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“What you see isn’t what you get.”

Frank Wilczek





v

Abstract

Charmonium states provide a relevant source of knowledge for determining fundamental
parameters of the Standard Model. An important aspect of understanding Quantum Chro-
moDynamics (QCD) is to make precise predictions of the hadron spectrum and to test them
against high-quality experimental data. Our theoretical framework is Lattice QCD, which is
considered to be the only known way to treat the full QCD Lagrangian non perturbatively
from first principles, in a manner well suited to numerical computation. By using the Wilson-
Clover action with N f = 2 dynamical flavors, we will study the two charmonium mesons ηc

and J/ψ. We will also investigate some properties of their first radial excitations ηc(2S) and
ψ(2S).

Keywords:

Heavy Flavour Physics - Lattice QCD - Standard Model - Charmonium Spectroscopy - De-
cay constants - Excited States
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Résumé

Les états de charmonium fournissent une source de connaissances pertinente pour déter-
miner les paramètres fondamentaux du Modèle Standard. Un aspect important de la com-
préhension et des tests de la QCD est de faire des prédictions précises du spectre des hadrons
et de les tester par rapport à des données expérimentales de haute qualité. Notre cadre
théorique est Lattice QCD, qui est considéré comme le seul moyen connu de traiter le la-
grangien QCD complet de manière non perturbative et bien adaptée au calcul numérique. En
utilisant l’action Wilson-Clover avec N f = 2 saveurs dynamiques, nous étudierons les deux
mésons charmonium ηc et J/ψ. Nous allons également étudier certaines propriétés de leur
première excitation radiale ηc(2S) et ψ(2S).

Keywords:

Physique des saveurs lourdes - QCD sur le réseau - Modèle standard - Spectroscopie du char-
monium - Constantes de désintégration - États excités
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the theory of strong interactions. At short distances
(at high energy scales), the strong coupling constant becomes small (asymptotic freedom),
and it is possible to make theoretical predictions based on perturbation theory. However, at
long distances (or low energy scales), the strong coupling increases and perturbation theory
is no longer valid: quarks and gluons cannot be seen as asymptotic states but are bound into
hadrons. Hence, nonperturbative techniques are necessary to perform calculations of quanti-
ties that are sensitive to the long distance behavior of QCD.

Lattice QCD (LQCD) is the only available method to calculate physical observables in a non-
perturbative way from first principles, in which all sources of systematic errors can be kept
under control and the precision can be systematically improved. It is a specific regularization
of the QCD Lagrangian, convenient for numerical studies, where space-time is discretized into
a hypercubic lattice. Quarks are restricted to occupy the sites of the lattice, and gluons are the
links connecting the sites. LQCD calculations have made major strides in the last decade, and
are now playing an important role in constraining the Standard Model (SM) [1]. LQCD was
formulated in such a way that computational physics can be applied to calculate properties of
QCD without relying on approximations.

The production and decays of charmed states can provide rich information on how strong in-
teractions manifest themselves in ordinary matter [2]. In particular, charmonium (cc̄) physics
is both a challenging and promising topic for lattice QCD simulations and there are accurate
experimental results that can serve as a precision test, provided all systematic errors are un-
der control. Such states occupy a valuable intermediate position within QCD, being neither in
the purely non-relativistic regime nor in the regime in which chiral symmetry breaking dom-
inates. This makes the charmonium a relatively clean system to study non-perturbative QCD
dynamics, using for example QCD-inspired quark-potential models as well as lattice QCD,
which have been successful in describing the observed features of the charmonium spectrum
[3, 4].

Nevertheless, not all charmonium states are well characterized. In recent years new char-
monium resonances have been discovered in experiments, but they cannot be easily recon-
ciled with the predictions of simple quark-potential models. New investigations of properties



2 Chapter 1. Introduction

of these states can give useful information about heavy quark dynamics. On the one hand,
charmonium states are well established below the heavy flavor meson pair (DD̄) production
threshold. On the other hand, there are many charmonium and charmonium-like states above
this (DD̄) threshold, which have not been yet identified as charmonium states1. For a wide
discussion on the topic see, for example Refs. [5–7].

Moreover, the observation of many new cc̄ states at various dedicated facilities such as those
carried by the BABAR [8], Belle [9], CLEO [10] and BES-III [1] collaborations, have fueled the
research efforts in this sector. These new investigations have increased the challenges in the
theoretical understanding of heavy hadrons and have provided new tools to explore these
bound states in QCD.

Charmonium states like ηc have been observed to have partial widths consistent with quark
model predictions. Moreover, ηc can decay into two gluons [11], which accounts for a substan-
tial portion of the hadronic decays for states below the cc̄ threshold. Similarly, the phenomeno-
logical studies of the small−x gluon distribution function from the inclusive production of ηc

require the knowledge of the decay constant fηc [12]. Other studies have investigated the pos-
sibility of the J/ψ (another charmonium state) to form bound states with nuclei [13], due to
its attractive interaction with nuclear matter [14]. Furthemore, ηc and J/ψ can be helpful in
describing the non-leptonic B-decays and to check deviations between experimental measures
and theoretical results [1]. These bound states are clearly important to increase the accuracy
of the predictions of masses, decay constants and widths for all experimentally-accessible cc̄
mesons.

In this work, we focus on studying the mass spectrum and the decays of the ground and
the first radially excited states of the pseudoscalar and the vector mesons ηc and J/ψ. Among
the techniques used in lattice hadron spectroscopy, one has variational methods which can
give access to the excited states. In this work, we will use a tool derived from this method: the
Generalized Eigenvalue Problem (GEVP).

This thesis is organized as follows. The first three chapters introduce the basic concepts,
which are applied to the computation of observables, which is done in the remaining chapters
of this document. We introduce in Chapter 2 the basics of both Quantum Chromodynamics
and LQCD. We also provide the ingredients of LQCD which will be used in the following
chapters. In particular, we describe the discretization of the QCD action, and the construc-
tion of both fermion and gluon actions on the lattice. In Chapter 3, we discuss the procedure
to compute observables. We explore the formalism of Path Integrals and Monte Carlo tech-
niques. We also present the correlation functions, which are used to extract masses and decay
constants. Another topic of interest exposed is the estimation of errors in our computations.
In Chapter 4, we explain why lattice calculations of excited state properties are challenging
and we discuss methods used for excited-state spectroscopy. In particular, we introduce our

1Some of these states have unusual quantum numbers and they can not be reached by pure quark states.
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method of choice, the Generalized Eigenvalue Problem. In Chapter 5 we use the techniques
introduced in the previous chapters to study the spectroscopy of charmonium states. We mo-
tivate our investigation by commenting on the experimental situation concerning such states.
Then, we explain how we have applied the method described in Chapter 4 in order to suit our
purpose. A full description of this method can be found in Appendix B. Chapter 6 is devoted
to our analysis and results. We will provide the results of a lattice study considering N f = 2
dynamical quarks, as mentioned before. Moreover, we will compare our results to those avail-
able in the literature. To conclude, we will summarize our main findings and outline a few
possibilities to extend our research in Chapter 7.
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Chapter 2

Lattice QCD

In the low-energy regime of QCD, the strong coupling is large and the use of non-perturbati-
ve techniques is mandatory in order to determine the properties of QCD. The most promising
method is called Lattice QCD. It is a lattice gauge theory first introduced by Wilson in 1974
[15] and which is still being improved. This procedure provides a regularization of QCD
by a grid in four-dimensional Euclidean space time, which enables ab-initio calculations of
strongly interacting phenomena in the non-perturbative regime. For calculations one applies
the path integral quantization and obtains integrals similar to those in statistical physics.

In lattice QCD, quark fields are located at the lattice sites, while the gluon fields are located
on the links connecting neighboring sites (see Fig. 2.1). Two neighboring lattice points are
separated by what is known as the lattice spacing a. When the size of the lattice is taken
to be infinitely large and its sites infinitesimally close to each other, the continuum QCD is
recovered.

With LQCD, it is possible to extract non perturbatively, for example, masses, decay con-
stants and form factors from hadronic transition amplitudes. Currently, LQCD is the only
known method to solve the QCD theory from first principles, without perturbative develop-
ments nor approximations. In principle, in this approach we do not need to introduce extra
parameters besides the bare coupling and the quark masses. The predictions made by LQCD
should match the experimental data in order to test the reliability of QCD as the theory of
strong interactions.

In the following sections we will discuss the Standard Model of Particle Physics and QCD
as well as Lattice QCD.

FIGURE 2.1: Lattice QCD symbolic representation.
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2.1 Standard Model

The Standard Model is a relativistic quantum field theory and was formulated during the
sixties in order to describe the fundamental particles. The SM can account for a huge range of
physical phenomena and it is considered one of the most successful models in Physics. This
theory involves three of the four fundamental forces: strong, weak and electromagnetic.

The SM particles are classified in four fundamental groups: quarks, leptons, gauge bosons
(force mediators) and the Higgs boson. The quarks and leptons (also known as fermions) are
the fundamental matter constituents and the interactions between these particles are mediated
by (gauge) bosons. All elementary particles of the SM have been experimentally (directly or
indirectly) discovered (see Fig. 2.2). The Standard Model is a non-abelian gauge theory and
combines the QCD (the theory of strong interaction) and the electroweak (EW) theory (the
theory of weak and eletromagnetic interactions) in a single gauge theory based on the sym-
metry group SU(3)C× SU(2)L×U(1)Y. The group SU(3)C is the gauge group of QCD, where
the massless gauge field of this theory is the gluon. The group SU(3) has eight generators,
which means there are eight types of gluons predicted by the theory. The gauge symmetry
SU(2)L ×U(1)Y is related to the EW theory. In this case we have three massive weak gauge
bosons (W+, W− and Z) and one massless gauge boson, the photon. Then, the SM has a total
of twelve gauge bosons: the photon, three weak bosons and eight gluons.

FIGURE 2.2: The elementary particles of the Standard Model.

Fermions

The SM contains 24 (particles and antiparticles) spin 1/2 fermions divided into two groups:
quarks and leptons. Moreover, each of these fermions has a corresponding antiparticle. Fermions
obey the Pauli exclusion principle. In the Standard Model, there are N f = 6 different flavours
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of quarks named up (u), down (d), strange (s), charm (c), botton (b) and top (t) and six lep-
tons named electron (e), e-neutrino (νe), muon (µ), µ-neutrino (νµ), tau (τ) and τ-neutrino (ντ).
Pairs of quarks or leptons are grouped together, according to their flavour quantum number
and mass, to form a generation (there are three generations - see Fig. 2.2 and Table 2.1).

The most important property of quarks is that they carry a color charge, enabling them
to interact through the strong force, while leptons (blind to color) cannot. As a consequence,
there is a phenomenon known as color confinement, which makes these particles strongly
bound to each other, forming composite states called hadrons. A hadron can be made of a
quark-antiquark pair (mesons) or three quarks (baryons). In other words, it is not possible
to observe an isolated quark and in the regime of low-energies, quarks are always bounded
inside hadrons. Quarks carry also an electric charge and a weak isospin, and they interact
with all the other particles by electromagnetic and weak interactions.

The leptons, as mentioned before, do not carry color charge. The three neutrinos (νe, νµ

and ντ) do not carry electric charge either, so they interact only through the weak force. On
the other hand, the electron, the muon and the tau, carry electric charge and are sensitive to
electromagnetic interactions.

Gauge Bosons

The gauge bosons are known as the force carrier of the strong, weak and electromagnetic in-
teractions (see the Table 2.2). They have a spin equal to 1. One of the gauge bosons is the
photon (γ), which is the mediator of the electromagnetic force between electrically (U(1)EM)
charged particles1. It has no mass. The bosons W+ and W−, together with the boson Z0, are
the mediators of the weak interaction between the different fermions. They are massive. W+

and W− carry, respectively, an electric charge of +1 and −1, while the Z0 boson is electri-
cally neutral. The eight gluons mediate the strong interaction between quarks (color charged
particles) as well as between themselves since they carry also a color charge.

Higgs Boson

The Higgs boson is another massive elementary particle from the SM. The Higgs boson was
experimentally discovered by the ATLAS and CMS experiments in 2012 [16]. In the SM, the
Higgs particle is a boson with spin zero, no electric charge and no color charge. Moreover,
the origin of mass in the SM is a consequence of the spontaneous symmetry breaking (SSB) of
the SU(2)L ×U(1)Y into U(1)EM, triggered by the Higgs mechanism (see, for example, Refs.
[17–20]).

1We work here with the electroweak SU(2)L ×U(1)Y symmetry which is spontaneously broken to the electro-
magnetic U(1)EM symmetry.
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Leptons Quarks
Particle Q Mass (GeV) Particle Q Mass (GeV)

First Generation electron -1 5.1× 10−4 up -1/3 0.002
neutrino electron 0 < 2× 10−8 down +2/3 0.005

Second Generation muon -1 0.105 charm -1/3 1.28
neutrino muon 0 < 1.9× 10−4 strange +2/3 0.095

Third Generation tau -1 1.78 top -1/3 173
neutrino tau 0 < 0.018 bottom +2/3 4.18

TABLE 2.1: The Standard Model fermions classified by their charges and
masses. From Ref. [21].

Force Boson Spin Mass/GeV
Strong Gluon 1 0

Electromagnetism Photon 1 0
Weak Z boson 1 80.4

W boson 1 91.2

TABLE 2.2: The gauge bosons of the Standard Model. From Ref. [21].

2.2 Quantum Chromodynamics

QCD is a non-abelian gauge field theory, which describes the strong interactions (between
quarks and gluons). It is a quantum field theory gauged by the SU(3)C symmetry group. The
parameters of this theory are the quark masses and the strong coupling constant. Quantum
ChromoDynamics has been studied for over more than fourty years and work is still ongoing
as, for example, the many open questions related to the non-perturbative domain (such as
confinement and hadronization) which are still to be addressed. Moreover, other observables
like decay constants and form factors need to be computed more precisely. In the search for
new physics, the background of QCD should be studied and understood as much as possible
and all QCD parameters need to be measured as precisely as possible.

In the following sections some of the important features of this theory will be developed.

The QCD Lagrangian Density

The full QCD Lagrangian density in Minkowski space-time is given by

LQCD(x) =
N f

∑
f=1

3

∑
c=1

ψ̄ f ,c(x)(iγµDµ −m f )ψ f ,c(x)− 1
4

Fa
µνFaµν (2.1)

where γµ are the Dirac γ-matrices, ψ f ,c are quark field spinors for a quark of flavor f and mass
m f . The color-index is denoted by c. In eq. (2.1), the covariant derivative is defined by

Dµ ≡ ∂µ − igs

8

∑
a=1

Aa
µ(x)

λa

2
(2.2)
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where λa stands for the Gell-Mann matrices (generators of SU(3)) and gs is the strong coupling
of the theory. The four-vector Aa

µ(x) with Lorentz index µ = 0, 1, 2, 3 corresponds to the gluon
field. The color index a in the gluon field runs from a = 1 to 8, which means that there are
eight types of gluons. Finally, the field strength tensor is given by

Fa
µν ≡ ∂µ Aa

ν − ∂ν Aa
µ + gs f abc Ab

µ Ac
ν (2.3)

The last term of the eq. (2.3) is responsible for the gluon field self-interaction. The f abc fac-
tors are the structure constants of the SU(3) group and they are defined by the commutation
relations

[λa, λb] = i f abcλc (2.4)

Hence, the generators do not commute, so the SU(3) group is non-abelian, which is at the
source of gluon self-interactions (cf. last two diagrams of Fig. 2.3).

gg

g

g

g

g g

q

g

q

FIGURE 2.3: Feynman diagrams of the QCD Lagrangian for the quark-gluon
vertex, the cubic and the quartic self-interactions of gluons.

The QCD coupling constant gives the interaction intensity, and it depends on the energy
scale according to renormalization. Then, the relation for the one-loop running coupling con-
stant in QCD is

αs(Q2) =
1

β0 ln( Q2

Λ2
QCD

)
(2.5)

where β0 =
(
11Nc − 2N f

)
/12π. The ΛQCD parameter is not predicted by QCD: it should be

inferred by experimental data. Since QCD has Nc = 3 and N f ≤ 6 fermions, the parameter β0

will be always positive. We can understand from eq. (2.5) the origin of both regimes of QCD.
Because β0 > 0 we find that αs → 0 for Q2 → ∞. This vanishing coupling is named asymptotic
freedom and is responsible for the fact that quarks behave like free particles at short distances.
At Q2 values close to Λ, the coupling constant becomes large and perturbative QCD breaks
down. As previously mentioned, the fundamental parameters of QCD are the coupling gs (or
αs = g2

s /4π) and the quark masses mq.
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2.3 From Minkowski to Euclidean space-time

As will be explained in a coming chapter, one can extract the observables of interest from
correlation functions, which can be expressed in terms of path integrals. In this formalism, the
weight associated to each path is eiSQCD where SQCD stands for the action evaluated along the
path considered. However, the complex variable i can make the integrand oscillate rapidly for
small variations of SQCD, which is a problem for numerical simulations. The usual method to
circumvent this problem is to work in Euclidean space-time, after performing a Wick rotation

x0 → −ix4 , xi → xi (2.6)

In Euclidean space-time eiSQCD = e−SE
QCD where the QCD Euclidean action is given by

SE
QCD =

∫
d4x

( N f

∑
f=1

3

∑
c=1

ψ̄ f ,c(x)(γE
µ Dµ + m f )ψ f ,c(x) +

1
4

Fa
µνFaµν

)
(2.7)

The Euclidean scalar product is aµbµ = ∑4
µ=1 aµbµ and γE

µ are the Euclidean gamma matri-
ces. In this formulation, the physical results are obtained by rotating back to Minkowski
space-time. However, many important quantities like masses, decay constants and form
factors are directly accessible from the Euclidean formulation. The Wightman axioms [22]
and the Osterwalder-Schrader theorem [23, 24] give the equivalence between Euclidean and
Minkowski formulation. The Wightman axioms allow for an analytic continuation from Min-
kowski to Euclidean space-time while the Osterwalder-Schrader theorem states that, given
some conditions, the reverse operation is also justified.

In the following, we always work in Euclidean space-time so we will drop the subscript E.
The scalar product also stands for the Euclidean scalar product except when otherwise stated.

2.4 Discretizing the QCD action

Discretizing space-time amounts to replace an infinite volume of continuous space-time points
with a lattice of points in a finite volume Λ, of size L3 × T, with a lattice spacing a (isotropic
lattice)

Λ ≡ {x = (n1, n2, n3, n4)a ; (n1, n2, n3) ∈ [0, L− 1] , n4 ∈ [0, T − 1]} (2.8)

where L and T are, respectively, the size of the spatial and temporal extension of the lattice.
In LQCD, the quark-fields are located at each lattice site

ψ(x), ψ̄(x), x ∈ Λ, x = na (2.9)
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Moreover, they carry the same color, Dirac and flavor indices as in the continuum (they were
suppressed for simplicity). By limiting the space-time to a finite hypercubic lattice, the num-
ber of degrees of freedom is considerably reduced and the phase space decreases. As a con-
sequence, Monte Carlo techniques are employed in order to generate the gauge fields. The
introduction of a hyper-cubic lattice breaks Lorentz invariance, however this is restored when
the continuum limit is taken. The continuum QCD Lagrangian is transcribed to the lattice us-
ing finite difference techniques. In the lattice QCD formulation the gauge invariance is keep
explicitly. The quark fields are located on the sites of the lattice. The gauge fields connect
adjacent lattice points. In the following sections we will study transcription for lattice in more
detail.

2.4.1 Boundary Conditions

In Lattice QCD, we simulate a finite box. In order to maintain translational invariance, bound-
ary conditions are imposed. For fermions, in order to preserve the translational symmetry, all
space directions are set up with periodic boundary conditions [25]. For the time direction
for reconstruction of Hilbert space from the Euclidean space, the anti-periodic boundary con-
dition is used [26, 27]. And for the gauge field, one chooses periodic boundary conditions
in space and time. Periodic and anti-periodic boundary conditions correspond to a torus in
four dimensions, where each direction behaves like a circle. The toroidal boundary conditions
preserve the discrete translation symmetry of the lattice.

2.4.2 Gauge Field on the Lattice

The next step is the discretization of the gauge field, Aa
µ, while preserving the local gauge

invariance of the theory. In the continuum, the gauge fields Aa
µ(x) carry 4−vector Lorentz

indices and mediate interactions between fermions. In order to write them on the lattice,
Wilson proposed to associate gauge field variables with links that connect sites [15]. The
discretized version of a path ordered product proposed by him, denoted the gauge link, is
defined by

U(x, x + aµ̂) ≡ Uµ(x) = exp
(

igsaAµ(x +
µ̂

2
)

)
(2.10)

where µ̂ is a unit vector pointing in the µ direction. The link matrix in (2.10) is associated to
each link of the lattice: it corresponds to the parallel transporter from x + aµ̂ to x. The set for
all µ and for all lattice points x of Uµ(x) is named gauge configuration. A configuration is the
possibility to find a possible value of a gluon field anywhere in the lattice. The gauge invariant
objects are either products of gauge links between quark and anti-quark fields, or products of
gauge links that form closed paths as shown in the following.

The link variables are oriented, so it is possible to have them pointing towards the negative
µ direction (see Fig. 2.5) satisfying the following relation,

U(x, x− aµ̂) ≡ U−µ(x) = exp
(
−igsaAµ

(
x− µ̂

2

))
= U†(x− aµ̂, x) (2.11)
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FIGURE 2.4: The sites are occupied by the quark fields, ψ(x), while the links
between the lattice sites, Uµ(x), represent the gauge fields.

FIGURE 2.5: The link variables Uµ(x) and U−µ(x) on the lattice.

Gauge Action on the Lattice

Let us turn now to the discretized version of the gauge field action,

SG[A] = −1
4

∫
d4xFa

µνFa
µν (2.12)

Since we are considering the Euclidean space-time there is no need to distinguish covariant
and contravariant indices. In the following section, we will construct gauge invariant quanti-
ties (observables) on the lattice.

A gauge transformation is done by a rotation of the color space at each site through an
SU(3) matrix G(x). In particular, the gauge link Uµ transforms according to

Uµ(x)→ G(x)Uµ(x)G†(x + aµ̂) (2.13)

The action (2.12) must be invariant with respect to the transformation law (2.13). To do this,
we can use traces of products of U matrices around closed paths, known as Wilson loops. The
simplest case is the 1× 1 loop (Fig. 2.6), which is the shortest, nontrivial, closed loop on the
lattice, the so-called plaquette. This gauge invariant quantity is defined by

Uµν(x) = Re
[
Tr
[

Uµ(x)Uν(x + aµ̂)U†
µ(x + aν̂)U†

ν (x)
]]

(2.14)
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whose invariance follows from (2.13). A Wilson loop is complex in the fundamental repre-
sentation, with the two possible path-orderings giving complex conjugate values. Taking the
trace ensures gauge invariance and the real part is equivalent to averaging the loop and its
charge conjugate. We can express directly the plaquette in terms of gauge field variables,

Uµν(x) = eiags Aµ(x+ µ̂
2 )eiags Aν(x+µ̂+ ν̂

2 )e−iags Aµ(x+ν̂+ µ̂
2 )e−iags Aν(x+ ν̂

2 ) (2.15)

Using the Baker-Campbell-Hausdorff formula for the product of exponentials matrices

eAeB = eA+B+ 1
2 [A,B]+... (2.16)

we have

Uµν(x) = eia2gs(∂µ Aν(x)−∂ν Aµ(x)+i[Aµ(x),Aν(x)])+O(a3) = eia2gsFµν(x)+O(a3) (2.17)

Making an expansion in powers of a in (2.17), we get

Uµν(x) = 1 + ia2g2
s Fµν −

a4g2
s

2
F2

µν +O(a6) (2.18)

The second (imaginary) term of (2.18) vanishes due to the trace2 and the real part makes the
action real. The gauge action on the lattice can now be written as

SG[U] =
2
g2

s
∑

x∈Λ
∑
µ<ν

Re Tr[1−Uµν(x)] (2.20)

The reason for defining the action in terms of small loops is to increase the computation speed
and to reduce the size of the discretization errors (see Section 3.8). As an example we can
mention that the leading correction to 1× 1 loops is proportional to a2/6 whereas for 1× 2
loops it increases to 5a2/12. Also, the cost of simulation increases by a factor of 2− 3. Inserting
(2.18) in the above equation, the following relation appears

SG[U] =
2
g2

s
∑

x∈Λ
∑
µ<ν

Re Tr[1−Uµν] =
a4

2g2
s

∑
x∈Λ

∑
µ<ν

Tr[Fµν(x)2] +O(a2) (2.21)

The relation above is also called Wilson gauge action. The factor a4 and the sum over Λ are
the discretization of the space-time integral. The Wilson plaquette action is equivalent to the
continuum action, lima→0 SG[U] = SG[A], up to discretization errors quadratic in the lattice
spacing O(a2). The eq. (2.21) can also be written in terms of the parameter β = 2N/g2

s , which
controls the lattice spacing a and is related to the bare strong coupling.

2One may use

Tr [Uµν(x)]∗ = Tr [Uµν(x)†] = Tr [Uµν(x)] (2.19)
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FIGURE 2.6: The plaquette associated to the site x is represented by Uµν(x).

Improvement of the Gauge Action

For any finite lattice spacing, results differ from their continuum limit values, by so-called dis-
cretization errors. As we have already shown, the Wilson gauge action (2.21) reproduces the
continuum limit up to terms O(a2). In order to make the errors smaller, we have to decrease
the lattice spacing and increase the number of lattice points, which is numerically expensive.
Thus in a numerical simulation one always works with finite a and the discretization errors
have to be dealt with, which means they need to be included in the extrapolation to vanish-
ing a. Since it is impossible to choose arbitrarily small lattice spacings, we need to use other
strategies in order to minimize discretization effects and try to make the extrapolation to the
continuum less dependent on a. One possible way is the Symanzik improvement program
[28–30], which improve the convergence properties of the discretized theory. This scheme
involves the addition of higher dimensional operators which can be tuned to cancel out the
leading order discretization errors:

S =
∫

d4x
(
L(0)(x) + aL(1) + a2L(2)(x) + . . .

)
(2.22)

where L(0) is the QCD Lagrangian, L(1) is the Lagrangian composed of all dimensional 5
operators, L(2) is a Lagrangian composed of all dimension-6 operators and so on. The higher
dimensional terms do not contribute to the action in the continuum limit (a → 0). However
they can reduce lattice artefacts at small a.

For the SU(N) theory, the first terms in the expansion of the plaquette in power of the lattice
spacing are

Re [Tr (Uµν)(x)] = N +
1
2

a4O4 + a6O6 + . . . (2.23)

where N is the trace of the 1N×N identity matrix. In this case, the dimension-four operator
corresponds to the continuum gauge action

O4 = g2
s ∑

µν

Tr Fa
µνFµν

a (2.24)

The dimension-five operator does not exist, and O6 = ∑j rjO
j
6, where Oj

6 are the dimension-six
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operators allowed by lattice symmetries. The dimension-six operator in the discretized lattice
gauge part of the Wilson action leads to discretization errors proportional to a2. Then, in order
to apply this improvement to the gauge part of the Wilson action of QCD, one adds six-link
loops involving six gauge links to define O(a2) improved actions (see Fig. 2.7),

SG =
2
g2

s
∑
x

(
b0

4

∑
µ,ν

[1− Re(Tr U1×1
µν (x))] + b1

4

∑
µ,ν

[1− Re(Tr U1×2
µν (x))]

)
(2.25)

where b0 = 1− 8b1. The gauge part of Wilson action is recovered by doing b1 = 0 and the
tree-level Symanzik improved action [31] for b1 = −1/12 [30], which is the form of the gauge
action used by the European Twisted Mass Collaboration (ETMC).

Another popular action is the Iwasaki action [32], which considers b1 = −0.331.

FIGURE 2.7: The only three six-link loops that one can draw on the lattice: from
left to right, planar, twisted and L shaped.

2.4.3 Fermion Fields on the Lattice

Working with fermions on the lattice is a very challenging task, and many methods have been
suggested over the years. As we proceed to discuss, when the fermions are discretized in a
naïve way, some unphysical states appear. In the next sections, several fermionic actions will
be presented and their advantages and shortcomings will be identified. Moreover, we will
introduce the Wilson-Clover formulation, which is the one used in this work.

Naïve discretization of fermions and the doubler problem

In order to simplify the notations, here we consider the case of a single flavor. The Euclidean
action for free Dirac fermions of mass m is given by

SF[ψ, ψ̄] =
∫

d4xψ̄(x)
[
γµ∂µ + m

]
ψ(x) (2.26)
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Going to the lattice, the fields are now defined at the lattice points and the derivative is sub-
stituted by its discrete version. We therefore find the so-called nav̈e fermion action3

SF[ψ, ψ̄] = a4 ∑
a,b,α,β

ψ̄a,α(x)(γµ)α,β

[
1
2
(∂µ + ∂∗µ) + m

]
ψb,β(x)

= a4 ∑
x,y∈Λ

∑
a,b,α,β

ψ̄(x)a,αD(x|y)ab
αβψ(y)b,β (2.27)

where the discrete forward and backward derivatives are

∂µψ(x) =
1
a
[ψ(x + aµ̂)− ψ(x)] (2.28)

∂∗µψ(x) =
1
a
[ψ(x)− ψ(x− aµ̂)] (2.29)

The naïve Dirac operator in (2.27) is defined as

D(x|y)ab
αβ =

4

∑
µ=1

(γµ)αβ
1
2a
(
δyx+aµ̂ − δyx−aµ̂

)
+ mδαβδabδxy (2.30)

However, by doing this naïve discretization, non-physical degrees of freedom (doublers)
appear, even in the continuum limit. For free fermions, the inverse D(x|y)−1 of the lattice
Dirac operator is the quark propagator G(x|y)F (lattice Green function)

∑
y

D(x|y)G(y|z)F = δx,z (2.31)

By combining (2.30) and the inverse Fourier transform, we get

G(y|z)F =
1
Λ ∑

p
G̃F(p)eip·(y−z) (2.32)

where Λ represents the total number of lattice points4. From (2.31) we obtain the Fourier
transform of the quark propagator

1
Λ ∑

p

(
∑
µ

γµ
eip·(x+µ̂−z) − eip·(x−µ̂−z)

2a
+ meip·(x−z)

)
G̃F(p) = δx,z (2.33)

⇔ 1
Λ ∑

p
eip·(x−z)

(
∑
µ

γµ
eiapµ − e−iapµ

2a
+ m · 1

)
G̃F(p) = δx,y (2.34)

Using the discretized version of the Dirac function δx,z = 1
Λ ∑p eip·(x−z), we arrive at the in-

verse of the quark propagator in momentum space

G̃F(p)−1 = m · 1+
i
a

4

∑
µ=1

γµ sin(pµa) (2.35)

3In this equation a and b are the color indices and α and β are the Dirac indices.
4Λ ≡ V: lattice volume.
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Finally, we invert the above equation5,

G̃(p) = D̃(p)−1 =
m · 1− i

a ∑µ γµ sin(pµa)

m2 + 1
a2 ∑µ sin(pµa)2

(2.37)

However, considering a massless fermion (m = 0) and taking the continuum limit, the
propagator is given by

G̃(p) =
− i

a ∑µ γµ sin(pµa)
1
a2 ∑µ sin(pµa)2

a→0−−→
−i ∑µ γµ pµ

p2 (2.38)

which correctly gives a pole at p = (0, 0, 0, 0), as expected in the continuum. However, the
lattice expression of the free propagator (2.38) contains also unphysical poles at

p = (π/a, 0, 0, 0), (0, π/a, 0, 0), . . . , (π/a, π/a, π/a, π/a) (2.39)

In the end, the naïve Dirac operator D̃(p) exhibits sixteen poles, fifteen of them being un-
wanted poles. This is the famous doubler problem. This problem is caused by the choice of
discretization and can be seen as a lattice artifact6. In the interacting theory the doublers can
interact with each other via quantum loop corrections (in particular the gluons couple to each
doublers): it is important to remove them properly. In the following, we will understand how
to overcome this difficulty.

Discrete Covariant Derivatives

On the lattice, we introduce the discretized version of the covariant derivative, that is

~∇µψ(x) =
U(x, x + aµ̂)ψ(x + aµ̂)− ψ(x)

a
(2.40)

~∇∗µψ(x) =
ψ(x)−U−µ(x)ψ(x− µ̂)

a
(2.41)

These derivatives are used to replace the standard derivatives when gluon interactions are
introduced. The anti-hermicity of the lattice Dirac operator can be ensured by the symmetric
covariant derivative,

∇ψ(x) =
1
2

(
~∇µ + ~∇∗µ

)
ψ(x) =

U(x, x + aµ̂)ψ(x + aµ̂)−U−µ(x)ψ(x− aµ̂)

2a
(2.42)

5It is easier to write D̃(p)−1 by considering the equation for the inverse of linear combinations of gamma
matrices (a, bµ ∈ <), which is (

a · 1+ i
4

∑
µ=1

γµbµ

)−1

=
a · 1− i ∑4

µ=1 γµbµ

a2 + ∑4
µ=1 b2

µ

(2.36)

6A lattice artefact is a contribution that is present in the lattice, but absent in the continuum.
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Wilson Fermions

As we already saw, the lattice action is not unique and it is possible to add irrelevant opera-
tors to it, without changing the continuum limit. To overcome the doubler problem Wilson
proposed to add an extra momentum-dependent mass term to the fermion action [33]. From
now on, we are considering the interacting case (interactions with gluons), unless we say the
opposite. The new mass term is defined as

− ar
2 ∑

µ

~∇∗µ~∇µψx (2.43)

where r is the so-called Wilson parameter. The Wilson term (2.43), together with the Dirac
operator, reads

DW =
1
2
{γµ(~∇µ + ~∇∗µ)− a

r
2
~∇∗µ~∇µ}+ m (2.44)

and the Wilson’s fermion action is defined by

SW [Uµ, ψ, ψ̄] = m ∑
x,y

ψ̄x,α,aψy,β,bδxyδαβδab

+
1
2a ∑

x,µ
ψ̄x,α,a(γµ)αβ[Uµ(x)abψx+µ̂,β,b −U†

µ(x− µ̂)abψx−µ̂,β,b]

− ra
2a2 ∑

x,µ
ψ̄x,α,a[Uµ(x)abψx+µ̂,β,bδαβ − 2ψx,β,βδabδαβ

+ U†
µ(x− µ̂)abψx−µ̂,β,b] (2.45)

which can also be put in a compact form

SW [Uµ, ψ, ψ̄] ≡ a4 ∑
x,y

∑
α,β,a,b

ψ̄x,α,aDW(x, y)ab
α,aψy,β,b (2.46)

The Wilson term gives no contributions for a → 0. To work with lattice simulations, it is
useful to make a rescaling of the fermionic field in order to introduce the so-called hopping
parameter κ which is a simple rescaling factor that is related to the quark mass and acts as a
coupling between neighboring sites [34],

ψ(x)→
√

2κ

a3 ψ(x) (2.47)

κ−1 = 2ma + 8r (2.48)

Using the hopping parameter, the Wilson Dirac operator has the form

DW(x, y)ab
αβ =

1
2a

(
κ−1δxyδαβδab −∑

µ

[
(1− γµ)αβδx,y−µ̂Uµ(x)ab

+ (1 + γµ)αβδx,y+µ̂U†
µ(x− µ̂ab)

])
(2.49)
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Following the same idea as in the previous section (2.4.3) the Fourier transformed Dirac oper-
ator reads

D̃(p) = m1+
i
a

4

∑
µ=1

γµ sin(pµa) + 1
1
a

4

∑
µ=1

(1− cos(pµa)) (2.50)

As already noted, the Wilson term keeps the pole pµ = 0. However, for the components for
which pµ = π/a, an extra contribution of 2/a emerges, which behaves as an additional mass
term. In fact, the mass of these extra poles is given by

m +
2l
a

(2.51)

where l is the number of momentum components with p = π/a. In the continuum, when a→
0, the doublers become infinitely heavy and decouple from the theory: at the end, only the
physical pole remains. A drawback is that the Wilson term breaks explicitly chiral symmetry,
as discussed in the following sections.

Wilson-Clover Fermion

The improvement of the fermion action is achieved in a similar way to the one used for the
Symanzik improvement scheme (see Section 2.4.2), however we are able to form operators
using both fermion fields and link variables. The Wilson action for quarks (2.46), which con-
tains the Wilson term introduced to eliminate the doublers, has discretization errors of order
O(a). Since we will use Monte Carlo algorithms to evaluate the path integral in lattice sim-
ulations, we need to find ways to reduce the discretization errors. The lattice discretization
is not unique and one can construct improved actions in order to converge to the continuum
limit faster. According to Sheikholeslami and Wohlert [35] a possible alternative to improve
the fermion action (by canceling O(a) effects) can be derived by adding the so-called clover
term

SW
improv. = SW [Uµ, ψ, ψ̄] + cSW

ia5

4 ∑
x∈Λ

ψ̄(x)σµνFµνψ(x) (2.52)

where σµν ≡ [γµ, γν]/2i is the Pauli matrix written in terms of the gamma matrices [26]. The
coefficient cSW can be calculated non-perturbatively and Fµν is the discretized version of the
gluon field strength. The Fµν normalization differs from the one in the continuum (2.3) by a
factor igs. A convenient regularization is obtained by averaging the four plaquettes lying in
the (µ, ν) plane around the point x (see Fig. 2.8)

Fµν(x) =
−i
8a2 [Qµν(x)−Qνµ(x)] (2.53)
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with (see [35])

Qµν =
(
Uµ(x)Uν(x + aµ̂)U−µ(x + aµ̂ + aν̂)U−ν(x + aν̂)

+ Uµ(x)U−ν(x + aµ̂)U−µ(x + aµ̂− aν̂)Uν(x− aν̂)

+ U−µ(x)U−ν(x− aµ̂)Uµ(x− aµ̂− aν̂)Uν(x− aν̂)

+ U−µ(x)Uν(x− aµ̂)Uµ(x− aµ̂ + aν̂)U−ν(x + aν̂)
)

= Uµ,ν(x) + Uν,−µ(x) + U−µ,−ν(x) + U−ν,µ(x) (2.54)

FIGURE 2.8: Schematic representation of the sum Qµν(x) of plaquettes in the
(µ, ν) plane used for the discretized field strength operator Fµν.

Due to the shape of the above terms which is reminiscent of a clover leaf, the last term in
(2.52) is called clover term or clover improvement [26].

TheO(a) improvement, at tree level, is achieved with cSW = 1. However, in the interacting
theory, cSW depends on the bare coupling gs, but does not depend on the quark mass. As we
mentioned before, cSW can be computed through perturbation theory [35, 36] and for N f = 2
dynamical quarks (which will be explained later) we have [37]

cSW =
1− 0.454g2

s − 0.175g4
s + 0.012g6

s + 0.045g8
s

1− 0.720g2
s

(2.55)

It is also possible to compute non-perturbatively cSW by imposing suitable improvement
conditions [37]. For a discussion on this topic see, for example Ref. [38].

As we mentioned before, this action is the one we will use for the simulations in our study.

Chiral Symmetry Comments

The chiral symmetry is a symmetry of the Lagrangian for massless fermions. The correspond-
ing Lagrangian, in Euclidean space, is

L = ∑
f

ψ̄ f γµDµψ f ≡∑
f

ψ̄ f Dψ f (2.56)
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which defines the massless Dirac operator D and ψ f ≡ ψ is a fermion field. The spinor field
can be decomposed into chiral fields ψL and ψR

ψ = ψL + ψR =
1
2
(1− γ5)ψ +

1
2
(1 + γ5)ψ = PLψ + PRψ (2.57)

where PL and PR are, respectively, the left-handed and right-handed projectors with

P2
L + P2

R = 1 ; PLPR = 0 ; P2
L = PL ; P2

R = PR (2.58)

The Lagrangian can be rewritten as

L = ψ̄LDψL + ψ̄RDψR (2.59)

Since the chiral symmetry holds only for massless quarks, the limit of vanishing quark
mass is often referred to as the chiral limit. By writing together eqs. (2.56) and (2.59)

L = ψ̄Dψ = ψ̄LDψL + ψ̄RDψR (2.60)

and substituing the relations given in eq. (2.57) we obtain

Dγ5 + γ5D = 0 (2.61)

which is considered the essence of the chiral symmetry in the continuum: the massless Eu-
clidean Dirac operator D = γµ(∂µ + igs Aµ) anticommutes with γ5.

Chiral Symmetry and the Lattice

The lattice results need to respect the continuum limit of the massless fermions, so the chiral
symmetry has to be respected for a 6= 0. Although the Wilson term is very helpful to remove
the doublers, the Wilson Dirac operator DW does not respect the relation (2.61). In other
words, the Wilson operator breaks the chiral symmetry, and introduces O(a) artifacts that
were not present in the naïve quark action. The chiral symmetry is only recovered in the
continuum limit, when a → 0. As a consequence of the chiral symmetry breaking, there is
an additive mass renormalization term in the action (2.45) which diverges in the continuum
limit. The critical value of the hopping parameter (κcrit) is defined as the value of κ at which
the pion mass vanishes:

m =
1
2a

(
1
κ
− 1

κcrit

)
(2.62)

In the free theory κcrit = 1/8, but when interactions are turned on, its value gets renormalized
and has to be computed numerically [34].

Nielsen and Ninomiya [39, 40] have analyzed in detail the implementation of the chiral
symmetry on the lattice. Their results, known as the Nielsen-Ninomiya no-go theorem, can
be summarized as follows: it is impossible to have a chirally invariant, doubler-free, local and
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translation invariant fermion action on the lattice. Then, at first sight, it seems impossible
to have a chirally invariant action without doublers. However, there exists a clever way to
circumvent this problem: the Ginsparg-Wilson relation [41, 42]

Dγ5 + γ5D = aDγ5D (2.63)

The right-hand side vanishes for a→ 0 and the chiral symmetry is recovered in the continuum
limit. The above equation also allows to define the chiral symmetry on the lattice for a finite a.
Currently, in numerical simulations, two types of Ginsparg-Wilson fermions are being used:
domain-wall fermions (DWF) and overlap fermions. The first, is defined in a fifth dimension,
while the second have an explicit form that exactly satisfies the Ginsparg-Wilson relation.
Both methods have a computational cost which is at least an order of magnitude greater than
for other choices.

The Wilson Clover Dirac operator, which is used in this work, obeys the so-called γ5-
hermicity relation7

γ5DWγ5 = D†W (2.64)

and will be used to compute the objects known as correlation functions on the lattice. The
spectrum of the operator γ5DW can have real or complex conjugated pairs of eigenvalues. In
particular, the determinant of the Dirac operator is real.

Twisted-mass fermions

Another choice of lattice regularization for the spinor field, which does not suffer from un-
physical fermion zero modes (the doublers) is the twisted mass fermion action (tmQCD) [43–
45]. For two mass-degenerate quarks8, the fermionic twisted mass QCD action is given by:

Stm
F [ψ, ψ̄, U] =

∫
d4xψ̄a,α, f(1)(x)

[
(γµ)αβ(Dµ)abδ f(1) f(2) + mδabδαβδ f(1) f(2)

+ iµ(γ5)αβ(τ
3) f(1) f(2)δab

]
ψb,β, f(2)(x) (2.65)

where Dµ is the covariant derivative, m the bare mass and τ3 is the third Pauli matrix acting
on the SU(2) flavor space. The real parameter µ is called the twisted mass and the term iµγ5τ3

has a non trivial structure in both Dirac space (due to the presence of γ5) and in flavour space
(due to the Pauli matrix τ3). The mass term of tmQCD in (2.65) can be written as

m + iµγ5τ3 = Meiwγ5τ3
(2.66)

7The γ5-hermiticity is a symmetry of lattice Dirac operators. Almost all Dirac operators D are γ5-hermitian,
i.e., they obey

(γ5D)† = γ5D or, equivalently, D† = γ5Dγ5

8Represented in eq. (2.65) by the flavor indices: f(1) and f(2).
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where M is the polar (or invariant) mass and w is the twist angle,

M =
√

m2 + µ2 (2.67)

tan(w) =
µ

m
(2.68)

From here on, the indices will be suppressed to simplify the notation. Using (2.66), eq. (2.65)
becomes

Stm
F [ψ, ψ̄, U] =

∫
d4xψ̄(x)[γµDµ + Meiwγ5τ3

]ψ(x) (2.69)

Here, we can observe an additional twist mass term that does not exist in the standard action
of QCD. Performing an axial transformation on both quark and antiquark fields

ψ→ ψ′ = ei α
2 γ5τ3

ψ

ψ̄→ ψ̄′ = ψ̄ei α
2 γ5τ3

(2.70)

one recovers the standard QCD action, where α is the chiral rotation angle. In doing so, we
also redefine the mass parameters through the following transformations

m→ m′ = m cos(α) + µ sin(α)

µ→ µ′ = µ cos(α)−m sin(α) (2.71)

Under these transformations the new twisted-mass expression can be written as

S
′tm
F [ψ, ψ̄, U] =

∫
d4xψ̄′(x)[γµDµ + Meiw′τ3γ5 ]ψ′(x) and M′ = M (2.72)

The invariant mass is indeed invariant under the transformations (2.71) and the new twist
angle is tan(w′) = µ′

m′ with tan(w′) = tan(w− α). This confirms that the theory is invariant
under the chiral rotations (2.70). The transformations (2.71) and (2.70) change the field vari-
ables and the mass definitions, but do not change the theory. As a conclusion, one can say
that tmQCD is a family of equivalent theories parametrized by the invariant mass M and the
twist angle w.

Lattice tmQCD

We now replace the continuum Euclidean space-time by a hypercubic lattice of spacing a.
Then, the tmQCD action on the lattice with Wilson fermions is

SW
F [ψ, ψ̄, U] = a4 ∑

x
ψ̄(x)

[
1
2 ∑

µ

(
γµ(∇∗µ +∇µ)− a

r
2
∇∗µ∇µ

)
+ m + iµτ3γ5

]
ψ(x) (2.73)

Recalling the Wilson Dirac operator given in (2.44), eq. (2.73) can be written as

SW
F [ψ, ψ̄, U] = a4 ∑

x
ψ̄(x)

[
DW + m + iµτ3γ5

]
ψ(x) (2.74)
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The tmLQCD action is constructed with Wilson fermions and has an extra twisted mass term.
The Wilson term (mandatory to remove the doublers) breaks the axial symmetry and the twist
mass term is not removed by the transformation described in eq. (2.70). The equivalence be-
tween QCD and twisted mass QCD is only valid in the continuum and the two lattice dis-
cretizations are different.

Maximal Twist

We have two bare parameters m and µ, which define the physics we want to describe. These
two parameters are related by the twist angle w. The twist angle can be defined in the renor-
malized theory by

tan w =
µR

mR
=

Zµµq

Zm [m0 −mcr]︸ ︷︷ ︸
mq

(2.75)

where Zµ is the renormalization constant of the twisted quark mass µq and Zm is the renormal-
ization constant of the untwisted quark mass m0. In addition, mR and µR are the renormalized
parameters. When w = π/2 (the so-called maximal twist), [46] we have m0 = mcr. For maxi-
mal twist, the discretization effects of O(a) vanish and the leading corrections appear only at
O(a2). This property is known as the O(a) improvement.

Moreover, since the chiral symmetry at finite lattice spacing is not present, the bare un-
twisted mass term renormalizes with a counter term called the critical mass mcr [46]. This
term corresponds to the value of m0 at the point where the untwisted quark mass mR van-
ishes. In order to tune the value of w, one has to determine the ratio between Zµ and Zm and
the critical mass mcr.

Advantages and Disadvantages of tmQCD

For the tmQCD action, choosing maximal twist (w = π/2) simplifies, in most situations, the
renormalization of the weak interaction matrix elements [47]. Weak interactions account for
large variety of physical processes such as muon and tau decays, neutrino interactions and
decays of lightest mesons. This is important, not only in terms of computational difficulty, but
also in terms of the uncertainty entering the computation of the observables on the lattice, as
for example the decay constants. The error associated with the computation of the renormal-
ization constants does enter the systematics. Moreover, choosing the maximal twist implies
an important property called O(a) improvement, i.e. the discretization effects of O(a) vanish
and the leading corrections appear only at O(a2). The advantages of using the tmQCD reg-
ularization are described in great detail in Ref. [45]. On the other hand, twisted terms break
explicitly the parity and isospin at finite lattice spacing. However, these terms are O(a2) and
they disappear in the continuum limit: those symmetries are restored in the continuum.
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2.5 Summary

In this chapter we have discussed the discretization of gauge and fermion fields as well as the
issues related to the discretizations. In our study, we will use the Wilson-Clover action and in
the next chapter we will focus on the lattice computation and some of our results.
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Chapter 3

Computation of Observables in Lattice
QCD

Lattice QCD requires highly intensive numerical simulations on high performance computing
facilities. Since we have a computational limit, statistical and systematic errors associated with
the calculation must be taken into consideration: precision phenomenology requires these
errors to be under control.

In this chapter, we will focus on the computation of observables in lattice QCD by using
the formalism of path integrals. We will discuss the procedure to calculate correlation func-
tions, extract the physical observables in Lattice QCD and extrapolate them to the real world
(continuum limit).

In addition, we will describe some techniques to compute propagators, as well as the
Gaussian smearing and APE smearing methods which improve the overlap of the lattice
hadron interpolators with the physical state.

3.1 Path Integrals in Lattice QCD

In order to compute an observable in LQCD, we are interested in calculating the vacuum
expectation value of some operator given in path integral form as,

〈O〉 = 1
Z

∫
D [ψ]D [ψ̄]D [Uµ]O[Uµ, ψ, ψ̄]e−(SG+SF) (3.1)

where Z is the Euclidean partition function of QCD,

Z =
∫

D [ψ]D [ψ̄]D [Uµ]e−(SG+SF) (3.2)

The gluonic and fermionic part of the QCD action are, respectively, SG = SG[Uµ] and SF =

SF[Uµ, ψ, ψ̄], and were both described in the preceding chapter. In eq. (3.1) the path integral
runs over all values of the quark (ψ) and gluon (U) fields at every point in space-time. The
quantity D [ψ]D [ψ̄]D [Uµ] is the integration measure of the fermion and gauge link variables.
In this formalism, the quantization of the system is implemented as an integral over all field
configurations.

On the lattice, the continuous integral is replaced by a discrete sum over all degrees of
freedom. Since the volume and the spacing of the lattice are both finite, eq. (3.1) is well
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defined and the measure in the path integral reads

D [ψ, ψ̄] = ∑
x∈Λ

∑
α,a

dψ f ,α,a(x)dψ̄ f ,α,a(x) (3.3)

D [Uµ] = ∑
x∈Λ

4

∑
µ=1

dUµ(x) (3.4)

where α and a are the Dirac and color indices, respectively. The Haar measure1 on the compact
SU(3) group is represented by dUµ(x).

There are two complex Grassmann vectors, ψ(x) and ψ̄(x) associated to each site of the
lattice. In general, it is difficult to compute Grassmann numbers appearing in the calculation
of the integral in eq. (3.1) due to degrees of freedom in the lattice (as will be explained below).
In order to circumvent this problem, we need to rewrite the equations in a different way. We
thus start by rewriting the fermion action as

SF = ∑
x∈Λ

ψ̄ f (x)Dψ f (x) (3.5)

From now on, color and Dirac indices are omitted for simplicity. Since the fermion fields are
Grassmann numbers, it is possible to use the corresponding Gaussian integral formula to get∫

D [ψ]D [ψ̄]e−SF [Uµ,ψ,ψ̄] = det[D[Uµ]] (3.6)

Then, the average value of a fermionic variable can be written as

〈Ω|ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(ym)|Ω〉 =∫
D [Uµ]D [ψ]D [ψ̄]ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(ym)e−SF [Uµ,ψ,ψ̄]−SG [Uµ]∫

D [Uµ]D [ψ]D [ψ̄]e−SF [Uµ,ψ,ψ̄]−SG [Uµ]
(3.7)

where |Ω〉 ≡ vacuum. Using the preceding results we can rewrite the latter expression as

〈Ω|ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(ym)|Ω〉 =∫
D [Uµ] 〈Ω|ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(ym)|Ω〉F det[D[Uµ]]e−SG [Uµ]∫

D [Uµ]det[D[Uµ]]e−SG [Uµ]
(3.8)

in which

〈Ω|ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(ym)|Ω〉F =∫
D [ψ]D [ψ̄]ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(ym)e−SF [Uµ,ψ,ψ̄]∫

D [ψ]D [ψ̄]e−SF [Uµ,ψ,ψ̄]
(3.9)

1In mathematical analysis, the Haar measure is a way of assigning an invariant volume to subsets of locally
compact groups and then defining an integral for functions on those groups [26].
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is the fermionic path integration (depends on the Uµ) which can be analytically computed be-
cause of the structure of SF[Uµ, ψ, ψ̄] (Gaussian integral). Moreover, we know that 〈ψ(x)ψ̄(y)〉F
is the fermionic propagator from the point y (known as source) to the point x (known as sink)
for a particular gauge configuration [Uµ]. Hence, using Wick’s theorem, the average value
of any fermionic observable will be written using the average value of fermionic propagators
over a set of gauge configurations.

Degrees of Freedom

On the lattice grid there is a large number of degrees of freedom, which makes it impossible
to evaluate in a simple way integrals like the ones in eq. (3.1). As an example, let us calculate
the total number of integrals for a lattice size, for example L3 × T = 243 × 48:

• ψ(x): 24 degrees of freedom for every flavor (2 particles/antiparticles, 3 colors, 4 spins)

• Uµ: 32 gluon degrees of freedom (8 colors, 4 spins)

For the lattice size we have choosen, and multiplying the numbers above, we get

243 × 48× (24 + 32) ≈ 37× 106 integrals. (3.10)

Since the number of integration variables is huge, complete numerical integration is im-
practical. One possible way is to use Monte Carlo techniques.

3.2 Monte Carlo Techniques

3.2.1 Importance Sampling

We would like to evaluate the expectation value in eq. (3.1) and it can be done through Monte
Carlo simulations. The idea in a Monte Carlo is the following: let us assume that we want to
compute some vacuum expectation value 〈O〉; to do so, we need to generate a set of gauge
field configurations {Uµ} distributed with the (Boltzmann) probability e−S[Uµ], and then aver-
age over these configurations:

〈O〉 =
∫

D [Uµ]O[Uµ]e−S[Uµ]∫
D [Uµ]e−S[Uµ]

=
1

Nc

Nc

∑
i=1
O[U(i)

µ ] + Oerr

(
1√
Nc

)
(3.11)

where Nc is the number of configurations in the set. Under the assumptions of the central
limit theorem2, for a sufficiently large Nc we estimate the error on 〈O〉 to be about 1/

√
Nc. An

accurate estimate of the error is done by using Jackknife techniques, that we will explain later.
Moreover, here

S[Uµ] = SG[Uµ] + ln
(
det[Uµ]

)
(3.12)

2The central limit theorem (CLT) establishes the normal distribution as the distribution to which the mean
(average) of almost any set of independent and randomly generated variables rapidly converges.
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Physically, the logarithmic term corresponds to the contributions of the quarks in the sea
and is numerically very demanding. If we neglect this contribution we are performing a
quenched simulation, whereas the simulation is said unquenched when taking the sea quarks
into account. This will be further discussed in Section 3.5.1.

3.2.2 The Hybrid Monte Carlo Algorithm

The Hybrid Monte Carlo (HMC) was introduced as a fast method for simulating molecular
dynamics [48]. It has been proposed as a method to improve the Markov Chain Monte Carlo
(MCMC) algorithms [49]. In our studies, we would like to perform global transformations
of the gauge field, because the local transformations require the full determinant (which is a
non-local quantity). Moreover, since the Markov Process generates the new gauge configu-
ration from the previous one, it introduces autocorrelation effects which need to be reduced.
However, after a global transformation, the corresponding value of the action can substan-
tially change and the new gauge configuration is unlikely to contribute significantly to the
action. Therefore, very small steps are required in the updated algorithm, which generates
high autocorrelation effects. One of the advantages of the HMC algorithm [48] is to solve
these problems. In this work we have used two different algorithms which implement the
HMC. Both cases will be discussed later. For more details about HMC see, for example Ref.
[50].

3.3 Correlation Functions at the Hadronic Level

Hadron masses can be computed in LQCD simulations using two-point correlation functions,
where a particle of interest is created at some initial time and destroyed at a later time, on a
four dimensional Euclidean lattice space-time.

In general a two-point correlation function is defined by

C(ty − tx) = 〈Ω|O(ty)O†(tx)|Ω〉 (3.13)

where the creation operator O has the structure

O(tx) = ∑
~x

ψ̄ f (~x, tx)Γψ f (~x, tx) (3.14)

and Γ can contain a combination of Dirac matrices and even non-local operators such as
derivatives. In eq. (3.13) the operator O†(tx) creates a hadron state with a vanishing mo-
mentum and the correct quantum numbers (see Table 3.1), while O(ty) annihilates a state
with the same properties. A more complete discussion of the topic will be conducted in the
next chapter and in the Appendix A.

On the lattice, the two-point correlation functions can be expressed as traces over products
of quark propagators, Dirac matrices and color structures (details in Appendix A) as

C(t ≡ ty − tx) = −∑
~x,~y
〈Tr
[
G(~x, tx;~y, ty)ΓG(~y, ty;~x, tx)Γ̄

]
〉 (3.15)
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JPC Γ
Scalar 0++ 1

0+− γ0

Pseudoscalar 0−+ γ5
γ0γ5

Vector 1−− γi
γ0γi

Axial 1++ γ5γi

Tensor 1+− γiγj

TABLE 3.1: Quantum numbers associated with some local interpolating opera-
tors, which have the form O = ψ̄(x)Γψ(x).

where G(x, tx; y, ty) propagates a fermion from (~y, ty) to the lattice site (~x, tx) and G(y, ty; x, tx)

propagates another fermion in the opposite direction (as in Fig. 3.1). During our studies, we
always considered two degenerate dynamical quarks, therefore the propagator G(x, tx; y, ty)

and G(y, ty; x, tx) are numerically the same (but formally, they are different). Usually, we can
use γ5-hermiticity to express the forward Dirac propagators G(x; y) in terms of the backward
Dirac propagator G(y; x)

G(x; y) = γ5G(y; x)†γ5 (3.16)

and (3.15) becomes

C(t) = −∑
~x,~y
〈Tr
[

G†(~y, ty;~x, tx)Γγ5G(~y, ty;~x, tx)γ5Γ̄
]
〉 (3.17)

The γ5-hermiticity is very useful in this case, because the number of propagators to be com-
puted is reduced and only one inversion of the Dirac operator is needed.

FIGURE 3.1: Schematical representation of a two-point correlation function.
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3.4 Extraction of an Effective Mass

In the rest-frame, the two point correlation functions are defined as (see Appendix A for de-
tails)

C(t) = ∑
n

1
2mn
| 〈Ω|O|n〉 |2e−mnt = ∑

n
e−mntZn (3.18)

where mn is the mass of the nth eigenstate of the Hamiltonian. The matrix elements are de-
noted

Zn ≡
| 〈Ω|O|n〉 |2

2mn
(3.19)

where Zn corresponds to the strength of the overlap between the interpolating field O and
the nth state. In the large Euclidean time limit, all contributions will be suppressed relative to
the ground state. Being a sum of exponentials, eq. (3.18) can be put into the form

C(t) ≈ Z0e−m0t
(

1 +
Z1

Z0
e−(m1−m0)t + . . .

)
(3.20)

where m0 is the ground state mass and m1 the mass of the first excited state, and so on. For
small times, all terms will contribute to the calculation, but for large times (t larger than the in-
verse of the first energy gap (δm1 = m1 −m0) the terms inside the brackets become negligible,
hence

C(t) ≈ Z0e−m0t (3.21)

For correlators which are symmetric with respect to the exchange t ↔ T − t, the time
dependence should be

C(t) = Z0 cosh
[

m0

(
T
2
− t
)]

e−T m0
2 (3.22)

where T is the lattice time dimension. Then, the effective mass can be extracted from

me f f = ln
C(t)

C(t + 1)
(3.23)

Using the relation (3.23) we can extract the ground state mass. We can also extract the ex-
cited state masses from a multiple exponential fit. However, in practice this is a numerically
non-trivial task, because of the noise in the data from the calculation. We can point out that a
significant factor complicating these calculations is the signal-to-noise problem [51, 52]. The
signal-to-noise ratio degrading ∼ exp(mM−mπ)t [27], we can observe that the signal-to-noise
ratio will get worse as the mass of the hadron increases. In order to extract masses and other
observables of excited states, we will present another method in the next chapter. Figure 3.2
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FIGURE 3.2: Results of the fit for the effective mass (ground state) from the
computation of the two-point correlation functions.

displays a plot of the effective mass for the ground state as a function of time for the charmo-
nium pseudoscalar state ηc. In this simulation, the fermions areO(a) improved Wilson-Clover
with an ensemble provided by the consortium named Coordinated Lattice Simulations (CLS)3,
with N f = 2 sea quarks, a lattice spacing a = 0.065 fm, a lattice size 323 × 64, a pion mass of
440 MeV (will be explained later) and 200 configurations. As expected, we can see a plateau
where the low-lying state dominates and the fitting range of the mass term can be set. The
results extracted from the lattice are dimensionless.

3.5 The Lattice Quark Propagator

The essential building block for dealing with hadrons on the lattice is the quark propagator:
indeed, eq. (3.17) shows that the correlation functions can be calculated as a product of inverse
Dirac operators. The Dirac operator for a specific flavor, in lattice QCD, is written as Dab

µν(y, x),
where the indices (a(b), µ(ν), x(y)) are color, Lorentz and space-time, associated to the source
(sink). The calculation of a propagator in lattice QCD is an arduous work, since the size of
the matrix is 12N× 12N (N is the number of lattice points), so it is only possible to calculate a
subset of each matrix. The propagator G, defined as the inverse of the Dirac operator, satisfies

Dab
µν(x, y)Gbc

νγ(y, z) = δ(x, z)δacδµγ (3.24)

and depends on the lattice action. The Dirac operator contains only neighboring points of the
lattice because it is built out of backwards/forwards derivatives. As a consequence we have
a sparse matrix which allows (3.24) to be efficiently solved by algorithms based on conjugate

3The CLS is a community effort, launched in 2007, whose aim is to bring together the human and computer
resources of several teams in Europe interested in lattice QCD. All information about this project can be found at
https://twiki.cern.ch/twiki/bin/view/CLS/WebIntro.

https://twiki.cern.ch/twiki/bin/view/CLS/WebIntro
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gradient methods. Computing the solution from any source point to any sink point of the
lattice (also called all-to-all inversion) is not currently possible due the existing computing ca-
pabilities. In some situations, when the computation of the all-to-all propagators [53] is really
necessary (as for example in the case of non-local interpolating fields), one can use stochastic
techniques or the distillation [54] method to obtain an estimation. In order to simplify the
problem and find a solution, let us consider the following equation

D(x, y)ψ(y) = δ(x) (3.25)

where spinor and color indices are ommitted for simplicity. The solution vector ψ(y) =

G(y, x)δ(x), corresponds to the one-to-all4 solution for a point source placed at the origin
(δ(x)). Finally, using the γ5-hermiticity relation G(x, y) = γ5G(x, y)†γ5, we can obtain the
backward propagator G(y, x) without another inversion.

3.5.1 Quenching and partial quenching

Lattice QCD is a powerful tool for computing QCD observables which are connected with
phenomenological studies such as hadron masses, decay constants, weak matrix elements
and the strong coupling constant.

As mentioned in a former section, an issue arises from the fermion determinant, the log-
arithm of which is a non-local part of the gluon effective action (specially for light quark
masses). This non-locality dramatically slows down the Monte Carlo algorithms. In order
to circumvent this problem one can use an approximation called the quenched approximation,
which consists in neglecting the effects of the determinant by setting the fermion determinant
equal to one [55, 56], so that only valence quarks5 are used to compute the correlators. The
simulation considering quenched dynamical quarks corresponds to N f = 0 (no dynamical
flavor) simulation. However, not considering the contribution of the sea quarks, introduces
an uncontrolled systematic error. In this case, it is highly recommended to work with the
unquenched approximation to obtain precise predictions.

Unquenched QCD

When the dynamics of the sea quarks is included in the simulation, it is called unquenched
lattice calculation. We then need to include the fermionic determinant that arises from inte-
grating over the (Grassmann) quark fields. When refering to N f = 2 lattice simulations, we
are taking into account the effect of the light quarks in the sea (the quark up and the quark
down are assumed to be degenerate). However, when one works with small quark masses,
the computation time increases and the number of lattice points has to be increased in order
to make the discretization effects negligible when compared to the statistical ones. A way out

4Point(or one)-to-all propagators: computation of quark propagators from one or a few points on the lattice
(usually the origin) to all other points. This method works by inverting the fermion matrix with a point source,
and combining the resulting propagators with appropriate operators to produce the desired hadronic correlators.

5Hadrons contain, along with the valence quarks (qval) that contribute to their quantum numbers, virtual
quark–antiquark (qq̄) pairs known as sea quarks (qsea). Sea quarks form when a gluon of the hadron’s color
field splits; this process also works in reverse in that the annihilation of two sea quarks produces a gluon [57].
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consists in doing the computation assuming a large (unphysical) mass for the light quarks
and, in the end, extrapolate to the real physical mass. In order to avoid the quenching effect of
other flavors, the ETM Collaboration performs computations with N f = 2 + 1 + 1 gauge en-
sembles [58–60] which include the unquenched strange and charm quarks. The heavy quarks
impact at long distance of the QCD vacuum fluctuation should be much less important, since
their mass is much larger than the typical scale O(ΛQCD).

Partial quenching and the chiral limit

In full QCD, there is no difference between sea quarks and valence quarks. However, a full
QCD simulation on a lattice is both time consuming and costly. Most of the simulation time is
used to calculate changes in the determinant of the Dirac operator of light quarks [61]. There-
fore, a usual approximation to extract information from sets of field configurations obtained
in dynamical lattice gauge simulations6 is the so-called partial quenching. In this approach,
the hadronic properties are computed through configurations generated for a set of fixed sea
quark masses, and then the quark propagators are studied by considering different valence
quark masses. In this work, we have performed partial quenching for the two up and down
light sea quarks (N f = 2 simulations), where these values are to be extrapolated to the physi-
cal light quark mass. The standard chiral symmetry prediction for the dynamical pions is that
their mass is controlled by the average quark masses [62]

m2
π ∼ mq +O(m2

q) where mq =
mu + md

2
(3.26)

For this reason the pion mass will be used in this work as an indicator of the light quark
masses. It is worth remembering that the pion mass is a physical observable and can be
measured experimentally.

3.5.2 Smearing Techniques

In Lattice Gauge Theory, the masses are computed from two-point correlation functions and,
as we saw before, the mass ground state dominates at large times. Thus, to obtain a clean
signal we need to work with a time interval as large as possible. However, the longer the
time, the noisier the signal, and the statistical errors become larger. In order to try to reduce
the statistical error, we would have to enlarge the number of configurations, which is compu-
tationally expensive. So, we need to use some practical techniques to extract observables in a
reliable way and without a large number of configurations.

One of the techniques that meets our needs is known as smearing. In the following sections,
we will study two kinds of smearing: the Gaussian smearing, which is applied to the fermion
fields, and the APE (Array Processor Experiment - APE Collaboration) smearing, which is
applied to the gauge fields.

6A simulation including the fermion determinant and therefore allowing for the full dynamical vacuum struc-
ture of fermions is called a simulation with dynamical quarks [26].
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Gaussian Smearing

Smearing along the spatial dimensions at the source is used to increase the overlap with the
hadronic ground state. The idea is to spread the hadronic interpolating operator around its
central location in space.

Gaussian Smearing [63, 64] can be done through a generalization of eq. (3.24),

Dab
µν(x, y)Gbc

νγ(y, z) = ηac
µγ(x, z) (3.27)

where ηac
µγ(x, z) is an arbitrary source vector. In order to maximize the overlap of the resulting

interpolator, it is appropriate to choose the source vector at the origin. There are many ways
to smear the operator, one of them is known as Jacobi smearing, which gives Gaussian shaped
sources. To perform this computation, the point source is chosen to be

η
(0)ac
µγ (x) = δ(x, z)δacδµγ (3.28)

It is then iteratively applied to the wave function F(~x,~x′)

η(i)(~x) = ∑
~x′

F(~x,~x′)η(i−1)(~x′) (3.29)

where

F(~x,~x′) = (1− α)δ~x,~x′ +
α

6
H′(~x,~x′) (3.30)

and H′(~x,~x′) is known as the hopping matrix

H′ =
3

∑
µ=1

Uµ(~x)δ~x′,x+µ̂ + U†
µ(~x− µ̂)δ~x′,~x−µ̂ (3.31)

The operator H′ is essentially the spatial part of the Wilson term without the constant terms.
In (3.30) the parameter α is a normalization factor

α =
1

1 + 6κs
(3.32)

with κs being the coupling strength of the nearest neighbor in space directions. If the proce-
dure is repeated N times, the resulting fermion source is

ηN(~x) = ∑
~x′

FN(~x,~x′)η(0)(~x′) (3.33)

where the parameters N and α govern the size and shape of the smearing function. One can
observe on Fig. 3.4 the effective mass analysis, where we have applied smearing techniques
in the propagators (in the source and/or in the sink), where the curves LS and SS are the ones
where we applied this technique. We can observe an increase in the plateau for the ground
state, when LS and SS are compared to the curve where no smearing was applied (LL).
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APE Smearing

While Gaussian smearing is applied to fermionic fields, the APE smearing [65] is applied on
the gauge fields. This kind of smearing has the purpose of removing, from the gauge links, the
fluctuations which have short wavelengths by averaging them with their nearest neighbors.
In other words, the quantum field configurations at short distances fluctuate wildly. Then, we
want to reduce these short distance fluctuations. The procedure of link variables are made
along certain paths connecting the end point of a link. The link variables are then replaced
by the weighted average of such variables. In this way, the short distances (wavelengths)
fluctuations are supressed. The APE procedure replaces the existing set of links Uµ(x) by

U(n+1)
µ (x) = U(n)

µ + αAPE ∑
µ 6=ν

U(n)
ν (x)U(n)

µ (x + ν)U(n)†
ν (x + µ) (3.34)

where αAPE is the APE smearing parameter which governs the relative weight of the fluctua-
tions. Usually the APE smearing parameter is restricted to the range 0 ≤ αAPE ≤ 3/4, since
beyond 3/4 APE smearing does not lead to smooth gauge configurations [66]. The equation
above is represented by Fig. (3.3) and the ensemble used here is the same than those used to
plot Fig. (3.2). This transformation does not belong to SU(3), so it is necessary, in the end, to
project U(n+1)

µ (x) onto SU(3) (PSU(3)),

UAPE
µ (x) = PSU(3)U

(n+1)
µ (x) (3.35)

This smearing process is iterated NAPE times.

FIGURE 3.3: APE smearing applied in a gauge link.
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FIGURE 3.4: Effective mass extraction containing Smeared-Smeared (SS),
Smeared-Local (SL) and Local-Local (LL) smearing techniques.

3.6 Matching to the Continuum Limit

3.6.1 The Continuum Limit

In the previous sections we have seen that the lattice action is reduced to the correct expres-
sion when we take the lattice spacing limit a → 0. All observables extracted from the lattice
are written in lattice units. Then, in order to compare the results with experiment, it is impor-
tant to convert them into physical units. This procedure is called scale setting and consists in
computing the lattice spacing in physical units by imposing one observable (computed on the
lattice) to match its physical value. The setting of the scale and the adjust of the quark masses
are related. The scale7 is defined by [26]

a[MeV−1] =
(aX)lattice

Xphys.[MeV]
(3.36)

where the value of the observable computed on the lattice is (aX)lattice and Xphys. is its phys-
ical value in MeV. Usually the observables chosen for this task are: the pion and kaon decay
constants fπ, fK [67], a hadron mass (it could be the nucleon or the ρ mass) or the Sommer
parameter r0 [68]. However, the determination of such observables is not the same due to
the difficulty of their evaluation. If one chooses to work with the nucleon mass as a refer-
ence, we need to extrapolate the result to the physical mass of quarks, which correspond to
mπ ' 139 MeV [1]. Nevertheless, due to the limitation in computer power, we performed
computations with a pion mass mπ & 300 MeV [69], which introduces systematic errors.
Then, in order to choose the good observable we need to take into account those which do not
depend heavily on the mass of the quarks and are easily computed in the lattice. In addition,

7The conversion factor between fm and MeV is 1 fm−1 = 197.327 MeV [1].
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they should have small statistical error to allow for a precise estimation. The error on the scale
affects not only the quantities expressed in physical units but also the continuum and chiral
extrapolations.

Quark Masses

In this work, the light quarks (up and down) are assumed to be degenerate and their masses
can be set by computing just one observable, like the pion mass (see Section 3.5.1). The pion
mass is computed in lattice units (amπ)lattice and the result is converted in physical units using
the previous estimation of the lattice spacing:

mπ[MeV] =
(amπ)lattice

a[MeV]−1 (3.37)

An indirect consequence of setting the scale at finite lattice spacing is the so-called scale am-
biguity [70]. That is, the calibration of the lattice spacing in physical units a[MeV−1], is de-
pendent on the quantity Xphys. which is used to set the scale. This ambiguity arises because
different quantities Xphys. are affected by quark loops in different ways. However, this am-
biguity should vanish in the continuum limit and does not affect the results extrapolated to
a→ 0.

Light Hadrons for N f = 2

In this section we give more details on the simulation using the so-called partially quenched
approximation (see Section 3.5.1). The two flavors of (degenerate) dynamical quarks with
mass msea are normally identified with the physical u and d quarks . On the lattice it is possible
to compute observables relating to hadrons whose valence quarks have a different mass than
the sea quarks mval 6= msea (see Fig. 3.5). As a consequence, one has more freedom to explore
separately the dependence of physical observables on mval and msea. In this case, usually one
introduces the strange quark as a valence quark. Nowadays, the values of msea which are
accessible are still relatively large.

FIGURE 3.5: Quark and gluon contributions ot the two-point function for a
pseudoscalar (vector) meson in partially quenched QCD with mval 6= msea.
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3.7 The Error Estimation

In order to efficiently extract the physical observables in LQCD, the errors must be controlled,
and computer time should be left to a minimum. In a Monte Carlo simulation, the Markov
chain has a finite size, then the same configurations are used to compute different observables
which are therefore correlated. Moreover, since the Markov Process generates the new gauge
configuration from the previous one, it also introduces autocorrelation. Consequently, the
estimation of the statistical errors in numerical lattice QCD becomes a non-trivial task under
these conditions. One possible solution to tackle these autocorrelation effects is the use of
resampling techniques such as the jackknife or the bootstrap methods.

Data Blocking Methods

The idea is to divide the data into sub-blocks of data with size N, to compute the block mean
values and consider them as new variables Xi. The variance of these blocked Xi should de-
crease like 1/N if the original data is independent. One needs to repeat this procedure for
a sequence of different values for N. As soon as the behavior 1/N is observed for a large
enough N one can consider these block variables as statistically independent. Once the data
is considered independent, one can determine the expectation values of the observables of
interest and their errors. If the data is too small to get a reliable estimate of the variance of
the computed expectation values, one needs to use different tools such as the jackknife or the
bootstrap method.

The Jackknife Method

The Jackknife samples are selected by taking the original data vector and subtracting one
observation from the full set. Then, we will get N unique Jackknife samples (also called bins),
since we are removing the nth entry of the original set (n = 1 . . . N). If the nth measurement is
omitted, the corresponding jackknife sample is defined by [71]:

m1, mn−1, mn+1, . . . , mN (3.38)

Then, the method consists in removing one configuration at each time and calculating the
average m̄(n) of the full set, using the data of the remaining configurations

m̄(n) =
1

N − 1 ∑
n′ 6=n

m̄(n′) (3.39)

We divide our data into N blocks and each block has a length greater than the correlation time
τcorr in order to get rid of autocorrelations. The error on m is estimated by computing the
deviation from m̄

δm =

√√√√N − 1
N

N

∑
n=1

(m̄(n) − m̄)2 (3.40)
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where the pre-factor (N − 1) corrects the fact that our variables are not independent.

The Bootstrap Method

This method is similar to the Jackknife method. We will separate our data into N blocks and
each block has a length greater than the correlation time τcorr. From the set of N blocks, we
take N′ blocks randomly, i.e. a bootstrap sample. Then we compute our variable of interest
m̄ over the selected data. And this procedure is repeated NB times in order to generate the
bootstrap sample (m̄1, m̄2, . . . , m̄NB ). Thus the standard deviation writes:

δm =

√
1

NB − 1 ∑
i
(m̄n − m̄) where m̄n =

∑n m̄n

Nb
(3.41)

The size of the bootstrap samples will depend on the size of the data. And NB can go up to
1000. In a practical implementation, both bootstrap and jackknife are combined with block-
ing. The idea is to construct subsets and remove blocks instead of single values. In our work,
we compute quantities obtained from an exponential fit of the two-point correlation function.
A single measurement of the correlator fluctuates too much for a reasonable fit. So we need
to average many measurements of the correlator before perfoming a fit and for the error es-
timation we need many of those sets of data for the correlator. Therefore we use jackknife
and bootstrap methods. They can be applied to the determination of statistical error for fitted
quantities. The sets produced by those methods are large enough for performing a fit.

3.8 Systematic Errors

A lattice calculation is subject to different types of systematic errors, which are related to the
simulation parameters.

Discretization Effects

The physical observables extracted from the lattice differ from the continuum value by finite
terms. These additional terms are called, in general, discretization errors. In lattice QCD, the
same physical observable is computed at various lattice spacings and then, in order to get the
continuum limit, we extrapolate the lattice spacing to zero. To reduce the error as much as
possible, one should work with the smallest lattice spacings. The size of the lattice spacing is
actually determined by the computational power at our disposal.

Finite size effects

On the lattice, the finite lattice spacing a and the finite volume (L3× T) are sources of system-
atic errors. And as we mentioned before, all the results from the lattice are obtained in finite
volumes. An important parameter to reduce the finite size effect is the boundary condition
taken for quark fields. The use of periodic boundary conditions in the spatial direction helps
to reduce the finite size effects asymptotically [72, 73] and they are exponentially supressed
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(∼ (e−mπ L)). The associated corrections of order O(e−mπ L) were computed in Ref. [74] and
decrease exponentially with the volume. Some groups estimated that finite volume shifts
are sub-percent effects when mπ L & 4, and most large-scale simulations use lattices satisfying
this condition. This becomes challenging as one approaches the physical pion mass, for which
L ' 5 fm is required. At present, this can only be achieved by using relatively coarse lattices,
a ' 0.07 fm. The CLS ensembles, which are the ones used in this work, follow the rule that
for Lmπ & 4 the finite size effect are expected to be very small and can be ignored.

Dynamical Quarks

The evaluation of the quark propagator on the lattice becomes more difficult as the pion mass
gets closer to its physical value [26, 75]. Therefore, many lattice simulations are performed
at non-physical quark masses. In order to estimate the systematic errors associated to these
computations, different simulations at several quark masses are performed and the results are
extrapolated to the chiral limit [76, 77]. Moreover, we have another source of systematic errors
coming from the fact that only two dynamical quarks are used in the simulations (quark loops
with c, s, b and t are neglected) and the associated error is more complicated to estimate.

3.8.1 Non-perturbative Renormalization Constants

The observables extracted from the lattice are all bare quantities. As a consequence, in many
applications of lattice QCD it is mandatory to deal with renormalization. As an example, we
can mention the extraction of quark masses. A more complex example is to compute a transi-
tion or decay amplitude of hadrons induced by interactions in the electroweak theory. The low
energy effective operators are constructed through operator product expansion. They, in turn,
are plugged in the QCD Lagrangian, with the Wilson coefficients calculated through (contin-
uum) perturbation theory. The coefficients are often divergent, so we need to renormalize
them with a certain renormalization scheme and scale. The lattice task is to calculate the ma-
trix element of the operator between hadron states. The matrix element of the bare operator
has the same divergence as the Wilson coefficient. In divergent cases, the matrix element or
the operator must undergo a renormalization on the lattice. The same renormalization scheme
and scale as the Wilson coefficient must be used to compensate the dependence on it, so that
the final, physical matrix element is scheme and scale-independent. For further details, see
for example Ref. [78].

An operator O can be renormalized as (multiplicative renormalization)

Oren(a) = ZO(a)O (3.42)

where ZO is the renormalization factor, normally a function of a. The renormalization param-
eters are calculated using perturbative or non-perturbative theory.

The most popular non-perturbative renormalizations (NPR) on the lattice are the Rome-
Southampton method (also known as the RI/MOM scheme) and the Schrödinger functional
(SF) scheme [78]. In this work we use the renormalized constants provided by the ALPHA
Collaboration, where the SF scheme is used [67].
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RI/MOM scheme

The underlying idea is to compare bare lattice correlation functions, couplings, and masses
determined in lattice calculations with quantities in the so-called Regularization-independent
(RI) scheme (also known as RI/MOM scheme) [79]. The RI/MOM scheme is a popular NPR
scheme for multiquark operators. The procedure is very similar to the one used in the con-
tinuum perturbation theory. The renormalization factors, obtained for different values of the
renormalization scale, are evolved perturbatively to a reference scale µ = 2 GeV.

The renormalized (R) quark field, mass and bilinear operator are written in terms of the
bare (B) quantities as

ψR =
√

ZRI/MOM
q ψ , mR = ZRI/MOM

m mB , OR = ZRI/MOM
O OB (3.43)

ZRI/MOM are the renormalization factors in the RI/MOM scheme. The computation of these
renormalization factors was done in Ref. [80].

Generally, one wants to make contact with phenomenological studies, which almost ex-
clusively refer to operators renormalized in a Minimal Subtraction (MS) scheme. In order to
do that, one needs to connect the RI-MOM quantities to those defined in the MS scheme,
which can be accomplished in continuum perturbation theory [81]. In the two schemes, the
renormalization factors are related by

ZMS(µ2) = RMS/RI/MOM(µ2)ZRI/MOM(µ) (3.44)

where the ratio RMS/RI/MOM(µ2) is computed in perturbation theory. Perturbative conversion
ratios for RI/MOM to the MS scheme can be found in Refs. [80, 82].

ALPHA Collaboration

As we mentioned before, the renormalized parameters we use in this work were computed
by the ALPHA collaboration8. One of their main objectives is the computation of renormal-
ized parameters with the highest precision possible. Some of the recent results have been
presented in Refs. [83, 84]. The emphasis of the ALPHA project is on precision and directly
associated with this, an attempt to carefully control systematic errors [85]. The idea is to com-
pute non-perturbatively defined running couplings and quark masses over a wide range of
energies where the contact with hadronic mass parameters is made in order to study for ex-
ample hadron properties. In order to make a link with perturbation theory it is essential that
the simulation reaches a range of high energy where the predicted behavior actually appears
to set in. A full explanation about this project can be found in Ref. [85].

Schrödinger functional scheme

The SF scheme [86–88] is used as the intermediate scheme to carry out non-perturbative run-
ning from the low energy region, where the renormalization of the bare mass is performed

8For more information, please see https://www-zeuthen.desy.de/alpha/.

https://www-zeuthen.desy.de/alpha/
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on the lattice, to the high energy perturbative region, where the conversion to the renormal-
ization group invariant mass or the MS scheme is safely carried out [89]. In this framework,
one studies the system in a cylindrical volume Λ with Dirichlet boundary conditions in one
(the temporal) direction and periodic boundary conditions in the other (spatial) directions.
The symmetry properties of the SF functional in LQCD should be the same if the choosen
lattice Dirac operator preserves chiral symmetry via the Ginsparg–Wilson relation (see Chap-
ter 2). However, since there are different boundaries conditions, the Dirac operator and the
Ginsparg-Wilson relation should be both modified. The modifications should be local and
be linked to the boundary conditions. In our simulations, we did not work directly with the
SF scheme, since we applied the values already calculated by the ALPHA collaboration. For
more details about the SF scheme computation, see, for example, Refs. [90, 91].

3.9 Summary

In this chapter, we have studied methods to extract an observable from the lattice. Also, we
have presented techniques to calculate the propagators and methods to improve the signal.
In addition, we discussed how to renormalize the results and how to transfer them from the
lattice to the real world. In the following chapters, we will focus on the extraction of some
meson properties.
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Chapter 4

Hadron Spectroscopy for Excited States

The first step in Lattice QCD numerical simulations is the determination of the lowest hadron
masses (coresponding to the ground state). Since these masses are experimentally well known
with a high precision, the comparison with the numerical results is an important check of the
method which can then be applied to infer information on the properties of excited states. In
the previous chapter, we have discussed some topics in hadron spectroscopy, for example, the
extraction of the ground state mass (see section 3.4). Moreover, we discussed how to obtain
the relevant contributions to the ground state, by analyzing the correlator at large times.

The next step is the study of the excited states. In order to extract the spectrum of the
excited states, we could perform a multi-exponential fit, but that approach is unstable. For this
reason, other approaches have been developed. In this work, we decided to use one specific
method, which is inspired by the variational method in quantum mechanics and consists in
increasing the basis of operators in order to build a matrix of correlators Cij(t) for which a
Generalized Eigenvalue Problem (GEVP) is formulated [92, 93]. The GEVP involves all-to-
all propagators [53] instead of one-to-all point sources as indicated in the previous sections.
All-to-all propagator represents a quark traveling from any point of lattice to any other point.
Moreover, it is a helpful tool to reduce systematic errors. The GEVP will be explained in
detail in Section 4.3. In this chapter (in Section 4.1), we also present two lattice techniques,
which make the calculations easier and improve the quality of the signal over the noise. In
lattice QCD the signal quality is indeed very important for a reliable extraction of the physical
observables. Finally, we will describe some of our results for the excited state calculation.

4.1 Lattice Techniques

In Section 3.5 we have explored a method for computing the lattice quark propagator. How-
ever, a drawback of this method is that only a small part of the gauge information is used since
we do not exploit the full translational invariance of the propagator (the source is fixed). Since
generating gauge configurations is extremely costly, it would be preferable to exploit them to
reduce the gauge noise. Moreover, point-to-all propagators are not suited when using non-
local interpolating fields. In order to circumvent this issue, we will consider two methods.
The first one is known as all-to-all propagators [53] and the second one, which is responsible for
the reduction of the noise is called time dilution [53]. Furthermore, a stochastic estimation of
the propagators will be implemented using the one-end trick method.
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4.1.1 Stochastic All-to-all Propagators

Solutions exist to evaluate all-to-all propagators and are based on stochastic methods [53]. The
idea is to use, for each gauge configuration, an ensemble of Ns

1 stochastic sources satisfying

1
Ns

Ns

∑
s=1

ηa
α(x)s

[
ηb

β(y)s

]∗
= δαβδabδx,y (4.1)

where each component is normalized to one, ηa
α(x)∗[r]η

a
α(x)[r] = 1 (no summation). The indices

(a, α) and (b, β) respectively denote color and spinor pairs. In order to implement this method
one can use random Gaussian numbers on each site of the lattice, for each color and spinor
index. Then the Dirac operator is inverted for each source:

Dab
αβ(x, y)ψb

β(y)s = ηa
α(x)s (4.2)

where ψa
α(x)s is the solution vector of size 12N. Finally, we have an unbiased estimator of the

propagator from any spacetime point x to any other spacetime points y:

ψa
α(x)s = Gab

αβ(x, y)ηb
β(y)s =⇒ Gab

αβ(x, y) =
1

Ns

Ns

∑
s=1

ψa
α(x)sη

b
β(y)

∗
s (4.3)

The number of stochastic sources is always finite and, since the inversion of the Dirac oper-
ator is often the most demanding part of the algorithm, it can be quite limited. Then, the con-
dition (4.2) is only approximately fulfilled and the quark propagator obtained from eq. (4.3)
can be very noisy. Naïvely estimating the signal-to-noise ratio leads to S = V

√
N2

s /V2 = Ns

where V = L3 × T. A possible solution to reduce the noise is time dilution.

4.1.2 Time Dilution

This method consists in splitting the source η into several secondary (diluted) sources with
vanishing overlap. We have a secondary source defined on a single time slice and equal to
zero elsewhere. The advantage is that the condition (4.2) is automatically fullfield. Since the
time dependence of the quark propagator is known to be large, this leads to a significant
variance reduction

η(~x, t) = ∑
τ

η(~x, t)[τ] , η(~x, t)[τ] = 0 (t 6= τ) (4.4)

The Dirac operator is now inverted on each diluted source and the full propagator is recovered
by summing over all the secondary sources:

Gab
αβ =

1
Nτ

∑
τ

ψa
α(x)[τ]η

b
β(y)

∗
[τ] (4.5)

1Generally Ns = 1, i.e. a single inversion per gauge link configuration.
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If Nτ = Ns × T, we have full-time dilution. Furthermore, dilution could also be applied to
spinor or color indices. The limit where dilution is applied to all space-time, color and Dirac
indices would correspond to the computation of the exact all-to-all propagator. An advantage
of this method is that timeslices sources are usually more efficient than volume sources, when
one is interested in the behavior of the correlation functions at large times. A naïve estimation
of the signal-to-noise ratio now gives S = Vs

√
N2

s /V2
s = Ns where Vs = L3.

4.1.3 One-End Trick

The signal-to-noise ratio can be radically improved by using the so-called one-end trick [94–97].
In this method, which is slightly different from the previous ones, we start by considering the
spin diluted timeslice sources,

η[α̃, t]aα(x)s ≡ δα,α̃ · Ξ[t̃]a(x)s, with Ξ[t̃]a(x) = δ(t− t̃) · r (4.6)

where r represents a random number. The sources are non-zero in a single time-slice t̃. All en-
tries of Ξ on a time slice t̃ are chosen independently. The optimal way to choose the time-slice
at which the stochastic source is located, is to change it randomly as the gauge configuration
is changed. The sources now satisfy

1
Ns

Ns

∑
i=1

η[α̃, t̃]aα(x)i

[
η[β̃, t̃]bβ(y)i

]∗
= δabδαβδαα̃δββ̃δ(x− y)δ(tx − t̃)δ(ty − t̃) (4.7)

The lattice Dirac operator D is inverted (for one given flavor) on each sample of this source.
Also, one introduces the ψ-propagator which is a solution of the equation

∑
y

D[ f ]ab
αβ(x, y)sψ[ f , α̃, t̃]bβ(y)s = η[α̃, t̃]aα(x)s (4.8)

where f represents the fermion flavor. By using the previous relations we can obtain an un-
biased estimator of the all-to-all propagator, which is the inverse of the Dirac operator, by
computing the quantity,

1
Ns

Ns

∑
s=1

ψ[ f , α̃, t̃]bβ(x)s [η[α̃, t̃]aα(y)s]
∗ (4.9)

The major advantage of the one-end trick is that the signal-to-noise ratio is now S = Vs
√

Ns/Vs =√
NsVs where Vs = L3. We have an improvement by a factor

√
Vs/Ns (where Vs

Ns
� 1) com-

pared to what had been obtained for time dilution.

4.2 Decay Matrix Element

Before starting our discussion about the Generalized Eigenvalue Problem, we will study the
procedure to compute decay constants. We present the direct method to extract the decay
matrix elements, in particular for the pseudoscalar case and the vector case. The following
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equations will be used to extract the physical observables for the ground state or for the ex-
cited states. In Section 4.3, we will describe the procedure we have used: the Generalized
Eigenvalue Problem.

Vector Case

For an arbitrary vector meson2 MV , the definition of the decay constant fV in the rest frame is
(see Appendix A for details)

〈Ω|Vµ|MV(λ,~p)〉 = ε
(λ)
µ (~p) fVmV (4.10)

where ε
(λ)
µ (p) is the polarization tensor of the vector state (λ is the polarization index) and

Vµ ≡ q̄γµq is the vector current. After inserting a complete set of eigenstates and assuming
large enough times t

Cij(t)
t→∞−−→∑

λ

ε
(λ)
i (~0)ε∗(λ)j (~0)︸ ︷︷ ︸

δij

f 2
Vm2

V

︸ ︷︷ ︸
2mVZVV δij

× e−mV t

2mV
(4.11)

Hence, we can compute the vector meson decay constant using,

fV =

√
2ZVV

mV
(4.12)

where we know the values of ZVV by performing a fit in Cij(t) and mV , since we extract the
vector mass by fitting (4.10) at large times.

Pseudoscalar Case

For an arbitrary pseudoscalar meson3 MP, the definition of the decay constant fP in the rest
frame is (calculation similar to the vector case done in Appendix A),

〈Ω|A0|MP(~p =~0)〉 = fPmP (4.13)

where mP is the meson mass (already extracted by a fit) and A0 is the temporal component
of the axial current γµγ5. To study the pseudoscalar case, we will use the two-point correla-
tion function in (3.13), where O1 is the axial interpolating operator, A ≡ q̄γ0γ5q and O2 the
pseudoscalar P ≡ q̄γ5q. In the rest frame we start from

C(t) = ∑
~x
〈Ω|A(t,~x)P†(0,~0)|Ω〉 (4.14)

2Total spin 1 and odd parity JP = 1−
3Total spin 0 and odd parity JP = 0−
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After inserting a complete set of eigenstates and assuming large enough times t,

C(t) t→∞−−→ 〈Ω|A(0)|MP〉︸ ︷︷ ︸
fPmP

〈MP|P†(0)|Ω〉︸ ︷︷ ︸√
2mP
√
ZPP︸ ︷︷ ︸

2mPZAP

× e−mPt

2mP
(4.15)

and hence we obtain the final relation for the pseudoscalar decay constant

fP =

√
2

mP

ZAP√
ZPP

(4.16)

where the coefficients ZPP and mP have already been calculated and ZAP can be obtained by
fitting (4.14) at large times.

Errors in Decay Constants

Normally the errors in decay constants are larger than those in the determination of masses.
For example from eq. (4.15) one notes that for 1% error in the determination of the mass,
the error in the decay amplitude is ≈

√
e0.01mPt − 1 ≈ 0.005mPt. If the fit has mPt ≈ 5 for

1/a ∼ 2 GeV lattices, the error in the decay constant is ≥ 3%. For more details see, for
example, Ref. [98].

Renormalization

The quantities so far studied are bare quantities and, as we already discussed, we should
renormalize the local operators, in order to define properly the physical quantities. There are
many groups working on this renormalization procedure, and for our work we choose the
renormalization constants proposed by [99] and [100]. We will thus rewrite (4.16) and (4.12)
using the renormalization constants ZA, for the pseudoscalar case, and ZV , for the vectorial
case, leading to

f R
P = ZA

√
2

mP

ZAP√
ZPP

(4.17)

and

f R
V = ZV

√
2ZVV

mV
(4.18)

The values of ZA and ZV will be presented later, in Section 5.2.3.

4.3 The Generalized Eigenvalue Problem

The preceding chapter explained how to compute the ground state properties by studying the
large time behaviour of two-point correlation functions. Using just one interpolating field,
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the extraction of ground state information is often not very reliable, and the signal gets even
worse for the first excited state. Therefore, more sophisticated methods are required.

One idea is to use different interpolating operators, with different overlaps with the ex-
cited states, and combine them to create an improved operator with the largest overlap with
the ground state. This can be done systematically by solving a Generalized Eigenvalue Prob-
lem. The GEVP has been proven to be a robust and useful tool for this kind of studies (for a
detailed discussion, see Refs [101–104]). Though our work only focuses on the study of two-
point correlation functions, we point out GEVP studies, applied to three-point functions. An
exhaustive discussion can be found in Refs [105–108].

The Method

An extensive explanation of the GEVP can be found in Appendix B, and here we will just
discuss its main features. The basic idea is to use a basis OD of several different interpolating
fields with the same quantum numbers that ideally couple to different energy states. We
construct a matrix of cross-correlators4,

Cij(t) =


< Ω|O1(t)O†

1(0)|Ω > < Ω|O1(t)O†
2(0)|Ω > . . .

< Ω|O2(t)O†
1(0)|Ω > < Ω|O2(t)O†

2(0)|Ω > . . .
...

...
. . .

 (4.19)

where the basis of interpolating fields is

OD = {O1,O2,O3, . . . ,ON} (4.20)

A variational analysis can then be undertaken to produce correlation functions that couple
strongly to the state of interest.

Choosing Good Interpolating Fields

At this point, it is useful to ask how to construct a good set of interpolating fields in order
to ensure a reliable state identification at finite lattice spacing, and to increase the statistical
precision in our computation. The important features to be taken into account include:

• The operator should not be noisy, i.e., it should produce a correlator with acceptable
statistical precision over a reasonable number of timeslices;

• The basis of operators should have a high overlap with the states of interest (which are
the eigenvectors of the GEVP) and this basis of operators are or are close to be linearly
independent.

Let us not forget that, in order to improve statistical precision, we can use smearing tech-
niques (presented in Section 3.5.2) as well as noise reduction in all-to-all propagators through
time dilution (4.1).

4We are assuming the rest-frame in the following discussion.
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Having chosen the variational basis, the variational technique yields the so-called General-
ized Eigenvalue Problem (GEVP), which amounts to solving

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0) (4.21)

where C(t) is the N × N matrix of correlators Cij(t) that appears in eq. (5.7), λn(t, t0) and
vn(t, t0) are respectively the eigenvalues and the eigenvectors of this matrix. In GEVP, it is
recommended to choose a time slice t0 < t in order to improve the signal by suppressing the
contributions from higher excited states. The method can be improved by increasing the num-
ber of interpolators. However, when more operators are included, one enhances the statistical
noise and thus the matrix has problems to converge to the eigenvalues.

4.3.1 Mass Extraction

When solving the GEVP (see Appendix B), the eigenvalues behave as

λn(t, t0) = e−mn(t−t0) (unbounded time) (4.22)

and the traditional method to extract the mass mn of the nth state is to consider

meff
n (t, t0) = −

∂ log λn(t, t0)

∂t
= log

λn(t, t0)

λn(t + 1, t0)
(4.23)

Therefore, at large time separations (t → ∞), each eigenvalue is dominated by a single state,
allowing a stable two parameter fit. In practice, to extract the masses using the GEVP, one
needs to do the following steps:

• Calculate the correlation matrix for a given set of interpolators;

• Check that the matrix has real eigenvalues, since the matrix C(t) needs to be Hermitian
for all Euclidean times t, and C(t0) needs to be positive definite;

• Diagonalize the C(t) matrix at each time slice, and sort the eigenvalues according to
their magnitude.

For the analysis, truncating the matrix to a suitable sub-matrix of interpolators could be useful
as it may provide results with a smaller statistical uncertainty.

4.3.2 Matrix Element Extraction

We will also need to compute matrix elements, in order to extract other observables such as
decay constants. While the mass extraction required the eigenvalues of the GEVP, extracting
matrix elements further requires the eigenvectors of the GEVP.

First, we introduce the effective matrix element

〈Ω|P̂ |n〉eff
(t) =

√
2En

(
λn(t, t0)

λn(t + 1, t0)

)t/2 ∑N
i=1 〈Ω|P(t)O†

i (0)|Ω〉√
(vn(t, t0), C(t)vn(t, t0))

(4.24)
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where Oi is one of the interpolating fields of the basis (4.20) and P is an operator (which can
be, or not, one of the operators Oi). We notice that in eq. (4.24) the matrix element is written
taking into consideration all the elements provided by the GEVP method (the eigenvalues and
the eigenvectors) as well as the correlator matrix (4.19) and the two-point correlation function.
The effective matrix element will converge at large enough times t to the true matrix element

〈Ω|P̂ |n〉eff
(t) t→∞−−→ 〈Ω|P̂ |n〉 (t) (4.25)

To extract the matrix elements, one needs to use resampling techniques like jackknife (see
Section 3.7) in the eigenvectors in order to get consistent samples. Besides, the GEVP depends
on the reference timeslice t0, so to be able to do a good analysis of the data, one needs to test
this parameter to see the robustness of the results. Particularly, if t0 is chosen too small, then
the states with energies larger than that of interest will contaminate the results. On the other
hand, if one chooses values of t0 too large, numerical instabilities may result. We will later
discuss the choice of t0 in our simulations.

4.4 Data Analysis and Fitting Procedure

In this section, we will address some aspects regarding the fit done to extract the mass, and
subsequently present the computational tools which were used to analyze the data.

Data Analysis

As in eq. (3.23), we define the effective mass

meff
n (t, t0) = log

λn(t, t0)

λn(t + 1, t0)
(4.26)

where the eigenvalue λn(t, t0) corresponds to the nth state, as obtained from the GEVP. We
can observe in Fig. 4.1 a plot of typical effective masses. We also present the effective mass
(computed with eq. (4.26)) as a function of time for the charmonium pseudoscalar states
ηc(1S) and ηc(2S) (respectively, ground and excited states). In this simulation, the fermions
are O(a) improved Wilson-Clover with an ensemble provided by the CLS consortium with
N f = 2 sea quarks, a lattice spacing a = 0.065 fm, a lattice size 323 × 64, a pion mass of 440
MeV and 200 configurations. We have computed a 2× 2 matrix

C(t) =

[
〈P(t)P(0)〉 〈A0(t)P(0)〉
〈P(t)A0(0)〉 〈A0(t)A0(0)〉

]
(4.27)

where P = c̄γ5c and A0 = c̄γ0γ5c are, respectively, the pseudoscalar and axial interpolating
fields. We will discuss this topic in more details on Chapter 5. The effective mass plateaus
(where we have performed a fit) are represented by a solid line within defined intervals of
time. The plateau coming from the ground state is found in a wider interval of time than the
excited state one: in Fig. 4.1 we choose t ∈ [10, 13] for the excited state and t ∈ [9, 15] for the
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ground state. This difference is due to the fact that the data for the excited states is noisier
than that of the fundamental states. Also, as t approaches large values for the excited states
we can observe larger error bars when compared to the ground state. This behavior is not
surprising since the data for the excited states are unstable.

FIGURE 4.1: The effective masses of the two smallest eigenvalues from a 2× 2
matrix of pseudoscalar meson correlators as a function of time. The plateau for
the first excited state is clearly visible but rather shorter than the ground state

plateau.

Fitting Procedure

We have discussed fits and errors in the last chapter. However, it is worth noting that the
simplest fit procedure is the two parameter fit Ae−m(t−t0) of the GEVP eigenvalues, where m is
the mass of the observable of interest and A is a prefactor. As we already have discussed (see
Section 3.7), we are using uncorrelated fits. This means that we perform simple two parameter
fits (when we consider only the ground state) to the eigenvalues, weighing each point by its
error as determined from a single-elimination jackknife procedure.

Requirements for a Good Fit

Since performing a good fit is not an easy task, we need to take into account some points:

• We should perform a stable fit in the time range of the plateau region. In particular, the
fit should be stable with respect to small changes in the minimum timeslice included in
the fit;
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• We need to include in the fit a reasonable range in time t. This number of points will
depend on the size of our lattice;

• One should aim at reasonable statistical errors on the fitted quantity (mass, decay con-
stants, form factors, etc);

• The χ2, for a good fit, is normally of order one (for uncorrelated data) when this quantity
can be reliably determined.

4.4.1 Computational Tools

LAPACK

We have used the LAPACK library, written in Fortan 90, which provides routines for solving
systems of simultaneous linear equations, least-square solutions of linear systems of equa-
tions, eigenvalue problems, and singular value problems. One of this routines is called DGGEV,
which computes for a N × N real non-symmetric matrix A, the eigenvalues and, optionally,
the left and/or right eigenvectors. For more information and examples about LAPACK and
the DGGEV routine, see http://www.netlib.org/lapack/.

MINUIT

To perform our fits, we have used MINUIT - Function Minimization and Error Analysis [109]. It
is a tool to find the local minimum of a multi-parameter function and analyze the shape of the
function around the minimum. This tool works with χ2 or log-likelihood functions, to com-
pute the best values of our fit, including uncertainties. It is especially suited to handle difficult
problems, including those which may require guidance in order to find the correct solution.
This package acts on a multiparameter Fortran function to which we give the generic name
FCN. The value of FCN normally depends on some variable parameters whose meaning is
defined by the user (or by the intermediate program), but whose trial values are determined
by Minuit according to the user purposes (usually minimize it).

4.5 Summary

In this chapter we described the methods used for excited state hadron spectroscopy and,
in particular, the GEVP. We discussed also the extraction of the mass and matrix elements.
Moreover, we commented on the fitting procedure and the error analysis.

http://www.netlib.org/lapack/
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Chapter 5

Charmonium on the Lattice

The interest in charmonium spectroscopy has increased in the last decade due to the experi-
mental observations (at B− factories, CLEO-c, the Tevatron and BES) of rather narrow states
close to or above open-charm thresholds. An extensive review of the experimental and the-
oretical situation is given in [5]. We will explore charmonium physics in Section 5.1 and the
setup of our study in Section 5.2 which allows to study ground states and first radial excited
states. Performing a precision calculation of the masses of the lower-lying states is an impor-
tant benchmark of lattice computations (some examples of recent studies are found in [110–
112]). Currently, huge progress has been made using LQCD to investigate excited states (see
[113–115]).

5.1 Physics of Interest

Charmonium physics is a challenging and promising topic for lattice QCD simulations, since
we have accurate experimental results that can help checking the reliability of our calculations,
provided that all systematic errors are under control. In this section, we will discuss the states
we have been working on.

The charmonium was discovered in the 70′s, when the SLAC and Brookhaven collabo-
rations announced almost simultaneously the observation of a new narrow resonance which
would be, afterwards named J/ψ [116, 117]. Shortly after, another narrow state was dis-
covered by the SLAC group, which was called ψ(2S) [118]. These two resonances were in-
terpreted as bound states of a new quark, at that moment called charm or c quark, and its
antiquark c̄. The charmonium (cc̄) states are a powerful tool to understand strong interac-
tions. The mass of the quark is large (mc ≈ 1.5GeV), which makes it possible to attempt a
phenomenological description of the dynamical properties of the charmonium system using,
for example, non-relativistic potential models [119–121], where the asymptotic properties of
the strong interaction are reproduced by choosing a specific functional form.

Currently, charmonium physics has been receiving attention again, because of the discov-
ery of new states such as ηc(2S), X(3872) (discovered, respectively, by the Belle Collaboration
[122] and by the BaBar Collaboration [123]), of the exploitation of the B factories as rich sources
of charmonium states and of new projects like CLEO-c.
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Remarks on Charmonium

Experimental charmonium breakthroughs have been done mostly at e+e− colliding facilities
such as BES at BEPC, CLEO at CESR, BaBaR at PEP-II, Belle at KEKB, KEDR at VEPP-4M.
Other collaborations have also provided data like E835 at Fermilab (pp̄ gas-jet target) and
CDF at the Tevratron pp̄ collider. For Refs. see [124–128].

In e+e− experiments, annihilation occurs primarly through an intermediate virtual pho-
ton, creating the bound state cc̄, as shown in Fig. 5.1. There are other mechanisms to produce
the charmonium states including photon-photon fusion and initial state radiation. Moreover,
the production of double charmonium in e+e− has been observed at the B factories. All this
mechanisms are well described in [129] and represented in Fig. 5.1. A detailed overview on
charmonium physics can be found in [113, 130–132].

FIGURE 5.1: The Feynman diagrams of the process e+e− → cc̄ (top left hand
side), γγ fusion process (top right hand side), initial state radiation production
of charmonium (bottom left hand side) and double charmonium production in

e+e− annihilation (bottom right hand side).

Radial Excitations

In this work, we shall study the first radial excitation of charmonium states (see Section 5.1.1).
The radial excitations present the same spin-parity as the ground state and many radial exci-
tations of mesons and baryons have been experimentally discovered [1].

A mesonic system can be classified as

|n2s+1LJ〉 (5.1)

where n stands for the radial quantum number, s the total spin of the meson, L the orbital
angular momentum and J the total angular momentum (~J = ~L +~s). Equation (5.1) is called
spin-orbit decomposition. For a value of L 6= 0, the states are orbitally excited. We are inter-
ested in L = 0, but with n > 0, which means we have radial excitations. Then, for the ground
state we have 1S(n = 1, L = 0) and for the first excited state 2S(n = 2, L = 0). In this work,
we consider the two singlet states (spin 0): ηc and ηc(2S), as well as the two triplet states (spin
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1): J/ψ and ψ(2S). In the next section, we will address the excited states which will be the
object of our study.

5.1.1 Charmonium States

We will begin by a brief description of the states we considered.

Pseudoscalar Mesons

• ηc(1S) (ground state): quantum numbersJPC = 0−+ and mass [1]

mηc(1S) = 2983.9± 0.5 MeV

The first measurements of the mass and width of the low-lying charmonium state, the
ηc, presented large uncertainties when compared to those of the other charmonium
states [133]. In the beginning, these measurements were made through properties us-
ing J/ψ radiative transitions [134] . There is a 3.3σ inconsistency in previous ηc mass
measurements from J/ψ and ψ′ → γηc (averaging 2977.3± 1.3 MeV) compared to γγ or
pp̄ production (averaging 2982.6± 1.0 MeV) [135]. However, some modern experiments,
which include photon-photon fusion and B decays, have reported a much higher mass
and much wider width [136–138]. One of the advantages of performing experiments
with γγ fusion is, for example, a negligible background [139]. Currently, the most accu-
rate result was measured by BESIII, where the ηc was reconstructed through six modes:
KSK+π−, K+K−π0, ηπ+π−, KSK+π+π−π−, K+K−π+π−π0, and 3(π+π−), in which
the KS is reconstructed in π+π− mode, and the η and π0 from γγ final states [140, 141].
Then, the results for the mass and the width of ηc [1] are, respectively,

mηc(1S) = 2984.3± 0.5 MeV

and

Γ = 32.0± 0.8 MeV

These results agree with certain recent lattice computations [142].

• ηc(2S) (first excited state): quantum numbers JPC = 0−+ and mass [1]

mηc(2S) = 3637.6± 1.2 MeV

and

Γ = 11.3+3.2
−2.9 MeV

It is the first radial excitation of ηc (n = 2). In 2002, the Crystal Ball experiment found
one candidate to be the ηc(2S) at a mass of 3596± 5 MeV/c2 [131]. In addition, in 2002,
the Belle experiment observed clear peaks in the X mass distribution in B → KX, X →
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KSK±π∓ at the ηc, the J/ψ, and at a mass of 3654± 10 MeV/c2 [143]. CLEO [137] and
BaBaR [136] confirmed the higher mass value in γγ → KSK±π∓ with mass measure-
ments of 3642 MeV/c2 and 3633 MeV/c2, respectively. Most recently, the Belle Collabo-
ration performed new measurements for ηc(1S) and ηc(2S) resonant parameters in the
decay of B± → K±(KSKπ)0 by considering the interface between ηc(1S)/ηc(2S). At
the same time, the BaBaR Collaboration also updated the analysis of e+e−(γγ), γγ →
ηc(1S)/ηc(2S) → (KSKπ)0 and K+K−π+π−π0 modes [144]. The BESIII Collaboration
[145, 146] searched for the transition ψ′ → γηc(2S) through the hadronic final states
KSK±π∓. They have measured the mass for ηc(2S) which is 3638.5 ± 2.3 ± 1.0 MeV.
These investigations indicate that the ηc(2S) parameters agree well from different pro-
duction processes [133]. The higher mass value is more consistent with lattice calcula-
tions and phenomenological models [147].

Vector Mesons

• J/ψ(1S) (ground state): quantum numbers JPC = 1−− and mass [1]

mJ/ψ(1S) = 3096.900± 0.006 MeV

and

Γ = 92.9± 2.8 keV

The J/ψ was discovered simultaneously in two different laboratories with two com-
pletely different types of machine. This detection was really important, because these
two groups had found a new particle whose lifetime was about a thousand times longer
than that of other particles of comparable mass. This discovery had such a huge reper-
cussion that it became known as the November revolution in the physics community.
However, it was only later that it was understood that this new particle was a cc̄ bound
state. Remarkably, it was shown that the cc̄ spectrum can be well understood within the
framework of non-relativistic quantum mechanics plus spin dependent corrections.

• ψ(2S) (first excited state): quantum numbers JPC = 1−− and mass [1]

mψ(2S) = 3686.097± 0.025 MeV

and

Γ = 589.188± 0.028 MeV

The discovery of the meson ψ(2S) occured almost at the same time as the J/ψ discovery.
While the different collaborations were trying to figure out informations about J/ψ, the
SPEAR group discovered three more states through radiative transitions which included
the ψ(2S) [148].
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5.2 Charmonium Spectroscopy

In this section, we describe our setup for the extraction of the cc̄ spectroscopy from two-point
correlation functions and the GEVP method. The charmonium spectroscopy below the open
charm threshold has been well measured and agrees with the theoretical expectations. How-
ever, adequate experimental information is still lacking, as well as solid theoretical inferences
for those charmonium states. We will discuss more about the charmonium spectrum in the
following section.

5.2.1 The Charmonium Spectrum

Figure 5.2 shows the charmonium spectrum. The spectrum consists of eight narrow states
below the threshold for open charm (≈ 3730 MeV) and several states above threshold, some
of them wide, since they decay to DD̄. In addition, certain states are narrow, because their
decay to open charm is not allowed by conservation laws. Below threshold all states are well
established. On the other hand, we do not have much information on the states above the
threshold. Even though the states below the threshold have been identified, we still do not
have all the necessary information about them. Therefore, in this work, we aim at providing
more information about some of these states.

In 2008, a pioneering study on excited charmonium states using LQCD was published
[111]. In this study the variational method, explained in the previous chapter was used. Con-
sidering the JPC = 1−− channel, where the J/ψ is the ground state and has a very clean
signal, investigations have found six states, but only three of them were identified, namely
J/ψ, ψ(2S) and ψ(3S). The lattice values found were higher than the experimental ones and
the discrepancies in masses ranged from 12 to 82 MeV [112]. These results are pioneering, as
we said before, but more investigation is needed; moreover open charm states were ignored.
Nowadays, lattice collaborations1 generate a large number of ensembles with different values
of lattice spacings, which opens the way to further improvements in lattice calculations.

5.2.2 Variational Method

In our analysis [149, 150], we want to extract information on the charmonium ground state
and the charmonium first excited state. We then need to find the best way to apply the GEVP
in order to obtain reliable results.

GEVP discussion

We already presented the GEVP in Section 4.3 and in Appendix B. Here, we will apply this
procedure to the charmonium states of interest.

1For example: MILC and ALPHA collaborations.
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FIGURE 5.2: The level scheme of the cc̄ states showing experimentally estab-
lished states with solid lines. From [1].

The two-point correlation functions under investigation read

C(t) = ∑
~x,~y
〈Ω|[O1](~y, t)[O†

2 ](~x, 0)|Ω〉

= ∑
~x,~y
〈Ω|[c̄Γc](~y, t)[c̄γ0Γ′γ0c](~x, 0)|Ω〉 (5.2)

where 〈·〉 stands for the expectation value over gauge configurations, and the interpolating
fields O1(2) can be local or non-local. As we already discussed in Section 4.3, we need to
find a good basis of interpolating fields. Therefore, as a preparatory work, we have explored
different possibilities to find the best operator basis, combining levels of Gaussian smearing,
interpolating fields with a covariant derivative c̄Γ(~γ · ~∇)c and operators that are odd under
time parity. Solving the GEVP is a key point in this analysis. In the literature, we have noticed
that some groups [151–153] tried to mix together two types of operators in a unique GEVP
system: c̄Γc and c̄γ0Γc. According to our investigations, this approach raises some questions.
Indeed, let us consider the example of the pseudoscalar and axial interpolating fields, respec-
tively,

P = c̄γ5c (5.3)

A0 = c̄γ0γ5c (5.4)
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The asymptotic behaviour of the two-point correlation functions defined with these inter-
polating fields are

〈P(t)P(0)〉 ; 〈A0(t)A0(0)〉
t→∞−−→ cosh[mP(T/2− t)] (5.5)

〈P(t)A(0)〉 ; 〈A0(t)P(0)〉 t→∞−−→ sinh[mP(T/2− t)] (5.6)

In eq. (5.5) we used the symmetry of the correlation function with respect to t ↔ T − t of
the periodic lattice. Here, both quarks can propagate forward and backward in time due
to periodic boundary conditions resulting in the hyperbolic cosine function instead of the
exponential. However, in eq. (5.6) we have antisymmetrical correlators with respect to the
transformation t↔ T − t, which results in the hyperbolic sine (for details see Appendix B).

For the GEVP, the 2× 2 matrix of correlators is then

C(t) =

[
〈P(t)P(0)〉 〈A0(t)P(0)〉
〈P(t)A0(0)〉 〈A0(t)A0(0)〉

]
(5.7)

where Cij is the i− j matrix element of C(t) written as

Cij(t) = ∑
n

Zi
nZ∗j

n [Dijρ
(1)
n (t) + (1− Dij)ρ

(2)
n (t)] , (Dij = 0 or 1) (5.8)

where Zi
n is the overlap factor associated with the interpolating operator. Moreover,

ρ(1),(2)(t) ∼ e−mPt cosh[mP(T/2− t)] or e−mPt sinh[mP(T/2− t)] (5.9)

where mP is the mass of the pseudoscalar state. The choice of ρ(1) and ρ(2) will depend on
the correlator we are using. In the following we will present the asymptotic behavior for the
different correlators.

Let us repeat the GEVP construction (cf. Appendix B). The dual vector to Z, un, is defined
by

∑
j

Z∗j
m uj

n = δmn (5.10)

Inserting the above equation in the GEVP, we arrive at

∑
j

Cij(t)u
j
n = ∑

j,m
Zi

mZ∗j
m uj

n
[
Dijρ

(1)
m (t) + (1− Dij)ρ

(2)
m (t)

]
= ∑

m
ρ
(2)
m (t)Zi

m ∑
j

Z∗j
m uj

n + ∑
m

(
ρ
(1)
m (t)− ρ

(2)
m (t)

)
Zi

m ∑
j

DijZ
∗j
m uj

n

= ρ
(2)
n (t)Zi

n + ∑
m

(
ρ
(1)
m (t)− ρ

(2)
m (t)

)
Zi

m ∑
j

DijZ
∗j
m uj

n (5.11)

If the Dij do not depend on i, j, we obtain the following structure

C(t)un = ρn(t)Zn and λn(t, t0) =
ρn(t)
ρn(t0)

(5.12)
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where λn(t, t0) are the eigenvalues of the GEVP.

Operator Mixing

The mixing of T-odd and T-even operators [151–153] in a single GEVP system represents an
issue, since the D’s depend on i and j, which means it is not possible to use eq. (5.12). For
this reason, approximating every correlator by sums of exponentials forward in time, together
with the assumption that the Dij do not depend on i and j, is problematic. In order to under-
stand this issue, we constructed a toy model with three states in the spectrum:

spectrum

1.0
1.25
1.44

Matrix of couplings 0.6 0.25 0.08
0.61 0.27 0.08
0.58 0.24 0.08


time behavior of Cij cosh sinh cosh
sinh cosh sinh
cosh sinh cosh


To extract the effective mass of the toy model we have used eq. (4.26). In our numerical

application, we have choosen T = 64, t0 = 3 and compared 2× 2 and 3× 3 subsystems: the
results can be seen in Fig. 5.3. On the left side of Fig. 5.3 we have two different values of
the effective mass, the black points are the results for the lower energy value of the spectrum,
while the red dots are for the second value presented in the spectrum. On the right side of Fig.
5.3, in addition to the previously presented values, we also exhibit the value for the highest
energy in the spectrum (green points).

FIGURE 5.3: Effective masses obtained from the 2× 2 subsystem (left panel) and
the 3× 3 subsystem (right panel) of our toy model, with T = 64 and t0 = 3.

We can observe that until t ≈ T/4, neglecting the time-backward contribution in the cor-
relation function has no effect. Based on this study, we can affirm that the method is reliable
for the ground state and the first excited state. However, one may wonder what could happen
with a dense spectrum when the energy of the third or a higher excited state is extracted. For
this case, there will be a competition between the contamination from higher states, which are
not properly isolated by the finite GEVP system, and the omission of the backward in time
contribution to the generalized eigenvalue under study [101].
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Interpolating Field Basis

The construction of a basis of interpolating fields from

{c̄Γc; c̄Γ(~γ · ~∇)c} (5.13)

where the symmetric covariant derivative has the form presented in Chapter 2,

∇µψ(x) =
Uµ(x)ψ(x + aµ̂)−U†

µ(x− aµ̂)ψ(x− aµ̂)

2a
(5.14)

has some advantages, which have been already explored in [154, 155]. However, we have
found some weak points in this choice of operators. As an example, we will take the pseudoscalar-
pseudoscalar correlator defined by

Cij(t) = ∑
ij
〈Ω|[c̄γ5γiDic](t) [c̄γ5γjDjc](0)|Ω〉 (5.15)

where Di is the derivative in the i direction. The behavior of this equation will be studied with
a naïve quark model. The full discussion is found in Appendix C. By studying the operator
c̄γ5γiDic in eq. (5.15) we arrive at

∑
i

c̄γ5γiDic = 0 (5.16)

From eq. (5.16), we can conclude that c̄γ5γiDic contribution in (5.15) should be nonexistant.
However, if one chooses

Cij(t) = ∑
ij
〈Ω|[c̄γ0γ5γiDic](t) [c̄γ0γ5γjDjc](0)|Ω〉 (5.17)

we get the following contribution from the operator c̄γ0γ5γiDic,

∑
i

c̄γ0γ5γiDic = −cT
1
~p2

mc
σ2c1 where c1 =

(
c+1
c−1

)
(5.18)

which is clearly a non-zero contribution. The correlator (5.17) has a very good signal, espe-
cially when compared to (5.15). We can observe that the simple fact of inserting a γ0 matrix
can change extremely the correlator behaviour.

Our Choice of Operators

In our simulations, we have considered four Gaussian smearing levels for the quark field c (in-
cluding no smearing) to built our 4× 4 matrix of correlators without any covariant derivative
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or operator of the kind π2 (γ0γ5) or ρ2 (γiγ0) [154], from which we have extracted theO(a) im-
proved hadronic quantities we have investigated. By solving the GEVP for the pseudoscalar-
pseudoscalar and vector-vector matrix of correlators, respectively,

CPP(t)vP
n (t, t0) = λP

n (t, t0)vP
n (t, t0)CPP(t0) (5.19)

and

CVV(t)vV
n (t, t0) = λV

n (t, t0)vV
n (t, t0)CVV(t0) (5.20)

we obtained the correlators which have the largest overlap with the nth excited state as fol-
lows:

C̃n
A0P(t) = ∑

i
CAL

0 P(i)(t)vP,i
n (t, t0) (5.21)

C̃n
PP(t) = ∑

i
CPLP(i)(t)vP,i

n (t, t0) (5.22)

C̃′nPP(t) = ∑
i,j

vP,i
n (t, t0)CP(i)P(j)(t)v

P,j
n (t, t0) (5.23)

C̃n
VV(t) =

1
3 ∑

i,k
C

VL
k V(i)

k
(t)vV,i

n (t, t0) (5.24)

C̃′nVV(t) =
1
3 ∑

i,j,k
vV,i

1 (t, t0)CV(i)
k V(j)

k
(t)vV,j

n (t, t0) (5.25)

C̃n
TV(t) =

1
3 ∑

i,k
C

TL
k0V(i)

k
(t)vV,i

n (t, t0) (5.26)

C̃n
δPP(t) =

C̃n
PP(t + 1)− C̃n

PP(t− 1)
2a

(5.27)

C̃n
δTV(t) =

C̃n
TV(t + 1)− C̃n

TV(t− 1)
2a

(5.28)

and their symmetric counterpart with the exchange of operators at the source and at the sink.
The quark bilinears which appear in the previous equations are:

P = c̄γ5c (5.29)

A0 = c̄γ0γ5c (5.30)

Vk = c̄γkc (5.31)

Tk0 = c̄γkγ0c (5.32)

Moreover, in these expressions, the label L stands for a local interpolating field and, in ad-
dition, we have a sum over i and j running over the four Gaussian smearing levels. The
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projected correlators have the following asymptotic behaviour

C̃′nPP(t) −−−−→t/a�1

Z ′PPn

amPn

e−mPn T/2 cosh[mPn(T/2− t)] (5.33)

C̃n
A0P(t) −−−−→t/a�1

−ZAPn

amPn

e−mPn T/2 sinh[mPn(T/2− t)] (5.34)

C̃n
PP(t) −−−−→t/a�1

ZPPn

amPn

e−mPn T/2 cosh[mPn(T/2− t)] (5.35)

C̃′nVV(t) −−−−→t/a�1

Z ′VVn

amVn

e−mVn T/2 cosh[mVn(T/2− t)] (5.36)

C̃n
VV(t) −−−−→t/a�1

ZVVn

amVn

e−mVn T/2 cosh[mVn(T/2− t)] (5.37)

C̃n
TV(t) −−−−→t/a�1

ZTVn

amVn

e−mVn T/2 sinh[mVn(T/2− t)] (5.38)

C̃n
δPP(t) −−−−→t/a�1

−1/a sinh(amPn)
ZPPn

amPn

e−mPn T/2 sinh[mPn(T/2− t)] (5.39)

C̃n
δTV(t) −−−−→t/a�1

−1/a sinh(amVn)
ZTVn

amVn

e−mVn T/2 cosh[mVn(T/2− t)] (5.40)

where the various Z stands for the meson-to-vacuum matrix elements of the operators in the
respective channels, which arise in the spectral decompostions of the correlation functions.

Decay Constant Extraction

We will start by considering the O(a) improved operators (AI
0 and V I

k ), in order to minimize
discretization effects [156],

AI
0 = (1 + bAZamAWI

c )

(
A0 + acA

∂0 + ∂∗0
2

P
)

(5.41)

V I
k = (1 + bV ZamAWI

c )

(
Vk + acV

∂ν + ∂∗ν
2

Tkν

)
(5.42)

where the coefficient Z is defined in Refs. [67, 157]. The lattice derivatives are given by

∂νF(x) =
F(x + aν̂)− F(x)

a
(5.43)

∂∗νF(x) =
F(x)− F(x− aν̂)

a
(5.44)

We have also used non-perturbative results and perturbative formulae from [158–160] for the
improved coefficients (bA, bV , cA and cV). The non-perturbative renormalization of the axial
(ZA) and vector current (ZV) is discussed in the next chapter. We have defined the quark mass
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mc via the axial Ward Identity (AWI)

mAWI
c =

∂0+∂∗0
2 CAL

0 PL(t) + acA∂0∂∗0CPLPL(t)

2CPLPL(t)
(5.45)

The expression (5.45) exhibits an extended plateau over the timeslices sufficiently far from
the boundaries of the lattice and therefore can be accurately determined with confidence as
the plateau average over central timeslices. In eq. (5.45), ∂0 and ∂∗0 denote the forward and
backward difference operators in time direction. The improvement coefficient cA has been
determined non-perturbatively [158]. The counterpart of eq. (5.45) is defined through the
vector Ward Identity (VWI)

amVWI
c =

1
2

(
1
κc
− 1

κcrit

)
(5.46)

where κc stands for the value of the hopping parameter of the charm quark. The κcrit param-
eter is required because Wilson fermions break chiral symmetry (see Section 2.4.3). The value
of κcrit is chosen to give a zero pion mass [27].

The lattice expressions for the pseudoscalar and vector matrix elements of the renormal-
ized axial and vector current, which are proportional to the leptonic pseudoscalar and vector
meson decay constant of interest, can be split into leading and O(a) improvement contribu-
tions as shown in the following.

Ground State

Pseudoscalar case: the fηc decay constant is extracted in the following way:
〈0|AR

0 |ηc(~p = 0)〉 = − fηc mηc = −ZA(1 + bAZamAWI
c )mηc f 0

Pc
(1 + f 1

Pc
/ f 0

Pc
)

a f 0
Pc
=

1
amηc

ZAP1√
Z ′PP1

; a f 1
Pc
=

1
amηc

cA sinh(amηc)
ZPP1√
Z ′PP1

(5.47)

Vector case: the f J/ψ decay constant is obtained with
〈0|VR

i |J/ψ(ε,~p = 0)〉 = εi f J/ψmJ/ψ = εiZV(1 + bV ZamAWI
c )mJ/ψ f 0

Vc
(1 + f 1

Vc
/ f 0

Vc
)

a f 0
Vc

=
1

amJ/ψ

ZVV1√
Z ′VV1

; a f 1
Vc

= − 1
amJ/ψ

cV sinh(amJ/ψ)
ZTV1√
Z ′VV1

(5.48)

In eqs. (5.47) and (5.48) the R superscript denotes the renormalized improved operators. The
parameter ε is the vector current polarization (see Appendix A). The renormalization con-
stants ZA and ZV have been non perturbatively measured in [99, 100]. We will address this
topic later in Section 5.2.3. Moreover, in eq. (5.47) the index 1 in ZAP1 ,Z ′PP1

,ZPP1 and Z ′PP1

stands for the ground state. The same is true for eq. (5.48). The pseudoscalar (vector) decay
constants a f 0

Pc
(a f 0

Vc
) and a f 1

Pc
(a f 1

Vc
) are related, respectively, to leading (index 0) and to the

O(a) improved (index 1) contributions.
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Excited State

Pseudoscalar case: in order to extract the fηc(2S) decay constant we do
〈0|AR

0 |ηc(2S)(~p = 0)〉 = − fηc(2S)mηc(2S) = −ZA(1 + bAZamAWI
c )mηc(2S) f 0

P′c
(1 + f 1

P′c
/ f 0

P′c
)

a f 0
P′c
=

1
amηc(2S)

ZAP2√
Z ′PP2

; a f 1
P′c
=

1
amηc(2S)

cA sinh(amηc(2S))
ZPP2√
Z ′PP2

(5.49)

Vector case: the fψ(2S) decay constant is is obtained through
〈0|VR

i |ψ(2S)(ε,~p = 0)〉 = εi fψ(2S)mψ(2S) = εiZV(1 + bV ZamAWI
c )mψ(2S) f 0

V′c
(1 + f 1

V′c
/ f 0

V′c
)

a f 0
V′c

=
1

amψ(2S)

ZVV2√
Z ′VV2

; a f 1
V′c

= − 1
amψ(2S)

cV sinh(amψ(2S))
ZTV2√
Z ′VV2

(5.50)

Here we are following the same ideas as for the ground state.

5.2.3 Non–perturbative renormalization: ZA and ZV

We would like to focus on the non-perturbative renormalization of the axial (ZA) and vector
(ZV) current. In this work, we use the renormalization values obtained by the ALPHA col-
laboration [99], where they were computed non-perturbatively in the Schrödinger functional
scheme [67]. In a first investigation, they calculated the values of ZV and ZA, derived from
the Partially Conserved Axial Current (PCAC)2 relation with non-vanishing quark mass. This
condition is expected to reduce mass effects in the chiral extrapolation of the results for the
normalization factors ZV and ZA. The ALPHA Collaboration computed ZA(g2

0) as well as the
vector current normalization factor ZV(g2

0) for β = 6/g2
0 ≥ 5.2. The full study can be found in

[100] and the values proposed by this collaboration are

ZA(g2
0) =

1− 0.918g2
0 + 0.062g4

0 + 0.020g6
0

1− 0.8015g2
0

(5.51)

ZV(g2
0) =

1− 0.6715g2
0 + 0.0388g4

0

1− 0.5421g2
0

(5.52)

where they have found for ZV an absolute error of 0.005, whereas for ZA the absolute error
decreases from 0.01 at β = 5.2 to 0.005 at β = 5.7.

In a new investigation, the ALPHA collaboration revisited their first values of ZA and
ZV : they have discussed kinematical enhancements of cutoff effects at short and intermediate
distances, having computed a new value for the normalization factor ZA [99].

• New determination of ZA

ZA(g2
0) = 1− 0.116g2

0 + 0.011g4
0 − 0.072g6

0 (5.53)

2PCAC is related to the fact that the isovector axial current is conserved for a chiral theory where m = 0 [26].
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where the coefficent of the linear term in g2
0 is fixed by 1-loop perturbation theory and the last

two coefficients are the result of a fit [99].

• Renormalization of the vector current

The ALPHA collaboration has also recalculated the renormalization constant ZV of the vector
current, but the change was less than 2% compared to the first work at the largest lattice
spacing, so they kept the result presented in eq. (5.52).

Remarks on ZA

ZA is the finite renormalization constant of a flavor non-singlet axial bilinear of quarks. How-
ever in our work we have considered flavor-singlet operators, which should require a differ-
ent renormalization constant Z′A because of the chiral anomaly. Nevertheless, the c quark is
insensitive to the chiral anomaly. Therefore, our choice of ZA is completely acceptable.

5.3 Summary

In this chapter, we addressed the progress in theoretical and experimental physics of char-
monium systems. We also presented the implementation of the GEVP method to study the
spectroscopy of the charmonium states. Finally, we explored the procedure to extract the de-
cay constants of the observables of interest as well as the non-perturbative renormalization of
the axial and vector currents.
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Chapter 6

Analysis and Results

In this chapter we report the results for our charmonium studies using the observables dis-
cussed in Chapter 5. We will discuss the parameters we use in lattice simulations as well as
the procedure for connecting our results with the physical world. In the sequence we will
compare our results with the results currently avalaible in the literature, highlighting the pos-
itives and negatives of our work. We will also present possible applications of our research in
the search for New Physics.

The results discussed in this chapter are the object of [150].

6.1 Lattice Setup

This study has been performed using a subset of the CLS ensembles. These ensembles were
generated with N f = 2 nonperturbatively O(a)-improved Wilson-Clover fermions [35, 161]
and the Wilson plaquette action [15] for gluon fields, by using either the DD-HMC algorithm
[162–164] or the MP-HMC algorithm [165].

Numerical Implementation

In this work, we use two different ways to precondition the Hybrid Monte Carlo (HMC) for
improved Wilson fermions. The first one is the domain decomposition in the DD-HMC algo-
rithm introduced by Lüsher [162–164] and the second one is the Hasenbusch’s mass precon-
ditioning (MP) [165]. Both methods can give an acceleration of the algorithm. It is not an easy
task to choose which approach is better. The performance of these methods is determined by
the (auto)correlation times of the observables of interest, whose measurements require runs
with high statistics. Moreover, the optimal values of the parameters and the relative perfor-
mance of the algorithms could depend also on the implementation and the computer that this
simulation is run on. Some comparative studies were done in [166].

Lattice Ensemble

We collect in Table 6.1 our simulation parameters. Two lattice spacings are considered:

aβ=5.5 = 0.04831(38) fm and aβ=5.3 = 0.06531(60) fm
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id β (L/a)3 × (T/a) κsea a (fm) mπ (MeV) Lmπ # cfgs κc

E5 5.3 323 × 64 0.13625 0.065 440 4.7 200 0.12724
F6 483 × 96 0.13635 310 5 120 0.12713
F7 483 × 96 0.13638 270 4.3 200 0.12713
G8 643 × 128 0.13642 190 4.1 176 0.12710
N6 5.5 483 × 96 0.13667 0.048 340 4 192 0.13026
O7 643 × 128 0.13671 270 4.2 160 0.13022

TABLE 6.1: Parameters of the ensemble used: ensemble label, size of the lattice
in lattice units, bare coupling β = 6/g2

0, lattice spacing a, hopping parame-
ter κsea, the mass of the sea pion, number of configurations employed and the

charm quark hopping parameter κc.

The full discussion about the determination of the lattice spacings is done in Section 3.6. The
sea quark masses span a range corresponding to pion masses (190 ≤ mπ ≤ 440) MeV, while
the strange valence quark is fixed to its physical value and we scan a range of charm valence
quark masses around the physical charm quark mass.

The lattice spacings a, pion masses mπ, pion decay constants fπ and values of the strange
quark’s hopping parameter κs are computed in [67], where the scale is set by computing fK at
the physical point defined by mphys.

π = 134.8 MeV, mphys.
K = 494.2 MeV and f phys.

K = 155 MeV
with QED effects removed.

The hopping parameter of the charm quark (κc) is fixed by requiring the Ds-meson mass
to acquire its physical value, mDs = mphys.

Ds
= 1968 MeV, irrespective of the sea quark mass.

Then, a few values in the vicinity of this meson are used and (amDs)
2 is interpolated linearly

in 1/κc to (amphys.
Ds

)2.
The data is from different Monte Carlo simulations with six different hopping parame-

ters κsea which indicate six different pion masses (see Table 6.1). The statistical error on raw
data is estimated using the jackknife procedure: two successive measurements are sufficiently
separated in trajectories along the Monte-Carlo history to neglect autocorrelation effects (see
Section 3.7). Inspired by the bootstrap prescription, the statistical errors on quantities extrap-
olated at the physical point are computed as follows. We create a large set of Nevent fits of
vectors of data whose dimension is the number of CLS ensembles used in our analysis (i.e.
n = 6) and where each component i (i = 1, . . . 6) of those vectors is filled with an element
randomly chosen among the Nbins(i) binned data per ensemble. The variance over the distri-
bution of those Nevent fit results, obtained with such random inputs, is then an estimator of the
final statistical error. This procedure combines a blocking method to ensure that our data are
not correlated with a bootstrap-inspired method. If we used the simple jackknife we could not
guarantee that the data are uncorrelated. Moreover, the randomly chosen samples are large
enough to determine the errors for our fitted quantities. Finally, we have computed quark
propagators through two-point correlation functions using stochastic sources which are dif-
ferent from zero in a single timeslice that changes randomly for each measurement. We have
also applied spin dilution and the one-end trick to reduce the stochastic noise (see Section 4.1)
[95, 167].
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6.2 Analysis

We have collected in Table D.1 of the Appendix D the raw data we have obtained in our
analysis. In this section, we present the discussion made during the analysis of our data. We
also present the relation used to extrapolate the values extracted from the lattice to its physical
result.

Ground States

Since the fluctuations in time are large, we have decided to study the generalized eigenvectors
vP(V)

1 (t, t0) at a fixed time t = tfix and at a non-fixed time t = trun. We want to analyze and
compare the behavior of the effective mass in those two situations. For the fixed time, in
practice we chose tfix/a = t0/a + 1. In Fig. 6.1 we display our plot for ηc(1S), where we
used the eigenvectors vP(V)

1 (t, t0) to project correlators C(t) in order to obtain the effective
mass. The black points represent the effective mass varying in the range 1 ≤ trun ≤ 48. Due
to fluctuations in the correlator, we present in the plot a reduced interval for trun. The blue
points stands for tfix = 4a. We can observe that for both trun and tfix the effective mass remains
constant taking into account the error bars. Due to the invariance in the results, we conclude
that the ground state does not depend on tfix.

FIGURE 6.1: The ηc(1S) effective mass for a tfix = 4a and for a trun.

Excited States

For the excited states, the situation is different from that of the ground states. Although the
fluctuations are even larger than for the ground states, the correlators C̃2

A0P (5.21) and C̃2
VV

(5.24) are qualitatively well fitted by a single contribution. We also studied the generalized
eigenvector vP(V)

2 (t, t0) for t = tfix and t = trun. The computation was done in the same way
than for the ground states. In Fig. 6.2 the plot on the top stands for the projection of vP

2 (t, t0)
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on the correlator C̃2
A0P for ηc(2S), while the plot on the bottom stands for the projection of

vV
2 (t, t0) on the correlator C̃2

VV for ψ(2S). On both cases the dark points are for a non-fixed t
and the blue lines are for a fixed t. Unlike the case for the ground state, for the excited state,
in this case, the effective masses do depend on tfix as we can see in Fig. 6.2.

FIGURE 6.2: The ηc(2S) (top) and ψ(2S) effective masses for a tfix = 4a and for
a trun.

Time Range

For the ground states, the time range [tmin, tmax] used to fit the projected correlators is set so
that the statistical error on the effective mass δmstat(tmin) is larger than the systematic error
∆msys(tmin) ≡ exp[−∆tmin] with ∆ = E4 − E1 ∼ 2 GeV. This choice is done to try to reduce
the statistical uncertainty in our computation. The parameters E4 and E1 respectively stand
for the energy of the third excited state and the ground state. That guesstimate is based on
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our 4× 4 GEVP analysis. Therefore, we cannot claim that we were able to control the energy
level of the third excited state. Actually, we have considered δmstat(tmin) > 4∆msys(tmin).
The upper bound tmax of the particular fit interval per ensemble was fixed after an individual
visual inspection of the quality of the effective mass plateau. The final numbers are normally
invariant, as long as one stays within the plateau region. The choice of ∆(P) ∼ ∆(V) holds to a
good approximation for the mass gaps in the pseudoscalar and vector channels at fixed lattice
spacing and pion mass, thus identical fit intervals were chosen for pseudoscalar and vector
meson states. For the first excited states, the time range has been set by looking at effective
masses and where the plateau starts and ends, including statistical uncertainties.

Finally, we have investigated the influence of t0 in our computation. We have chosen
t0 = 3a at β = 5.3 and t0 = 5a at β = 5.5, but the results were invariant under different values
of t0.

Extrapolation to the Physical Point

We have extrapolated the measured quantities to the physical point by assuming a linear
dependence on the squared (sea) pion mass (m2

π), then our fit ansatz is written as

X(a, mπ) = X0 + X1m2
π + X2(a/aβ=5.3)

2 (6.1)

where X is the observable extracted from the lattice, X1 stands for the dependence on the
sea quarks and X2 stands for the dependence on the lattice spacing. In our case, we use the
Wilson-Clover action, then we have a dependence on a2. We recall that κc has been tuned at
every κsea so that mDs(κs, κc, κsea) = mphys

Ds
. The parameters κsea, κc and κs stand for the value of

the hopping parameter of the sea, charm and the strange quark respectively. It was necessary
to tune the strange quark mass κs, though it is not a relevant quantity for the study discussed
here (see Section 3.6). This tuning is done in the heavy quark hopping parameter κ in order to
obtain the correct mass for the Ds meson.

6.3 Results

6.3.1 Charmonium Mass

The effective masses for the ground state (ηc and J/ψ) are obtained through eq. (6.2), while
those of the first excited states (ηc(2S) and J/ψ(2S)) were derived through eq. (6.3).


ameff

ηc
(t) = arccosh

(
λP

1 (t + a, t0) + λP
1 (t− a, t0)

2λP
1 (t, t0)

)

ameff
J/ψ(t) = arccosh

(
λV

1 (t + a, t0) + λV
1 (t− a, t0)

2λV
1 (t, t0)

) (6.2)
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
ameff

ηc(2S)(t) = arccosh
(

λP
2 (t + a, t0) + λP

2 (t− a, t0)

2λP
1 (t, t0)

)

ameff
ψ(2S)(t) = arccosh

(
λV

2 (t + a, t0) + λV
2 (t− a, t0)

2λV
1 (t, t0)

) (6.3)

The signal values for the effective masses of ηc(1S) and ηc(2S) are illustrated in Fig. 6.3
and for J/ψ(1S) and ψ(2S) in Fig. 6.4. The solid lines correspond to our plateaus for the fitted
masses. Both plots present similarities as they were produced using the same ensambles. In
the plateau region, each effective mass meff(t) is then fitted to a constant mass m. We checked
that the results for the first radial excitation remain stable when we change the size of the
matrix of correlators. We also checked that the choice of t0 in the GEVP (4.21) does not have
any impact on the results presented here. The fitting intervals to extract the masses for the
lowest lying states are

t/a ∈ [11, 29] , t/a ∈ [11, 46]

t/a ∈ [11, 45] , t/a ∈ [12, 55]

t/a ∈ [13, 46] , t/a ∈ [16, 55]

while for the radially excited states the following fit intervals have been chosen,

t/a ∈ [6, 13] , t/a ∈ [8, 15]

In Fig. 6.3 and Fig. 6.4, the ground state (dark lines) shows a longer plateau when compared
to the excited states (red lines). This is related to the fact that the data for the ground states are
more stable than those for the excited ones. We can also observe an increase in fluctuations
as time increases for the excited states. This fact is perhaps due to our choice of interpolating
fields to our correlation matrix in the GEVP. Moreover, we have not used tfix (see Section 6.2)
to extract the first excited states, because it could have caused a contamination in C̃2

A0P and
C̃2

VV from states other than those we are interested in. We are still investigating the origins of
this behavior.

We show in Fig. 6.5 and Fig. 6.6, respectively, the extrapolation to the physical point
of mηc and mJ/ψ. The errors in the continuum limit in both plots are coming from our fit
using the MINUIT (see Section 4.4.1). The dark and red lines are the lattice values from our
work, while the green and blue lines are, respectively, the physical value found by us and
the value obtained from experiments. The color code is the same for the following plots. The
dependence on m2

π and a2 is mild, with cut-off effects which are almost negligible. However,
the contribution to the meson masses besides the mass term 2mc is difficult to quantify. At
the physical point, our results for mηc and mJ/ψ are compatible with the experimental values



6.3. Results 75

10 20 30 40
t/a

0.8

1

1.2

1.4

a
m

e
ff

η
c
(1S)

η
c
(2S)

FIGURE 6.3: Effective masses amηc and amηc(2S) extracted from a 4× 4 GEVP
for the lattice ensemble F7; we also plot the plateaus obtained in the chosen fit

interval.
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FIGURE 6.4: Effective masses amJ/ψ and amψ(2S) extracted from a 4× 4 GEVP
for the lattice ensemble F7; we also plot the plateaus obtained in the chosen fit

interval.

2.983 GeV and 3.097 GeV [1]:

mηc = 2.982(1)(19)GeV (6.4)

and

mJ/ψ = 3.085(2)(20)GeV (6.5)

where the first error is statistical and the second error accounts for the systematic uncertainty
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on the lattice spacing. The latter clearly dominates and hides a possible mismatch between
our extrapolated results at the physical point and experiment. The systematic uncertainty
could come, in particular, from the mistuning of κc due to the mistuning of κs.
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FIGURE 6.5: Extrapolation to the physical point of mηc by expressions linear in
m2

π and a2.
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FIGURE 6.6: Extrapolation to the physical point of mJ/ψ by expressions linear in
m2

π and a2.

6.3.2 Charmonium Decay Constants

We display in Figure 6.7 and in Figure 6.8 the extrapolations to the physical point of fηc and
f J/ψ, respectively. There are mild cut-off effects on fηc of the order of 4% at β = 5.3, while for
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Fit X0[MeV] X1[MeV−1] X2[MeV] X3[MeV−1] χ2/do f fηc

LO 386(3) 0.00005(1) -16.7(2.7) - 1.99 387(3)
NLO 391(6) 0.0006(7) -17.1(2.7) 0.00006(6) 2.62 389(4)

Fit X0[MeV] X1[MeV−1] X2[MeV] X3[MeV−1] χ2/do f f J/ψ

LO 397(4) 0.00010(2) 37.2(3.8) - 0.98 399(4)
NLO 401(7) -0.0003(9) 36.4(4.2) 0.00003(7) 1.41 401(8)

TABLE 6.2: LO and NLO fit parameters and results for fηc and f J/ψ, with their
respective χ2 per number of degrees of freedom.

f J/ψ they are stronger by about 10%.
In addition, we have tried to extrapolate our lattice observables to the physical point by

using a fit form inspired by partially quenched heavy meson chiral perturbation theory, where
the charm quark is treated as heavy. In this fit we adopt again a fit ansatz linear in m2

π (and
a2), but now we have a chiral logarithm-term m2

π ln(m2
π),

fηc = X′ηc 0 + X′ηc 1m2
π + X′ηc 2(a/aβ=5.3)

2 + X′ηc 3m2
π ln(m2

π), (6.6)

f J/ψ = X′J/ψ 0 + X′J/ψ 1m2
π + X′J/ψ 2(a/aβ=5.3)

2 + X′J/ψ 3m2
π ln(m2

π). (6.7)

We have called this fit structure NLO and we have collected in Table 6.2 all our fit results
(LO and NLO), together with fit parameters and χ2 per degree of freedom. We have found
that χ2(NLO) is worse than χ2(LO). Furthemore, the fit parameters X′1 and X′3 are compatible
with zero, while X1 is different from zero. So, we have decided to consider the LO result as our
prefered one and not to include the discrepancy between LO and NLO in the systematic errors
on fηc and f J/ψ. We do not have enough data points to be confident in NLO fits on quantities
whose chiral dependence is, in any case, small. Moreover we do not see any evidence for the
significance of the chiral logarithmic-term in eqs. (6.6) and (6.7). We have used the same time
intervals presented in Section 6.3.1 to perform the fit.

We obtain at the physical point

fηc = 387(3)(3)MeV (6.8)

and

f J/ψ = 399(4)(2)MeV (6.9)

where the systematic error comes from the uncertainty on the lattice spacings.

6.3.3 Comparing our Results to Experimental Data

Masses

We have compared the results of the ground state charmonium masses with the results pro-
vided by the PDG (see Table 6.3) and we can observe that our results reproduce very well the
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FIGURE 6.7: Extrapolation to the physical point of fηc by expressions linear in
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experimental values of both ηc and J/ψ meson masses.

Decay Constants

We display in Fig. 6.9 the comparison between our results for fηc , named “This work N f = 2”,
with those available in the literature. In the same way, Fig. 6.10 compares the results present
in the literature to the result of this work for f J/ψ.
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mηc mJ/ψ

Our Results 2.982(1)(19) GeV 3.085(2)(20) GeV
PDG [1] 2.983 GeV 3.097 GeV

TABLE 6.3: Our results to the charmonium ground states, comparing with the
PDG values.

Vector case: f J/ψ

In Fig. 6.10 we added a phenomenological estimate of f J/ψ. This result is derived from the
decay width expression [153]

Γ(J/ψ→ e+e−) =
4π

3
4
9

α2(m2
c)

f 2
J/ψ

mJ/ψ
(6.10)

together with the experimental determination of the J/ψ mass and width, and setting αem(m2
c) =

1/134 [168]. In the end, one gets

f “pheno”
J/ψ = 407(6)MeV (6.11)

We have compared the above result with the one extracted by us (6.9) and they are compatible
(see Fig. 6.10). Moreover, we can use this computation to check the reliability of our method.
Our result presented in eq. (6.9) agrees with the one obtained in (6.11).

Pseudoscalar Case: fηc

Unlike f J/ψ, we cannot compute a phenomenological estimate for fηc . We find in Ref. [153] a
relation similar to that proposed in the case of J/ψ (6.10)

Γ(ηc → γγ) =
64πα2

81mηc

f 2
ηc

(1 + δ)2 (6.12)

where δ is an unknown term. In Ref. [153] some studies are carried out to estimate a value for
this term. However, a final conclusion was not obtained. Therefore, in this work we do not
present phenomenological estimates for the decay constant fηc . However, this observable is
relevant for several physical phenomena. For example, fηc is crucial for the theoretical descrip-
tions of the γ∗γ∗ → ηc form factor [169–172]. In addition, phenomenological studies of the
small-x gluon distribution function from the inclusive production of ηc requires knowledge of
fηc [12].

Collection of Results

In Fig. 6.9 and Fig. 6.10 we compare our results with those presented by the HPQCD1[110]
and ETM [153] collaborations. In the following we will discuss the different results obtained
by ETM and HPQCD Collaborations.

1http://www.physics.gla.ac.uk/HPQCD/

http://www.physics.gla.ac.uk/HPQCD/
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• ETMC: We begin with N f = 2 calculations. The ETMC performs its calculations in
the chiral regime, with pion masses down to about 270 MeV. Moreover, the contin-
uum extrapolation is done with three lattice spacings: a = 0.054 fm, a = 0.067 fm
and a = 0.098 fm. In their study, they have used twisted quark masses.

• HPQCD’10 [173, 174] and HPQCD’12 [175, 176]: They performed a N f = 2 + 1 calcula-
tion, where HPQCD used highly improved staggered quarks2. The HPQCD’12 compu-
tation improves on the one of HPQCD’10 in a number of ways. The new computation
was performed with a = 0.144 fm, but with pion masses down to 171(1) MeV, and va-
lence pion masses down to 143(1) MeV in a volume of (4.6 fm)3 compared to 290 MeV,
225 MeV and (2.7 fm)3 in HPQCD’10. The only drawback of the HPQCD calculation
comes from the fact that two of their three latice spacings (a ≈ 0.15 fm, a ≈ 0.12 fm and
a ≈ 0.08 fm) are larger than 0.1 fm, while the finest is only 0.085 fm.

Our procedure is not the same as the one performed by the groups mentioned above.
However we can observe similarities in the results. In Fig. 6.9 we can confirm that our result
is compatible with the one presented by ETMC given the error estimations. However, we are
not in agreement with the results obtained by HPQCD’10. We could explain the arbitrariness
in the results by the fact that we have performed a N f = 2 simulation, while HPQCD’10 has
performed a N f = 2 + 1. Moreover, they have considered lattice spacings and values of the
pion mass larger than ours (see Table 6.1).

In Fig. 6.10 there is a clear improvement of the results obtained by HPQCD’12. This
improvement can be due to the fact that they performed new simulations with a smaller pion
mass and in a larger lattice volume. Moreover, the lattice artefacts are of order a, while for
staggered fermions the lattice corrections start at order a2 [178]. In the calculation for f J/ψ

our results differ slightly from those extracted by ETMC. A possible reason for explaining
this difference is due to the fact that ETMC has used twisted quark masses (and we have used
Wilson-Clover fermions) and considered three lattice spacings while we have considered two.
However, our value can still be compatible with ETMC estimations, given their error values.

Knowing that the lattice actions are very different, the fact that these results agree quite
well is a good indication of the robustness of the lattice QCD predictions. Still, our results
appear to be compatible with the two previous lattice estimations available so far in the liter-
ature.

6.3.4 Ratios of Masses and Decay Constants for Excited States

In this section, we will explore the charmonium excited states through the ratios of their
masses and decay constants. We have used the same time intervals presented in Section 6.3.1
to perform a fit. The study of these ratios allows us to avoid systematic errors related to the
lattice spacing.

2Staggered fermions are a formulation where the 16-fold degeneracy of the naïve discretization is reduced to only
four quarks, while at the same time a remnant chiral symmetry is maintained. This is achieved by a transformation
which mixes spinor and space-time indices, distributing the quark degrees of freedom on the hypercubes [26, 110,
177].
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FIGURE 6.9: Collection of lattice results for fηc .

FIGURE 6.10: Collection of lattice results for f J/ψ.

Masses

The situation for the excited states is less favorable than the one presented in the previous
sections. We present in Fig. 6.11 and in Fig. 6.12 the extrapolation to the continuum limit of
the ratios mηc(2S)/mηc and mψ(2S)/mJ/ψ, compared to the experimental values [1]. Since the
cut-off effects are small, of the order of 5%, it is very unlikely to have points in the continuum
limit significantly lower than our lattice data.

We find

mηc(2S)

mηc

= 1.281(7) >
(mηc(2S)

mηc

)exp

= 1.220 (6.13)

and

mψ(2S)

mJ/ψ
= 1.271(7) >

(mψ(2S)

mJ/ψ

)exp

= 1.190 (6.14)

In [179], lattice results were much closer to the experimental ones but the slope in a2 was
probably overestimated from the coarsest lattice point: points at lattice spacings similar to
those used in our work are compatible with our data.

Decay Constants

Our investigation for the first radially excited charmonium decay constants exhibits a behav-
ior that motivates further studies, as can be seen from the results for the ratios of the decay
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constants which are presented in Fig. 6.13 and Fig. 6.14.
The results of this work are

fηc(2S)

fηc

= 0.81(8) < 1 (6.15)
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and

fψ(2S)

f J/ψ
= 1.18(9) > 1 (6.16)

This is a very puzzling result and, at the moment, we are yet to understand the reason of
this large spin breaking (since the vector meson has spin 1) effect:

1. Projected correlators C̃2 in the pseudoscalar and the vector sector show the same quality
fit with similar fluctuations.

2. We performed a global fit of individual correlators CV(i)V(j)(t) by a series of 3 exponential
contributions:

CV(i)V(j)(t) = Zi
1Z∗j

1 e−mV1 T/2 cosh[mV1(T/2− t)] + Zi
2Z∗j

2 e−mV2 T/2 cosh[mV2(T/2− t)]

+ Zij
3 e−mij

3 T/2 cosh[mij
3 (T/2− t)] (6.17)

where the “effective" remaining mass m3, resumming any contributions but the ground
state and the first excited state, can be different for every correlator.

3. The decay constants of J/ψ and ψ(2S) are proportional to

Z0
1√mV1

and
Z0

2√
mV2

(6.18)

respectively, where the local-local vector two-point correlator corresponds to i = j = 0
and we find the hierarchy

Z0
2√

mV2

&
Z0

1√mV1

(6.19)

in our data. It thus appears very unlikely to get, in the continuum limit, fψ(2S)/ f J/ψ < 1
using this procedure either.

4. Neglecting disconnected diagrams could be a source for the problem.

5. Increasing the number of dynamical quarks could help reducing the spin breaking ef-
fects (this has been observed on quantities like fD∗s / fDs [180–183]).

6. The width Γ(ψ(2S) → e+e−) is smaller than its ground state counterpart Γ(J/ψ →
e+e−), that is 2.34 keV versus 5.56 keV [1]. Written in terms of the decay constant fψ(2S)

and the mass mψ(2S), this is a serious clue that fψ(2S)/ f J/ψ < 1 (a possible caveat with
this approach is that QED effects might be quite large, making, as is done in our work,
the encoding in fψ(2S) as purely QCD contributions not so straightforward).

7. A lattice study, performed in the framework of Non-Relativistic QCD (NRQCD), leads
to the upsilon (Υ) decay constant ratios fΥ′/ fΥ < 1 (in the bottomium sector) [184].
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6.4 Possible Applications of Our Results

The discovery at LHC of the Higgs boson with a mass of 125.09(24) GeV [16] has been a major
milestone in the history of the Standard Model: the spontaneous breaking of electroweak
symmetry generates the masses of the charged leptons, quarks and weak bosons. We can
point out a well-known issue with the SM Higgs: the quartic term in the Higgs Lagrangian
induces a quadratic divergence in the Higgs boson mass with the hard scale of the theory,
which is related to the so-called hierarchy problem.

Several scenarios beyond the SM are proposed to fix that theoretical caveat. Some of the
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minimal extensions of the Higgs sector contain two complex scalar isodoublets Φ1,2 which,
after the spontaneous breaking of the electroweak symmetry, lead to 2 charged particles H±,
2 CP-even particles h (SM-like Higgs boson) and H, and 1 CP-odd particle A. In that class
of scenarios, quarks are coupled to the CP-odd particle through a pseudoscalar current [185–
190]. Those extensions of the Higgs sector (called 2HDM) have interesting phenomenological
implications, especially as far as pseudoscalar quarkonia are concerned. For example, their
leptonic decay is highly suppressed in the SM because it occurs via quantum loops but it
can be reinforced by the new tree-level contribution involving the CP-odd Higgs boson, in
particular in the region of the parameter space where the new boson is light (10 GeV . mA .

100 GeV) [186, 191]. Any enhanced observation with respect to the SM expectation would
be indeed a clear signal of New Physics. Let us finally note that the hadronic inputs, which
constrain the CP-odd Higgs coupling to heavy quarks through processes involving quarkonia,
are the decay constants fηc and fηb .

6.5 Partial Conclusions

In this work we investigated a N f = 2 lattice QCD study on some aspects of quarkonia
physics. The decay constants fηc and f J/ψ are in the same ballpark as the previous lattice
estimations so far available in the literature, and present cut-off effects which seem to be lim-
ited to 10%. These are very good results, meaning our estimations are reliable. However, for
the excited states, we encountered issues which are difficult to circumvent.

As a first solution, we have proposed to enlarge a basis of operators in the GEVP anal-
ysis by including interpolating fields with covariant derivatives or operators of the π2 and
ρ2 kind. However they suffer from large statistical fluctuations caused by numerical cancel-
lations among various contributions, or from the more serious conceptual problem that, in
GEVP, mixing T-even and T-odd operators has no real sense. Furthemore, we have observed
that mηc(2S)/mηc and mψ(2S)/mJ/ψ are not significantly affected by cut-off effects, being only
5% larger than the experimental ratios.

The information about the decay constants fηc(2s)/ fηc ∼ 0.8 is interesting, as these quan-
tities are hadronic inputs that govern the transitions ηc → l+l−, h → ηcl+l−, ηc(2S) → l+l−

and h→ ηc(2S)l+l− with a light CP-odd Higgs boson as an intermediate state3.
Unfortunately our result fψ(2S)/ f J/ψ > 1 renders the picture less bright, unless one admits

that there are large spin breaking effects. This clearly motivates future investigation.

3In the cases h → ηcl+l− and h → ηc(2S)l+l−, the other hadronic quantities which enter the process are the
distribution amplitudes of the charmonia.
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Chapter 7

Conclusions and Outlook

The LQCD formulation provides a non-perturbative framework to compute relations between
Standard Model parameters and experimental quantities. In this work, we have presented the
results of our study on charmonium systems from lattice QCD with two dynamical quarks.
We have presented the method used to extract the observables of interest from the lattice.
All results were extrapolated to the continuum and chiral limits analyzing a subset of the
CLS lattice ensembles, and since physical volumes are large, Lmπ > 4, volume effects are
expected to be negligible.

Charmonium spectroscopy plays an important role in understanding the strong interac-
tion, described by QCD. Therefore in Chapter 3, we have explained the procedure to extract
the masses and decay constants from the ground states by using two-point correlation func-
tions. After the study of the ground state, we focused on the first excited states. In order to
extract the spectrum of the excited states, we could have performed a multi-exponential fit in
the correlators, but that approach is unstable and hence we decided to use the GEVP method.
This method involves all-to-all propagators and it is a helpful tool to reduce systematic errors.
We need to remember that the quality and usefulness of a result normally depends on the
size of its error bars. Therefore, we try to use methods that reduce lattice errors as much as
possible.

Another key point of our work is the study of excited states. Thus we dedicated Chap-
ter 4 to the hadron spectroscopy of excited states by using the GEVP, with a suitable basis of
interpolating fields for the states of interest. In addition, we explored the procedure to extract
the mass and the decay constants by using only the GEVP elements (eigenvalues and eigen-
vectors). The variational techniques such as the GEVP are computationally costly, because
additional quark propagators have to be computed, if the basis functions are smeared. The
amount of computer time will depend also on the number of basis states. Moreover, the effi-
ciency of a basis state is not clear until the calculation is done. Despite this drawback, these
techniques are robust and efficient for extraction of excited states. Therefore, we use them to-
gether with computational methods that increase computational speed such as the DD-HMC
package [162–164]. We also presented the computational tools we used in this first step of
our work which are crucial to get good correlators. Finally, to compute the eigenvalues and
eigenvectors from our matrix of correlators, we used the LAPACK library and to fit our data
MINUIT. The errors were estimated using the jackknife procedure. Although there are sev-
eral methods to investigate errors, we can emphasize that jackknife method is a useful one for
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large samples.
This work is devoted to the study of the charmonium on the Lattice. So in Chapter 5 we

present the discussion about the mesons we are interested in:

• Pseudoscalar Mesons: ηc(1S) (ground state) and ηc(2S) (first excited state).

• Vector Mesons: J/ψ(1S) (ground state) and ψ(2S) (first excited state).

Moreover, we explained our choice of operators as well as the correlators we have com-
puted. We also noted that the construction of interpolating fields from the basis

{c̄Γc ; c̄Γ(~γ · ~∇)c} (7.1)

can be problematic since the operator with a covariant derivative c̄Γ(~γ · ~∇)c gives a contribu-
tion equal to zero, hence a correlator with a very noisy signal. As a consequence of this finding,
we have decided not to use in our computation correlators with covariant derivatives.

During our work we discussed the importance of isolating states of interest so that there
would be no contamination from other states. One of the techniques to accomplish this is the
smearing technique. Some studies [192] indicate that that by using an improved sink-source
smearing technique, one can have a much better control over excited state contributions when
compared to results without smearing. Therefore, in our simulations we have considered
four Gaussian smearing levels for the quark field c, including no smearing, to built our 4×
4 matrix of correlators without any covariant derivative or operator of the kind π2 or ρ2,
from which we have extracted the O(a) improved hadronic quantities we have investigated.
Next, we presented the implementation of the GEVP method to study the spectroscopy of the
charmonium states. Finally, we explored the procedure to extract the decay constants and
the observables of interest as well as the non-perturbative renormalization of the axial and
vector currents. This second study was important to understand the behavior of the GEVP
method as well as how to extract the observables. In addition, in the literature there is a vast
amount of material available on this method (including material published by members of
our collaboration), which helped us to identify and check the basic steps of our work.

In Chapter 6 we focus on our results, which we will briefly summarize . The results below
are for ground state mesons. In this case, we have observed that the ground state shows a
long plateau and a stable data. Next, we perform fits at different time intervals and, at the
end, we extract the desired values. As a final step we perform an extrapolation to the physical
point, were we assumed a linear dependence in m2

π and in a2.

Masses

mηc = 2.982(1)(19)GeV and mJ/ψ = 3.085(2)(20)GeV

We have compared the results of the ground state charmonium masses with the results
provided by the PDG [1] and we can conclude that they are compatible.
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Decay Constants

fηc = 387(3)(3)MeV and f J/ψ = 399(4)(2)MeV

We compared our results with those presented by the HPQCD [110] and ETMC [193] col-
laborations. Although the procedure of these groups is different from this work, our results
appear to be compatible with the two previous lattice estimations available so far in the liter-
ature.

In the following, we present the result of this work for the first radially excited state. The
ground state showed a longer plateau when compared to the excited states. This is related to
the fact that the data for the ground states are more stable than those of the excited ones. We
could also observe an increase in fluctuations as time increases for excited states. This fact is
perhaps due to our choice of interpolating fields or our correlation matrix in the GEVP. We are
still investigating the origins of this behavior.

Masses

mηc(2S)

mηc

= 1.281(7) >
(mηc(2S)

mηc

)exp

= 1.220

and

mψ(2S)

mJ/ψ
= 1.271(7) >

(mψ(2S)

mJ/ψ

)exp

= 1.190

In [179], lattice results were much closer to the experimental ones but the slope in a2 was
probably overestimated from the coarsest lattice point: points at lattice spacings similar to
those used in our work are compatible with our data.

Decay Constants

fηc(2S)

fηc

= 0.81(8) < 1

and

fψ(2S)

f J/ψ
= 1.18(9) > 1

We have found the ratio fψ(2S)/ f J/ψ to the decay constants higher than 1. There are several
reasons to believe that this raises some difficulties. We discussed the issue and proposed
possible solutions.

Our results for both the ground state and the excited states are in agreement with those
currently available in the literature. This is important because it shows that the method chosen
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in this work is reliable. However, for the excited states, the situation is less bright as we were
faced with the inherent difficulties of dealing with excitations.

Perspectives

We would like to perform new investigations in order to circumvent excited states difficulties.
Furthemore, we believe that our work is a good starting point for new studies involving ηc

and J/ψ charmonium states. As we discussed in Chapter 6, the information about the decay
constants fηc(2s)/ fηc ∼ 0.8 is relevant for new researches. However, our result fψ(2S)/ f J/ψ > 1
motivates us to continue our work in order to find solutions to this result. Some possible
solution for our issue could be increasing the number of dynamical quarks1 in order to try
to reduce the spin breaking effects. Another possible solution is to include QED effects in
the computation of fψ(2S). Finally, a natural extension of this work would be to study the
bottomonium (bb̄ states) sector. We can use step scaling in masses in order to extrapolate our
results to the bottom region, notably in the measurement of fηb , which is relevant in models
with a light CP-odd Higgs.

1 In literature we can find lattice results with N f = 2 + 1 [194] and N f = 2 + 1 + 1 [195].
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Appendix A

Details about Two-Point Correlation
Functions

A.1 Two-Point Correlation Functions on the Lattice

This paragraph addresses in detail two-point correlations functions on the lattice, as well as
the physical quantities that can be extracted from them.

A.1.1 Construction of the two-point correlation functions

We present in the following the derivation of two-point correlation functions in momentum
space, that is for a state of momentum ~p.

Starting point

Our starting point will be, in the euclidean formulation, the space-time two-point correlation
function

C12(t,~x)
de f
= 〈Ω|O1(t,~x)O†

2(0,~0)〉 |Ω > (A.1)

When transported back to minkowski space, this expression reads

〈Ω|T
[
O1(x)O†

2(0)
]
|Ω〉

which can be interpreted as the green function which describes the probability amplitude to
create a state with the quantum numbers of O2 at the space time point x = (t, ~x) = (0, ~0)
which propagates to the space time point x = (t,~x) where it is annihilated because of O1(x).

Fourier transform

Since we are interested in describing systems with a certain momentum ~p at a certain time t,
we need to Fourier transform the space dependency in the correlator (A.1)

C12(t,~x)
FT
 C̃12(t,~p)

with
C̃12(t,~p) = ∑

~x
〈Ω|O1(t,~x)O†

2(0,~0)|Ω〉 ei~p·~x
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where we have used the discretized Fourier transform on the lattice. There is still an i in the
exponential because only the time which is Wick-rotated in the euclidean (not the space).

Insertion of a complete set of states

Let us introduce now a complete set of normalized energy eigenstates En with momentum ~pn

and rest-mass mn (so that En =
√

m2
n + ~p 2

n ) and distinguish two cases

1. non-polarized states: denoting the states by |n; ~pn〉, we have
〈n; ~pn|m; ~pm〉 = (2π)3 2En δn,m (relativistic normalization)

∑
n,~pn

|n; ~pn〉 〈n; ~pn|
(2π)3 2En

= 1 (closure relation)

2. polarized states: if the states are polarized, we need to add an extra polarization index λn

so that 
〈n; λn; ~pn|m; λm; ~pm〉 = (2π)3 2En δn,m

∑
n,~pn,λn

|n; λn; ~pn〉 〈n; λn; ~pn|
(2π)3 2En

= 1

Then, we obtain for non-polarized states

C̃12(t, ~p) = ∑
~x

∑
n,~pn

ei~p·~x

(2π)32En
〈Ω|O1(t,~x)|n;~pn〉 〈n;~pn|O†

2(0,~0)|Ω〉 (A.2)

Space-time translational invariance on the lattice

This invariance means that we can compute an operator at a particular space-time point from
the knowledge of this operator at another space-time point and the generators of the space-
time translation of the Poincaré group {H; ~P}. Explicitely, we have

O1(t, ~x) = eH t+i~x·~PO1(0, ~0) e−H t−i~x·~P

There is no i in front of the time part because of the Wick rotation to the euclidean.

Action on the vacuum and on the |n; ~pn〉 states

Since |Ω〉 is the vacuum state whose energy is assumed to be equal to 0, we have

H |Ω〉 = 0 and ~P |Ω〉 =~0 =⇒ 〈Ω| eH t+i~x·~P = 〈Ω| e0 t+i~x·~0 = 〈Ω|

In the same manner, we have for the |n; ~pn〉 states

H |n; ~pn〉 = En |n; ~pn〉 and ~P |n; ~pn〉 = ~pn |n; ~pn〉

=⇒ e−H t−i~x·~P |n; ~pn〉 = e−En t−i~x·~pn |n; ~pn〉
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Return to the two-point correlation function

Using the space-time translational invariance on (A.2), we get

C̃12(t,~p) = ∑
~x

∑
n,~pn

ei~p·~x

(2π)3 (2En)
〈Ω|eHt+i~x·~̂PO1(0, ~0) e−Ht−i~x·~̂P|n; ~pn〉 〈n; ~pn|O†

2(0, ~0)|Ω〉

Then the exponential operators act on the states so that

C̃12(t, ~p) = ∑
~x

∑
n,~pn

ei~p·~x

(2π)3 (2En)
e−Ent−i~x·~pn 〈Ω|O1(0,~0)|n; ~pn〉 〈n; ~pn|O†

2(0,~0)|Ω〉

= ∑
n,~pn

e−Ent

(2π)3 (2En)
〈Ω|O1(0)|n; ~pn〉 〈n; ~pn|O†

2(0)|Ω〉 ∑
~x

ei(~p−~pn)·~x

The sum over ~x can now be done using

∑
~x

ei(~p−~q)·~x = (2π)3 δ~p,~q

which is the lattice definition of the Dirac function. Hence, our two-point correlation function
reads

C̃12(t, ~p) = ∑
n,~pn

e−Ent

(2π)3 (2En)
〈Ω|O1(0)|n; ~pn〉 〈n; ~pn|O†

2(0)|Ω〉 (2π3) δ~p,~pn

Finally, the sum over the momenta ~pn can be computed and we arrive at

C̃12(t,~p) = ∑
n

e−Ent

2En
〈Ω|O1(0)|n;~p〉 〈n;~p|O†

2(0)|Ω〉 with En =
√

m2
n + ~p 2

For polarized states, we need to add the extra polarization index

C̃12(t, ~p) = ∑
n,λn

e−Ent

2En
〈Ω|O1(0)|n; λn; ~p〉 〈n; λn; ~p|O†

2(0)|Ω〉 with En =
√

m2
n + ~p 2

Large time limit

In this limit, only the n = 0 ground state survives

C̃12(t, ~p)
large t−−−−→ e−E0t

2E0
〈Ω|O1(0)|M(~p)〉 〈M(~p)|O†

2(0)|Ω〉 (A.3)

where |0;~p〉 ≡ |M(~p)〉 denotes the ground state M of momentum ~p.
When there is a polarization involved, the relation is

C̃12(t, ~p)
large t−−−−→ e−E0t

2E0
∑
λ

〈Ω|O1(0)|M(λ, ~p)〉 〈M(λ, ~p)|O2(0)†|Ω〉 (A.4)
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where we have used the notation |0; λ0; ~p〉 ≡ |M(λ, ~p)〉 for the ground state M of momentum
~p and polarization λ.

A.2 Energy extraction

Let us assume here that
O1(0) = O2(0) ≡ O

Then, equation (A.3) becomes

C̃(t, ~p)
large t−−−−→ Z(~p) e−E0t where 2E0Z(~p) = | 〈Ω|O|M(~p)〉 |2

which is the starting point for extracting the mass of the ground state having the quantum
numbers of the operator O (by doing proper fits of C̃(t, ~p =~0)).
Similar expressions can be found with (A.4).

A.3 Decay constant for the vector case

Using two-point correlation functions, we can also extract decay constants. In the following,
we will consider the case of the decay constant fV of a vector meson MV .

A.3.1 Definition and ingredients

By definition, the decay constant of a vector meson MV is given by

〈Ω|Vµ|MV(λ, ~p)〉 = ε
(λ)
µ (p) fV mV

where p = (Ep,~p) and ε
(λ)
µ (p) is the polarization tensor which fullfills

∑
λ

ε
(λ)
µ (p) ε

∗(λ)
ν (p) = ηµν −

pµ pν

m2 (in minkowski space)

From now on, we will work in the rest frame of the vector meson, which means that

E0 = mV and ~p =~0 (i.e. pi = 0)

and, for the space components of the polarization tensor

∑
λ

ε
(λ)
i (~0) ε

∗(λ)
j (~0) = ηij (Minkowski Space)

= δij (euclidean Space)
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A.3.2 Decay constant extraction

Let us choose the operators

O1 = Vi and O2 = Vj (i and j are spatial indices)

Then, in the rest frame of the vector meson, eq. (A.4) reads

C̃ij(t, ~0)
large t−−−−→ e−mV t

2mV
∑
λ

〈Ω|Vi(0)|MV(λ, ~0)〉 〈MV(λ, ~0)|V†
j (0)|Ω〉

Substituting the definition of the decay constant, we get

C̃ij(t, ~0)
large t−−−−→ e−mV t

2mV
f 2
V m2

V ∑
λ

ε
(λ)
i (~0) ε

∗(λ)
j (~0)

δij

Hence, if we compute the correlator C̃ii(t, ~0), we have the two following equivalent expres-
sions 

C̃ii(t, ~0)
large t−−−−→ e−mV t

2mV
f 2
V m2

V

C̃ii(t, ~0)
large t−−−−→ e−mV t

2mV
∑
λ

| 〈Ω|Vi(0)|MV(λ, ~p =~0)〉 |2

So we can extract the decay constant fV through

fV =

√
ZV

mV
where ZV = ∑

λ

| 〈Ω|Vi(0)|MV(λ, ~p =~0)〉 |2

The coefficient ZV is obtained by fitting C̃ii(t, ~0) and the mass mV by using the procedure
described in the preceding paragraph.

A.4 Computing two-point correlation functions on the lattice

In this paragraph we describe how the pseudoscalar-pseudoscalar two-point correlation func-
tion CPP(t, ~p =~0) can be computed on the lattice using Dirac propagators.

A.4.1 Some useful relations

Here we gather the relations that will be used in our computation :

• in the euclidean formalism:

ψ̄ = ψ† γ4 ; γ†
5 = γ5 ; γ†

4 = γ4 ; {γ5, γ4} = 0
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• Wick’s theorem for Grassmann fermionic variables : denoting by G = D−1 the Dirac propa-
gator (inverse of the Dirac operator), the theorem states

< ψ̄i1 ψj1 · · · ψ̄in ψjn > = (−)n < ψj1 ψ̄i1 · · ·ψjn ψ̄in >

= (−)n ∑
p∈P(1,...,n)

εp (G)jp1 i1 (G)jp2 i2 · · · (G)jpn in

where P(1, . . . , n) is the set of permutations of {1, 2, . . . , n}, εp the signature of the per-
mutation p and pk the integer given by the application of the permutation p on the
integer k.

In practice, the index i(j) represents the set (x, µ, a), that is (space-time position, Lorentz
index, color index) respectively.

As a simple consequence, we can notice that (for n = 1)

Gab
µν(y; x) = < ψa

µ(y) ψ̄b
ν(x) > (propagator from x to y)

• factorization with respect to flavour : in general, a quark field depends on the following
indices

ψ
a( f )
µ (x) where



µ : Lorentz index

a : color index

f : flavor index

x : space-time point

We then have the following property (flavor factorization)

< · · · · · · · · · · · · · · · >︸ ︷︷ ︸
contains ψ( f1), ψ( f2) etc

= < · · · >︸ ︷︷ ︸
ψ( f1) only

< · · · >︸ ︷︷ ︸
ψ( f2) only

· · ·

A.4.2 Description of the method

We are interested in the following two-point correlation function

C̃PP(t,~p = 0) = ∑
~x
〈Ω|O1(t,~x)O†

2(0,~0)|Ω〉 (A.5)

with
O1(t,~x) = O2(t,~x) =

(
ψ̄(1)γ5ψ(2)

)
(t,~x)

where (1) and (2) denote the flavor indices only.
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Expression forO†
2

We can compute O†
2 directly from the expression of O2

O†
2 =

[
ψ̄(1)γ5ψ(2)

]
(by definition)

= −ψ(2)†(γ5)
†(ψ̄(1))† (exchange of 2 Grassmann variables)

= −ψ(2)†γ5γ†
4

((
ψ(1)†

))†
(definition of ψ̄)

= −ψ(2)†γ5γ4γ(1) = +ψ(2)†γ4γ5ψ(1) (γ algebra)

= ψ̄(2)γ5ψ(1) (definition of ψ̄ again)

Treatment of C̃PP

We can rewrite the equation (A.5) using the preceding expressions for O1 and O†
2

C̃PP(t, ~p =~0) = ∑
~x
〈Ω|ψ̄(1)(t,~x)γ5ψ(2)(t,~x)ψ̄(2)(0,~0)γ5ψ(1)(0,~0)|Ω〉

= ∑
~x

∑
µ,ν,ρ,σ

∑
a,b
〈Ω|ψ̄(1)

µ,a(t,~x)(γ5)µνψ̄
(2)
νa (t,~x)ψ̄

(2)
ρb (0,~0)(γ5)ρσψ

(1)
σb (0,~0)|Ω〉

(with explicit indices)

= ∑
~x

∑
µ,ν,ρ,σ

∑
a,b
(γ5)µν(γ5)ρσ 〈Ω|ψ̄(1)

µa (t,~x)ψ
(2)
νa (t,~x)ψ̄

(2)
ρb (0,~0)ψ(1)

σb (0,~0|Ω〉

(the (γ5)µν are numbers now)

= −∑
~x

∑
µ,ν,ρ,σ

∑
a,b
(γ5)µν(γ5)ρσ 〈Ω|ψ(1)

σb (0,~0)ψ̄(1)
µa (t,~x)ψ

(2)
νa (t,~x)ψ̄

(2)
ρb (0,~0)|Ω〉

(reordering of the anticommuting fields)

= −∑
~x

∑
µ,ν,ρ,σ

∑
a,b
(γ5)µν(γ5)ρσ 〈Ω|ψ(1)

σb (0,~0)ψ̄(1)
µa (t,~x)|Ω〉 〈Ω|ψ(2)

νa (t,~x)ψ̄
(2)
ρb (0,~0)|Ω〉

(flavor factorization)

= −∑
~x

∑
µ,ν,ρ,σ

∑
a,b
(γ5)µν(γ5)ρσGba(1)

σµ (0,~0; t,~x)Gab(2)
νρ (t,~x; 0,~0)

(definition of the Dirac propagator)

= −∑
~x

∑
µ,ν,ρ,σ

∑
a,b

Gab(2)
νρ (t,~x; 0,~0)(γ5)ρσGba(1)

σµ (0,~0; t,~x)(γ5)µν

(final reordering)

We can now recognize traces which run over color and Lorentz indices in the above sums

C̃PP(t,~p =~0) = −∑
~x

Tr
[

G(2)(t,~x; 0,~0)γ5G(1)(0,~0; t,~x)γ5

]
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Comments

We need to know two types of Dirac propagators G(1)(0,~0; t,~x) : any point on the lattice −→ (0,~0)

G(2)(t,~x; 0,~0) : (0,~0) −→ any point on the lattice

Apart from the flavor index, one propagator is the backward propagator of the other.
It is possible to avoid the computation on the lattice of a backward propagator if we already
know the same propagator in the opposite direction. We have indeed something like the
following

"γ5 G γ5 = G†"

i.e. with explicit indices
(γ5)µν Gab

νρ(y; x) (γ5)ρσ = G∗ba
σµ (x; y)
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Appendix B

Generalized Eigenvalue Problem

In this appendix, we will describe in greater detail the GEVP; in particular, we will focus on
the “simple” GEVP, meaning that we are assuming that the contribution of the eigenstates
{|n〉} of the hamiltonian Ĥ having n > N (where N is the dimension of the interpolating field
basis we will use) can be neglected.

B.1 Unbounded time domain

In this section, the time variable is never bounded.

B.1.1 Hypotheses

In the following assume that

1. the eigenstates {|n〉} of the hamiltonian Ĥ fullfill the following properties (definition,
relativistic normalization and closure relation)

Ĥ |n〉 = En |n〉
(

En =
〈n|Ĥ|n〉
〈n|n〉

)
as well as

〈n|m〉 = 2En δn,m and ∑
n

|n〉 〈n|
2En

= 1

2. the relationship between the Schrödinger and the Heisenberg pictures reads

O(t) = eĤtO(0) e−Ĥt = eĤt Ô e−Ĥt in the euclidean

B.1.2 Nature of the correlation functions

Since the time coordinate is not bounded, we are going to work with correlators of the form

Cij(t) =
N

∑
n=1
〈Ω|Ôi|n〉 〈n|Ô†

j |Ω〉
e−Ent

2En
with 1 6 i, j 6 N (B.1)

where, as always, |Ω〉 stands for the vacuum (zero energy). This equation is written in the rest
frame of the system (~p =~0) and it has already been discussed in the Appendix A.
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Changing the notation, we can write

Cij(t) =
N

∑
n=1

(Zn)i (Zn)
∗
j ρn(t) (B.2)

where

ρn(t) = e−Ent as well as (Zn)i =
〈Ω|Ôi|n〉√

2En
and (Zn)

∗
j =
〈n|Ô†

j |Ω〉√
2En

B.1.3 Philosophy of the “simple” GEVP

Our goal is to solve
C(t) vn(t, to) = λn(t, to)C(to) vn(t, to) (B.3)

where C is the N× N Cij correlator square matrix and vn the N× 1 eigenstate column matrix.

(Zn) dual basis

Let us introduce the set of constant vectors un which satisfy the following orthogonality prop-
erty

(un, Zm) = δnm where (a, b) def
= ∑

i
a∗i bi

About the scalar product

In the presence of an operator, this scalar product implies
Â = (u, Ô) = ∑

i
u∗i Ôi

Â† = (u, Ô)† = ∑
i

uiÔ†
i

Solving the GEVP

Using eqs. (B.2) and (B.3), we get

N

∑
j=1

Cij(t)(un)j =
N

∑
j,m=1

(Zm)i (Zm)
∗
j ρm(t)(un)j =

N

∑
m=1

ρm(t)(Zm)i

N

∑
j=1

(Zm)
∗
j (un)j

(Zm,un)=δnm

= ρn(t)(Zn)i

that is, in matrix notation C(t) un = ρn(t)Zn

Then,
C(t) un = ρn(t)Zn

C(t0) un = ρn(t0)Zn

}
=⇒ C(t) un =

ρn(t)
ρn(t0)

C(t0) un
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The GEVP is solved if one chooses

λn(t, t0) =
ρn(t)
ρn(t0)

as well as vn(t, t0) = αn(t, t0) un since vn(t, t0) ∝ un

B.1.4 Consequences

Energy extraction

According to the relation giving ρn(t), the eigenvalues λn(t, t0) are

λn(t, to) = e−En(t−to)

The traditional way of extracting the energy En is to consider

Eeff
n (t, t0) = −

∂ log λn(t, t0)

∂t
= log

λn(t, t0)

λn(t + 1, t0)

large t−−−→ En

Orthogonality relations

In terms of the un

(un, Zm) = δnm and Zn =
1

ρn(t)
C(t) un =⇒ (un, C(t) um) = ρn(t) δnm

In terms of the vn, this gives

(vn(t, t0), C(t) vm(t, t0)) = |αn(t, t0)|2 ρn(t) δnm (B.4)

We also have

(un, Zm) = δnm

vn(t, t0) = αn(t, t0) un

}
=⇒ αn(t, t0) = (vn(t, t0), Zn)

B.1.5 Creation operator Â†
n for the |n〉 eigenstate

Definition

If we define the following operator

Ân = (un, Ô) =
N

∑
i=1

(un)
∗
i Ôi and then Â†

n = (un, Ô)† =
N

∑
i=1

(un)iÔ†
i
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we have the following

Â†
n |Ω〉 =

N

∑
i=1

(un)i Ô†
i |Ω〉 =

N

∑
i=1

N

∑
m=1

(un)i
1

2Em
|m〉 〈m|Ô†

i |Ω〉
√

2Em(Zm)∗i

=
N

∑
m=1

1√
2Em

(
N

∑
i=1

(un)i (Zm)
∗
i

)
δnm

|m〉

=⇒ Â†
n |Ω〉 =

1√
2En
|n〉

which shows that Â†
n creates the energy eigenstate |n〉.

Consequences

We derive here a series of relations that will be usefull for the extraction of matrix elements
on the lattice.

1. First identity :

〈Ω|An(t)A†
n(0)|Ω〉 = 〈Ω| eHt

〈Ω|

Âne−Ht Â†
n |Ω〉 =

(
1√
2En

)2

〈n|e−Ht|n〉 = e−Ent 〈n|n〉
2En

= e−Ent

=⇒ 〈Ω|An(t)A†
n(0)|Ω〉 = ρn(t)

2. Second identity :

Let us introduce an operator P(t) (which can be, or not, one of the operators Oi). Then

〈Ω|P(t)A†
n(0)|Ω〉 =

1√
2En
〈Ω|P(t)|n〉 = 1√

2En
〈Ω|eHtP̂e−Ht|n〉 = 1√

2En
〈Ω|P̂e−Ht|n〉

=
e−Ent
√

2En
〈Ω|P̂ |n〉 = ρn(t)√

2En
〈Ω|P̂ |n〉 =⇒ 〈Ω|P̂ |n〉eff

(t) =
√

2En

ρn(t)
〈Ω|P(t)A†

n(0)|Ω〉

The effective matrix element 〈Ω|P̂ |n〉eff
(t) tends to 〈Ω|P̂ |n〉 at large time.

3. Master identities :

Combining both preceding identities, we arrive at

〈Ω|P̂ |n〉eff
(t) =

√
2En

ρn(t)
〈Ω|P(t)A†

n(0)|Ω〉√
〈Ω|An(t)A†

n(0)|Ω〉

as well as 〈Ω|P̂ |n〉eff
(t) =

√
2En

〈Ω|P(t)A†
n(0)|Ω〉

〈Ω|An(t)A†
n(0)|Ω〉
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B.1.6 Using the eigenvectors vn(t, t0)

Preliminary calculation

Some matrix elements of the operator An(t) can be rewritten in terms of the eigenstates
vn(t, t0).
Firstly, we have

〈Ω|P(t)A†
n(0)|Ω〉 = 〈Ω|P(t) Â†

n|Ω〉 = 〈Ω|P(t)
(

N

∑
i=1

(un)iÔ†
i

)
|Ω〉 = 〈Ω|P(t)

(
N

∑
i=1

(un)iO†
i (0)

)
|Ω〉

which means that

〈Ω|P(t)A†
n(0)|Ω〉 =

N

∑
i=1
〈Ω|P(t)O†

i (0)|Ω〉 (un)i =
1

αn(t, to)

N

∑
i=1
〈Ω|P(t)O†

i (0)|Ω〉
(
vn(t, to)

)
i

where the last equality comes from the relation between un and vn(t, to).
Then, combining the first identity with equation (B.4), we obtain1

〈Ω|An(t)A†
n(0)|Ω〉 = ρn(t)

(vn(t, t0), C(t) vn(t, t0)) = |αn(t, t0)|2 ρn(t)

}

=⇒ 〈Ω|An(t)A†
n(0)|Ω〉 =

1

|αn(t, t0)|2
(vn(t, t0), C(t) vn(t, t0)) (B.5)

Determination of a matrix element 〈Ω|P̂ |n〉

Substituting equation (B.5) into the first of the master identities, we find

〈Ω|P̂ |n〉eff
(t) =

√
2En

ρn(t)

N
∑

i=1
〈Ω|P(t)O†

i (0)|Ω〉
(
vn(t, t0)

)
i√

(vn(t, t0), C(t) vn(t, t0))

Then, with the particular expression of ρn(t), we can express the prefactor in terms of the
eigenvalues λn(t, t0). A possible choice is

1√
ρn(t)

= eEnt/2 =

√
λn(t, to)

λn(2t, to)

However, because of the distant times (t and 2t), the signal deteriorates at large time. It is
more clever to choose, for instance, another parameterization such as

1√
ρn(t)

= eEnt/2 =

(
λn(t, to)

λn(t + 1, to)

)t/2

which uses neighboring times.

1A global phase for αn(t, to) is still unknown. . .



104 Appendix B. Generalized Eigenvalue Problem

Finally, we arrive at a possible expression for a matrix element of the type 〈Ω|P̂ |n〉 using
only the eigensystem of the GEVP for the initial correlators C(t) and two-point correlations
functions 〈Ω|P(t)O†

i (0)|Ω〉 according to

〈Ω|P̂ |n〉eff
(t) =

√
2En

(
λn(t, t0)

λn(t + 1, t0)

)t/2
N
∑

i=1
〈Ω|P(t)O†

i (0)|Ω〉
(
vn(t, t0)

)
i√

(vn(t, t0), C(t) vn(t, t0))

large t−−−→ 〈Ω|P̂ |n〉

Note : the operators Oi are the ones used in the correlation matrix C(t).

B.2 Bounded time domain with t↔ T − t symmetry

We will consider here the effect of a time symmetry (not antisymmetry) t↔ T − t.

B.2.1 A new temporal evolution of the operators

Because of the symmetry t↔ T − t, the time evolution of the operators becomes

O(t) = eĤtO(0) e−Ĥt + eĤ(T−t)O(0) e−Ĥ(T−t)

=⇒ O(t) = eĤt Ô e−Ĥt + eĤ(T−t) Ô e−Ĥ(T−t) (B.6)

B.2.2 Initial correlation functions

The correlators Cij(t) have to exhibit this symmetry so they have the following structure

Cij(t) =
N

∑
n=1
〈Ω|Ôi|n〉 〈n|Ô†

j |Ω〉
2e−EnT/2

2En
cosh

[
En

(
T
2
− t
)]

with 1 6 i, j 6 N

We will then use the same notations as in the first section. The only difference will be the
expression of ρn(t) which is now

ρn(t) = 2 e−EnT/2 cosh
[

En

(
T
2
− t
)]

B.2.3 GEVP and energy extraction

The GEVP is solved in the same manner as in the preceding case and the relation which gives
the eigenvalues does not change. Hence

λn(t, to) =
ρn(t)
ρn(to)

=⇒ λn(t, to) =

cosh
[

En

(
T
2
− t
)]

cosh
[

En

(
T
2
− to

)]



B.2. Bounded time domain with t↔ T − t symmetry 105

In order to extract the energy levels, we can consider

Eeff
n (t, t0) = arccosh

[
λn(t + 1, t0) + λn(t− 1, t0)

2 λn(t, t0)

]
large t−−−→ En

The eigenvectors vn are also given by the same relations as in the first section.

B.2.4 Creation operator Â†
n

The definition of Â†
n as well as its action on the vacuum |Ω〉 are identical to those present in

the first section.
The three identities which have been shown remain valid here, owing to the new relation (B.6)
which gives the temporal evolution of the operator Ân(t), provided we use the new expres-
sion of ρn(t).
For instance, we have

〈Ω|An(t)A†
n(0)|Ω〉 = 〈Ω| eHt

〈Ω|

Âne−Ht Â†
n |Ω〉+ 〈Ω| eH(T−t)

〈Ω|

Âne−H(T−t) Â†
n |Ω〉

=

(
1√
2En

)2

×
[
〈n|e−Ht|n〉+ 〈n|e−H(T−t)|n〉

]
= (e−Ent + e−En(T−t))

〈n|n〉
2En

=⇒ 〈Ω|An(t)A†
n(0)|Ω〉 = ρn(t)

B.2.5 Using the eigenvectors vn(t, to)

Our goal is to compute a matrix element of the type 〈Ω|P̂ |n〉.

First method

Owing to the transformation law (B.6), we still have

〈Ω|P̂ |n〉eff
(t) =

√
2En

ρn(t)

N
∑

i=1
〈Ω|P(t)O†

i (0)|Ω〉
(
vn(t, t0)

)
i√

(vn(t, t0), C(t) vn(t, t0))

The difficult part is to obtain ρn(t) from the results of the GEVP.
I A first possibility could be the following

1. cosh factor of ρn(t) :

λn(T/2, t0) =
1

cosh
[

En

(
T
2
− t0

)] =⇒ cosh
[

En

(
T
2
− t
)]

=
λn(t, t0)

λn(T/2, t0)
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2. e−EnT/2 term of ρn(t) : with the help of the usual formulae, we write

λn(t + 1, t0)− λn(t− 1, t0)

2λn(T/2, t0)
= − sinh(En) sin

[
En

(
T
2
− t
)]

Hence

e−En(T/2−t) = cosh
[

En

(
T
2
− t
)]
− sinh

[
En

(
T
2
− t
)]

=
λn(t, t0)

λn(T/2, t0)
− 1

sinh(En)

λn(t + 1, t0)− λn(t− 1, to)

2λn(T/2, t0)

The sinh(En) term is accessible by using the relation which gives Eeff
n (t, t0) since

sinh[arccosh(x)] =
√

x2 − 1 =⇒ sinh(En) =

√[
λn(t + 1, t0) + λn(t− 1, t0)

2 λn(t, t0)

]2

− 1

which leads finally to

e−En(T/2−t) =
λn(t, t0)

λn(T/2, t0)
− 1√[

λn(t + 1, t0) + λn(t− 1, t0)

2 λn(t, t0)

]2

− 1

λn(t + 1, t0)− λn(t− 1, t0)

2λn(T/2, t0)

As a consequence, we would have at t = 0

e−EnT/2 =
λn(0, t0)

λn(T/2, t0)
− 1√[

λn(1, t0) + λn(−1, t0)

2 λn(0, t0)

]2

− 1

λn(1, t0)− λn(−1, t0)

2λn(T/2, t0)

and the t = −1 point would not be absurd because of the symmetry of λn(t, t0) around
T/2.

3. Final expression : gathering everything, one finds

ρn(t) = 2

 λn(0, t0)

λn(T/2, t0)
− 1√[

λn(1, t0) + λn(−1, t0)

2 λn(0, t0)

]2

− 1

λn(1, t0)− λn(−1, t0)

2λn(T/2, t0)

 λn(t, t0)

λn(T/2, t0)

However, numerically, this method might not be as practical as expected because there
appears to be a problem with λn(T/2, t0) as T/2 is a singularity, coming from the sym-
metry t↔ T − t, which renders this eigenvalue very noisy.

I A second possibility, which avoids the problem mentioned above, could be

1. start from the asymptotic value of En obtained from the λn method;

2. this En is then used in the original, non transformed expression of ρn(t);

3. 〈Ω|P̂ |n〉eff
(t) is finally deduced from the corresponding initial relation.
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Second method

Another idea would be to substitute, in the second of the master identities, the expressions of
the matrix elements written in terms of the eigenvalues

〈Ω|P̂ |n〉eff
(t) =

√
2En

〈Ω|P(t)A†
n(0)|Ω〉

〈Ω|An(t)A†
n(0)|Ω〉

= αn(t, t0)
√

2En

N
∑

i=1
〈Ω|P(t)O†

i (0)|Ω〉
(
vn(t, t0)

)
i

(vn(t, t0), C(t) vn(t, t0))

The factor αn(t, t0o) can be obtained in the following way

1. We know that the double projected correlator is

(vn(t, t0), C(t) vn(t, t0)) = |αn(t, t0)|2 ρn(t) with ρn(t) = 2 e−EnT/2 cosh
[

En

(
T
2
− t
)]

2. We use the large time energy En computed from the eigenvalues.

3. We study the ratio

Rn(t, t0) =
(vn(t, t0), C(t) vn(t, t0))

2 e−EnT/2 cosh
[

En

(
T
2
− t
)]

If Rn(t, t0) is roughly constant, then αn will not depend on the time, and, apart from a
phase factor, αn =

√
Rn.

If not, we need to extract αn(t, t0) for each value of t.

Comments on (vn(t, to), C(t) vn(t, to))

The coefficients αn(t, t0) are used to characterize the normalisation of the eigenvectors vn(t, t0).
So one choose to normalize them to 1

(vn(t, to), C(t0) vn(t, to)) = 1

Hence, we obtain

(vn(t, t0), C(t0) vn(t, t0)) = |αn(t0, t0)|2 ρn(t0) = 1 =⇒ |αn(t0, t0)|2 =
1

ρn(t0)
(B.7)

If the coefficients αn(t, t0) do not depend on t, then we can write

(vn(t, t0), C(t) vn(t, t0)) = |αn(t, to)|2

|αn(t0,t0)|2
ρn(t) =

ρn(t)
ρn(t0)

=⇒ (vn(t, t0), C(t) vn(t, t0)) = λn(t, t0)

which would greatly simplify the numerical implementation.
Notice also that, assuming again the time independance of the αn(t, t0), eq. (B.7) provides an
alternative expression for αn(t, t0).
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B.2.6 A word of caution

When the operator P(t) does not belong to the operator basisOi(t) used to solve the GEVP, it
can happen that the correlators of the type 〈Ω|P(t)O†

i (0)|Ω〉 are antisymmetrical with respect
to the transformation t↔ T − t. As a consequence, they exhibit a sinh temporal dependency
and the extraction of the matrix element 〈Ω|P̂ |n〉 is slightly different.

1. The antisymmetry brings a new time evolution to the operators

O(t) = eĤtO(0) e−Ĥt − eĤ(T−t)O(0) e−Ĥ(T−t)

=⇒ O(t) = eĤt Ô e−Ĥt − eĤ(T−t) Ô e−Ĥ(T−t)

2. We can then write

〈Ω|P(t)A†
n(0)|Ω〉 =

1√
2En
〈Ω|P(t)|n〉 = 1√

2En
〈Ω|eHtP̂e−Ht − eĤ(T−t) P̂ e−Ĥ(T−t)|n〉

=
1√
2En
〈Ω|P̂e−Ht|n〉 − 1√

2En
〈Ω|P̂e−H(T−t)|n〉

=
e−Ent − e−En(T−t)

√
2En

〈Ω|P̂ |n〉 ≡ σn(t)√
2En
〈Ω|P̂ |n〉

=⇒ 〈Ω|P̂ |n〉eff
(t) =

√
2En

σn(t)
〈Ω|P(t)A†

n(0)|Ω〉

with σn(t) = 2 e−EnT/2 sinh
[

En

(
T
2
− t
)]

3. With this dependency, the starting expressions of the first and the second method of the
preceding paragraph now read

〈Ω|P̂ |n〉eff
(t) =

√
2En

√
ρn(t)

σn(t)

N
∑

i=1
〈Ω|P(t)O†

i (0)|Ω〉
(
vn(t, to)

)
i√

(vn(t, to), C(t) vn(t, to))

as well as

〈Ω|P̂ |n〉eff
(t) = αn(t, to)

√
2En

ρn(t)
σn(t)

N
∑

i=1
〈Ω|P(t)O†

i (0)|Ω〉
(
vn(t, to)

)
i

(vn(t, to), C(t) vn(t, to))

4. Finally, the treatment of these relations is identical to the one encountered with the cor-
relators 〈Ω|P(t)O†

i (0)|Ω〉 symmetrical with respect to t↔ T − t.
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Appendix C

Pedestrian Quark Model Treatment

In this chapter, we discuss the behaviour of some specific operators used in the GEVP. We
have noticed that, in the literature the extraction of the mass of a ηc state relies on correlators
of the type

Cij(t) = ∑
ij
〈[c̄γ5γiDic](t) [c̄γ5γjDjc](0)〉 with Di the derivative in the i direction

which produces a very noisy correlator (very small numbers whose signs even change from
time to time). However, if one chooses

Cij(t) = ∑
ij
〈[c̄γ0γ5γiDic](t) [c̄γ0γ5γjDjc](0)〉

then we obtain a very good signal. Since the only difference is the insertion of a γ0 matrix (γ4

in the euclidean), we would like to understand why this happens, and if this is a systematic
behavior. In order to do so, we will use a naïve quark model framework and study the effect
of the γ0 insertion for 2 different operators.

C.1 The Quark Model

We are dealing with a cc̄ charmonium state. So, the c quark will be described by a Dirac spinor
of type u (which will be denoted by the same letter c later on) while the c̄ antiquark by a Dirac
spinor of type v̄ (which will be also denoted by c̄). Hence, we first need to express v̄ (c̄) in
terms of u (c).
The spinor v can be interpreted as the charge conjugate of u so we have

v = C(ū)T

where C is the charge conjugation matrix. In the Dirac representation, this matrix is written

C = iγ2γ0 = −iγ0γ2

with

γ0 =

(
I 0
0 −I

)
, and γ2 =

(
0 σ2

−σ2 0

)
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where σ2 is one of the Pauli matrices.
Explicitely we obtain

v = iγ2γ0(u†γ0)T = iγ2γ0(γ0)T(u†)T = iγ2γ0γ0u∗ =⇒ v = iγ2u∗

which leads to

v̄ = v†γ0 = −i(u∗)†(γ2)†γ0 = −i(u∗)†(γ0γ2γ0)γ0 =⇒ v̄ = −i(u∗)†γ0γ2

We can now turn to the calculation of c̄(~pc̄) where ~pc̄ is the c̄ momentum.
Working in a quark model, we decompose the c(~p) spinor into the small and large components
at first order according to

c(~p) =

 c1

c2 =

(
~σ · ~p
2m

)
c1


Then, we have

c̄(~pc̄) = −i(c∗)†γ0γ2

= −i
(
(c∗1)

† (c∗1)
† (~σ

∗)† · ~pc̄

2mc

)(
I 0
0 −I

)(
0 σ2

−σ2 0

)

= −i
(
(c∗1)

†~σ
T · ~pc̄

2mc
σ2 (c∗1)

†σ2

)
Finally, let us note that {

~σ · ~p = σ1 p1 + σ2 p2 + σ3 p3

~σT · ~p = σ1 p1 − σ2 p2 + σ3 p3 =~σ · ~p− 2σ2 p2
(C.1)

C.2 Contribution of the chosen different operators

C.2.1 Operator c̄γ5c

Let us assume from now on that the charmonium is at rest. Then ~pc = −~pc̄ ≡ ~p so that

c̄γ5c = −i
(
−(c∗1)†~σ

T · ~p
2mc

σ2 (c∗1)
†σ2

)(
0 I
I 0

) c1

~σ · ~p
2mc

c1


= −icT

1 σ2c1 + icT
1
~σT · ~p

2mc
σ2
~σ · ~p
2mc

c1
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Using (C.1), we are led to

(~σT · ~p)σ2(~σ · ~p) = (~σ · ~p)σ2(~σ · ~p)− 2p2(~σ · ~p)

= (~σ · ~p)[−(~σ · ~p)σ2 + 2p2]− 2p2(~σ · ~p)

= −(~σ · ~p)2σ2 = −~p2σ2

because σ2
2 = I and σ2σi = −σiσ2 + 2δi,2 I.

Finally,

c̄γ5c = −icT
1

(
1 +

~p2

4m2
c

)
σ2c1 (C.2)

C.2.2 Operator c̄γ5γ0c

With the same assumptions as before, we have

c̄γ5γ0c = −i
(
−(c∗1)†~σ

T · ~p
2mc

(c∗1)
†σ2

)(
0 I
I 0

)(
I 0
0 −I

) c1

~σ · ~p
2mc

c1


= −icT

1 σ2c1 − icT
1

(
1− ~p2

2m2
c

)
σ2c1

That is

c̄γ5γ0c = −icT
1

(
1− ~p2

4m2
c

)
σ2c1 (C.3)

C.2.3 Operator c̄γ5γiDic

In the Dirac representation

γ5γi =

(
0 I
I 0

)(
0 σi

−σi 0

)
=

(
−σi 0

0 σi

)

Hence, once again with the same assumptions

c̄γ5γiDic = −i
(
−(c∗1)†~σ

T · ~p
2mc

σ2 (c∗1)
†σ2

)(−σi 0
0 σi

)
Di

 c1

~σ · ~p
2mc

c1

 where Di  ipi

=

(
−(c∗1)T~σ

T · ~p
2mc

σ2 (c∗1)
†σ2

) −σic1

σi
~σ · ~p
2mc

c1

 pi

= cT
1

(
~σT · ~p

2mc
σ2σi + σ2σi

~σ · ~p
2mc

)
c1 pi
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However 
(~σT · ~p)σ2σi = [(~σ · ~p)− 2σ2 p2]σ2σi = (~σ · ~p)σ2σi − 2p2σi

σi(~σ · ~p) = σiσj pj = (σjσi + 2δij)pj = −(~σ · ~p)σi + 2pi

(~σ · ~p)σ2(~σ · ~p) = −~p2σ2 + 2p2(~σ · ~p)

which leads to
(~σT · ~p)σ2σi + σ2σi(~σ · ~p) = 2(~σ · ~p)σ2σi + 2piσ2 − 4p2σi

So we can compute the following contraction

∑
i
[(~σT · ~p)σ2σi + σ2σi(~σ · ~p)]pi = 2(~σ · ~p)σ2(~σ · ~p) + 2~p2σ2 − 4p2(~σ · ~p)

= 2[−~p2σ2 + 2p2(~σ · ~p)] + 2~p2σ2 − 4p2(~σ · ~p)

= 0

and we arrive at

∑
i

c̄γ5γiDic = 0

For each value of i, the corresponding component is explicitely

c̄γ5γ1D1c = cT
1
−ip1 p3 − p1 p2σ1

mc
c1

c̄γ5γ2D2c = cT
1

p1 p2σ1 + p2 p3σ3

mc
c1

c̄γ5γ3D3c = cT
1

ip1 p3 − p2 p3σ3

mc
c1

(C.4)

C.2.4 Operator c̄γ0γ5γiDic

In this case, and still in the Dirac representation

γ0γ5γi =

(
I 0
0 −I

)(
0 I
I 0

)(
0 σi

−σi 0

)
=

(
−σi 0

0 −σi

)

The operator then reads

c̄γ0γ5γiDic = −i
(
−(c∗1)†~σ · ~p

2mc
σ2 (c∗1)

†σ2

)(−σi 0
0 −σi

)
Di

 c1

~σ · ~p
2mc

c1



=

(
−(c∗1)†~σ · ~p

2mc
σ2 (c∗1)

†σ2

) −σic1

−σi
~σ · ~p
2mc

c1

 pi (Di  ipi)

= cT
1

(
~σ · ~p
2mc

σ2σi − σ2σi
~σ · ~p
2mc

)
c1 pi
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Using some previous intermediary steps, we have

(σ̄T · ~p)σ2σi − σ2σi(~σ · ~p) = −2piσ2 =⇒ ∑
i
[(~σT · ~p)σ2σi − σ2σi(~σ · ~p)]pi = −2~p2σ2

leading finally to

∑
i

c̄γ0γ5γiDic = −cT
1
~p2

mc
σ2c1 (C.5)

C.3 Comments

C.3.1 The c̄γ5c vs c̄γ5γ0c case

Let us consider the correlator

〈Ω|c̄(0)γ5

(
1

γ0

)
c(0) c̄(t)γ5

(
1

γ0

)
c(t)|Ω〉

and add some further assumptions in our treatment

1. the charmonium is a ηc ground state whose wave function has the form ψ(~p 2)⊗ χ0(s)
and possesses the right integrability properties;

2. ψ(~p 2) is supposed to be real;

3. the spin part can be written according to

χ0(s) =
−c+1

† c−1 + c−1
† c+1√

2
=
−i c†

1 σ2 c1√
2

where c1 =

(
c+1
c−1

)

4. the creation operators produce ηc excitations which are suppressed in time.

By using the relations (C.2) and (C.3), we can then deduce

〈Ω|c̄(0)γ5

(
1

γ0

)
c(0)|ηc〉 =

√
2
∫

d3 p ψ(~p 2)
[
1± ~p 2

4m2
c

]
and

〈Ω|c̄(0)γ5

(
1

γ0

)
c(0)c̄(t)γ5

(
1

γ0

)
c(t)|Ω〉 = 2

{∫
d3 p ψ(~p 2)

[
1± ~p 2

4m2
c

]}2

exp(−mηc t)

This last equation can be cast into the following form

〈Ω|c̄(0)γ5γ0c(0) c̄(t)γ5γ0c(t)|Ω〉
〈Ω|c̄(0)γ5c(0) c̄(t)γ5c(t)|Ω〉 =

[
1− 〈p2

c〉/(4 m2
c)

1 + 〈p2
c〉/(4 m2

c)

]2

where 〈p2
c〉 =

∫
d3 p~p 2 ψ(~p 2)∫

d3 p ψ(~p 2)
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In order to quantify these contributions, let us use equation (4.152) of [196].

ψ0(~p 2) = N0 exp
(
−1

8
R2 ~p 2

)
with ~p = ~pq − ~pq̄

A typical value of the meson radius R2 of 12 GeV−2 is given for light quarks but we can assume
that the size of a cc̄ meson is not too different from the one of a light meson, if not larger.
Since we use here ~pc = −~pc̄, we have

ψ0(~p 2
c ) = N0 exp

(
−1

2
R2 ~p 2

c

)
=⇒ 〈p2

c〉 =

∫
d3 p~p 2 ψ0(~p 2)∫

d3 p ψ0(~p 2)
=

3
R2

Thus, numerically

R2 = 12 GeV−2 =⇒ 〈p2
c〉 ' 0.25 GeV2

mηc ' 3 GeV =⇒ mc '
mηc

2
' 1.5 GeV

 =⇒ 〈p2
c〉

4 m2
c
' 1

32

We can see that the insertion of a γ0 inside a c̄γ5c correlator creates a very small effect. Notice
finally that if we increase the meson radius R2, then 〈p2

c〉 decreases and the effect becomes
even more smaller.
To conclude, the insertion a γ0 matrix has no effect in this case.

C.3.2 The c̄γ5γiDic vs c̄γ0γ5γiDic case

Considering (C.4) and since 〈pi pj〉 = 0 for i 6= j, the contribution of c̄γ5γiDic should be
non-existent.
On the other hand, for the c̄γ0γ5γiDic operator, if we take

〈pc
2
i 〉 =

1
3
〈p2

c〉 (isotropy of the lattice)

then we can infer roughly from (C.5) that

c̄γ0γ5γiDic  −cT
1 σ2c1

〈~pc
2
i 〉

mc
' −cT

1 σ2c1 ×
0.25

3× 1.5
∼ 0.055 GeV

If we translate this value in lattice units with a = 0.1 fm = 0.5 GeV−1 , we arrive at a factor
of 0.11 (to be multiplied by 3 if we consider all the directions) which is clearly non-zero.
Comparing both situations, we can see that, for this correlator containing a derivative, insert-
ing a γ0 matrix changes drastically its behaviour.
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Appendix D

Charmonium on the Lattice: Raw Data

Raw Data: Mass and Decay Constants

We collect in Table D.1 the values of ηc and J/ψ masses and decay constants extracted at each
ensemble of the analysis, as well as the ratios of masses and decay constants mηc(2S)/mηc ,
mψ(2S)/mJ/ψ, fηc(2S)/ fηc and fψ(2S)/ f J/ψ.

id [tmin, tmax](P) amηc a fηc [tmin, tmax](V) amJ/ψ a f J/ψ

E5 [11-29] 0.9836(3) 0.1246(16) [11-29] 1.0202(7) 0.1499(11)
F6 [11-46] 0.9870(1) 0.1236(5) [11-46] 1.0233(4) 0.1471(9)
F7 [11-45] 0.9855(1) 0.1233(3) [11-45] 1.0209(3) 0.1460(5)
G8 [12-55] 0.9861(1) 0.1231(3) [12-55] 1.0217(2) 0.1454(5)
N6 [13-46] 0.7284(3) 0.0944(6) [13-46] 0.7547(6) 0.1059(8)
O7 [16-55] 0.7297(1) 0.0927(3) [16-55] 0.7555(3) 0.1037(4)

id [tmin, tmax](P′) mηc(2S)/mηc
fηc(2S)/ fηc [tmin, tmax](V ′) mψ(2S)/mJ/ψ fψ(2S)/ f J/ψ

E5 [6-13] 1.258(5) 0.67(10) [6-13] 1.235(5) 0.99(6)
F6 [6-13] 1.257(3) 0.65(4) [6-13] 1.233(4) 0.95(4)
F7 [6-13] 1.254(2) 0.67(2) [6-13] 1.233(3) 0.98(2)
G8 [8-15] 1.235(3) 0.57(4) [8-15] 1.213(3) 0.82(4)
N6 [8-15] 1.290(4) 0.75(6) [8-15] 1.270(4) 1.09(7)
O7 [8-15] 1.257(4) 0.74(4) [8-15] 1.236(5) 1.09(5)

TABLE D.1: Masses and decays constants of ηc, ηc(2S), J/ψ and ψ(2S), in lattice
units, extracted on each CLS ensemble used in our analysis.
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