2000,1) and (2000,3). For

a given scenario, 100 signals are generated according to the following model:

yt =
K

∑
k=1

δk1(tk < t) (t = 1, . . . , T) (3.8)

where T = {tk}K
k=1 is a random set change indexes, and the δk ∈ Rd

are such that

δk = [±1, . . . ,±1] ∈ Rd
with random coe�cients equal to ±1. As a result, the complete

MeanShift data set contains L = 400 signals. A signal example is displayed in Figure 3.7.

2. EVALUATION FRAMEWORK 85

0
10

0
20

0
30

0
40

0
50

0
10

.07.
5

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

(
a
)

D
i
m

e
n

s
i
o

n
1

0
10

0
20

0
30

0
40

0
50

0
151050510

(
b
)

D
i
m

e
n

s
i
o

n
2

0
10

0
20

0
30

0
40

0
50

0
1050510

(
c
)

D
i
m

e
n

s
i
o

n
3

0
10

0
20

0
30

0
40

0
50

0

1050510

(
d

)
D

i
m

e
n

s
i
o

n
4

0
10

0
20

0
30

0
40

0
50

0
10

.07.
5

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

(
e
)

D
i
m

e
n

s
i
o

n
5

0
10

0
20

0
30

0
40

0
50

0
1050510

(
f
)

D
i
m

e
n

s
i
o

n
6

0
10

0
20

0
30

0
40

0
50

0
7.

5

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

(
g

)
D

i
m

e
n

s
i
o

n
7

0
10

0
20

0
30

0
40

0
50

0

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

10
.0

(
h

)
D

i
m

e
n

s
i
o

n
8

0
10

0
20

0
30

0
40

0
50

0

10505

(
i
)

D
i
m

e
n

s
i
o

n
9

0
10

0
20

0
30

0
40

0
50

0

10505

(
j
)

D
i
m

e
n

s
i
o

n
10

0
10

0
20

0
30

0
40

0
50

0

10
.07.
5

5.
0

2.
5

0.
0

2.
5

5.
0

(
k

)
D

i
m

e
n

s
i
o

n
11

0
10

0
20

0
30

0
40

0
50

0

1050510

(
l
)

D
i
m

e
n

s
i
o

n
12

0
10

0
20

0
30

0
40

0
50

0
10

.07.
5

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

(
m

)
D

i
m

e
n

s
i
o

n
13

0
10

0
20

0
30

0
40

0
50

0

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

(
n

)
D

i
m

e
n

s
i
o

n
14

0
10

0
20

0
30

0
40

0
50

0
10

.07.
5

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

(
o

)
D

i
m

e
n

s
i
o

n
15

0
10

0
20

0
30

0
40

0
50

0
7.

5

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

(
p

)
D

i
m

e
n

s
i
o

n
16

0
10

0
20

0
30

0
40

0
50

0
10

.07.
5

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

(
q

)
D

i
m

e
n

s
i
o

n
17

0
10

0
20

0
30

0
40

0
50

0

1050510

(
r
)

D
i
m

e
n

s
i
o

n
18

0
10

0
20

0
30

0
40

0
50

0

1050510

(
s
)

D
i
m

e
n

s
i
o

n
19

0
10

0
20

0
30

0
40

0
50

0
1050510

(
t
)

D
i
m

e
n

s
i
o

n
20

F
i
g
u

r
e

3
.7

:
S
i
g
n

a
l

e
x
a
m

p
l
e

f
r
o

m
M
e
a
n
S
h
i
f
t

(
S
c
e
n

a
r
i
o

2
)
.

T
h

e
t
r
u

e
s
e
g
m

e
n

t
a
t
i
o

n
i
s

i
n

d
i
c
a
t
e
d

b
y

t
h

e
a
l
t
e
r
n

a
t
i
n

g
c
o

l
o

u
r
s
.

86 CHAPTER 3. EVALUATION FRAMEWORK: METRICS AND DATA SETS

The FreqShi� data set The FreqShift data set contains univariate (d = 1) piecewise

periodic signals with K = 4 change points, T = 2000 samples and Signal-to-Noise Ratio

SNR ∈ {−5,−1,0,2} dB. For each SNR, 100 signals are generated according to the following

model:

yt = sin(2π f1t) + sin(2π f2t) (t = 1, . . . , T) (3.9)

where f1 and f2 are frequencies such that vector [f1, f2] alternates from [0.20,0.30] to

[0.23,0.27] at each change point indexes. As a result, the complete FreqShift data set

contains L = 400 signals. In the remainder of the manuscript, the time-frequency represen-

tation of signals from FreqShift is de�ned as the absolute value of coe�cients of the STFT,

computed with 300 samples per segment and 75% overlap. A signal example is displayed

on Figure 3.8.

0 250 500 750 1000 1250 1500 1750 2000
Time

4

2

0

2

4

(a) Original signal

0 250 500 750 1000 1250 1500 1750 2000
Time

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(b) Time-frequency representation

0.0 0.1 0.2 0.3 0.4 0.5
frequency [Hz]

0

10

20

30

40

PS
D

[V
**

2/
Hz

]

(c) Power spectral density

Figure 3.8: Signal example from FreqShift (SNR = −1 dB). (a): the true segmentation is

indicated by the alternating colours.

2.2.3 Comments on the data sets

To evaluate the di�culty of the change point detection task, we can calculate average

mean-shift amplitudes across the MeanShift, FreqShift and Gait data sets. For each change

2. EVALUATION FRAMEWORK 87

point, the mean-shift amplitude is the di�erence in mean between the previous regime and

the following regime. Intuitively, the larger the amplitude, the easier the task is. Formally,

for a change point t?k , the mean-shift amplitude ∆ and the normalized mean-shift amplitude

∆̃ between the sub-signals zleft := zt?k−1..t?k and zright := zt?k ..t?k+1
, are respectively given by

∆(zleft, zright)
2 :=

∥∥z̄left − z̄right

∥∥2
and

∆̃(zleft, zright)
2 :=

1
d

d

∑
i=1

(z̄
left,i − z̄

right,i)
2

σ̂2
left,i/Tleft + σ̂2

right,i/Tright

(3.10)

where z̄•, z̄•,i, T• and σ̂2
•,i (with • standing for either “left” or “right”) respectively are the

empirical mean of z•, the empirical mean of z•,i (the i-th dimension of z•), the number of

samples of z• and the (unbiased) empirical standard deviation of z•,i. Average mean-shift

amplitudes are then computed on the raw signals from MeanShift and on the time-frequency

representation of the FreqShift and Gait signals. Several observations can be made from

the results provided in Table 3.1.

Scenario ∆ ∆̃
1 4.53 7.24
2 4.82 2.56
3 4.49 14.22
4 4.58 4.83

(a) MeanShift data set

SNR ∆ ∆̃
−5dB 0.51 13.62
−1dB 0.48 19.36
0dB 0.48 20.96
2dB 0.48 24.67

(b) FreqShift data set (time-

frequency representation)

∆ ∆̃
Stand/Walk 0.97 50.20

Walk/Turnaround 2.28 31.51
Turnaround/Walk 2.26 30.51

Walk/Stop 0.85 35.21
Average 1.59 36.86

(c) Gait data set (time-frequency representa-

tion)

Table 3.1: Average mean-shift amplitudes for the MeanShift, FreqShift and Gait data sets.

• On theMeanShi� data set, Scenario 3, Scenario 1, Scenario 4, and Scenario 2 are in

ascending order of di�culty, as evidenced by the values of the normalized mean-shift

amplitudes. This can be explained by the fact that segmentation is easier with more

samples, and less noise. Indeed, the most di�cult one, Scenario 2, has the less samples

(T = 500) and the most noise (σ = 3).

• On the FreqShi� data set, the SNR and the normalized mean-shift amplitude are

positively correlated, meaning that changes are more visible when there are less noise.

Comparatively to MeanShift, normalized amplitudes are greater. This indicates that

change point detection is to be easier on FreqShift. Experiments that are presented

88 CHAPTER 3. EVALUATION FRAMEWORK: METRICS AND DATA SETS

later in this manuscript contradict this statement, showing the limits of the mean-

shift amplitude as a proxy for segmentation di�culty, when comparing changes of

di�erent types.

• On the Gait data set, the mean-shift amplitudes are di�erent depending on the

change point type. For instance, the second and third change points have lower

amplitudes, compared to the �rst and last one. This indicates that “Turnaround” is

the most di�cult regime to segment. Also, even though the �rst and last change

points separate the same regimes (“Walk” and a rest period), and have comparable

mean-shifts, their normalized amplitudes are di�erent. This is due to the fact that the

last regime (“Stop”) contains a lot less samples than any other regime, on average.

3 Summary tables

The data sets and metrics used in this thesis are summarized in Table 3.2 and Table 3.3.

Data set T d L noise

MeanShift 500,2000 20 4× 100 σ = 1,3
FreqShift 2000 1 4× 100 SNR = −5,−1,0,2 dB

Gait 1700− 4000 2 262 -

Table 3.2: Data set summary table: number of samples T, dimension d, number of signals

L, noise level. Note that signals from FreqShift and Gait also have a time-frequency

representation.

Metric Formula

Hausdorff max {maxt̂∈T̂ mint?∈T ? |t̂− t?|, maxt?∈T ? mint̂∈T̂ |t̂− t?| } (2.1.2)

RandIndex

(
|gr(T̂) ∩ gr(T ?)|+ |ngr(T̂) ∩ ngr(T ?)|

)
/T/(T − 1) (3.2)

Prec |Tp|/K̂ (3.4)

Rec |Tp|/K?
(3.4)

F1 score 2× (Prec× Rec)/(Prec+ Rec) (3.5)

Table 3.3: Metric summary table: true change point set T ?
, estimated change point set T̂ .

Part II

Greedy change point detection

89

4
Greedy change point detection

Contents

1 Statistical model for change point detection 92

1.1 Problem formulation . 92

1.2 Related work . 92

1.3 Contributions of the chapter . 93

2 Change point detection as a sparse regression task 93

2.1 The Heaviside decomposition . 94

2.2 Equivalence to a sparse regression task 95

2.3 Greedy change point detection: the gCPD algorithm 95

2.4 Heuristics for gCPD . 97

2.5 Complexity analysis . 98

2.6 Stopping criterion . 99

3 Conclusion . 99

Appendices . 99

4.A Theoretical Analysis . 99

4.A.1 Model and technical assumptions 100

4.A.2 Asymptotic consistency . 100

4.A.3 Sketch of proof of Theorem 4.1 . 101

Abstract

The objective of this chapter is to design a sub-optimal strategy that leads to robust

and computationally e�cient signal segmentation. To that end, we introduce gCPD
(Greedy Change Point Detection), using a sparse regression formulation of the change

point detection problem, with an appropriate design matrix. This algorithm greedily

approximates the optimal detection solution, using the Orthogonal Matching Pursuit

(OMP) strategy. This results in a time complexity of the order of O(T), where T is

the signal length. In addition, asymptotic consistency results are derived.

92 CHAPTER 4. GREEDY CHANGE POINT DETECTION

1 Statistical model for change point detection

1.1 Problem formulation

We consider the segmentation of an Rd
-valued noisy signal with K?

change points:

yt = ut + εt (t = 1, . . . , T) (M4)

where ut is a Rd
-valued deterministic piecewise constant signal and (εt)0<t≤T are zero-

mean i.i.d. random variables. Without loss of generality, each dimension of u is assumed

to have zero mean. Let T ? := {t?k | k = 1, . . . ,K?} denote the set of change point indexes

(t?1 < t?2 < · · · < t?K?); de�ne in addition the dummy indexes t?0 := 0 and t?K?+1 := T.

Additional technical assumptions on ut and εt are described later. In matrix form, the noisy

piecewise constant model (M4) of the observed signal y is rewritten as follows:

Y = U + E (4.1)

where Y is the T × d matrix containing the observed signal {yt}t, U is the T × d matrix

containing the underlying piecewise constant signal {ut}t, E is T× d matrix containing

the noise realization {εt}t. Our objective is to design a detection algorithm that locates

change points with precision, while being computationally fast. We compare our approach

to several methods described in Chapter 2, among which Opt is the most precise one and

Win is the fastest. The algorithm is expected to address both known and unknown K?
and

to be asymptotically consistent, in the sense of De�nition 2.1 on page 52. This asymptotic

setting is formalized in Chapter 2, in particular Section 1.3 on page 52. The de�nition of

asymptotic consistency is simply recalled below.

De�nition 4.1 (Asymptotic consistency). A change point detection algorithm is said to be

asymptotically consistent if the estimated segmentation T̂ = {t̂1, t̂2, . . .} satis�es the following
conditions, when T −→ +∞:

(i) P(|T̂ | = K?) −→ 1,

(ii)
1
T

∥∥∥T̂ − T ?
∥∥∥

∞

p−→ 0,

where the distance between two change point sets is de�ned by

∥∥∥T̂ − T ?
∥∥∥

∞
:= max {max

t̂∈T̂
min
t?∈T ?

|t̂− t?|, max
t?∈T ?

min
t̂∈T̂
|t̂− t?| }. (4.2)

1.2 Related work

As described in detail in Section 3 on page 63, several methods already exist to tackle this

change point detection problem, namely Opt, BinSeg, BotUp and Win, each combined

with the cL2 cost function.

• The most accurate but also computationally intensive detection algorithm is Opt. It

can only be applied if the number of changes is known beforehand. Its complexity is

of the order of O(KT2) (where T is the number of samples and K?
the number of

changes).

2. CHANGE POINT DETECTION AS A SPARSE REGRESSION TASK 93

• Win is a fast approximate method that searches change points locally and can

accommodate known and unknown number of change points.

• Binary segmentation BinSeg and bottom-up segmentation BotUp are sequential

tree-based methods that address several of the drawbacks of Opt and Win. They are

able to address both known and unknown K?
and are faster than Opt. However they

remain local methods, and their estimation is not as optimal as global methods [111].

In order to create e�cient procedures that use the whole signal to detect change points,

relations between the change point detection problem and sparse regression, with an

appropriate design matrix, have been investigated in the literature. Generally, methods to

approximate the solution of sparse regression fall into two categories: basis pursuit and

matching pursuit. Methods based on basis pursuit have been applied to detect an unknown

number of change points, for instance regressions with a total variation penalty (or a fused

lasso penalty) [73, 160]. Their implementations are e�cient, with complexity of the order

of O(KT) or O(T log T) [160] and there are theoretical guarantees of detecting correct

changes. Nevertheless, the number of change points is treated as unknown and cannot be set

explicitly. Conversely, we show in this chapter that methods based on matching pursuit can

accommodate either K?
known or K?

unknown. In a nutshell, they are greedy approaches

that produce a sequence of incremental approximations of the original signal, using a set

of elementary signals, called atoms. The most well-known examples of such algorithms are

Matching Pursuit (MP) [54] and its extension, Orthogonal Matching Pursuit (OMP) [152].

Roughly, MP constructs the approximation by sequentially adding the projection on a

new atom. OMP follows a slightly di�erent strategy: the approximation is the orthogonal

projection of the original signal onto a linear subspace spanned by an increasing number of

atoms. While MP is faster than OMP from a computational standpoint, its convergence rate

can be slow, because the same atom can be selected several times [54, 152]. Those strategies

are often used in contexts like compressed sensing and sparse approximation [38, 53, 54, 152],

but not on change point detection problems.

1.3 Contributions of the chapter

We propose a sequential approach, called gCPD for “greedy change point detection”, that

sequentially generates change point estimates t̂(k) (at the k-th iteration) and removes the

associated mean-shifts from the initial signal, until a stopping criterion is met. (In the

following, the subscript ·(k) refers to the k-th iteration of a sequential algorithm.) Our

algorithm is easily implemented, and, as we demonstrate in this work, is asymptotically

consistent. We further show that, in practice, this method can accommodate a known or

unknown K?
, and has linear complexity.

2 Change point detection as a sparse regression task

This section presents the equivalence between change point detection and sparse regression,

then describes the implementation of our algorithm. To that end, we start o� by introducing

the atoms and dictionary.

94 CHAPTER 4. GREEDY CHANGE POINT DETECTION

2.1 The Heaviside decomposition

Using the sparse approximation terminology, we introduce a matrix S ∈RT×T−1
, called

“dictionary”, whose columns are well-suited elementary signals Sα ∈RT
(in matrix form),

called “atoms”. The continuous function from which all atoms are sampled is given by

∀τ ∈ [0,1] hα(τ) := −
√

1− α

α
1{τ ≤ α}+

√
α

1− α
1{α < τ}. (4.3)

It is a centered and scaled step function with a single change point located at α.

De�nition 4.2 (Atoms and dictionary). The atoms Sα ∈RT
are univariate signals (in matrix

form) and de�ned as follows:

Sα :=
1√
T

[
hα
(
t/T

)]
1≤t≤T

. (4.4)

The dictionary matrix S ∈RT×T−1
is de�ned as the concatenation of T − 1 atoms:

S := [S1/T,S2/T, . . . ,S1−1/T]. (4.5)

The elementary signal Sα
has zero mean and is scaled to unit Euclidean norm. It is easy

to see that the dictionary matrix S has full rank: its columns form a basis of the subspace

spanned by signals with zero mean. Figure 4.1 displays an atom example. Those atoms are

t T − t

√
T

t(T−t)

Figure 4.1: Atom example St/T
with t ∈ {1, . . . , T}.

useful because any signal can be expressed as a linear combination of those elementary

signals. More importantly, any piecewise constant signal is a linear combination of only a

few of those atoms. This decomposition is called here the Heaviside decomposition, after the

fact that each elementary signal Sα
is a translated and scaled version of the Heaviside step

function. Similar decompositions have been used in [65, 73, 160]. In detail, let x = {xt}t
denote an Rd

-valued signal with T samples and zero mean. Let X ∈RT×d
be the matrix

representation of x, i.e. Xt,• := xt. Then there exists a unique ∆ ∈RT−1×d
such that

X = S∆ (4.6)

where S is de�ned in (4.5). Furthermore, some algebraic manipulations give

∆t,• =

√
t(T − t)

T
(Xt+1,• − Xt,•). (4.7)

The support of ∆ (the set of non-zero coe�cients) is exactly the set of change points of the

signal X, meaning that

t is a change point ⇐⇒ xt , xt+1 ⇐⇒ ∆t,• , 0. (4.8)

The decomposition (4.6) is called the Heaviside decomposition.

2. CHANGE POINT DETECTION AS A SPARSE REGRESSION TASK 95

2.2 Equivalence to a sparse regression task

In matrix form, the piecewise constant model (M4) of the observed signal y is rewritten

using the Heaviside decomposition:

Y = S∆? + E (4.9)

where ∆? ∈RT−1×d
is the Heaviside representation of the unobserved piecewise constant

signal U. Estimating the set of indexes T from the observed signal y and solving the sparse

regression problem (4.9) are two equivalent tasks. In addition, ∆?
is the (sparse) matrix

such that

∀t? = t?1 , . . . , t?K? , ∆?
t?,• =

1√
T

√
t?(T − t?) (Ut?+1,• −Ut?,•) and 0 elsewhere.

(4.10)

Interestingly, both the amplitude and location of a mean-shift in�uence the corresponding

coe�cient in the Heaviside representation. Figure 4.2 displays a signal example and its

representation. The set of breakpoints T is directly related the support of ∆?
:

0 1

−1

0

1

2

+1

+1 −1

0 1

−10

−5

0

5

10

Figure 4.2: Top: piecewise constant signal example (T = 500). Bottom: corresponding

Heaviside representation. The x-axis is t/T.

T = {t s.t. ∆?
t,• , 0} (4.11)

In particular, the number of breakpoints is easily recovered from the matrix ∆?
:

‖∆?‖0,1 =
T−1

∑
t=1

1(∆?
t,• , 0) = |T ?| = K?. (4.12)

2.3 Greedy change point detection: the gCPD algorithm

Since the change point detection problem can be seen as a sparse regression problem (4.9),

we propose to solve it using the OMP principle [54, 152] with the Heaviside dictionary. In

96 CHAPTER 4. GREEDY CHANGE POINT DETECTION

the following, our algorithm is referred to as gCPD for “greedy change point detection” and

outlined in Algorithm 4.1. The algorithm is an iterative procedure searching for a solution

of (4.9) by sequentially generating change point estimates, and removing the associated

mean-shifts from the initial signal, until a stopping criterion is met.

Initialization. At iteration k = 1,gCPD starts by searching the atom St/T
(t = 1, . . . , T−

1) that is most correlated with the signal Y. The �rst change estimate t̂(1) of gCPD corre-

sponds to the atom St/T
such that

∥∥Y′St/T
∥∥2

is maximal:

t̂(1) := arg max

t<T

∥∥∥Y′St/T
∥∥∥

2
. (4.13)

Then Y is projected on the subspace orthogonal to the selected atom St̂(1)/T
; the resulting

residual is denoted R̂(1)
:

R̂(1) := Y− P̂(1)Y. (4.14)

where the orthogonal projection P̂(1)
on the selected atom is de�ned by

P̂(1) := St̂(1)/T(St̂(1)/T)′. (4.15)

Iteration. After k iterations (k ≥ 1), the set of already estimated indexes is denoted

T̂ (k−1) := {t̂(1), . . . , t̂(k−1)}. The k-th change point estimate t̂(k) is given by

t̂(k) := arg max

t<T

∥∥∥(R̂(k−1))′St/T
∥∥∥

2
. (4.16)

The orthogonal projection P̂(k)
on the selected atoms at iteration k is de�ned by

P̂(k) := S(T̂ (k))S(T̂ (k))
†

(4.17)

where S(T̂ (k)) denotes the sub-matrix of S containing the columns of the already chosen

atoms [St̂(1)/T, . . . ,St̂(k)/T]. The residual signal R̂(k)
is

R̂(k) := Y− P̂(k)Y. (4.18)

0 1
−1

0

1
Step 0

0 1
−1

0

1
Step 1

0 1
−1

0

1
Step 2

0 1
−1

0

1
Step 3

Figure 4.3: Example of a noiseless piecewise constant signal (T = 500) and the successive

residual signals when gCPD is applied. At step 0, the initial signal is displayed.

2. CHANGE POINT DETECTION AS A SPARSE REGRESSION TASK 97

The algorithm gCPD is illustrated on Figure 4.3. At Step 0, the original signal is displayed.

At �rst, the second change point is selected because it is the most obvious one, that is to

say that the correlation (4.19) with the associated Heaviside atom is the greatest. Then the

projection “deletes” this breakpoint. Note that the mean-shift has not entirely disappeared

but was greatly reduced. This is because the dictionary is not orthogonal. Atoms with

breakpoints close to each other are heavily correlated. In the sparse approximation literature,

such a dictionary is called “coherent” [38]. As a result, a local shift remains. However the

mean value left of the selected change point is exactly equal to the right mean value (4.19).

Therefore the global contribution of the chosen atom to the residual is zero. Interestingly,

the other change points are left untouched by the projection, both in location and amplitude.

After this step, another breakpoint is selected and its contribution removed. After three

steps, there is no signal left, meaning that the change point locations and amplitudes have

been retrieved.

2.4 Heuristics for gCPD

Some comments can be made on both the greedy selection and the projection to provide

some intuition about how gCPD operates. The greedy selection (4.16) selects the most

pronounced mean-shift present in the signal. To illustrate, let X ∈RT×d
denote a signal

(in matrix form) and τ = t/T for a certain index t between 1 and T − 1. The correlation

between the atom Sτ
and X is

‖X′Sτ‖2 =
d

∑
j=1

〈
Sτ
∣∣X•,j

〉2

=
d

∑
j=1

1
T

(
−
√

1− τ

τ

t

∑
s=1

Xs,j +

√
τ

1− τ

T

∑
s=t+1

Xs,j

)2

= Tτ(1− τ)
∥∥X0..t − Xt..T

∥∥2

(4.19)

where X0..t and Xt..T are respectively the empirical means of {Xs,•}s≤t and {Xs,•}s>t. The

correlation (4.19) between a signal X and an elementary signal Sτ
is proportional to the

squared standard t-test for the comparison of two means, which is common expression in

the context of single change point detection [29, 31]. In other words, the selection step

selects the most pronounced change point. As shown in (4.19), a break is more likely to

be chosen if the associated mean-shift amplitude is large and if its location is away from

the edges of the signal. The quantity τ(1− τ) is maximal in the middle of the signal,

meaning that breaks at this location are more visible. The top-down algorithm BinSeg
also uses this greedy selection. Therefore, the �rst detected change point is the same for

both BinSeg and gCPD. However, BinSeg recursively splits the signal after, while

gCPD performs an orthogonal projection (4.17). By applying P̂(k)
to Y, the contribution of

the already selected change points T̂ (k)
is removed from the signal. Indeed, the projected

signal P̂(k)Y is equal to the best approximation by a piecewise constant signal formed

with the selected atoms and is subtracted from the initial data, yielding the residual (4.18).

Interestingly, a selected atom cannot be selected again in a subsequent iteration because the

residual is orthogonal to all of the previously selected atoms, thus setting the correlation to

0. In other words, thanks to the OMP principle, we cannot detect the same change point

twice.

98 CHAPTER 4. GREEDY CHANGE POINT DETECTION

Algorithm 4.1 gCPD

1: Input: centered data Y, stopping criterion.

2: Initialize R̂← Y, T̂ ← {} . Residual and set of breakpoints

3: while stopping criterion is not met do
4: Set t̂← 1, r← R̂1,•, m2← T

T−1 ‖r‖
2
. . Variable t̂ holds the change point estimate.

5: for t = 2, . . . , T − 1 do

6: if T
t(T−t)

∥∥∥r + R̂t,•
∥∥∥

2
> m2 then . Variable selection.

7: t̂← t
8: m2← T

t(T−t)

∥∥∥r + R̂t,•
∥∥∥

2

9: end if
10: r← r + R̂t,•
11: end for
12: Add the change point estimate t̂ to the set of selected breakpoints:

T̂ ← T̂ ∪ {t̂}. (4.20)

13: Let P̂ denote the orthogonal projection onto the subspace spanned by the selected

columns of S:

P̂← S(T̂)S(T̂)†
. (4.21)

14: Update the residual

R̂← Y− P̂Y. (4.22)

15: end while
16: Output: set T̂ of change point estimates.

2.5 Complexity analysis

Generally, matching pursuit algorithms have O(dT2) complexity at each step [54]. The

cost is mainly driven by the variable selection step, for which T − 1 correlations between

a signal of size T × d and an atom of size T are needed. In the context of change point

detection, we describe a signi�cant speed-up to compute the correlations which yields a

O(KdT) complexity (if K iterations are performed). Indeed, since every dimension of the

residuals has zero mean, the following equality holds:

Xt..T − X0..t =
1

T − t

T

∑
s=t+1

Xs,• −
1
t

t

∑
s=1

Xs,•

=
1

T − t

t

∑
s=1
−Xs,• −

1
t

t

∑
s=1

Xs,•

= − T
t(T − t)

t

∑
s=1

Xs,•

(4.23)

where X can be replaced by any residual signal R̂(k)
, t is any index between 1 and T − 1,

X0..t and Xt..T are de�ned as in (4.19). Hence, the largest correlation ‖X′Sτ‖2
can be found

incrementally using a cumulative sum and keeping track of the current maximum. The

variable selection is now linear in the number of samples and the dimension. Applying

3. CONCLUSION 99

the orthogonal projection is equivalent to inverting a matrix of size k (at step k) and then

a matrix multiplication. The resulting computational is also linear. The same goes for

the residual update. Therefore the complexity of one iteration of the algorithm is O(dT).
Overall, the complexity of gCPD is O(KdT).

2.6 Stopping criterion

A crucial element of the gCPD algorithm is the stopping criterion. The choice and calibra-

tion of a stopping rule is closely related to the issue of �nding the number of change points

in a signal. If the number of change points K?
is known, one simply stops the algorithm

after K?
iterations. If it is unknown, a linear penalty [82, 112] can be added to yield a the

following optimization problem:

min
∆∈R(T−1)×d

‖Y− S∆‖2 + β‖∆‖0,1 (β > 0) (4.24)

where β > 0 is the smoothing parameter and

‖∆‖0,1 =
T−1

∑
t=1

1(∆t,• , 0) (4.25)

is the number of non-zero rows of ∆. An adapted stopping rule to approximate the linearly

penalized change point detection is to stop at the k-th iteration if

∥∥∥R̂(k−1)
∥∥∥

2
−
∥∥∥R̂(k)

∥∥∥
2
< β. (4.26)

3 Conclusion

In this chapter, a sequential approach, called gCPD, for change point detection is described

that takes advantage of this formulation. In practice, gCPD can accommodate a known

or unknown K, and has linear complexity. In Appendix, this algorithm is shown to pro-

duce asymptotically consistent estimates. Numerical comparison of gCPD to standard

approximate and optimal procedures is carried out in Chapter 6. An interesting issue for

future research is to derive faster convergence rates for the change point estimates. As a

comparison, optimal procedures from the literature achieve a convergence speed of the

order of 1/T [110].

Appendices

4.A Theoretical Analysis

This section presents a theoretical study of gCPD. In particular, a result of asymptotic

consistency is obtained.

100 CHAPTER 4. GREEDY CHANGE POINT DETECTION

4.A.1 Model and technical assumptions

In order to establish our main result, several assumptions on the signal U and the noise E
are made.

Assumption 4.1. A positive constant M exists such that

max
1≤t≤T

‖Ut‖ ≤ M < +∞. (4.27)

Assumption 4.2. The change points t?1 , . . . , t?K? satisfy

∀0≤ k ≤ K?, |t?k+1 − t?k |/T ≥ ∆, (4.28)

where ∆ is a positive constant such that 0 < ∆ < 1.

In Assumption 4.2, the spacing between change point fractions is bounded away from zero.

This prevents breakpoints to be too close to each other and become indistinguishable. In

the literature, change point fractions are sometimes allowed to slowly tend to zero, as

T grows to in�nity (for instance at the rate of ln(T)2/T in [73]). As an example, both

Assumption 4.1 and Assumption 4.2 are satis�ed when the signal U is sampled from a �xed

piecewise constant function f : [0,1] −→Rd
, with sampling frequency 1/T.

Assumption 4.3. The Rd
-valued random sequence (εt)t is i.i.d. isotropic Gaussian with

mean zero and variance σ2
.

Our theoretical analysis relies heavily on Assumption 4.3. In a nutshell, since Gaussian

noise concentrates around its mean, therefore, with high probability, segmenting a noisy

piecewise constant signal is not harder than segmenting a noiseless piecewise constant

signal. Here, the Gaussian distribution is assumed, for technical convenience. It is reason-

able to conjecture that our main result remains valid under a weakened assumption, in

particular with sub-Gaussian distributions, as in [35, 73].

In the following, it is important to measure how close the elements of T̂ and T?
are, even

though the estimated number of change points is di�erent from the true number. To that

end, de�ne the quantity d(A|B) between two sets A and B by

d(A|B) := sup
b∈B

inf
a∈A
|a− b|. (4.29)

This “distance” measures how close to the elements of A all the elements of B are. The

Hausdor� distance can easily be rewritten using this d(·|·):

Hausdorff(T ?, T̂) = max[d(T ?|T̂),d(T̂ |T ?)]. (4.30)

4.A.2 Asymptotic consistency

Intuitively, the true change point fractions t?k /T are estimated more and more precisely as

the number of samples increases. This result is formally stated by Theorem 4.1.

4.A. THEORETICAL ANALYSIS 101

Theorem 4.1. Let Y follow Model M4, and suppose that Assumption 4.1, Assumption 4.2 and

Assumption 4.3 hold. Let T̂ denote the set of estimated change points after k ≤ K?
steps of

gCPD. Then there exist positive constants C1,C2 such that P(AT) ≥ 1− C1/T where

AT := { 1
T

d(T ?|T̂) ≤ C2γT} (4.31)

with (γT)T a non-increasing and positive sequence tending to zero as T tends to in�nity and

satisfying γT
√

T/ln(T) −→ +∞.

Corollary 4.1 (Consistency of gCPD). Algorithm gCPD (Algorithm 4.1), stopped after K?

iterations, is asymptotically consistent (in the sense of De�nition 2.1).

Corollary 4.1 means that gCPD produces consistent estimates of the change point fractions

of the signal U. This is true as long as the iterations stop before all true breakpoints are

detected. In other words, only the �rst K?
rounds of Algorithm 4.1 are meaningful. In the

situation where k > K?
, meaning that all change points have been selected, the orthogonal

projection “deletes” all breaks and the correlation between the residual and the atoms is

only driven by noise.

In the sparse approximation literature, guarantees of perfect reconstruction of the sparse

solution (which in our context is equivalent to detecting the correct change point indexes)

have been obtained under di�erent conditions. They most notably include the Mutual

Incoherence Property (MIP) [38], the Restricted Isometry Property (RIP) [53] and the Exact

Recovery Condition (ERC) [152]. However, the atoms of our dictionary are too heavily

correlated with each other to satisfy any of those conditions. For instance, consider the

MIP condition, which can be formulated as follows in our context:

The MIP condition is veri�ed ⇔ max
s,t

∣∣∣
〈

Ss/t
∣∣∣St/T

〉∣∣∣ < 1/(2K? − 1) (4.32)

Under this condition, it has been shown that the estimated change points are equal to

the true change points, with high probability [38, Theorem 7]. Nevertheless, after simple

algebraic manipulations, it is easy to show that maxs,t
∣∣〈Ss/t

∣∣St/T〉∣∣
tends to one as T

grows to in�nity, and therefore, is larger than 1/2 for T large enough. As a result, when

K? > 1, meaning that there are more than one change, the MIP is not satis�ed. To prove

the asymptotic consistency of the proposed algorithm, the usual theoretical analysis of the

OMP literature cannot be applied.

4.A.3 Sketch of proof of Theorem 4.1

We give here the outline of the proof of Theorem 4.1. In this section, the following notations

are used. Let T̂ = {t̂k|k = 1, . . . , K̂} be the set of K̂ estimated by gCPD after K̂ < K?

iterations (t̂1 < t̂2 < · · · < t̂K̂); de�ne in addition the dummy indexes t̂0 := 0 and t̂K̂+1 := T.

Denote by T̃ the set of true change points detected by T̂ , up to a distance TC2γT , where

C2 and γT are introduced in Theorem 4.1:

T̃ := {t? ∈ T ?
s.t. ∃t̂ ∈ T̂ , |t? − t̂| ≤ TC2γT}. (4.33)

Let P̂ and P̃ denote the orthogonal projections on the estimated change points and on the

detection change points respectively:

P̂ := S(T̂)S(T̂)†
and P̃ := S(T̃)S(T̃)†

. (4.34)

102 CHAPTER 4. GREEDY CHANGE POINT DETECTION

In addition, we de�ne: ∀τ ∈ (0,1),

φ̂Y(τ) :=
1√
T

∥∥∥(Y− P̂Y)′Sτ
∥∥∥ and φ̂Y(0) = φ̂Y(1) = 0,

φ̂U(τ) :=
1√
T

∥∥∥(U − P̂U)′Sτ
∥∥∥ and φ̂U(0) = φ̂U(1) = 0,

φ̂E(τ) :=
1√
T

∥∥∥(E− P̂E)′Sτ
∥∥∥ and φ̂E(0) = φ̂E(1) = 0,

φ̃U(τ) :=
1√
T

∥∥∥(U − P̃U)′Sτ
∥∥∥ and φ̃U(0) = φ̃U(1) = 0.

(4.35)

Note that the change point gCPD selects at the next iteration is the index t̂ given by

t̂ = arg max

t=1,...,T
φ̂Y(t/T). (4.36)

In addition, introduce the event BT :

BT := { sup
1≤t1<t2≤T

1√
t2 − t1

∥∥∥∥∥
t2

∑
t=t1+1

Et,•

∥∥∥∥∥ ≤ ln(T)} (4.37)

Remark 4.1 (Informal sketch of proof). Before stating the successive lemmas that form the

proof, its main arguments are informally presented. The objective is to prove that if gCPD has

correctly detected true change points (meaning that the estimates are no further than TCγT
from a true change index), then the next one will also be close to a true change, provided there

are still changes to detect. It is �rst shown that the noise is well-behaved: on the event BT ,

whose probability tends to one, the noise can be bounded. On this event BT , gCPD is then

treated deterministically in the proof and the three following arguments are made:

• The correlation to maximize, φ̂Y , is uniformly close to the one without noise, φ̂U . (Alter-

natively, φ̂E is uniformly close to zero.)

• The noiseless correlation φ̂U is uniformly close to φ̃U , because estimated change points

are close to true ones.

• The maximum of φ̃U is reached on a true undetected change point t? ∈ T ?\T̃ .
By combining those three arguments for each iteration of gCPD, until K̂ = K?

, Theorem 4.1

is proven. The consistency of the algorithm is a straightforward application of Theorem 4.1.

In the following lemma, the event BT is shown to have high probability.

Lemma 4.1. Let Assumption 4.3 hold. Then the event BT satis�es P(BT) ≥ 1− C3/T,
where C3 is a positive constant.

Thanks to Lemma 4.1, the correlation φ̂E is shown to uniformly close to zero.

Lemma 4.2. Let Assumption 4.3 hold. Then on the event BT , which has probability larger

than 1− C3/T, the following occurs:

sup
τ

φ̂E(τ) ≤ 2

√
ln(T)

T
. (4.38)

4.A. THEORETICAL ANALYSIS 103

The following lemma considers the correlation φ̃U , or in other words, the situation without

noise where all estimated change points are equal to true changes.

Lemma 4.3. Let U follow Model M4 and suppose that Assumption 4.2 holds. Then there exists

t? ∈ T ?\T̃ such that

t? = arg max

t
φ̃U(t/T). (4.39)

In addition, the following holds:

∀t = 1, . . . , T, φ̃U(t?/T)− φ̃U(t/T) ≥ C5|t− t?|/T (4.40)

where C5 is a positive constant.

If the estimated change points are assumed to be close to the true ones, the projections of

U on T̂ and T̃ must be close, leading to Lemma 4.4.

Lemma 4.4. Let U follow Model M4, and suppose that Assumption 4.1 and Assumption 4.2

hold. Further assume that

1
T

d(T ?|T̂) ≤ C2γT (4.41)

where γT and C2 are introduced in Theorem 4.1. Then the following holds:

sup
τ∈[0,1]]

|φ̂U(τ)− φ̃U(τ)| ≤ C6γT/
√

T (4.42)

where C6 is a positive constant.

By combining Lemmas 4.2 to 4.4, the next estimate t̂ of gCPD is shown to be at a distance

no larger than TC2γT from a true change point, assuming that all previous estimates are

also that close, and there still changes to detect. This is formally stated in Lemma 4.5.

Lemma 4.5. Let Y follow Model M4, and suppose that Assumption 4.1, Assumption 4.2 and

Assumption 4.3 hold. Further assume that

1
T

d(T ?|T̂) ≤ C2γT (4.43)

where γT and C2 are introduced in Theorem 4.1. Then on the event BT , which has probability

larger than 1− C3/T, the following occurs:

1
T

d(T ?|{t̂} ∪ T̂) ≤ C2γT (4.44)

where

t̂ := arg max

1≤t≤T
φ̂Y(t/T). (4.45)

To prove Theorem 4.1, Lemma 4.5 is applied on the successive iterations of gCPD. In detail,

on the event BT , which has probability larger than 1− C3/T, the following occurs. At

the beginning of the algorithm, all conditions of Lemma 4.5 are satis�ed. (Note that since

no change point has been estimated yet, P̂ = P̃ = 0.) Therefore, the �rst estimate t̂(1) is

at a distance no larger than TC2γT from a true change point. At the second iteration, all

conditions of Lemma 4.5 are still satis�ed, and therefore

d(T ?|{t̂(1), t̂(2)}) ≤ TC2γT. (4.46)

This goes on, until all change points are detected.

5
Greedy kernel change point detection

Contents

1 The rkhs setup for change point detection 105

1.1 Problem formulation . 105

1.2 Related work . 106

1.3 Contributions of the chapter . 107

2 A kernel version of gCPD . 107

2.1 Reformulation of gCPD with ckernel 107

2.2 The gkCPD algorithm . 108

2.3 Complexity analysis . 109

2.4 Examples of kernels . 109

3 Conclusion . 110

Abstract

This chapter presents gkCPD (Greedy Kernel Change Point Detection), a kernel-based

extension of gCPD (see Chapter 4). Thanks to the properties of kernel reproducing

Hilbert spaces, gkCPD can detect changes in higher-order moments of probability

distributions. We provide several implementation details, that lead to an algorithm

with quadratic (in the number of samples) complexity. Nevertheless, gkCPD remains

faster than the optimal kernel change point detection algorithm.

1 The rkhs setup for change point detection

1.1 Problem formulation

We consider the segmentation of an Rd
-valued signal {yt}T

t=1 which, once mapped onto a

high-dimensional space, namely a reproducing kernel Hilbert space (RKHS), is piecewise

constant with additive noise. The objective is to locate changes in the mean of the mapped

signal. Formally, let k(·, ·) : Rd ×Rd 7→R denote a kernel function andH, the associated

RKHS. The related mapping function φ : Rd→H is implicitly de�ned by φ(yt) = k(yt, ·) ∈

106 CHAPTER 5. GREEDY KERNEL CHANGE POINT DETECTION

H and 〈φ(ys)|φ(yt)〉H = k(ys,yt). The RKHS norm ‖·‖H is also implicitly de�ned by

‖φ(yt)‖2
H = k(yt,yt). We assume that the mapped signal is such that

∀t ∈ {t?k + 1, . . . , t?k+1}, φ(yt) := µ?
k + εt (5.1)

where the t?k (t?1 < · · · < t?K) are change point indexes, t?0 := 0 and t?K+1 := T are

dummy variables, the µ?
k (k = 0, . . . , K) are elements of H and εt is a H-valued white

noise. Kernel change point detection aims at recovering the unknown set of change points

T ? = {t?1 , . . . , t?K}. The estimation strategy relies on the minimization of the following

kernel least square criterion V(·): for a given set of change points T , we de�ne

V(T) :=
|T |
∑
k=0

tk+1

∑
t=tk+1

‖φ(yt)− µ̄k‖2
H (5.2)

where µ̄k := 1
tk+1−tk

∑
tk+1
t=tk+1 φ(yt), and t0 := 0 and tK+1 := T are dummy variables.

1.2 Related work

Within the change point detection framework (Chapter 2), kernel change point detection

amounts to setting the cost function to the already introduced ckernel. Such cost functions

have emerged because they are non-parametric and model-free, and are able to detect

changes in higher-order moments (above the �rst two) of probability distributions. First

introduced in the context of change point detection by [72], it was applied for audio and

video segmentation. In this work, like in many works from the literature, the popular

Gaussian kernel is used, for its desirable theoretical properties [142] and its numerous

successful applications in machine learning [70, 74]. They combine the cost function

ckernel with the search method Opt (dynamic programming) to estimate the change points,

resulting in a complexity of the order of O(KT2) where K is the number of changes to

estimate and is �xed beforehand. The situation where the parameter K is unknown is

tackled in [5] from both a theoretical and methodological point of view. Their procedure

has non-asymptotic properties on the convergence of V(·) and has a complexity of the

order of O(KmaxT2) where Kmax is a user-de�ned upper bound on the number of change

points. Consistency results for the estimated change point indexes are provided in a recent

work [69]. The observed signal is assumed to be composed of independent random variables

with piecewise constant probability distribution. They show that the estimated change

point indexes converge with high probability to the true segmentation, when the number

of samples grows to in�nity, even if the parameter K is unknown. Other authors use ckernel

in combination with Win (window-based), in more applied contributions Those procedures

have been put to use in several areas, notably including audio and video segmentation [75],

physiological time series [37, 74] and micro-array segmentation [70].

Notations. It is convenient to introduce, for any T = {t1, t2, . . .} and any H-valued

signal {zt}t, the orthogonal projection PT z of z onto the subspace of signals that are

constant over the segments delimited by T . As demonstrated in [5], it is given by

∀t ∈ {tk + 1, . . . , tk+1} (PT z)t =
1

tk+1 − tk

tk+1

∑
s=tk+1

zs. (5.3)

Also, in the following, we shall simply refer to the signal {φ(yt)}t as φ(y).

2. A KERNEL VERSION OF GCPD 107

1.3 Contributions of the chapter

In Chapter 4, we have described a trade-o� (in terms of complexity) between the exact

detection Opt and the fast detection Win, that outperforms other approximate methods,

but is limited to the cost function cL2 and the detection of mean-shifts. We propose to

extend our algorithm gCPD to the cost function ckernel. We provide implementation details

that allow us to apply the same greedy strategy. The resulting algorithm has desirable

complexity properties and is non-parametric and model-free, thanks to the use of a kernel

cost function.

2 A kernel version of gCPD

We propose a greedy strategy which is an extension of gCPD with a kernel cost function,

with ckernel instead of cL2 . In the following, our algorithm is referred to as gkCPD for

“greedy kernel change point detection” and outlined in Algorithm 5.1.

2.1 Reformulation of gCPD with ckernel
The algorithm gkCPD is an iterative procedure that works in the same manner as gCPD.

Each iteration consists in two steps: 1) a single change point is detected (greedy detection),

2) its contribution to the original signal is removed with a projection (signal update). The

algorithm continues until a stopping criterion is met (which can accommodate K known or

unknown, see Section 2.6).

Initialization. At iteration k = 1, gkCPD starts by solving the single change point

detection problem. The �rst change estimate t̂(1) of gkCPD given by

t̂(1) := arg min

t<T
ckernel(y0..t) + ckernel(yt..T) (5.4)

Then φ(y) is projected on the subspace ofH-valued signals with a single mean-shift located

at t̂(1); the resulting residual is denoted r̂(1):

r̂(1) := φ(y)− PT̂ (1)φ(y) (5.5)

where T̂ (1) := {t̂(1)}.

Iteration. After k iterations (k ≥ 1), the set of already estimated indexes is denoted

T̂ (k−1) := {t̂(1), . . . , t̂(k−1)}. The k-th change point estimate t̂(k) is given by

t̂(k) := arg min

t<T
ckernel(r̂

(k−1)
0..t) + ckernel(r̂

(k−1)
t..T). (5.6)

where r̂(k−1)
is the residual signal from the previous iteration. The index t̂(k) is the solution

of the single change point detection problem, applied on the (k− 1)-th residual. The k-th

residual r̂(k) ∈ HT
is then de�ned as follows:

r̂(k) := φ(y)− PT̂ (k)φ(y) (5.7)

where T̂ (k) := {t̂(1), . . . , t̂(k)} is the set of already estimated indexes, after k iterations.

Thus de�ned, the residual is what remains of the signal φ(y) after the contributions of the

already inferred change points has been “projected” out.

108 CHAPTER 5. GREEDY KERNEL CHANGE POINT DETECTION

2.2 The gkCPD algorithm

Even though gCPD and gkCPD follow the same principle, the greedy detection (5.6) of

gkCPD cannot be performed in the same manner, because the mapping φ, and therefore the

residual (5.7), are not explicit. To overcome this issue, we express this operation using the

inner-products of the signal samples, i.e. 〈φ(ys)|φ(yt)〉H. To that end, introduce the inner-

product matrix (or Gram matrix) G ∈RT×T
of the implicit features: G := [k(ys,yt)]1≤s,t≤T

and the sub-sums of the matrix G:

Fa:b,c:d :=
b

∑
s=a+1

d

∑
t=c+1

Gst (0≤ a,b, c,d ≤ T). (5.8)

Assume that k− 1 iterations have already been performed: the objective is to estimate t̂(k)

from the residual r̂(k−1)
. After simple algebraic manipulations

1
, the greedy detection (5.6)

can be rewritten as below:

t̂(k) = arg max

t
t(T − t)

∥∥∥r̄(k−1)
0..t − r̄(k−1)

t..T

∥∥∥
2

H
(5.10)

where r̄(k−1)
0..t and r̄(k−1)

t..T are respectively the empirical means of the sub-signals {r̂(k−1)
s }s≤t

and {r̂(k−1)
s }s>t. The quantity to maximize is also known as the maximummean discrepancy

(MMD). It is put forth in [70] in a di�erent context to compare the distributions of two sets

of samples. According to (5.10), the change point estimate is located where the distributions

between the left part of the signal and the right part are the most di�erent. This quantity

can be expressed using the inner-products from the residual, yielding

t̂(k) = arg max

t<T

1
t(T − t) ∑

s,u≤t

〈
r̂(k−1)

s

∣∣∣r̂(k−1)
u

〉
. (5.11)

Using the fact that, by design (5.7), the inner-products

〈
r(k−1)

s

∣∣∣r(k−1)
u

〉
are equal to

〈φ(ys)|φ(yu)〉+ 〈 fs| fu〉 − 〈 fs|φ(yu)〉 − 〈 fu|φ(ys)〉 where f := PT̂ (k−1)φ(y), (5.12)

we are able to derive the following relation:

t

∑
s,u=1

〈
r̂(k−1)

s

∣∣∣r̂(k−1)
u

〉
= Ft̂j :t,t̂j :t +

(
t− t̂j

t̂j+1 − t̂j

)2

Ft̂j :t̂j+1,t̂j :t̂j+1
− 2

(
t− t̂j

t̂j+1 − t̂j

)
Ft̂j :t,t̂j :t̂j+1

(5.13)

where t̂j (j = 0, . . . ,k) is the unique element of T̂ (k−1)
(with t̂0 = 0) such that t̂j < t ≤ t̂j+1

and Fa:b,c:d is de�ned in (5.8). By combining (5.11) and (5.13), the greedy estimated t̂(k) can

be computed without explicitly calculating the residual signal. The complete algorithm is

described in Algorithm 5.1.

1
More precisely, we use the following relation: for any H-valued signal {zt}t with T samples and any

index t < T, we have

T

∑
s=1
‖zs − z̄‖2

H =

[t

∑
s=1
‖zs − z̄0..t‖2

H +
T

∑
s=t+1

‖zs − z̄t..T‖2
H

]
+

[
t(T − t)

T
‖z̄0..t − z̄t..T‖2

H

]
(5.9)

where z̄, z̄0..t, z̄t..T are respectively the mean elements of the signals {zs}s,{zs}s≤t,{zs}s>t.

2. A KERNEL VERSION OF GCPD 109

Algorithm 5.1 gkCPD
1: Input: inner product matrix G, stopping criterion.

2: Initialization: T̂ ← {}, I← [∑s≤i,t≤j Gst]1≤i,j≤T .

3: while stopping criterion is not met do
4: V← [] . Empty list

5: for t = 1, . . . , T − 1 do
6: t

left
←max{s ∈ T̂ ∪ {0, T}|s < t}

7: t
right
←min{s ∈ T̂ ∪ {0, T}|s ≥ t}

8: V[t]← Ft
left

:t,t
left

:t +
(

t−t
left

t
right
−t

left

)2
Ft

left
:t

right
,t

left
:t

right
− 2

(
t−t

left

t
right
−t

left

)
Ft

left
:t,t

left
:t

right

9: end for
10: t̂← arg maxt<T

V[t]
t(T−t)

11: T̂ ← T̂ ∪ {t̂}
12: end while
13: Output: change point estimates T̂ .

2.3 Complexity analysis

We described how to e�ciently compute the Gram matrix of the successive residuals. At

�rst sight, gkCPD has a quadratic complexity, like Opt [4]. We show, using the image

integral matrix, that gkCPD is faster than Opt. Indeed, provided that the matrix

I := [∑
s≤i,t≤j

Gst]1≤i,j≤T ∈RT×T
(5.14)

has been computed, the sub-sums Fa:b,c:d are computed in constant time since

Fa:b,c:d = Ibd + Iac − Ibc − Iad. (5.15)

Therefore, at each iteration, greedy detection (5.11) is performed in linear time. Filling the

matrix I is done recursively in quadratic time. Overall complexity of gkCPD is quadratic.

The exact change point detection method Opt also starts by �lling the matrix I and then

performs a dynamic programming procedure with a complexity of the order of O(KT2) [5,

69, 72]. In gkCPD, this last operation is replaced with an operation with linear complexity.

Even though gkCPD and Opt have quadratic complexities, gkCPD consequently runs

faster.

2.4 Examples of kernels

Our algorithm can be used with various types of data (not just Rd
-valued signals), as long

as kernel similarity measures are available. In that regard, gkCPD is able adjust to the

nature of the signals, which can range from univariate time-series to texts, histograms, etc.

Notable examples of kernel functions include [147]:

• The linear kernel k(x,y) = 〈x|y〉 with x,y ∈ Rd
. Using this kernel is formally

equivalent to using the cost function cL2(·) and therefore gCPD can be used instead

of gkCPD.

• The polynomial kernel k(x,y) = (〈x|y〉+ C)deg
with x,y ∈Rd

, and C and deg are

parameters.

110 CHAPTER 5. GREEDY KERNEL CHANGE POINT DETECTION

• The Gaussian kernel k(x,y) = exp(−‖x− y‖2 /(2σ2)) with x,y ∈Rd
.

• The χ2
-kernel k(x,y) = exp(−γ ∑i[(xi − yi)

2/(xi + yi)]) with γ ∈R a parameter.

It is often used for histogram data.

3 Conclusion

In this chapter, we described gkCPD, a kernel version of gCPD. Thanks to the properties of

reproducing Hilbert spaces, gkCPD detects changes in higher-order moments of probability

distributions. As a result of an e�cient implementation, this algorithm is faster than its

optimal counterpart Opt. Numerical experiments are carried out in the next chapter. From

a theoretical standpoint, the asymptotic consistency of gkCPD remains an open question.

The proof of Chapter 4 cannot be extended because, here, φ(yt) is a Hilbert space valued

random variable (and not a Rd
-valued random variable). A possible approach would be to

use concentration inequalities adapted to a non-Gaussian Hilbertian setting, as in [69].

6
Numerical experiments and evaluation

Contents

1 Experimental setting . 111

2 Results on the MeanShift data set . 112

3 Results on the FreqShift data set . 116

4 Results on the Gait data set . 119

4.1 Global results . 120

4.2 Results by change point type . 123

5 Discussion . 124

5.1 Execution time comparison . 124

5.2 Estimation of the number of change points with gCPD 125

Abstract

This chapter is dedicated to an empirical comparison of gCPD and gkCPD to standard

change point detection algorithms. The evaluation framework (metrics and data sets)

is described in Chapter 3. As a result, experiments show that both algorithms display

competitive results. In particular, greedy approaches are more accurate than standard

sub-optimal methods and faster than optimal methods.

1 Experimental setting

In this chapter we compare the two greedy algorithms gCPD and gkCPD to several

standard change point detection methods, on the MeanShift, FreqShift and Gait data sets.

Namely, there are eight other methods. Four algorithms rely on the cL2 cost function:

BinSeg (cL2) (binary segmentation), BotUp (cL2) (bottom-up segmentation) Opt (cL2)

(dynamic programming) and Win (cL2) (window-sliding). Two algorithms rely on the

non-parametric crb f cost function: Opt (crb f) and Win (crb f). Two algorithms rely on

parametric cost functions: Win (cΣ) and Win (cAR). Methods that use the cL2 cost function

(including gCPD) can only detect mean-shifts. Methods that use the crb f cost function

(including gkCPD) can detect general distribution changes. The cAR and the cΣ cost

functions are respectively sensitive to changes in the autoregressive coe�cients of the

signal and changes in the mean and covariance matrix of the signal. Optimal methods Opt

112 CHAPTER 6. NUMERICAL EXPERIMENTS AND EVALUATION

(cL2) and Opt (crb f) perform an exhaustive search over the set of signal partitions and

return the exact minimum of the sum of costs. Conversely, other methods are sub-optimal

and only approximate. The list of all methods is given in Table 6.1. Details about each

algorithm and cost function can be found in Chapter 2.

The parameters of the di�erent algorithms are calibrated as follows. In all experiments

and for all methods, the number K of change points to detect is assumed to be known. For

BotUp, the input signal is �rst divided in 5-sample long sub-signals. For Win, the window

size is set to 50 samples for the 500-point time series, to 100 for the 2000-point time series and

to 100 samples for all time series from the Gait data set. For cAR, the autoregressive order

is set to p = 5. The kernel used is the radial basis function k(x,y) = exp(−γ‖x− y‖2)
where γ is heuristically chosen as the inverse of the empirical median of the pairwise

distances, as in [142]. The metrics used to measure the performance of the compared

methods include Hausdorff, RandIndex, F1 score (see Chapter 3).

Algorithm Only mean-shift More than mean-shift Applied on

BinSeg (cL2) 3 MeanShift, Gait (TF)

BotUp (cL2) 3 MeanShift, Gait (TF)

gCPD (cL2) 3 MeanShift, Gait (TF)

gkCPD (crb f) 3 FreqShift (TF), Gait (TF)

Opt (cL2) 3 MeanShift, Gait (TF)

Opt (crb f) 3 FreqShift (TF), Gait (TF)

Win (cΣ) 3 FreqShift (TF), Gait (TF)

Win (cAR) 3 FreqShift, Gait

Win (cL2) 3 MeanShift, Gait (TF)

Win (crb f) 3 FreqShift (TF), Gait (TF)

Table 6.1: Summary table of compared change point detection methods. “TF” stands for

“Time-frequency representation”.

2 Results on theMeanShi� data set

M
e
a
n
S
h
i
f
t

M
e
t
r
i
c

g
C
P
D

B
i
n
S
e
g

(
c L

2
)

B
o
t
U
p

(
c L

2
)

W
i
n

(
c L

2
)

g
k
C
P
D

W
i
n

(
c r

b
f
)

W
i
n

(
c Σ

)
W
i
n

(
c A

R
)

O
p
t

(
c L

2
)

O
p
t

(
c r

b
f
)

S
c
e
n

a
r
i
o

1

H
a
u
s
d
o
r
f
f

0.
32

(±
0.

58
)

0.
23

(±
0.

51
)

2.
13

(±
0.

80
)

0.
43

(±
0.

67
)

0.
28

(±
0.

58
)

0.
30

(±
0.

56
)

65
.0

0
(±

38
.3

9)
1.

60
(±

2.
01
)

0.
08

(±
0.

27
)

0.
08

(±
0.

27
)

R
a
n
d
I
n
d
e
x

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

0.
99

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

0.
90

(±
0.

05
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

F
1
s
c
o
r
e

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

0.
54

(±
0.

20
)

0.
99

(±
0.

03
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

S
c
e
n

a
r
i
o

2

H
a
u
s
d
o
r
f
f

5.
55

(±
5.

06
)

7.
18

(±
10

.4
8)

7.
96

(±
4.

74
)

29
.6

2
(±

35
.9

5)
15

.9
7
(±

26
.6

8)
41

.0
6
(±

40
.6

8)
80

.4
5
(±

29
.7

1)
81

.9
2
(±

37
.4

8)
4.

29
(±

3.
61
)

4.
51

(±
4.

16
)

R
a
n
d
I
n
d
e
x

0.
99

(±
0.

01
)

0.
98

(±
0.

01
)

0.
98

(±
0.

01
)

0.
96

(±
0.

04
)

0.
98

(±
0.

03
)

0.
94

(±
0.

04
)

0.
85

(±
0.

04
)

0.
87

(±
0.

06
)

0.
99

(±
0.

01
)

0.
99

(±
0.

01
)

F
1
s
c
o
r
e

0.
95

(±
0.

12
)

0.
94

(±
0.

13
)

0.
91

(±
0.

15
)

0.
85

(±
0.

16
)

0.
91

(±
0.

16
)

0.
82

(±
0.

17
)

0.
31

(±
0.

21
)

0.
47

(±
0.

23
)

0.
97

(±
0.

10
)

0.
96

(±
0.

10
)

S
c
e
n

a
r
i
o

3

H
a
u
s
d
o
r
f
f

0.
28

(±
0.

53
)

0.
36

(±
0.

67
)

2.
17

(±
0.

63
)

1.
42

(±
0.

49
)

0.
31

(±
0.

54
)

1.
38

(±
0.

49
)

10
.5

5
(±

35
.6

8)
1.

78
(±

0.
97
)

0.
13

(±
0.

34
)

1.
69

(±
0.

48
)

R
a
n
d
I
n
d
e
x

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

01
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

F
1
s
c
o
r
e

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

0.
96

(±
0.

09
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

S
c
e
n

a
r
i
o

4

H
a
u
s
d
o
r
f
f

4.
63

(±
5.

95
)

5.
35

(±
6.

71
)

7.
68

(±
4.

86
)

10
.3

4
(±

27
.1

4)
5.

80
(±

7.
14
)

16
.2

8
(±

55
.1

7)
37

7.
55

(±
13

0.
63
)

22
5.

09
(±

18
2.

39
)

3.
14

(±
2.

60
)

4.
11

(±
2.

77
)

R
a
n
d
I
n
d
e
x

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

0.
99

(±
0.

00
)

0.
99

(±
0.

01
)

1.
00

(±
0.

00
)

0.
99

(±
0.

01
)

0.
84

(±
0.

06
)

0.
93

(±
0.

05
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

F
1
s
c
o
r
e

0.
99

(±
0.

03
)

0.
99

(±
0.

05
)

1.
00

(±
0.

02
)

0.
99

(±
0.

05
)

0.
99

(±
0.

05
)

0.
99

(±
0.

05
)

0.
37

(±
0.

23
)

0.
76

(±
0.

19
)

1.
00

(±
0.

00
)

1.
00

(±
0.

00
)

T
a
b
l
e

6
.2

:
M

e
a
n

s
a
n

d
s
t
a
n

d
a
r
d

d
e
v
i
a
t
i
o

n
s

o
n

t
h

e
M
e
a
n
S
h
i
f
t

d
a
t
a

s
e
t

a
r
e

s
h

o
w

n
.
H
a
u
s
d
o
r
f
f

i
s

e
x
p

r
e
s
s
e
d

i
n

n
u

m
b

e
r

o
f

s
a
m

p
l
e
s
.

T
h

e
m

a
r
g
i
n

o
f
F
1

s
c
o
r
e

i
s

M
=

10
s
a
m

p
l
e
s

f
o

r
S
c
e
n

a
r
i
o

1
a
n

d
2
,
a
n

d
M

=
20

s
a
m

p
l
e
s

f
o

r
S
c
e
n

a
r
i
o

3
a
n

d
4
.

114 CHAPTER 6. NUMERICAL EXPERIMENTS AND EVALUATION

In this section, all ten detection methods are compared on the MeanShift data set, described

in Section 2.2.2 on page 83. Several observations can be made from the results that are

reported in Table 6.2.

• Compared to the other algorithms, window-based methods are less robust
to noise. Overall, those methods have the most important decrease in performance

when going from Scenario 1 to Scenario 2, and from Scenario 3 to Scenario 4, i.e. from

σ = 1 to σ = 3. For instance, on Scenario 1 (σ = 1), Win (cL2) is close to optimal

according to all metrics, but on Scenario 2 (σ = 3), it is the least accurate method

among the the ones that use the cL2 cost function (Hausdorff is at 29.62 samples

on average, while the second worst is at 7.96). The same phenomenon is observed

for Win (cAR) and Win (crb f) when going from Scenario 3 to Scenario 4. This can

be explained by the fact that only a handful of samples are used to detect a change

point. Cost functions which rely on the estimation of several statistical quantities

are even more penalized by the lack of samples. This is the reason why Win (cΣ)

has poor performances, compared to other methods: it estimates the empirical mean

and empirical variance/covariance matrix of 20-dimensional signals using 25 or 50

samples (length of half a window). To a smaller extent, the same applies to Win
(cAR) which has to estimate p = 5 coe�cients. In addition, the signals do not follow

a (vector) autoregressive model. One solution to mitigate the lack of samples is to

increase window length. However, the number of samples cannot grow beyond a

certain limit because window-based methods are valid as long as there is at most one

change point within each window. Calibration of the window length is a common

issue [75]. To conclude, the search methodWin is better adapted to detect rare change

points, with cost functions that rely on the estimation of only a few parameters.

• Methods that use the cL2 cost function perform well on this data set. All ap-

proximate methods with the cL2 cost function (except Win, see previous observation)

have similar performances, especially on Scenario 1 and Scenario 3, where σ = 1.

According to all metrics, they are close to the optimal algorithm Opt (cL2). A closer

look reveals that gCPD is the most accurate (often by a thin margin) and BotUp
(cL2) has its Hausdorff value always above two samples (a consequence of the initial

segmentation in 5-sample long sub-signals). Such performances are expected because

the signals of this data set follow the exact model (piecewise constant with additive

Gaussian white noise) for which those methods were introduced.

• Using a kernel does bring about a signi�cant gain. For theOpt algorithms, both

cL2 and crb f have almost equal scores. The kernel-based alternative gkCPD does not

improve the segmentation performance of its counterpart gCPD. On Scenario 2 (the

most di�cult), gkCPD is less precise than gCPD according to Hausdorff and F1

score. This can be explained by the fact that crb f consider a general class of change

points while cL2 focuses on changes in the mean of Gaussian variables, exactly the

type of changes present in MeanShift. When using the optimal search method Opt,

both are equivalently precise, but with the approximate greedy method, and on the

most di�cult scenario, a di�erence can be observed.

• Segmentation example. These observations are illustrated on a segmentation

example displayed on Figure 6.1. The most accurate segmentation algorithms on this

2. RESULTS ON THE MEANSHIFT DATA SET 115

example are gCPD, gkCPD, BinSeg (cL2), Opt (cL2) and Opt (crb f): all change

points are recovered and worst error is 5 samples. Here, BotUp (cL2) is less accurate,

which is also true on average according to results in Table 6.2. Window-based

methods are visibly less precise.

To sum up, window-based methods perform relatively worse than other methods, because

of the limited number of samples they use. Algorithms with the cL2 cost function perform

well on this data set, to the point that kernel methods are not necessary.

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(a) gCPD (H: 5 , R: 0.98, F: 1.0)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(b) gkCPD (H: 5 , R: 0.98, F: 1.0)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(c) BinSeg (cL2) (H: 4, R: 0.99, F: 1.0)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(d) Win (c
rbf

) (H: 97 , R: 0.88, F: 0.5)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(e) BotUp (cL2) (H: 18 , R: 0.94 , F: 0.5)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(f) Win (cΣ) (H: 46, R: 0.9 , F: 0.25)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(g) Win (cL2) (H: 97, R: 0.90, F: 0.75)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(h) Win (cAR) (H: 86 , R: 0.88, F: 0.25)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(i) Opt (cL2) (H: 5 , R: 0.99, F: 1.0)

0 100 200 300 400 500
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(j) Opt (c
rbf

) (H: 5, R: 0.99 , F: 1.0)

Figure 6.1: Segmentation examples on a signal from MeanShift (Scenario 2). H, R and

F respectively denote Hausdorff, RandIndex and F1 score. The alternating coloured

areas denote the true segmentation. Dashed lines mark estimated change points. Only one

dimension of the signal is displayed. The complete signal is displayed on Figure 3.7 on

page 85.

116 CHAPTER 6. NUMERICAL EXPERIMENTS AND EVALUATION

3 Results on the FreqShi� data set

F
r
e
q
S
h
i
f
t

M
e
t
r
i
c

g
C
P
D

B
i
n
S
e
g

(
c L

2
)

B
o
t
U
p

(
c L

2
)

W
i
n

(
c L

2
)

g
k
C
P
D

W
i
n

(
c r

b
f
)

W
i
n

(
c Σ

)
W
i
n

(
c A

R
)

O
p
t

(
c L

2
)

O
p
t

(
c r

b
f
)

−
5d

B
H
a
u
s
d
o
r
f
f

57
.9

6
(±

64
.9

8)
79

.8
4
(±

95
.8

1)
53

.0
8
(±

38
.9

3)
36

8.
34

(±
13

7.
01
)

48
.2

8
(±

57
.0

6)
37

4.
48

(±
13

2.
76
)

36
7.

48
(±

16
0.

33
)

40
5.

47
(±

18
6.

93
)

34
.1

2
(±

51
.2

8)
27

.9
8
(±

26
.6

6)

R
a
n
d
I
n
d
e
x

0.
97

(±
0.

02
)

0.
96

(±
0.

04
)

0.
96

(±
0.

02
)

0.
84

(±
0.

07
)

0.
97

(±
0.

02
)

0.
84

(±
0.

06
)

0.
82

(±
0.

07
)

0.
79

(±
0.

07
)

0.
98

(±
0.

02
)

0.
98

(±
0.

01
)

F
1
s
c
o
r
e

0.
68

(±
0.

21
)

0.
62

(±
0.

23
)

0.
58

(±
0.

24
)

0.
35

(±
0.

23
)

0.
71

(±
0.

21
)

0.
32

(±
0.

22
)

0.
17

(±
0.

17
)

0.
10

(±
0.

15
)

0.
81

(±
0.

19
)

0.
82

(±
0.

18
)

−
1d

B
H
a
u
s
d
o
r
f
f

20
.8

6
(±

12
.7

0)
23

.8
6
(±

17
.7

5)
25

.1
7
(±

12
.0

8)
14

8.
59

(±
16

3.
52
)

17
.8

0
(±

7.
31
)

18
9.

09
(±

16
6.

78
)

34
8.

06
(±

13
4.

19
)

40
7.

57
(±

19
1.

55
)

13
.5

9
(±

6.
83
)

12
.7

6
(±

4.
91
)

R
a
n
d
I
n
d
e
x

0.
98

(±
0.

01
)

0.
98

(±
0.

01
)

0.
98

(±
0.

01
)

0.
95

(±
0.

04
)

0.
98

(±
0.

01
)

0.
94

(±
0.

05
)

0.
85

(±
0.

06
)

0.
80

(±
0.

07
)

0.
99

(±
0.

00
)

0.
99

(±
0.

00
)

F
1
s
c
o
r
e

0.
85

(±
0.

17
)

0.
84

(±
0.

18
)

0.
74

(±
0.

22
)

0.
77

(±
0.

19
)

0.
90

(±
0.

13
)

0.
71

(±
0.

19
)

0.
21

(±
0.

20
)

0.
14

(±
0.

16
)

0.
97

(±
0.

09
)

0.
97

(±
0.

08
)

0d
B

H
a
u
s
d
o
r
f
f

19
.7

3
(±

8.
90
)

21
.9

8
(±

9.
95
)

22
.1

5
(±

8.
02
)

97
.1

2
(±

14
8.

83
)

18
.6

7
(±

8.
38
)

11
0.

19
(±

15
2.

74
)

35
5.

42
(±

16
4.

17
)

36
7.

29
(±

14
2.

69
)

11
.8

8
(±

4.
73
)

11
.4

5
(±

4.
13
)

R
a
n
d
I
n
d
e
x

0.
98

(±
0.

01
)

0.
98

(±
0.

01
)

0.
98

(±
0.

01
)

0.
97

(±
0.

04
)

0.
98

(±
0.

01
)

0.
96

(±
0.

04
)

0.
84

(±
0.

08
)

0.
81

(±
0.

07
)

0.
99

(±
0.

00
)

0.
99

(±
0.

00
)

F
1
s
c
o
r
e

0.
87

(±
0.

17
)

0.
84

(±
0.

18
)

0.
79

(±
0.

21
)

0.
86

(±
0.

16
)

0.
90

(±
0.

15
)

0.
83

(±
0.

18
)

0.
25

(±
0.

19
)

0.
18

(±
0.

19
)

0.
99

(±
0.

05
)

0.
99

(±
0.

04
)

2d
B

H
a
u
s
d
o
r
f
f

18
.3

6
(±

6.
08
)

20
.5

6
(±

5.
58
)

21
.5

6
(±

7.
09
)

17
.8

4
(±

39
.0

4)
16

.1
0
(±

7.
56
)

20
.6

8
(±

39
.8

9)
34

5.
68

(±
17

9.
53
)

34
7.

07
(±

15
2.

22
)

9.
68

(±
4.

12
)

9.
64

(±
3.

66
)

R
a
n
d
I
n
d
e
x

0.
98

(±
0.

00
)

0.
98

(±
0.

00
)

0.
98

(±
0.

01
)

0.
99

(±
0.

01
)

0.
99

(±
0.

01
)

0.
99

(±
0.

01
)

0.
86

(±
0.

07
)

0.
83

(±
0.

07
)

0.
99

(±
0.

00
)

0.
99

(±
0.

00
)

F
1
s
c
o
r
e

0.
90

(±
0.

14
)

0.
83

(±
0.

17
)

0.
79

(±
0.

23
)

0.
95

(±
0.

12
)

0.
93

(±
0.

13
)

0.
92

(±
0.

14
)

0.
22

(±
0.

21
)

0.
25

(±
0.

20
)

0.
99

(±
0.

04
)

0.
99

(±
0.

03
)

T
a
b
l
e

6
.3

:
P

e
r
f
o

r
m

a
n

c
e

(
m

e
a
n

s
a
n

d
s
t
a
n

d
a
r
d

d
e
v
i
a
t
i
o

n
s
)

o
n

t
h

e
F
r
e
q
S
h
i
f
t

d
a
t
a

s
e
t
.

M
a
r
g

i
n

f
o

r
F
1
s
c
o
r
e

i
s

2
0

s
a
m

p
l
e
s
.
H
a
u
s
d
o
r
f
f

i
s

i
n

n
u

m
b

e
r

o
f

s
a
m

p
l
e
s
.

118 CHAPTER 6. NUMERICAL EXPERIMENTS AND EVALUATION

In this section, all ten detection methods are compared on the FreqShift data set, described

in Section 2.2.2 on page 86. Except Win (cAR), all algorithms are applied on the time-

frequency representation of the signals. Several observations can be made from the results

that are reported in Table 6.3.

• Segmentation is more di�cult on this data set. Compared to MeanShift, which

is an “ideal” data set, all algorithms are less accurate, even though the normalized

mean-shift amplitudes (see Table 3.1 on page 87) are larger on the FreqShift data set.

This is evidenced for instance by the Hausdorff values of both Opt (cL2) and Opt
(crbf) which are around ten samples at best (SNR = 0,2 dB), while they are around

four samples at worst on MeanShift. This is explained by several factors. The number

of dimensions is greater (50 for the time-frequency representation, 20 for MeanShift)

and few dimensions contain a mean-shift (see the spectrogram displayed on Figure 3.8

on page 86). The remaining dimensions only contain noise. Also, the coe�cients

of the the time-frequency representation follow a chi-squared distribution rather

than a Gaussian distribution [127]. Lastly, the trade-o� between time resolution and

frequency resolution of such representations limits the detection accuracy of the

change points.

• Window-based methods are less robust to noise. The same phenomenon as in

the MeanShift experiment is observed. The most illustrative example is Win (cΣ)

which performs almost equally bad for all noise levels. Interestingly, Win (cL2) and

Win (crb f) have relatively good scores when SNR= 2 dB. In this setting, window-

based have a cut-o� SNR level, above which they perform relatively well and under

which they perform poorly. Their estimations remain unstable, as indicated by the

high variance of Hausdorff, compared to other methods with the same performance.

• The algorithm gkCPD is generally more accurate. Using the kernel-based

gkCPD provides a more accurate segmentation, compared to the cL2-based methods.

For SNR = −5 dB, the second best algorithm is BotUp, but when SNR increases to

−1 dB, it does not improve as much as the other methods and gCPD is then the sec-

ond best performing algorithm. This also holds for SNR = 0 dB. When SNR is highest,

Win (cL2) is the closest method to gkCPD. This observation can be explained by the

fact that gkCPD relies on a kernel and noise in FreqShift signals (time-frequency

representation) is not Gaussian but distributed according a chi-squared.

• Segmentation example. These observations are illustrated on a segmentation

example displayed on Figure 6.1. The best methods on this example are gCPD
and gkCPD, which outperform on this particular signal Opt (cL2) and Opt (crb f).

BinSeg (cL2), Win (crb f) and BotUp (cL2) have less accurate: they all miss one

change point by 30-40 samples (which yields a F1 score of 0.75). Win (cL2) has a

similar Hausdorff value but misses two change points by 30 samples, which yields

a F1 score of 0.5.

To sum up, as in MeanShift, window-based methods perform quite worse than other

methods, except when the SNR is high enough (at 2 dB in this experiment). Contrary to

the MeanShift experiment, gkCPD improve the segmentation accuracy of algorithms that

use cL2 . Using a kernel is more appropriate when the signals di�er, even slightly, from the

“ideal” model of a piecewise constant signal with additive Gaussian white noise.

4. RESULTS ON THE GAIT DATA SET 119

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(a) gCPD (H: 14 , R: 0.99, F: 1.0)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(b) gkCPD (H: 13 , R: 0.99, F: 1.0)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(c) BinSeg (cL2) (H: 39 , R: 0.98, F: 0.75)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(d) Win (c
rbf

) (H: 31 , R: 0.97, F: 0.75)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(e) BotUp (cL2) (H: 40 , R: 0.97, F: 0.75)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(f) Win (cΣ) (H: 359 , R: 0.89, F: 0.25)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(g) Win (cL2) (H: 31 , R: 0.97, F: 0.5)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(h) Win (cAR) (H: 393 , R: 0.84, F: 0.0)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(i) Opt (cL2) (H: 25 , R: 0.97, F: 0.75)

0 250 500 750 1000 1250 1500 1750 2000

4

2

0

2

4

(j) Opt (c
rbf

) (H: 20 , R: 0.98, F: 0.75)

Figure 6.2: Segmentation example on a signal from FreqShift (SNR = −1 dB). H, R and

F respectively denote Hausdorff, RandIndex and F1 score. The alternating coloured

areas denote the true segmentation. Dashed lines mark estimated change points. The

time-frequency representation of the signal is displayed on Figure 3.8 on page 86.

4 Results on the Gait data set

In this section, all ten detection methods are compared on the Gait data set, described

in Section 2.2.1 on page 81. Global results are reported in Table 6.4 and the accuracy by

change point type is reported in Table 6.5.

120 CHAPTER 6. NUMERICAL EXPERIMENTS AND EVALUATION

4.1 Global results

Metric gCPD BinSeg (cL2) BotUp (cL2) Win (cL2) Opt (cL2)

Hausdorff 1.34 (±0.58) 4.44 (±3.38) 3.07 (±3.18) 2.92 (±3.21) 1.80 (±2.35)

RandIndex 0.90 (±0.03) 0.92 (±0.02) 0.92 (±0.03) 0.91 (±0.05) 0.92 (±0.02)

F1 score 0.73 (±0.20) 0.79 (±0.13) 0.78 (±0.16) 0.81 (±0.17) 0.85 (±0.13)

(a) Detection with the cL2 cost function.

Metric gkCPD Win (crbf) Win (cΣ) Win (cAR) Opt (crbf)

Hausdorff 1.13 (±0.67) 3.31 (±3.44) 6.06 (±3.87) 6.35 (±2.23) 1.29 (±1.06)

RandIndex 0.91 (±0.02) 0.91 (±0.05) 0.78 (±0.12) 0.81 (±0.04) 0.91 (±0.02)

F1 score 0.85 (±0.15) 0.80 (±0.18) 0.54 (±0.18) 0.51 (±0.17) 0.83 (±0.15)

(b) Detection with the c
rbf

, cΣ and cAR cost functions.

Table 6.4: Performance (means and standard deviations) on the Gait data set. Margin for F1

score is one second. Hausdorff is in second.

Several observations can be made from the results that are reported in Table 6.4. Interpre-

tation is here more complex than it was for the synthetic data sets MeanShift and FreqShift.

Depending on the metric, the ranking of algorithms is not always the same.

• Hausdorff measures the worst estimation error. A small Hausdorff values

indicates that all change points are correctly estimated, and a large Hausdorff

indicates that at least one change point is incorrectly estimated. By looking at this

metric, we observe the following.

– According to Hausdorff, the two best approximate methods are the greedy

ones, gCPD and gkCPD. Each has even a better score than its optimal coun-

terpart, Opt (cL2) or Opt (crb f). Here, optimal segmentation is not necessarily

best when the signals do not follow the model assumed by the cost function.

– The less accurate methods on this data set are Win (cΣ) and Win (cAR). As

observed in previous experiments, those cost functions have to estimate many

parameters, which can lead to poor performance when noise level is large and

the data do not follow the assumed model. Win (cL2) fares better than Win
(crb f), for similar reasons.

• RandIndex measures the proportion of agreement between two segmenta-
tions. A RandIndex value of 0.x indicates that it is x% likely that a pair of samples

are in the same regime or in di�erent regimes according to both segmentations.

Contrary to Hausdorff, not all change points are treated the same: errors on short

regimes weight less than errors on long regimes in the computation of this metric.

By looking at this metric, we observe the following.

– All method, except Win (cΣ) and Win (cAR) have a RandIndex around 0.9.

Tree-based methods, BinSeg (cL2) and BotUp (cL2), are slightly better (0.92)

and window-based methods, Win (cL2) and Win (crb f), have a slightly higher

variance. This indicates that long regimes (i.e. “Stand” and the two “Walk”

phases) are better recovered than short regimes (“Stop” phases).

4. RESULTS ON THE GAIT DATA SET 121

– Again, the less accurate methods on this data set are Win (cΣ) and Win (cAR)

with a RandIndex around 0.80.

• F1 score measures the precision and recall of the estimation. Missing a “true”

change point and placing several estimations around one “true” change point both

deteriorate the F1 score. By looking at this metric, we observe the following.

– Certain methods that have a Hausdorff value well above one second (the

margin of F1 score) still have good F1 score values (around 0.80), for instance

Win (cL2) and Win (crb f). This indicates that those algorithms tend to miss

a change point by a large margin (resulting in a high Hausdorff) but the

remaining change points are well estimated.

– The least accurate methods are Win (cΣ) and Win (cAR). They both seem to

miss two out of the four change points (F1 score around 0.5). The most accurate

method is gkCPD (F1 score of 0.85).

These observations are illustrated on a segmentation example displayed on Figure 6.3. The

best method on this signal is gkCPD, followed by Opt(cL2) and Opt (crb f). A common

behaviour, shared by methods with a RandIndex above 0.90 (for instance gCPD) is to

include in the “Stand” phase the �rst footstep of the “Walk” phase, and to include in the

“Stop” phase the last step of the “Walk” phase. This can be explained by the fact that either

the �rst or the last footstep has a smaller amplitude than the others.

To sum up, the segmentation results on the Gait data set are more complex to interpret.

When looking at each metric individually, certain trends are observed. Long regimes are

well recovered, resulting in a RandIndex above 0.90 for several algorithms. Parametric

window-based methods are not adapted to the signals. Other algorithms miss less than one

change point on average according to the F1 score.

122 CHAPTER 6. NUMERICAL EXPERIMENTS AND EVALUATION

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(a) gCPD (H: 1.3 , R: 0.92, F: 0.75)

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(b) gkCPD (H: 1.1 , R: 0.91, F: 0.75)

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(c) BinSeg (cL2) (H: 1.4 , R: 0.91, F: 0.75)

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(d) Win (c
rbf

) (H: 1.4 , R: 0.90, F: 0.50)

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(e) BotUp (cL2) (H: 2.2 , R: 0.91, F: 0.75)

5 10 15 20 25
Time (s)

50

0

50

100

150
Ro

t.
Z

(d
eg

/s
)

(f) Win (cΣ) (H: 9.3 , R: 0.55, F: 0.25)

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(g) Win (cL2) (H: 1.4 , R: 0.90, F: 0.50)

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(h) Win (cAR) (H: 5.2 , R: 0.78, F: 0.50)

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(i) Opt (cL2) (H: 1.2, R:0.92 , F: 0.5)

5 10 15 20 25
Time (s)

50

0

50

100

150

Ro
t.

Z
(d

eg
/s

)

(j) Opt (c
rbf

) (H: 1.2 , R: 0.92 , F: 0.5)

Figure 6.3: Segmentation example on a signal from Gait. H, R and F respectively denote

Hausdorff (in seconds), RandIndex and F1 score. The alternating coloured areas denote

the true segmentation. Dashed lines mark estimated change points. The acceleration on

the (0z) axis is shown.

4. RESULTS ON THE GAIT DATA SET 123

4.2 Results by change point type

Gait gCPD BinSeg (cL2) BotUp (cL2) Win (cL2) Opt (cL2)

Stand/Walk 0.37 (±0.32) 0.53 (±0.91) 0.60 (±1.00) 2.00 (±2.81) 0.60 (±0.92)

Walk/Turnaround 0.88 (±0.69) 0.57 (±0.64) 0.41 (±0.74) 0.94 (±1.58) 0.38 (±0.62)

Turnaround/Walk 0.99 (±0.95) 0.69 (±1.00) 0.51 (±0.59) 1.28 (±2.11) 0.38 (±0.43)

Walk/Stop 1.01 (±0.52) 4.32 (±3.41) 2.89 (±3.19) 1.42 (±2.39) 1.69 (±2.24)

(a) Detection with the cL2 cost function.

Gait gkCPD Win (crbf) Win (cΣ) Win (cAR) Opt (crbf)

Stand/Walk 0.48 (±0.33) 2.20 (±2.95) 2.45 (±1.92) 5.26 (±2.37) 0.52 (±0.32)

Walk/Turnaround 0.65 (±0.64) 0.93 (±1.57) 6.13 (±2.94) 1.04 (±1.27) 0.62 (±0.81)

Turnaround/Walk 0.63 (±0.78) 1.29 (±2.07) 4.85 (±3.37) 1.85 (±2.07) 0.49 (±0.43)

Walk/Stop 0.98 (±0.72) 1.69 (±2.76) 2.87 (±4.72) 3.42 (±3.09) 1.22 (±1.09)

(b) Detection with the c
rbf

, cΣ and cAR cost functions.

Table 6.5: Average temporal distance of a predicted change point to an annotated change

point (in seconds). Means and standard deviations on the Gait data set are shown.

In our context, it is important to notice that all change points are not equivalent. They

limit phases of di�erent natures. We provide the details of the segmentation results by

change point type in Table 6.5. Several observations can be made.

• The �rst change point is the best detected by six out of the ten algorithms, namely

gCPD, BinSeg (cL2), BotUp (cL2), Opt (cL2), gkCPD and Opt (crbf). The average

temporal error for those algorithms is around 0.50 second. This can be explained by

the fact that this change point separates two long regimes which are visibly very

di�erent (“Stand” is somewhat �at, and “Walk” has a large amplitude). Interestingly,

window-based methods are not as precise on this particular change point. Since

the search for a change is limited to a small region (the window), they cannot take

advantage of the length of the regimes.

• Even though it is of the same type as the �rst one, estimation of the last change

point is generally less accurate. (Both change points separate a “Walk” phase and a

rest phase (“Stand” or “Stop”).) Two reasons can justify this observation. The last

change point corresponds to a smaller mean-shift amplitude (in the time-frequency

representation). Also, it is located at the edge of the signal, which can in�uence

certain methods such as BinSeg (cL2) and BinSeg (cL2).

• For algorithms that use the cL2 and crb f cost functions, the error on the last change

point is what drives the Hausdorff score (see Table 6.4): it is the worst estimation

error. It is interesting to note that BinSeg (cL2) and BinSeg (cL2) have errors

comparable togCPD andgkCPD on the �rst three changes but are three to four times

less precise on the last change point. This explains why those four methods have

similar RandIndex values (error is made on the short regime “Stop”) but di�erent

Hausdorff values.

• The “Turnaround” is well detected by four approximate algorithm (estimation error

below one second), namely gCPD, BinSeg (cL2), BotUp (cL2), and gkCPD The

best one for this phase is BotUp (cL2), with an error close to the one of Opt (cL2).

124 CHAPTER 6. NUMERICAL EXPERIMENTS AND EVALUATION

After a closer look on the segmentations, we observe that gkCPD and gCPD tend to

include in the “Turnaround” phase the last footstep of the previous “Walk” phase and

the �rst footstep of the previous “Walk” phase. This behaviour is displayed on the

segmentation example on Figure 6.3. This is understandable because the footsteps at

the beginning or end of each regime can be di�erent from the footsteps in the middle

of the regime (for instance, of smaller amplitude because the subject is accelerating

or slowing down).

• The two algorithms Win (cL2) and Win (crbf) have F1 score around 0.80 (Table 6.4)

but on three out of four change points, the average temporal error is well above

the margin of one second. This indicates that on average, three change points

are correctly estimated (thus the F1 score above 0.75), but the last one is greatly

misplaced. Also, those algorithms make an error indiscriminately on either the

�rst (“Stand/Walk”), the third (“Turnaround/Walk”) or the fourth (“Walk/Stop”), as

evidenced by the high temporal distances. Conversely, BotUp (cL2) is more likely

to make an error on the last one only.

To sum up, observing the error by change point type allows us to better understand the

behaviour of segmentation methods. Window-based methods are con�rmed not to be as

precise as the other methods on this data set. Tree-based methods algorithms, BotUp
(cL2) and BinSeg (cL2) are precise on the �rst three change points but misplace the last

one by a large margin. The greedy procedures gCPD and gkCPD are able to locate all

change points with an error of less than one second. In particular, gkCPD is relatively

more accurate on average.

5 Discussion

5.1 Execution time comparison

Data set gCPD BinSeg (cL2) BotUp (cL2) Win (cL2) Opt (cL2)

MeanShift (T = 500) 0.2 17.6 3.0 6.6 7 min

MeanShift (T = 2000) 0.6 129.4 22.7 23.8 42 min

FreqShift (T = 2000) 0.8 214.3 20.4 23.5 2 h

Gait data set 1.0 235.0 32.6 26 4 h

(a) Detection with the cL2 cost function.

Data set gkCPD Win (crbf) Win (cΣ) Win (cAR) Opt (crbf)

MeanShift (T = 500) 6.1 2.8 40.0 22.2 6 min

MeanShift (T = 2000) 89.6 28.6 193.0 96.1 11 h

FreqShift (T = 2000) 74.5 27.6 146.3 61.5 > 1 day

Gait data set 94.2 22.13 161.7 65.7 > 2 days

(b) Detection with the c
rbf

, cΣ and cAR cost functions.

Table 6.6: Average runtime for each algorithm to process 100 signals. All times refer to a

Python implementation on a Linux computer with 4 processors running at 2.80 GHz. All

times are in seconds, unless speci�ed otherwise.

Table 6.6 presents average execution times (for 100 signals) of the di�erent methods.

Visibly, di�erences in execution time increase as the number of samples and the number

5. DISCUSSION 125

of dimensions grows. Even if gCPD, BinSeg (cL2) and BotUp (cL2) all have a linear (in

the number of samples) computational complexity, gCPD’s implementation ease allows

for an e�cient execution. Speci�cally, operations described in Algorithm 4.1 are naturally

“vectorized”. In languages like Python and Matlab, such operations are more cost-e�ective

than the explicit looping instructions needed in tree-based methods. As a comparison,

the signal acquisition system takes around 50 seconds to record one signal, while gCPD
takes 1 second to process 100 signals, and gkCPD takes less than 100 seconds. Opt (cL2)

is far slower, as expected. All Win methods do not take the same amount of time, because,

the computation of the cost function can be lead to signi�cant di�erences in complexity.

For instance cL2 only require to calculate the empirical mean, while the crb f requires the

computation of all pairwise kernel products. Note that the implementation of Win (cL2),

in the ruptures package (see Chapter 9) is not optimized for this particular algorithm,

but rather focus on the modularity of the package. One advantage Win (cL2) (and other

window-based methods) has over gCPD is the fact that it only processes a portion of the

signal at a time. When memory is an issue or when faced with a continuous stream, Win
(cL2) is the only appropriate method, as other methods are performed on the whole signal.

As for gkCPD, it is more computationally intensive than its counterpart gCPD, but

remains faster than Opt (crbf).

5.2 Estimation of the number of change points with gCPD

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

Number of change points

Figure 6.4: Gains (6.1) of gCPD on the Gait data set. The [0.1,0.25,0.5,0.75,0.9]-percentiles

are shown.

In our experiments, the number of change point is known beforehand. However, in certain

applications, such information might not be known. We show in the following that our

greedy strategy can be combined with a simple model selection procedure to accommodate

situations where the number of changes is unknown. To that end, we start o� by looking at

126 CHAPTER 6. NUMERICAL EXPERIMENTS AND EVALUATION

Number of change points k BIC(k)
0 1334.67 (±501.13)
1 1270.75 (±436.21)
2 784.35 (±342.97)
3 687.51 (±256.30)
4 639.95 (±232.50)
5 660.26 (±222.77)
6 682.14 (±206.80)
7 709.80 (±200.73)
8 742.82 (±194.83)
9 776.26 (±190.08)

Table 6.7: Constrained costs of the sequential estimates of gCPD. Mean and standard

deviation are displayed.

the evolution of gCPD’s residuals. By design, the sequence of the residuals R̂(k)
produced

at each each step of gCPD is strictly decreasing in norm. The gain of the kth
step is

∥∥∥R̂(k−1)
∥∥∥

2
−
∥∥∥R̂(k)

∥∥∥
2

∥∥∥R̂(0)
∥∥∥

2 (6.1)

where

∥∥∥R̂(0)
∥∥∥

2
= ‖Y‖2

acts as a normalization constant. Repartition of the gain values are

reported on Figure 6.4. The �rst four steps of gCPD have greater gains than the following

ones. Gains after step k = 5 bring little to no gain; they are more concentrated around

small values. Qualitatively, this supports the fact that four is the correct number of change

points.

In practice, the Bayesian information criterion (BIC) is commonly used in change point

detection to determine the number of change points [166, 170]. It is a model selection

procedure that consists in minimizing a constrained likelihood function. In the context

of piecewise constant signals with white Gaussian noise, the BIC of the sequential gCPD
estimates is

BIC(k) =
∥∥∥R̂(k)

∥∥∥
2
+ k σ2d log T (6.2)

where k is the step number (as well as the number of change points). The model with lowest

BIC is preferred. On the Gait data set, the BIC values reported in Table 6.7. The minimum

value is 639.95 and is reached for k = 4. Moreover, it substantiates the fact that gCPD can

accommodate a standard model selection procedure even if it is only an approximation of

the optimal signal segmentation.

Part III

Supervised change point detection

127

7
Calibrating the smoothing parameter

through supervised learning
Contents

1 Penalized change point detection model . 130

1.1 Problem formulation . 130

1.2 Related work . 130

1.3 Contributions of the chapter . 131

2 Properties of the excess risk . 131

3 Adaptive Linear Penalty INference: the Alpin algorithm 132

4 Experiments . 133

4.1 Setting . 133

4.2 MeanShift data set . 134

4.3 FreqShift data set . 135

4.4 Execution time comparison . 136

5 Discussion . 137

5.1 Comments on the excess risk . 137

5.2 Double labels . 139

6 Conclusion . 140

Abstract

The objective of this chapter is to design an automatic procedure to calibrate detection

algorithms when the number of changes is unknown. To that end, we introduce

Alpin (Adaptive Linear Penalty INference), a supervised approach that learns the

smoothing parameter of a linear penalty, using a training set of annotated signals.

This procedure consists in minimizing a particular loss function, the excess risk. An

e�cient implementation is provided, which leads to a linear (in the number of training

samples) complexity. Compared to other calibration heuristics, which are restricted to

mean-shift detection, Alpin can accommodate arbitrary types of changes.

130

CHAPTER 7. CALIBRATING THE SMOOTHING PARAMETER THROUGH SUPERVISED

LEARNING

1 Penalized change point detection model

1.1 Problem formulation

This work focuses on the detection of an unknown number of change points present in a

signal y = {yt}T
t=1. As described in Section 4, detection amounts to solving the following

discrete optimization problem:

T̂β := arg min

T
Rβ(T ,y) (7.1)

where Rβ(T ,y) denotes the linearly penalized sum of costs (also referred to as penalized

risk) and is given by

Rβ(T ,y) :=
K

∑
k=0

c(ytk ..tk+1) + β|T |. (7.2)

with c(·) a user-de�ned cost function. The estimate T̂β is also referred to as the β-optimal

estimate. The smoothing parameter β > 0 controls the trade-o� between complexity and

goodness-of-�t (measured by the sum of costs). Intuitively, low values of β favour partitions

with many regimes and high values of β discard most change points.

In practice, the manual tuning of the smoothing parameter is more art than science, es-

pecially when the data are noisy, do not �t a standard model or when the end user has

particular expectations (for example detecting only change points of a certain magnitude).

A number of o�-the-shelf procedures are available in the literature. Arguably, the most

well-known are AIC, BIC and Mallows’ Cp [122, 144, 166]. They fall into the category of

parametric penalties. Such penalties usually stem from model selection considerations.

Closed-form expressions are derived, which depend on key parameters of the signal, such

as the number of samples and the noise variance [134, 166], the autoregressive order [41],

the 2
nd

order structure [110], etc. Several authors have proposed data driven heuristics

to calibrate the smoothing parameter [5, 69, 108]. A general principle is to compute the

optimal segmentations for a large of number K of change points and retrospectively select

the appropriate one. For instance the heuristics found in Lavielle (2005) uses a threshold

on the computed sums of costs. Details about the standard procedures to calibrate the

smoothing parameter can be found in Section 4 on page 72.

In this chapter we propose a procedure to calibrate the smoothing parameter using anno-

tated signals.

1.2 Related work

To our knowledge, Hocking et al. (2013) is the only calibration strategy based on supervised

learning, in the literature. The authors take advantage of a set of annotated signals to �nd

an appropriate penalty, that can then be applied on new signals. This article is focused on

the detection of mean-shifts in DNA data, with the cL2 cost function. The originality of

this approach lies in the mapping between the expert annotations and the annotation error,

de�ned as the di�erence between the estimated number of changes and the true number of

changes. Since the annotation error is not convex and cannot be optimized as such, the

authors propose to use a convex relaxation, which requires the computation of a large

number of segmentations. The approach we propose aims at generalizing this procedure to

arbitrary cost functions (and therefore arbitrary types of change).

2. PROPERTIES OF THE EXCESS RISK 131

1.3 Contributions of the chapter

We propose a supervised procedure that learns from a set of annotated training signals

an appropriate smoothing parameter for a linear penalty. Our method relies on a convex

loss function, that leads to an e�cient implementation of the learning step. Arbitrary cost

functions can be accommodated under this setting.

2 Properties of the excess risk

This section presents the excess risk, which is later used as a loss function for our supervised

procedure. To that end, consider a training set of L annotated signals {(y(l),T (l)) | l =
1, . . . , L}. Each signal y(l) has T(l)

samples and is associated with a segmentation annotation

T (l) = {t(l)1 , t(l)2 , . . .}. (The annotation T (l)
contains the positions of the change points

regarded as “optimal” by an expert.) For a given annotated signal y(l), the excess risk E (l)(β)

measures the error between the estimated segmentation T̂ (l)
β (7.7) and the annotation T (l)

.

De�nition 7.1 (Excess risk). For a given training signal y(l) and its annotation T (l)
, the

(empirical) excess risk E(·,y(l),T (l)) is the di�erence between the empirical risks of the expert

manual segmentation and the β-optimal estimate, i.e.

E (l)(β) := Rβ(T (l),y(l))− min
T

Rβ(T ,y(l))

Rβ(T̂β,y(l))

. (7.3)

By design, the excess risk is always non-negative. Also, if the smoothing parameter β is

such that the excess risk is minimum and equal to 0, then the β-estimate T̂ (l)
β and the

manual segmentation T (l)
coincide.

Theorem 7.1 (Convexity). For any training signal y(l), the function β 7→ E (l)(β) is convex.

Proof. First note that

min
T

Rβ(T ,y(l)) = min
T

[K

∑
k=0

c(y(l)tk ..tk+1
) + β|T |

]
= min

K

[
min
|T |=K

K

∑
k=0

c(y(l)tk ..tk+1
) + βK

]

(7.4)

It follows that the function β 7→ min
T

Rβ(T ,y(l)) is equal to the pointwise minimum of

a�ne functions, and therefore concave. Since the excess risk (7.3) is an a�ne function

minus a concave function, the function β 7→ E (l)(β) is convex.

Proposition 7.1 (First derivative of the excess risk). For a given training signal y(l), the
�rst derivative w.r.t. the parameter β of β 7→ E(·,y(l)) is given by

d
dβ
E(β,y(l)) = |T (l)| − |T̂ (l)

β |. (7.5)

132

CHAPTER 7. CALIBRATING THE SMOOTHING PARAMETER THROUGH SUPERVISED

LEARNING

Proof. From Equation (7.4), it follows that the function

β 7→min
T

Rβ(T ,y(l)) (7.6)

is the pointwise minimum of a�ne functions and therefore piecewise a�ne. Let [βmin, βmax]
be an interval on which it is a�ne The �rst derivative (w.r.t. β) of this function on the

interval [βmin, βmax] is |T̂ (l)
β |, the number of change points in the β-optimal segmenta-

tion. In addition, the �rst derivative of Rβ(T (l),y(l)) is clearly |T (l)|. From this, it is

straightforward to conclude the proof.

ββββββββββββββββββββ

min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)min
T

Rβ(T)

ββββββββββββββββββββ

E(β)E(β)E(β)E(β)E(β)E(β)E(β)E(β)E(β)E(β)E(β)E(β)E(β)E(β)E(β)

Figure 7.1: (Left) For a given signal y ∈Rn
the minimum empirical risk over all change point

sets T is plotted versus β. Following (7.4), the penalized risk is the pointwise minimum of

a�ne functions, marked in dashed lines. (Right) The corresponding excess penalized risk

is plotted versus β.

For illustration purposes, a view of the excess risk of a signal is shown on Figure 7.1. In

particular, it is shown that the risk of the β-optimal segmentation is the pointwise minimum

of a�ne functions, as demonstrated in Equation (7.4). The convex piecewise a�ne structure

of the excess risk is also visible. The interval on which it is minimum is the interval of

optimal smoothing parameter values.

3 Adaptive Linear Penalty INference: the Alpin algorithm

In this section, we introduce Alpin (Adaptive Linear Penalty INference), which aims at

learning an appropriate smoothing parameter β̂ from the training set. The �nal objective is

to be able to detect an unknown number of change points in a new signal, following the

same detection strategy as the expert.

Optimization problem. Alpin is a supervised method that relies on a loss function

to compare the manual segmentations and the estimated segmentations. The optimal

smoothing parameter β̂ is the minimizer of the loss function over the training set, i.e.

β̂ := arg min

β>0

L

∑
l=1
E (l)(β). (7.7)

where the loss function E (l)(β) is the excess risk. By choosing this loss function, our

learning procedure aims at �nding the smoothing parameter such that the risk of the

4. EXPERIMENTS 133

corresponding estimator is as close as possible to the risk of the annotation. Thanks to

Theorem 7.1 and Proposition 7.1, general-purpose solvers can be used to estimate the

optimal smoothing parameter β̂.

Algorithm 7.1 Alpin

Input: annotated signals y(l), associated segmentations T (l)
(l = 1, . . . , L), initial value

β0, step size δ0 ∈ (0,1).
β← β0, δ← δ0,

repeat
g← 0 . Gradient

for l = 1, . . . , L do
T̂ ← arg minT Rβ(T ,y(l)) . Use Pelt [98]

g← g + |T (l)| − |T̂ |
end for
∆β← δ× g
δ← δ× δ0
β← β− ∆β

until |∆β| < tolerance

Output: optimal penalty level β.

Computational aspects. Practically, Alpin works as follows.

• The algorithm is initialized by randomly picking a signal from the training set. The

value of β that minimizes its excess penalized risk is found and then used as a warm

start for the optimization of the loss functions (7.7).

• We use a simple gradient descent to minimize the convex loss function L(·) [34]. To

evaluate the loss function L(β) at each step of the optimization method, one has to

solve L penalized change point detection problems (7.2). To that end, we use Pelt
to �nd the exact β-optimal segmentations T̂ (l)

β .

The complexity of Alpin is driven by the computation of L β-optimal segmentations,

which is performed is linear time, thanks to Pelt [98]. Overall, the complexity of one

optimization step is O(∑l T(l)). Also, since the contributions of each signal y(l) to the

loss are independent, all calculations can be done in parallel. Comparatively, “Hocking,

2013” computes for each training signal the optimal segmentations with K change points

(K ranging from 1 to Kmax), resulting in a complexity of the order of O(Kmax(∑l T(l))2).
Alpin is described in Algorithm 7.1.

4 Experiments

4.1 Setting

In this section, Alpin is compared to an o�-the-shelf statistical penalty“BIC” [166], another

supervised method “Hocking, 2013” [82] and a data-driven heuristics “Lavielle, 2005” [108].

All performances are measured with the metrics Hausdorff, RandIndex, F1 score and

134

CHAPTER 7. CALIBRATING THE SMOOTHING PARAMETER THROUGH SUPERVISED

LEARNING

AnnotationError. In all experiments, supervised methods (Alpin and “Hocking, 2013”)

are evaluated with cross-validation: each data set is divided into ten folds. Each fold serves

once as a training set to learn a smoothing parameter, which is then used to segment the

signals of the other nine folds.

4.2 MeanShi� data set

MeanShift Metric Alpin BIC Hocking, 2013 Lavielle, 2005 Opt (cL2)

Scenario 1

Hausdorff 3.99 (±1.11) 3.99 (±1.11) 4.01 (±1.13) 3.99 (±1.11) 0.08 (±0.27)
RandIndex 0.98 (±0.01) 0.98 (±0.01) 0.98 (±0.01) 0.98 (±0.01) 1.00 (±0.00)
F1 score 1.00 (±0.01) 1.00 (±0.00) 1.00 (±0.02) 1.00 (±0.00) 1.00 (±0.00)

AnnotationError 0.00 (±0.05) 0.00 (±0.00) 0.03 (±0.17) 0.00 (±0.00) −

Scenario 2

Hausdorff 8.34 (±10.61) 96.42 (±24.86) 9.05 (±11.34) 58.06 (±18.43) 4.29 (±3.61)
RandIndex 0.98 (±0.01) 0.87 (±0.05) 0.98 (±0.01) 0.94 (±0.01) 0.99 (±0.01)
F1 score 0.96 (±0.09) 0.72 (±0.14) 0.96 (±0.09) 0.65 (±0.06) 0.97 (±0.10)

AnnotationError 0.08 (±0.31) 1.52 (±0.59) 0.12 (±0.38) 4.01 (±0.10) −

Scenario 3

Hausdorff 4.30 (±0.95) 4.28 (±0.94) 4.32 (±0.97) 4.28 (±0.94) 0.13 (±0.34)
RandIndex 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)
F1 score 1.00 (±0.02) 1.00 (±0.00) 1.00 (±0.02) 1.00 (±0.00) 1.00 (±0.00)

AnnotationError 0.02 (±0.14) 0.00 (±0.00) 0.04 (±0.20) 0.00 (±0.00) −

Scenario 4

Hausdorff 5.80 (±7.49) 5.49 (±2.44) 10.01 (±24.39) 65.50 (±89.57) 3.14 (±2.60)
RandIndex 1.00 (±0.00) 1.00 (±0.00) 0.99 (±0.00) 0.99 (±0.01) 1.00 (±0.00)
F1 score 1.00 (±0.01) 1.00 (±0.00) 0.99 (±0.02) 0.93 (±0.06) 1.00 (±0.00)

AnnotationError 0.00 (±0.05) 0.00 (±0.00) 0.05 (±0.22) 0.63 (±0.54) −

Table 7.1: Segmentation results on the MeanShift data set. Means and standard deviations

are shown. Hausdorff is expressed in number of samples. The margin of F1 score is

M = 10 samples for Scenario 1 and 2, and M = 20 samples for Scenario 3 and 4.

All method in this experiments use the cL2 cost function. Recall that MeanShift contains

20-dimensional noisy piecewise constant signals; the number of samples T and the noise

standard deviation are respectively equal to (T = 500,σ = 1), (500,3), (2000,1) and (2000,3)

for Scenario 1, 2, 3 and 4. The hardest scenario is Scenario 2 (least points, most noise) and

the easiest is Scenario 3 (most points, lowest noise). Results are summarized in Table 7.1.

Several observations can be made from this experiment:

• Supervised methods (Alpin and “Hocking, 2013”) always outperform the heuristics

“Lavielle, 2005”. They also perform signi�cantly better than the standard penalization

“BIC” on Scenarios 1 and 2, and slightly better on Scenarios 3 and 4. This demonstrates

the usefulness of a learning step.

• The standard penalization “BIC”, developed in an asymptotic setting, is markedly

a�ected by a low number of samples and high level of noise. In detail, from Scenario 1

to Scenario 2 (σ = 1→ σ = 3, �xed T), Hausdorff is multiplied by more than 40
and F1 score decreases from 1 to 0.79; from Scenario 4 to Scenario 2 (T = 2000→
T = 500, �xed σ), Hausdorff is multiplied by approximatively 20 and F1 score

decreases by a value of 0.19. This is the largest reduction in performance among all

methods. Closer examination indicates that “BIC” has a tendency to over-segment

signals, a fact also observed in [63, 154].

• The heuristics “Lavielle, 2005” performs signi�cantly better when the number of

samples is high, as demonstrated by the close to optimal F1 score and RandIndex on

Scenario 3 and Scenario 4 (T = 2000). In addition, the number of predicted change

4. EXPERIMENTS 135

points is also closer to the true one on Scenarios 3 and 4 (AnnotationError is

around 0.1) than on Scenarios 1 and 2 (AnnotationError is around 0.5).

• The two supervised methods (Alpin and “Hocking, 2013”) have comparable perfor-

mances on this particular data set. The number of change points is correctly estimated,

as evidenced by the AnnotationError equal to 0 for all scenarios. According to

Hausdorff, Alpin is slightly better than “Hocking, 2013”; in all scenarios, they

have at most one sample di�erence, on average.

The main conclusion from this experiment is that supervision signi�cantly improves

detection performance. Even though the MeanShift signals verify the assumptions under

which “BIC” and “Lavielle, 2003” were introduced, those methods still fare markedly worse

that Alpin and “Hocking, 2013”. This can be explained by the fact that “BIC” is an

asymptotic criterion and “Lavielle, 2003” relies on a threshold that is not adaptive.

4.3 FreqShi� data set

In this second experiment, we illustrate the fact that Alpin is able to accommodate

arbitrary cost functions, contrary to other methods. The cost function crbf (which is kernel-

based and detects changes in the probability distribution) is applied on the time-frequency

representation of signals from FreqShift. Results from the standard cL2 (applied on the

time-frequency representation) are also provided. We compare our supervised method

to the optimal detection method Opt. Note that Opt knows the true number of change

points, contrary to Alpin. Results are summarized in Table 7.1. Several observations can

FreqShift Metric Alpin (cL2) Alpin (c
rbf

) Opt (cL2) Opt (c
rbf

)

-5 dB

Hausdorff 81.04 (±174.78) 48.04 (±103.46) 34.12 (±51.28) 27.98 (±26.66)
RandIndex 0.95 (±0.11) 0.97 (±0.05) 0.98 (±0.02) 0.98 (±0.01)
F1 score 0.76 (±0.24) 0.80 (±0.21) 0.81 (±0.19) 0.82 (±0.18)

AnnotationError 0.27 (±0.71) 0.13 (±0.44) − −

-1 dB

Hausdorff 22.11 (±24.87) 17.92 (±19.23) 13.59 (±6.83) 12.76 (±4.91)
RandIndex 0.98 (±0.01) 0.99 (±0.01) 0.99 (±0.00) 0.99 (±0.00)
F1 score 0.88 (±0.15) 0.94 (±0.12) 0.97 (±0.09) 0.97 (±0.08)

AnnotationError 0.03 (±0.16) 0.02 (±0.14) − −

0 dB

Hausdorff 17.02 (±17.97) 17.64 (±52.09) 11.88 (±4.73) 11.45 (±4.13)
RandIndex 0.99 (±0.01) 0.99 (±0.02) 0.99 (±0.00) 0.99 (±0.00)
F1 score 0.95 (±0.12) 0.98 (±0.08) 0.99 (±0.05) 0.99 (±0.04)

AnnotationError 0.01 (±0.11) 0.01 (±0.16) − −

2 dB

Hausdorff 16.29 (±53.68) 17.65 (±18.19) 9.68 (±4.12) 9.64 (±3.66)
RandIndex 0.99 (±0.03) 0.99 (±0.01) 0.99 (±0.00) 0.99 (±0.00)
F1 score 0.99 (±0.06) 0.93 (±0.11) 0.99 (±0.04) 0.99 (±0.03)

AnnotationError 0.02 (±0.21) 0.01 (±0.11) − −

Table 7.2: Segmentation performance. Means and standard deviations on the FreqShift data

set are shown. Hausdorff is expressed in number of samples. The margin of F1 score

is M = 20 samples. Note that the number of change points is known for Opt but not for

Alpin.

be made from this experiment:

• There are two behaviours, depending on the noise level. For SNRs at −1 dB and −5
dB, Alpin (crbf) is more accurate than Alpin (cL2), according to all metrics. In

particular, AnnotationError of Alpin (crbf) is twice as low as AnnotationError

136

CHAPTER 7. CALIBRATING THE SMOOTHING PARAMETER THROUGH SUPERVISED

LEARNING

of Alpin (cL2). For SNRs at 0 dB and 2 dB, both methods are close to each other.

More precisely, Alpin (cL2) has slightly better Hausdorff, and is also slightly

worse according to F1 score at 0 dB and AnnotationError at 2 dB. This indicates

that using the kernel-based cost function makes Alpin more robust to noise. When

the SNR is above a certain threshold, both cost functions are equivalent. This can be

explained by the fact that the time-frequency representations of the signals do not

exactly follow the piecewise constant model with Gaussian white noise assumed by

cL2 .

• Optimal methods that know the number of change points beforehand always perform

better than Alpin. The di�erence however decreases as the SNR increases. As

a comparison, the best approximate methods on FreqShift, gkCPD (see Section 3

on page 116), has approximatively the same metric values as Alpin (crbf). This

indicates that, on this particular data set, not knowing the number of change points

(but using the exact penalized detection Pelt) has the same e�ect as knowing the

number of changes and using the approximate method gkCPD.

To sum up, using the kernel-based cost function crb f makes the supervised approachAlpin
more robust to noise. This is a signi�cant advantage of Alpin: it can accommodate

arbitrary cost functions.

4.4 Execution time comparison

Alpin Hocking, 2013

300 samples 2 minutes 12 minutes

400 3 21

500 7 33

600 12 49

700 9 67

800 23 88

900 21 113

1000 19 141

2000 30 583

Table 7.3: Execution time in minutes vs the number of samples of each of the 100 signals of

the data set. All times refer to running a Python implementation of Alpin and “Hocking,

2013” on a Linux computer with 24 Intel processors running at 2.80 GHz (CPU).

We compare the computation time needed to learn the correct penalty level on noisy

univariate signals with a random number of change points (uniformly chosen between 3

and 7) and randomly located. For di�erent numbers T ∈ {300,400, . . . ,2000} of samples,

100 signal realizations are generated. The algorithms Alpin and “Hocking, 2013” are

applied to those (annotated) signals with the cost function cL2 . The computation times are

reported in Table 7.3. Overall, Alpin performs faster than its counterpart. For instance,

the execution time for processing 100 signals of length n = 500 is 33 minutes for “Hocking,

2013” but only 7 minutes for Alpin. The convex excess risk (7.3) and the possibility

to directly minimize it with standard optimization methods allows to keep a reasonable

computing time, which makes it suitable for real-life situations. From a computational

5. DISCUSSION 137

standpoint, Alpin and “Hocking, 2013” have indeed di�erent complexities: the former is

linear in the number of samples while the latter is quadratic [82].

5 Discussion

We have shown that Alpin can be used to learn the correct penalty level for change point

detection and now provide further insights on the algorithm.

5.1 Comments on the excess risk

0.1 0.5 1

0

1

2

3

·104

β (×104)

E(β)

(a) Scenario 1

0.1 0.5 1

0

1

2

3

·104

β (×104)

E(β)

(b) Scenario 2

0.1 0.5 1

0

0.5

1

1.5

·104

β (×104)

E(β)

(c) Scenario 3

0.1 0.5 1

0

0.5

1

1.5

·104

β (×104)

E(β)

(d) Scenario 4

Figure 7.2: Average excess risk (7.8) on the MeanShift data set, for the cL2 cost function.

Minimum and maximum (over the data set’s signals) excess risks are given by the gray

area.

We illustrate the relationship that exists between the shape of the excess risk curve and the

di�culty of the segmentation task, on di�erent data sets and for di�erent cost functions.

To that end, the curve

β 7→ 1
L

L

∑
l=1
E (l)(β) (7.8)

is plotted for the four scenarios of the MeanShift data set (cost function cL2) and the time-

frequency representation of the FreqShift data set (cost functions cL2 and crbf). The excess

risk curve on the MeanShift data set is displayed on Figure 7.2. Several observations can be

made:

138

CHAPTER 7. CALIBRATING THE SMOOTHING PARAMETER THROUGH SUPERVISED

LEARNING

• For all scenarios, there is an interval [βmin, βmax] on which the curve reaches its

minimum and is �at. Any value within interval is an optimal penalty value forAlpin.

A large interval implies that it is easier to �nd a suitable smoothing parameter value.

• The size of this interval depends on the simulation parameters (T,σ). When the

number of samples grows from T = 500 (Scenario 1 and Scenario 2) to T = 2000
(Scenario 3 and Scenario 4), the right endpoint βmax increases from approximatively

0.1× 104
to approximatively 0.3× 104

, enlarging the optimal interval. When the

noise level grows from σ = 1 (Scenario 1 and Scenario 3) to σ = 3 (Scenario 2

and Scenario 4), the left endpoint βmin increases from approximatively 0.00× 104

to approximatively 0.03× 104
, shortening the optimal interval. This observation

con�rms the (well-known) fact that detection is harder when there are less samples

and/or more noise.

50 100 150

0

200

400

600

β

E(β)

(a) cost cL2 and SNR = −5 dB

50 100 150

0

200

400

600

β

E(β)

(b) cost cL2 and SNR = 2 dB

100 200 300 400

0

500

1,000

1,500

β

E(β)

(c) cost crb f and SNR = −5 dB

100 200 300 400

0

500

1,000

β

E(β)

(d) cost crb f and SNR = 2 dB

Figure 7.3: Average excess risk (7.8) on the FreqShift data set. Minimum and maximum

(over the data set’s signals) excess risks are given by the gray area.

The excess risk curve on the FreqShift data set is displayed on Figure 7.3. Several observa-

tions can be made:

• Again, an interval on which the excess risk is �at exists. The length of this interval

depends on the cost function and the noise level. For both cost functions, it increases

when the SNR increases, as expected: the easier the task, the easier it is to �nd

a suitable smoothing parameter value. Also, more variations are observed when

SNR = −5 dB. The crb f cost function yields a longer interval for both noise levels.

This indicates that using a kernel make the penalty learning problem easier to solve,

compared to cL2 .

5. DISCUSSION 139

• Depending on the cost function, the optimal smoothing parameter value can take

di�erent values, illustrating the usefulness of a procedure to learn it.

5.2 Double labels

True signal

Noisy measurements

Protocol I

Alpin

Protocol II

Alpin

Figure 7.4: (Top) Signal example and its noisy version (T = 500,σ = 2). (Middle) Prediction

and expert partition according to Protocol I. (Bottom) Prediction and expert partition

according to Protocol II.

Di�erent annotations on the same signals can arise when experts are not interested in the

same physiological phenomena, which result in distinct segmentation strategies. In this

situation, the optimal smoothing parameter should depend on the segmentation strategy

of the experts. To illustrate how Alpin adapts to two di�erent annotations on the same

signals, a synthetic data set is constructed as follows. A set of 100 piecewise constant

functions from [0,1] to R are simulated, with a number of change points randomly chosen

between 3 and 7. The length of each regime is drawn uniformly between 0.05 and 0.3 and

the jumps between regimes have random amplitudes between 1 and 5. Those functions are

then sampled on an equispaced grid of T = 500 points and corrupted by a Gaussian noise

of variance σ = 2. The following two annotation protocols are considered.

• In Protocol I, all change points from the true underlying function are considered.

• In Protocol II, only the biggest and most visible change points are regarded as real

change points. More precisely the changes with amplitude below 3 are discarded.

Figure 7.4 presents an example of the results obtained with Alpin by using only train

data from Protocol I or only train data from Protocol II. Depending on the protocol, the

number of detected change points is di�erent, although the input signal is exactly the same.

This illustrates that the algorithm is able to learn that Protocol II only considers the largest

changes. In Protocol I, one change point is missed (middle plot) which is due to the fact

140

CHAPTER 7. CALIBRATING THE SMOOTHING PARAMETER THROUGH SUPERVISED

LEARNING

that the mean-shift is small, a situation that is rarely found in the training database. This

experiment illustrates the ability of Alpin to adapt to di�erent segmentation strategies.

6 Conclusion

In this chapter, an automatic procedure to calibrate detection algorithms when the number

of changes is unknown, has been described. This supervised method, denoted Alpin,

learns from a set of annotated training signals an appropriate smoothing parameter for

a linear penalty. In a nutshell, the optimal smoothing parameter is the minimizer of a

suitable loss function. This loss function can accommodate arbitrary cost functions, and is

shown to be convex, which leads to an e�cient implementation of the learning step, with

linear complexity. Numerical experiments on synthetic and real-world data sets show that

Alpin outperforms standard non-supervised penalization methods. In addition, compared

to other supervised approaches, Alpin is faster and can be applied to detect arbitrary

types of changes. Another bene�t of Alpin is its ability to adapt to di�erent annotation

strategies, even when the signals are the same. This is illustrated in the last section of this

chapter, and would be interesting to further investigate in future research.

8
Metric learning for change point detection

Contents

1 Change point detection with a Mahalanobis-type pseudo-norm 142

1.1 Problem formulation . 142

1.2 Related work . 143

1.3 Contributions of the chapter . 143

2 Metric learning with a kernel-based approach 144

2.1 From labels to constraints . 144

2.2 Kernel metric learning . 145

2.3 Computing the learned cost function 145

2.4 Intuition behind the cost function cH,M 146

3 Experiments . 147

3.1 Supervised segmentation of new signals 147

3.2 Segmentation completion . 150

4 Discussion: double labels . 151

5 Conclusion . 153

Abstract

The objective of this chapter is to design an automatic procedure to calibrate the cost

function of change point detection algorithms. To that end, we introduce a scheme to

convert signal annotations into similarity/dissimilarity constraints. A non-parametric

transformation of the signal samples is then learned to enforce those constraints.

This procedure relies on a kernel metric learning algorithm, and can accommodate

full or partial annotations. Compared to all methods tested in this manuscript, this

supervised approach achieves the best performance on the Gait data set, without any

pre-processing.

142 CHAPTER 8. METRIC LEARNING FOR CHANGE POINT DETECTION

1 Change point detection with a Mahalanobis-type
pseudo-norm

1.1 Problem formulation

We are interested in detecting multiple change points in an Rd
-valued signal y = {yt}T

t=1,

using a general class of non-parametric cost functions cH,M based on a kernel Mahalanobis-

type pseudo-norm ‖·‖H,M. The cost function cH,M is formally de�ned as follows. Let

k(·, ·) : Rd ×Rd 7→R denote a kernel function andH, the associated reproducing Hilbert

space (RKHS). The related mapping function φ : Rd→H is implicitly de�ned by φ(yt) =
k(yt, ·) ∈ H and 〈φ(ys)|φ(yt)〉H = k(ys,yt). The RKHS norm ‖·‖H is also implicitly

de�ned by ‖φ(yt)‖2
H = k(yt,yt). The cost function cH,M is given by

cH,M(ya..b) :=
b

∑
t=a+1

‖φ(yt)− µ̄a..b‖2
H,M (0≤ a < b ≤ T) (8.1)

where µ̄a..b is the mean value of the embedded sub-signal {φ(yt)}b
t=a+1 and ‖·‖H,M denotes

the Mahalanobis-type (pseudo-)norm. This norm ‖·‖H,M is entirely determined by the

positive de�nite matrix M through the following relation:

‖φ(yt)− φ(ys)‖2
H,M := (φ(yt)− φ(ys))

′M(φ(yt)− φ(ys)). (8.2)

In this context, change point detection amounts to minimizing the following sum of costs:

V(T) :=
|T |
∑
k=0

cH,M(ytk ..tk+1) (8.3)

under certain constraints on the complexity of the segmentation T , depending on whether

the number of changes is known or not (more details in Section 4 on page 72). In general,

the cost function controls the type of change point that can be detected. In practice,

engineering an appropriate cost function is a manual process (trial and error) that requires

prior knowledge on the underlying phenomena present in the signals. We refer the reader to

Section 2 on page 53 where a number of o�-the-shelf cost functions are described. However,

the end-user is not always able to translate his prior knowledge into an appropriate cost

function, or the standard costs might not be able to correctly model the data. In this

context, a procedure to automatically design the cost function is needed. In this chapter,

we propose to calibrate the cost function using annotated signals. Two type of annotations

are considered: fully annotated signals and partially annotated signals. A signal is said to

be fully annotated if the indexes of target change points are provided. A signal is said to be

partially annotated if the start and end indexes of a portion of each regime are provided (but

the change point locations are not). The two types are illustrated in Figure 8.1. The objective

in both situations is to be able to reproduce the segmentation strategy of the annotations.

(Note that in Chapter 7, the smoothing parameter is learned using fully annotated signals.)

1. CHANGE POINT DETECTION WITH A MAHALANOBIS-TYPE PSEUDO-NORM 143

0 T/4 T/2 3T/4 T

0.25

0.00

0.25

0.50

(a) Full labels.

0 T/4 T/2 3T/4 T

0.25

0.00

0.25

0.50

(b) Partial labels.

Figure 8.1: Annotation types: (a) the full segmentation is available and (b) only the partial

segmentation is available. The coloured areas are homogeneous sub-signals provided by an

expert. The signal is the same in both situations.

1.2 Related work

To the best our knowledge, there is only one work on change point detection that is based

on a supervised strategy and aims at �nding an appropriate cost function [105]. The authors

consider a linear Mahalanobis metric. They propose a learning strategy to accommodate

partial labels: partial annotations are completed using change point detection with an initial

cost function, then a metric is learned, the partial annotations are completed again with the

new cost function, and so on. According to the authors, this non-convex procedure relies

on the ability of the user to properly initialize the cost function. Also, for full or partial

annotations, Opt is applied repeatedly during the learning step.

Our problem falls into the category of metric learning, which was �rst introduced in

the context of classi�cation. The goal for those methods is to learn from a training set

a task-speci�c similarity measure to have better testing performance than o�-the-shelf

measures such as Euclidean distance or cosine similarity. Most works focus on Mahalanobis-

type distances and adapt the metric matrix using information from the training samples:

similarity/dissimilarity constraints for pairs of samples [55, 149, 165], relative constraints

for triplet of samples [85, 143]. In our context, a major drawback of those methods is

that a linear Mahalanobis cost function is only sensitive to mean-shifts. A related topic

is kernel learning. Instead of learning a metric matrix, those methods aims at learning a

kernel matrix over the data. This has the advantage of de�ning a non-linear mapping but

similarity between out-of-sample points (i.e. not present in the training set) cannot be

computed. This setting, called transductive, where all samples (labelled and unlabelled) are

provided at the beginning of the learning step, is not adapted to our context.

In this chapter, we transpose the kernel-based approach of [87] to the context of change

point detection, which o�ers a new perspective on supervised signal segmentation. This

method relies on the kernelization results on the LogDet regularization [103]. In addition

the resulting algorithm is easy to implement and contrary to kernel learning methods, the

learned metric can be applied to unseen data.

1.3 Contributions of the chapter

The contribution of this chapter is a method to adapt a cost function to a set of training

examples (i.e. signals and their manual segmentations). Two types of annotations can be

used to learn the appropriate cost function: full or partial. Compared other supervised

methods, our approach is more general because any kernel can be used, not just the linear

kernel. Once learned, this cost function can be combined with a search method (Opt,

Win, gkCPD, etc.) and a complexity constraint (�xed number of changes, linear penalty,

144 CHAPTER 8. METRIC LEARNING FOR CHANGE POINT DETECTION

Alpin, etc.) to create a change point detection algorithm that is able to reproduce the

segmentation strategy of the annotations. The learned algorithm can be applied on any

new and unseen signal (i.e. not in the training set) sharing the same properties or on a

partially annotated signal.

2 Metric learning with a kernel-based approach

Consider a set of L annotated signals y(l) (L = 1 . . . , L). The signal y(l) can either be fully

annotated or partially annotated. Our approach consists in (i) a learning step, during

which an optimal metric matrix M̂ is estimated and (ii) a predicting step, during which

change point detection is performed on signals using the learned cost function cH,M̂.

To detect change points, any search method (for instance, gkCPD, Opt, etc.) and any

complexity constraint (�xed number of changes, linear penalty, Alpin, etc.) can be used

in combination with the learned cost function cH,M̂.

2.1 From labels to constraints

0 T/4 T/2 3T/4 T
0

T/4

T/2

3T/4

T

0.0 0.5

0.25

0.00

0.25

0.50

(a) Full labels.

0 T/4 T/2 3T/4 T
0

T/4

T/2

3T/4

T

0.0 0.5

0.25

0.00

0.25

0.50

(b) Partial labels.

Figure 8.2: Illustration of the scheme to transform labels into constraints. Similar-

ity/dissimilarity constraints can be stored in a matrix A. For a signal y, the coe�cient Ast
is equal to +1 is ys and yt are similar, −1 is ys and yt are dissimilar, and 0 otherwise. The

matrix A is displayed when (a) the full segmentation is available and (b) only the partial

segmentation is available. Annotations are highlighted in coloured areas. Red is for +1
(similar), blue for −1 (dissimilar) and white for 0 (no relation). The signal is the same in

both situations.

In the metric learning literature, algorithms rely on constraints to learn the desired

norm [85, 165]. More precisely, similarity constraints are pairs of samples that should

be close according to the learned distance. Conversely, dissimilarity constraints are pairs of

samples that should be far according to the learned distance. In the context of supervised

classi�cation, those constraints are derived from the class labels of the samples. Such

information are not available in our setting. Fortunately, we are able to construct similar-

ity/dissimilarity constraints from the full or partial signal annotations, using the following

2. METRIC LEARNING WITH A KERNEL-BASED APPROACH 145

scheme. Two samples y(l)s and y(l)t from a training signal y(l) are considered “similar” if

they belong to the same regime and “dissimilar” if they belong to two consecutive regimes.

Pairs of samples that are neither from the same regime nor two consecutive regimes do not

create any similarity/dissimilarity constraint. Also, in the situation of partial labels, samples

that do not belong to a homogeneous portion of the signal (according to the annotation) do

not create any constraint. Thanks to this scheme, one does not need to know the nature of

the regimes to construct constraints. Both situations (full and partial labels) are illustrated

in Figure 8.2.

2.2 Kernel metric learning

Our method relies on a kernel metric learning procedure, proposed by [87] and brie�y

presented in this section for completeness. This particular method was introduced in the

context of supervised classi�cation, with a kernel to accommodate problems with non-

linear decision boundaries. The learned metric matrix M̂ is the solution to the following

constrained optimization problem:

min
M�0

DLD(M, I)

s.t.

∥∥∥φ(y(l)s)− φ(yt)
∥∥∥

2

H,M
≤ u, y(l)s and yt similar samples

∥∥∥φ(y(l)s)− φ(yt)
∥∥∥

2

H,M
≥ v, y(l)s and yt dissimilar samples

(8.4)

where

DLD(M, M0) := tr(MM−1
0)− logdet(MM−1

0) (8.5)

is the LogDet divergence which acts as a distance on the set of symmetric positive de�nite

matrices and u > 0 (resp. v > 0) is an upper (resp. lower) bound on the intra-regime

(resp. inter-regime) pairwise distances. The distance between M and the identity matrix is

akin to a regularization. However, in this formulation, optimization is performed in the

space of positive semi-de�nite matrices on the feature spaceH, which is possibly in�nite

dimensional and only implicitly de�ned through the kernel k(·, ·). The authors have proven

that this problem has an equivalent �nite-dimensional formulation, where the optimization

is performed on the Gram matrices of the data. Under this setting, the output of the kernel

metric learning algorithm is not the optimal metric matrix M̂ but rather the matrix

Ĝ := φ(y(l)s)′M̂φ(y(l)t) (8.6)

containing the inner-products for all training samples y(l)s and y(l)t , i.e. samples that belong

to an annotated portion of a training signal. The upper and lower bounds for the similarity

and dissimilarity constraints are empirically set to as the 1 and 99-th percentiles of the

distribution of pairwise distances.

2.3 Computing the learned cost function

After the metric learning step, all that is left is to combine the associated cost function

cM̂,H(·) with a search method (Opt, gkCPD, Win,. . .) and a complexity penalty (�xed K,

linear penalty, . . .) in order to perform change point detection. To that end, one must be

146 CHAPTER 8. METRIC LEARNING FOR CHANGE POINT DETECTION

able to compute the cost function on any given signal. After simple manipulations, for a

given signal z = {zt}T
t=1, the learned cost function on the sub-signal za..b (0≤ a < b ≤ T)

is equal to

cH,M̂(za..b) =
b

∑
t=a+1

φ(zt)
′M̂φ(zt)−

1
(b− a)

b

∑
s,t=a+1

φ(zs)
′M̂φ(zt). (8.7)

The cost function only depends on the matrix M̂ through the inner-products φ(zt)′M̂φ(zt).
A di�culty lies in the fact that the metric matrix M̂ is not explicitly available. Two scenarios

exist: (i) both samples belong to the training set or (ii) at least one sample is not in the

training set. When the signal z to segment is one of the training signals y(l) and has only

been partially annotated (in which case, we are performing segmentation completion),

the two scenarios can occur. When the signal z to segment is new and unseen, we are

exclusively in the scenario (ii). Scenario (i) is easily solved because the output of the metric

learning step is the values of all inner-products of pairs of training samples. Thanks to a

representer type of theorem [87, Theorem 1], this also proves to be enough to compute the

inner-products in scenario (ii). More precisely, the following expression can be used for

any samples zs and zt:

φ(zs)
′M̂φ(zt) = k(zs,zt) + k′s G−1(Ĝ− G)G−1 kt (8.8)

where

• k• denotes the column vector [k(z•,y1), k(z•,y2), . . .]′ with {y1,y2, . . .} the set of

training samples;

• G is the matrix of inner-products of the training samples in the untransformed space,

i.e. Gst := k(ys,yt);

• Ĝ is de�ned in (8.6).

2.4 Intuition behind the cost function cH,M

Using the cost function cH,M can be seen as performing the following operations: the signal

samples are �rst mapped to a high-dimensional feature space (through φ) then they are

linearly transformed, then mean-shifts are detected. Indeed, decomposing the symmetric

matrix M = U′U yields

‖φ(yt)− φ(ys)‖2
H,M = ‖Uφ(yt)−Uφ(ys)‖2

H . (8.9)

Therefore, measuring distances (in the feature space) with the pseudo-norm ‖·‖H,M is

equivalent to applying a transformation Uφ(·) on the data. The resulting sum-of-cost

function V(·) measures the error when approximating the transformed signal {Uφ(yt)}t
by a piecewise constant function. The �rst mapping φ is unsupervised (i.e. not task-speci�c)

and extracts a great number (possibly in�nite) of features while the second mapping U
is linear and task-speci�c. This setting has two major advantages. If the chosen kernel

implicitly de�nes an in�nite-dimensional RKHS, the transformation, determined by M
(also in�nite dimensional) is non-parametric. Also, it is non-linear which is necessary in

most real-world contexts, and essential for our physiological signals (for instance the Gait

3. EXPERIMENTS 147

data set whose changes are not simple mean-shifts).

Note that cH,M generalizes some well-known cost functions. If k(·, ·) is set to the linear

kernel and M = Id, then cH,M is formally equivalent to the cost function cL2 . For any

kernel function, and M = Id, cH,M is formally equivalent to ckernel (see Section 2.2.3).

In particular, if k(·, ·) is set to the Gaussian kernel (and M = Id), then cH,M is formally

equivalent to the cost function crbf (see Section 2.2.3).

3 Experiments

The performance of our supervised strategy is compared to standard (unsupervised) change

point detection methods. First, we use the metric learning procedure to learn a cost function

from a set of training signals and use it to segment new signals. Next, we use the metric

learning procedure to complete partial segmentation annotations.

3.0.1 Experimental setting

We use the kernel metric learning procedure to improve the performance of three change

point detection methods: gkCPD (greedy segmentation with the crb f cost function), Win
(crbf) (window-based segmentation with the crbf cost function), and Win (cL2) (window-

based segmentation with the cL2 cost function). The supervised algorithms are denoted

♥gkCPD, ♥Win (crbf), and ♥Win (cL2). For methods that use the crb f cost function, a

Gaussian kernel is used; for the method that uses the cL2 cost function, a linear kernel is

used.

The parameters of the algorithms are calibrated as follows. For all methods, the number

of changes is known beforehand. For the Gaussian kernel, the scale parameter is tuned

according to the “median heuristics” [142]. Window-based methods use a 100-sample long

window. For the metric learning, the similarity/dissimilarity constraints are created from

the annotations using 50 samples from each regime. The so-called slack parameter [87] is

chosen from {10−3,10−2,10−1,1} using cross-validation on a random subset of 10 signals.

In all experiments, supervised methods (those with a♥) are evaluated with cross-validation:

each data set is divided into ten folds. Each fold serves once as a training set to learn a cost

function, which is then used to segment the signals of the other nine folds.

3.1 Supervised segmentation of new signals

In this experiment, an optimal cost function is learned from a training set of signals and

used to segment new signals from a testing set.

3.1.1 FreqShi� data set

S
N

R
M

e
t
r
i
c

♥
g
k
C
P
D

g
k
C
P
D

♥
W
i
n

(
c r

b
f
)

W
i
n

(
c r

b
f
)

♥
W
i
n

(
c L

2
)

W
i
n

(
c L

2
)

−
5d

B
H
a
u
s
d
o
r
f
f

35
.2

6
(±

26
.6

5)
48

.2
8
(±

57
.0

6)
26

0.
93

(±
15

0.
49
)

37
4.

48
(±

13
2.

76
)

28
8.

08
(±

15
7.

90
)

36
8.

34
(±

13
7.

01
)

R
a
n
d
I
n
d
e
x

0.
98

(±
0.

01
)

0.
97

(±
0.

02
)

0.
91

(±
0.

06
)

0.
84

(±
0.

06
)

0.
89

(±
0.

06
)

0.
84

(±
0.

07
)

F
1
s
c
o
r
e

0.
76

(±
0.

18
)

0.
71

(±
0.

21
)

0.
59

(±
0.

22
)

0.
32

(±
0.

22
)

0.
52

(±
0.

23
)

0.
35

(±
0.

23
)

−
1d

B
H
a
u
s
d
o
r
f
f

15
.6

0
(±

6.
16
)

17
.8

0
(±

7.
31
)

52
.4

2
(±

10
6.

32
)

18
9.

09
(±

16
6.

78
)

53
.9

3
(±

10
6.

15
)

14
8.

59
(±

16
3.

52
)

R
a
n
d
I
n
d
e
x

0.
99

(±
0.

00
)

0.
98

(±
0.

01
)

0.
98

(±
0.

03
)

0.
94

(±
0.

05
)

0.
97

(±
0.

04
)

0.
95

(±
0.

04
)

F
1
s
c
o
r
e

0.
93

(±
0.

11
)

0.
90

(±
0.

13
)

0.
94

(±
0.

11
)

0.
71

(±
0.

19
)

0.
88

(±
0.

16
)

0.
77

(±
0.

19
)

0d
B

H
a
u
s
d
o
r
f
f

16
.1

4
(±

6.
61
)

18
.6

7
(±

8.
38
)

45
.5

8
(±

98
.8

8)
11

0.
19

(±
15

2.
74
)

37
.7

1
(±

83
.7

3)
97

.1
2
(±

14
8.

83
)

R
a
n
d
I
n
d
e
x

0.
99

(±
0.

01
)

0.
98

(±
0.

01
)

0.
98

(±
0.

02
)

0.
96

(±
0.

04
)

0.
98

(±
0.

02
)

0.
97

(±
0.

04
)

F
1
s
c
o
r
e

0.
93

(±
0.

14
)

0.
90

(±
0.

15
)

0.
94

(±
0.

11
)

0.
83

(±
0.

18
)

0.
90

(±
0.

14
)

0.
86

(±
0.

16
)

2d
B

H
a
u
s
d
o
r
f
f

14
.5

7
(±

4.
68
)

16
.1

0
(±

7.
56
)

11
.6

0
(±

4.
08
)

20
.6

8
(±

39
.8

9)
18

.6
9
(±

17
.7

5)
17

.8
4
(±

39
.0

4)
R
a
n
d
I
n
d
e
x

0.
99

(±
0.

00
)

0.
99

(±
0.

01
)

0.
99

(±
0.

00
)

0.
99

(±
0.

01
)

0.
99

(±
0.

01
)

0.
99

(±
0.

01
)

F
1
s
c
o
r
e

0.
95

(±
0.

11
)

0.
93

(±
0.

13
)

0.
99

(±
0.

04
)

0.
92

(±
0.

14
)

0.
92

(±
0.

12
)

0.
95

(±
0.

12
)

T
a
b
l
e

8
.1

:
P

e
r
f
o

r
m

a
n

c
e

(
m

e
a
n

s
a
n

d
s
t
a
n

d
a
r
d

d
e
v
i
a
t
i
o

n
s
)

o
n

t
h

e
F
r
e
q
S
h
i
f
t

d
a
t
a

s
e
t
.

M
a
r
g

i
n

f
o

r
F
1
s
c
o
r
e

i
s

2
0

s
a
m

p
l
e
s
.
H
a
u
s
d
o
r
f
f

i
s

i
n

n
u

m
b

e
r

o
f

s
a
m

p
l
e
s
.

3. EXPERIMENTS 149

We start o� by applying our supervised strategy on signals from the FreqShift data set.

In this experiment, we use the time-frequency representation of the signals. Results are

provided in Table 8.1, from which several observations can be made.

• Supervision improves segmentation accuracy. Except in one situation, the su-

pervised method is more accurate than its unsupervised counterpart, according to

all metrics. This is particularly visible when SNR = −1 dB for Win methods: for

instance, Hausdorff is around t three times lower thanks to supervision. Generally,

the amelioration is large for high levels of noise. The di�erence becomes smaller as

the SNR goes to 2 dB, where supervised and unsupervised methods converge, and

are equally accurate, to the point that Win(cL2) have better scores than ♥Win(cL2)

(one sample di�erence in Hausdorff for instance).

• Window-based methods are less robust to noise. Even with supervision, we

observe that window-based methods remain less robust to noise. For instance, even

though ♥Win(crbf) and ♥gkCPD share the same learned cost function, the greedy

segmentation method has better scores for all SNRs, except 2 dB. This was already

observed on this data set, see Section 3 on page 116. Interestingly, window-based

methods are quite accurate when SNR is high: for instant ♥Win(crbf) is the best

when SNR = 2 dB.

To sum up, our kernel metric learning strategy improves segmentation performance on

FreqShift. It can accommodate either cL2 or crbf and any search methods that can be

combined with a cost function. This illustrates the bene�ts of learning a suitable metric to

detect change points.

3.1.2 Gait data set

In this experiment, an optimal cost function is learned from a set of Gait signals and used to

segment new Gait signals. Contrary to previous experiments (Chapter 6), segmentation is

performed on the time domain representation of the signals and not the the time-frequency

representation. The only preprocessing consists in centering and scaling all dimensions

of the signal to unit variance. The cL2 cost function is not used here because it can only

detect mean-shifts.

Gait data set ♥gkCPD gkCPD ♥Win (c
rbf

) Win (c
rbf

)

Hausdorff 0.94 (±0.58) 1.35 (±1.35) 5.93 (±2.65) 6.01 (±2.24)
RandIndex 0.93 (±0.03) 0.92 (±0.05) 0.84 (±0.05) 0.83 (±0.04)
F1 score 0.91 (±0.15) 0.86 (±0.18) 0.62 (±0.16) 0.60 (±0.15)

Table 8.2: Performance (means and standard deviations) on the Gait data set. Margin for F1

score is one second. Hausdorff is in seconds.

Results are provided in Table 8.2. Several observations can be made.

• Observations from the previous experiment, on FreqShift, are con�rmed: supervised

methods outperform their unsupervised counterparts, according to all metrics and,

even though they share the same learned cost function,♥gkCPD outperforms♥Win
(crbf).

150 CHAPTER 8. METRIC LEARNING FOR CHANGE POINT DETECTION

• The method ♥gkCPD is the most accurate segmentation method presented in this

work: in all experiments on the Gait data set, it is the only one with its F1 score

above 0.90 and its Hausdorff under one second (see also Section 4 on page 119

for scores of other methods). Note that ♥gkCPD is applied on the raw signals: the

learning step has learned the correct representation from available change point

annotations. This removes the need to manually design a representation in which

change points are easy to detect.

Those results are promising for the segmentation of Gait signals More insights can be

gained by looking at the segmentation accuracy by change point type, reported in Table 8.3.

This con�rms the fact that ♥gkCPD is the best performing method on the Gait data set.

For instance, error is under one second for all change types. Supervision improves the

detection precision for all change points and the error variance is lower, indicating that

detection is also more stable.

♥gkCPD gkCPD ♥Win (c
rbf

) Win (c
rbf

)

Stand/Walk 0.47 (±0.42) 0.76 (±0.99) 5.31 (±2.86) 5.28 (±2.53)
Walk/Turnaround 0.61 (±1.23) 1.07 (±2.04) 1.01 (±1.42) 1.12 (±1.33)
Turnaround/Walk 0.94 (±1.83) 1.14 (±2.04) 1.83 (±2.52) 2.40 (±2.59)

Walk/Stand 0.53 (±0.36) 0.62 (±0.42) 1.84 (±2.60) 2.16 (±2.62)

Table 8.3: Accuracy (means and standard deviations) in seconds.

3.2 Segmentation completion

In this experiment, a di�erent task is tackled. A cost function is learned from a partially

annotated signal and applied on the same signal to recover the change points. Such a

scenario corresponds to a situation when an expert provides only a small part of the under-

lying segmentation and expect the algorithm to complete the annotation. The algorithm

♥gkCPD is applied on the Gait data set. For every signal, portions of w ∈ {0.1,0.5,1,1.5}
seconds from each regime are used as partial annotations. Results are reported in Table 8.4.

♥gkCPD 0.1 sec 0.5 sec 1 sec 1.5 sec

Hausdorff 1.20 (±1.19) 0.91 (±0.53) 1.37 (±1.32) 1.50 (±1.33)
RandIndex 0.92 (±0.04) 0.93 (±0.03) 0.93 (±0.05) 0.93 (±0.04)
F1 score 0.87 (±0.17) 0.90 (±0.16) 0.89 (±0.15) 0.90 (±0.14)

Table 8.4: Accuracy (means and standard deviations) in seconds against the length of

well-labelled data. Margin for F1 score is one second. Hausdorff is in seconds.

On the Gait data set, ♥gkCPD performs best when 0.5 second of each regime is used as

partial annotation, according to all metrics. Using only 0.1 second results in a F1 score

equal to 0.87, its worst value. Too little information is present in the annotation and the

resulting metric is not adapted to the change points to detect. When partial annotations go

from 0.5 to 1 or 1.5 seconds, Hausdorff increases by more than 0.4 second. This fact can

be explained by looking at the segmentation accuracy by change point type, reported in

Table 8.5.

4. DISCUSSION: DOUBLE LABELS 151

♥gkCPD 0.1 sec 0.5 sec 1 sec 1.5 sec

Stand/Walk 0.69 (±0.88) 0.46 (±0.39) 0.57 (±1.03) 0.54 (±1.01)
Walk/Turnaround 0.71 (±1.41) 0.37 (±0.49) 0.90 (±1.82) 0.81 (±1.74)
Turnaround/Walk 0.96 (±1.84) 0.73 (±1.46) 1.26 (±2.20) 1.28 (±2.36)

Walk/Stand 0.70 (±0.85) 0.54 (±0.39) 0.47 (±0.53) 0.53 (±0.75)

Table 8.5: Accuracy (means and standard deviations) in seconds against the length of

labelled data.

When partial annotations have a duration of 1 or 1.5 seconds, the least precisely detected

change point is the third one, “Turnaround/Walk”. The reason is that samples at the edges

of the “Turnaround” regime are included in the training set annotations, even though they

are less representative of the underlying model of the regime (they are at the limit between

two regimes). By trying to the satisfy the similarity/dissimilarity constraints resulting from

those samples, the learned metric is less able to correctly identify the change points. Overall,

this implies that using around 50 samples per regime is enough to learn a discriminative

metric on the Gait data set. This quantity seems to be a characteristic time of our learning

strategy, related to the frequency of the observed phenomena, namely the footsteps, whose

frequency is usually just below 2 Hz.

4 Discussion: double labels

We illustrate the in�uence of input annotations on our supervised change point detection

procedure. To that end, we create a signal with two types of change points and feed as

annotation two di�erent ground truths to learn a metric. The metric is expected to adapt

to the input annotations, even though the train signal is the same. The signal contains two

types of change points: low-frequency shifts and high-frequency shifts and is constructed

as follows: two signals (sum of sines) are generated with high and low frequency change

points and then summed to form the �nal signal. It is given by

yt = ylow

t + yhigh

t (8.10)

where ylow

t and yhigh

t are noisy sum-of-sines signals:

ylow

t = sin(2π f low

1 t) + sin(2π f low

2 t) + εt (8.11)

and

yhigh

t = sin(2π f high

1 t) + sin(2π f high

2 t) + εt (t = 1, . . . , T), (8.12)

where f low

1 , f low

2 , f high

1 and f high

2 are frequencies and εt is a Gaussian white noise with vari-

ance σ2
. Signals are T = 2000-sample long. The frequency vectors [f low

1 , f low

2] alternates

from [0.075,0.1] to [0.125,0.1] at change indexes t = 500,1000,1500. The frequency vec-

tors [f high

1 , f high

2] alternates from [0.275,0.3] to [0.325,0.3] at change indexes t = 670,1300.

Noise is added for an SNR of 5 Db. A signal realization is displayed on Figure 8.3.

152 CHAPTER 8. METRIC LEARNING FOR CHANGE POINT DETECTION

Figure 8.3: Top: signals ylow
(left) and yhigh

(right). Successive regimes are in alternating

grey areas. Bottom: signal y and associated spectrogram.

The metric learning algorithm uses a linear kernel and is applied on the time-frequency

representation of the signal y. Two metric matrices M̂high and M̂low are learned by feeding

annotations related to the high frequency change points and the low frequency change

points, respectively. In both contexts, the train signal is the same. Change points are then

estimated, using the greedy method gCPD on a new signal realization using the learned

metric.

Figure 8.4: Top: signal realization (left) and projected spectrogram (right) for the low

frequency change point annotation. Bottom: same signal realization (left) and projected

spectrogram (right) for the high frequency change point annotation. Alternating gray areas

denote the target segmentation. Dashed lines denote the estimated segmentation.

We verify on Figure 8.4 that the predicted segmentation agrees with the annotation. In

other words, detected change points are of the same type (high or low frequency) than the

5. CONCLUSION 153

ones that are given as input annotation. We illustrate how the metric matrix transforms the

feature space. Since M̂• (where • is either “low” or “high”) are positive de�nite matrices,

they have a Cholesky decomposition M̂• = L̂•(L̂•)′. We can see (L̂•)′ as a projection

matrix. On Figure 8.4 are displayed the projected spectrograms. When they are compared

to the unprojected spectrograms (similar to the one displayed on Figure 8.3), we observe

that undesirable frequency shifts are toned down by the projection while the “correct” type

of change points are preserved. To sum up, our metric learning strategy works as expected

and transforms the input space so that undesirable change points are removed.

5 Conclusion

In this chapter, an automatic procedure to calibrate the cost function of change point

detection methods has been described. To that end, we show that the calibration problem

can be formulated as a kernel metric learning task. Under this setting, a non-parametric

transformation of the samples is learned using signal annotations. This data transformation

minimizes intra-regime distances and maximizes inter-regime distances. An e�cient

optimization algorithm is then derived. Our procedure can accommodate full and partial

annotations. Once learned, this cost function can be combined with a search method (Opt,

Win, gkCPD, etc.) and a complexity constraint (�xed number of changes, linear penalty,

Alpin, etc.) to create a change point detection algorithm that is able to reproduce the

segmentation strategy of the annotations. Numerical experiments show that, for both the

linear and Gaussian kernel, supervision improves segmentation accuracy. On the Gait data

set, our supervised strategy, applied on the raw signals, has the best segmentation accuracy

of all methods tested in this thesis. This mitigates the need for a manual design of a suitable

signal representation. We also show that this method can be used to recover change points

from partially annotated signals, as well as adapt to di�erent labels, even though the signals

are the same. An interesting issue for future research is the interpretation the learned

metric. For the Gait data set, this could give us insights on which parameters are important

when detecting changes.

Part IV

Statistical software

155

9
ruptures : change point detection in

Python
Contents

1 Introduction . 157

2 Change point detection framework . 159

3 Library overview . 159

3.1 Main features . 159

3.2 Availability and requirements . 160

3.3 Illustrative example . 161

4 Conclusion . 161

Abstract

ruptures is a Python library for o�ine change point detection. This package provides

methods for the analysis and segmentation of non-stationary signals. Implemented

algorithms include exact and approximate detection for various parametric and non-

parametric models. ruptures focuses on ease of use by providing a well-documented

and consistent interface. In addition, thanks to its modular structure, di�erent algo-

rithms and models can be connected and extended within this package.

1 Introduction

Change point detection is the task of �nding changes in the underlying model of a signal.

This subject has generated important activity in statistics and signal processing [77, 90, 111].

Modern applications in bioinformatics, �nance, monitoring of complex systems have also

motivated recent developments from the machine learning community [84, 105, 160].

We present ruptures , a Python scienti�c library for multiple change point detection in

multivariate signals. It is meant to answer the growing need for fast exploration, by non-

specialists, of non-stationary signals. In addition, we expect that removing the cost of

reimplementation will facilitate composition of new algorithms. To that end, ruptures

insists on an easy-to-use and consistent interface. Implementation is also modular to allow

users to seamlessly plug their own code.

To the best of the authors’ knowledge, ruptures is the �rst Python package dedicated

to multiple change point detection. As displayed in Table 9.1, all related softwares are

158 CHAPTER 9. RUPTURES : CHANGE POINT DETECTION IN PYTHON

Name Language Link Type(s) of change Algorithm(s)

wbsts [100, 101] R cran.r-project.
org/package=
wbsts

Change in 2nd
order stationary struc-

ture [125]

BinSeg [67, 100]

trend [135] R cran.r-project.
org/package=
trend

Single shift in trend Opt

strucchange [168] R cran.r-project.
org/package=
strucchange

Shifts in mean and in linear model Opt

SeqCBS [148] R cran.r-project.
org/package=
SeqCBS

Mean-shifts in Poisson processes BinSeg [126]

SegCorr [56] R cran.r-project.
org/package=
SegCorr

Shifts in mean and scale Opt

cpm [140] R cran.r-project.
org/package=cpm

Change in Gaussian, exponential,

Bernoulli random variables, and gen-

eral distribution change

Win, BinSeg

not [23] R cran.r-project.
org/package=not

Mean-shifts in univariate signals

(with di�erent types of noise)

BinSeg

factorcpt [49] R cran.r-project.
org/package=
factorcpt

Mean-shifts with factor analysis BinSeg

ecp [88] R cran.r-project.
org/package=ecp

Distribution changes BinSeg, BotUp

changepoint [97] R cran.r-project.
org/package=
changepoint

Mean and scale shifts in univariate

signals

Pelt

breakfast [66] R cran.r-project.
org/package=
breakfast

Mean-shifts in univariate signals BinSeg [63, 65, 67]

bcp [60] R cran.r-project.
org/package=bcp

Bayesian counterpart of

strucchange

Bayesian

changepoint.np [78] R cran.r-project.
org/package=
changepoint.np

Change in distribution (based on em-

pirical distribution function)

Pelt

Segmentor3IsBack [51] R cran.r-project.
org/package=
Segmentor3IsBack

Distribution changes for Gaussian,

Poisson, exponential, negative bino-

mial variables

Opt

wbs [22] R cran.r-project.
org/package=wbs

Mean-shifts in univariate signals BinSeg [67]

AR1seg [40, 41] R cran.r-project.
org/package=
AR1seg

Mean-shifts in AR(1) processes Opt

Table 9.1: Summary of available libraries for change point detection.

implemented in R. However, few provide more than one algorithm, and even fewer can be

applied to detect changes other than mean-shifts [89, 141]. On the other hand, ruptures

contains several standard methods as well as recent contributions, most of which are not

available elsewhere (in Python or R). Our work encompasses most packages and provides a

unique framework to run and evaluate all algorithms.

In the following, we quickly describe the change point detection framework. Then the

main features of the library are detailed.

cran.r-project.org/package=wbsts
cran.r-project.org/package=wbsts
cran.r-project.org/package=wbsts
cran.r-project.org/package=trend
cran.r-project.org/package=trend
cran.r-project.org/package=trend
cran.r-project.org/package=strucchange
cran.r-project.org/package=strucchange
cran.r-project.org/package=strucchange
cran.r-project.org/package=SeqCBS
cran.r-project.org/package=SeqCBS
cran.r-project.org/package=SeqCBS
cran.r-project.org/package=SegCorr
cran.r-project.org/package=SegCorr
cran.r-project.org/package=SegCorr
cran.r-project.org/package=cpm
cran.r-project.org/package=cpm
cran.r-project.org/package=not
cran.r-project.org/package=not
cran.r-project.org/package=factorcpt
cran.r-project.org/package=factorcpt
cran.r-project.org/package=factorcpt
cran.r-project.org/package=ecp
cran.r-project.org/package=ecp
cran.r-project.org/package=changepoint
cran.r-project.org/package=changepoint
cran.r-project.org/package=changepoint
cran.r-project.org/package=breakfast
cran.r-project.org/package=breakfast
cran.r-project.org/package=breakfast
cran.r-project.org/package=bcp
cran.r-project.org/package=bcp
cran.r-project.org/package=changepoint.np
cran.r-project.org/package=changepoint.np
cran.r-project.org/package=changepoint.np
cran.r-project.org/package=Segmentor3IsBack
cran.r-project.org/package=Segmentor3IsBack
cran.r-project.org/package=Segmentor3IsBack
cran.r-project.org/package=wbs
cran.r-project.org/package=wbs
cran.r-project.org/package=AR1seg
cran.r-project.org/package=AR1seg
cran.r-project.org/package=AR1seg

2. CHANGE POINT DETECTION FRAMEWORK 159

2 Change point detection framework

In the o�ine (or retrospective) change point detection framework, we consider a non-

stationary random process y = {y1, . . . ,yT} that takes value in Rd
(d ≥ 1). The signal y

is assumed to be piecewise stationary, meaning that some characteristics of the process

change abruptly at some unknown instants t?1 < t?2 < · · · < t?K. Change point detection

consists in estimating those instants when a particular realization of y is observed. Note

that the number of changes K is not necessarily known.

Most estimation methods adhere to or are an approximation of a general format where a

suitable contrast function C(·) is minimized [90, 108]. Usually, it is written as a sum of

segment costs:

V(T ,y) := c({yt}t1
1) + c({yt}t2

t1+1) + · · ·+ c({yt}ti+1
ti+1) + . . . (9.1)

where T = {t1, t2, . . .} denotes a set of change point indexes and c(·) denotes a cost

function that takes a process as input and measures its goodness-of-�t to a speci�ed model.

The contrast V(·) is the total cost associated with choosing a particular segmentation T .

Change point detection amounts to solving the following discrete optimization problem:

min
T

V(T ,y) + pen(T) (9.2)

where pen(T) is a regularizer on the value of the partition T . Methods from the litera-

ture essentially di�er by 1) the constraints they add to this optimization problem (�xed

dimension of T , penalty term, cost budget, etc.), 2) how they search for the solution (exact

or approximate resolution, local or sequential, etc.) and 3) the cost function c(·) they use

(which is related to the type of change).

3 Library overview

A basic �owchart is displayed on Figure 9.1. Each block of this diagram is described in

the following brief overview of ruptures ’ features. More information can be found in the

related documentation (see link to source in Section 3.2).

3.1 Main features

• Search methods Our package includes the main algorithms from the literature,

namely dynamic programming, detection with a l0 constraint, binary segmentation,

bottom-up segmentation and window-based segmentation. This choice is the result

of a trade-o� between exhaustiveness and adaptiveness. Rather than providing as

many methods as possible, only algorithms which have been used in several di�erent

settings are included. In particular, numerous “mean-shift only” detection procedures

were not considered. Implemented algorithms have sensible default parameters that

can be changed easily through the functions’ interface.

• Cost functions Cost functions are related to the type of change to detect. Within

ruptures , one has access to parametric cost functions that can detect shifts in

standard statistical quantities (mean, scale, linear relationship between dimensions,

autoregressive coe�cients, etc.) and non-parametric cost functions (kernel-based or

Mahalanobis-type metric) that can, for instance, detect distribution changes [72, 105].

160 CHAPTER 9. RUPTURES : CHANGE POINT DETECTION IN PYTHON

Search method Cost function Constraint

Change detection

Simulated signal

User’s signal

Input signal

Display

Metrics

Evalutation

Figure 9.1: Schematic view of the ruptures package.

• Constraints All methods can be used whether the number of change points is

known or not. In particular, ruptures implements change point detection under a

cost budget and with a linear penalty term [98, 121].

• Evaluation Evaluation metrics are available to quantitatively compare segmenta-

tions, as well as a display module to visually inspect algorithms’ performances.

• Input Change point detection can be performed on any univariate or multivariate

signal that �ts into a Numpy array. A few standard non-stationary signal generators

are included.

• Consistent interface and modularity Discrete optimization methods and cost

functions are the two main ingredients of change point detection. Practically, each is

related to a speci�c object in the code, making the code highly modular: available

optimization methods and cost functions can be connected and composed. An

appreciable by-product of this approach is that a new contribution, provided its

interface follows a few guidelines, can be integrated seamlessly into ruptures .

• Scalability Data exploration often requires to run several times the same methods

with di�erent sets of parameters. To that end, a cache is implemented to keep

intermediate results in memory, so that the computational cost of running the same

algorithm several times on the same signal is greatly reduced. We also add the

possibility for a user with speed constraints to sub-sample their signals and set a

minimum distance between change points.

3.2 Availability and requirements

The ruptures library is written in pure Python and available on Mac OS X, Linux and

Windows platforms. Source code is available from reine.cmla.ens-cachan.fr
1

under the BSD

license. We also provide a complete documentation that includes installation instructions,

explanations with code snippets on advance use (ctruong.perso.math.cnrs.fr/ruptures).

Implementation relies on Numpy as the base data structure for signals and parameters and

Scipy for e�cient linear algebra and array operations. The Matplotlib library is recom-

mended for visualization. Unit tests (through the Pytest library) are provided to facilitate

the validation of new pieces of code.

1https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/
latest/archive.zip

https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip
http://ctruong.perso.math.cnrs.fr/ruptures
https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip
https://reine.cmla.ens-cachan.fr/c.truong/ruptures/repository/latest/archive.zip

4. CONCLUSION 161

import ruptures as rpt

signal generation

signal, bkps = rpt.pw_normal(n_samples=500, n_bkps=4)

change point detection

algo = rpt.Dynp(model="rbf").fit(signal)

result = algo.predict(n_bkps=4)

(a) Python code.

100 200 300 400

−4

−2

0

2

4

100 200 300 400

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

(b) Top and middle: simulated 2D signal;

regimes are highlighted in alternating gray

area. Below: scatter plots for each regime

type.

Figure 9.2: Illustrative example.

3.3 Illustrative example

As an illustrative example, we perform a kernel change point detection on a simulated

piecewise stationary process [72]. In a nutshell, this method maps the input signal onto a

high-dimensional Hilbert spaceH through a kernel function (here, we use the radial basis

function) and searches for mean-shifts.

First, random change point indexes are drawn and a 2D signal of i.i.d. centered normal

variables with changing covariance matrix is simulated (Figure 9.2b). The algorithm’s

internal parameters are then �tted on the data. The discrete minimization of the contrast

function is performed with dynamic programming and the associated estimates are returned.

The related code lines are reported on Figure 9.2a.

It is worth mentioning that only a few instructions are needed to perform the segmentation.

In addition, thanks to ruptures , variations of the kernel change point detection can be

easily carried out by changing a few parameters in this code.

4 Conclusion

ruptures is the most comprehensive change point detection library. Its consistent interface

and modularity allow painless comparison between methods and easy integration of new

contributions. In addition, a thorough documentation is available for novice users. Thanks

to the rich Python ecosystem, ruptures can be used in coordination with numerous other

scienti�c libraries

Conclusion and perspectives

In this thesis, several contributions have been proposed for the detection of multiple change

points in multivariate signals. The original motivation for this work was the substantial

amount of physiological time series collected by monitoring subjects while they undergo a

clinical protocol. In this context, change point detection is a critical step in the transition

from raw signals to actionable data. To cope with the demanding setting of daily clinical

practice, our contributions covered the three elements that characterize detection methods,

namely the cost function, the search method and the constraint on the number of changes.

In Part II : Greedy change point detection, a trade-o� (in terms of complexity) between

exact detection methods and fast window-based methods is described. Precisely, a greedy

detection procedure is proposed, that leads to two (related) algorithms: gCPD (linear

kernel) and gkCPD (arbitrary kernel). The �rst algorithm, gCPD, greedily approximates

the optimal change point detection solution, using the Orthogonal Matching Pursuit (OMP)

strategy. Our algorithm gCPD is then extended, leading to gkCPD, which is based on

a kernel norm. Thanks to the properties of reproducing Hilbert spaces, gkCPD detects

changes in higher-order moments of probability distributions. Numerical experiments on

real-world signals show that both algorithms display competitive results. In particular,

greedy approaches are more accurate than standard sub-optimal methods and faster than

optimal methods. An interesting direction of research would be to obtain consistency

results for the greedy algorithm gkCPD, with an arbitrary kernel. A possible approach

would be to use concentration inequalities adapted to a non-Gaussian Hilbertian setting, as

in [69].

Part III : Supervised change point detection focuses on automatic calibration of detection

methods. To that end, two procedures based on supervised learning are described. In both

situations, an expert speci�es to the algorithm what is considered a change by providing

annotated signals. In practice, such annotations can either be “full”, when the exact

change point locations are provided, or “partial”, when only approximate locations are

provided. The algorithm then calibrates the detection method so that it replicates the

segmentation strategy of the expert. This setting removes the need for a manual tuning

of the parameters of the detection method. In addition, several experts that are interested

in di�erent phenomena can easily provide di�erent annotations to have a calibration

adapted to their needs. The �rst procedure, Alpin, selects the correct number of change

points in signals, by learning the smoothing parameter of a linear penalty, using a training

set of fully annotated signals. Precisely, Alpin consists in minimizing a particular loss

function, the excess risk. Numerical experiments on synthetic and real-world data sets

show that Alpin outperforms standard non-supervised penalization methods. In addition,

compared to other supervised approaches, Alpin is faster and can be applied to detect

arbitrary types of changes. In the future, it would be interesting to extend Alpin to partial

labels. Also, as done in [82], it is possible to have the smoothing parameter depend on key

parameters of the signal (length, noise level, etc.) through a linear relationship. An easily

modi�ed version of Alpin could be developed and tested on real-world data. The second

contribution of Part III deals with the calibration of the cost function. Alternatively, this

164 CHAPTER 9. RUPTURES : CHANGE POINT DETECTION IN PYTHON

Figure 9.3: Number of downloads of ruptures per day (as of 9/5/2018) from the Machine

Learning Open Source Software (MLOSS) platform
2
. (This is only one of the platforms on

which ruptures is available.)

can be seen as �nding a signal representation so that annotated changes, however complex,

are transformed into mean-shifts, which are a well-studied type of change. This calibration

problem is formulated as a kernel metric learning task. Our procedure can accommodate

full and partial annotations. Numerical experiments show that, for both the linear and

Gaussian kernel, supervision improves segmentation accuracy. On the Gait data set, our

supervised strategy, applied on the raw signals, has the best segmentation accuracy of all

methods tested in this thesis. This mitigates the need for a manual design of a suitable

signal representation. We also show that this method can be used to recover change points

from partially annotated signals, as well as adapt to di�erent labels, even though the signals

are the same. A promising perspective would be to generalize the methodology of Part III in

order to adapt other supervised learning procedures to change point detection. At the time

of writing, only a few works use full or partial signal annotations to learn from an expert

a segmentation strategy. In our opinion, such an approach is likely to have considerable

practical and theoretical consequences for change point detection.

To facilitate the use of segmentation methods, implementations of standard algorithms

can be found in the Python package ruptures , which is described in Part IV : Statistical

software. ruptures is the most comprehensive library in Python. Its consistent interface

and modularity allow painless comparison between methods and easy integration of new

contributions. In addition, a thorough documentation is available for novice users. Thanks

to the rich Python ecosystem, ruptures can be used in coordination with numerous

other scienti�c libraries. Since its release, several contributors have participated in its

development, especially through the Github platform. Figure 9.3 shows the number of

downloads since the release of ruptures . An immediate addition to ruptures would be

our supervised contributions (from Part III).

2
Several change points are visible on Figure 9.3. From release day to mid-February, ruptures is frequently

downloaded because the link to the package is on the front page and a lot of internet bots are scraping the

MLOSS website at each new post. From mid-February to July, the number of downloads is relatively constant.

Activity completely stops during the summer break to resume in September.

http://mloss.org/software/view/700/
http://mloss.org/software/view/700/
https://github.com/deepcharles/ruptures

4. CONCLUSION 165

On a concluding note, we would like to point out that the challenges that motivated this

thesis can be found in numerous other settings: as more and more systems and individuals

are monitored, change point detection has become more and more crucial to contextualize

the long time series that are collected. Without a doubt, the methodology and solutions

described in this work have the potential to be successfully used in countless other situations,

such as self-quanti�ed health, industrial system surveillance, quality control, etc.

A
Documentation of ruptures

ruptures Documentation
Release

Charles Truong

Apr 09, 2018

CONTENTS

1 Getting started 3

2 Documentation 5

3 Contact 39

4 Indices and tables 41

Bibliography 43

Python Module Index 45

Index 47

i

ii

ruptures Documentation, Release

ruptures is designed to perform offline change point algorithms within the Python language. Also in this library,
new methods are presented.

Note:

Listing 1: Basic usage

import matplotlib.pyplot as plt
import ruptures as rpt
generate signal
n_samples, dim, sigma = 1000, 3, 4
n_bkps = 4 # number of breakpoints
signal, bkps = rpt.pw_constant(n_samples, dim, n_bkps, noise_std=sigma)
detection
algo = rpt.Pelt(model="rbf").fit(signal)
result = algo.predict(pen=10)
display
rpt.display(signal, bkps, result)
plt.show()

CONTENTS 1

ruptures Documentation, Release

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 License

This project is under BSD license.

1.2 Installation

With pip3 from terminal: $ pip3 install ruptures.

Or download the source codes from latest release and run the following lines from inside the folder $ python3
setup.py install or $ python3 setup.py develop.

1.3 User guide

This section explains how to use implemented algorithms. ruptures has an object-oriented modelling approach:
change point detection algorithms are broken down into two conceptual objects that inherits from base classes:
BaseEstimator and BaseCost.

1.3.1 Initializing a new estimator

Each change point detection algorithm inherits from the base class ruptures.base.BaseEstimator. When
a class that inherits from the base estimator is created, the .__init__() method initializes an estimator with the
following arguments:

• 'model': “l1”, “l2”, “normal”, “rbf”, “linear”, “ar”. Cost function to use to compute the approximation error.

• 'cost': a custom cost function to the detection algorithm. Should be a BaseCost instance.

• 'jump': reduce the set of possible change point indexes; predicted change points can only be a multiple of
'jump'.

• 'min_size': minimum number of samples between two change points.

1.3.2 Making a prediction

The main methods are .fit(), .predict(), .fit_predict():

• .fit(): generally takes a signal as input and fit the algorithm on the data

3

ruptures Documentation, Release

• .predict(): performs the change point detection. This method returns a list of indexes corresponding to the
end of each regimes. By design, the last element of this list is the number of samples.

• .fit_predict(): helper method which calls .fit() and .predict() successively.

1.3.3 Creating a new cost function

In order to define custom cost functions, simply create a class that inherits from ruptures.base.BaseCost and
implement the methods .fit(signal) and .error(start, end):

• The method .fit(signal) takes a signal as input and sets parameters. It returns 'self'.

• The method .error(start, end) takes two indexes 'start' and 'end' and returns the cost on the
segment start:end.

An example can be found in Custom cost class.

4 Chapter 1. Getting started

CHAPTER

TWO

DOCUMENTATION

The complete documentation can be found here.

2.1 Change point detection: a general formulation

A general framework is introduced in this review of methods [CTOV18].

References

2.2 Search methods

The ruptures.detection module implements the change point detection methods.

2.2.1 Exact segmentation: dynamic programming

Description

The method is implemented in ruptures.detection.Dynp.

Roughly speaking, it computes the cost of all subsequences of a given signal. The number of computed costs is of the
order 𝒪(𝐾𝑛2), where 𝐾 is the number of change points and 𝑛 the number of samples. This has to be multiplied by
the computational cost of computing the approximation error on one sub-sequence. Consequently, piecewise constant
models are significantly faster than linear or autoregressive models.

Computational cost is drastically reduced when considering only a subsample of possible change points. When calling
ruptures.detection.Dynp.__init__(), the minimum distance between change points can be set through
the keyword 'min_size'; through the parameter 'jump', only change point indexes multiple of a particular value
are considered.

Usage

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt

creation of data
n, dim = 500, 3
n_bkps, sigma = 3, 5

5

ruptures Documentation, Release

signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

change point detection
model = "l1" # "l2", "rbf"
algo = rpt.Dynp(model=model, min_size=3, jump=5).fit(signal)
my_bkps = algo.predict(n_bkps=3)

show results
rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
plt.show()

Code explanation

class ruptures.detection.Dynp(model=’l2’, custom_cost=None, min_size=2, jump=5,
params=None)

Find optimal change points using dynamic programming.

Given a segment model, it computes the best partition for which the sum of errors is minimum.

__init__(model=’l2’, custom_cost=None, min_size=2, jump=5, params=None)
Creates a Dynp instance.

Parameters

• model (str, optional) – segment model, [“l1”, “l2”, “rbf”]. Not used if
'custom_cost' is not None.

• custom_cost (BaseCost, optional) – custom cost function. Defaults to None.

• min_size (int, optional) – minimum segment length.

• jump (int, optional) – subsample (one every jump points).

• params (dict, optional) – a dictionary of parameters for the cost instance.

Returns self

fit(signal)
Create the cache associated with the signal.

Dynamic programming is a recurrence; intermediate results are cached to speed up computations. This
method sets up the cache.

Parameters signal (array) – signal. Shape (n_samples, n_features) or (n_samples,).

Returns self

fit_predict(signal, n_bkps)
Fit to the signal and return the optimal breakpoints.

Helper method to call fit and predict once

Parameters

• signal (array) – signal. Shape (n_samples, n_features) or (n_samples,).

• n_bkps (int) – number of breakpoints.

Returns sorted list of breakpoints

Return type list

6 Chapter 2. Documentation

ruptures Documentation, Release

predict(n_bkps)
Return the optimal breakpoints.

Must be called after the fit method. The breakpoints are associated with the signal passed to fit().

Parameters n_bkps (int) – number of breakpoints.

Returns sorted list of breakpoints

Return type list

2.2.2 Exact segmentation: Pelt

Description

The method is implemented in ruptures.detection.Pelt.

Because the enumeration of all possible partitions impossible, the algorithm relies on a pruning rule. Many indexes
are discarded, greatly reducing the computational cost while retaining the ability to find the optimal segmentation.
The implementation follows [BKFE12]. In addition, under certain conditions on the change point repartition, the
computational complexity is linear on average.

When calling ruptures.detection.Pelt.__init__(), the minimum distance between change points can
be set through the keyword 'min_size'; through the parameter 'jump', only change point indexes multiple of a
particular value are considered.

Usage

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt

creation of data
n, dim = 500, 3
n_bkps, sigma = 3, 1
signal, b = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

change point detection
model = "l1" # "l2", "rbf"
algo = rpt.Pelt(model=model, min_size=3, jump=5).fit(signal)
my_bkps = algo.predict(pen=3)

show results
fig, (ax,) = rpt.display(signal, bkps, my_bkps, figsize=(10, 6))
plt.show()

Code explanation

class ruptures.detection.Pelt(model=’l2’, custom_cost=None, min_size=2, jump=5,
params=None)

Penalized change point detection.

For a given model and penalty level, computes the segmentation which minimizes the constrained sum of ap-
proximation errors.

2.2. Search methods 7

ruptures Documentation, Release

__init__(model=’l2’, custom_cost=None, min_size=2, jump=5, params=None)
Initialize a Pelt instance.

Parameters

• model (str, optional) – segment model, [“l1”, “l2”, “rbf”]. Not used if
'custom_cost' is not None.

• custom_cost (BaseCost, optional) – custom cost function. Defaults to None.

• min_size (int, optional) – minimum segment length.

• jump (int, optional) – subsample (one every jump points).

• params (dict, optional) – a dictionary of parameters for the cost instance.

Returns self

fit(signal)
Set params.

Parameters signal (array) – signal to segment. Shape (n_samples, n_features) or
(n_samples,).

Returns self

fit_predict(signal, pen)
Fit to the signal and return the optimal breakpoints.

Helper method to call fit and predict once

Parameters

• signal (array) – signal. Shape (n_samples, n_features) or (n_samples,).

• pen (float) – penalty value (>0)

Returns sorted list of breakpoints

Return type list

predict(pen)
Return the optimal breakpoints.

Must be called after the fit method. The breakpoints are associated with the signal passed to fit().

Parameters pen (float) – penalty value (>0)

Returns sorted list of breakpoints

Return type list

References

2.2.3 Binary segmentation

Description

Binary change point detection is used to perform fast signal segmentation and is implemented in ruptures.
detection.BinSeg. It is a sequential approach: first, one change point is detected in the complete input signal,
then series is split around this change point, then the operation is repeated on the two resulting sub-signals. See for
instance [BSBai97] and [BSFry14] for a theoretical and algorithmic analysis of ruptures.detection.BinSeg.
The benefits of binary segmentation includes low complexity (of the order of 𝒪(𝑛 log 𝑛), where 𝑛 is the number of

8 Chapter 2. Documentation

ruptures Documentation, Release

samples), the fact that it can extend any single change point detection method to detect multiple changes points and
that it can work whether the number of regimes is known beforehand or not.

Fig. 2.1: Schematic view of the binary segmentation algorithm.

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n = 500 # number of samples
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

To perform a binary segmentation of a signal, initialize a ruptures.detection.BinSeg instance.

change point detection
model = "l2" # "l1", "rbf", "linear", "normal", "ar"
algo = rpt.Binseg(model=model).fit(signal)
my_bkps = algo.predict(n_bkps=3)

show results
rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
plt.show()

In the situation in which the number of change points is unknown, one can specify a penalty using the 'pen' param-
eter or a threshold on the residual norm using 'epsilon'.

my_bkps = algo.predict(pen=np.log(n)*dim*sigma**2)
or
my_bkps = algo.predict(epsilon=3*n*sigma**2)

2.2. Search methods 9

ruptures Documentation, Release

See also:

Change point detection: a general formulation for more information about stopping rules of sequential algorithms.

For faster predictions, one can modify the 'jump' parameter during initialization. The higher it is, the faster the
prediction is achieved (at the expense of precision).

algo = rpt.Binseg(model=model, jump=10).fit(signal)

Code explanation

class ruptures.detection.Binseg(model=’l2’, custom_cost=None, min_size=2, jump=5,
params=None)

Binary segmentation.

__init__(model=’l2’, custom_cost=None, min_size=2, jump=5, params=None)
Initialize a Binseg instance.

Parameters

• model (str, optional) – segment model, [“l1”, “l2”, “rbf”,. . .]. Not used if
'custom_cost' is not None.

• custom_cost (BaseCost, optional) – custom cost function. Defaults to None.

• min_size (int, optional) – minimum segment length. Defaults to 2 samples.

• jump (int, optional) – subsample (one every jump points). Defaults to 5 samples.

• params (dict, optional) – a dictionary of parameters for the cost instance.

Returns self

fit(signal)
Compute params to segment signal.

Parameters signal (array) – signal to segment. Shape (n_samples, n_features) or
(n_samples,).

Returns self

fit_predict(signal, n_bkps=None, pen=None, epsilon=None)
Fit to the signal and return the optimal breakpoints.

Helper method to call fit and predict once

Parameters

• signal (array) – signal. Shape (n_samples, n_features) or (n_samples,).

• n_bkps (int) – number of breakpoints.

• penalty (float) – penalty value (>0)

• epsilon (float) – reconstruction budget (>0)

Returns sorted list of breakpoints

Return type list

predict(n_bkps=None, pen=None, epsilon=None)
Return the optimal breakpoints.

Must be called after the fit method. The breakpoints are associated with the signal passed to fit(). The
stopping rule depends on the parameter passed to the function.

10 Chapter 2. Documentation

ruptures Documentation, Release

Parameters

• n_bkps (int) – number of breakpoints to find before stopping.

• penalty (float) – penalty value (>0)

• epsilon (float) – reconstruction budget (>0)

Returns sorted list of breakpoints

Return type list

References

2.2.4 Bottom-up segmentation

Description

Bottom-up change point detection is used to perform fast signal segmentation and is implemented in ruptures.
detection.BottomUp. It is a sequential approach. Contrary to binary segmentation, which is a greedy procedure,
bottom-up segmentation is generous: it starts with many change points and successively deletes the less significant
ones. First, the signal is divided in many sub-signals along a regular grid. Then contiguous segments are succes-
sively merged according to a measure of how similar they are. See for instance [BUKCHP01] or [BUFry07] for an
algorithmic analysis of ruptures.detection.BottomUp. The benefits of bottom-up segmentation includes
low complexity (of the order of 𝒪(𝑛 log 𝑛), where 𝑛 is the number of samples), the fact that it can extend any single
change point detection method to detect multiple changes points and that it can work whether the number of regimes
is known beforehand or not.

Fig. 2.2: Schematic view of the bottom-up segmentation algorithm.

See also:

Binary segmentation.

2.2. Search methods 11

ruptures Documentation, Release

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

To perform a bottom-up segmentation of a signal, initialize a ruptures.detection.BottomUp instance.

change point detection
model = "l2" # "l1", "rbf", "linear", "normal", "ar"
algo = rpt.BottomUp(model=model).fit(signal)
my_bkps = algo.predict(n_bkps=3)

show results
rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
plt.show()

In the situation in which the number of change points is unknown, one can specify a penalty using the 'pen' param-
eter or a threshold on the residual norm using 'epsilon'.

my_bkps = algo.predict(pen=np.log(n)*dim*sigma**2)
or
my_bkps = algo.predict(epsilon=3*n*sigma**2)

See also:

Change point detection: a general formulation for more information about stopping rules of sequential algorithms.

For faster predictions, one can modify the 'jump' parameter during initialization. The higher it is, the faster the
prediction is achieved (at the expense of precision).

algo = rpt.BottomUp(model=model, jump=10).fit(signal)

Code explanation

class ruptures.detection.BottomUp(model=’l2’, custom_cost=None, min_size=2, jump=5,
params=None)

Bottom-up segmentation.

__init__(model=’l2’, custom_cost=None, min_size=2, jump=5, params=None)
Initialize a BottomUp instance.

Parameters

• model (str, optional) – segment model, [“l1”, “l2”, “rbf”]. Not used if
'custom_cost' is not None.

• custom_cost (BaseCost, optional) – custom cost function. Defaults to None.

• min_size (int, optional) – minimum segment length. Defaults to 2 samples.

• jump (int, optional) – subsample (one every jump points). Defaults to 5 samples.

• params (dict, optional) – a dictionary of parameters for the cost instance.

12 Chapter 2. Documentation

ruptures Documentation, Release

Returns self

fit(signal)
Compute params to segment signal.

Parameters signal (array) – signal to segment. Shape (n_samples, n_features) or
(n_samples,).

Returns self

fit_predict(signal, n_bkps=None, pen=None, epsilon=None)
Fit to the signal and return the optimal breakpoints.

Helper method to call fit and predict once

Parameters

• signal (array) – signal. Shape (n_samples, n_features) or (n_samples,).

• n_bkps (int) – number of breakpoints.

• penalty (float) – penalty value (>0)

• epsilon (float) – reconstruction budget (>0)

Returns sorted list of breakpoints

Return type list

predict(n_bkps=None, pen=None, epsilon=None)
Return the optimal breakpoints.

Must be called after the fit method. The breakpoints are associated with the signal passed to fit(). The
stopping rule depends on the parameter passed to the function.

Parameters

• n_bkps (int) – number of breakpoints to find before stopping.

• penalty (float) – penalty value (>0)

• epsilon (float) – reconstruction budget (>0)

Returns sorted list of breakpoints

Return type list

References

2.2.5 Window-based change point detection

Description

Window-based change point detection is used to perform fast signal segmentation and is implemented in ruptures.
detection.Window . The algorithm uses two windows which slide along the data stream. The statistical properties
of the signals within each window are compared with a discrepancy measure. For a given cost function 𝑐(·) (see Cost
functions), a discrepancy measure is derived 𝑑(·, ·) as follows:

𝑑(𝑦𝑢..𝑣, 𝑦𝑣..𝑤) = 𝑐(𝑦𝑢..𝑤)− 𝑐(𝑦𝑢..𝑣)− 𝑐(𝑦𝑣..𝑤)

where {𝑦𝑡}𝑡 is the input signal and 𝑢 < 𝑣 < 𝑤 are indexes. The discrepancy is the cost gain of splitting the sub-signal
𝑦𝑢..𝑤 at the index 𝑣. If the sliding windows 𝑢..𝑣 and 𝑣..𝑤 both fall into a segment, their statistical properties are
similar and the discrepancy between the first window and the second window is low. If the sliding windows fall into

2.2. Search methods 13

ruptures Documentation, Release

two dissimilar segments, the discrepancy is significantly higher, suggesting that the boundary between windows is a
change point. The discrepancy curve is the curve, defined for all indexes 𝑡 between 𝑤/2 and 𝑛−𝑤/2 (𝑛 is the number
of samples),

(︀
𝑡, 𝑑(𝑦𝑡−𝑤/2..𝑡, 𝑦𝑡..𝑡+𝑤/2)

)︀

where 𝑤 is the window length. A sequential peak search is performed on the discrepancy curve in order to detect
change points.

The benefits of window-based segmentation includes low complexity (of the order of 𝒪(𝑛𝑤), where 𝑛 is the number
of samples), the fact that it can extend any single change point detection method to detect multiple changes points and
that it can work whether the number of regimes is known beforehand or not.

Fig. 2.3: Schematic view of the window sliding algorithm.

See also:

Binary segmentation, Bottom-up segmentation.

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

To perform a binary segmentation of a signal, initialize a ruptures.detection.Window instance.

change point detection
model = "l2" # "l1", "rbf", "linear", "normal", "ar"

14 Chapter 2. Documentation

ruptures Documentation, Release

algo = rpt.Window(width=40, model=model).fit(signal)
my_bkps = algo.predict(n_bkps=3)

show results
rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
plt.show()

The window length (in number of samples) is modified through the argument 'width'. Usual methods assume that
the window length is smaller than the smallest regime length.

In the situation in which the number of change points is unknown, one can specify a penalty using the 'pen' param-
eter or a threshold on the residual norm using 'epsilon'.

my_bkps = algo.predict(pen=np.log(n)*dim*sigma**2)
or
my_bkps = algo.predict(epsilon=3*n*sigma**2)

See also:

Change point detection: a general formulation for more information about stopping rules of sequential algorithms.

For faster predictions, one can modify the 'jump' parameter during initialization. The higher it is, the faster the
prediction is achieved (at the expense of precision).

algo = rpt.Window(model=model, jump=10).fit(signal)

Code explanation

class ruptures.detection.Window(width=100, model=’l2’, custom_cost=None, min_size=2,
jump=5, params=None)

Window sliding method.

__init__(width=100, model=’l2’, custom_cost=None, min_size=2, jump=5, params=None)
Instanciate with window length.

Parameters

• width (int, optional) – window length. Defaults to 100 samples.

• model (str, optional) – segment model, [“l1”, “l2”, “rbf”]. Not used if

• is not None. ('custom_cost') –

• custom_cost (BaseCost, optional) – custom cost function. Defaults to None.

• min_size (int, optional) – minimum segment length.

• jump (int, optional) – subsample (one every jump points).

• params (dict, optional) – a dictionary of parameters for the cost instance.

Returns self

fit(signal)
Compute params to segment signal.

Parameters signal (array) – signal to segment. Shape (n_samples, n_features) or
(n_samples,).

Returns self

2.2. Search methods 15

ruptures Documentation, Release

fit_predict(signal, n_bkps=None, pen=None, epsilon=None)
Helper method to call fit and predict once.

predict(n_bkps=None, pen=None, epsilon=None)
Return the optimal breakpoints.

Must be called after the fit method. The breakpoints are associated with the signal passed to fit(). The
stopping rule depends on the parameter passed to the function.

Parameters

• n_bkps (int) – number of breakpoints to find before stopping.

• penalty (float) – penalty value (>0)

• penalty – penalty value

Returns sorted list of breakpoints

Return type list

2.3 Cost functions

2.3.1 Least absolute deviation

Description

This cost function detects changes in the median of a signal. Overall, it is a robust estimator of a shift in the central
point (mean, median, mode) of a distribution [C1Bai95]. Formally, for a signal {𝑦𝑡}𝑡 on an interval 𝐼 ,

𝑐(𝑦𝐼) =
∑︁

𝑡∈𝐼

‖𝑦𝑡 − 𝑦‖1

where 𝑦 is the componentwise median of {𝑦𝑡}𝑡∈𝐼 .

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

Then create a CostL1 instance and print the cost of the sub-signal signal[50:150].

c = rpt.costs.CostL1().fit(signal)
print(c.error(50, 150))

You can also compute the sum of costs for a given list of change points.

16 Chapter 2. Documentation

ruptures Documentation, Release

print(c.sum_of_costs(bkps))
print(c.sum_of_costs([10, 100, 200, 250, n]))

In order to use this cost class in a change point detection algorithm (inheriting from BaseEstimator), either pass a
CostL1 instance (through the argument 'custom_cost') or set model="l1".

c = rpt.costs.CostL1(); algo = rpt.Dynp(custom_cost=c)
is equivalent to
algo = rpt.Dynp(model="l1")

Code explanation

class ruptures.costs.CostL1
Least absolute deviation.

error(start, end)
Return the approximation cost on the segment [start:end].

Parameters

• start (int) – start of the segment

• end (int) – end of the segment

Returns segment cost

Return type float

Raises NotEnoughPoints – when the segment is too short (less than 'min_size' sam-
ples).

fit(signal)
Set parameters of the instance.

Parameters signal (array) – signal. Shape (n_samples,) or (n_samples, n_features)

Returns self

References

2.3.2 Least squared deviation

Description

This cost function detects mean-shifts in a signal. Formally, for a signal {𝑦𝑡}𝑡 on an interval 𝐼 ,

𝑐(𝑦𝐼) =
∑︁

𝑡∈𝐼

‖𝑦𝑡 − 𝑦‖22

where 𝑦 is the mean of {𝑦𝑡}𝑡∈𝐼 .

2.3. Cost functions 17

ruptures Documentation, Release

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

Then create a CostL2 instance and print the cost of the sub-signal signal[50:150].

c = rpt.costs.CostL2().fit(signal)
print(c.error(50, 150))

You can also compute the sum of costs for a given list of change points.

print(c.sum_of_costs(bkps))
print(c.sum_of_costs([10, 100, 200, 250, n]))

In order to use this cost class in a change point detection algorithm (inheriting from BaseEstimator), either pass a
CostL2 instance (through the argument 'custom_cost') or set model="l2".

c = rpt.costs.CostL2(); algo = rpt.Dynp(custom_cost=c)
is equivalent to
algo = rpt.Dynp(model="l2")

Code explanation

class ruptures.costs.CostL2
Least squared deviation.

error(start, end)
Return the approximation cost on the segment [start:end].

Parameters

• start (int) – start of the segment

• end (int) – end of the segment

Returns segment cost

Return type float

Raises NotEnoughPoints – when the segment is too short (less than 'min_size' sam-
ples).

fit(signal)
Set parameters of the instance.

Parameters signal (array) – signal. Shape (n_samples,) or (n_samples, n_features)

Returns self

18 Chapter 2. Documentation

ruptures Documentation, Release

2.3.3 Gaussian process change

Description

This cost function detects changes in the mean and scale of a Gaussian time series. Formally, for a signal {𝑦𝑡}𝑡 on an
interval 𝐼 ,

𝑐(𝑦𝐼) = |𝐼| log det ̂︀Σ𝐼

where ̂︀Σ𝐼 is the empirical covariance matrix of the sub-signal {𝑦𝑡}𝑡∈𝐼 .

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

Then create a CostNormal instance and print the cost of the sub-signal signal[50:150].

c = rpt.costs.CostNormal().fit(signal)
print(c.error(50, 150))

You can also compute the sum of costs for a given list of change points.

print(c.sum_of_costs(bkps))
print(c.sum_of_costs([10, 100, 200, 250, n]))

In order to use this cost class in a change point detection algorithm (inheriting from BaseEstimator), either pass a
CostNormal instance (through the argument 'custom_cost') or set model="normal".

c = rpt.costs.CostNormal(); algo = rpt.Dynp(custom_cost=c)
is equivalent to
algo = rpt.Dynp(model="normal")

Code explanation

class ruptures.costs.CostNormal
Maximum Gaussian likelihood.

error(start, end)
Return the approximation cost on the segment [start:end].

Parameters

• start (int) – start of the segment

• end (int) – end of the segment

2.3. Cost functions 19

ruptures Documentation, Release

Returns segment cost

Return type float

Raises NotEnoughPoints – when the segment is too short (less than 'min_size' sam-
ples).

fit(signal)
Set parameters of the instance.

Parameters signal (array) – signal. Shape (n_samples,) or (n_samples, n_features)

Returns self

2.3.4 Kernelized mean change

Description

Given a positive semi-definite kernel 𝑘(·, ·) : R𝑑 × R𝑑 ↦→ R and its associated feature map Φ : R𝑑 ↦→ ℋ (where
ℋ is an appropriate Hilbert space), this cost function detects changes in the mean of the embedded signal {Φ(𝑦𝑡)}𝑡
[KERACH12][KERGBR+12]. Formally, for a signal {𝑦𝑡}𝑡 on an interval 𝐼 ,

𝑐(𝑦𝐼) =
∑︁

𝑡∈𝐼

‖Φ(𝑦𝑡)− �̄�‖2ℋ

where �̄� is the empirical mean of the embedded sub-signal {Φ(𝑦𝑡)}𝑡∈𝐼 . Here the kernel is the radial basis function
(rbf):

𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥− 𝑦‖2)

where ‖ · ‖ is the Euclidean norm and 𝛾 > 0 is the so-called bandwidth parameter and is determined according to
median heuristics (i.e. equal to the inverse of median of all pairwise distances).

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

Then create a CostRbf instance and print the cost of the sub-signal signal[50:150].

c = rpt.costs.CostRbf().fit(signal)
print(c.error(50, 150))

You can also compute the sum of costs for a given list of change points.

20 Chapter 2. Documentation

ruptures Documentation, Release

print(c.sum_of_costs(bkps))
print(c.sum_of_costs([10, 100, 200, 250, n]))

In order to use this cost class in a change point detection algorithm (inheriting from BaseEstimator), either pass a
CostRbf instance (through the argument 'custom_cost') or set model="rbf".

c = rpt.costs.CostRbf(); algo = rpt.Dynp(custom_cost=c)
is equivalent to
algo = rpt.Dynp(model="rbf")

Code explanation

class ruptures.costs.CostRbf
Kernel cost function (rbf kernel).

error(start, end)
Return the approximation cost on the segment [start:end].

Parameters

• start (int) – start of the segment

• end (int) – end of the segment

Returns segment cost

Return type float

Raises NotEnoughPoints – when the segment is too short (less than 'min_size' sam-
ples).

fit(signal)
Sets parameters of the instance.

Parameters signal (array) – signal. Shape (n_samples,) or (n_samples, n_features)

Returns self

References

2.3.5 Linear model change

Description

Let 0 < 𝑡1 < 𝑡2 < · · · < 𝑛 be unknown change points indexes. Consider the following multiple linear regression
model

𝑦𝑡 = 𝑧′𝑡𝛿𝑗 + 𝜀𝑡, ∀𝑡 = 𝑡𝑗 , . . . , 𝑡𝑗+1 − 1

for 𝑗 > 1. Here, the observed dependant variable is 𝑦𝑡 ∈ R, the covariate vector is 𝑥𝑡 ∈ R𝑝, the disturbance is 𝜀𝑡 ∈ R.
The vectors 𝛿𝑗 ∈ R𝑝 are the paramater vectors (or regression coefficients).

The least-squares estimates of the break dates is obtained by minimiming the sum of squared residuals [CLBP03].
Formally, the associated cost function on an interval 𝐼 is

𝑐(𝑦𝐼) = min
𝛿∈R𝑝

∑︁

𝑡∈𝐼

‖𝑦𝑡 − 𝛿′𝑧𝑡‖22

2.3. Cost functions 21

ruptures Documentation, Release

Usage

Start with the usual imports and create a signal with piecewise linear trends.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, n_reg = 2000, 3 # number of samples, number of regressors (including intercept)
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
regressors
tt = np.linspace(0, 10*np.pi, n)
X = np.vstack((np.sin(tt), np.sin(5*tt), np.ones(n))).T
parameter vectors
deltas, bkps = rpt.pw_constant(n, n_reg, n_bkps, noise_std=None, delta=(1, 3))
observed signal
y = np.sum(X*deltas, axis=1)
y += np.random.normal(size=y.shape)
display signal
rpt.show.display(y, bkps, figsize=(10, 6))
plt.show()

Then create a CostLinear instance and print the cost of the sub-signal signal[50:150].

stack observed signal and regressors.
first dimension is the observed signal.
signal = np.column_stack((y.reshape(-1, 1), X))
c = rpt.costs.CostLinear().fit(signal)
print(c.error(50, 150))

You can also compute the sum of costs for a given list of change points.

print(c.sum_of_costs(bkps))
print(c.sum_of_costs([10, 100, 200, 250, n]))

In order to use this cost class in a change point detection algorithm (inheriting from BaseEstimator), either pass a
CostLinear instance (through the argument 'custom_cost') or set model="linear".

c = rpt.costs.CostLinear(); algo = rpt.Dynp(custom_cost=c)
is equivalent to
algo = rpt.Dynp(model="linear")

Code explanation

class ruptures.costs.CostLinear
Least-squares estimate for linear changes.

error(start, end)
Return the approximation cost on the segment [start:end].

Parameters

• start (int) – start of the segment

• end (int) – end of the segment

Returns segment cost

Return type float

22 Chapter 2. Documentation

ruptures Documentation, Release

Raises NotEnoughPoints – when the segment is too short (less than 'min_size' sam-
ples).

fit(signal)
Set parameters of the instance. The first column contains the observed variable. The other columns
contains the covariates.

Parameters signal (array) – signal. Shape (n_samples, n_regressors+1)

Returns self

References

2.3.6 Autoregressive model change

Description

Let 0 < 𝑡1 < 𝑡2 < · · · < 𝑛 be unknown change points indexes. Consider the following piecewise autoregressive
model

𝑦𝑡 = 𝑧′𝑡𝛿𝑗 + 𝜀𝑡, ∀𝑡 = 𝑡𝑗 , . . . , 𝑡𝑗+1 − 1

where 𝑗 > 1 is the segment number, 𝑧𝑡 = [𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝑝] is the lag vector,and 𝑝 > 0 is the order of the process.

The least-squares estimates of the break dates is obtained by minimiming the sum of squared residuals [ARBai00].
Formally, the associated cost function on an interval 𝐼 is

𝑐(𝑦𝐼) = min
𝛿∈R𝑝

∑︁

𝑡∈𝐼

‖𝑦𝑡 − 𝛿′𝑧𝑡‖22

Usage

Start with the usual imports and create a signal with piecewise linear trends.

from itertools import cycle
import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n = 2000
n_bkps, sigma = 4, 0.5 # number of change points, noise standart deviation
bkps = [400, 1000, 1300, 1800, n]
f1 = np.array([0.075, 0.1])
f2 = np.array([0.1, 0.125])
freqs = np.zeros((n, 2))
for sub, val in zip(np.split(freqs, bkps[:-1]), cycle([f1, f2])):

sub += val
tt = np.arange(n)
signal = np.sum((np.sin(2*np.pi*tt*f) for f in freqs.T))
signal += np.random.normal(scale=sigma, size=signal.shape)
display signal
rpt.show.display(signal, bkps, figsize=(10, 6))
plt.show()

2.3. Cost functions 23

ruptures Documentation, Release

Then create a CostAR instance and print the cost of the sub-signal signal[50:150]. The autoregressive order
can be specified through the keyword 'order'.

c = rpt.costs.CostAR(order=10).fit(signal)
print(c.error(50, 150))

You can also compute the sum of costs for a given list of change points.

print(c.sum_of_costs(bkps))
print(c.sum_of_costs([10, 100, 200, 250, n]))

In order to use this cost class in a change point detection algorithm (inheriting from BaseEstimator), either pass
a CostAR instance (through the argument 'custom_cost') or set model="ar". Additional parameters can be
passed to the cost instance through the keyword 'params'.

c = rpt.costs.CostAR(order=10); algo = rpt.Dynp(custom_cost=c)
is equivalent to
algo = rpt.Dynp(model="ar", params={"order": 10})

Code explanation

class ruptures.costs.CostAR(order=4)
Least-squares estimate for changes in autoregressive coefficients.

error(start, end)
Return the approximation cost on the segment [start:end].

Parameters

• start (int) – start of the segment

• end (int) – end of the segment

Returns segment cost

Return type float

Raises NotEnoughPoints – when the segment is too short (less than 'min_size' sam-
ples).

fit(signal)
Set parameters of the instance. The signal must be 1D.

Parameters signal (array) – 1d signal. Shape (n_samples, 1) or (n_samples,).

Returns self

References

2.3.7 Mahalanobis-type metric

Description

Given a positive semi-definite matrix 𝑀 ∈ R𝑑×𝑑, this cost function detects changes in the mean of the embedded
signal defined by the pseudo-metric

24 Chapter 2. Documentation

ruptures Documentation, Release

‖𝑥− 𝑦‖2𝑀 = (𝑥− 𝑦)𝑡𝑀(𝑥− 𝑦)

Formally, for a signal {𝑦𝑡}𝑡 on an interval 𝐼 , the cost function is equal to

𝑐(𝑦𝐼) =
∑︁

𝑡∈𝐼

‖𝑦𝑡 − �̄�‖2𝑀

where �̄� is the empirical mean of the sub-signal {𝑦𝑡}𝑡∈𝐼 . The matrix 𝑀 can for instance be the result of a similarity
learning algorithm [MLXJR03] or the inverse of the empirical covariance matrix (yielding the Mahalanobis distance).

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

Then create a CostMl instance and print the cost of the sub-signal signal[50:150].

M = np.eye(dim)
c = rpt.costs.CostMl(metric=M).fit(signal)
print(c.error(50, 150))

You can also compute the sum of costs for a given list of change points.

print(c.sum_of_costs(bkps))
print(c.sum_of_costs([10, 100, 200, 250, n]))

In order to use this cost class in a change point detection algorithm (inheriting from BaseEstimator), either pass a
CostMl instance (through the argument 'custom_cost') or set model="mahalanobis".

c = rpt.costs.CostMl(metric=M); algo = rpt.Dynp(custom_cost=c)
is equivalent to
algo = rpt.Dynp(model="mahalanobis", params={"metric": M})

Code explanation

class ruptures.costs.CostMl(metric=None)
Mahalanobis-type cost function.

__init__(metric=None)
Create a new instance.

Parameters metric (ndarray, optional) – PSD matrix that defines a Mahalanobis-
type pseudo distance. If None, defaults to the Mahalanobis matrix. Shape (n_features,
n_features).

2.3. Cost functions 25

ruptures Documentation, Release

Returns self

error(start, end)
Return the approximation cost on the segment [start:end].

Parameters

• start (int) – start of the segment

• end (int) – end of the segment

Returns segment cost

Return type float

Raises NotEnoughPoints – when the segment is too short (less than 'min_size' sam-
ples).

fit(signal)
Sets parameters of the instance.

Parameters signal (array) – signal. Shape (n_samples,) or (n_samples, n_features)

Returns self

References

2.3.8 Custom cost class

Users who are interested in detecting a specific type of change can easily do so by creating a custom cost function.
Provided, they use the base cost function ruptures.base.BaseCost, they will be able to seamlessly run the
algorithms implemented in ruptures.

See also:

Creating a new cost function

Example

Let {𝑦𝑡}𝑡 denote a 1D piecewise stationary random process. Assume that the 𝑦𝑡 are independent and exponentially
distributed with a scale parameter that shifts at some unknown instants 𝑡1, 𝑡2, . . . The change points estimates are the
minimizers of the negative log-likelihood, and the associated cost function is given by

𝑐(𝑦𝐼) = |𝐼| log �̄�𝐼

where 𝐼, 𝑦𝐼 and �̄�𝐼 are respectively an interval, the sub-signal on this interval and the empirical mean of this sub-
signal. The following code implements this cost function:

from math import log
from ruptures.base import BaseCost

class MyCost(BaseCost):

"""Custom cost for exponential signals."""

The 2 following attributes must be specified for compatibility.
model = ""
min_size = 2

26 Chapter 2. Documentation

ruptures Documentation, Release

def fit(self, signal):
"""Set the internal parameter."""
self.signal = signal
return self

def error(self, start, end):
"""Return the approximation cost on the segment [start:end].

Args:
start (int): start of the segment
end (int): end of the segment

Returns:
float: segment cost

"""
sub = self.signal[start:end]
return (end-start)*log(sub.mean())

This cost function can now be used with all algorithms from ruptures. For instance,

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
a = np.random.exponential(scale=1, size=100)
b = np.random.exponential(scale=2, size=200)
signal, bkps = np.r_[a, b, a], [100, 300, 400]
cost
algo = rpt.Pelt(custom_cost=MyCost()).fit(signal)
my_bkps = algo.predict(pen=10)
display
rpt.display(signal, bkps, my_bkps)
plt.show()

2.4 Synthetic signals

ruptures.datasets is designed to simplify synthetic signal generation.

2.4.1 Mean shift

Description

For a given number of samples 𝑇 , number of changepoints 𝐾 and noise variance 𝜎2, this function generates change
point indexes 0 < 𝑡1 < · · · < 𝑡𝐾 < 𝑇 and a piecewise constant signal {𝑦𝑡}𝑡 with additive Gaussian noise.

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt

2.4. Synthetic signals 27

ruptures Documentation, Release

creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)
rpt.display(signal, bkps)

The mean shift amplitude is uniformly drawn from an interval that can be changed through the keyword 'delta'.

signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma, delta=(1, 10))

Code explanation

ruptures.datasets.pw_constant.pw_constant(n_samples=200, n_features=1, n_bkps=3,
noise_std=None, delta=(1, 10))

Return a piecewise constant signal and the associated changepoints.

Parameters

• n_samples (int) – signal length

• n_features (int, optional) – number of dimensions

• n_bkps (int, optional) – number of changepoints

• noise_std (float, optional) – noise std. If None, no noise is added

• delta (tuple, optional) – (delta_min, delta_max) max and min jump values

Returns signal of shape (n_samples, n_features), list of breakpoints

Return type tuple

2.4.2 Shift in correlation

Description

This function simulates a 2D signal of Gaussian i.i.d. random variables with zero mean and covariance matrix alter-
nating between [[1, 0.9], [0.9, 1]] and [[1,−0.9], [−0.9, 1]] at every change point.

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n = 500, 3 # number of samples
n_bkps = 3 # number of change points, noise standart deviation
signal, bkps = rpt.pw_normal(n, n_bkps)
rpt.display(signal, bkps)

28 Chapter 2. Documentation

ruptures Documentation, Release

Fig. 2.4: Top and middle: 2D signal example. Bottom: Scatter plot for each regime type.

2.4. Synthetic signals 29

ruptures Documentation, Release

Code explanation

ruptures.datasets.pw_normal.pw_normal(n_samples=200, n_bkps=3)
Return a 2D piecewise Gaussian signal and the associated changepoints.

Parameters

• n_samples (int, optional) – signal length

• n_bkps (int, optional) – number of change points

Returns signal of shape (n_samples, 2), list of breakpoints

Return type tuple

2.4.3 Shift in linear model

Description

This function simulates a piecewise linear model (see Linear model change). The covariates standard Gaussian random
variables. The response variable is a (piecewise) linear combination of the covariates.

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension of the covariates
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_linear(n, dim, n_bkps, noise_std=sigma)
rpt.display(signal, bkps)

Code explanation

ruptures.datasets.pw_linear.pw_linear(n_samples=200, n_features=1, n_bkps=3,
noise_std=None)

Return piecewise linear signal and the associated changepoints.

Parameters

• n_samples (int, optional) – signal length

• n_features (int, optional) – number of covariates

• n_bkps (int, optional) – number of change points

• noise_std (float, optional) – noise std. If None, no noise is added

Returns signal of shape (n_samples, n_features+1), list of breakpoints

Return type tuple

30 Chapter 2. Documentation

ruptures Documentation, Release

2.4.4 Shift in frequency (sine waves)

Description

This function simulates a sum-of-sine signal 𝑦𝑡 = sin(2𝜋𝑓1𝑡) + sin(2𝜋𝑓2𝑡) where 𝑡 = 0, . . . , 𝑇 − 1. The frequency
vector [𝑓1, 𝑓2] alternates between [0.075, 0.1] and [0.1, 0.125] at each change point index. Gaussian white noise can
be added to the signal.

Fig. 2.5: Top: signal example. Bottom: associated spectrogram.

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 3 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_wavy(n, n_bkps, noise_std=sigma)
rpt.display(signal, bkps)

2.4. Synthetic signals 31

ruptures Documentation, Release

Code explanation

ruptures.datasets.pw_wavy.pw_wavy(n_samples=200, n_bkps=3, noise_std=None)
Return a 1D piecewise wavy signal and the associated changepoints.

Parameters

• n_samples (int, optional) – signal length

• n_bkps (int, optional) – number of changepoints

• noise_std (float, optional) – noise std. If None, no noise is added

Returns signal of shape (n_samples, 1), list of breakpoints

Return type tuple

2.5 Evaluation

ruptures.metrics provides metrics to evaluate change point detection performances and ruptures.show
provides a display function for visual inspection.

2.5.1 Hausdorff metric

Description

The Hausdorff metric measures the worst prediction error. Assume a set of change point indexes 𝑡1, 𝑡2, . . . and their
estimates 𝑡1, 𝑡2, The Hausdorff metric is then equal to

Hausdorff({𝑡𝑘}𝑘, {𝑡𝑘}𝑘) := max{max
𝑘

min
𝑙
|𝑡𝑘 − 𝑡𝑙| ,max

𝑘
min

𝑙
|𝑡𝑘 − 𝑡𝑙|}.

Fig. 2.6: Schematic example: true segmentation in gray, estimated segmentation in dashed lines. Here, Hausdorff is
equal to max(∆𝑡1,∆𝑡2,∆𝑡3).

32 Chapter 2. Documentation

ruptures Documentation, Release

Usage

Start with the usual imports and create two segmentations to compare.

from ruptures.metrics import hausdorff
bkps1, bkps2 = [100, 200, 500], [105, 115, 350, 400, 500]
print(hausdorff(bkps1, bkps2))

Code explanation

ruptures.metrics.hausdorff.hausdorff(bkps1, bkps2)
Compute the Hausdorff distance between changepoints.

Parameters

• bkps1 (list) – list of the last index of each regime.

• bkps2 (list) – list of the last index of each regime.

Returns Hausdorff distance.

Return type float

2.5.2 Rand index

Description

The Rand index measures the similarity between two segmentations. Formally, for a signal {𝑦𝑡}𝑡 and a segmentation
𝒮, denote by 𝐴 the associated membership matrix:

𝒜𝑖𝑗 = 1 if both samples 𝑦𝑖 and 𝑦𝑗 are in the same segment according to 𝒮
= 0 otherwise

Let 𝒮 be the estimated segmentation and 𝐴, the associated membership matrix. Then the Rand index is equal to

∑︀
𝑖<𝑗 1(𝐴𝑖𝑗 = 𝐴𝑖𝑗)

𝑇 (𝑇 − 1)/2

where 𝑇 is the number of samples. It has a value between 0 and 1: 0 indicates that the two segmentations do not agree
on any pair of points and 1 indicates that the two segmentations are exactly the same.

Usage

Start with the usual imports and create two segmentations to compare.

from ruptures.metrics import randindex
bkps1, bkps2 = [100, 200, 500], [105, 115, 350, 400, 500]
print(randindex(bkps1, bkps2))

2.5. Evaluation 33

ruptures Documentation, Release

Fig. 2.7: Schematic example: true segmentation in gray, estimated segmentation in dashed lines and their associated
membership matrices. Rand index is equal to 1 minus the gray area.

34 Chapter 2. Documentation

ruptures Documentation, Release

Code explanation

ruptures.metrics.randindex.randindex(bkps1, bkps2)
Rand index for two partitions. The result is scaled to be within 0 and 1.

Parameters

• bkps1 (list) – list of the last index of each regime.

• bkps2 (list) – list of the last index of each regime.

Returns Rand index

Return type float

2.5.3 Precision and recall

Description

A true changepoint is declared “detected” (or positive) if there is at least one computed changepoint at less than
“margin” points from it. Formally, assume a set of change point indexes 𝑡1, 𝑡2, . . . and their estimates 𝑡1, 𝑡2, . . . In the
context of change point detection, precision and recall are defined as follows:

precision := |TP|/|{𝑡𝑙}𝑙| and recall := |TP|/|{𝑡𝑘}𝑘|

where, for a given margin 𝑀 , true positives TP are true change points for which there is an estimated one at less than
𝑀 samples, i.e

TP := {𝑡𝑘 | ∃ 𝑡𝑙 s.t. |𝑡𝑙 − 𝑡𝑘| < 𝑀}.

Usage

Start with the usual imports and create two segmentations to compare.

from ruptures.metrics import precision_recall
bkps1, bkps2 = [100, 200, 500], [105, 115, 350, 400, 500]
p, r = precision_recall(bkps1, bkps2)
print((p, r))

The margin paramater 𝑀 can be changed through the keyword 'margin' (default is 10 samples).

p, r = precision_recall(bkps1, bkps2, margin=10)
print((p, r))
p, r = precision_recall(bkps1, bkps2, margin=20)
print((p, r))

Code explanation

ruptures.metrics.precisionrecall.precision_recall(true_bkps, my_bkps, margin=10)
Calculate the precision/recall of an estimated segmentation compared with the true segmentation.

2.5. Evaluation 35

ruptures Documentation, Release

Fig. 2.8: Schematic example: true segmentation in gray, estimated segmentation in dashed lines and margin in dashed
areas. Here, precision is 2/3 and recall is 2/2.

Parameters

• true_bkps (list) – list of the last index of each regime (true partition).

• my_bkps (list) – list of the last index of each regime (computed partition).

• margin (int, optional) – allowed error (in points).

Returns (precision, recall)

Return type tuple

2.5.4 Display

Description

The function display() displays a signal and the change points provided in alternating colors. If another set of
change point indexes is provided, they are displayed with dashed vertical dashed lines.

Usage

Start with the usual imports and create a signal.

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
creation of data
n, dim = 500, 2 # number of samples, dimension
n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)
rpt.display(signal, bkps)

36 Chapter 2. Documentation

ruptures Documentation, Release

If we computed another set of change points, for instance [110, 150, 320, 500], we can easily compare the
two segmentations.

rpt.display(signal, bkps, [110, 150, 320, 500])

Fig. 2.9: Example output of the function display().

Code explanation

ruptures.show.display.display(signal, true_chg_pts, computed_chg_pts=None, **kwargs)
Display a signal and the change points provided in alternating colors. If another set of change point is provided,
they are displayed with dashed vertical dashed lines.

Parameters

• signal (array) – signal array, shape (n_samples,) or (n_samples, n_features).

• true_chg_pts (list) – list of change point indexes.

• computed_chg_pts (list, optional) – list of change point indexes.

Returns (figure, axarr) with a matplotlib.figure.Figure object and an array of Axes ob-
jects.

Return type tuple

2.5. Evaluation 37

ruptures Documentation, Release

38 Chapter 2. Documentation

CHAPTER

THREE

CONTACT

Charles Truong.

39

ruptures Documentation, Release

40 Chapter 3. Contact

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

41

ruptures Documentation, Release

42 Chapter 4. Indices and tables

BIBLIOGRAPHY

[CTOV18] C. Truong, L. Oudre, and N. Vayatis. A review of change point detection. arXiv preprint
arXiv:1801.00718, pages 1–31, 2018. arXiv:1801.00718.

[BKFE12] R. Killick, P. Fearnhead, and I. Eckley. Optimal detection of changepoints with a linear computational
cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012.

[BSBai97] J. Bai. Estimating multiple breaks one at a time. Econometric Theory, 13(3):315–352, 1997.

[BSFry14] P. Fryzlewicz. Wild binary segmentation for multiple change-point detection. The Annals of Statistics,
42(6):2243–2281, 2014. doi:10.1214/14-AOS1245.

[BUFry07] Piotr Fryzlewicz. Unbalanced Haar Technique for Nonparametric Function Estimation. Journal of the
American Statistical Association, 102(480):1318–1327, 2007. doi:10.1198/016214507000000860.

[BUKCHP01] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting time series. In Pro-
ceedings of the IEEE International Conference on Data Mining (ICDM), 289–296. 2001.

[C1Bai95] J. Bai. Least absolute deviation of a shift. Econometric Theory, 11:403–436, 1995.

[KERACH12] S. Arlot, A. Celisse, and Z. Harchaoui. Kernel change-point detection. arXiv preprint arXiv:1202.3878,
1(0000):1–26, 2012.

[KERGBR+12] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(1):723–773, 2012.

[CLBP03] J. Bai and P. Perron. Critical values for multiple structural change tests. Econometrics Journal, 6(1):72–78,
2003.

[ARBai00] J. Bai. Vector autoregressive models with structural changes in regression coefficients and in vari-
ance–covariance matrices. Annals of Economics and Finance, 1:303–339, 2000.

[MLXJR03] E. P. Xing, M. I. Jordan, and S. J. Russell. Distance metric learning, with application to clustering with
side-Information. In Advances in Neural Information Processing Systems 21 (NIPS 2003), 521–528. 2003.

43

ruptures Documentation, Release

44 Bibliography

PYTHON MODULE INDEX

r
ruptures.costs, 16
ruptures.costs.costautoregressive, 23
ruptures.costs.costl1, 16
ruptures.costs.costl2, 17
ruptures.costs.costlinear, 21
ruptures.costs.costml, 24
ruptures.costs.costnormal, 18
ruptures.costs.costrbf, 20
ruptures.datasets, 27
ruptures.datasets.pw_constant, 27
ruptures.datasets.pw_linear, 30
ruptures.datasets.pw_normal, 28
ruptures.datasets.pw_wavy, 30
ruptures.detection, 5
ruptures.detection.binseg, 8
ruptures.detection.bottomup, 11
ruptures.detection.dynp, 5
ruptures.detection.pelt, 7
ruptures.detection.window, 13
ruptures.metrics, 32
ruptures.metrics.hausdorff, 32
ruptures.metrics.precisionrecall, 35
ruptures.metrics.randindex, 33
ruptures.show.display, 36

45

ruptures Documentation, Release

46 Python Module Index

INDEX

Symbols
__init__() (ruptures.costs.CostMl method), 25
__init__() (ruptures.detection.Binseg method), 10
__init__() (ruptures.detection.BottomUp method), 12
__init__() (ruptures.detection.Dynp method), 6
__init__() (ruptures.detection.Pelt method), 7
__init__() (ruptures.detection.Window method), 15

B
Binseg (class in ruptures.detection), 10
BottomUp (class in ruptures.detection), 12

C
CostAR (class in ruptures.costs), 24
CostL1 (class in ruptures.costs), 17
CostL2 (class in ruptures.costs), 18
CostLinear (class in ruptures.costs), 22
CostMl (class in ruptures.costs), 25
CostNormal (class in ruptures.costs), 19
CostRbf (class in ruptures.costs), 21

D
display() (in module ruptures.show.display), 37
Dynp (class in ruptures.detection), 6

E
error() (ruptures.costs.CostAR method), 24
error() (ruptures.costs.CostL1 method), 17
error() (ruptures.costs.CostL2 method), 18
error() (ruptures.costs.CostLinear method), 22
error() (ruptures.costs.CostMl method), 26
error() (ruptures.costs.CostNormal method), 19
error() (ruptures.costs.CostRbf method), 21

F
fit() (ruptures.costs.CostAR method), 24
fit() (ruptures.costs.CostL1 method), 17
fit() (ruptures.costs.CostL2 method), 18
fit() (ruptures.costs.CostLinear method), 23
fit() (ruptures.costs.CostMl method), 26
fit() (ruptures.costs.CostNormal method), 20

fit() (ruptures.costs.CostRbf method), 21
fit() (ruptures.detection.Binseg method), 10
fit() (ruptures.detection.BottomUp method), 13
fit() (ruptures.detection.Dynp method), 6
fit() (ruptures.detection.Pelt method), 8
fit() (ruptures.detection.Window method), 15
fit_predict() (ruptures.detection.Binseg method), 10
fit_predict() (ruptures.detection.BottomUp method), 13
fit_predict() (ruptures.detection.Dynp method), 6
fit_predict() (ruptures.detection.Pelt method), 8
fit_predict() (ruptures.detection.Window method), 15

H
hausdorff() (in module ruptures.metrics.hausdorff), 33

P
Pelt (class in ruptures.detection), 7
precision_recall() (in module rup-

tures.metrics.precisionrecall), 35
predict() (ruptures.detection.Binseg method), 10
predict() (ruptures.detection.BottomUp method), 13
predict() (ruptures.detection.Dynp method), 6
predict() (ruptures.detection.Pelt method), 8
predict() (ruptures.detection.Window method), 16
pw_constant() (in module ruptures.datasets.pw_constant),

28
pw_linear() (in module ruptures.datasets.pw_linear), 30
pw_normal() (in module ruptures.datasets.pw_normal),

30
pw_wavy() (in module ruptures.datasets.pw_wavy), 32

R
randindex() (in module ruptures.metrics.randindex), 35
ruptures.costs (module), 16
ruptures.costs.costautoregressive (module), 23
ruptures.costs.costl1 (module), 16
ruptures.costs.costl2 (module), 17
ruptures.costs.costlinear (module), 21
ruptures.costs.costml (module), 24
ruptures.costs.costnormal (module), 18
ruptures.costs.costrbf (module), 20
ruptures.datasets (module), 27

47

ruptures Documentation, Release

ruptures.datasets.pw_constant (module), 27
ruptures.datasets.pw_linear (module), 30
ruptures.datasets.pw_normal (module), 28
ruptures.datasets.pw_wavy (module), 30
ruptures.detection (module), 5
ruptures.detection.binseg (module), 8
ruptures.detection.bottomup (module), 11
ruptures.detection.dynp (module), 5
ruptures.detection.pelt (module), 7
ruptures.detection.window (module), 13
ruptures.metrics (module), 32
ruptures.metrics.hausdorff (module), 32
ruptures.metrics.precisionrecall (module), 35
ruptures.metrics.randindex (module), 33
ruptures.show.display (module), 36

W
Window (class in ruptures.detection), 15

48 Index

B
An automated recording method in

clinical consultation to rate the limp in
lower limb osteoarthritis

RESEARCH ARTICLE

An Automated Recording Method in Clinical

Consultation to Rate the Limp in Lower Limb

Osteoarthritis

R. Barrois1, Th. Gregory2, L. Oudre1,3, Th. Moreau1, Ch. Truong1, A. Aram Pulini1,

A. Vienne1, Ch. Labourdette1,4, N. Vayatis1,4, S. Buffat1,5, A. Yelnik1,6, C. de Waele1,

S. Laporte7, P. P. Vidal1, D. Ricard1,8*

1 Cognition and Action Group, Cognac-G, CNRS, Université Paris Descartes, SSA, Paris, France,

2 Service de chirurgie orthopédique et traumatologie, HEGP, université Paris Descartes, Paris, France,

3 Institut Galilée, Université Paris 13, Villetaneuse, France, 4 Centre des Mathématiques et de Leurs

Applications, Ecole Normale Supérieure de Cachan, Cachan, France, 5 Institut de Recherche Biomédicale

des Armées, Brétigny-sur-Orge, France, 6 PRM Department, GH St Louis Lariboisière F. Widal, AP-HP,

Diderot University, Paris, France, 7 LBM/Institut de Biomécanique Humaine Georges Charpak, Arts et

Métiers Paris Tech, 151 Boulevard de l’Hôpital, 75003, Paris, France, 8 Service de Neurologie, Hôpital

d’Instruction des Armées de Percy, Service de Santé des Armées, Clamart, France

* damien.ricard@m4x.org

Abstract

For diagnosis and follow up, it is important to be able to quantify limp in an objective, and

precise way adapted to daily clinical consultation. The purpose of this exploratory study

was to determine if an inertial sensor-based method could provide simple features that cor-

relate with the severity of lower limb osteoarthritis evaluated by the WOMAC index without

the use of step detection in the signal processing. Forty-eight patients with lower limb oste-

oarthritis formed two severity groups separated by the median of the WOMAC index (G1,

G2). Twelve asymptomatic age-matched control subjects formed the control group (G0).

Subjects were asked to walk straight 10 meters forward and 10 meters back at self-selected

walking speeds with inertial measurement units (IMU) (3-D accelerometers, 3-D gyro-

scopes and 3-D magnetometers) attached on the head, the lower back (L3-L4) and both

feet. Sixty parameters corresponding to the mean and the root mean square (RMS) of the

recorded signals on the various sensors (head, lower back and feet), in the various axes, in

the various frames were computed. Parameters were defined as discriminating when they

showed statistical differences between the three groups. In total, four parameters were

found discriminating: mean and RMS of the norm of the acceleration in the horizontal plane

for contralateral and ipsilateral foot in the doctor’s office frame. No discriminating parameter

was found on the head or the lower back. No discriminating parameter was found in the

sensor linked frames. This study showed that two IMUs placed on both feet and a step

detection free signal processing method could be an objective and quantitative complement

to the clinical examination of the physician in everyday practice. Our method provides new

automatically computed parameters that could be used for the comprehension of lower

limb osteoarthritis. It may not only be used in medical consultation to score patients but also

to monitor the evolution of their clinical syndrome during and after rehabilitation. Finally, it

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 1 / 15

a11111

OPENACCESS

Citation: Barrois R, Gregory T, Oudre L, Moreau T,

Truong C, Aram Pulini A, et al. (2016) An

Automated Recording Method in Clinical

Consultation to Rate the Limp in Lower Limb

Osteoarthritis. PLoS ONE 11(10): e0164975.

doi:10.1371/journal.pone.0164975

Editor: Steven Allen Gard, Northwestern University,

UNITED STATES

Received: October 7, 2015

Accepted: October 4, 2016

Published: October 24, 2016

Copyright: © 2016 Barrois et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: SATT Innov Ile de France. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

paves the way for the quantification of gait in other fields such as neurology and for monitor-

ing the gait at a patient’s home.

Introduction

Gait analysis plays an important role in the study of lower limb osteoarthritis on two grounds:
first, osteoarthritis has important repercussions on gait biomechanics [1–4]. It rapidly worsen
the prognosis for the affected joints, and on the long term affect the intact ones, which further
compromises the mobility of the patients. Second, the functional syndrome, ie the limp evalu-
ated with infraredmarkers, is well correlated with the severity of the pathology [5]. By using
stereophotogrammetry and force plates in gait laboratories, compared to matched controls,
knee osteoarthritis patients had reductions in walking speed [6–8], lower cadence [9,10], longer
double support time [9,11] and a smaller stride length [12]. That is, gait analysis would be use-
ful to quantify precisely the severity of osteoarthritis in a given patient. However, until recently,
gait laboratories were too expensive and complex to be utilized in daily practice. This explains
that clinical scores remains the gold standard to evaluate the severity of the pathology up to
these days [13–15]. TheWestern Ontario and MACmaster Universities osteoarthritis index
(WOMAC) is actually the most largely used of these scores in rheumatology for lower limb
osteoarthritis to assess pain, stiffness, and physical function in patients. WOMAC is considered
to be reliable, sensitive and adapted to clinical practice [16–18] and therefore, it is used in most
osteoarthritis clinical studies [19,20]. It remains that clinical scores are inherently subjective, as
they are based on the patient’s verbal reports and on the clinician’s visual skills and interpreta-
tions. For instance, theWOMAC index does not accurately reflect walking performances
[21,22] and clinical scores have a lack of sensitivity for identifying changes of balance and walk-
ing in mild to moderate disease severity [23].

In that context, skin-mounted accelerometers seem to be well-suited for investigating gait
kinematics in osteoarthritis patients [24]. They are inexpensive and non-invasive devices and,
more importantly, they are suited for routine clinical practice. In particular, they can be used to
evaluate gait using a standard protocol, which involves walking ten meters forward and ten
meters back on a level surface at a self-selectedwalking speed [25–31]. An essential point using
gait analysis in the everyday consultation is to extract from the raw data, automatically and in
real time, useful parameters for the clinician. To begin, step detection and gait cycle identifica-
tion are critical for computing gait parameters. By hand, it is time consuming and unfit for
clinical practice [3,13,32,33]. On the other hand, the automated routines available for step
detection are not robust because they are based on a priori predetermined threshold values
[34,35]. In addition, step detection automated routines are based on the assumption that steps
have stable kinematics, which is not the case in pathological conditions [34,36–40].

Inertial sensors are suitable for quantifying gait performance directly at the routine consul-
tation level. For this use, the quantification can be driven by real-time and low-powered soft-
ware. Advanced trunk accelerometric parameters have been found useful for detecting
pathological gait [41]. Nevertheless, complex gait parameters often require previous step detec-
tion, which requires extensive and time-consuming computation for sufficient robustness. As
well, the clinical meaning of complex gait parameters is not always clear, although recent
papers have made substantial efforts to clarify this point [42]. Still, this situation is unfortunate
because straight-forward gait parameters (mean or root mean square [RMS]) for the signals
often reveal clinically interpretable results [41,43]. Therefore, simple parameters such as the

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 2 / 15

RMS remain commonly used but often only for the lower back sensor [28,41,44–48]. They
often show differences between the pathological and healthy gait. These simple parameters
have not been explored at other key anatomical landmarks of the body.

Finally, the gait parameters have widely been developed in complex neurological limping
models such as Parkinson disease, cerebral palsy or peripheral neuropathy and not in osteoar-
thritis, in which pain is believed to be the major limping cause and for which the simple gait
parameters could have a direct, understandable clinical meaning [41].

Hence, we have tried to revisit the problem of gait analysis in osteoarthritis patients in daily
practice using four inertialmotion units (IMU) strapped to the head, lower back (L3-L4) and
feet.We have also designed a new automated and online method of gait analysis. This method
was then evaluated by comparing its outcome to the severity of the lower limb osteoarthritis
evaluated with theWOMAC index in a cohort of 48 patients and 12 control subjects.

Methods

Subjects

All subjects (patients and control subjects) were coming for a clinical consultation at the ortho-
pedic surgeon’s office (ThG) during three consecutivemonths. All consecutive patients or con-
trol subjects reaching the inclusion criteria during the inclusion periodwere included in the
study.

All patients had hip or knee osteoarthritis diagnosed by an orthopedic surgeon (ThG) and
gradedwith theWOMAC index (0 to 96). Patients had neither vestibular, neurological, or
musculoskeletal disorders, nor any fractures of the lower extremity, nor rheumatoid arthritis
or generalized osteoarthritis. Forty-eight patients with lower limb osteoarthritis were included
(43 to 90 years, mean 70.9 years). Patients were divided into 2 severity groups of equal size sep-
arated by the median of theWOMAC index: the moderately impaired group (G 1) and the
severely impaired group (G 2). The median value of theWOMAC index was 45/96. This
median-based repartition was chosen in order to maximize the power of the statistical analysis.

The control subjects had no orthopedic nor neurological problem that could affect their gait
pattern. Twelve control subjects were included (40 to 87 years, mean 60.8). They formed the
age-matched control group (G 0). The mean and standard deviation (SD) of the age, body
mass index (BMI) andWOMAC index of each group are shown in Table 1.

To assess the test–retest validity of the discriminating parameters, we checked their variabil-
ity with IMU placement. For the sensor-placement control experiment 1, 2 healthy controls
(age 22 and 23 years) performed 5 walking trials with sensors placed by 2 different operators at
each trial. For the sensor-placement control experiment 2, these 2 subjects also performed 9
walking trials with displacement of the sensor along the antero-posterior (AP) axis and the

Table 1. Age body mass index (BMI) and WOMAC index mean (upper case) and standard deviation

(lower case) of group 1 and group 2 patients with symptomatic lower limb osteoarthritis and age

matched controls.

Group Number Age BMI WOMAC

0 12 63,2 25,2 0,0

17,1 4,6 0,0

1 24 70.5 26.8 14,1

9.5 5,7 10,0

2 24 70,5 28,2 62,58

14,9 5,5 14,0

doi:10.1371/journal.pone.0164975.t001

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 3 / 15

medio-lateral (ML) axis in terms of the reference position (from -20 to +20 mm in 5-mm incre-
ments). Coefficientsof variation (CV ¼ m

s
) were evaluated for these 2 experiments, where μ is

the mean and σ the standard deviation of the parameters over all trials for each sensor control
experiment. A CV< 5% was considered correct and< 10% acceptable.

The study was validated by a local ethic comity (Comité de Protection des Personnes Ile de
France II, n°CPP 2014-10-04 RNI) and both patients and control subjects gave their written
consent to participate.

Instrumentation

Linear accelerations and angular velocities of the head, lower back (L4-L5 vertebra) and feet
were collected using four IMUs including triaxial accelerometers, gyroscopes and magnetome-
ters (XSens1, Culver City, CA, USA,MTw Measurement Units, 3,5h LiPo battery, 27g,
3,5x5,8x1,0cm^3, +/-16g, +/-1200deg/s, 100Hz, errors 0,003m/s2 and 0,05deg/s), fixed with
manufacturer-designed adhesive straps and connected throughWiFi with a computer.

Defining the sensor linked frame and the doctor’s office linked frame

The accelerations and the angular velocities of the four IMUs can be expressed in the sensor
linked frame and in the doctor’s office linked frame.

The IMUs were fixed and alignedwith respect to the body in the following way. The head
sensor was positioned on the center of the forehead. The antero-posterior (AP) axis of the
frame linked to the head sensor was the normal to the forehead surface. The medio-lateral
(ML) axis was set parallel to the line joining the left temple and the right temple. The vertical
(V) axis completed the orthonormal frame. The lumbar sensor was positioned at L4-L5 level.
The AP axis of the frame linked to the lumbar sensor was normal to the back surface. The ML
axis was set parallel to the line joining the right anterior superior iliac spine and left anterior
superior iliac spine. The V axis completed the orthonormal frame. Each foot sensor was posi-
tioned at the center of the dorsal face of each foot. The V axes of each frame linked to each foot
sensor were the normals to the dorsal surfaces of each foot. The AP axis was set parallel to the
longitudinal direction of the foot. The ML axis completed the orthonormal frame. Positive
directions for the axes were not defined because all computed gait parameters are independent
of this orientation.

The doctor’s office frame was the fix frame linked to the doctor’s office. The V axis of the
doctor’s office linked frame was alignedwith the gravity. The horizontal plane (H) was the
plane normal to the V axis. AP and ML axes were not defined in the doctor’s office linked
frame. The change of frame from the sensor linked frames to the doctor’s office linked frame
was done with an algorithm [49,50] based on the XSens1 3Dmagnetometer measurement.
We used the manufacturer’s rotation matrix as described and validated by Cognolato [50].

Experimental design and data acquisition

TheWOMAC index was evaluated and recorded by the same experimented orthopedic sur-
geon (ThG). The questions were always asked in the same order with the validated text. After
the sensor fixation, the participant was instructed to execute the following steps: stand quiet for
six seconds, walk ten meters at a preferred walking speed,make a U-turn, walk the ten meters
back and stand quiet for two seconds.

Participants could keep their clothes and their shoes on. Participants with high heels (>2
cm) were asked to do the exercise without their shoes. Each participant completed two trials of
this exercise to improve the reliability of the measure.

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 4 / 15

Data processing

Each phase of the exercise (quiet standing, walking and U-turn) was manually annotated with-
out any step detection (RB). All parameters were computed on the concatenated signal of the
walk phases of the exercise (Fig 1). One given parameter p is defined by a sensor = {head, lower
back, ipsilateral foot, contralateral foot}, a frame = {sensor, office}, an axis = {AP,ML,V} if the
frame is the sensor-linked frame or an axis = {H, V} if the frame is the doctor’s office-linked
frame (H for horizontal plane), a signal sig = {acceleration, angular velocity} and a statistical
tool stat = {mean, RMS}. Thus we computed the following:

psensor;frame;axis;sig ;mean ¼ meanjsigsensor;frame;axisj

psensor;frame;axis;sig ;RMS ¼ RMSjsigsensor;frame;axisj

where |.| is the absolute value and where in the case of n values x = {x1,x2,. . .,xn}:

• the mean is defined by mean xð Þ ¼ 1
n x1 þ x2 þ � � � þ xnð Þ

• the RMS is defined by RMS xð Þ ¼
ffi
1
n ðx

2
1 þ x2

2 þ � � � þ x2
nÞ

q

For each parameter, the mean of the two trials was taken. Sixty parameters were computed,
fifteen for each sensor (Table 2).

Fig 1. Representative data and manual phase annotation result for one healthy participant performing a 10 meters go and 10 meters back

walking exercise at self-selected walking speed. Black bars stand for manual annotation. Dashed zone corresponds to the walking phases. The

walking parts of the signal were taken for parameter computation. (A)–Representative ML lateral angular velocity in the sensor linked frame for right

foot. (B)—Representative ML lateral angular velocity in the sensor linked frame for left foot. (C)–Representative V angular velocity in the sensor linked

frame for L3-L4.

doi:10.1371/journal.pone.0164975.g001

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 5 / 15

The parameters were also computed by sliding the manually-annotated computation win-
dow one second earlier and one second later to take the error of the manual phase annotation
into consideration (see Results section). The parameters affected by the gravity component
were not studied because they were too sensor’s positioning dependent. These parameters
were: the mean of the norm of the acceleration in the sensor linked frames in the AP, ML and
V directions on the four markers i.e.:

pfhead;lower back;feetg;sensor;fAP;ML;Vg;acceleration;mean

Gravity component of the acceleration was not removed. The angular velocities in the hori-
zontal plane in the doctor’s office frame was not studied because of the absence of clinical
meaning of this parameter i.e.:

pfhead;lower back;feetg;office;H;angular velocity;fmean;RMSg

Mean walking velocity was computed by dividing the walking distance (20 m) by the dura-
tion of the walking phases.

Statistical analysis

A one-way analysis of variance (ANOVA) with Tukey pairwise comparison test and a one-way
analysis of covariance (ANCOVA) with age and BMI as covariate with Tukey pairwise compar-
ison were performed on all three groups on all the 61 parameters. Mean walking velocity was
not taken as covariate because it is known to decrease with lower limb osteoarthritis severity
[25]. We defined a discriminating parameter as a parameter that showed statistical differences
using an ANOVA analysis with a Tukey pairwise comparison test (p-value set under 0, 05)
between all three groups (G1vsG2, G2vsG3 and G1vsG3).

Results

Data processing

We could manually annotate the initial quiet-standing phase, the go-walking phase, the U-turn
and the back-walking phase for all 48 lower limb osteoarthritis patients and the 12 control sub-
jects. Representative data and manual phase annotation results for one control subject

Table 2. Acceleration and angular velocity parameters in the sensor linked frames and the doctor’s

office linked frame. RMS for root mean square.

Sensor linked frame

Axis and plane Acceleration Angular velocity

Meadial lateral (ML) - Mean

RMS RMS

Anterior posterior (AP) - Mean

RMS RMS

Vertical (V) - Mean

RMS RMS

Doctor’s office linked frame

Axis and plane Acceleration Angular velocity

Horizontal (H) plane Mean -

RMS -

Vertical (V) axis Mean Mean

RMS RMS

doi:10.1371/journal.pone.0164975.t002

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 6 / 15

performing a 10 meters forward and 10 meters back walking task at a self-selectedwalking
speed are shown in Fig 1. The cumulative error for the manual exercise phase annotation was 1
second. The relative errors due to the manual annotation error on the parameters were 5% on
average for the mean of the acceleration in the horizontal plane on the ipsilateral foot. The
errors did not change the statistical significance of the in-between group differences shown by
the discriminating parameters.

Parameters and statistical analysis

Looking at the 60 IMU-based parameters we found (S1 Table):

• in the sensor linked frames: no discriminating parameters (results not shown).

• in the doctor’s office linked frame: the mean and the RMS of the norm of the acceleration in
the horizontal plane for the contralateral (p-values respectively G0vsG1 = 0.011;
G1vsG2 = 0.013; G0vsG2<0.0001 for mean and G0vsG1 = 0.010 G1vsG2 = 0.026;
G0vsG2<0.0001 for RMS) and the ipsilateral (p-values respectively G0vsG1 = 0.002;
G1vsG2 = 0.0004; G0vsG2<0.0001 for mean and; G0vsG1 = 0.001; G1vsG2 = 0.001;
G2vsG0<0.0001 for RMS) foot were discriminating parameters (Fig 2). In our predefined
formalism these parameters are p{ipsilateral foot,controlateral foot},office,H,acceleration,{mean,RMS}.

• These parameters can be

Fig 2. Selected 24 parameters out of the 60 IMU based parameters computed in the doctor’s office linked frame obtained from 4

IMUs on 12 control subjects and 48 patients during a 10 meters go and 10 meters back walking task. Sensor location are shown on the

walking silhouette by colored diamonds: grey for the head, yellow for the sacrum, blue for the contralateral foot and red for the ipsilateral foot.

The red cross of the walking silhouette indicates the ipsilateral foot to the lesion defined by the side where the patient is the more symptomatic.

Each parameter is represented by a bar diagram. The row indicate the location of the sensor and whether the parameters is computed on an

acceleration (A) or an angular velocity signal (B). The columns indicate whether the parameter is computed on the horizontal plane or on the

vertical axis and whether the parameter is a mean or a RMS of the norm of the walking signal. In each bar diagram, the parameter is

represented as a function of the severity. The results are shown by a modulated grey cross: horizontal bar stands for mean and vertical bar

stands for the standard deviation. Light grey represents the healthy group (G0), medium grey the moderately impaired group (G1) and dark

grey the severely impaired group (G2). The parameters marked by a star (*) are the discriminating parameters (parameters that show

significant difference between the three WOMAC index defined severity groups). The statistical analysis was performed with an ANOVA

analysis and a Tukey pairwise comparison test (p-value set at 0.05). RMS stands for root mean square and V for vertical axis.

doi:10.1371/journal.pone.0164975.g002

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 7 / 15

In the sensor linked frame, angular velocities around the ML axis on the ipsilateral and con-
tralateral feet didn’t appear to be discriminating parameters, but showed statistical significant
differences between the group of control subjects and the two groups of patients (results not
shown).

No parameters from the lower back and no parameter from the head were discriminating
parameters.

We found that the mean and RMS of the norm of the acceleration in the horizontal plane in
the doctor’s office linked frame for contralateral and ipsilateral feet still met our definition of
discriminating parameters with age and BMI as covariate.

For walking velocity, differences were significant betweenG0 and G2, G1 and G2. No signif-
icant difference in walking velocity was found betweenG0 and G1 (Fig 3). Thus, walking veloc-
ity was not a discriminating parameter.

Sensor-placement control experiment 1 gave a CV< 5% and experiment 2 a CV< 10% for
the mean of the norm of the acceleration in the horizontal plane and the RMS of the norm of
the acceleration in the horizontal plane (Table 3).

Discussion

The correlation between lower limb osteoarthritis severity and stereophotogrammetry is well
established [5,26,27,51–57]. In contrast, only two studies retrieved the same correlation using
inertial sensors [52,54]. We confirm that result here. In addition, to the best of our knowledge,
it is the first lower limb osteoarthritis study where the IMU-based gait parameters were
extractedwithout step detection, which is important for daily clinical use. Finally, our results
suggest that two IMUs placed on the feet are sufficient to quantify the severity of inferior limb
osteoarthritis,which further improves the use of the method in daily practice.

We compared 48 patients and 12 control subjects walking 10 meters forward and 10 meters
back under clinical consultation conditions. The four-IMUs-based method showed a discrimi-
nation capacity of clinical severity groups for 4 of the 60 parameters tested. These discriminat-
ing parameters were: mean and RMS of the norm of the acceleration in the horizontal plane in
the doctor’s office linked frame for the contralateral and the ipsilateral feet. The results
remained statistically significant with BMI and age as covariate. The absence of clinical correla-
tion with parameters in the head and lower back reflected that lower limb osteoarthritis
impacted the kinematics of the painful segment more than the upper body, which, to the best
of our knowledge, has not been specifically shown previously [1,12,56,58–61]. However, it can-
not be excluded that a more precise method of measurement, such as stereophotogrammetry,
could reveal subtle differences. It remains that one important conclusion would be that two
sensors placed at the feet, would be sufficient in daily practice to rate osteoarthritis severity.

Walking speed is known to influence gait parameters [62] and osteoarthritis reduces walk-
ing speed. Hence, the question is whether the influence of osteoarthritis severity on the gait
parameters was solely caused by the reduction of walking speed, or if osteoarthritis per se led to
a change of gait pattern. To analyze the change of walking pattern independently from the
walking speed, a first method is to walk at a predeterminedwalking speed [1,3,12,33,56,58,63–
65]. It requires dedicatedmaterial (treadmill), which is not suited in daily clinical practice and
it does not allow to capture natural and repeatable walking patterns [25]. A secondmethod is
to select subgroups of participants walking at their preferred walking speedmatched in walking
speed [66]. But, the subgroups do not reflect the general populations of the whole severity
groups [25]. A third method would be to set walking speed as covariate [63,67,68]. As walking
speed is inherently linked to disease progress, and its mean value tends to decrease with
increasing levels of disease severity, this technique is inappropriate [25]. Therefore, we chose to

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 8 / 15

have participant walking at preferred walking speeds. Using that method, we showed on our
dataset that walking velocity was not a discriminating parameter when comparing G0 and G1.
Altogether, this negative result suggests that osteoarthritis per se caused a change of gait pat-
tern, independent from the walking velocity. Pain could likely be a factor.

Fig 3. Mean walking velocity as a function of the WOMAC index based osteoarthritis severity groups.

The results are shown by a modulated grey cross: horizontal bar stands for mean and vertical bar stands for

the standard deviation. Light grey represents the healthy participants, medium grey the moderately impaired

group and dark grey the severely impaired group. Black horizontal bars show the statistical differences

between the groups computed with an ANOVA analysis and a Tukey pairwise comparison test (p-value set

at 0.05).

doi:10.1371/journal.pone.0164975.g003

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 9 / 15

Ourmethod gave a global view of the gait kinematics, which summed up the impacts of
ostheoarthritis at the hip, knee and ankle joints levels. Also, ipsilateral and contralateral sides
were definedwith respect to the more symptomatic side of the patient. Therefore, our approach
may help to objectively rate lower limb osteoarthritis severity in daily clinical practice but it is
not suited to gain a detailed insight in the walking pattern of these patients [52].

The manual phase annotation of the walking exercise we used saved time but could have
lowered the robustness of our method. However, we showed that the errors due to manual
annotation didn’t change the statistical validity of the discriminating parameters in our study.
Computation of gait parameters in the sensor-linked frame is prone to lower the reproducibil-
ity of the parameters because it is biased by the inherent variability of the positions of the sen-
sors [44,69]. This explains why in our study, robust discriminating accelerometric parameters
for lower limb osteoarthritis severity were all found in the doctor’s office linked frame.

Two aspects of the positioning of the sensors may affect gait parameters by using IMUs: the
orientation and position of the sensor on the measured body segment [70–73]. In the present
study, all discriminating parameters were computed from the laboratory frame (i.e. the frame
in which the vertical axis and horizontal plane are independent of the initial orientation of the
sensor). Nevertheless, with the effect of the position of the sensor on the body segment, the CV
was< 5% for our discriminating parameters, for realistic placement errors (we estimated our
error as routine to be about 10 mm), and< 10% for extreme placement errors. Indeed, special
care is needed for placement of the sensor, but this positioning had moderate impact on the
parameters we propose.

We compared the IMU-based gait parameters and lower limb osteoarthritis assessed by the
WOMAC index, which is a purely clinical score. Classically, inertial sensor based studies use
the Kellgren and Lawrence radiographic score to rate knee osteoarthritis [5,26,27,53–57].
Radiographic knee osteoarthritis severity is known to have poor correlation with the clinic
namely gait disturbance [74,75]. Radiographic osteoarthritis can be clinically silent [26], which
could explain the inconsistent correlation between gait analysis and radiographic-based lower
limb osteoarthritis severity [59]. Again, it can be hypothesized that pain commands walking
strategies.

Finally, beyond the fact that we designed an automated method of gait quantification,
adapted to daily practice, our results gave some insight in the impact of lower limb osteoarthri-
tis on locomotion. The most relevant results of our study are the decrease of the mean and
RMS of norm of the acceleration in the horizontal plane on both feet with disease severity. It
could result from a diminution of movement in the AP direction due to pain. This interpreta-
tion had been suggested in studies relying on local peak amplitudes [13,54,76,77]. Liikavainio

Table 3. Sensor-placement control experiment 1 (Exp. 1): coefficient of variation (CV; mean/SD) of

the mean and root mean square (RMS) of the norm for acceleration in the horizontal plane in the right

foot for 2 subjects over 5 walking trials with renewal of the sensor placement at each trial. Sensor-

placement control experiment 2 (Exp. 2): CV over 9 walking trials (-20; -15; -10; -5; 0; 5; 10; 15; 20 mm) with

displacement of the sensor in increments of 5 mm along the antero-posterior axis and medio-lateral axis in

terms of the reference position. Values are in percentages.

Mean RMS

Exp. 1 Subject 1 3.5* 4.3*

Subject 2 0.9* 2.1*

Exp. 2 Subject 1 7.4 8.9

Subject 2 2.9* 4.0*

* CV < 5%.

doi:10.1371/journal.pone.0164975.t003

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 10 / 15

et al. (2010) have also hypothesized that patients use a different strategy to brake the forward
movement of the swinging leg before floor contact. This strategy could explain both the reduc-
tion of our global parameters and the increase of the local peaks in patients reported by others.

Conclusion

Our study showed that by using two IMUs placed on both feet and a signal processing method
without step detection, we could objectively quantify limp in lower-limb osteoarthritis. This
finding underlines the importance of measuring key anatomical landmarks and accessible gait
parameters in exploring limp by using IMUs and severity grading. Although the proposed
method still had some limitations, it provided new, automatically computed parameters that
could be used for the comprehension of lower limb osteoarthritis in current medical practice. It
may not only be used in medical consultation to score patients, but also to monitor the evolu-
tion of their clinical syndrome during and after rehabilitation. Finally, it paves the way for the
quantification of gait in other fields such as neurology and for home monitoring.

Supporting Information

S1 Table. Lower limb osteoarthritis severity group, WOMAC score, BMI, age, walking
velocity and the 60 parameters for the 12 control subjects and the 48 patients. Each parame-
ter is defined by: a sensor = {head, lower back, ipsilateral foot, contralateral foot}; a frame = {sen-
sor, office}; an axis = {AP,ML,V} if the frame is the sensor-linked frame or an axis = {H, V} if
the frame is the doctor’s office-linked frame (H for horizontal plane); a signal sig = {accelera-
tion, angular velocity} and a statistical tool stat = {mean, RMS}. The parameter ipsilateral foot-
office-H-acceleration-mean-modified corresponds to the parameter ipsilateral foot-office-H-
acceleration-mean computed with the cumulative error for the manual exercise phase annota-
tion that was estimated at 1 second. Accelerations are given in g and angular velocities in deg/s.
AP antero-posterior, ML medio-lateral, V vertical, H horizontal plane, RMS root mean square,
BMI bodymass index.
(XLSX)

Acknowledgments

Blynn Shideler for writing assistance.
SATT Ile-de-France Innov for funding.

Author Contributions

Conceptualization:ThG ChL NV SB AY CdWPPV DR.

Data curation:RB AAP.

Formal analysis:RB LO ThMChT AAP AV ChL.

Funding acquisition: PPV.

Investigation: RB ThG DR.

Methodology:ThG ChL NV SB AY CdWPPV DR.

Project administration:RB ThG PPV DR.

Resources:ThG.

Software:RB LO ThMChT AAP AV ChL.

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 11 / 15

Supervision:ThG PPV DR.

Validation: RB ThG LO AAP AV ChL PPV DR.

Visualization: RB ThMDR.

Writing – original draft:RB LO PPV DR.

Writing – review& editing: RB LO SL PPV DR.

References
1. Childs JD, Sparto PJ, Fitzgerald GK, Bizzini M, Irrgang JJ. Alterations in lower extremity movement

and muscle activation patterns in individuals with knee osteoarthritis. Clin Biomech 2004; 19:44–9.

2. McKean KA, Landry SC, Hubley-Kozey CL, Dunbar MJ, Stanish WD, Deluzio KJ. Gender differences

exist in osteoarthritic gait. Clin Biomech 2007; 22:400–9. doi: 10.1016/j.clinbiomech.2006.11.006

PMID: 17239509

3. Astephen JL, Deluzio KJ, Caldwell GE, Dunbar MJ, Hubley-kozey CL. Gait and neuromuscular pattern

changes are associated with differences in knee osteoarthritis severity levels. J Biomech 2008;

41:868–76. doi: 10.1016/j.jbiomech.2007.10.016 PMID: 18078943

4. Andriacchi TP, Hurwitz DE. Gait biomechanics and the evolution of total joint replacement. Gait Pos-

ture 1997; 5:256–64. doi: 10.1016/S0966-6362(97)00013-1

5. Tas S. Effects of severity of osteoarthritis on the temporospatial gait parameters in patients with knee

osteoarthritis. ACTA Orthop Traumatol Turc 2014; 48:635–41. doi: 10.3944/AOTT.2014.13.0071

PMID: 25637727

6. Astephen JL, Deluzio KJ. Changes in frontal plane dynamics and the loading response phase of the

gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis

technique. Clin Biomech 2005; 20:209–17.

7. Brinkmann JR, Perry J. Rate and range of knee motion during ambulation in healthy and arthritic sub-

jects. Phys Ther 1985; 65:1055–60. PMID: 4011684

8. Hanlon M, Anderson R. Prediction methods to account for the effect of gait speed on lower limb angular

kinematics. Gait Posture 2006; 24:280–7. doi: 10.1016/j.gaitpost.2005.10.007 PMID: 16311035

9. Chen CPC, Chen MJL, Pei Y-C, Lew HL, Wong P-Y, Tang SFT. Sagittal plane loading response during

gait in different age groups and in people with knee osteoarthritis. Am J Phys Med Rehabil 2003;

82:307–12. doi: 10.1097/01.PHM.0000056987.33630.56 PMID: 12649658

10. Stauffer RN, Chao EYS, Györy AN. Biomechanical gait analysis of the diseased knee joint. Clin Orthop

Relat Res 1977; 126:246–55. PMID: 598127

11. Smith AJ, Lloyd DG, Wood DJ. Pre-surgery knee joint loading patterns during walking predict the pres-

ence and severity of anterior knee pain after total knee arthroplasty. J Orthop Res 2004; 22:260–6. doi:

10.1016/S0736-0266(03)00184-0 PMID: 15013083

12. Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA, et al. Increased knee joint loads dur-

ing walking are present in subjects with knee osteoarthritis. Osteoarthr Cartil 2002; 10:573–9. PMID:

12127838

13. Turcot K, Aissaoui R, Boivin K, Pelletier M, Hagemeister N, de Guise JA. New accelerometric method

to discriminate between asymptomatic subjects and patients with medial knee osteoarthritis during 3-D

gait. Biomed Eng IEEE Trans 2008; 55:1415–22.

14. Sharma L, Kapoor D, Issa S. Epidemiology of osteoarthritis: an update. Curr Opin Rheumatol 2006;

18:147–56. doi: 10.1097/01.bor.0000209426.84775.f8 PMID: 16462520

15. Herzog W, Federico S. Considerations on joint and articular cartilage mechanics. Biomech Model

Mechanobiol 2006; 5:64–81. doi: 10.1007/s10237-006-0029-y PMID: 16534622

16. McConnell S, Kolopack P, Davis AM. The Western Ontario and McMaster Universities Osteoarthritis

Index (WOMAC): A Review of Its Utility and Measurement Properties. Arthritis Care Res (Hoboken)

2001:453–61.

17. Roos EM, Klässbo M, Lohmander LS. WOMAC Osteoarthritis Index: Reliability, validity, and respon-

siveness in patients with arthroscopically assessed osteoarthritis. Scand J Rheumatol 1999; 28:210–

5. PMID: 10503556

18. Bellamy N. Pain assessment in osteoarthritis: experience with the WOMAC osteoarthritis index. Semin

Arthritis Rheum 1989; 18:14–7. PMID: 2786253

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 12 / 15

19. Angst F, Aeschlimann A, Steiner W, Stucki G. Responsiveness of the WOMAC osteoarthritis index as

compared with the SF-36 in patients with osteoarthritis of the legs undergoing a comprehensive reha-

bilitation intervention. Ann Rheumatolgic Disord 2001:834–40.

20. Theiler R, Sangha O, Schaeren S, Michel BA, Tyndall A, Dick W, et al. Superior responsiveness of the

pain and function sections of WOMAC Index as compared to the Lequesne-algofunctional Index in

patients with osteoarthritis of the lower extremities. Osteoarthr Cartil 1999:515–9. doi: 10.1053/joca.

1999.0262 PMID: 10558848

21. Witvrouw E, Victor J, Bellemans J, Rock B, Van Lummel R, Van Der Slikke R, et al. A correlation study

of objective functionality and WOMAC in total knee arthroplasty. Knee Surgery, Sport Traumatol

Arthrosc 2002; 10:347–51. doi: 10.1007/s00167-002-0302-2 PMID: 12444512

22. Lindemann U, Becker C, Muche R, Aminian K, Dejnabadi H, Nikolaus T, et al. Gait analysis and

WOMAC are complementary in assessing functional outcome in total hip replacement. Clin Rehabil

2006; 20:413–20. PMID: 16774092

23. Hubble RP, Naughton G a., Silburn P a., Cole MH. Wearable Sensor Use for Assessing Standing Bal-

ance and Walking Stability in People with Parkinson’s Disease: A Systematic Review. PLoS One

2015; 10:e0123705. doi: 10.1371/journal.pone.0123705 PMID: 25894561

24. Auvinet B, Berrut G, Touzard C, Moutel L, Collet N, Chaleil D, et al. Reference data for normal subjects

obtained with an accelerometric device. Gait Posture 2002; 16:124–34. PMID: 12297254

25. Astephen Wilson JL. Challenges in dealing with walking speed in knee osteoarthritis gait analyses.

Clin Biomech 2012; 27:210–2. doi: 10.1016/j.clinbiomech.2011.09.009 PMID: 22019141

26. Nagano Y, Naito K, Saho Y, Torii S, Ogata T, Nakazawa K, et al. Association between in vivo knee

kinematics during gait and the severity of knee osteoarthritis. Knee 2012; 19:628–32. doi: 10.1016/j.

knee.2011.11.002 PMID: 22192889

27. Kiss RM. Effect of severity of knee osteoarthritis on the variability of gait parameters. J Electromyogr

Kinesiol 2011; 21:695–703. doi: 10.1016/j.jelekin.2011.07.011 PMID: 21840223

28. Mizuike C, Ohgi S, Morita S. Analysis of stroke patient walking dynamics using a tri-axial accelerome-

ter. Gait Posture 2009; 30:60–4. doi: 10.1016/j.gaitpost.2009.02.017 PMID: 19349181

29. Van Den Noort JC, Van Der Esch M, Steultjens MPM, Dekker J, Schepers HM, Veltink PH, et al. The

knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis.

J Biomech 2012; 45:281–8. doi: 10.1016/j.jbiomech.2011.10.027 PMID: 22079386

30. Freedman Silvernail J, Milner CE, Thompson D, Zhang S, Zhao X. The influence of body mass index

and velocity on knee biomechanics during walking. Gait Posture 2013; 37:575–9. doi: 10.1016/j.

gaitpost.2012.09.016 PMID: 23103243

31. Heiden TL, Lloyd DG, Ackland TR. Knee joint kinematics, kinetics and muscle co-contraction in knee

osteoarthritis patient gait. Clin Biomech 2009; 24:833–41.

32. Jordan K, Challis JH, Newell KM. Walking speed influences on gait cycle variability. Gait Posture 2007;

26:128–34. doi: 10.1016/j.gaitpost.2006.08.010 PMID: 16982195

33. Landry SC, McKean KA, Hubley-Kozey CL, Stanish WD, Deluzio KJ. Knee biomechanics of moderate

OA patients measured during gait at a self-selected and fast walking speed. J Biomech 2007;

40:1754–61. doi: 10.1016/j.jbiomech.2006.08.010 PMID: 17084845

34. Ying H, Silex C, Schnitzer a, Leonhardt S, Schiek M. Automatic Step Detection in the Accelerometer

Signal. 4th Int Work Wearable Implant Body Sens Networks (BSN 2007) 2007; 13:80–5. doi: 10.1007/

978-3-540-70994-7_14

35. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985; 32:230–6.

doi: 10.1109/TBME.1985.325532 PMID: 3997178

36. Marschollek M, Goevercin M, Wolf K-H, Song B, Gietzelt M, Haux R, et al. A performance comparison

of accelerometry-based step detection algorithms on a large, non-laboratory sample of healthy and

mobility-impaired persons. Eng. Med. Biol. Soc. 2008. EMBS 2008. 30th Annu. Int. Conf. IEEE, 2008,

p. 1319–22.

37. Dijkstra B, Zijlstra W, Scherder E, Kamsma Y. Detection of walking periods and number of steps in

older adults and patients with Parkinson’s disease: Accuracy of a pedometer and an accelerometry-

based method. Age Ageing 2008; 37:436–41. doi: 10.1093/ageing/afn097 PMID: 18487266

38. Fortune E, Lugade V, Morrow M, Kaufman K. Step Counts Using a Tri-Axial Accelerometer During

Activity. AsbwebOrg n.d.:1–2.

39. Libby R. A simple method for reliable footstep detection on embedded sensor platforms. Sensors

Peterbrgh NH 2008:1–16.

40. Thuer G, Verwimp T. Step Detection Algorithms for Accelerometers. E-Lab Master’s Thesis, from Art-

esis Univ Coll Antwerp, Antwerp, Belgium 2009;2009:1–8.

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 13 / 15

41. Sejdić Ervin, Lowry KA, Bellanca J, Redfern MS, Brach JS. A comprehensive assessment of gait

accelerometry signals in time, frequency and time-frequency domains. IEEE Trans Neural Syst Reha-

bil Eng 2015; 22:603–12. doi: 10.1109/TNSRE.2013.2265887.A

42. Din S Del, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait characteristics in ageing and Par-

kinson ‘ s disease: impact of environment and ambulatory bout length. J Neuroeng Rehabil 2016:1–12.

doi: 10.1186/s12984-016-0154-5 PMID: 27175731

43. Barrois R, Oudre L, Moreau T, Truong C, Vayatis N, Buffat S, et al. Quantify osteoarthritis gait at the

doctor ‘ s office: A simple pelvis accelerometer based method independent from footwear and aging.

Comput Methods Biomech Biomed Engin 2015:1880–1. doi: 10.1080/10255842.2015.1072414 PMID:

26315565

44. Moe-Nilssen R. A new method for evaluating motor control in gait under real-life environmental condi-

tions. Part 1: The instrument. Clin Biomech 1998; 13:320–7.

45. Bolink SAAN, Lenguerrand E, Brunton LR, Wylde V, Gooberman-hill R, Heyligers IC, et al. Clinical Bio-

mechanics Assessment of physical function following total hip arthroplasty: Inertial sensor based gait

analysis is supplementary to patient-reported outcome measures. JCLB 2016; 32:171–9. doi: 10.1016/

j.clinbiomech.2015.11.014 PMID: 26706048

46. Bolink SAAN, Brunton LR, Laarhoven S van, Lipperts M, Heyligers IC, Blom AW, et al. Frontal plane

pelvic motion during gait captures hip osteoarthritis related disability. Hip Int 2016;0:0–0. doi: 10.5301/

hipint.5000282 PMID: 26351120

47. Bolink SAAN, Grimm B, Heyligers IC. The Knee Patient-reported outcome measures versus inertial

performance-based outcome measures: A prospective study in patients undergoing primary total knee

arthroplasty. Knee 2015; 22:618–23. doi: 10.1016/j.knee.2015.04.002 PMID: 26032657

48. Staab W, Hottowitz R, Sohns C, Sohns JM, Gilbert F, Menke J, et al. Accelerometer and Gyroscope

Based Gait Analysis Using Spectral Analysis of Patients with Osteoarthritis of the Knee. J Phys Ther

Sci 2014; 26:997–1002. doi: 10.1589/jpts.26.997 PMID: 25140082

49. Madgwick SOH. An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Rep X-Io

Univ Bristol 2010: 32. doi: 10.1109/ICORR.2011.5975346

50. Cognolato M. Experimental validation of XSens inertial sensor during clinical and sport motion capture.

2012.

51. Astephen JL, Deluzio KJ, Caldwell GE, Dunbar MJ, Hubley-Kozey CL. Gait and neuromuscular pattern

changes are associated with differences in knee osteoarthritis severity levels. J Biomech 2008;

41:868–76. doi: 10.1016/j.jbiomech.2007.10.016 PMID: 18078943

52. Brandes M, Schomaker R, Molenhoff G, Rosenbaum D. Quantity versus quality of gait and quality of

life in patients with osteoarthritis. Gait Posture 2008; 28:74–9. doi: 10.1016/j.gaitpost.2007.10.004

PMID: 18054233

53. Huang SC, Wei IP, Chien HL, Wang TM, Liu YH, Chen HL, et al. Effects of severity of degeneration on

gait patterns in patients with medial knee osteoarthritis. Med Eng Phys 2008; 30:997–1003. doi: 10.

1016/j.medengphy.2008.02.006 PMID: 18417411

54. Liikavainio T, Bragge T, Hakkarainen M, Karjalainen PA, Arokoski JP. Gait and muscle activation

changes in men with knee osteoarthritis. Knee 2010; 17:69–76. doi: 10.1016/j.knee.2009.05.003

PMID: 19556137

55. Mündermann A, Dyrby CO, Hurwitz DE, Sharma L, Andriacchi TP. Potential Strategies to Reduce

Medial Compartment Loading in Patients With Knee Osteoarthritis of Varying Severity: Reduced Walk-

ing Speed. Arthritis Rheum 2004; 50:1172–8. doi: 10.1002/art.20132 PMID: 15077299

56. Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compart-

ment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum

2005; 52:2835–44. doi: 10.1002/art.21262 PMID: 16145666

57. Zeni JA, Higginson JS. Differences in gait parameters between healthy subjects and persons with

moderate and severe knee osteoarthritis: a result of altered walking speed? Clin Biomech 2009;

24:372–8.

58. Gök H, Ergin S, Yavuzer G. Kinetic and kinematic characteristics of gait in patients with medial knee

arthrosis. Acta Orthop 2002; 73:647–52.

59. Heiden TL, Lloyd DG, Ackland TR. Knee joint kinematics, kinetics and muscle co-contraction in knee

osteoarthritis patient gait. Clin Biomech 2009; 24:833–41. doi: 10.1016/j.clinbiomech.2009.08.005

PMID: 19765867

60. Hinman RS, Bennell KL, Metcalf BR, Crossley KM. Delayed onset of quadriceps activity and altered

knee joint kinematics during stair stepping in individuals with knee osteoarthritis. Arch Phys Med Reha-

bil 2002; 83:1080–6. doi: 10.1053/apmr.2002.33068 PMID: 12161828

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 14 / 15

61. Turcot K, Aissaoui R, Boivin K, Hagemeister N, Pelletier M, de Guise JA. Test-Retest Reliability and

Minimal Clinical Change Determination for 3-Dimensional Tibial and Femoral Accelerations During

Treadmill Walking in Knee Osteoarthritis Patients. Arch Phys Med Rehabil 2008; 89:732–7. doi: 10.

1016/j.apmr.2007.09.033 PMID: 18374005

62. Hirasaki E, Moore ST, Raphan T, Cohen B. Effects of walking velocity on vertical head and body move-

ments during locomotion. Exp Brain Res 1999; 127:117–30. PMID: 10442403

63. Kaufman KR, Hughes C, Morrey BF, Morrey M, An K-N. Gait characteristics of patients with knee oste-

oarthritis. J Biomech 2001; 34:907–15. PMID: 11410174

64. Al-Zahrani KS, Bakheit AMO. A study of the gait characteristics of patients with chronic osteoarthritis

of the knee. Disabil Rehabil 2002; 24:275–80. PMID: 12004973

65. Hurwitz DE, Ryals AB, Case JP, Block JA, Andriacchi TP. The knee adduction moment during gait in

subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic dis-

ease severity, toe out angle and pain. J Orthop Res 2002; 20:101–7. doi: 10.1016/S0736-0266(01)

00081-X PMID: 11853076

66. Rutherford DJ, Hubley-Kozey CL, Stanish WD, Dunbar MJ. Neuromuscular alterations exist with knee

osteoarthritis presence and severity despite walking velocity similarities. Clin Biomech 2011; 26:377–

83. doi: 10.1016/j.clinbiomech.2010.11.018 PMID: 21185628

67. Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill

and overground walking using kinematic data. Gait Posture 2008; 27:710–4. doi: 10.1016/j.gaitpost.

2007.07.007 PMID: 17723303

68. Lewek MD, Rudolph KS, Snyder-Mackler L. Control of frontal plane knee laxity during gait in patients

with medial compartment knee osteoarthritis. Osteoarthr Cartil 2004; 12:745–51. doi: 10.1016/j.joca.

2004.05.005 PMID: 15325641

69. Kavanagh JJ, Menz HB. Accelerometry: a technique for quantifying movement patterns during walk-

ing. Gait Posture 2008; 28:1–15. doi: 10.1016/j.gaitpost.2007.10.010 PMID: 18178436

70. Moe-Nilssen R. Test-retest reliability of trunk accelerometry during standing and walking. Arch Phys

Med Rehabil 1998; 79:1377–85. doi: 10.1016/S0003-9993(98)90231-3 PMID: 9821897

71. Sabatini AM. Wearable sensor systems in biomechanics: assessment of unrestrained walking fea-

tures. Instrum. Meas. Technol. Conf. 2004. IMTC 04. Proc. 21st IEEE, vol. 2, 2004, p. 881–3.

72. Henriksen M, Lund H, Moe-Nilssen R, Bliddal H, Danneskiod-Samsøe B. Test—retest reliability of

trunk accelerometric gait analysis. Gait Posture 2004; 19:288–97. doi: 10.1016/S0966-6362(03)

00069-9 PMID: 15125918

73. Kavanagh JJ, Menz HB. Accelerometry: A technique for quantifying movement patterns during walk-

ing. Gait Posture 2008; 28:1–15. doi: 10.1016/j.gaitpost.2007.10.010 PMID: 18178436

74. Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic changes and

knee pain in osteoarthritis of the knee. J Rheumatol 2000; 27:1513–7. PMID: 10852280

75. Dieppe PA. Relationship between symptoms and structural change in osteoarthritis. what are the

important targets for osteoarthritis therapy? J Rheumatol 2004:50–3.

76. Lafortune MA. Three-dimensional acceleration of the tibia during walking and running. J Biomech

1991; 24:877–86. PMID: 1744146

77. Liikavainio T, Isolehto J, Helminen HJ, Perttunen J, Lepola V, Kiviranta I, et al. Loading and gait sym-

metry during level and stair walking in asymptomatic subjects with knee osteoarthritis: importance of

quadriceps femoris in reducing impact force during heel strike? Knee 2007; 14:231–8. doi: 10.1016/j.

knee.2007.03.001 PMID: 17451958

An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis

PLOS ONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 15 / 15

C
Template-based step detection from

accelerometer signals

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Template-based step detection from accelerometer
signals

Laurent Oudre, Rémi Barrois-Müller, Thomas Moreau, Charles Truong, Stéphane Buffat, Pierre-Paul Vidal

Abstract—This article presents a method for step detection
from accelerometer signals based on template matching. The
principle of our step detection algorithm is to recognize the start
and end times of the steps in the signal thanks to a predefined
set of templates (library of steps). The algorithm is tested on
a database of 1020 recordings, composed of healthy patients
and patients with various neurological or orthopaedic troubles.
Simulations on more than 40000 steps show that even with a
library of only 5 templates, our method achieves remarkable
results with a 98% recall and a 98% precision. The method is
robust to parameter changes, adapts well to pathological subjects
and can be used in a medical context for robust step estimation
and gait characterization.

Index Terms—gait analysis, biomedical signal processing, pat-
tern recognition, step detection, physiological signals

I. INTRODUCTION

PATHOLOGIES affecting posture, balance, and gait con-
trol are threatening the autonomy of patients not to

mention the risk of fall and therefore require rehabilitation
intervention as early as possible. However, it remains diffi-
cult to accurately evaluate the various specific interventions
during the rehabilitation process and the optimal content of
exercise interventions they should involve. If only for these
reasons, it would be interesting to learn how to monitor motor
sensorimotor behavior at large and locomotion in particular
which is a growing area in medical engineering science [1],
[2], [3], [4], [5], [6], [7]. It requires several steps: first, we
wish to investigate how to monitor sensorimotor processing
in behaving patients in the doctor office and the resulting
cognitive load it implies. Second, we want to learn how to
construct databases with the quantitative variables recorded in
that process, in order to make longitudinal studies of behaving
individuals. Third, we would like to merge these individual
databases in large data banks to define statistical norms, which
is mandatory to detect dysfunctions or pathologies at the
earliest stage possible. In that process we meet at least three
main problems: using pervasive or ubiquitous computing to
collect data; facing large inter-individual variability in the
studied HMCs; aggregating highly heterogeneous data to build
the databank.

There exist many software applications on the market that
use wearable sensors (namely accelerometers, gyroscopes,

L. Oudre is with L2TI, Université Paris 13, France and with COGNAC-G
(UMR 8257), CNRS University Paris Descartes, France.

R. Barrois-Müller, Stéphane Buffat and P.P. Vidal are with COGNAC-G
(UMR 8257), CNRS Université Paris Descartes, France.

T. Moreau and C. Truong are with CMLA (UMR 8536), CNRS ENS
Cachan, France and with COGNAC-G (UMR 8257), CNRS Université Paris
Descartes, France.

Manuscript received April 19, 2005; revised September 17, 2014.

magnetometers and/or GPS) to calculate the number of steps
made in a day [8], [9], the traveled distance in a day [10],
[11], the average speed, the daily amount of time spent in
walking, running, sitting, standing, laying [12], [13], useful for
rehabilitation. Most of the algorithms published in this context
are either dedicated to one specific terminal or mobile phone,
or they are copyrighted and not freely available for research.

The main idea behind the algorithm presented in this paper
is to automatically detect the steps from inertial sensor signals
thanks to a library of templates extracted from real signals. It
provides a novel, robust and precise step detection method
which allows the user not only to count the steps, but also to
locate when they occurred, how long they lasted, etc. These
features can be useful either for personal or medical use. In
particular, the algorithm has been tested on a large database
containing 1020 walk exercises performed by healthy and
pathological subjects at unconstrained speeds, which confirms
the robustness of the presented method.

This article is organized as follows: Section II defines the
task of step detection and gives an overview of state-of-the-
art methods. Section III describes the data used for training
and testing, the method, and the evaluation metrics. Section
IV presents the results of our method, the influence of the
parameters and compares the algorithm to state-of-the art
methods. Section V provides a discussion on the robustness
of the method and several insights for the possible use of this
algorithm in a clinical context.

II. BACKGROUND

A. What is a step ?

Locomotion is a hierarchical and complex phenomenon
composed of different entities such as strides, steps, and phases
[14], [1].

• Considering one foot, the stride is the succession of two
phases: the swing phase (when the foot is in the air),
and the stance phase (when the foot is in contact with
the ground). The stance phase occurs between the heel-
strike (moment when the foot hits the ground) and the
toe-off (moment when the toes go off the ground), while
the swing phase occurs between the toe-off and the next
heel-strike.

• A stride is defined as the event that occurs between two
heel-strikes of the same foot.

• A step is defined as the event that occurs between suc-
cessive heel strikes of opposite feet. A stride is therefore
composed of two steps: one for the right foot, one for the
left foot.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

In the formal medical definition, a step is supposed to start
when the heel strikes the ground and to finish somewhere
in the end of the stance phase. It is not related to the foot
activity since the foot is also moving in the swing phase. We
choose in this article another definition: a step is defined in
the following as the whole period of activity of a foot (when
the foot is moving). The beginning of the step is defined as
the heel-off (moment when the heel leaves the floor) and end
of the step is defined as the foot-flat (moment when the foot is
stabilized on the floor).This new definition allows to consider
the whole period of activity of a foot as a step, which makes
it more adapted to step detection. Note that it does not change
the number of steps and that it is easy to switch back to the
medical definition once the heel-off and foot-flat instants have
been detected.

B. Existing methods

Current algorithms can be classified in two categories:
• Step counting algorithms: the aim is only to know the

number of steps performed by the subject
• Step detection algorithms: the aim is to locate when the

step occurred, and eventually to give specific timings
(heel-strike, toe-off, etc.). These algorithms can also be
used for step counting.

Among step detection algorithms, two main approaches
have been proposed: the use of filtering/thresholding/peak
detection techniques and the use of template matching. The
former aims to recognize one specific event, supposedly
characteristic of the step (such as a local maximum or the
time when the signal exceeds a threshold). Most of the time,
these algorithms include a preprocessing step where the signal
is filtered so as to emphasize the event that they seek to
detect or to remove other events. The most well-known pre-
processing stage was designed by Pan-Tompkins [15] and
is composed of several signal processing blocks (bandpass
filtering, derivation, squaring, etc.). Designed at first for ECG
signals, this pre-precessing has been used in various step
detection methods [16], [17], [2], [18]. After this possible
processing stage, the steps are detected with empirical or
dynamic thresholds, peak detection methods, of a combination
of both [19], [4], [20]. Other methods seek to detect each phase
of the walking process by using dedicated signal processing
techniques (such as peak detection, zero-crossing, etc.) [3], [5].
Unfortunately, these methods heavily rely on the calibration
of several parameters (width of the bandpass filter, window
length, thresholds, etc.) [16], [17], [2], [18] which are difficult
to estimate and thus set according to empirical experience.
Moreover, these methods often assume some prior knowledge
on the shape of a step [3], [5], which significantly limits
the detection of unconventional patterns found with mobility-
impaired patients.

For these reasons, we have decided in this article to focus on
the second type of step detection methods, based on template
matching. The main intuition behind this is that there are
several types of steps (according to interpersonal variability,
age, speed and pathology). Therefore, it is irrelevant to try to
detect steps with one specific model (which is basically what

is done with other methods since they only consider one set
of parameters, thresholds, detection criteria, etc.). In order to
overcome this issue, it is necessary to use a library of models
(in our case a library of patterns) which represent typical
step cycles. Hopefully, the use of this library can improve
the robustness of the detection and paradoxically, prevent
the overfitting induced by the choice of many parameters.
Note that while commonly used in several other fields, this
approach is novel in the context of step detection. We are
aware of only one article mentioning the use of templates for
step detection [16] is using one single template automatically
extracted with filtering/thresholding/peak detection methods
(thus relying on many parameters) and not from raw data.
Also, in their paper, a different template is extracted for each
subject, and only used for this particular subject. The novelty
of the algorithm presented in this paper is that it uses a limited
set of parameters whose influence is carefully studied and
analysed. Also, our method is tested on a large database, with
healthy and pathological subjects, at various speeds and in a
rigorous cross-validation context.

III. DATA, METHOD AND EVALUATION

A. Data acquisition and first observations

The data used for the conception and testing of the method
presented in the article has been provided by the following
medical departments: Service de chirurgie orthopédique et de
traumatologie de l’Hôpital Européen Georges Pompidou, As-
sistance Publique des Hôpitaux de Paris, Service de médecine
physique et de réadaptation de l’Hôpital Fernand Widal, As-
sistance Publique des Hôpitaux de Paris, Service de neurologie
de l’Hôpital dInstruction des Armées du Val de Grâce, Service
de Santé des Armées. The study was validated by a local ethic
comity (Comité de Protection des Personnes Ile de France II,
CPP 2014-10-04 RNI) and both patients and control subjects
gave their written consent to participate. All signals have
been acquired at 100 Hz with wireless XSens MTwTM sensors
located at the right and left foot and fixed using a velcro band
designed by XSensTM. The signals obtained with both sensors
were automatically synchronized by the acquisition software.
All subjects were asked to:

• stand quiet for 6 seconds
• walk 10 meters at preferred walking speed on a level

surface
• make a U turn
• walk back
• stand quiet 2 seconds

For practical reasons, patients kept their own shoes. The
database is composed of 230 subjects who performed the pro-
tocol between 1 and 10 times, which leads to 1020 recordings.
The subject’s characteristics are presented in Table I. Healthy
subjects had no known medical impairment. The orthopedic
group is composed of 2 cohorts of distinct pathologies: lower
limb osteoarthrosis and cruciate ligament injury. The neuro-
logic group is composed of 4 cohorts: hemispheric stroke,
Parkinsons disease, toxic peripheral neuropathy and radiation
induced leukoencephalopathy.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

Group Number of
exercises

Number of
subjects

Sex (M/F) Age (yr) Height (cm) Weight (kg)

Healthy subjects 242 52 35/17 36.4 (20.6) 173.4 (10.8) 70.7 (12.2)
Orthopedic diseases 243 53 26/27 60.1 (19.3) 169.2 (10.2) 77.4 (16.8)
Neurologic diseases 535 125 80/45 61.6 (13.2) 169.8 (8.7) 72.7 (15.5)

Total 1020 230 141/89 55.5 (19.6) 170.5 (9.7) 73.4 (15.3)

TABLE I: Subjects’ characteristics. For the age, height and weight, the mean and the standard deviations are displayed.

z

x

y

v

(a) Definition of the axis for the
XSensTM sensor located at the left

foot

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

−10

0

10

20

30

40
Vertical Acceleration (m.s−2)

Z-Axis Acceleration (m.s−2)

Y-Axis Angular Velocity (rad.s−1)

(b) Healthy patient

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (s)

−10

0

10

20

30

40
Vertical Acceleration (m.s−2)

Z-Axis Acceleration (m.s−2)

Y-Axis Angular Velocity (rad.s−1)

(c) Hip affected patient

Fig. 1: (a) XSensTM sensor - (b,c) Vertical acceleration, Z-axis acceleration and the Y-axis angular velocity recorded from the
right foot. The vertical lines displays the different possibilities for start/end times.

The protocol includes 2 sensors (left and right foot), and
each of them records a 9-dimensional signal (3D accelerations,
3D angular velocities, 3D magnetic fields), possibly with some
recalibrated data provided by the XSensTM software (such as
the vertical acceleration in the direction of the gravity). Instead
of considering all these dimensions, we decided to only use a
subset of them, and select the most relevant in the context
of step detection. This decision has been made based on
observations of real data and physiological reasons provided
by doctors. We decided to only select the components that
are the most reflective of the locomotion process (see Figure
1a for the definition of the axis): the Z-axis acceleration, the
recalibrated vertical acceleration (vertical movements of the
foot) and the Y-axis angular velocity (swing in the direction
of the walk). We expect these components to strongly react to
the steps, making them identifiable.

Examples of these 3 components (Z-axis acceleration, ver-
tical acceleration and Y-axis angular velocity) recorded at the
right foot are presented on Figures 1b and 1c for respectively
an healthy and hip-injured patient. It appears on these figures
that the amplitudes of the signals are clearly different and it
is likely that classical threshold-based methods would hardly
perform well on both subjects. However, the structure and
shape of the step is roughly the same for both subjects so it
might be relevant to use a template-base method. Nevertheless,
these examples also display the main difficulties in conceiving
an automatic algorithm for step detection:

• The uncertainties in the definition of the starts and ends
of the steps. Indeed, we can see on Figure 1b, that
many choices would be acceptable: depending on the
considered definition, the results may be different.

• The variability of the step patterns according to the
pathology, the age, the weight, etc. For example, on

Figure 1c, the subject is dragging his feet, causing an
abrupt change in the step pattern (noisy part at the end
of the step).

B. Description of the method

The principle of our step detection algorithm is to recognize
the steps in the signals thanks to a predefined set of templates.
More precisely, our method uses a set of templates P : these
templates have been manually extracted from real accelerome-
ter data and checked by doctors and specialists of locomotion.
Each template p ∈ P is a three-dimensional signal of length |p|
(vertical acceleration, Z-axis acceleration and Y-axis angular
velocity) corresponding to one step.

These templates are to be compared to the signal we
want to study by calculating some correlation coefficients.
As the sequences we want to detect are variable in duration
as well as in amplitude, we want to use a measure of fit
that is independent of the scale but is able to identify the
correspondences in shape. Also, we want the comparison to
be independent of the orientation of the sensor, so any DC
component should be removed. In this context, it seems natural
to use the Pearson correlation coefficient, which satisfies all
these conditions, and defined for two one-dimensional vectors
y and z of length n as

ρy,z =
cov(y, z)

σyσz
=

E[(y − µy)(z − µz)]

σyσz
(1)

where (µy, µz), (σy , σz) are respectively the mean and stan-
dard deviation of y and z.

Let x be a three-dimensional signal: we want to detect the
steps by using the set of templates P . Let us introduce the
following notations:

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

• |P| is the number of three-dimensional templates
• |x| (resp. |p|) is the length of the three-dimensional vector
x (resp. p)

• x(k) (resp. p(k)) is the kth component of x (resp. p). In
our case we have k ∈ {1, 2, 3}

• x(k)[t1 : t1] is the portion of x(k) between time samples
t1 and t2 (we therefore have x(k)[1 : |x|] = x(k))

The first step of the algorithm consists in calculating the
Pearson correlation coefficients between the templates and the
signal, for all possible time positions and all three components:

∀k ∈ {1, 2, 3} , ∀p ∈ P , ∀t ∈ J1, |x| − |p|+ 1K
r(k, p, t) = ρ

(
p(k), x(k)[t : t+ |p| − 1]

) (2)

r(k, p, t) is the correlation between the kth component of
template p and the kth component of the signal at time sample
t.

The second step is a local maxima search among the
r(k, p, t) coefficients in order to extract the possible steps.
r(k, p, t) is selected as a local maximum if it is greater than
its nearest temporal neighbors. We define the set L of possible
steps as:

L = {(k, p, t) s.t. r(k, p, t) > r(k, p, t− 1)

and r(k, p, t) > r(k, p, t+ 1)} (3)

The L contains all acceptable positions for the steps, and the
coefficients r(k, p, t) with (k, p, t) ∈ L can be interpreted as
the likelihood of having a step similar to the pattern p at time
sample t.

Our step detection algorithm takes as input the set L and
works as a greedy process. At each iteration, the largest value
r(k∗, p∗, t∗) with (k∗, p∗, t∗) ∈ L is selected: if the step
p∗ positioned at time sample t∗ overlaps with a previously
detected step, it is discarded and we switch to the next largest
value. Otherwise, if step p∗ can be positioned at time t∗,
the step is detected and all time samples between t∗ and
t∗+ |p∗|− 1 are forbidden for the next iterations. The process
is stopped when all time samples are forbidden, when the set
of possible steps L is empty, or when all values r(k, p, t) with
(k, p, t) ∈ L are lower than a threshold λ. Note that in practice,
the main purpose of threshold λ is to speed up the algorithm,
as it reduces the size of set L. The algorithm is summarized
on Algorithm 1.

A last post-processing step can be performed so as to discard
the steps detected when the patient was actually not moving.
These false detections occur when a fit is found with one
template, even though the signal is almost equal to zero after
DC component removal: this is in fact due to the invariance
in scale provided by the Pearson correlation coefficients. A
solution can be found by processing the final list of detected
steps, and removing the steps whose standard deviation is
way lower than the one of the template that was used for the
detection. Formally, this step involves a threshold µ: given a
detected step with start and end times tstart and tend, detected
thanks to the pattern p(k), the step is to be discarded if

σx(k)[tstart:tend] < µ σp(k) (4)

where σ. stands for the empirical standard deviation operator.

Algorithm 1: Step detection algorithm
Input: Set of possible steps L
Output: Set of start times Tstart, set of end times Tend

Set of forbidden time positions F = ∅;
Tstart = ∅, Tend = ∅;

while F 6= {1, . . . , |x|} or L 6= ∅ or maxL > λ do
(k∗, p∗, t∗) = argmax

(k,p,t)∈L
r(k, p, t);

if {t∗, . . . , t∗ + |p∗| − 1} /∈ F then
t∗ → Tstart;
t∗ + |p∗| − 1 → Tend;
{t∗, . . . , t∗ + |p∗| − 1} → F ;

end
L = L\(k∗, p∗, t∗);

end

C. Evaluation

All steps were manually annotated by specialists using a
software allowing to point with the mouse the starts (foot-flat)
and the ends (heel-off) of the foot flat periods during which
the sensor is not moving. The annotations were performed
thanks to the Z-axis acceleration (normal to the upper foot
surface) which is the most sensitive direction to detect the
movements of the foot with respect to the floor. For the tricky
cases of pathological gaits, a first gross annotation was made
and then refined by zooming on each step. The uncertainty of
this annotation is evaluated to less than 0.2 s (20 samples) for
each mouse click. In total, the database is composed of 40453
steps (20233 extracted on the right foot and 20220 on the left
foot). Even though they had a distinct shape, the U-turn steps
were also taken into account.

The following precision/recall metrics are used for the
evaluation of our method based on the annotations provided
by the specialists.

Precision. A detected step is counted as correct if the
mean of its start and end times lies inside an annotated step.
An annotated step can only be detected one time. If several
detected steps correspond to the same annotated step, all but
one are considered as false. The precision is the number of
correctly detected steps divided by the total number of detected
steps.

Recall. An annotated step is counted as detected if the
mean of its start and end times lies inside a detected step.
A detected step can only be used to detect one annotated step.
If several annotated steps are detected with the same detected
step, all but one are considered undetected. The recall is the
number of detected annotated step divided by the total number
of annotated steps.

IV. RESULTS

A. Influence of the parameters

The algorithm depends on 3 numerical parameters:
• The size of the pattern library |P|

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

5 10 15 20 25
80

85

90

95

100

P
re

ci
si

on

5 10 15 20 25
|P|

80

85

90

95

100

R
ec

al
l

(a) Influence of |P| on the precision and
recall (in %)

0.6 0.65 0.7 0.75 0.8 0.85 0.9
80

85

90

95

100

P
re

ci
si

on

0.6 0.65 0.7 0.75 0.8 0.85 0.9
λ

80

85

90

95

100

R
ec

al
l

(b) Influence of λ on the precision and
recall (in %)

0.05 0.1 0.15 0.2 0.25 0.3
80

85

90

95

100

P
re

ci
si

on

0.05 0.1 0.15 0.2 0.25 0.3
µ

80

85

90

95

100

R
ec

al
l

(c) Influence of µ on the precision and
recall (in %)

Fig. 2: Influence of the parameters (on 100 simulations). By default, |P| = 10, λ = 0.8 and µ = 0.15. Boxes correspond to
quartiles and median, whiskers to 5 and 95 percentiles. Outliers are represented as +

• The stopping criterion λ
• The threshold for discarding periods of no activity µ

Note that the algorithm is also influenced by the choice of the
templates composing the library P : this will be studied in the
next section.

In order to study the scope of influence of these 3 parame-
ters, a cross validation process is used:

• |P| three-dimensional step patterns are randomly chosen,
so as to form the pattern library P

• In order to avoid overfitting, all exercises performed by
subjects that are used in the pattern library are then
discarded from the test database.

• For each exercise of the test database, the step detection is
performed with the |P| templates, and the detected steps
are compared to the annotations

For each simulation, the mean and standard deviation of the
precision/recall scores on the test database are calculated, as
described in section III-C. This process is performed 100
times.

The parameters are studied with the following grid search:
• |P| : [5, 10, 15, 20, 25]
• λ : [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]
• µ : [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]

In total, 210 different configurations are considered.
The configuration giving the best average results on 100

simulations is using |P| = 10 templates, λ = 0.8 and µ =
0.15, with an average recall of 96.59% (std: 4.91) and an
average precision of 97.03% (std: 3.69). Note that these values
correspond to the average on 100 simulations with randomly
chosen templates: they do not reflect the optimal performances
of the algorithm.

We propose to use this configuration as a reference and
study the influence of the parameters from this grid node.
Figure 2 presents the influence of the parameters on the

precision and recall: on each figure, two of the parameters are
fixed while the last one varies. The plots displays as boxplots
the results obtained on the 100 simulations corresponding to
the considered configuration.

On Figure 2a, it is visible that adding more templates to
the library tends to increase the recall, but it has a negative
effect on the precision. This is probably due to the cross-
validation process used for testing. Since the templates are
randomly chosen, it is unknown if they belong to healthy
or pathological subjects, to forward walking or U-turn, etc.
Therefore, when |P| increases, it also increases the probability
that a pathological step is used for detection. This is one of
the predictable effect of this experiment: if a step within the
library is unadapted for the task, it causes false detection and
thus lowers the performances. However, this does not mean
that adding appropriate steps in the library would degrade the
performances: this problem will be investigated in the next
section (as well as the questionable notion of appropriate
steps). When |P| = 5, the limits of the algorithm are reached:
due to the small number of templates, the method crucially
depends on the choice of the templates used for detection,
thus causing a large number of outliers. The best compromise
between precision and recall is obtained for |P| = 10, but this
might only be due to the cross-validation setting: rather than
an optimal number of templates to be used, it is likely that the
composition of the library is more crucial to the performances
of the algorithm.

The plot on Figure 2b is coherent with the definition of
the parameter: when λ increases, only steps that are very
correlated to the templates are selected: this increases the
precision, but decreases the recall. On the contrary, when λ
decreases, all possible steps are considered: the recall increases
and the precision decreases. These results also confirm the
utility of parameter λ: by increasing λ to an appropriate

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

value (around 0.6-0.8), it is possible to increase the precision
(and the robustness of the precision) while keeping the recall
constant. Also, λ has an impact on the computational cost: for
example, using λ = 0.8 instead of λ = 0 allows to compute the
results approximately 2 times faster. It is therefore interesting
to use the largest value of λ as possible. The best average
performances are obtained for λ = 0.8, which constitutes a
good compromise between recall and precision: indeed, with
λ = 0.85 some annotated steps are discarded and the recall
drops.

Figure 2c shows that parameter µ mainly influences the
recall. Indeed, when µ is too large, all steps whose amplitude
are too different from those of the templates are discarded.
This has a double effect: if one of the templates corresponds
to a pathological patient whose steps have small amplitude,
then it will not be able to detect steps on healthy patients. The
opposite situation can also occur. In fact, when µ increases,
the normalization effect provided by the Pearson correlation
coefficient (1) is neutralized. Figure 2c shows that µ should
be no greater than 0.2 so that the recall does not drop.

B. Influence of the composition of the library

The performances of the algorithm are intuitively dependent
of the library of templates used for detection. As previously
seen, when inappropriate steps are added to the library, the
performances may drop. What would happen if the library
of templates is composed only of healthy steps, but is to
be used on patients with degraded walking abilities ? In
order to correctly detect steps for a patient having e.g. an
orthopedics disease, is it necessary to have patients with
similar pathologies in the library of templates ?

To investigate this question, we propose to define two
classes of subjects within the database: class A is typically
composed of subjects who have no problem for walking, and
class B is composed of subjects with severe pathologies that
critically affect their locomotion. The idea is to study the
cross-performances of the method on these two classes. The
definition of these classes are non-trivial since the database
contains gait recordings of patients cared for lower limb
osteoarthritis, anterior cruciate ligament injury, hemispheric
stroke, Parkinsons disease and neuropathy. In each nosologic
class, patients were quoted by the medical doctors of our group
with clinical scales specific to each pathology (WOMAC index
: lower limb osteoarthritis ; Tegner Lysholm Knee Scoring
Scale : anterior cruciate ligament injury ; Lower Limb Fugel
Meyer scale : stroke ; UPDRS III : Parkinsons Disease ; TNSc
: neuropathy). To allow the between pathology comparison, a
transversal walking score (between 0 and 4) was assigned to
each patient by the medical doctors of our group. Subjects
with no problem for walking were graded 0, while other were
graded from 1 to 4 (4 being the most severe degradation of
locomotion). To have an idea, lower limb osteoarthritis patients
with high functional manifestation walking troubles (use of
cane, unable to climb stairs) were graded 4. Class A is defined
as subjects with a locomotion grade of 0 (no problem) and
Class B as subjects with locomotion grade of 3 or 4. In total
116 subjects are isolated from the database: 72 subjects in

Class A (322 exercises, 4877 left steps, 4846 right steps), and
35 subjects in Class B (111 exercises, 3554 left steps, 3567
right steps).

In each simulation, the library is composed of templates
belonging to only one class, and the test is performed on
exercises belonging to only one class. All simulations are run
with the default parameters |P| = 10, λ = 0.8 and µ = 0.15
(that gave the best average performances on 100 simulations in
the grid search). Table II presents the results (recall/precision)
averaged on 100 simulations. A first observation is that Class
A and Class B templates give similar (and good) performances
on Class A subjects. This confirms the intuitive idea that it is
easier to detect steps for healthy subjects. However, Class B
templates used on Class B subjects do not perform so well:
it might be due to the definition of the class which involves
several types of pathologies. In fact, these severe pathologies
might affect the steps shapes in a different way, so even though
some pathological templates are used for detection, they might
not correspond to the particular pathology of the test subject.
To increase the scores, two strategies can be implemented:
either introduce all types of degradations within the library,
or add several healthy (or less pathological) steps which
could smooth the results by introducing less specific examples.
Interestingly, the results obtained on Class B subjects with
random templates and with the exact same parameters (see
Section IV-A) are better than those obtained by using only
Class B templates. This tends to show that in order to detect
steps on severe pathological subjects, it is necessary to use
a library composed of both healthy (or slightly pathological)
and pathological steps.

As far as cross-class detection is concerned, it seems that
using only Class A templates for detecting Class B steps is not
appropriate : the recall drops while the precision decreases.
It is likely that these results are due to the amplitudes of
the steps that greatly vary between healthy and pathological
subjects. Due to parameter µ, steps with low amplitude are
hardly detectable with high amplitude templates (and vice-
versa). Also, the durations of the steps might be inappropriate
for detection, since pathological steps are in general longer
than healthy steps.

To summarize, two trends can be identified: as far as
healthy subjects are concerned, the choice of templates is not
crucial for the detection. But if the algorithm is to be used
on pathological subjects, it appears that the best compromise
would be to use a combination of healthy and pathological
templates.

C. Detailed results for the best simulation
The best simulation on the whole grid search (21000

simulations) described in Section IV-A is using parameters
|P| = 5, λ = 0.75 and µ = 0.1, with 98.40% recall and
98.44% precision. In this section, we propose a detailed study
of this method. Note that this particular method should only
be seen as a good association (templates + λ + µ) performing
well, and does not constitute a golden standard (similar scores
are obtained on several other simulations).

The detailed performances of this method on the whole
database is presented on Table III: it is noticeable that scores

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

Start End Duration
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

D
if
fe

re
n
c
e
s
 (

in
 s

e
c
o
n
d
s
)

(a) Best step detection method
(|P| = 5, λ = 0.75 and µ = 0.1)

Start End Duration
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

D
if
fe

re
n
c
e
s
 (

in
 s

e
c
o
n
d
s
)

(b) Best step detection method with one template
(|P| = 1, λ = 0.6 and µ = 0.15)

Fig. 3: Differences between detected and annotated times (start, end and duration) for the best step detection method and the
best step detection method with one template. Boxes correspond to quartiles and median, whiskers to 5 and 95 percentiles.
Outliers are represented as +.

Test data
Class A Class B

Template data
Class A R : 97.64 (1.17) R : 89.74 (3.82)

P : 97.45 (4.46) P : 95.75 (5.09)

Class B R : 97.80 (1.32) R : 93.25 (4.17)
P : 97.28 (2.17) P : 93.13 (5.76)

TABLE II: Influence of the composition of the library of
templates in the step detection (|P| = 10, λ = 0.8 and
µ = 0.15). Average recall and precision on 100 simulations
(with standard deviation). Class A: subjects who have no
problem for walking. Class B: subjects with severe pathologies
that critically affect their locomotion.

are consistent on all groups of subjects. The best performances
are obtained for healthy subjects, but there is no significant
differences between the groups. This clearly shows that the
method adapts well to different types of pathologies.

Out of the 40344 detected steps, 85% of them were detected
with the Y-axis angular velocity, 2% with the vertical accelera-
tion and 13% with Z-axis acceleration. This proportion can be
due to the nature of the signals: medio-lateral angular velocity
is actually known to be the direction in which there is the
greatest quantity of movement during walking. This signal is
often used in step detection [21], [22], and it is likely that
this component captures a locomotion pattern that is the most
reproducible among the subjects.

The good performances of this method are intuitively linked
to the templates composing the library. It is remarkable that
this method only requires a small number of templates, which
tends to show that the algorithm do not need a large library
to perform accurately. It probably rather needs a carefully
selected set of templates, that are generic enough to fit the
general shape of a step, but can also adapt to pathological
steps. For instance, this library of 5 templates is composed as
follows: 1 step belonging to an healthy subject, 3 steps cor-
responding to neurological diseases (2 with moderate troubles
and 1 with severe troubles), and 1 step associated to orthopedic
diseases (with moderate troubles). This covers all groups of
subjects and the proportion of each group in the library is
similar to the one of database. In particular, the neurological
group is composed of many different diseases and it is likely

that several patterns are necessary to accurately fit the whole
range of step shapes.

In order to further investigate the accuracy of the method,
some additional evaluation metrics are computed. For all
correctly detected steps, we compute:

• the difference between the detected start time and the
annotated start time

• the difference between the detected end time and the
annotated end time

• the difference between the duration of the detected step
and the duration of the annotated step

The repartition of these metrics on all 39677 correctly detected
steps are presented on Figure 3a. One interesting result is
that our method does not introduce a bias: the median of the
differences for all times (start, end, duration) is approximately
equal to zero, and the quartiles are symmetric. This tend to
prove that the library is able to accurately detect the step
boundaries and to adapt to various step durations. For 90%
of the steps (represented as whiskers on the figure), the errors
for start, end and duration times are lower than 0.25 seconds
(in absolute value), which corresponds to 25 samples. These
results are satisfactory when compared to the annotations
uncertainties of experts and specialists (which are around 20
samples - see Section III-C). Outliers are in fact due to two
specificities of the database: tiny steps (under 50 samples)
mainly located during U-turn (causing underestimation for
start times and overestimation of end and duration times), and
highly pathological steps for stroke subjects whose duration
exceeds one second (causing upper outliers for start times and
lower outliers on end and duration times). The method tested
here is using five templates of durations 65, 76, 82, 86 and
105 samples and the detection is inevitably constrained by
these step durations. While this phenomenon does not penalize
the results on most steps, it is one limit of the algorithm
especially with small libraries. Should these outliers become
more frequent, one possible solution is to increase the number
of templates and to add typical steps corresponding to these
outliers within the library.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

Best simulation Pan-Tomkins One template
Group Recall Precision Recall Precision Recall Precision

Healthy subjects 98.93 (2.22) 98.98 (2.43) 99.14 (1.71) 97.09 (3.60) 99.03 (2.06) 99.33 (1.76)
Orthopedic diseases 97.54 (2.92) 98.77 (2.12) 98.78 (2.09) 94.87 (5.09) 97.37 (3.06) 98.85 (2.23)

Neurological diseases 98.55 (3.05) 98.05 (3.02) 96.80 (3.52) 95.49 (4.55) 98.11 (3.31) 98.58 (2.55)
Total 98.40 (2.89) 98.44 (2.72) 97.82 (3.07) 95.72 (4.56) 98.15 (3.05) 98.82 (2.33)

TABLE III: Detailed performances of the best step detection method (|P| = 5, λ = 0.75 and µ = 0.1), the best Pan-Tomkins
method, and the best step detection method with one template (|P| = 1, λ = 0.6 and µ = 0.15). Means and standard deviations
are displayed.

D. Comparison with the state-of-the-art
The reference procedure for step counting/detection is based

on the Pan-Tomkins method [15]. First intended for ECGs, it
was later adapted to detect steps in the vertical accelerometer
signal [16], [17], [2], [18]. It is composed of several successive
signal processing steps, which are designed to emphasize the
structure of the step, making it easier to detect. These steps
can be summarized as:

• Bandpass filtering (between fmin andfmax): removes the
gravity component and the noise.

• Derivation: amplifies the slope changes in the filtered
signal. Whenever the foot rises from the ground or
the heel hits the ground, the acceleration slope changes
significantly and it translates into a burst in the filtered
signal.

• Squaring: makes all points positive and enhances the large
values of the filtered signal.

• Integration: the signal is smoothed using a moving-
window integrator of length Ninte.

• Peak search procedure: originally, [15] used a threshold
to find the phenomena they were looking for in the heart
rate signal (every time the filtered signal was above the
threshold, it was considered as detected). When they
adapted the algorithm to the step detection problem, [16]
relied on the fact that the filtered signal showed great
regularity: a small peak was always followed by a bigger
one (respectively matching the foot lift and the heel
strike). The time span of the second peak was defined as
the peak-searching interval on the real acceleration signal.
The maximum on that interval was considered a step.

Note that this step detection procedure only allows to detect
steps but not to precisely know the start and end times of the
step. Also, this method is not designed to perform properly
during periods of no activity. We therefore added a post-
processing step, which, once a step is detected, compares the
standard deviation of a neighborhood around the detected peak
to a noise level. The size of the neighborhood, as well as the
noise level, are optimized by grid search so as to give the best
performances.

In [16], the parameters used are fmin = 0 Hz, fmax = 20
Hz, Ninte = 0.1 s. The peak search procedure is performed
sequentially: they select one peak every other peak, starting
with the second one. With these parameters, we obtain of our
database a recall of 99.53% and a precision of 51.20%. In
fact, the peak-search procedure is not adapted and tend to
detect several peaks within a step except of only one. This
phenomenon has already been described by [17], [18].

In order to objectively compare our method to the Pan-
Tomkins, we therefore tested several values for fmin, fmax

and Ninte, as well as a more relevant peak-search procedure,
which only selects the local maxima among the detected peaks,
thus preventing multiple detections. In total, 5 parameters need
to be optimized by grid search (filter bandpass × 2, integration
window, neighborhood size and noise level). When optimized
on the whole database so as to maximize the F-measure,
the algorithm gives a 97.82% recall and a 95.72% precision.
Detailed results are presented on Table III : while these scores
are comparable with our method on healthy subjects, it is
noticeable that Pan-Tomkins method has difficulty to deal
with neurological and orthopedics subjects. In particular, on
these subjects, an overdetection occurs, thus decreasing the
precision. One possible explanation is that signals associated
to pathological subjects tend to have smaller amplitudes and
to be noisier that those belonging to healthy subjects. Thus, if
the parameters of the filtering are inadapted, the preprocessing
tends to increase the level of noise and to create artefacts
that as misdetected as steps. This may be one limit of step
detection methods based on signal processing: if the signals to
be studied have different properties (noise, frequential content,
amplitudes), it is tricky to find one unique processing adapted
to all signals. This problem is overcome in template-based
methods which inherently consider several models.

V. DISCUSSION AND PERSPECTIVES

The main idea behind the algorithm is that there is not one
typical step but rather several typical steps. This assumption
is confirmed by the results obtained with state-of-the-art
methods, which inherently define only one model and obtain
degraded performances when confronted to pathological data.
To go further, it is interesting to degrade the algorithm with
only one template and look at the consequences on the results.
A second grid search is conducted with the same parameters
as in Section IV-A, but considering libraries composed of one
unique template.

The best results are displayed on Table III. The metrics used
in IV-C are also evaluated for this simulation and presented on
Figure 3b. Surprisingly, the precision and recall are compara-
ble with those obtained with five templates. The template used
for detection in this method belongs to an orthopaedic subject
with moderate troubles and lasts 82 samples (which is close
to the median step duration on the database which is equal to
77 samples). It seems that the task of step counting can be
performed with only one template. However, it can be seen
on Figure 3b that using only one template creates a bias and a

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

systematic error on the estimation of end and duration times.
Due to the large duration of the template used for detection,
an overestimation of the duration often occurs.

We believe this simulation shows that the use of a single
template is adapted for step counting on most subjects. The
use of templates appears to give better performances than
thresholding methods for step detection. However, if additional
information are desired (such as the start and end times of the
steps), it is crucial to take into account the variability of the
subjects and of their locomotion, which can be done by adding
several templates that reflect the different step durations and
shapes.

Intuitively, the composition of the library is a fundamental
feature of the algorithm. The choice of the templates to be
used is an interesting question that can be answered in many
different ways. In a medical context, templates can for example
be introduced according to the characteristics and pathologies
of the subjects to be studied: a neurologist may benefit from
a library of templates composed of a selection of different
neurological pathologies. They can also be specified by experts
such as biomechanists who can extract typical steps covering
the whole range of types of locomotion. Unsupervised machine
learning techniques (such as dictionary learning) can also be
used to automatically extract typical steps that are found on
several exercises. It is also relevant to test semi-supervised
techniques that could automatically choose the best library
according to the input signal. All these leads are to be studied
soon in collaboration with medical doctors and experts, and
on more pathologies.

VI. CONCLUSION

We have described in this article a template-based method
for step detection. This method, based on a greedy algorithm
and a library of annotated step templates, achieves good and
robust performances even with a small number of templates.
When used on a large database composed of healthy and
pathological subjects walking at different speeds, the method
obtains a 98% recall and 98% precision. Moreover, the algo-
rithm allows to detect the start and end times of each step with
a very good precision even on pathological subjects.

Thanks to its robustness and low computational cost, this
method could be extended to process signals acquired in free-
living conditions. Indeed, the actual protocol is composed of
a no activity period and a U-turn, and there is no obstacles for
testing the algorithm on unconstrained walking. The algorithm
may also be adapted to a lighter protocol using only waist
accelerometer signals and based on the same principle.

Another topic of interest is the choice of the templates to
be used in the library (as presented in Section V). Several
selection processes could be implemented in order to auto-
matically adapt to any type of pathology and to optimize the
performances of the algorithm.

ACKNOWLEDGMENTS

The authors would like to thank N. Vayatis, D. Ricard,
A. Yelnik, C. De Waele and T. Grégory for the thorough
discussions, the design of the experiment, the data acquisition

and clinical annotation. This work was supported by SATT
Ile-de-France Innov.

REFERENCES

[1] B. Mariani, “Assessment of foot signature using wearable sensors for
clinical gait analysis and real-time activity recognition,” Ph.D. disserta-
tion, EPFL, 2012.

[2] M. Marschollek, M. Goevercin, K.-H. Wolf, B. Song, M. Gietzelt,
R. Haux, and E. Steinhagen-Thiessen, “A performance comparison of
accelerometry-based step detection algorithms on a large, non-laboratory
sample of healthy and mobility-impaired persons,” in Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBS), Vancouver, Canada, 2008, pp. 1319–1322.

[3] A. Willemsen, F. Bloemhof, and H. Boom, “Automatic stance-swing
phase detection from accelerometer data for peroneal nerve stimulation,”
IEEE Transactions on Biomedical Engineering, vol. 37, no. 12, pp.
1201–1208, 1990.

[4] B. Dijkstra, W. Zijlstra, E. Scherder, and Y. Kamsma, “Detection of
walking periods and number of steps in older adults and patients with
parkinson’s disease: accuracy of a pedometer and an accelerometry-
based method,” Age and ageing, vol. 37, no. 4, pp. 436–441, 2008.

[5] J. Han, H. S. Jeon, B. S. Jeon, and K. S. Park, “Gait detection from
three dimensional acceleration signals of ankles for the patients with
parkinsons disease,” in Proceedings of the International Special Topic
Conference on Information Technology in Biomedicine, 2006.

[6] F. Ayachi, H. Nguyen, E. Goubault, P. Boissy, and C. Duval, “The use
of empirical mode decomposition-based algorithm and inertial measure-
ment units to auto-detect daily living activities of healthy adults,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, no. 99,
2016.

[7] R. Williamson and B. Andrews, “Gait event detection for fes using
accelerometers and supervised machine learning,” IEEE Transactions
on Rehabilitation Engineering, vol. 8, no. 3, pp. 312–319, 2000.

[8] K. Tran, T. Le, and T. Dinh, “A high-accuracy step counting algorithm
for iphones using accelerometer,” in Proceedings of the IEEE Inter-
national Symposium on Signal Processing and Information Technology
(ISSPIT). IEEE, 2012, pp. 000 213–000 217.

[9] N. Naqvi, A. Kumar, A. Chauhan, and K. Sahni, “Step counting using
smartphone-based accelerometer,” International Journal on Computer
Science and Engineering (IJCSE), pp. 1–7, 2012.

[10] V. Renaudin, M. Susi, and G. Lachapelle, “Step length estimation using
handheld inertial sensors,” Sensors, vol. 12, no. 7, pp. 8507–8525, 2012.

[11] J. Kim, H. Jang, D.-H. Hwang, and C. Park, “A step, stride and heading
determination for the pedestrian navigation system,” Journal of Global
Positioning Systems, vol. 3, no. 1-2, pp. 273–289, 2004.

[12] M. Oner, J. Pulcifer-Stump, P. Seeling, and T. Kaya, “Towards the
run and walk activity classification through step detection-an android
application,” in Proceedings of the Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,
2012, pp. 1980–1983.

[13] A. Brajdic and R. Harle, “Walk detection and step counting on uncon-
strained smartphones,” in Proceedings of the ACM international joint
conference on Pervasive and ubiquitous computing. ACM, 2013, pp.
225–234.

[14] B. Auvinet, G. Berrut, C. Touzard, L. Moutel, N. Collet, D. Chaleil,
and E. Barrey, “Reference data for normal subjects obtained with an
accelerometric device,” Gait & posture, vol. 16, no. 2, pp. 124–134,
2002.

[15] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE
Transactions on Biomedical Engineering, vol. 32, no. 3, pp. 230–236,
1985.

[16] H. Ying, C. Silex, A. Schnitzer, S. Leonhardt, and M. Schiek, “Automatic
step detection in the accelerometer signal,” in Proceedings of the
International Workshop on Wearable and Implantable Body Sensor
Networks (BSN), Aachen, Germany, 2007, pp. 80–85.

[17] R. Libby, “A simple method for reliable footstep detection in embedded
sensor platforms,” Research report, 2012.

[18] G. Thüer and T. Verwimp, “Step detection algorithms for accelerome-
ters,” Master’s thesis, Artesis University College of Antwerp, Belgium,
2008.

[19] M. Mladenov and M. Mock, “A step counter service for java-enabled de-
vices using a built-in accelerometer,” in Proceedings of the International
Workshop on Context-Aware Middleware and Services (COMSWARE
2009). ACM, 2009, pp. 1–5.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

[20] E. Fortune, V. Lugade, M. Morrow, and K. Kaufman, “Step counts using
a tri-axial accelerometer during activity,” in Proceedings of the American
Society of Biomechanics Annual Meeting (ASB), Florida, USA, 2012.

[21] A. Salarian, H. Russmann, F. Vingerhoets, C. Dehollain, Y. Blanc,
P. Burkhard, and K. Aminian, “Gait assessment in parkinson’s disease:
toward an ambulatory system for long-term monitoring,” IEEE Transac-
tions on Biomedical Engineering, vol. 51, no. 8, pp. 1434–1443, 2004.

[22] K. Ben Mansour, N. Rezzoug, and P. Gorce, “Comparison between
several locations of gyroscope for gait events detection,” Computer
methods in biomechanics and biomedical engineering, pp. 1–2, 2015.

Bibliography

[1] Analysis of changepoint models.

[2] S. Adak. Time-dependent spectral analysis of nonstationary time series. Journal of

the American Statistical Association, 93(444):1488–1501, 1998.

[3] D. Angelosante and G. B. Giannakis. Group lassoing change-points piece-constant

AR processes. EURASIP Journal on Advances in Signal Processing, 70, 2012.

[4] S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection.

Statistical Surveys, 4:40–79, 2010.

[5] S. Arlot, A. Celisse, and Z. Harchaoui. Kernel change-point detection. arXiv preprint

arXiv:1202.3878, pages 1–26, 2012.

[6] J. Audi�ren, R. Barrois-Müller, C. Provost, É. Chiarovano, L. Oudre, T. Moreau,

C. Truong, A. Yelnik, N. Vayatis, P.-P. Vidal, C. De Waele, S. Bu�at, and D. Ricard.

Évaluation de l’équilibre et prédiction des risques de chutes en utilisant une Wii

board balance. Neurophysiologie Clinique/Clinical Neurophysiology, 45(4-5):403, 2015.

[7] A. Aue and L. Horvàth. Structural breaks in time series. Journal of Time Series

Analysis, 34:1–16, 2012.

[8] J. Bai. Least squares estimation of a shift in linear processes. Journal of Time Series

Analysis, 15(5):453–472, 1994.

[9] J. Bai. Least absolute deviation of a shift. Econometric Theory, 11(3):403–436, 1995.

[10] J. Bai. Testing for parameter constancy in linear regressions: an empirical distribution

function approach. Econometrica, 64(3):597–622, 1996.

[11] J. Bai. Estimating multiple breaks one at a time. Econometric Theory, 13(3):315–352,

1997.

[12] J. Bai. Estimation of a change-point in multiple regression models. Review of Economic

and Statistics, 79(4):551–563, 1997.

[13] J. Bai. Estimation of multiple-regime regressions with least absolutes deviation.

Journal of Statistical Planning and Inference, 74:103–134, 1998.

[14] J. Bai. Likelihood ratio tests for multiple structural changes. Journal of Econometrics,

91(2):299–323, 1999.

[15] J. Bai. Vector autoregressive models with structural changes in regression coe�cients

and in variance–covariance matrices. Annals of Economics and Finance, 1(2):301–336,

2000.

252 BIBLIOGRAPHY

[16] J. Bai. Common breaks in means and variances for panel data. Journal of Econometrics,

157:78–92, 2010.

[17] J. Bai and P. Perron. Estimating and testing linear models with multiple structural

changes. Econometrica, 66(1):47–78, 1998.

[18] J. Bai and P. Perron. Critical values for multiple structural change tests. Econometrics

Journal, 6(1):72–78, 2003.

[19] J. Bai and P. Perron. Multiple structural change models: a simulation analysis. Journal

of Applied Econometrics, 18:1–22, 2003.

[20] J. Bai and P. Perron. Computation and analysis of multiple structural change models.

Journal of Applied Econometrics, 18(1):1–22, 2003.

[21] J. Bai, R. L. Lumsdaine, and J. H. Stock. Testing for and dating common breaks in

multivariate time series. The Review of Economic Studies, 65(3):395–432, 1998.

[22] R. Baranowski and P. Fryzlewicz. wbs: wild binary segmentation for multiple change-

point detection, 2015. URL https://cran.r-project.org/package=
wbs.

[23] R. Baranowski, Y. Chen, and P. Fryzlewicz. not: narrowest-over-threshold change-

point detection, 2016. URL https://cran.r-project.org/package=
not.

[24] R. Barrois-Müller, L. Oudre, T. Moreau, C. Truong, N. Vayatis, S. Bu�at, A. Yelnik,

C. de Waele, T. Gregory, S. Laporte, P. P. Vidal, and D. Ricard. Quantify osteoarthritis

gait at the doctor’s o�ce: a simple pelvis accelerometer based method indepen-

dent from footwear and aging. Computer Methods in Biomechanics and Biomedical

Engineering, 18 Suppl 1:1880–1881, 2015.

[25] R. Barrois-Müller, T. Gregory, L. Oudre, T. Moreau, C. Truong, A. Aram Pulini,

A. Vienne, C. Labourdette, N. Vayatis, S. Bu�at, A. Yelnik, C. de Waele, S. Laporte,

P.-P. Vidal, and D. Ricard. An automated recording method in clinical consultation

to rate the limp in lower limb osteoarthritis. PLoS One, 11(10):e0164975, 2016.

[26] R. Barrois-Müller, D. Ricard, L. Oudre, L. Tlili, C. Provost, A. Vienne, P.-P. Vidal, S. Buf-

fat, and A. Yelnik. Étude observationnelle du demi-tour à l’aide de capteurs inertiels

chez les sujets victimes d’AVC et relation avec le risque de chute. Neurophysiologie

Clinique/Clinical Neurophysiology, 46(4):244, 2016.

[27] D. Barry and J. A. Hartigan. Product partition models for change point problems.

The Annals of Statistics, 20(1):260–279, 1992.

[28] D. Barry and J. A. Hartigan. A bayesian analysis for change point problems. Journal

of the American Statistical Association, 88(421):309–319, 1993.

[29] M. Basseville and I. Nikiforov. Detection of abrupt changes: theory and application,

volume 104. Prentice Hall Englewood Cli�s, 1993.

https://cran.r-project.org/package=wbs
https://cran.r-project.org/package=wbs
https://cran.r-project.org/package=not
https://cran.r-project.org/package=not

BIBLIOGRAPHY 253

[30] R. Bellman. On a routing problem. Quaterly of Applied Mathematics, 16(1):87–90,

1955.

[31] P. K. Bhattacharya. Some aspects of change-point analysis. In E. Carlstein, H.-G.

Müller, and D. Siegmund, editors, Change-point problems. Institute of Mathematical

Statistics, 23 edition, 1994.

[32] L. Birgé and P. Massart. Gaussian model selection. Journal of the European Mathe-

matical Society, 3(3):203–268, 2001.

[33] L. Birgé and P. Massart. Minimal penalties for Gaussian model selection. Probability

Theory and Related Fields, 138(1):33–73, 2007.

[34] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,

2004.

[35] L. Boysen, A. Kempe, V. Liebscher, A. Munk, and O. Wittich. Consistencies and rates

of convergence of jump-penalized least squares estimators. The Annals of Statistics,

37(1):157–183, 2009.

[36] B. E. Brodsky and B. S. Darkhovsky. Nonparametric methods in change point problems.

Springer Netherlands, 1993.

[37] B. E. Brodsky, B. S. Darkhovsky, A. Y. Kaplan, and S. L. Shishkin. A nonparamet-

ric method for the segmentation of the EEG. Computer Methods and Programs in

Biomedicine, 60(2):93–106, 1999.

[38] T. Cai and L. Wang. Orthogonal matching pursuit for sparse signal recovery with

noise. IEEE Transactions on Information Theory, 57(7):4680–4688, 2011.

[39] A. Celisse, G. Marot, M. Pierre-Jean, and G. Rigaill. New e�cient algorithms for

multiple change-point detection with kernels. ArXiv e-prints arXiv:1710.04556, 2017.

[40] S. Chakar, É. Lebarbier, C. Levy-Leduc, and S. Robin. AR1seg: segmentation of

an autoregressive Gaussian process of order 1, 2014. URL https://cran.
r-project.org/package=AR1seg.

[41] S. Chakar, É. Lebarbier, C. Levy-Leduc, and S. Robin. A robust approach for estimating

change-points in the mean of an AR(1) process. Bernouilli Society for Mathematical

Statistics and Probability, 23(2):1408–1447, 2017.

[42] J. Chen and A. K. Gupta. Testing and locating variance changepoints with application

to stock prices. Journal of the American Statistical Association, 92(438):739–747, 1997.

[43] J. Chen and A. K. Gupta. Parametric Statistical Change Point Analysis: With Applica-

tions to Genetics, Medicine, and Finance. 2011.

[44] Jie Chen and Arjun K. Gupta. Parametric Statistical Change Point Analysis. Birkhäuser

Boston, 2011. doi: 10.1007/978-0-8176-4801-5.

[45] Jie Chen and Arjun K Gupta. Parametric statistical change point analysis: With

applications to genetics, medicine, and �nance. Springer Science & Business Media,

2011.

https://cran.r-project.org/package=AR1seg
https://cran.r-project.org/package=AR1seg

254 BIBLIOGRAPHY

[46] S. S. Chen and P. S. Gopalakrishnan. Speaker, environment and channel change

detection and clustering via the bayesian information criterion. In Proceedings

of the DARPA Broadcast News Transcription and Understanding Workshop, page 8,

Landsdowne, VA, 1998.

[47] H Cherno� and S Zacks. Estimating the Current Mean of a Normal Distribution

which is Subjected to Changes in Time. The Annals of Mathematical Statistics, 35(3):

999–1018, 1964.

[48] S. Chib. Estimation and comparison of multiple change-point models. Journal of

Econometrics, 86(2):221–241, 1998.

[49] H. Cho, M. Barigozzi, and P. Fryzlewicz. factorcpt: simultaneous change-point and

factor analysis, 2016. URL https://cran.r-project.org/package=
factorcpt.

[50] S. Clemencon, M. Depecker, and N. Vayatis. AUC optimization and the two-sample

problem. In Advances in Neural Information Processing Systems 22 (NIPS 2009), pages

360–368, Vancouver, Canada, 2009.

[51] A. Cleynen, G. Rigaill, and M. Koskas. Segmentor3IsBack: a fast segmenta-

tion algorithm, 2016. URL https://cran.r-project.org/package=
Segmentor3IsBack.

[52] M. Csörgö and L. Horváth. Limit theorems in change-point analysis. Chichester, New

York, 1997.

[53] M. A. Davenport and M. B. Wakin. Analysis of Orthogonal Matching Pursuit Using

the Restricted Isometry Property. IEEE Transactions on Information Theory, 56(9):

4395–4401, 2010.

[54] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Constructive

Approximation, 13(1):57–98, 1997.

[55] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric

learning. In Proceedings of the 24th International Conference on Machine Learning

(ICML), pages 209–216, Corvalis, Oregon, USA, 2007.

[56] E. I. Delatola, É. Lebarbier, T. Mary-Huard, F. Radvanyi, S. Robin, and J. Wong.

SegCorr: a statistical procedure for the detection of genomic regions of correlated

expression. BMC Bioinformatics, 18(1):1–15, 2017.

[57] F. Desobry, M. Davy, and C. Doncarli. An online kernel change detection algorithm.

IEEE Transactions on Signal Processing, 53(8):2961–2974, 2005.

[58] B. M. Doyle and J. Faust. Breaks in the variability and comovement of G-7 economic

growth. The Review of Economics and Statistics, 87(4):721–740, 2005.

[59] J. H. J. Einmahl and I. W. McKeague. Empirical likelihood based hypothesis testing.

Bernoulli, 9(2):267–290, 2003.

https://cran.r-project.org/package=factorcpt
https://cran.r-project.org/package=factorcpt
https://cran.r-project.org/package=Segmentor3IsBack
https://cran.r-project.org/package=Segmentor3IsBack

BIBLIOGRAPHY 255

[60] C. Erdman and J. W. Emerson. bcp: an R package for performing a Bayesian analysis

of change point problems. Journal of Statistical Software, 23(3):1–13, 2007.

[61] R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt. A Comparison of waveform fractal

dimension algorithms. IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, 48(2):177–183, 2001.

[62] P Fearnhead. Exact and e�cient Bayesian inference for multiple changepoint prob-

lems. Statistics and Computing, 16(2):203–213, 2006.

[63] K. Frick, A. Munk, and H. Sieling. Multiscale change point inference. Journal of the

Royal Statistical Society. Series B: Statistical Methodology, 76(3):495–580, 2014.

[64] J. H. Friedman and L. C. Rafsky. Multivariate Generalizations of Wald-Wolfowitz and

Smirnov two-sample tests. The Annals of Statistics, 7(4):697–717, 1979.

[65] P. Fryzlewicz. Unbalanced Haar technique for nonparametric function estimation.

Journal of the American Statistical Association, 102(480):1318–1327, 2007.

[66] P. Fryzlewicz. breakfast: multiple change-point detection and segmentation, 2017.

URL https://cran.r-project.org/package=breakfast.

[67] Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection.

Annals of Statistics, 42(6):2243–2281, 2014.

[68] Y.-X. Fu and R. N. Curnow. Maximum likelihood estimation of multiple change

points. Biometrika, 77(3):563–573, 1990.

[69] D. Garreau and S. Arlot. Consistent change-point detection with kernels. arXiv

preprint arXiv:1612.04740v3, pages 1–41, 2017.

[70] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel

two-sample test. Journal of Machine Learning Research (JMLR), 13:723–773, 2012.

[71] Y. Guédon. Exploring the latent segmentation space for the assessment of multiple

change-point models. Computational Statistics, 28(6):2641–2678, 2013.

[72] Z. Harchaoui and O. Cappé. Retrospective mutiple change-point estimation with

kernels. In Proceedings of the IEEE/SP Workshop on Statistical Signal Processing, pages

768–772, Madison, Wisconsin, USA, 2007.

[73] Z. Harchaoui and C. Lévy-Leduc. Multiple Change-Point Estimation With a Total

Variation Penalty. Journal of the American Statistical Association, 105(492):1480–1493,

2010.

[74] Z. Harchaoui, F. Bach, and É. Moulines. Kernel change-point analysis. In Advances

in Neural Information Processing Systems 21 (NIPS 2008), pages 609–616, Vancouver,

Canada, 2008.

[75] Z. Harchaoui, F. Vallet, A. Lung-Yut-Fong, and O. Cappé. A regularized kernel-based

approach to unsupervised audio segmentation. In Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1665–1668,

Taipei, Taiwan, 2009.

https://cran.r-project.org/package=breakfast

256 BIBLIOGRAPHY

[76] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning, volume 1.

2009.

[77] K. Haynes, I. A. Eckley, and P. Fearnhead. Computationally e�cient changepoint

detection for a range of penalties. Journal of Computational and Graphical Statistics,

26(1):134–143, 2017.

[78] K. Haynes, P. Fearnhead, and I. A. Eckley. A computationally e�cient nonparametric

approach for changepoint detection. Statistics and Computing, 27:1293–1305, 2017.

[79] H. He and T. S. Severini. Asymptotic properties of maximum likelihood estimators

in models with multiple change points. Bernoulli, 16(3):759–779, 2010.

[80] G. Hébrail, B. Hugueney, Y. Lechevallier, and F. Rossi. Exploratory analysis of

functional data via clustering and optimal segmentation. Neurocomputing, 73(7-9):

1125–1141, 2010.

[81] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, and H. T. Toivonen. Time series

segmentation for context recognition in mobile devices. In Proceedings of the IEEE

International Conference on Data Mining (ICDM), pages 203–210, 2001.

[82] T. Hocking, G Rigaill, J.-P. Vert, and F. Bach. Learning sparse penalties for change-

point detection using max margin interval regression. In Proceedings of the In-

ternational Conference on Machine Learning (ICML), pages 172–180, Atlanta, USA,

2013.

[83] T. Hocking, G. Schleiermacher, I. Janoueix-Lerosey, V. Boeva, J. Cappo, O. Delattre,

F. Bach, and J.-P. Vert. Learning smoothing models of copy number pro�les using

breakpoint annotations. BMC Bioinformatics, 14(1):164, 2013.

[84] T. Hocking, G. Rigaill, and G. Bourque. PeakSeg: constrained optimal segmentation

and supervised penalty learning for peak detection in count data. In Proceedings

of the International Conference on Machine Learning (ICML), pages 324–332, Lille,

France, 2015.

[85] K. Huang, R. Jin, Z. Xu, and C.-L. Liu. Robust metric learning by smooth optimization.

In Proceedings of the 26th Conference on Uncertainty in Arti�cial Intelligence (UAI),

pages 244–251, Catalina Island, California, 2010.

[86] B. Hugueney, G. Hébrail, Y. Lechevallier, and F. Rossi. Simultaneous clustering and

segmentation for functional data. In Proceedings of 16th European Symposium on

Arti�cial Neural Networks (ESANN), pages 281–286, Bruges, Belgium, 2009.

[87] P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon. Metric and kernel learning using a

linear transformation. Journal of Machine Learning Research (JMLR), 13:519–547,

2012.

[88] N. A. James and D. S. Matteson. ecp: an R package for nonparametric multiple change

point analysis of multivariate data. Journal of Statistical Software, 62(7):1–25, 2014.

[89] N. A. James and D. S. Matteson. ecp: an R package for nonparametric multiple change

point analysis of multivariate data. Journal of Statistical Software, 62(7), 2015.

BIBLIOGRAPHY 257

[90] V. Jandhyala, S. Fotopoulos, I. Macneill, and P. Liu. Inference for single and multiple

change-points in time series. Journal of Time Series Analysis, 34(4):423–446, 2013.

[91] K. Karagiannaki, A. Panousopoulou, and P. Tsakalides. An online feature selection

architecture for Human Activity Recognition. In Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2522–2526,

New Orleans, LA, USA, 2017.

[92] S. M. Kay and A. V. Oppenheim. Fundamentals of Statistical Signal Processing, Volume

II: Detection Theory. Prentice Hall, 1993.

[93] M. G. Kendall. Rank correlation methods. Charles Gri�n, London, England, 1970.

[94] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting time

series. In Proceedings of the IEEE International Conference on Data Mining (ICDM),

pages 289–296, 2001.

[95] E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series: a survey and

novel approach. Data Mining in Time Series Databases, 57(1):1–22, 2004.

[96] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In Proceedings

of the Thirtieth International Conference on Very Large Data Bases (VLDB) - Volume

30, pages 180–191, Toronto, Canada, 2004.

[97] R. Killick and I. A. Eckley. changepoint: an R package for changepoint analysis.

Journal of Statistical Software, 58(3):1–19, 2014.

[98] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a

linear computational cost. Journal of the American Statistical Association, 107(500):

1590–1598, 2012.

[99] S. I. M. Ko, T. T. L. Chong, and P. Ghosh. Dirichlet process hidden Markov multiple

change-point model. Bayesian Analysis, 10(2):275–296, 2015.

[100] K. Korkas and P. Fryzlewicz. wbsts: multiple change-point detection for nonstation-

ary time series, 2015. URL https://cran.r-project.org/package=
wbsts.

[101] K. Korkas and P. Fryzlewicz. Multiple change-point detection for non-stationary

time series using wild binary segmentation. Statistica Sinica, 27(1):287–311, 2017.

[102] P. R. Krishnaiah. Review about estimation of change points. Handbook of Statistics,

7:375–402, 1988.

[103] B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel learning with Bregman

matrix divergences. Journal of Machine Learning Research (JMLR), 19:341–376, 2009.

[104] W. R. Lai, M. D. Johnson, R. Kucherlapati, and P. J. Park. Comparative analysis of algo-

rithms for identifying ampli�cations and deletions in array CGh data. Bioinformatics,

21(19):3763–3770, 2005.

https://cran.r-project.org/package=wbsts
https://cran.r-project.org/package=wbsts

258 BIBLIOGRAPHY

[105] R. Lajugie, F. Bach, and S. Arlot. Large-margin metric learning for constrained

partitioning problems. In Proceedings of the 31st International Conference on Machine

Learning (ICML), pages 297–395, Beijing, China, 2014.

[106] M. Lavielle. Optimal segmentation of random processes. IEEE Transactions on Signal

Processing, 46(5):1365–1373, 1998.

[107] M. Lavielle. Detection of multiples changes in a sequence of dependant variables.

Stochastic Processes and their Applications, 83(1):79–102, 1999.

[108] M. Lavielle. Using penalized contrasts for the change-point problem. Signal Processing,

85(8):1501–1510, 2005.

[109] M. Lavielle and É. Moulines. Least-squares estimation of an unknown number of

shifts in a time series. Journal of Time Series Analysis, 21(1):33–59, 2000.

[110] M. Lavielle and G. Teyssière. Detection of multiple change-points in multivariate

time series. Lithuanian Mathematical Journal, 46(3), 2006.

[111] M. Lavielle and G. Teyssière. Adaptive detection of multiple change-points in asset

price volatility. In Long-Memory in Economics, pages 129–156. Springer Verlag, Berlin,

Germany, 2007.

[112] É. Lebarbier. Detecting multiple change-points in the mean of gaussian process by

model selection. Signal Processing, 85(4):717–736, 2005.

[113] E. L. Lehman and J. P. Romano. Testing Statistical Hypotheses, volume 101. springer,

3 edition, 2006. ISBN 0387988645. doi: 10.1198/jasa.2006.s100.

[114] C. Lévy-Leduc and F. Roue�. Detection and localization of change-points in high-

dimensional network tra�c data. The Annals of Applied Statistics, 3(2):637–662,

2009.

[115] S. Liu, M. Yamada, N. Collier, and M. Sugiyama. Change-point detection in time-series

data by relative density-ratio estimation. Neural Networks, 43:72–83, 2013.

[116] G. Lorden. Procedures for reacting to a change in distribution. The Annals of

Mathematical Statistics, 42(6):1897–1908, 1971.

[117] A. Lung-Yut-Fong, C. Lévy-Leduc, and O. Cappé. Distributed detection/localization

of change-points in high-dimensional network tra�c data. Statistics and Computing,

22(2):485–496, 2012.

[118] A. Lung-Yut-Fong, C. Lévy-Leduc, and O. Cappé. Homogeneity and change-point

detection tests for multivariate data using rank statistics. Journal de la Société

Française de Statistique, 156(4):133–162, 2015.

[119] P. C. Mahalanobis. On the generalised distance in statistics. Proceedings of the

National Institute of Sciences of India, 2(1):49–55, 1936.

[120] R. Maidstone. E�cient Analysis of Complex Changepoint Models. page 34, 2013.

BIBLIOGRAPHY 259

[121] R. Maidstone, T. Hocking, G. Rigaill, and P. Fearnhead. On optimal multiple change-

point algorithms for large data. Statistics and Computing, 27(2):519–533, 2017.

[122] C. L. Mallows. Some comments on Cp. Technometrics, 15(4):661–675, 1973.

[123] A. F. Martínez and R. H. Mena. On a Nonparametric Change Point Detection Model

in Markovian Regimes. Bayesian Analysis, 9(4):823–858, 2014.

[124] C. F. H. Nam, J. A. D. Aston, and A. M. Johansen. Quantifying the uncertainty in

change points. Journal of Time Series Analysis, 33:807–823, 2012.

[125] G. P. Nason, R. von Sachs, and G. Kroisandt. Wavelet processes and adaptive estima-

tion of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society.

Series B (Statistical Methodology), 62(2):271–292, 2000.

[126] A. B. Olshen, E. S. Venkatraman, R. Lucito, and M. Wigler. Circular binary segmen-

tation for the analysis of array-based DNA copy number data. Biostatistics, 5(4):

557–572, 2004.

[127] L. Oudre, A. Lung-Yut-Fong, and P. Bianchi. Segmentation of accelerometer signals

recorded during continuous treadmill walking. In Proceedings of the 19th European

Signal Processing Conference (EUSIPCO), pages 1564–1568, 2011.

[128] L. Oudre, R. Barrois-Müller, T. Moreau, C. Truong, R. Dadashi, T. Grégory, D. Ricard,

N. Vayatis, C. De Waele, A. Yelnik, and P.-P. Vidal. Détection automatique des pas

à partir de capteurs inertiels pour la quanti�cation de la marche en consultation.

Neurophysiologie Clinique/Clinical Neurophysiology, 45(4-5):394, 2015.

[129] L. Oudre, T. Moreau, and C. Truong. Détection de pas à partir de données

d’accélérométrie. In Proceedings of the Groupe de Recherche et d’Etudes en Traitement

du Signal et des Images (GRETSI), Lyon, France, 2015.

[130] E. S. Page. Continuous inspection schemes. Biometrika, 41:100–105, 1954.

[131] E. S. Page. A test for a change in a parameter occurring at an unknown point.

Biometrika, 42:523–527, 1955.

[132] P. Perron. Dealing with structural breaks. Palgrave handbook of econometrics, 1(2):

278–352, 2006.

[133] P. Perron and Z. Qu. Estimating restricted structural change models. Journal of

Econometrics, 134(2):373–399, 2006.

[134] F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J.-J. Daudin. A statistical approach for

array CGH data analysis. BMC Bioinformatics, 6(1):27, 2005.

[135] T. Pohlert. trend: non-parametric trend tests and change-point detection, 2017. URL

https://cran.r-project.org/package=trend.

[136] R. Prescott Adams and D. J. C. MacKay. Bayesian Online Changepoint Detection.

Technical report, 2007.

https://cran.r-project.org/package=trend

260 BIBLIOGRAPHY

[137] Z. Qu and P. Perron. Estimating and testing structural changes in multivariate

regressions. Econometrica, 75(2):459–502, 2007.

[138] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[139] G. Rigaill. A pruned dynamic programming algorithm to recover the best segmenta-

tions with 1 to K_max change-points. Journal de la Société Française de Statistique,

156(4):180–205, 2015.

[140] G. Ross. Parametric and nonparametric sequential change detection in R: the cpm

package. Journal of Statistical Software, 66(3):1–20, 2015.

[141] G. J. Ross. Parametric and nonparametric sequential change detection in R: the cpm

package. Journal of Statistical Software, 66(3), 2015.

[142] B. Schölkopf and A. J. Smola. Learning with kernels. MIT Press, Cambridge, USA,

2002.

[143] M. Schultz and J. Thorsten. Learning a distance metric from relative comparisons.

In Advances in Neural Information Processing Systems 16 (NIPS), Vancouver, Canada,

2003.

[144] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):

461–464, 1978.

[145] N. Seichepine, S. Essid, C. Fevotte, and O. Cappé. Piecewise constant nonnegative

matrix factorization. In Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 6721–6725, Florence, Italy, 2014.

[146] A. Sen and M. S. Srivastava. On tests for detecting change in mean. The Annals of

Statistics, 3(1):98–108, 1975.

[147] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge

university press, 2004.

[148] J. J. Shen and N. R. Zhang. SeqCBS: CN pro�ling using sequencing and CBS, 2012.

[149] N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant

component analysis. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 776–790, 2002.

[150] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf.

Injective Hilbert space embeddings of probability measures. In Proceedings of the

21st Conference on Learning Theory (COLT), pages 9–12, Helsinki, Finland, 2008.

[151] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[152] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE

Transactions on Information Theory, 50(10):2231–2242, 2004.

BIBLIOGRAPHY 261

[153] C. Truong, L. Oudre, and N. Vayatis. Segmentation de signaux physiologiques

par optimisation globale. In Proceedings of the Groupe de Recherche et d’Etudes en

Traitement du Signal et des Images (GRETSI), Lyon, France, 2015.

[154] C. Truong, L. Oudre, and N. Vayatis. Penalty learning for changepoint detection.

In Proceedings of the European Signal Processing Conference (EUSIPCO), Kos, Greece,

2017.

[155] C. Truong, L. Oudre, and N. Vayatis. ruptures, change point detection in Python,

2018. URL http://mloss.org/software/view/700/.

[156] C. Truong, L. Oudre, and N. Vayatis. A review of change point detection. arXiv

preprint arXiv:1801.00718, pages 1–31, 2018.

[157] C. Truong, L. Oudre, and N. Vayatis. ruptures: change point detection in Python.

ArXiv e-prints arXiv:1801.00826, pages 1–5, 2018.

[158] C. Truong, L. Oudre, and N. Vayatis. Greedy kernel change point detection with an

application to physiological signals. Submitted, pages 1–5, 2018.

[159] E. S. Venkatraman and A. B. Olshen. A faster circular binary segmentation algorithm

for the analysis of array CGH data. Bioinformatics, 23(6):657–663, 2007.

[160] J.-P. Vert and K. Bleakley. Fast detection of multiple change-points shared by many

signals using group LARS. In Advances in Neural Information Processing Systems 23

(NIPS 2010), volume 1, pages 2343–2351, Vancouver, Canada, 2010.

[161] L. Y. Vostrikova. Detecting disorder in multidimensional random processes. Soviet

Math. Dokl., 24:55–59, 1981.

[162] H. Vullings, M. Verhaegen, and H. Verbruggen. ECG segmentation using time-

warping. In Lecture notes in computer science, pages 275–286. Springer, 1997.

[163] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):

80–83, 1945.

[164] H. Willenbrock and J. Fridlyand. A comparison study: applying segmentation to

array CGH data for downstream analyses. Bioinformatics, 21(22):4084–4091, 2005.

[165] E. P. Xing, M. I. Jordan, and S. J. Russell. Distance metric learning, with application

to clustering with side-Information. In Advances in Neural Information Processing

Systems 21 (NIPS 2003), pages 521–528, 2003.

[166] Y.-C. Yao. Estimating the number of change-points via Schwarz’ criterion. Statistics

and Probability Letters, 6(3):181–189, 1988.

[167] Y.-C. Yao and S. T. Au. Least-squares estimation of a step function. Sankhyā: The

Indian Journal of Statistics, Series A, 51(3):370–381, 1989.

[168] A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber. strucchange: an R package for testing

for structural change in linear regression models. Journal of Statistical Software, 7(2):

1–38, 2002.

http://mloss.org/software/view/700/

[169] J. Zhang. Powerful two-sample tests based on the likelihood ratio. Technometrics, 48

(1):95–103, 2006.

[170] N. R. Zhang and D. O. Siegmund. A modi�ed Bayes information criterion with

applications to the analysis of comparative genomic hybridization data. Biometrics,

63(1):22–32, 2007.

[171] C. Zou, G. Yin, F. Long, and Z. Wang. Nonparametric maximum likelihood approach

to multiple change-point problems. The Annals of Statistics, 42(3):970–1002, 2014.

Titre : Détection de ruptures multiples – application aux signaux physiologiques

Mots clés : détection de ruptures, traitement du signal, méthodes à noyaux

Résumé : Ce travail traite de la détection de

ruptures multiples dans des signaux

physiologiques multivariés. L’objectif est de

fournir des algorithmes de détection (i) capables

de gérer de longues séries, (ii) utilisables sur

une large gamme de problèmes réels et (iii)

capables d’incorporer la connaissance d’experts

médicaux.

La première contribution de cette thèse est un

algorithme sous-optimal de détection, qui peut

s’adapter à des contraintes de complexité, tout

en conservant la robustesse des méthodes

optimales. Dans le contexte des sauts de

moyenne, un résultat de consistance

asymptotique est prouvé. Cette stratégie

gloutonne est étendue à d’autres types de

ruptures, grâce aux espaces de Hilbert à noyaux

reproduisant. Des expériences sur des signaux

réels montrent que ces approches sont plus

précises que les approches sous-optimales

standards et plus rapides que les méthodes

optimales.

La deuxième contribution de cette thèse

consiste en deux algorithmes supervisés de

calibration automatique. Ils se reposent tous les

deux sur des signaux annotés par des experts.

La première approche apprend le paramètre de

lissage pour la détection pénalisée d’un nombre

inconnu de ruptures. La seconde procédure

apprend une transformation non-paramétrique

de l’espace de représentation du signal. Les

résultats expérimentaux montrent que ces

méthodes supervisées ont de meilleures

performances que les méthodes non-

supervisées, particulièrement dans le cas des

signaux physiologiques, où la notion de rupture

dépend du phénomène physiologique d’intérêt.

Toutes les contributions algorithmiques de cette

thèse sont disponibles dans ruptures, un

logiciel libre, en Python et entièrement

documenté.

Title : Multiple change point detection. Application to physiological signals

Keywords : change point detection, signal processing, kernel methods

Abstract : This work addresses the problem of

detecting multiple change points in multivariate

physiological signals. The objective of this

thesis is to provide change point detection

algorithms that (i) can handle long signals, (ii)

can be applied on a wide range of real-world

scenarios, and (iii) can incorporate the

knowledge of medical experts.

The first contribution of this thesis is a sub-

optimal change detection algorithm that can

accommodate time complexity constraints

while retaining most of the robustness of

optimal procedures. In the context of mean-

shifts, asymptotic consistency of estimated

change points is proved. This greedy strategy is

extended to other types of changes, by using

reproducing kernel Hilbert spaces. Experiments

on real-world signals show that those

approaches are more accurate than standard

sub-optimal algorithms and faster than optimal

algorithms.

The second contribution of this thesis consists

in two supervised algorithms for automatic

calibration. Both rely on labeled examples,

which in our context, consist in segmented

signals. The first approach learns the

smoothing parameter for the penalized

detection of an unknown number of changes.

The second procedure learns a non-parametric

transformation of the representation space.

Results show that those supervised algorithms

outperform unsupervised algorithms, especially

in the case of physiological signals, where the

notion of change heavily depends on the

physiological phenomenon of interest.

All algorithmic contributions of this thesis can

be found in ruptures, a thoroughly

documented open-source Python library.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction générale (en français)
	Contexte de la thèse
	Motivations
	Comprendre les données brutes
	Exemples motivants

	Détection de ruptures pour les données physiologiques
	Principes généraux
	Apprendre d'experts

	Cadre mathématique pour la détection de rupture
	Méthodes de détection génériques
	Conception de méthodes de détection

	Contributions
	Vue d'ensemble du manuscrit

	Introduction
	Context of the thesis
	Motivations
	From raw data to knowledge
	Motivating examples

	Change point detection for physiological data
	General principles
	Learning from experts

	Change point detection framework
	Generic detection methods
	Designing detection methods

	Contributions
	Overview of the manuscript
	Publications

	Literature review and evaluation framework
	A selective review of change point detection methods
	Framework of the thesis
	Problem statement
	Structure of change point detection methods
	Asymptotic consistency
	Outline of this chapter

	Models and cost functions
	Parametric models
	Non-parametric models
	Summary table

	Search methods
	Optimal detection
	Approximate detection

	Estimating the number of changes
	Linear penalty
	Fused lasso
	Complex penalties

	Summary table
	Conclusion

	Evaluation framework: metrics and data sets
	Motivations
	Evaluation framework
	Evaluation metrics
	Presentation of the data sets

	Summary tables

	Greedy change point detection
	Greedy change point detection
	Statistical model for change point detection
	Problem formulation
	Related work
	Contributions of the chapter

	Change point detection as a sparse regression task
	The Heaviside decomposition
	Equivalence to a sparse regression task
	Greedy change point detection: the gCPD algorithm
	Heuristics for gCPD
	Complexity analysis
	Stopping criterion

	Conclusion
	Appendices
	Theoretical Analysis
	Model and technical assumptions
	Asymptotic consistency
	Sketch of proof of Theorem 4.1

	Greedy kernel change point detection
	The rkhs setup for change point detection
	Problem formulation
	Related work
	Contributions of the chapter

	A kernel version of gCPD
	Reformulation of gCPD with ckernel
	The gkCPD algorithm
	Complexity analysis
	Examples of kernels

	Conclusion

	Numerical experiments and evaluation
	Experimental setting
	Results on the MeanShift data set
	Results on the FreqShift data set
	Results on the Gait data set
	Global results
	Results by change point type

	Discussion
	Execution time comparison
	Estimation of the number of change points with gCPD

	Supervised change point detection
	Calibrating the smoothing parameter through supervised learning
	Penalized change point detection model
	Problem formulation
	Related work
	Contributions of the chapter

	Properties of the excess risk
	Adaptive Linear Penalty INference: the Alpin algorithm
	Experiments
	Setting
	MeanShift data set
	FreqShift data set
	Execution time comparison

	Discussion
	Comments on the excess risk
	Double labels

	Conclusion

	Metric learning for change point detection
	Change point detection with a Mahalanobis-type pseudo-norm
	Problem formulation
	Related work
	Contributions of the chapter

	Metric learning with a kernel-based approach
	From labels to constraints
	Kernel metric learning
	Computing the learned cost function
	Intuition behind the cost function cH,M

	Experiments
	Supervised segmentation of new signals
	Segmentation completion

	Discussion: double labels
	Conclusion

	Statistical software
	push0 g 0 Gpop[rgb]0,.3,.6ruptureswhitegray!15push0 g 0 Gpoptowidthheightdepth000height-0.5 -widthheightdepth2- widthheightdepthheight5/06/28 ver: 1.3 subfig package: change point detection in Python
	Introduction
	Change point detection framework
	Library overview
	Main features
	Availability and requirements
	Illustrative example

	Conclusion

	Conclusion and perspectives
	Documentation of push0 g 0 Gpop[rgb]0,.3,.6ruptureswhitegray!15push0 g 0 Gpoptowidthheightdepth000height-0.5 -widthheightdepth2- widthheightdepthheight5/06/28 ver: 1.3 subfig package
	An automated recording method in clinical consultation to rate the limp in lower limb osteoarthritis
	Template-based step detection from accelerometer signals
	Bibliography

