, Fact Sheet N° 313-Ambient (outdoor) air quality and health, WHO

, Outdoor air pollution-Children's health and the environment, WHO

, Six common air pollutants, EPA

. Airparif, Les différents polluants et leur évolution

, COP, vol.21, 2015.

P. M. Bluyssen, E. De-oliveira-fernandes, L. Groes, G. Clausen, P. O. Fanger et al., European indoor air quality audit project in 56 office buildings, Indoor Air, vol.6, pp.221-238, 1996.

S. K. Brown, M. R. Sim, M. J. Abramson, and C. N. Gray, Concentrations of volatile organic compounds in indoor air-A review, vol.4, pp.123-134, 1994.

S. Lafossas, F. Barat, and C. Verdun-esquer, Qualité de l'air-Résultats d'enquêtes dans un bâtiment récent, Document pour le Médecin du Travail-Etudes et enquêtes, pp.37-49, 2007.

A. , Q. De-l'air-intérieur-enjeux, and L. Travaux-de-l'anses, , 2015.

, Indoor air facts No. 4 (revised) Sick Building Syndrome (SBS), Air and Radiation, EPA, 1991.

S. Kirchner, J. Arenes, C. Cochet, M. Derbez, C. Duboudin et al., Campagne nationale logements : Etat de la qualité de l'air dans les logements française-Rapport final, pp.1-183, 2007.

M. Mortureux, Proposition de valeurs guides de qualité d'air intérieur-L'acétaldéhyde, Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail, pp.1-154, 2014.

J. Vehlow, Air pollution control systems in WtE units: An overview, Waste Management, vol.37, pp.58-74, 2015.

Y. Zhang, J. Mo, Y. Li, J. Sundell, P. Wargocki et al., Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review, Atmospheric Environment, vol.45, pp.4329-4343, 2011.

K. Urashima and J. Chang, Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology, Dielectrics and Electrical Insulation, IEEE Transactions on, vol.7, pp.602-614, 2000.

P. and L. Cloirec, Adsorption en traitement de l'air, p.600, 2003.

M. Guisnet and C. Naccache, Catalyse hétérogène-Mode d'action des catalyseurs, Techniques de l'ingénieur, 2004.

L. Sivachandiran, Regeneration of inorganic sorbents: Investigation of adsorbed VOCs oxidation using non-thermal plasma surface discharge, 2013.

S. S. Parmar and D. Grosjean, Sorbent removal of air pollutants from museum display cases, Environment International, vol.17, pp.39-50, 1991.

L. Fang, G. Zhang, and A. Wisthaler, Desiccant wheels as gas-phase absorption (GPA) air cleaners: evaluation by PTR-MS and sensory assessment, Indoor Air, vol.18, pp.375-385, 2008.

H. D. Gesser and S. Fu, Removal of aldehydes and acidic pollutants from indoor air, Environmental Science & Technology, pp.495-497, 1990.

, Chapitre 1-Contexte

M. Yao, Q. Zhang, D. W. Hand, D. Perram, and R. Taylor, Adsorption and regeneration on activated carbon fiber cloth for volatile organic compounds at indoor concentration levels, Journal of the Air & Waste Management Association, vol.59, pp.31-36, 2009.

L. Sun, F. Meunier, and G. Baron, Adsorption-Procédés et applications, Techniques de l'ingénieur Production des médicaments, p.610, 2005.

T. P. Kumar, M. A. Kumar, and B. Chandrajit, Biofiltration of Volatile Organic Compounds (VOCs)-An overview, Research Journal of Chemical Sciences, vol.1, pp.83-92, 2011.

V. I. Parvulescu, M. Magureanu, and P. Lukes, Plasma chemistry and catalysis in gases and liquids, 2012.

E. C. Moretti and N. Mukhopadhyay, Current practices and future trends, Chemical Engineering Progress, vol.89, pp.20-26, 1993.

J. J. Spivey, Complete catalytic oxidation of volatile organics, Industrial & Engineering Chemistry Research, vol.26, pp.2165-2180, 1987.
DOI : 10.1039/9781847553201-00157

L. F. Liotta, Catalytic oxidation of volatile organic compounds on supported noble metals, Applied Catalysis B: Environmental, vol.100, pp.403-412, 2010.
DOI : 10.1016/j.apcatb.2010.08.023

P. Papaefthimiou, T. Ioannides, and X. E. Verykios, Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts, Applied Catalysis B: Environmental, vol.13, pp.175-184, 1997.

L. M. Carballo and E. E. Wolf, Crystallite size effects during the catalytic oxidation of propylene on Pt, Journal of Catalysis, vol.53, issue.2 O 3, pp.366-373, 1978.

P. Marécot, A. Fakche, B. Kellali, G. Mabilon, P. Prigent et al., Propane and propene oxidation over platinum and palladium on alumina: Effects of chloride and water, Applied Catalysis B: Environmental, vol.3, pp.283-294, 1994.

S. F. Tahir and C. A. Koh, Catalytic destruction of volatile organic compound emissions by platinum based catalyst, Chemosphere, vol.38, pp.2109-2116, 1999.

P. Forzatti and L. Lietti, Catalyst deactivation, Catalysis Today, vol.52, pp.165-181, 1999.

C. H. Bartholomew, Mechanisms of catalyst deactivation, Applied Catalysis A: General, vol.212, pp.17-60, 2001.
DOI : 10.1016/s0926-860x(00)00843-7

A. Wisthaler, P. Strøm-tejsen, L. Fang, T. J. Arnaud, A. Hansel et al., PTR-MS assessment of photocatalytic and sorption-based purification of recirculated cabin air during simulated 7-h flights with high passenger density, Environmental Science & Technology, vol.41, pp.229-234, 2007.

A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol.238, pp.37-38, 1972.

S. A. Larson, J. A. Widegren, and J. L. Falconer, Transient studies of 2-propanol photocatalytic oxidation on titania, Journal of Catalysis, vol.157, pp.611-625, 1995.
DOI : 10.1006/jcat.1995.1326

C. L. Bianchi, S. Gatto, C. Pirola, A. Naldoni, A. Di-michele et al., Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO 2, Applied Catalysis B: Environmental, vol.146, pp.123-130, 2014.

J. L. Falconer and K. A. Magrini-bair, Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO, vol.2, pp.171-178, 1998.

C. Huang, G. Pan, P. Peng, and T. C. Yang, In situ DRIFT study of photocatalytic degradation of gaseous isopropanol over BiVO 4 under indoor illumination, Journal of Molecular Catalysis A: Chemical, vol.327, pp.38-44, 2010.

E. A. Kozlova, N. S. Kozhevnikova, S. V. Cherepanova, T. P. Lyubina, and E. Y. Gerasimov,

A. V. Kaichev, S. V. Vorontsov, A. A. Tsybulya, V. N. Rempel, and . Parmon, Photocatalytic oxidation of ethanol vapors under visible light on CdS-TiO 2 nanocatalyst, Journal of Photochemistry and Photobiology A: Chemistry, vol.250, pp.103-109, 2012.

M. L. Sauer and D. F. Ollis, Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air, Journal of Catalysis, vol.158, pp.570-582, 1996.

, Chapitre 1-Contexte

J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, and R. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: A literature review, Atmospheric Environment, vol.43, pp.2229-2246, 2009.

D. F. Ollis, Photocatalytic purification and remediation of contaminated air and water, Comptes Rendus de l'Académie des Sciences-Series IIC-Chemistry, vol.3, pp.405-411, 2000.

S. Scirè and L. F. Liotta, Supported gold catalysts for the total oxidation of volatile organic compounds, Applied Catalysis B: Environmental, vol.125, pp.222-246, 2012.

P. Sabatier, How I have been led to the direct hydrogenation method by metallic catalysts, Industrial & Engineering Chemistry, vol.18, pp.1005-1008, 1926.

G. Boskovic, N. Dropka, D. Wolf, A. Brückner, and M. Baerns, Deactivation kinetics of Ag/Al 2 O 3 catalyst for ethylene epoxidation, Journal of Catalysis, vol.226, pp.334-342, 2004.

B. Sawatmongkhon, A. Tsolakis, S. Sitshebo, J. Rodríguez-fernández, M. Ahmadinejad et al.,

R. R. Collier and . Rajaram, Understanding the Ag/Al 2 O 3 hydrocarbon-SCR catalyst deactivation through TG/DT analyses of different configurations, Applied Catalysis B: Environmental, pp.373-380, 2010.

C. Y. Chao, C. W. Kwong, and K. S. Hui, Potential use of a combined ozone and zeolite system for gaseous toluene elimination, Journal of Hazardous Materials, vol.143, pp.118-127, 2007.

D. S. Muggli, J. T. Mccue, and J. L. Falconer, Mechanism of the photocatalytic oxidation of ethanol on TiO, vol.2, pp.470-483, 1998.

H. Kim, Nonthermal plasma processing for air-pollution control: A historical review, current issues and future prospects, Plasma Processes and Polymers, vol.1, pp.91-110, 2004.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.61, pp.2-30, 2006.

J. Tatibouët, Plasma non thermique et traitement de l'air, p.600, 2013.

U. Kogelschatz and D. Discharges, Their history, discharge physics, and industrial applications, Plasma Chemistry and Plasma Processing, vol.23, pp.1-46, 2003.

W. Siemens, Ueber die elektrostatische induction und die verzögerung des stroms in flaschendrähten, Annalen der Physik, vol.178, pp.66-122, 1857.

A. M. Vandenbroucke, R. Morent, N. De, C. Geyter, and . Leys, Non-thermal plasmas for non-catalytic and catalytic VOC abatement, Journal of Hazardous Materials, vol.195, pp.30-54, 2011.

B. Eliasson, M. Hirth, and U. Kogelschatz, Ozone synthesis from oxygen in dielectric barrier discharges, Journal of Physics D: Applied Physics, vol.20, p.1421, 1987.

A. Fridman, Plasma chemistry, 2008.

S. Müller and R. J. Zahn, Air pollution control by non-thermal plasma, Contributions to Plasma Physics, vol.47, pp.520-529, 2007.

B. M. Penetrante and S. E. Schultheis, Non-thermal plasma techniques for pollution control-Part B: Electron beam and electrical discharges processing, 1993.

D. Baojuan, L. Jian, L. Wenjun, Z. Tao, L. Yili et al., Volatile Organic Compounds (VOCs) removal by using dielectric barrier discharge, pp.3945-3948, 2008.

B. Lee, S. Park, S. Lee, M. Kang, and S. Choung, Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system, Catalysis Today, pp.769-776, 2004.

T. Oda and K. Yamaji, Dilute trichloroethylene decomposition in air by using non-thermal plasmaCatalyst effect, Journal of Advanced Oxidation Technologies, vol.6, pp.93-99, 2003.

X. Zhu, X. Gao, R. Qin, Y. Zeng, R. Qu et al., Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor, Applied Catalysis B: Environmental, pp.293-300, 2015.

O. Koeta, N. Blin-simiand, S. Pasquiers, F. Jorand, and A. Bary, Effect of oxygen percentage on the removal of acetaldehyde by Dielectric Barrier Discharge, Int. J. Plasma Environ. Sci. Technol, vol.6, pp.227-232, 2012.

, Chapitre 1-Contexte

H. M. Lee and M. B. Chang, Gas-phase removal of acetaldehyde via packed-bed Dielectric Barrier Discharge reactor, Plasma Chemistry and Plasma Processing, vol.21, pp.329-343, 2001.

J. Van-durme, J. Dewulf, C. Leys, and H. Van-langenhove, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review, Applied Catalysis B: Environmental, vol.78, pp.324-333, 2008.

U. Roland, F. Holzer, and F. Kopinke, Improved oxidation of air pollutants in a non-thermal plasma, Catalysis Today, vol.73, pp.315-323, 2002.

Y. Guo, X. Liao, J. He, W. Ou, and D. Ye, Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene, Catalysis Today, vol.153, pp.176-183, 2010.

H. Kim, A. Ogata, and S. Futamura, Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds, Journal of Physics D: Applied Physics, vol.38, p.1292, 2005.

F. Holzer, F. D. Kopinke, and U. Roland, Influence of ferroelectric materials and catalysts on the performance of Non-Thermal Plasma (NTP) for the removal of air pollutants, Plasma Chemistry and Plasma Processing, vol.25, pp.595-611, 2005.

M. A. Malik, Y. Minamitani, and K. H. Schoenbach, Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor, IEEE Transactions on, vol.33, pp.50-56, 2005.

H. L. Chen, H. M. Lee, and S. H. Chen, Review of packed-bed plasma reactor for ozone generation and air pollution control, Industrial & Engineering Chemistry Research, vol.47, pp.2122-2130, 2008.

U. Roland, F. Holzer, and F. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatil organic compounds-Part 2. Ozone decomposition and deactivation of JAl 2 O 3, Applied Catalysis B: Environmental, vol.58, pp.217-226, 2005.

C. J. Ou, V. Demidiouk, M. Yeulash, C. I. Chul, and J. Tae-gyun, Experimental study for indoor air control by plasma-catalyst hybrid system, IEEE Transactions on Plasma Science, vol.32, pp.493-497, 2004.

A. Ogata, N. Shintani, K. Mizuno, S. Kushiyama, and T. Yamamoto, Decomposition of benzene using non-thermal plasma reactor packed with ferroelectric pellet, IEEE Transactions on Industry Applications, vol.3, pp.753-759, 1999.

F. Thevenet, L. Sivachandiran, O. Guaitella, C. Barakat, and A. Rousseau, Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: A review, Journal of Physics D: Applied Physics, vol.47, p.224011, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01549395

Y. Guo, D. Ye, K. Chen, J. He, and W. Chen, Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in-situ, Journal of Molecular Catalysis A: Chemical, vol.245, pp.93-100, 2006.

Y. Guo, D. -q.-ye, K. Chen, J. -c, and . He, Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam, Catalysis Today, vol.126, pp.328-337, 2007.

A. E. Wallis, J. C. Whitehead, and K. Zhang, The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis, Applied Catalysis B: Environmental, vol.74, pp.111-116, 2007.

U. Roland, F. Holzer, A. Pöppl, and F. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatil organic compounds-Part 3. Eletron paramagnetic resonance (EPR) studies of plasma-treated porous alumina, Applied Catalysis B: Environmental, vol.58, pp.227-234, 2005.

C. Chang and T. Lin, Decomposition of Toluene and Acetone in Packed Dielectric Barrier Discharge Reactors, Plasma Chemistry and Plasma Processing, vol.25, pp.227-243, 2005.

C. Subrahmanyam, Catalytic non-thermal plasma reactor for total oxidation of volatile organic compounds, Indian journal of chemistry. Section A, Inorganic, bio-inorganic, physical, theoretical & analytical chemistry, vol.48, p.1062, 2009.

L. Sivachandiran, F. Thevenet, P. Gravejat, and A. Rousseau, Isopropanol saturated TiO 2 surface regeneration by non-thermal plasma: Influence of air relative humidity, Chemical Engineering Journal, vol.214, pp.17-26, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01549428

, Chapitre 1-Contexte

L. Sivachandiran, F. Thevenet, and A. Rousseau, Non-Thermal Plasma Assisted Regeneration of Acetone Adsorbed TiO2 Surface, Plasma Chemistry and Plasma Processing, vol.33, pp.855-871, 2013.

O. Koeta, N. Blin-simiand, W. Faider, S. Pasquiers, A. Bary et al., Decomposition of acetaldehyde in atmospheric pressure filamentary nitrogen plasma, Plasma Chemistry and Plasma Processing, vol.32, pp.991-1023, 2012.

H. Huang, D. Ye, D. Y. Leung, F. Feng, and X. Guan, Byproducts and pathways of toluene destruction via plasma-catalysis, Journal of Molecular Catalysis A: Chemical, vol.336, pp.87-93, 2011.
DOI : 10.1016/j.molcata.2011.01.002

H. Fan, X. Li, C. Shi, D. Zhao, J. Liu et al., Plasma Catalytic Oxidation of Stored Benzene in a Cycled Storage-Discharge (CSD) Process: Catalysts, Reactors and Operation Conditions, Plasma Chemistry and Plasma Processing, vol.31, pp.799-810, 2011.

S. Pekárek, M. Pospí?il, and J. Krýsa, Non-thermal plasma and TiO 2-assisted n-heptane decomposition, Plasma Processes and Polymers, issue.3, pp.308-315, 2006.

Y. Song, S. Kim, K. Choi, and T. Yamamoto, Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs, Journal of Electrostatics, vol.55, pp.189-201, 2002.

S. Oh, H. Kim, A. Ogata, H. Einaga, S. Futamura et al., Effect of zeolite in surface discharge plasma on the decomposition of toluene, Catalysis Letters, vol.99, pp.101-104, 2005.

S. Delagrange, L. Pinard, and J. Tatibouët, Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts, Applied Catalysis B: Environmental, vol.68, pp.92-98, 2006.

M. B. Chang and H. M. Lee, Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment, Catalysis Today, vol.89, pp.109-115, 2004.

V. Demidyuk and J. C. Whitehead, Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system, Plasma Chemistry and Plasma Processing, vol.27, pp.85-94, 2007.

P. D. Costa, R. Marques, and S. D. Costa, Plasma catalytic oxidation of methane on aluminasupported noble metal catalysts, Applied Catalysis B: Environmental, vol.84, pp.214-222, 2008.

C. Ayrault, J. Barrault, N. Blin-simiand, F. Jorand, S. Pasquiers et al., Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst, Catalysis Today, vol.89, pp.75-81, 2004.

H. Kim, Y. Lee, A. Ogata, and S. Futamura, Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition, Catalysis Communications, vol.4, pp.347-351, 2003.

A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure, Plasma Chemistry and Plasma Processing, vol.19, pp.383-394, 1999.

F. Holzer, U. Roland, and F. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatil organic compounds-Part 1. Accessibility of the intra-particle volume, Applied Catalysis B: Environmental, vol.38, pp.163-181, 2002.

J. H. Lunsford, ESR of adsorbed oxygen species, Catalysis Reviews, vol.8, pp.135-157, 1974.

S. C. Chang, Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements, Journal of Vacuum Science & Technology, vol.17, pp.366-369, 1980.

D. Y. Qin, W. D. Chang, Y. Chen, J. L. Zhou, Y. Q. Chen et al., Dynamic ESR study of oxygen chemisorption on TiO 2-based catalysts, Journal of Catalysis, vol.142, pp.719-724, 1993.

V. Demidiouk, S. I. Moon, and J. O. Chae, Toluene and butyl acetate removal from air by plasmacatalytic system, Catalysis Communications, vol.4, pp.51-56, 2003.

H. Huang, D. Ye, and X. Guan, The simultaneous catalytic removal of VOCs and O 3 in a postplasma, Catalysis Today, vol.139, pp.43-48, 2008.

A. E. Wallis, J. C. Whitehead, and K. Zhang, Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO 2, Catalysis Letters, vol.113, pp.29-33, 2007.

, Chapitre 1-Contexte

N. Sano, T. Nagamoto, H. Tamon, T. Suzuki, and M. Okazaki, Removal of acetaldehyde and skatole in gas by a corona-discharge reactor, Industrial & Engineering Chemistry Research, vol.36, pp.3783-3791, 1997.

W. Faider, S. Pasquiers, N. Blin-simiand, and L. Magne, Effect of oxygen on the conversion of acetaldehyde in homogeneous plasmas of N 2 /O 2 /CH 3 CHO mixtures, Plasma Sources Science and Technology, vol.22, p.65010, 2013.

K. Faungnawakij, N. Sano, D. Yamamoto, T. Kanki, T. Charinpanitkul et al., Removal of acetaldehyde in air using a wetted-wall corona discharge reactor, Chemical Engineering Journal, vol.103, pp.115-122, 2004.

C. Klett, S. Touchard, A. Vega-gonzalez, M. Redolfi, X. Bonnin et al., Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge, Plasma Sources Science and Technology, vol.21, p.45001, 2012.

M. Kang, Y. Ko, M. Jeon, S. Lee, S. Choung et al., Characterization of Bi/TiO 2 nanometer sized particle synthesized by solvothermal method and CH 3 CHO decomposition in a plasma-photocatalytic system, Journal of Photochemistry and Photobiology A: Chemistry, vol.173, pp.128-136, 2005.

T. Sano, N. Negishi, E. Sakai, and S. Matsuzawa, Contributions of photocatalytic/catalytic activities of TiO 2 and ?-Al 2 O 3 in nonthermal plasma on oxidation of acetaldehyde and CO, Journal of Molecular Catalysis A: Chemical, vol.245, pp.235-241, 2006.

C. Klett, X. Duten, S. Tieng, S. Touchard, P. Jestin et al., Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process, Journal of Hazardous Materials, vol.279, pp.356-364, 2014.

Z. Jia, A. Vega-gonzález, M. B. Amar, K. Hassouni, S. Tieng et al., Acetaldehyde removal using a diphasic process coupling a silver-based nano-structured catalyst and a plasma at atmospheric pressure, Catalysis Today, vol.208, pp.82-89, 2013.
DOI : 10.1016/j.cattod.2012.10.028

W. Faider, S. Pasquiers, N. Blin-simiand, and L. Magne, Role of quenching of metastable states in acetaldehyde decomposition by a non-equilibrium nitrogen plasma at sub-atmospheric pressure, Journal of Physics D: Applied Physics, vol.46, p.105202, 2013.

L. Magne, S. Pasquiers, V. Edon, F. Jorand, C. Postel et al., Production of hydroxyl radicals and removal of acetaldehyde in a photo-triggered discharge in N 2 /O 2 /CH 3 CHO mixtures, Journal of Physics D: Applied Physics, vol.38, p.3446, 2005.

. Références,

A. Soloviev, R. Tufeu, C. Sanchez, and A. V. Kanaev, Nucleation stage in the Ti(OPr i ) 4 sol-gel process, The Journal of Physical Chemistry B, vol.105, pp.4175-4180, 2001.
DOI : 10.1021/jp0040190

A. Soloviev, H. Jensen, E. G. Søgaard, and A. V. Kanaev, Aggregation kinetics of sol-gel process based on titanium tetraisopropoxide, Journal of Materials Science, vol.38, pp.3315-3318, 2003.

M. Rivallin, M. Benmami, A. Gaunand, and A. Kanaev, Temperature dependence of the titanium oxide sols precipitation kinetics in the sol-gel process, Chemical Physics Letters, vol.398, pp.157-162, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00163955

M. Rivallin, M. Benmami, A. Kanaev, and A. Gaunand, Sol-gel reactor with rapid micromixing: Modelling and measurements of titanium oxide nano-particle growth, Chemical Engineering Research and Design, vol.83, pp.67-74, 2005.
DOI : 10.1205/cherd.03073

URL : https://hal.archives-ouvertes.fr/hal-00018153

M. Benmami, K. Chhor, and A. V. Kanaev, Supported nanometric titanium oxide sols as a new efficient photocatalyst, The Journal of Physical Chemistry B, vol.109, pp.19766-19771, 2005.
DOI : 10.1021/jp051396+

M. Benmami, K. Chhor, and A. V. Kanaev, High photocatalytic activity of monolayer nanocoatings prepared from non-crystalline titanium oxide sol nanoparticles, Chemical Physics Letters, vol.422, pp.552-557, 2006.
DOI : 10.1016/j.cplett.2006.03.001

R. Azouani, A. Soloviev, M. Benmami, K. Chhor, J. F. Bocquet et al., Stability and growth of titanium-oxo-alkoxy Ti x O y (O i Pr) z clusters, The Journal of Physical Chemistry C, vol.111, p.16243, 2007.

R. Azouani, A. Michau, K. Hassouni, K. Chhor, J. F. Bocquet et al., Elaboration of pure and doped TiO 2 nanoparticles in sol-gel reactor with turbulent micromixing: Application to nanocoatings and photocatalysis, Chemical Engineering Research and Design, vol.88, pp.1123-1130, 2010.

R. Azouani, S. Tieng, K. Chhor, J. F. Bocquet, P. Eloy et al.,

. Kanaev, TiO 2 doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range, Physical Chemistry Chemical Physics, vol.12, pp.11325-11334, 2010.

S. Tieng, R. Azouani, K. Chhor, and A. Kanaev, Nucleation?growth of TiO 2 nanoparticles doped with iron acetylacetonate, The Journal of Physical Chemistry C, vol.115, pp.5244-5250, 2011.
DOI : 10.1021/jp111155v

S. Tieng, A. Kanaev, and K. Chhor, New homogeneously doped Fe(III)-TiO 2 photocatalyst for gaseous pollutant degradation, Applied Catalysis A: General, vol.399, pp.191-197, 2011.

M. Bouslama, M. C. Amamra, O. Brinza, S. Tieng, K. Chhor et al., Isolation of titania nanoparticles in monolithic ultraporous alumina: Effect of nanoparticle aggregation on anatase phase stability and photocatalytic activity, vol.402, pp.156-161, 2011.

M. Bouslama, M. C. Amamra, Z. Jia, M. B. Amar, K. Chhor et al.,

A. Vignes and . Kanaev, Nanoparticulate TiO 2-Al 2 O 3 photocatalytic media: Effect of particle size and polymorphism on photocatalytic activity, ACS Catalysis, vol.2, pp.1884-1892, 2012.

T. C. Manley, The electric characteristics of the ozonator discharge, J. Electrochem. Soc, vol.84, pp.83-96, 1943.

T. Kecskés, J. Raskó, and J. Kiss, FTIR and mass spectrometric study of HCOOH interaction with TiO 2 supported Rh and Au catalysts, Applied Catalysis A: General, vol.268, pp.9-16, 2004.

S. Nishiyama, T. Hara, S. Tsuruya, and M. Masai, Infrared spectroscopy study of aldehydes adsorbed on Rh?Sn bimetallic systems: Selective activation of aldehydes by tin, The Journal of Physical Chemistry B, vol.103, pp.4431-4439, 1999.

G. C. Cabilla, A. L. Bonivardi, and M. A. Baltanás, Infrared study of the adsorption of formic acid on clean and Ca-promoted Pd/SiO 2 catalysts, Applied Catalysis A: General, vol.255, pp.181-195, 2003.

R. P. Young, Infrared spectroscopic studies of adsorption and catalysis. Part 3. Carboxylic acids and their derivatives adsorbed on silica, Canadian Journal of Chemistry, vol.47, pp.2237-2247, 1969.

M. Allian, E. Borello, P. Ugliengo, G. Spano, and E. Garrone, Infrared spectroscopy study of the adsorption of carbonyl compounds on severely outgassed silica: Spectroscopic and thermodynamic results, Langmuir, vol.11, pp.4811-4817, 1995.

R. P. Young and N. Sheppard, Infrared spectroscopic studies of adsorption and catalysis: Acetone and acetaldehyde on silica and silica-supported nickel, Journal of Catalysis, vol.7, pp.223-233, 1967.

J. Raskó and J. Kiss, Adsorption and surface reactions of acetaldehyde on TiO 2 , CeO 2 and Al 2 O 3, Applied Catalysis A: General, vol.287, pp.252-260, 2005.

M. Singh, N. Zhou, D. K. Paul, and K. J. Klabunde, IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO 2 surface, Journal of Catalysis, vol.260, pp.371-379, 2008.
DOI : 10.1016/j.jcat.2008.07.020

J. E. Rekoske and M. A. Barteau, Competition between acetaldehyde and crotonaldehyde during adsorption and reaction on anatase and rutile titanium dioxide, Langmuir, vol.15, pp.2061-2070, 1999.
DOI : 10.1021/la9805140

J. Raskó, T. Kecskés, and J. Kiss, FT-IR and mass spectrometric studies on the interaction of acetaldehyde with TiO 2-supported noble metal catalysts, Applied Catalysis A: General, vol.287, pp.244-251, 2005.

K. Rintramee, K. Föttinger, G. Rupprechter, and J. Wittayakun, Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-41, Applied Catalysis B: Environmental, pp.225-235, 2012.
DOI : 10.1016/j.apcatb.2011.11.050

M. A. Natal-santiago, J. M. Hill, and J. A. Dumesic, Studies of the adsorption of acetaldehyde, methyl acetate, ethyl acetate, and methyl trifluoroacetate on silica, Journal of Molecular Catalysis A: Chemical, vol.140, pp.199-214, 1999.

B. Hauchecorne, D. Terrens, S. Verbruggen, J. A. Martens, H. Van-langenhove et al., Elucidating the photocatalytic degradation pathway of acetaldehyde: An FTIR in situ study under atmospheric conditions, Applied Catalysis B: Environmental, vol.106, pp.630-638, 2011.

M. A. Hasan, M. I. Zaki, and L. Pasupulety, Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation, Applied Catalysis A: General, vol.243, pp.81-92, 2003.

S. Gaur, H. Wu, G. G. Stanley, K. More, C. S. Kumar et al., CO oxidation studies over cluster-derived Au/TiO 2 and AUROlite? Au/TiO 2 catalysts using DRIFTS, Catalysis Today, vol.208, pp.72-81, 2013.
DOI : 10.1016/j.cattod.2012.10.029

C. Yang, Y. Yu, B. Van-der-linden, J. C. Wu, and G. Mul, Artificial photosynthesis over crystalline TiO 2-based catalysts: fact or fiction?, Journal of the American Chemical Society, vol.132, pp.8398-8406, 2010.
DOI : 10.1021/ja101318k

C. F. Mao and M. A. Vannice, Formaldehyde oxidation over Ag catalysts, Journal of Catalysis, vol.154, pp.230-244, 1995.
DOI : 10.1006/jcat.1995.1165

K. L. Miller, C. W. Lee, J. L. Falconer, and J. W. Medlin, Journal of Catalysis, vol.2, pp.294-299, 2010.

M. I. Zaki, M. A. Hasan, F. A. Al-sagheer, and L. Pasupulety, Surface chemistry of acetone on metal oxides: IR observation of acetone adsorption and consequent surface reactions on silica?alumina versus silica and alumina, Langmuir, vol.16, pp.430-436, 2000.

A. A. Tsyganenko, E. N. Storozheva, and O. V. Manoilova, Manifestations of the acidity of adsorbed molecules in H-bonded complexes with silanol groups: Lewis acidity of ozone, Catalysis Today, vol.70, pp.59-71, 2001.

J. C. Lavalley, Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules, Catalysis Today, vol.27, pp.377-401, 1996.

F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova et al., silver and copper catalysts supported on TiO 2 for pure hydrogen production, Catalysis Today, vol.75, pp.169-175, 2002.

F. Solymosi, A. Erdöhelyi, and M. Lancz, Surface interaction between H 2 and CO 2 over palladium on various supports, Journal of Catalysis, vol.95, pp.567-577, 1985.

L. H. Little and C. H. Amberg, Infrared spectra of carbon monoxide and carbon dioxide adsorbed on chromia-alumina and on alumina, Canadian Journal of Chemistry, vol.40, pp.1997-2006, 1962.

Y. Hao, M. Mihaylov, E. Ivanova, K. Hadjiivanov, H. Knözinger et al., CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation, Journal of Catalysis, vol.261, pp.137-149, 2009.

S. Royer and D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides, ChemCatChem, vol.3, pp.24-65, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00755526

A. M. Nadeem, G. I. Waterhouse, and H. Idriss, The reactions of ethanol on TiO 2 and Au/TiO 2 anatase catalysts, Catalysis Today, vol.182, pp.16-24, 2012.

P. Y. Sheng, G. A. Bowmaker, and H. Idriss, The reactions of ethanol over Au/CeO 2, Applied Catalysis A: General, vol.261, pp.171-181, 2004.

Z. Yu and S. S. Chuang, In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO 2, Journal of Catalysis, vol.246, pp.118-126, 2007.

H. J. Freund and M. W. Roberts, Surface chemistry of carbon dioxide, Surface Science Reports, vol.25, pp.225-273, 1996.

C. Morterra and G. Magnacca, A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species, Catalysis Today, vol.27, pp.497-532, 1996.

B. Chen, C. Shi, M. Crocker, Y. Wang, and A. Zhu, Catalytic removal of formaldehyde at room temperature over supported gold catalysts, Applied Catalysis B: Environmental, pp.245-255, 2013.

A. Gazsi, A. Koós, T. Bánsági, and F. Solymosi, Adsorption and decomposition of ethanol on supported Au catalysts, Catalysis Today, vol.160, pp.70-78, 2011.

A. Yee, S. J. Morrison, and H. Idriss, A study of the reactions of ethanol on CeO 2 and Pd/CeO 2 by steady state reactions, temperature programmed desorption, and in-situ FT-IR, Journal of Catalysis, vol.186, pp.279-295, 1999.

G. Busca, J. Lamotte, J. C. Lavalley, and V. Lorenzelli, FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces, Journal of the American Chemical Society, vol.109, pp.5197-5202, 1987.

. Références,

K. Shimizu, M. Katagiri, S. Satokawa, and A. Satsuma, Sintering-resistant and self-regenerative properties of Ag/SnO 2 catalyst for soot oxidation, Applied Catalysis B: Environmental, pp.39-46, 2011.

L. Schill, S. S. Putluru, C. F. Jacobsen, C. H. Hansen, R. Fehrmann et al., Ethanolselective catalytic reduction of NO by Ag/Al 2 O 3 catalysts: Activity and deactivation by alkali salts, Applied Catalysis B: Environmental, vol.127, pp.323-329, 2012.

C. Klett, S. Touchard, A. Vega, M. Redolfi, X. Duten et al., An experimental and modelling study of acetaldehyde oxidation by an atmospheric non-thermal plasma discharge, Acta Technica, vol.56, pp.43-55, 2011.

K. Yan, E. J. Van-heesch, A. J. Pemen, and P. A. Huijbrechts, From chemical kinetics to streamer corona reactor and voltage pulse generator, Plasma Chemistry and Plasma Processing, vol.21, pp.107-137, 2001.

L. A. Rosocha and R. A. Korzekwa, Advanced oxidation and reduction processes in the gas phase using non-thermal plasmas, Journal of Advanced Oxidation Technologies, vol.4, pp.247-264, 1999.

O. Koeta, N. Blin-simiand, W. Faider, S. Pasquiers, A. Bary et al., Decomposition of acetaldehyde in atmospheric pressure filamentary nitrogen plasma, Plasma Chemistry and Plasma Processing, vol.32, pp.991-1023, 2012.

A. M. Vandenbroucke, R. Morent, N. De, C. Geyter, and . Leys, Non-thermal plasmas for non-catalytic and catalytic VOC abatement, Journal of Hazardous Materials, vol.195, pp.30-54, 2011.

K. Kinoshita, Y. Fujiyama, H. Kim, S. Katsura, and A. Mizuno, Control of tobacco smoke and odors using discharge plasma reactor, Journal of Electrostatics, vol.42, pp.83-91, 1997.

N. Sano, T. Nagamoto, H. Tamon, T. Suzuki, and M. Okazaki, Removal of acetaldehyde and skatole in gas by a corona-discharge reactor, Industrial & Engineering Chemistry Research, vol.36, pp.3783-3791, 1997.

O. Koeta, N. Blin-simiand, S. Pasquiers, F. Jorand, and A. Bary, Effect of oxygen percentage on the removal of acetaldehyde by Dielectric Barrier Discharge, Int. J. Plasma Environ. Sci. Technol, vol.6, pp.227-232, 2012.

W. Faider, S. Pasquiers, N. Blin-simiand, and L. Magne, Role of quenching of metastable states in acetaldehyde decomposition by a non-equilibrium nitrogen plasma at sub-atmospheric pressure, Journal of Physics D: Applied Physics, vol.46, p.105202, 2013.

W. Faider, S. Pasquiers, N. Blin-simiand, and L. Magne, Effect of oxygen on the conversion of acetaldehyde in homogeneous plasmas of N 2 /O 2 /CH 3 CHO mixtures, Plasma Sources Science and Technology, vol.22, p.65010, 2013.

S. Pasquiers, W. Faider, N. Blin-simiand, L. Magne, P. Jeanney et al., Role of nitrogen metastable states in non-thermal plasma conversion of Volatile Organic Compounds, Int. J. Plasma Environ. Sci. Technol, vol.6, pp.149-155, 2012.

L. Magne, S. Pasquiers, V. Edon, F. Jorand, C. Postel et al., Production of hydroxyl radicals and removal of acetaldehyde in a photo-triggered discharge in N 2 /O 2 /CH 3 CHO mixtures, Journal of Physics D: Applied Physics, vol.38, p.3446, 2005.

F. A. Cotton and G. Wilkinson, Advanced inorganic chemistry : A comprehensive text, 1988.

G. D. Fong and R. L. Kuczkowski, Mechanism of the ozonolysis of ethylene in the liquid phase, Journal of the American Chemical Society, vol.102, pp.4763-4768, 1980.

J. I. Choe, M. Srinivasan, and R. L. Kuczkowski, Mechanism of the ozonolysis of propene in the liquid phase, Journal of the American Chemical Society, pp.4703-4707, 1983.

D. H. Stedman and H. Niki, Ozonolysis rates of some atmospheric gases, Environmental Letters, vol.4, pp.303-310, 1973.

, Chapitre 3-Dégradation de l'acétaldéhyde par un procédé diphasique couplant une DBD générée à pression atmosphérique et un catalyseur d'argent nanostructuré

D. S. Afanasev, O. A. Yakovina, N. I. Kuznetsova, and A. S. Lisitsyn, High activity in CO oxidation of Ag nanoparticles supported on fumed silica, vol.22, pp.43-47, 2012.

E. Obuchi, T. Sakamoto, K. Nakano, and S. F. , Photocatalytic decomposition of acetaldehyde over TiO 2 /SiO 2 catalyst, Chemical Engineering Science, vol.54, pp.1525-1530, 1999.

C. W. Reed, VOC Catalytic Oxidation on Manganese Oxide Catalysts Using Ozone, Doctor of Philosophy in Chemical Engineering, 2005.

M. Baldi, E. Finocchio, F. Milella, and G. Busca, Catalytic combustion of C 3 hydrocarbons and oxygenates over Mn 3 O 4, Applied Catalysis B: Environmental, vol.16, pp.43-51, 1998.

I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov, Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures, Plasma Sources Science and Technology, vol.1, p.207, 1992.

L. Magne, S. Pasquiers, N. Blin-simiand, and C. Postel, Production and reactivity of the hydroxyl radical in homogeneous high pressure plasmas of atmospheric gases containing traces of light olefins, Journal of Physics D: Applied Physics, vol.40, p.3112, 2007.

C. Subrahmanyam, A. Renken, and L. Kiwi-minsker, Novel catalytic Dielectric Barrier Discharge reactor for gas-phase abatement of isopropanol, Plasma Chemistry and Plasma Processing, vol.27, pp.13-22, 2007.

H. Ding, A. Zhu, F. Lu, Y. Xu, J. Zhang et al., Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams, Journal of Physics D: Applied Physics, vol.39, p.3603, 2006.

Z. Hao, D. Cheng, Y. Guo, and Y. Liang, Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature, Applied Catalysis B: Environmental, vol.33, pp.217-222, 2001.

H. Einaga and A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions, Journal of Hazardous Materials, vol.164, pp.1236-1241, 2009.

H. Chen, C. O. Stanier, M. A. Young, and V. H. Grassian, A kinetic study of ozone decomposition on illuminated oxide surfaces, The Journal of Physical Chemistry A, vol.115, pp.11979-11987, 2011.

A. Naydenov, P. Konova, P. Nikolov, F. Klingstedt, N. Kumar et al., Decomposition of ozone on Ag/SiO 2 catalyst for abatement of waste gases emissions, Catalysis Today, vol.137, pp.471-474, 2008.

S. Imamura, M. Ikebata, T. Ito, and T. Ogita, Decomposition of ozone on a silver catalyst, Industrial & Engineering Chemistry Research, vol.30, pp.217-221, 1991.

M. Che and A. J. Tench, Characterization and reactivity of molecular oxygen species on oxide surfaces, Advances in Catalysis, pp.1-148, 1983.

J. Karuppiah, E. Linga-reddy, P. Manoj-kumar-reddy, B. Ramaraju, R. Karvembu et al., Abatement of mixture of volatile organic compounds (VOCs) in a catalytic nonthermal plasma reactor, Journal of Hazardous Materials, pp.283-289, 2012.

D. S. Muggli, J. T. Mccue, and J. L. Falconer, Mechanism of the photocatalytic oxidation of ethanol on TiO, vol.2, pp.470-483, 1998.

M. A. Barteau, M. Bowker, and R. J. Madix, Formation and decomposition of acetate intermediates on the Ag(110) surface, Journal of Catalysis, vol.67, pp.118-128, 1981.

X. Zhu, X. Gao, R. Qin, Y. Zeng, R. Qu et al., Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor, Applied Catalysis B: Environmental, pp.293-300, 2015.

H. Kim, H. Kobara, A. Ogata, and S. Futamura, Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene, IEEE Transactions on Industry Applications, vol.41, pp.206-214, 2005.

, Chapitre 3-Dégradation de l'acétaldéhyde par un procédé diphasique couplant une DBD générée à pression atmosphérique et un catalyseur d'argent nanostructuré

X. Chen, K. Honda, and Z. Zhang, A comprehensive comparison of CH 4-CO 2 reforming activities of NiO/Al 2 O 3 catalysts under fixed-and fluidized-bed operations, Applied Catalysis A: General, vol.288, pp.86-97, 2005.

A. Effendi, K. Hellgardt, Z. G. Zhang, and T. Yoshida, Characterisation of carbon deposits on Ni/SiO 2 in the reforming of CH 4-CO 2 using fixed-and fluidised-bed reactors, Catalysis Communications, vol.4, pp.203-207, 2003.

P. Lan, Q. Xu, M. Zhou, L. Lan, S. Zhang et al., Catalytic steam reforming of fast pyrolysis biooil in fixed bed and fluidized bed reactors, Chemical Engineering & Technology, vol.33, pp.2021-2028, 2010.

Z. Jia, A. Vega-gonzález, M. B. Amar, K. Hassouni, S. Tieng et al., Acetaldehyde removal using a diphasic process coupling a silver-based nano-structured catalyst and a plasma at atmospheric pressure, Catalysis Today, vol.208, pp.82-89, 2013.

C. Klett, Etude de la dégradation d'un Composé Organique Volatil modèle, l'acétaldéhyde, par des procédés diphasiques utilisant des techniques de décharges électriques non-thermiques à pression atmosphérique couplées à un lit fixe, 2011.

S. A. Gardezi, J. T. Wolan, and B. Joseph, Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO 2 catalysts for Fischer-Tropsch synthesis, Applied Catalysis A: General, pp.151-163, 2012.

A. Van-meerbeek, A. Jelli, and J. J. Fripiat, Reduction of the surface of silica gel by hydrogen spillover, Journal of Catalysis, vol.46, pp.320-325, 1977.

S. Chettibi, N. Keghouche, Y. Benguedouar, M. M. Bettahar, and J. Belloni, Structural and catalytic characterization of radiation-induced Ni/TiO 2 nanoparticles, Catalysis Letters, vol.143, pp.1166-1174, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01494091

S. Yuan, P. Mériaudeau, and V. Perrichon, Catalytic combustion of diesel soot particles on copper catalysts supported on TiO 2. Effect of potassium promoter on the activity, Applied Catalysis B: Environmental, vol.3, pp.319-333, 1994.

G. Córdoba, M. Viniegra, J. L. Fierro, J. Padilla, R. Arroyo et al., Cu 2+ ions in sol-gel-derived TiO, vol.2, pp.1-6, 1998.

T. Huizinga, J. Van-grondelle, and R. Prins, A temperature programmed reduction study of Pt on Al 2 O 3 and TiO 2, Applied Catalysis, vol.10, pp.199-213, 1984.

R. R. Shahi, A. Bhatnagar, S. K. Pandey, V. Dixit, and O. N. Srivastava, Effects of Ti-based catalysts and synergistic effect of SWCNTs-TiF 3 on hydrogen uptake and release from MgH 2, International Journal of Hydrogen Energy, vol.39, pp.14255-14261, 2014.

P. Panagiotopoulou, A. Christodoulakis, D. I. Kondarides, and S. Boghosian, Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO 2 catalysts, Journal of Catalysis, vol.240, pp.114-125, 2006.

X. Kang and S. Chen, Photocatalytic reduction of methylene blue by TiO 2 nanotube arrays: effects of TiO 2 crystalline phase, Journal of Materials Science, vol.45, pp.2696-2702, 2010.

W. Dai, Y. Cao, L. Ren, X. Yang, J. Xu et al., Ag-SiO 2-Al 2 O 3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol, Journal of Catalysis, vol.228, pp.80-91, 2004.

M. Luo, X. Yuan, X. -m, and . Zheng, Catalyst characterization and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compounds, Applied Catalysis A: General, vol.175, pp.121-129, 1998.

A. Musi, P. Massiani, D. Brouri, J. Trichard, and P. D. Costa, On the characterisation of silver species for SCR of NO x with ethanol, Catalysis Letters, vol.128, pp.25-30, 2009.

S. S. Kim, K. H. Park, and S. C. Hong, A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO 2 catalysts, Fuel Processing Technology, vol.108, pp.47-54, 2013.

K. J. Raj, M. G. Prakash, R. Mahalakshmy, T. Elangovan, and B. Viswanathan, Selective hydrogenation of acetophenone over nickel supported on titania, Catalysis Science & Technology, vol.2, pp.1429-1436, 2012.

M. Allian, E. Borello, P. Ugliengo, G. Spano, and E. Garrone, Infrared spectroscopy study of the adsorption of carbonyl compounds on severely outgassed silica: Spectroscopic and thermodynamic results, Langmuir, vol.11, pp.4811-4817, 1995.

R. P. Young and N. Sheppard, Infrared spectroscopic studies of adsorption and catalysis: Acetone and acetaldehyde on silica and silica-supported nickel, Journal of Catalysis, vol.7, pp.223-233, 1967.

J. Raskó and J. Kiss, Adsorption and surface reactions of acetaldehyde on TiO 2 , CeO 2 and Al 2 O 3, Applied Catalysis A: General, vol.287, pp.252-260, 2005.

M. Singh, N. Zhou, D. K. Paul, and K. J. Klabunde, IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO 2 surface, Journal of Catalysis, vol.260, pp.371-379, 2008.

J. E. Rekoske and M. A. Barteau, Competition between acetaldehyde and crotonaldehyde during adsorption and reaction on anatase and rutile titanium dioxide, Langmuir, vol.15, pp.2061-2070, 1999.

, Chapitre 4-Etude des phénomènes physico-chimiques ayant lieu lors de l'adsorption de CH3CHO sur un catalyseur Ag/TiO2/SiO2 nanostructuré

J. Raskó, T. Kecskés, and J. Kiss, FT-IR and mass spectrometric studies on the interaction of acetaldehyde with TiO 2-supported noble metal catalysts, Applied Catalysis A: General, vol.287, pp.244-251, 2005.

K. Rintramee, K. Föttinger, G. Rupprechter, and J. Wittayakun, Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-41, Applied Catalysis B: Environmental, pp.225-235, 2012.

M. A. Natal-santiago, J. M. Hill, and J. A. Dumesic, Studies of the adsorption of acetaldehyde, methyl acetate, ethyl acetate, and methyl trifluoroacetate on silica, Journal of Molecular Catalysis A: Chemical, vol.140, pp.199-214, 1999.

B. Hauchecorne, D. Terrens, S. Verbruggen, J. A. Martens, H. Van-langenhove et al., Elucidating the photocatalytic degradation pathway of acetaldehyde: An FTIR in situ study under atmospheric conditions, Applied Catalysis B: Environmental, vol.106, pp.630-638, 2011.

M. A. Hasan, M. I. Zaki, and L. Pasupulety, Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation, Applied Catalysis A: General, vol.243, pp.81-92, 2003.

S. Gaur, H. Wu, G. G. Stanley, K. More, C. S. Kumar et al., CO oxidation studies over cluster-derived Au/TiO 2 and AUROlite? Au/TiO 2 catalysts using DRIFTS, Catalysis Today, vol.208, pp.72-81, 2013.

C. Yang, Y. Yu, B. Van-der-linden, J. C. Wu, and G. Mul, Artificial photosynthesis over crystalline TiO 2-based catalysts: fact or fiction?, Journal of the American Chemical Society, vol.132, pp.8398-8406, 2010.

C. F. Mao and M. A. Vannice, Formaldehyde oxidation over Ag catalysts, Journal of Catalysis, vol.154, pp.230-244, 1995.

T. Kecskés, J. Raskó, and J. Kiss, FTIR and mass spectrometric study of HCOOH interaction with TiO 2 supported Rh and Au catalysts, Applied Catalysis A: General, vol.268, pp.9-16, 2004.

K. L. Miller, C. W. Lee, J. L. Falconer, and J. W. Medlin, Journal of Catalysis, vol.2, pp.294-299, 2010.

M. I. Zaki, M. A. Hasan, F. A. Al-sagheer, and L. Pasupulety, Surface chemistry of acetone on metal oxides: IR observation of acetone adsorption and consequent surface reactions on silica?alumina versus silica and alumina, Langmuir, vol.16, pp.430-436, 2000.

A. A. Tsyganenko, E. N. Storozheva, and O. V. Manoilova, Manifestations of the acidity of adsorbed molecules in H-bonded complexes with silanol groups: Lewis acidity of ozone, Catalysis Today, vol.70, pp.59-71, 2001.

J. C. Lavalley, Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules, Catalysis Today, vol.27, pp.377-401, 1996.

F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova et al., silver and copper catalysts supported on TiO 2 for pure hydrogen production, Catalysis Today, vol.75, pp.169-175, 2002.

F. Solymosi, A. Erdöhelyi, and M. Lancz, Surface interaction between H 2 and CO 2 over palladium on various supports, Journal of Catalysis, vol.95, pp.567-577, 1985.

H. Idriss, K. S. Kim, and M. A. Barteau, Carbon-carbon bond formation via aldolization of acetaldehyde on single crystal and polycrystalline TiO 2 surfaces, Journal of Catalysis, vol.139, pp.119-133, 1993.

C. T. Lynch, K. S. Mazdiyasni, J. S. Smith, and W. J. Crawford, Infrared spectra of transition metal alkoxides, Analytical Chemistry, vol.36, pp.2332-2337, 1964.

M. Dalibart and L. Servant, Spectroscopie dans l'infrarouge, pp.1-25, 2000.

D. L. Blaney, Does adsorbed carbon dioxide contribute to the infrared spectrum of Mars?, Abstracts of the Lunar and Planetary Science Conference, vol.23, p.121, 1992.

Y. Liu, Q. Ma, and H. He, Comparative study of the effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of D-Al 2 O 3 and MgO, Atmos. Chem. Phys, vol.9, pp.6273-6286, 2009.

, Chapitre 4-Etude des phénomènes physico-chimiques ayant lieu lors de l'adsorption de CH3CHO sur un catalyseur Ag/TiO2/SiO2 nanostructuré

Y. Amenomiya, Y. Morikawa, and G. Pleizier, Infrared spectroscopy of C 18 O 2 on alumina, Journal of Catalysis, vol.46, pp.431-433, 1977.

J. B. Peri, Oxygen exchange between carbon dioxide (oxygen-18) and acidic oxide and zeolite catalysts, The journal of physical chemistry, vol.79, pp.1582-1588, 1975.

A. Auroux and A. Gervasini, Microcalorimetric study of the acidity and basicity of metal oxide surfaces, The Journal of Physical Chemistry, vol.94, pp.6371-6379, 1990.

G. Busca, The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization, Physical Chemistry Chemical Physics, vol.1, pp.723-736, 1999.

J. A. Lercher, C. Gründling, and G. Eder-mirth, Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules, Catalysis Today, vol.27, pp.353-376, 1996.

J. B. Peri, Infrared study of adsorption of carbon dioxide, hydrogen chloride, and other molecules on "acid" sites on dry silica-alumina and J-alumina, The Journal of Physical Chemistry, vol.70, pp.3168-3179, 1966.

C. Mao and M. A. Vannice, High surface area D-alumina. I.: Adsorption properties and heats of adsorption of carbon monoxide, carbon dioxide, and ethylene, Applied Catalysis A: General, vol.111, pp.151-173, 1994.

C. F. Mao and M. A. Vannice, Adsorption of oxygen, ethylene, carbon dioxide and carbon monoxide on silver dispersed on HSA D-alumina, Applied Catalysis A: General, vol.122, pp.41-59, 1995.

M. C. Manchado, J. M. Guil, A. Perez-masia, A. Ruiz-paniego, and J. M. Trejo-menayo, Adsorption of H 2 , O 2 , CO, and CO 2 on a J-alumina: Volumetric and calorimetric studies, Langmuir, vol.10, pp.685-691, 1994.

N. D. Parkyns, Influence of thermal pretreatment on the infrared spectrum of carbon dioxide adsorbed on alumina, The Journal of Physical Chemistry, vol.75, pp.526-531, 1971.

K. Pokrovski, K. T. Jung, and A. T. Bell, Investigation of CO and CO 2 adsorption on tetragonal and monoclinic zirconia, Langmuir, vol.17, pp.4297-4303, 2001.

G. B. Raupp and J. A. Dumesic, Adsorption of carbon monoxide, carbon dioxide, hydrogen, and water on titania surfaces with different oxidation states, The Journal of Physical Chemistry, vol.89, pp.5240-5246, 1985.

A. A. Tsyganenko, E. N. Storozheva, O. V. Manoilova, T. Lesage, M. Daturi et al., Brønsted acidity of silica silanol groups induced by adsorption of acids, Catalysis Letters, vol.70, pp.159-163, 2000.

M. I. Zaki and H. Knözlngem, Characterization of oxide surfaces by adsorption of carbon monoxide-A low temperature infrared spectroscopy study, Spectrochimica Acta Part A: Molecular Spectroscopy, vol.43, pp.1455-1459, 1987.

M. I. Zaki and H. Knözinger, Carbon monoxide-A low temperature infrared probe for the characterization of hydroxyl group properties on metal oxide surfaces, Materials Chemistry and Physics, vol.17, pp.201-215, 1987.

C. D. Zeinalipour-yazdi, A. L. Cooksy, and A. M. Efstathiou, A Diffuse Reflectance Infrared FourierTransform spectra and Density Functional Theory study of CO adsorption on Rh, The Journal of Physical Chemistry C, vol.111, issue.2 O 3, pp.13872-13878, 2007.

A. Erd?helyi, K. Fodor, and G. Suru, Reaction of carbon monoxide with water on supported iridium catalysts, Applied Catalysis A: General, vol.139, pp.131-147, 1996.

A. Erd?helyi and F. Solymosi, Effects of the support on the adsorption and dissociation of CO and on the reactivity of surface carbon on Rh catalysts, Journal of Catalysis, vol.84, pp.446-460, 1983.

F. Boccuzzi, A. Chiorino, and M. Manzoli, FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania, Surface Science, pp.942-946, 2000.

G. Jacobs, L. Williams, U. Graham, D. Sparks, and B. H. Davis, Low-temperature water-gas shift: Insitu DRIFTS?reaction study of a Pt/CeO 2 catalyst for fuel cell reformer applications, The Journal of Physical Chemistry B, vol.107, pp.10398-10404, 2003.

, Chapitre 4-Etude des phénomènes physico-chimiques ayant lieu lors de l'adsorption de CH3CHO sur un catalyseur Ag/TiO2/SiO2 nanostructuré

J. Grunwaldt and A. Baiker, Gold/Titania interfaces and their role in carbon monoxide oxidation, The Journal of Physical Chemistry B, vol.103, pp.1002-1012, 1999.

E. M. Cordi and J. L. Falconer, Oxidation of volatile organic compounds on a Ag/Al 2 O 3 catalyst, Applied Catalysis A: General, vol.151, pp.179-191, 1997.

F. Solymosi, A. Erdöhelyi, and M. Kocsis, Surface interaction between H 2 and CO 2 on Rh/Al 2 O 3 , studied by adsorption and infrared spectroscopic measurements, Journal of Catalysis, vol.65, pp.428-436, 1980.

D. Bianchi, T. Chafik, M. Khalfallah, and S. J. Teichner, Intermediate species on zirconia supported methanol aerogel catalysts. II. Adsorption of carbon monoxide on pure zirconia containing zinc oxide, Applied Catalysis A: General, vol.105, pp.223-249, 1993.

A. Zecchina, S. Coluccia, G. Spoto, D. Scarano, and L. Marchese, Revisiting MgO-CO surface chemistry: an IR investigation, Journal of the Chemical Society, pp.703-709, 1990.

S. K. Wirawan and D. Creaser, Multicomponent H 2 /CO/CO 2 adsorption on BaZSM-5 zeolite, Separation and Purification Technology, vol.52, pp.224-231, 2006.

J. S?oczy?ski, R. Grabowski, A. Koz?owska, M. Lachowska, and J. Skrzypek, Effect of additives and a preparation method on catalytic activity of Cu/ZnO/ZrO 2 system in the carbon dioxide hydrogenation to methanol, Studies in Surface Science and Catalysis, pp.161-164, 2004.

J. Hagen, L. D. Socaciu, M. Elijazyfer, U. Heiz, T. M. Bernhardt et al., Coadsorption of CO and O 2 on small free gold cluster anions at cryogenic temperatures: Model complexes for catalytic CO oxidation, Physical Chemistry Chemical Physics, vol.4, pp.1707-1709, 2002.

Z. Lu and Q. Xu, CO-promoted N 2 adsorption on copper atoms, Physical Chemistry Chemical Physics, vol.12, pp.7077-7082, 2010.

H. Zhai, B. Kiran, B. Dai, J. Li, and L. Wang, Unique CO Chemisorption Properties of Gold Hexamer: Au 6 (CO) n-(n = 0?3), Journal of the American Chemical Society, vol.127, pp.12098-12106, 2005.

K. Tan, S. Zuluaga, Q. Gong, Y. Gao, N. Nijem et al., Competitive coadsorption of CO 2 with H 2 O, and CH 4 in M-MOF-74 (M = Mg, vol.27, pp.2203-2217, 2015.

K. S. Rutkowski, S. M. Melikova, T. D. Kolomiitsova, N. N. Filippov, and A. Koll, Infrared studies of CO 2 doped Xe solutions in gas, liquid and solid phases. The fundamental Q 3 band and the Coriolis perturbed Fermi doublet (Q 1 +Q 21 , Q 1 +Q 211 ), Journal of Molecular Structure, vol.596, pp.179-183, 2001.

V. P. Skripov, Surface tension of carbon dioxide, Dortmund Data Bank

A. Liquide, L. 'encyclopédie-des-gaz, and A. Liquide,

M. S. Gordon, Hydrogen transfer in 7-azaindole, vol.100, pp.3974-3979, 1996.

A. Berná, A. Rodes, J. M. Feliu, F. Illas, A. Gil et al., Structural and spectroelectrochemical study of carbonate and bicarbonate adsorbed on Pt(111) and Pd/Pt(111) electrodes, The Journal of Physical Chemistry B, vol.108, pp.17928-17939, 2004.

J. Baltrusaitis, J. H. Jensen, and V. H. Grassian, FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe 2 O 3 and Al 2 O 3, The Journal of Physical Chemistry B, vol.110, pp.12005-12016, 2006.

V. V. Ordomsky, V. L. Sushkevich, and I. I. Ivanova, Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica, Journal of Molecular Catalysis A: Chemical, vol.333, pp.85-93, 2010.
DOI : 10.1016/j.molcata.2010.10.001

C. H. Dai and S. D. Worley, Decomposition of methanol, acetaldehyde, and acetone on supported rhodium catalysts, Langmuir, vol.4, pp.326-329, 1988.

, Chapitre 4-Etude des phénomènes physico-chimiques ayant lieu lors de l'adsorption de CH3CHO sur un catalyseur Ag/TiO2/SiO2 nanostructuré

M. El-maazawi, A. N. Finken, A. B. Nair, and V. H. Grassian, Adsorption and photocatalytic oxidation of acetone on TiO 2 : An in-situ transmission FT-IR study, Journal of Catalysis, vol.191, pp.138-146, 2000.

J. M. Coronado, S. Kataoka, I. Tejedor-tejedor, and M. A. Anderson, Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO 2 : simultaneous FTIR analysis of gas and surface species, Journal of Catalysis, vol.219, pp.219-230, 2003.

W. Xu, D. Raftery, and J. S. Francisco, Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in-situ FTIR, The Journal of Physical Chemistry B, vol.107, pp.4537-4544, 2003.

C. Barakat, P. Gravejat, O. Guaitella, F. Thevenet, and A. Rousseau, Oxidation of isopropanol and acetone adsorbed on TiO 2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring, Applied Catalysis B: Environmental, vol.147, pp.302-313, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01549396

R. P. Young and N. Sheppard, Infrared spectroscopic studies of adsorption and catalysis: IV. Aliphatic ketones on silica-supported nickel, Journal of Catalysis, vol.20, pp.333-339, 1971.

C. L. Bianchi, S. Gatto, C. Pirola, A. Naldoni, A. Di-michele et al., Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO 2, Applied Catalysis B: Environmental, vol.146, pp.123-130, 2014.
DOI : 10.1016/j.apcatb.2013.02.047

L. F. De-mello, F. B. Noronha, and M. Schmal, NO reduction with ethanol on Pd-Mo/Al 2 O 3 catalysts, Journal of Catalysis, vol.220, pp.358-371, 2003.

K. S. Kim and M. A. Barteau, Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO 2 (001) single-crystal surfaces, Journal of Catalysis, pp.353-375, 1990.

Z. Topalian, B. I. Stefanov, C. G. Granqvist, and L. Österlund, Adsorption and photo-oxidation of acetaldehyde on TiO 2 and sulfate-modified TiO 2 : Studies by in situ FTIR spectroscopy and microkinetic modeling, Journal of Catalysis, vol.307, pp.265-274, 2013.

M. A. Vannice, Kinetics of catalytic reactions, 2005.

M. R. Nimlos, E. J. Wolfrum, M. L. Brewer, J. A. Fennell, and G. Bintner, Gas-phase heterogeneous photocatalytic oxidation of ethanol: Pathways and kinetic modeling, Environmental Science & Technology, vol.30, pp.3102-3110, 1996.
DOI : 10.1021/es9602298

, Tableau 5-2 : Comparaison des intermédiaires réactionnels et sous-produits identifiés lors de la décomposition de l'acétaldéhyde par désorption en température et par le procédé plasma-catalyse

, TiO 2 /SiO 2 (spectre b) et Ag/TiO 2 /SiO 2 (spectre c) préalablement saturées en acétaldéhyde. Un zoom des zones 3 000-2 400 cm-1 et 2 000-1 000 cm-1 est également présenté

, Les bandes d'absorption observées après 3 heures d'ozonation de CH 3 CHO sur ces trois surfaces ainsi que leurs attributions sont

, Récapitulatif et comparaison des bandes d'absorption observées après 3 heures d'ozonation des surfaces SiO2, TiO2/SiO2 et Ag/TiO2/SiO2 préalablement saturées en acétaldéhyde Bande

, Formiates et/ou éthoxydes 9

, Cela signifie qu'une partie des intermédiaires réactionnels formés en surface est identique quelle que soit la surface considérée. Il s'agit de l'acide formique, de l'acétone, du crotonaldéhyde et des acétates. La formation de crotonaldéhyde sur SiO 2 en présence d'ozone est remarquable car ce composé 'espèces actives issues de la décomposition de l'ozone sur SiO 2 favorise la, Les spectres d'ozonation de CH 3 CHO présentent un certain nombre de bandes d'absorption communes aux trois surfaces étudiées (Tableau 5-4 bandes n° 1 à 4)

, Chapitre 5-Effet de la température et de l'ozone sur l'oxydation de l'acétaldéhyde adsorbé sur un catalyseur Ag/TiO2/SiO2 nanostructuré

. Références,

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.61, pp.2-30, 2006.
DOI : 10.1016/j.sab.2005.10.003

H. Idriss, K. S. Kim, and M. A. Barteau, Carbon-carbon bond formation via aldolization of acetaldehyde on single crystal and polycrystalline TiO 2 surfaces, Journal of Catalysis, vol.139, pp.119-133, 1993.

J. E. Rekoske and M. A. Barteau, Competition between acetaldehyde and crotonaldehyde during adsorption and reaction on anatase and rutile titanium dioxide, Langmuir, vol.15, pp.2061-2070, 1999.
DOI : 10.1021/la9805140

J. Raskó, T. Kecskés, and J. Kiss, FT-IR and mass spectrometric studies on the interaction of acetaldehyde with TiO 2-supported noble metal catalysts, Applied Catalysis A: General, vol.287, pp.244-251, 2005.

J. Raskó and J. Kiss, Adsorption and surface reactions of acetaldehyde on TiO 2 , CeO 2 and Al 2 O 3, Applied Catalysis A: General, vol.287, pp.252-260, 2005.

M. Singh, N. Zhou, D. K. Paul, and K. J. Klabunde, IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO 2 surface, Journal of Catalysis, vol.260, pp.371-379, 2008.

B. Hauchecorne, D. Terrens, S. Verbruggen, J. A. Martens, H. Van-langenhove et al., Elucidating the photocatalytic degradation pathway of acetaldehyde: An FTIR in situ study under atmospheric conditions, Applied Catalysis B: Environmental, vol.106, pp.630-638, 2011.

M. El-maazawi, A. N. Finken, A. B. Nair, and V. H. Grassian, Adsorption and photocatalytic oxidation of acetone on TiO 2 : An in-situ transmission FT-IR study, Journal of Catalysis, vol.191, pp.138-146, 2000.

J. M. Coronado, S. Kataoka, I. Tejedor-tejedor, and M. A. Anderson, Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO 2 : simultaneous FTIR analysis of gas and surface species, Journal of Catalysis, vol.219, pp.219-230, 2003.

W. Xu, D. Raftery, and J. S. Francisco, Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in-situ FTIR, The Journal of Physical Chemistry B, vol.107, pp.4537-4544, 2003.

C. Barakat, P. Gravejat, O. Guaitella, F. Thevenet, and A. Rousseau, Oxidation of isopropanol and acetone adsorbed on TiO 2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring, Applied Catalysis B: Environmental, vol.147, pp.302-313, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01549396

R. P. Young and N. Sheppard, Infrared spectroscopic studies of adsorption and catalysis: IV. Aliphatic ketones on silica-supported nickel, Journal of Catalysis, vol.20, pp.333-339, 1971.

C. D. Zeinalipour-yazdi, A. L. Cooksy, and A. M. Efstathiou, A Diffuse Reflectance Infrared FourierTransform spectra and Density Functional Theory study of CO adsorption on Rh, The Journal of Physical Chemistry C, vol.111, issue.2 O 3, pp.13872-13878, 2007.

A. Erd?helyi, K. Fodor, and G. Suru, Reaction of carbon monoxide with water on supported iridium catalysts, Applied Catalysis A: General, vol.139, pp.131-147, 1996.

F. Solymosi, A. Erdöhelyi, and M. Kocsis, Surface interaction between H 2 and CO 2 on Rh/Al 2 O 3 , studied by adsorption and infrared spectroscopic measurements, Journal of Catalysis, vol.65, pp.428-436, 1980.

D. Bianchi, T. Chafik, M. Khalfallah, and S. J. Teichner, Intermediate species on zirconia supported methanol aerogel catalysts. II. Adsorption of carbon monoxide on pure zirconia containing zinc oxide, Applied Catalysis A: General, vol.105, pp.223-249, 1993.
DOI : 10.1016/0926-860x(94)80221-1

A. Zecchina, S. Coluccia, G. Spoto, D. Scarano, and L. Marchese, Revisiting MgO-CO surface chemistry: an IR investigation, Journal of the Chemical Society, pp.703-709, 1990.
DOI : 10.1039/ft9908600703

M. Dalibart and L. Servant, Spectroscopie dans l'infrarouge, pp.1-25, 2000.

, Chapitre 5-Effet de la température et de l'ozone sur l'oxydation de l'acétaldéhyde adsorbé sur un catalyseur Ag/TiO2/SiO2 nanostructuré

D. L. Blaney, Does adsorbed carbon dioxide contribute to the infrared spectrum of Mars?, Abstracts of the Lunar and Planetary Science Conference, vol.23, p.121, 1992.

Y. Liu, Q. Ma, and H. He, Comparative study of the effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of D-Al 2 O 3 and MgO, Atmos. Chem. Phys, vol.9, pp.6273-6286, 2009.

Y. Amenomiya, Y. Morikawa, and G. Pleizier, Infrared spectroscopy of C 18 O 2 on alumina, Journal of Catalysis, vol.46, pp.431-433, 1977.

J. B. Peri, Oxygen exchange between carbon dioxide (oxygen-18) and acidic oxide and zeolite catalysts, The journal of physical chemistry, vol.79, pp.1582-1588, 1975.

M. A. Natal-santiago, J. M. Hill, and J. A. Dumesic, Studies of the adsorption of acetaldehyde, methyl acetate, ethyl acetate, and methyl trifluoroacetate on silica, Journal of Molecular Catalysis A: Chemical, vol.140, pp.199-214, 1999.

A. M. Nadeem, G. I. Waterhouse, and H. Idriss, The reactions of ethanol on TiO 2 and Au/TiO 2 anatase catalysts, Catalysis Today, vol.182, pp.16-24, 2012.

P. Y. Sheng, G. A. Bowmaker, and H. Idriss, The reactions of ethanol over Au/CeO 2, Applied Catalysis A: General, vol.261, pp.171-181, 2004.

Z. Yu and S. S. Chuang, In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO 2, Journal of Catalysis, vol.246, pp.118-126, 2007.

T. Kecskés, J. Raskó, and J. Kiss, FTIR and mass spectrometric study of HCOOH interaction with TiO 2 supported Rh and Au catalysts, Applied Catalysis A: General, vol.268, pp.9-16, 2004.

M. A. Debeila, N. J. Coville, M. S. Scurrell, and G. R. Hearne, DRIFTS studies of the interaction of nitric oxide and carbon monoxide on Au-TiO2, vol.72, pp.79-87, 2002.

C. Morterra and G. Magnacca, A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species, Catalysis Today, vol.27, pp.497-532, 1996.

F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova et al., silver and copper catalysts supported on TiO 2 for pure hydrogen production, Catalysis Today, vol.75, pp.169-175, 2002.
DOI : 10.1016/s0920-5861(02)00060-3

F. Solymosi, A. Erdöhelyi, and M. Lancz, Surface interaction between H 2 and CO 2 over palladium on various supports, Journal of Catalysis, vol.95, pp.567-577, 1985.

S. Royer and D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides, ChemCatChem, vol.3, pp.24-65, 2011.
DOI : 10.1002/cctc.201000378

URL : https://hal.archives-ouvertes.fr/hal-00755526

L. F. De-mello, F. B. Noronha, and M. Schmal, NO reduction with ethanol on Pd-Mo/Al 2 O 3 catalysts, Journal of Catalysis, vol.220, pp.358-371, 2003.

J. J. Plata, V. Collico, A. M. Márquez, and J. F. Sanz, Understanding acetaldehyde thermal chemistry on the TiO 2 (110) rutile surface: From adsorption to reactivity, The Journal of Physical Chemistry C, vol.115, pp.2819-2825, 2011.
DOI : 10.1021/jp110696f

G. W. Keulks and C. C. Chang, Kinetics and mechanism of carbon monoxide oxidation over silver catalysts, The journal of physical chemistry, vol.74, pp.2590-2595, 1970.

L. Yu, Y. Shi, Z. Zhao, H. Yin, Y. Wei et al., Ultrasmall silver nanoparticles supported on silica and their catalytic performances for carbon monoxide oxidation, Catalysis Communications, vol.12, pp.616-620, 2011.
DOI : 10.1016/j.catcom.2010.12.012

R. P. Young and N. Sheppard, Infrared spectroscopic studies of adsorption and catalysis: Acetone and acetaldehyde on silica and silica-supported nickel, Journal of Catalysis, vol.7, pp.223-233, 1967.

C. Cao and K. L. Hohn, Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3, Applied Catalysis A: General, vol.354, pp.26-32, 2009.

M. A. Hasan, M. I. Zaki, and L. Pasupulety, Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation, Applied Catalysis A: General, vol.243, pp.81-92, 2003.

, Chapitre 5-Effet de la température et de l'ozone sur l'oxydation de l'acétaldéhyde adsorbé sur un catalyseur Ag/TiO2/SiO2 nanostructuré

D. Gong, V. P. Subramaniam, J. G. Highfield, Y. Tang, Y. Lai et al., In-situ mechanistic investigation at the liquid/solid interface by attenuated total reflectance FTIR: Ethanol photo-oxidation over pristine and platinized TiO 2 (P25), ACS Catalysis, vol.1, pp.864-871, 2011.

O. Horie and G. K. Moortgat, The effect of the addition of CO on the reaction of ozone with ethene, Chemical Physics Letters, vol.288, pp.464-472, 1998.

C. Klett, X. Duten, S. Tieng, S. Touchard, P. Jestin et al., Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process, Journal of Hazardous Materials, vol.279, pp.356-364, 2014.

L. M. Arin and P. Warneck, Reaction of ozone with carbon monoxide, The journal of physical chemistry, vol.76, pp.1514-1516, 1972.

T. Engel and G. Ertl, Elementary Steps in the Catalytic Oxidation of Carbon Monoxide on Platinum Metals, Advances in Catalysis, pp.1-78, 1979.

A. Bourane and D. Bianchi, Oxidation of CO on a Pt/Al2O3 Catalyst: From the Surface Elementary Steps to Light-Off Tests: I. Kinetic Study of the Oxidation of the Linear CO Species, Journal of Catalysis, vol.202, pp.34-44, 2001.

U. Burghaus, L. Vattuone, P. Gambardella, and M. Rocca, HREELS study of CO oxidation on Ag(001) by O2 or O, vol.374, pp.1-8, 1997.

D. Tang, Z. Chen, J. Hu, G. Sun, S. Lu et al., CO oxidation catalyzed by silver nanoclusters: mechanism and effects of charge, Physical Chemistry Chemical Physics, pp.12829-12837, 2012.

T. Engel and G. Ertl, A molecular beam investigation of the catalytic oxidation of CO on Pd, vol.69, pp.1267-1281, 1978.

A. Naydenov, P. Konova, P. Nikolov, F. Klingstedt, N. Kumar et al., Decomposition of ozone on Ag/SiO 2 catalyst for abatement of waste gases emissions, Catalysis Today, vol.137, pp.471-474, 2008.

J. Karuppiah, E. Linga-reddy, P. Manoj-kumar-reddy, B. Ramaraju, R. Karvembu et al., Abatement of mixture of volatile organic compounds (VOCs) in a catalytic nonthermal plasma reactor, Journal of Hazardous Materials, pp.283-289, 2012.

J. J. Spivey, Complete catalytic oxidation of volatile organics, Industrial & Engineering Chemistry Research, vol.26, pp.2165-2180, 1987.

K. Shimizu, M. Katagiri, S. Satokawa, and A. Satsuma, Sintering-resistant and self-regenerative properties of Ag/SnO 2 catalyst for soot oxidation, Applied Catalysis B: Environmental, pp.39-46, 2011.

P. Forzatti and L. Lietti, Catalyst deactivation, Catalysis Today, vol.52, pp.165-181, 1999.

C. I. Carlisle, T. Fujimoto, W. S. Sim, and D. A. King, Atomic imaging of the transition between oxygen chemisorption and oxide film growth on Ag(001), Surface Science, vol.470, pp.15-31, 2000.

P. Konova, M. Stoyanova, A. Naydenov, S. Christoskova, and D. Mehandjiev, Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide, Applied Catalysis A: General, vol.298, pp.109-114, 2006.

M. Stoyanova, P. Konova, P. Nikolov, A. Naydenov, S. Christoskova et al., Aluminasupported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs, Chemical Engineering Journal, vol.122, pp.41-46, 2006.

S. Imamura, M. Ikebata, T. Ito, and T. Ogita, Decomposition of ozone on a silver catalyst, Industrial & Engineering Chemistry Research, vol.30, pp.217-221, 1991.

A. Erd?helyi and F. Solymosi, Effects of the support on the adsorption and dissociation of CO and on the reactivity of surface carbon on Rh catalysts, Journal of Catalysis, vol.84, pp.446-460, 1983.

F. Boccuzzi, A. Chiorino, and M. Manzoli, FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania, Surface Science, pp.942-946, 2000.

, Chapitre 5-Effet de la température et de l'ozone sur l'oxydation de l'acétaldéhyde adsorbé sur un catalyseur Ag/TiO2/SiO2 nanostructuré

G. Jacobs, L. Williams, U. Graham, D. Sparks, and B. H. Davis, Low-temperature water-gas shift: Insitu DRIFTS?reaction study of a Pt/CeO 2 catalyst for fuel cell reformer applications, The Journal of Physical Chemistry B, vol.107, pp.10398-10404, 2003.

J. Grunwaldt and A. Baiker, Gold/Titania interfaces and their role in carbon monoxide oxidation, The Journal of Physical Chemistry B, vol.103, pp.1002-1012, 1999.

E. M. Cordi and J. L. Falconer, Oxidation of volatile organic compounds on a Ag/Al 2 O 3 catalyst, Applied Catalysis A: General, vol.151, pp.179-191, 1997.

M. Petersson, D. Jonsson, H. Persson, N. Cruise, and B. Andersson, Ozone promoted carbon monoxide oxidation on platinum/J-alumina catalyst, Journal of Catalysis, vol.238, pp.321-329, 2006.

B. Chang, B. W. Jang, S. Dai, and S. H. Overbury, Transient studies of the mechanisms of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis, Journal of Catalysis, vol.236, pp.392-400, 2005.

A. Gazsi, G. Schubert, P. Pusztai, and F. Solymosi, Photocatalytic decomposition of formic acid and methyl formate on TiO 2 doped with N and promoted with Au. Production of H 2, International Journal of Hydrogen Energy, vol.38, pp.7756-7766, 2013.

G. C. Cabilla, A. L. Bonivardi, and M. A. Baltanás, Infrared study of the adsorption of formic acid on clean and Ca-promoted Pd/SiO 2 catalysts, Applied Catalysis A: General, vol.255, pp.181-195, 2003.

S. Nishiyama, T. Hara, S. Tsuruya, and M. Masai, Infrared spectroscopy study of aldehydes adsorbed on Rh?Sn bimetallic systems: Selective activation of aldehydes by tin, The Journal of Physical Chemistry B, vol.103, pp.4431-4439, 1999.

S. Gaur, H. Wu, G. G. Stanley, K. More, C. S. Kumar et al., CO oxidation studies over cluster-derived Au/TiO 2 and AUROlite? Au/TiO 2 catalysts using DRIFTS, Catalysis Today, vol.208, pp.72-81, 2013.

Y. Hao, M. Mihaylov, E. Ivanova, K. Hadjiivanov, H. Knözinger et al., CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation, Journal of Catalysis, vol.261, pp.137-149, 2009.

A. Leba, T. Davran-candan, Z. I. Önsan, and R. Y?ld?r?m, DRIFTS study of selective CO oxidation over Au/J-Al 2 O 3 catalyst, Catalysis Communications, vol.29, pp.6-10, 2012.

C. Li, K. Domen, K. Maruya, and T. Onishi, Spectroscopic identification of adsorbed species derived from adsorption and decomposition of formic acid, methanol, and formaldehyde on cerium oxide, Journal of Catalysis, pp.445-455, 1990.

M. A. Henderson, Complexity in the decomposition of formic acid on the TiO 2 (110) surface, Journal of Physical Chemistry B, vol.101, pp.221-229, 1997.

T. Chen, G. Wu, Z. Feng, G. Hu, W. Su et al., Situ FT-IR Study of Photocatalytic Decomposition of Formic Acid to Hydrogen on Pt/TiO2 Catalyst, vol.29, pp.105-107, 2008.

G. J. Millar, C. H. Rochester, and K. C. Waugh, An FTIR study of the adsorption of formic acid and formaldehyde on potassium-promoted Cu/SiO 2 catalysts, Journal of Catalysis, vol.155, pp.52-58, 1995.

K. Y. Ho and K. L. Yeung, Effects of ozone pretreatment on the performance of Au/TiO 2 catalyst for CO oxidation reaction, Journal of Catalysis, vol.242, pp.131-141, 2006.

S. Ma, Y. Lan, G. M. Perez, S. Moniri, and P. J. , Kenis Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction, ChemSusChem, vol.7, pp.866-874, 2014.
DOI : 10.1002/cssc.201300934

B. Chen, C. Shi, M. Crocker, Y. Wang, and A. Zhu, Catalytic removal of formaldehyde at room temperature over supported gold catalysts, Applied Catalysis B: Environmental, pp.245-255, 2013.
DOI : 10.1016/j.apcatb.2012.11.028

K. Rintramee, K. Föttinger, G. Rupprechter, and J. Wittayakun, Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-41, Applied Catalysis B: Environmental, pp.225-235, 2012.
DOI : 10.1016/j.apcatb.2011.11.050

, Chapitre 5-Effet de la température et de l'ozone sur l'oxydation de l'acétaldéhyde adsorbé sur un catalyseur Ag/TiO2/SiO2 nanostructuré

M. L. Sauer and D. F. Ollis, Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air, Journal of Catalysis, vol.158, pp.570-582, 1996.

M. R. Nimlos, E. J. Wolfrum, M. L. Brewer, J. A. Fennell, and G. Bintner, Gas-phase heterogeneous photocatalytic oxidation of ethanol: Pathways and kinetic modeling, Environmental Science & Technology, vol.30, pp.3102-3110, 1996.
DOI : 10.1021/es9602298

C. L. Bianchi, S. Gatto, C. Pirola, A. Naldoni, A. Di-michele et al., Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO 2, Applied Catalysis B: Environmental, vol.146, pp.123-130, 2014.

E. A. Kozlova, N. S. Kozhevnikova, S. V. Cherepanova, T. P. Lyubina, and E. Y. Gerasimov,

A. V. Kaichev, S. V. Vorontsov, A. A. Tsybulya, V. N. Rempel, and . Parmon, Photocatalytic oxidation of ethanol vapors under visible light on CdS-TiO 2 nanocatalyst, Journal of Photochemistry and Photobiology A: Chemistry, vol.250, pp.103-109, 2012.

D. S. Muggli, K. H. Lowery, and J. L. Falconer, Identification of adsorbed species during steady-state photocatalytic oxidation of ethanol on TiO 2, Journal of Catalysis, vol.180, pp.111-122, 1998.

D. S. Muggli, J. T. Mccue, and J. L. Falconer, Mechanism of the photocatalytic oxidation of ethanol on TiO, vol.2, pp.470-483, 1998.

M. J. Backes, A. C. Lukaski, and D. S. Muggli, Active sites and effects of H2O and temperature on the photocatalytic oxidation of 13C-acetic acid on TiO2, Applied Catalysis B: Environmental, pp.21-35, 2005.

P. Kolar, J. R. Kastner, and J. Miller, Low temperature catalytic oxidation of aldehydes using wood fly ash and molecular oxygen, Applied Catalysis B: Environmental, vol.76, pp.203-217, 2007.

C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn et al., Direct measurement of Criegee intermediate (CH 2 OO) reactions with acetone, acetaldehyde, and hexafluoroacetone, Physical Chemistry Chemical Physics, vol.14, pp.10391-10400, 2012.
DOI : 10.1039/c2cp40294g

C. Zhang, H. He, and K. Tanaka, Catalytic performance and mechanism of a Pt/TiO 2 catalyst for the oxidation of formaldehyde at room temperature, Applied Catalysis B: Environmental, vol.65, pp.37-43, 2006.

H. Gao and T. Yan, DFT and DRIFTS study on the vibrational spectra of formate species adsorbed on the Cu-Al2O3 catalyst, Journal of Molecular Structure, vol.889, pp.191-196, 2008.

Y. Li, X. Zhang, H. He, Y. Yu, T. Yuan et al., Effect of the pressure on the catalytic oxidation of volatile organic compounds over Ag/Al 2 O 3 catalyst, Applied Catalysis B: Environmental, vol.89, pp.659-664, 2009.

K. S. Kim and M. A. Barteau, Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO 2 (001) single-crystal surfaces, Journal of Catalysis, pp.353-375, 1990.

A. Gazsi, A. Koós, T. Bánsági, and F. Solymosi, Adsorption and decomposition of ethanol on supported Au catalysts, Catalysis Today, vol.160, pp.70-78, 2011.
DOI : 10.1016/j.cattod.2010.05.007

URL : http://publicatio.bibl.u-szeged.hu/3975/1/506-os%20dolgozat.pdf

M. A. Natal-santiago and J. A. Dumesic, Microcalorimetric, FTIR, and DFT studies of the adsorption of methanol, ethanol, and 2,2,2-trifluoroethanol on silica, Journal of Catalysis, vol.175, pp.252-268, 1998.

A. F. Lee, Z. Chang, P. Ellis, S. F. Hackett, and K. Wilson, Selective oxidation of crotyl alcohol over Pd, vol.111, pp.18844-18847, 2007.
DOI : 10.1021/jp709944c

H. Yuzawa, S. Yoneyama, A. Yamamoto, M. Aoki, K. Otake et al., AntiMarkovnikov hydration of alkenes over platinum-loaded titanium oxide photocatalyst, Catalysis Science & Technology, vol.3, pp.1739-1749, 2013.
DOI : 10.1039/c3cy00019b

G. Marcì, E. I. García-lópez, and L. Palmisano, Comparison between catalytic and catalytic photoassisted propene hydration by using supported heteropolyacid, Applied Catalysis A: General, pp.70-78, 2012.

T. Bürgi, R. Wirz, and A. Baiker, Situ Attenuated Total Reflection Infrared Spectroscopy: A Sensitive Tool for the Investigation of Reduction?Oxidation Processes on Heterogeneous Pd Metal Catalysts, vol.107, pp.6774-6781, 2003.

S. A. Larson, J. A. Widegren, and J. L. Falconer, Transient studies of 2-propanol photocatalytic oxidation on titania, Journal of Catalysis, vol.157, pp.611-625, 1995.

C. Lien, C. Ho, C. Shieh, C. Tseng, and J. Lin, FTIR study of adsorption and reactions of ethylene oxide on powdered TiO, vol.2, pp.8365-8371, 2008.

S. A. Gardezi, J. T. Wolan, and B. Joseph, Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO 2 catalysts for Fischer-Tropsch synthesis, Applied Catalysis A: General, pp.151-163, 2012.

U. Roland, F. Holzer, A. Pöppl, and F. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatil organic compounds-Part 3. Eletron paramagnetic resonance (EPR) studies of plasma-treated porous alumina, Applied Catalysis B: Environmental, vol.58, pp.227-234, 2005.

P. Panagiotopoulou, A. Christodoulakis, D. I. Kondarides, and S. Boghosian, Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO 2 catalysts, Journal of Catalysis, vol.240, pp.114-125, 2006.

S. S. Kim, K. H. Park, and S. C. Hong, A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO 2 catalysts, Fuel Processing Technology, vol.108, pp.47-54, 2013.

K. J. Raj, M. G. Prakash, R. Mahalakshmy, T. Elangovan, and B. Viswanathan, Selective hydrogenation of acetophenone over nickel supported on titania, Catalysis Science & Technology, vol.2, pp.1429-1436, 2012.
DOI : 10.1039/c2cy20134h

W. Dai, Y. Cao, L. Ren, X. Yang, J. Xu et al., Ag-SiO 2-Al 2 O 3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol, Journal of Catalysis, vol.228, pp.80-91, 2004.

M. Luo, X. Yuan, X. -m, and . Zheng, Catalyst characterization and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compounds, Applied Catalysis A: General, vol.175, pp.121-129, 1998.

A. Musi, P. Massiani, D. Brouri, J. Trichard, and P. D. Costa, On the characterisation of silver species for SCR of NO x with ethanol, Catalysis Letters, vol.128, pp.25-30, 2009.