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Introduction

The Earth is one of the four rocky planets of our solar system. Like Mercury,
Venus and Mars it mainly consists of silicate rocks and heavy metals. During
its formation, it separated into three principal layers: a core, a mantle and a
crust. The core, made mostly of an iron-nickel alloy (Birch, 1964), is the Earth’s
innermost part and is divided into two sections: the inner core, a solid sphere
with a radius ~ 1,200 km (Engdahl et al., 1974), and the outer core, a liquid
shell ~ 2,400 km thick, enclosed between the inner core boundary and the core
mantle boundary (CMB) (Birch, 1964; Li & Fei, 2014). The latter, located at
~ 2,890 km beneath the Earth’s surface, represents the lower limit of the second
principal layer of the Earth that is the mantle. This can be divided into two
different parts: the lower mantle, principally composed of a magnesium silicate
mineral with a distorted perovskite structure, and the upper mantle dominated
by peridotite rocks (Davies, 2001). The lower mantle extends from the CMB up
to 750-660 km depth, while the upper mantle spans between 410-350 km and 35
km (e.g. Niazi & Anderson, 1965; Davies, 2001). Between these two regions is a
transition zone where the rocks undergo different phase transitions (e.g. Deuss &
Woodhouse, 2001). Starting from a depth of 35 km (i.e. the Moho discontinuity),
we finally come to the shallowest layer of the Earth, the crust. There are two
types of crust: oceanic, which is thinner (7 - 10 km) and composed of rocks rich
in magnesium silicate minerals (e.g. Klein, 2003) and continental, which is thicker
(35— 40 km) and composed of rocks rich in silicates and aluminum minerals (e.g.
Cogley, 1984). A schematic vertical profile of the Earth’s interior is shown in
figure 1.1a.

As one immediately notices in figure 1.1a, there is no unique definition of the
layers of the Earth from the crust down to the CMB. Depending on the type of
investigation adopted (seismological, mineralogical or dynamical) the boundaries
and the terminology of the different layers change. In this work, however, we
shall refer only to the dynamical reference given in the third column, where we
distinguish between the lithosphere, the upper and lower mantle, separated by the
660 km discontinuity where a viscosity jump occurs (Rudolph et al., 2015), and the

1
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Figure 1.1. (a): Earth’s interior according to the terminology adopted by mineral
physicists, seismologists and geodynamicists (Massmeyer, 2013; Davies, 2001). (b): dy-
namic cross-section of the Earth (Courtillot et al., 2003).

hot thermal boundary layer at the CMB. This division of the Earth is appropriate
for the study of thermal convection in the mantle, i.e. the slow creeping flow of
mantle rocks that results from the cooling of the Earth (e.g. Turcotte & Schubert,
2014; Ricard, 2015). A cartoon of mantle convection is shown in figure 1.1b, where
we can see hot/light currents (i.e. plumes) rising from the CMB all the way to the
Earth’s surface, and cold/heavy tectonic plates, formed by breaking of the rigid
lithosphere, sinking down toward the CMB.

The last phenomenon, known as subduction, is one of the principal surface ex-
pressions of mantle convection and represents a key ingredient of global geodynam-
ics. It affects Earth processes ranging from the generation of mega-earthquakes
and explosive volcanoes at the surface to the recycling of volatile species back into
the deep interior. Yet despite its obvious importance, various aspects of subduc-
tion remain to be clarified, from the mechanics of the phenomenon itself to the

effect of subduction zones on large-scale mantle convection.
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Figure 1.2. 3-D cross section of the subduction zone beneath the island of Java, Bali,
Lombok and Sumbawa in Indonesia. Credits: Yves R. Descatoir, Earth Observatory of
Singapore.

1.1 Subduction

A close-up view of a subduction zone is shown in figure 1.2. Here we see the
oceanic subducting plate (SP), on the left, the continental overriding plate (OP),
on the right, and the margin between the two where the SP starts to bend and
sink, which is called the trench. This typical configuration captures the main
features of a subduction system which, however, change significantly from region
to region on Earth.

First of all, together with the oceanic-continental configuration, we also observe
oceanic-oceanic (e.g. North American-Carribean plates) or continental-continental
(e.g. Indian-Asian plates) plate collision on our planet. Moreover, even consider-
ing only the classical oceanic-continental collision, seismic tomography shows that
subduction occurs with many different styles. For example, the SP sinks i) with
a constant dip from upper to lower mantle, broadening in the transition zone,
as in the Central America subduction zone; ii) nearly vertically (e.g. the Mari-
anas trench) or iii) with a steep angle in the upper mantle, followed by flattening
in the transition zone, e.g. the Tonga trench (e.g. Fukao et al., 1992; Bijwaard
et al., 1998). Finally, concerning the OP deformation style, focal mechanisms of
earthquakes occurring within the OPs indicate that it varies from highly com-
pressional to highly extensional (e.g. Heuret & Lallemand, 2005). This can be
appreciated from the map of figure 1.3, which shows the OP stress-state for the

Earth’s principal subduction zones. Among other features, we can recognize the
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Figure 1.3. From Schellart et al. (2007): Map of major subduction zones on Earth
with plate velocities computed relative to the Indo-Atlantic hotspot reference frame.
The state of strain in the OP is reported in the legend at the bottom right corner.

strong compression of central South America (in red), related to the rise of the
Andes mountains (e.g. Rutland, 1971; Sobolev & Babeyko, 2005) and the exten-
sion of the Eurasian plate at the central Mediterranean subduction zone (in blue)
which, starting in the late Miocene, led to the opening of the Tyrrhenian basin
(e.g. Boccaletti et al., 1990; Faccenna et al., 1996). Understanding how subduction
gives rise to all these different features is one of the main challenges in modern

geodynamics.

1.1.1 Subduction modeling

Numerical and experimental modeling of subduction have proved to be powerful
techniques for investigating such complex phenomenon. Thanks to the impressive
progress of the last decades, these tools have provided convincing explanations for
many features of the present and past geological record, including the correlation
between trench velocity and SP velocity (Funiciello et al., 2008), the shape of
island arcs (Morra et al., 2006) and episodes of lower-mantle slab penetration
(Goes et al., 2008).

There are two main classes of subduction models: forced and free. In the first
(forced) case, the system is partially or totally forced by a boundary condition
imposed as a kinematic constraint. A classical example of this type of model is
the ‘corner flow’ model of McKenzie (1969), shown in figure 1.4. Here the 2-D
viscous flow in a wedge-shaped region is induced by the imposed speed Uj of the

wedge’s inclined lower boundary representing the subducting plate. Following the
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<—U0

Figure 1.4. 2-D analytical model of McKenzie (1969) for mantle flow in subduction
zones. Viscous fluid with uniform viscosity is contained in two wedge-shaped regions
separated by the downgoing portion of the SP. The motions of the downgoing and surface
portions of the SP are forced by imposed velocities Uy. Typical streamlines are shown
as solid lines with arrows. Credits: Neil M. Ribe.

analytical model of McKenzie (1969), the subduction rate of the SP is imposed in
other models of the forced class, either with a piston that pushes the SP toward the
OP in analog models (figure 1.5a) or by prescribing it as a boundary condition in
numerical models (figure 1.5¢). This approach is useful to study specific features
of subduction and also when one wants to mimic the effect of far-field driving
forces (Schellart & Strak, 2016). However, it lacks self-consistency since there is
an external source that continuously adds energy to the system. In the second
(free) case, the motion and deformation of the plates are controlled entirely by the
internal forces in the system. Usually, the only driving force taken into account is
slab pull (e.g. Turcotte & Schubert, 2014) and subduction is triggered by imposing
an initial dipping angle to the SP (figures 1.5b and 1.5d). This type of approach
is useful for understanding the natural evolution of subduction systems and the
causal link between the forces and the velocities observed within them. As will be
described in § 3, the latter is the model class that has been chosen for the present

study.

1.1.2 Subduction of an isolated plate

Figure 1.5 shows several examples of realistic model setups comprising both a SP
and an OP. However, much progress in our understanding of subduction has first
come from models that consider an isolated SP without an OP. In particular, this
approach has provided significant insight into the origin of the different modes of
subduction that have been observed both in analog and numerical models.

As recent studies have shown, one of the key parameters controlling the differ-
ent styles of subduction is the viscosity contrast (A = n;/n) between the SP (1)
and the surrounding mantle (1) (e.g. Kincaid & Olson, 1987; Di Giuseppe et al.,

3
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Figure 1.5. Examples of subduction model setups. Forced: (a) experimental (She-
menda, 1993), (¢) numerical (Rodriguez-Gonzélez et al., 2012). Free: (b) experimental
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Figure 1.6. (a): Phase diagram of Schellart (2008) showing the modes of free subduc-
tion as a function of the viscosity contrast (nsp/mv) and the ratio of the mantle depth
to the sheet thickness (Tyi/Tsp). (b)-(c): Phase diagram of Li & Ribe (2012) showing
the modes of free subduction as a function of the viscosity contrast (n2/n1) and the ratio
of the mantle depth to the sheet thickness (H/h). In (b) the authors show the different
shapes of the slab as it touches the bottom boundary. They also report the correspond-
ing angle of the slab’s tip. The dashed lines in (c) report the same regime boundaries
given in (a). Regime I and IV: Retreating mode. Regime II: Folding retreating mode.
Regime III: Advancing mode.
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2008). Considering together the effects of A and the mantle/SP thickness ratio,
Schellart (2008) proposed the phase diagram shown in figure 1.6a. Using just
these two paramters, the author was able to classify a broad range of data coming
from different laboratory studies (Schellart, 2004; Bellahsen et al., 2005; Funiciello
et al., 2006). He identified four main modes of subduction: weak trench retreating
(Regime I) and strong trench retreating (Regime IV), trench retreating with fold-
ing (Regime II), and trench advancing (Regime III). The same phase diagram has
been reproduced quantitatively by Li & Ribe (2012) using a 3-D numerical model
based on the boundary element method (figure 1.6¢). As highlighted in figure 1.6b,
the authors found a strong correlation between the subduction mode selected and
the value of 0p, representing the dip of the subducting slab as it impinges on the
bottom boundary of the experiment/numerical model (a rough analog of the 660
km discontinuity). The authors concluded that the retreating mode (Regime I and
IV) always occurs for dp < 90°, retreating plus folding (Regime IT) occurs when
Op € [97° - 130°] and for larger values of 0 the trench advancing mode (Regime
I11) is selected.

Li & Ribe (2012), following the work of Ribe (2010), also clarified the role of
the viscosity ratio A in the dynamics of the SP by identifying a key dimensionless
parameter, the SP’s “flexural stiffness’ St = X (h/6,)*, where h is the SP’s thickness
and ¢, the SP’s ‘bending length’, represents the length of the portion of the SP
where the deformation is dominated by bending. I will come back in § 2.3.3 to the
definition of ¢, and its meaning. Thanks to this proper measure of the mechanical
resistance of the SP relative to that of the ambient mantle, Li & Ribe (2012)
confirmed the scaling law found by Ribe (2010) showing that the slab’s sinking
speed Vi is controlled by the ambient mantle viscosity 7y when St < 1, and by
the SP viscosity 11 when St > 1 (see figure 3.5, § 3.4.1 and Ribe (2010) for more
details).

1.1.3 Two-plate interaction along a weak subduction inter-

face

Even if models of an isolated SP are useful to capture meaningful features of
subduction, adding an OP to the system is crucial for more realistic modeling
of natural subduction zones. In this context three main questions arise: (i) how
does the presence of the OP influence the kinematics of the SP? (ii) what controls
the interplate stress state along the subduction interface? (iii) what drives the
deformation and motion of the OP (e.g. Krien & Fleitout, 2008; van Dinther
et al., 2010; Gerya, 2011; Duarte et al., 2013; Garel et al., 2014)?

7
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Figure 1.7. Mechanisms underlying OP deformation.

In recent years, several authors have used 3-D analog and numerical models of
the free class to address the question of the mechanism of deformation of the OP,
focusing, in particular, on the controlling factor for backarc extension. In general,
it is found that backarc extension is strongly correlated with trench retreat (e.g.
Duarte et al., 2013; Meyer & Schellart, 2013; Schellart & Moresi, 2013; Chen et al.,
2016). A possible mechanical interpretation of this result is that slab rollback
induces a toroidal mantle flow that exerts shear stresses on the base of the OP
that in turn lead to backarc opening (figure 1.7a). The rate of extension in the
backarc zone depends on whether the OP is free to move or is fixed at its end
on the opposite side from the trench (Chen et al., 2015). Interestingly, backarc
extension is also observed in the 2-D (toroidal flow absent by definition) numerical
model of Holt et al. (2015a) when the OP is positively buoyant. For such a case,
if the poloidal flow suddenly becomes weaker due to interaction of the slab with a
viscosity increase at 660 km depth, a shift from extension to compression in the

backarc zone may occur.
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Another feature that has been explored recently is the influence of the subduc-
tion interface on the deformation of the OP and the rate of subduction of the SP.
Based on analog models, Duarte et al. (2013) and Chen et al. (2015) concluded
that interplate stresses at the interface are the primary control on forearc defor-
mation within the OP. The forearc can be compressional or extensional depending
on the magnitude of those stresses, whereas backarc deformation is insensitive to
them (figure 1.7b). Duarte et al. (2013) also found that the subduction rate of the
SP is controlled by the rheology of the subduction interface, decreasing strongly
as the viscosity of the interface increases due to enhanced mechanical coupling
between the plates.

Turning finally to the influence of the OP on the kinematics of the SP, Holt
et al. (2015a) showed that the OP viscosity does not influence significantly any of
the characteristic velocities of the SP. They also found that increasing the OP’s
thickness decreases the rate of slab rollback, but does not affect the subduction
rate or the slab’s sinking speed. The same correlation between trench motion and
the thickness of the OP is found in the 2-D numerical model of Garel et al. (2014).

1.2 Rayleigh-Bénard convection

In the first part of this introduction we have seen some examples highlighting the
influence of subduction on different phenomena observed in the area close to the
subduction zone itself. However, a global-scale effect of subduction zones might
also occur on Earth. In particular, several authors have suggested that the viscous
dissipation of energy occurring at subduction zones can strongly influence large-
scale mantle convection (e.g. Conrad & Hager, 1999b; Korenaga, 2003). In order
to understand how this might occur, it is useful here to give some basic concepts
underlying the study of Earth’s mantle convection.

In the simplest terms, thermal convection in the mantle can be described as
a Rayleigh-Bénard (R-B) instability problem. A typical 2-D configuration of this
type of convection is illustrated in figure 1.8, where we consider a fluid layer of
thickness d confined between two horizontal planes (rigid or traction-free) kept at
different temperatures. The system is heated from below and cooled from above
(Ty > Tp) and we assume that there is no volumetric heat generation within it.
Under certain conditions, due to the density variation given by the gradient of
temperature, the fluid layer becomes unstable and generates the flow indicated by
the curved arrows in figure 1.8. This fluid motion repeats regularly in cells that
extend horizontally according to the characteristic wavelength A of the convection
pattern (e.g. Ribe, 2015).
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Figure 1.8. Modified from Turcotte & Schubert (2014): Rayleigh-Bénard model setup
consisting of a fluid layer of thickness d, heated from below and cooled from above
(Th > Tp). The characteristic horizontal wavelength of the convection pattern is A. Note
that the vertical coordinate increases downward.

For the R-B problem, the governing equations describing the conservation of

mass, momentum and energy are the following:

8uj
A = 1.1
8% 0 ( a)
oP
= nV2u; = gipoo(T = Tp) (1.1b)
01‘2-
oT oT
ot Yoz, " kYT, (1.1¢)

where k is the thermal diffusivity and we consider an incompressible and isoviscous
fluid (n=constant) in the relevant approximations for mantle convection of negligi-
ble inertia (Reynolds number, Re ~ 1072%) and infinite Prandtl number, Pr ~ 1023.
Moreover, we assume the validity of the Boussinesq approximation according to
which the density variations are retained only in the term that represents the
buoyancy force, and are neglected everywhere else. This means that the density
difference caused by the thermal expansion (p’) is small enough not to affect the
hypothesis of incompressibility but sufficient to drive the flow. The latter effect
is taken into account in (1.1b) by the term p’ = —poa(T - Tpp), where « is the
volumetric coefficient of thermal expansion and T} is the reference temperature
corresponding to the reference density poy > p’. We further notice that in (1.1b),
P represents the dynamic pressure of the flow P = p — pgg;x3, that is the total

pressure minus the hydrostatic contribution related to the reference density.
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1.2.1 Onset of R-B convection

We now ask: what are the conditions that generate the instability in the fluid layer?
This problem is addressed by means of a linearized stability analysis of the onset of
convection when the motions and the thermal disturbance are infinitesimal. In this
section I summarize some key results of this analysis, whose detailed explanation
can be found in Turcotte & Schubert (2014).

Consider the setup shown in figure 1.8 with the fluid at rest. We assume a
steady (0/0t) conductive state without any horizontal gradient (0/0z; = 0). The
velocity is everywhere zero (u;. = 0), and the steady conductive temperature profile
T, satisfies d27,/da2 = 0. The solution is

_ (T1 +T0) + (T1 —710):1;37
2 d

Imagine now that we increase the temperature difference across the fluid layer up to

T=T, (1.2)

the point where the slightest further increase causes the layer to become unstable
and convection to start. Let the temperature be T'=T,. +7T” and the velocity be
u; = u, where 7" and w} are small perturbations of the steady conductive state.
Substituting these expressions into 1.1 and neglecting products of perturbation

quantities, we obtain

ou; 0 (L.3)
ryale 3a
8xj
oP’ , ,
or. nv2u; = gipoa(T' = Tp) (1.3b)
T/ /
aat + %(Tl -Tpy) = kV?T". (1.3¢)

We now assume that the upper and lower surfaces of the convecting layer are

isothermal and free-slip, viz.

T'=0 on x3==d/2 (1.4a)
ouf
8:173

=u;=0 on mx3==+d/2. (1.4b)
Rewriting eq. (1.3) in terms of the stream function 1/, we reduce the problem
to the two partial differential equations

o1”
8x1

NV = pogsal (1.5a)

11
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aT' 1 oy’
AT, - T = KV2T' 1.5b
or T ah~To)g =RV (1.3b)
which admit solutions of the form
;g mx3 . (2mxp
W' = 1hjcos—=sin e’ (1.6a)
d A
y y T3 27'('371 +
T = TOCOSTCOS )\ e, (1.6b)

where s is the growth rate that characterizes the time evolution of the perturba-
tions. An expression for s is obtained by substituting (1.6a) and (1.6b) into (1.5b),
yielding

sd® _ Rak? - (72 + k?)3
Ko (m2+k2)2 7
where k = 2md/ X\ is the dimensionless wavenumber and Ra is the Rayleigh number
defined as

(1.7)

_ pogso(Ty = To)d?
K1) '

The Rayleigh number expresses the relative importance of the buoyancy force

Ra (1.8)

acting against the viscous resistance of the fluid and the tendency of lateral tem-

perature gradients to disappear by diffusion. Setting s = 0, we can finally find the

12
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Figure 1.10. From Turcotte & Schubert (2014): Sketch of the 2-D flow of thermal
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critical Rayleigh number at which convection begins:

(72 + k2)°
K2

The function Rac, (k) is shown in figure 1.9. The curve separates two zones: the

Racr = (19)

UNSTABLE zone where s > 0 and perturbations grow exponentially with time;
and the STABLE zone where s < 0 and perturbations are damped so that the
layer remains stable against convection. Physically, the first case corresponds
to a buoyancy force that is high enough to overcome the viscous resistance to
convection, while in the second case the opposite is true.

In reality, random perturbations contain components of all wavenumbers. The

critical Rayleigh at which convection begins is therefore the minimum value Ray,

of Rac;(k), or
274

Ramm = T ~ 657.5. (110)
By comparison, typical values of the Rayleigh number for the Earth’s mantle
(Ray,) are in the range 10° - 107, depending on whether one uses the upper mantle
or the whole mantle thickness in the definition. Vigorous convection is therefore

to be expected in the mantle.

1.2.2 Steady-state boundary layer analysis

Imagine now that vigorous (Ra > Ray,;,) convection in the fluid layer of figure 1.8
has reached the steady-state configuration shown in figure 1.10. The flow con-

sists of an isothermal core bounded above and below by thermal boundary layers

13
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Figure 1.11. From Turcotte & Schubert (2014): Approximation of the velocity field
within a convection cell.

(TBLs) and on the sides by cold (sinking) and hot (rising) thermal plumes. The
boundary-layer structure of the flow is a direct consequence of the strong advec-
tion that controls heat transport in the fluid. Because the thermal Péclet number
Per = RePr » 102 is large, advection effectively counteracts thermal diffusion and
confines temperature gradients close to the boundaries of the cell. This resembles
what happens in mantle convection, where horizontal TBLs are nothing else than
the cold oceanic lithosphere (upper TBL) and the D”-layer (lower TBL).

For the configuration of figure 1.10, steady-state boundary layer analysis pro-
vides a useful scaling law for the convective heat transport as a function of the
vigor of the flow. I now show briefly how we can obtain it.

We start from the integrated energy balance within the volume V' of a single

convection cell, bounded by free-slip surfaces S on the four sides:

277/ GZJGZ]dVZfU,ZO'UTLJdS——/UlgzpooéATpdV, (]_]_1)
|4 S |4

where e;; = 1/2(0u;/0x; + Ou;[0x;) is the strain rate tensor and o;; = —P0d;; + 2ne;;
is the corresponding stress tensor. Equation (1.11) can be obtained by taking the
dot product of the velocity and the momentum balance (1.1b) and then convert-
ing the volume integrals to integrals over the cell surface using Gauss’s theorem.
The quantity AT, appearing in (1.11) is the temperature difference between the
isothermal core T = T, and the upper (7j) or lower boundary (77). Cold and
hot thermal plumes are then assumed to have the same temperature structure as
the corresponding cold or hot TBL.(Turcotte & Schubert, 2014; Conrad & Hager,
1999b). From the continuity equation and the assumption of free-slip boundaries,

the first integral on the right-hand side of (1.11) vanishes, whence we obtain

277[ GZJGZ]dVZ——/Ulgzp()O[ATpdV, (]_]_2)
|4 |4
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1. INTRODUCTION 1.2. Rayleigh-Bénard convection

which states that the viscous dissipation in the fluid volume is exactly balanced

by the buoyancy flux associated with the thermal plumes.

Now we use the simplified 2-D velocity field shown in figure 1.11 to perform
a scaling analysis of (1.12). First, we identify a characteristic velocity scale vy
up ~ U and a characteristic length scale A\/2 ~» d ~ D. Because ¢;; ~ U/D and the

volume of the square 2-D cell is V' ~ D?, the viscous dissipation term scales as

277/ eijeijdV N?’]Uz. (113)
|4

The buoyancy term scales as

—f u;gipoAT,dV ~ U pogsa| ATy|(D6), (1.14)
%

where the volume over which we integrate here is that of the descending and rising
thermal plumes, whose thickness 0 is determined by the growth of the correspond-

ing TBL. The parameter § is obtained from the half-space model

6 ~Vrt ~\/kDJU, (1.15)

which describes how the TBL thickens by conductive cooling/heating during a
time ¢ ~ D/U until it becomes unstable and starts to sink/rise. Using (1.15)
with (1.14) and substituting (1.13) and (1.14) into (1.12), we finally obtain an

expression for the characteristic velocity U:

CEZN Ra??, (1.16)
K

where Ra has been defined in (1.8) and |AT,| ~ AT = (T} - Tp) because T, — Tp =
1/2(Ty - Tp).

The last step is to correlate the velocity (1.16) with the convective heat flux.
The latter has to be equal to the total heat flow () evacuated from the upper
boundary of the convection cell. From the half-space cooling model of the upper
TBL, we obtain
" KAT(@)UQ, (1.17)

K

Q= 2KAT, (“OA/ 2)

TR
where K is the thermal conductivity of the fluid. Now the heat that would be

transported by the cell purely by conduction in the absence of convection is

Q. - KATQ—Ad ~ KAT. (1.18)
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The Nusselt number of the cell Nu = Q/Q). therefore scales as

1/2
Nu ~ (Q) | (1.19)
KR

Using eq. (1.16) for the velocity U in eq. (1.19), we finally get

Nu ~ Ra'/?, (1.20)

which is the well-known scaling law connecting the (dimensionless) heat flow evac-
uated by the cell with the strength of convection within it.

Eq (1.20) gives some useful information on the long-term evolution of the con-
vecting system. We will see in the next section how we can exploit this argument
to build a thermal evolution model able to make predictions about the present-day

energy budget of the Earth.

1.3 Thermal evolution of the Earth

The Earth has been cooling down for several billion years. Estimates of the mantle
temperature 7T, indicate a temperature drop of ~ 200 K from the beginning of
mantle sub-solidus convection (T, ~ 1800 K, Litasov & Ohtani (2002)) until today
(T,,, ~ 1600 K, McKenzie et al. (2005)). These values constrain the average cooling
rate of the Earth to 50 +25 K Gy~! (Jaupart & Mareschal, 2010), which seems to
be consistent with geochemical data from the analysis of mid-ocean ridge basalts
(Abbott et al., 1994).

While it cools, the Earth also generates heat due to radioactive decay of ura-
nium (U), thorium (Th) and potassium (K) (e.g. Turcotte & Schubert, 2014).
Thus, in order to measure the efficiency of the Earth’s cooling, it proves useful to
define the Urey ratio Ur as the ratio of the global rate of heat generation H to
the global rate of heat loss Q:

Ur= 5. (1.21)

For the present-day Earth, geochemical data suggest Ur € [0.1-0.5], depending
on the different estimates of H and @ used (e.g. Jaupart et al., 2015; Davies,
2001; Stein et al., 1995; Jochum et al., 1983; O’Connell & Hager, 1980) and on
the assumption made concerning the role (active or passive) of continental heat
sources in driving mantle convection (Jaupart & Mareschal, 2010). In any case,
the data provide a robust upper limit Ur < 0.5.

Given this range of Ur, we can now try to build a cooling model for the Earth
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which is consistent with this geochemical constraint.

1.3.1 Parameterized cooling model

We start from the Earth’s global energy balance

d{T
M(Cp)% =-Q+H, (1.22)
where M is the mass of the Earth, C, its heat capacity, 1" its temperature, () the
total rate of heat loss and H the total rate of heat production. We indicate with
the symbol () a spatially averaged value of the corresponding variable. Assuming
an exponential decay with time of the amount of heat generated by the sum of

the radioactive elements U, Th and K, H can be approximated as

H(t) = Hye™™, (1.23)

where ¢ = 0 at present and ¢ < 0 in the past, while 7 represents an average decay
time-scale of the three elements, whose value is 7p ~ 3 Gy (Labrosse & Jaupart,
2007). An expression for ) is obtained from the scaling law (1.20) derived earlier,
where Q ~ KATRa®, with S— 1/3. Considering now a temperature-dependent

viscosity n(7T"), we can write

Q = CTYPy=5(T), (1.24)

where C is a constant taking into account the dependence on all the different
fluid properties that depend weakly on temperature (Jaupart & Mareschal, 2010).
Using an Arrhenius-type viscosity law 1 = no(7'/Ty)™" and noting that variations of
temperature in the Earth are much smaller than its absolute value (a drop of 200
K against a present-day mantle temperature of 1600 K), we can linearize eq.(1.24)
around a reference value Ty, obtaining (Christensen, 1985; Labrosse & Jaupart,
2007)

(1.25)

Q=Qu[1+ (gm0,

To
where Qg is the heat loss at the reference temperature Ty and n = 35 (Davies, 1980;
Christensen, 1985). Substituting (1.25) and (1.23), into (1.22) we finally obtain
the Earth’s energy equation

dr
dt

T-1T,
Ty
where we have dropped the symbol () to lighten the notation.

Mc,

=-Qo [1+(1+ﬁ+6n) ]+Hoe‘t/TD, (1.26)
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A critical parameter that can be extracted from eq.(1.26) is the characteristic
time-scale 7z of mantle convection underlying the secular cooling of the Earth.
This is the time required for the temperature and the heat flux to drop by a
factor e when the heat sources are instantaneously removed. Hence, it tell us how
quickly mantle convection adapts to an external perturbation which changes its
state of equilibrium, for example a new boundary condition or a new rate of heat
generation (Labrosse & Jaupart, 2007). Setting to zero the heat production term
in(1.26), we obtain

MC,Ty
TR = )
(1+8+8n)Q
which leads to 7 » 800 Myr, adopting standard values of n =35, 5 =1/3, M =
6 x 10* kg, Qp = 30 TW, T = 1300 K and C, = 1200 J kg™! K-!. From the
analytical solution of (1.26)

(1.27)

QoTr ; 4 TR ( ™D ) _ _
T=Ty+—= IR _ 1 H, t/Tp _ o~t/TR 1.28
v+ e, (¢ )4 3G \mp =g ) o (P =), (128)

in the limit ¢t > 7, we finally obtain a simple expression for the present-day Urey
ratio (Labrosse & Jaupart, 2007)

™D — TR
Ur =

1.29
i (1.29)

which predicts Ur = 0.73, higher than the upper limit constrained by geochemical
data.

1.3.2 Viscous dissipation of energy at subduction zones

One possible explanation for the failure of the cooling model presented above lies
in the small value of the mantle relaxation time 7z, which makes the process of
secular cooling highly sensitive to any fluctuations from the equilibrium state.

In the context of the calculations presented in the preceding section, the low
value of 7z might be ascribed to the exponent 3, which we assumed to have the
value 1/3 in accordance with the scaling law (1.20). However, there is no good
reason to suppose that 5 = 1/3 is representative of mantle convection. First, the
prediction 8 = 1/3 assumes that there are no volumetric heat sources within the
mantle. As we have seen, this is not a good approximation for whole-mantle
convection given the radioactive decay of uranium, thorium and potassium. Nev-

ertheless, as recent studies seem to suggest, internal heating should not change
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much the 1/3 power dependence of the Nusselt number on the Rayleigh number
(e.g. Sotin & Labrosse, 1999; Vilella & Deschamps, 2018). Second, convection
models with the horizontal convection pattern like the one of figure 1.10 (e.g.
Grigné et al., 2005) are characterized by a ‘rectangular’ seafloor age distribution
(Labrosse & Jaupart, 2007). The latter arises from the fact that all the plates start
to subduct after traveling the same time, thus inducing a constant spatial distri-
bution of seafloor ages in the whole domain of the model (figure 1.12(A)-(B)). On
the contrary, the peculiar characteristic of mantle convection is to have generated
a plate-tectonics system with a ‘triangular’ seafloor age distribution (Sclater et al.,
1981; Rowley, 2002; Cogné & Humler, 2004). A simplified representation of such
a system is depicted in 1.12(C). Because young plates also can now subduct, the
spatial distribution of seafloor ages in the whole model domain has a peak for short
seafloor ages and decreases linearly as the seafloor age increases (figure 1.12(D)).
Taking into account this feature, Labrosse & Jaupart (2007) obtained 75 ~ 10 Gy
in their empirical cooling model. Third, the assumption of an isoviscous system
neglects the dissipation of energy that occurs at subduction zones where highly
viscous lithospheric plates must bend and then slide along the subduction inter-
face. The resistance to deformation at such plate boundaries might partly decouple
the dynamics of the lithosphere (i.e. the upper TBL) from the mantle convection
that takes place below it. The plate speed and the corresponding surface heat
flow would then be less sensitive to any variations in the properties of the mantle,

thereby reducing the effective value of f3.

This latter argument has been the object of considerable debate in the past
20 years. In fact, it is still unclear whether or not subduction zones dissipate a
significant amount of energy (e.g. Irvine & Schellart, 2012; Leng & Zhong, 2010;
Krien & Fleitout, 2008; Davies, 2009; Rose & Korenaga, 2011; Conrad & Hager,
1999b). In the pioneering work of Conrad & Hager (1999a), the authors suggested
that the bending of long and highly viscous plates at subduction zones dissipates
most of the energy that drives mantle convection. On this view, the surface heat
flux is nearly independent of the underlying mantle, implying 5 ~ 0 (Conrad &
Hager, 1999b). A key parameter in the model of Conrad & Hager (1999a) is the
minimum radius of curvature R, of the subducting plate, which the authors
take to be 200 km. Subsequently, Korenaga (2003) proposed a counterintuitive
scaling law with § < 0, implying that the surface heat flow decreases as mantle
convection becomes more vigorous. According to Korenaga, the thickening of the
lithosphere is controlled by dehydration during melting at mid-ocean ridges. A
hotter mantle (higher values of Ray, ), which produces more melt, would thus lead

to a thicker lithosphere that slows down mantle convection. Davies (2009) com-
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Figure 1.12. From Labrosse & Jaupart (2007): Plate tectonics systems and corre-
sponding seafloor age distributions. The thick solid lines represent subduction zones
while dashed lines are ridges. In (A) all the plate subducts at the same travel time lead-
ing to the rectangular age distribution shown in (B). In (C) the presence of continents, in
gray, allow for subduction of young plates. Such a system shows an Earth-like triangular
seafloor distribution (D).

pared two different mantle convection models in which the lithosphere thickens
either by conductive cooling or by the dehydration stiffening process. He con-
cluded that the result § <0 is an artefact of the small value of R,,;, =200 km and
the high value of the SP viscosity 1, = 1023 Pa s assumed by Korenaga (2003).
Higher values of Ry, = 300-500 km and/or lower lithosphere viscosities (1; = 1022
Pa s) recover the standard result § = 1/3 and imply that the dissipation of energy
at subduction zones is minor. Other authors have suggested that the viscous dissi-
pation associated with the deformation of the lithosphere is never dominant. Using
a numerical model for compressible convection, Leng & Zhong (2010) found that
the dissipation occurring in a subduction zone is 10-20 % of the total dissipation.
A slightly wider range, 10-30 %, is suggested by the study of Krien & Fleitout
(2008), who combined analysis of short and intermediate wavelength gravity and
geoid anomalies with the predictions of a 2-D numerical model. Finally, Capitanio
et al. (2007) investigated free subduction numerically using a constant or layered
linear viscoelastic rheology and found that the lithospheric dissipation is generally
less than 25% of the total. Similar results are obtained when a plastic rheology is
adopted to model the lithosphere (e.g. Buffett & Becker, 2012; Rose & Korenaga,
2011). This assumption seems also to be consistent with observations from natural
subduction zones (Buffett & Heuret, 2011; Holt et al., 2015b).
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1.4 Thesis outline
The thesis is organized as follows:

e in Chapter 2 the Stokes flow is presented along with different solutions which
characterized it. A particular technique (Boundary-integral representation),
useful to solve this type of flow, is also described and several results of thin

viscous-sheet theory are derived;

e in Chapter 3 the results published in Gerardi & Ribe (2018) are presented.
This work focuses on unmasking the mechanics underlying the phenomenon
of subduction by means of a numerical model built with the Boundary Ele-
ment Method (BEM), here described. Three main aspects of subduction are
investigated: the kinematics of the subducting plate, the overriding plate

deformation and the mechanical role played by the subduction interface;

e in Chapter 4, the results of the manuscript “Gerardi G., Ribe N. M., &
Tackley P. J. Plate bending, energetics of subduction and modeling of mantle
convection: a boundary element approach”, currently under review for Farth
and Planetary Science Letters, are presented. Based on the same BEM
model, this study specifically explores the energetics of subduction. The
influence of viscous dissipation of energy at subduction zones on large-scale

mantle convection is also studied;

e in Chapter 5, laboratory modeling of mantle convection is introduced. Here,
preliminary results obtained running a convection experiment based on the

drying of an aqueous colloidal dispersion of silica nanoparticles are presented.
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Chapter 2

Stokes flow

Theoretical models developed for the study of inertialess flows underlie the in-
vestigation of many geophysical flows of the Earth’s mantle, where, as already
anticipated in § 1.2, a typical value of the Reynolds number is Re » 10720, An
important class of such flows is that of an incompressible, isothermal and purely

viscous Newtonian fluid. In this case the governing equations are

8uj

—J = 2.1

. (2.1a)

8Uij

— =/ 2.1b

(9:1:j fz ( )
Oij = =P+ 2neq;, =5 (8x- + 8;) (2.1¢)

J i

where we recognize the continuity equation (2.1a), the balance of momentum (2.1b)
and the stress tensor 0;; and the strain-rate tensor e;; in (2.1c). Here, we consider
the case of a flow produced entirely by body forces, whose distribution per unit
volume is f;. For buoyancy-driven flows, the case of interest for the present work,
fi = pgi.

Flow satisfying (2.1), called Stokes flow, presents a number of interesting prop-
erties. First, like all slow viscous flows, it is characterized by the property of in-
stantaneity, whereby the velocity field u; and the stress state o;; are determined
exclusively by the distribution of the forcing term f; and the boundary conditions
at that specific instant. This means there is no time lag between the forcing and
the fluid’s response to it. Therefore, the temporal evolution of the flow is simply
due to the temporal evolution of the driving term (e.g. Ribe, 2015). Next, as a
consequence of its linear rheology, Stokes flows exhibit also the properties of lin-

earity and reversibility. The first implies the principle of superposition, whereby
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the sum of any two solutions (e.g., for different forcing distributions or boundary
conditions) is also a solution. It also implies that u; and o;; are directly propor-
tional to the forcing term that generates them. Reversibility states that if the sign
of the forcing term is reversed, the sign of w; and o;; of all the material points be-
longing to fluid changes. The reversibility principle is particularly powerful when
used in combination with symmetry arguments, because it allows us to evaluate

if a given hypothetical behavior is physically possible or not (figure 2.1).

2.1 Singular solutions

Due to their linearity, the Stokes equations admit several singular solutions. These
arise when the velocity and/or the pressure becomes infinite at one or more points
within the fluid. We distinguish between two main classes of singular solutions:
those involving point or (in two dimensions) line forces, and those related to volume
sources and sinks. In this paragraph, I will focus on the singular solution associated
with a line force. For more information on all the other singular solutions, refer
to Ribe (2015) and Kim & Karrila (2013).

Imagine that a point force F; (Stokeslet) is applied at a position x (the bold
symbol denotes a vector) in the fluid. The velocity and the stress induced at any
point y will satisfy (Ribe, 2015):

an

—J - 2.2

52 =0 (2.2a)
8aij

=-Fé(y - 2.2b

where 0(y - x) = 6(y1 — 21)0(y2 — 22)6(y3 — ¥3) and § is the Dirac delta-function.
Given the proportionality between wu;, o;; and the forcing term, and requiring
that u; > 0 and 0;; > —pod;; as [y — x| - oo, where py is a far-field (dynamically

irrelevant) pressure, u; and o;; can be written as

u; = Jii Fj[n, oir = Kiji I, (2.3)

where we introduce the tensorial Green’s functions J;; and Kjj;, representing the
singular solutions of the velocity (J;;) and the stress (Kj) due to a unit line force.
Using eq. (2.3) in eq. (2.2) and dropping the arbitrary vector Fj, the governing

equations of the flow assume the form

o

oz, 0 (2.4a)
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(a) Rigid body with fore-aft symmetry falling under gravity in an infinite fluid:

rotation can not occur.
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(b) Rigid body lacking fore-aft symmetry falling under gravity in an infinite fluid:
rotation can occur.

Figure 2.1. Examples of the exploitation of the property of reversibility characterizing
Stokes flow. Credits: Neil M. Ribe.



2. STOKES FLOW 2.1. Singular solutions

1 +00

Figure 2.2. Spatial distribution of the norm of the velocity vector corresponding to the
expression for J;; in (2.5). The line force acts in x and we consider Fy = F» =7 =1, so
that u; = Jij~

0K
= 0y - %), (2.4b)

whose solutions in a 2-D domain, the one of interest in the present thesis, are
(Pozrikidis, 1992; Ribe, 2015):

T 1rirry

1
J»LJ(I') = E (—5ijln7“ + ?) s KZ]k(r) = —;

a3 (2.5)

where r =y —x and r =|r|.

The Green’s functions in (2.5) are solutions for an unbounded 2-D Stokes flow
generated by a line force acting at x with strength F per unit length of the line (the
2-D analog of the 3-D Stokeslet). For such a configuration, we show in figure 2.2
the spatial distribution of the norm of the velocity vector u(r). As we observe,
the velocity is singular at y = x, where |u(r)| - +o0, and decays away from x.
However, due to the logarithmic term in the Green’s function J;;(r) in (2.5), [u(r)|
does not vanish for |r| - +oo, violating the boundary condition imposed at the

beginning. This is related to Stokes’s paradox, which states that a 2-D Stokes flow
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Stokeslet

Stokeslet

Figure 2.3. From Ribe (2015): Image system required to describe a general Stokes
flow in the presence of an impermeable and traction-free wall. Because the latter is
equivalent to a plane of mirror symmetry, the Stokeslet located at x has to be balanced
by a Stokeslet reflected across the wall, located at the image point x™ = x - 2dn and
with strength F* = R-F.

around an infinitely long cylinder moving perpendicular to its axis does not exist
(Ribe, 2015). In the following paragraph, we will show how we can resolve this

paradox with the help of an impermeable boundary.

2.1.1 Effect of a free-slip wall

We consider now a 2-D Stokes flow bounded by a free-slip wall. The model setup
that describes this new configuration is illustrated in figure 2.3. Here the flow is
given by the combined action of two line forces: the first, located at the point x
at a distance d from the boundary, is the line force that actually generates the
flow; the second, located at the image point x™, is the one that we add in order
to satisfy the boundary condition of an impermeable and traction-free wall. To
fulfill such requirements, x™ has coordinates x™ = x — 2dn, where n is the vector
normal to the wall, while the magnitude of the line force is equal to F* = R-F,
where R;; = d;; — 2n;n; is a reflection tensor that reverses the sign of the wall-
normal component of F and leaves its wall-parallel component unchanged (Ribe,
2015). From the superposition of the two line forces, we can thus find the new
Green’s functions J{(r) and K, (r) which are solutions of the 2-D Stokes flow

bounded by the free-slip wall:

Jo(x) = Jy(r) + (-1)771J;; (™) (2.6a)
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T1 +o0

Figure 2.4. Spatial distribution of the norm of the velocity vector associated with the
Green’s function Jg in (2.6a). The free-slip wall is at ro = 0 between the two line forces

at x and x™. The line force acts normal to the wall (F; = 0) and F» = 5 = 1, so that
G
U = Jij'

K (r) = Kiji(r) + (-1 Kij(e™), (2.6b)

ijk
where r'™ =y —x™ and J;;(r) and K. (r) are the Green’s functions given above
in (2.5) for an infinite fluid.

Now, because of the presence of the image singularity J;;(r™) in eq. (2.6a),
the logarithmic divergence for |r| - oo can be canceled out and Stokes’s paradox
resolved (Ribe, 2015). However, we need to pay attention to the orientation of
the line forces as the solution of the governing equations exists only when the net
force on the fluid is zero. Therefore, if for example we refer to the configuration
of figure 2.3, a Stokes flow solution exists only if the Stokeslet has no horizontal
component (Fy =0, see figure 2.4) or if we replace the free-slip wall with a no-slip
wall that can sustain the horizontal stress. Similarly, considering the 2-D Stokes
flow around an infinitely long cylinder, the solution exists in case of cylinder
sinking perpendicular to a free-slip wall because the integrated normal stress over

the wall turns out to be exactly equal and opposite to the drag on the cylinder. In
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the case of a cylinder moving parallel to the wall, instead, a no-slip wall becomes

necessary in order to counterbalance the horizontal drag on the cylinder.

2.2 Boundary-integral representation

By combining different types of singular solutions we can build a useful repre-
sentation of Stokes flow, called the boundary-integral representation. Unlike the
classical partial differential equations, which describe the spatial gradient of the
velocity over the whole fluid domain V', the boundary-integral representation ex-
presses the velocity at any point in V in terms of the velocity u; and the stress
o;; on the surface S bounding the fluid domain. This representation of the Stokes
flow is particularly convenient as it reduces the dimensionality of the problem by
one (we solve line integrals in a 2D domain or surface integrals in a 3D domain).
Thus, it makes possible a powerful numerical technique, called the boundary-
element method, which does not require the discretization of the whole flow do-
main (Pozrikidis, 1992).

The starting point for deriving the boundary-integral representation is the

integral form of the Lorentz reciprocal theorem (Ribe, 2015)

[S wloyn;dS + fv fudv = fs wioln;dS + fv Frugdv, (2.7)
which relates two Stokes flow (u;, 0, fi) and (u, o7, f7).

Let (u;, 05) be the flow of interest with no body forces (f; = 0), and u} = J;;(y -
x)F;/n and o}, = K;jp(y —x)F} be the flow induced by a line force f = F;0(y —x)
located at x. Substituting these expressions into (2.7) and dropping the arbitrary
vector F} yields

© [ 5 =00 mIm s - [ u)ity -0V (y) -

:/;Kijk(y_X)Ui(Y)nk(y)dS(y) (2.8)

where the normal vector n points out of the fluid domain V. The second integral
on the left-hand side can be rewritten as (Pozrikidis, 1992)

[ w33 %)V (3) = x(x)u(x) 29)

where x(x) = 0, 1/2, 1 depending on whether x lies outside V', right on S, or
inside V, respectively. Then substituting eq. (2.9) into eq. (2.8), we finally get the
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>

x1

Figure 2.5. Two-dimensional model of two fluid drops immersed in an infinitely deep
ambient fluid bounded at xo = 0 by a free-slip surface. The two drops, of radius a, have
viscosity n; = Ajno and density p;, where ¢ = 1,2. 7y and pg are the viscosity and the
density, respectively, of the ambient fluid. The drops are bounded by the contours Cj
and C9 whose normal vector n points out of their volumes V7 and V5.

boundary-integral representation

1
—/;Jijaiknde—/;uiKijknde=X(x)uj(x) (210)
n

where the arguments (y) for ny, o, w; and (y - x) for J;; and Kj, have been
suppressed to lighten the notation. In (2.10), the first integral, called the single-
layer potential, represents the velocity given by a surface distribution of point
forces with density o;xnidS. The second integral, called the double-layer potential,
represents the velocity field induced by a superposition of sources, sinks and force
dipoles. A detailed description of the two integrals can be found in Pozrikidis
(1992).

2.2.1 2-D Boundary-integral representation of two fluid drops

immersed in a fluid half-space

In the light of the boundary-integral representation (2.10), we derive here the
integral representation of the system depicted in figure 2.5 that represents the
basis of the subduction model we have developed for our work. In figure 2.5 we
have two viscous drops immersed in a infinitely deep ambient fluid, bounded at the

top by a free-slip surface. The force triggering the motion is the negative/positive
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2.2. Boundary-integral representation 2. STOKES FLOW

buoyancy of the two drops associated with their higher /lower density surplus with
respect to the ambient fluid. All the other parameters describing the system are
listed in the caption of figure 2.5.

We begin by writing the boundary-integral representation for each of the three
fluid domains appearing in the model. According to eq. (2.10), it is:

for the fluid drop 1:

1

LI 0e @) m)diy) - [ aO )Ry %)) diey) -

= y1(x)uM(x), (2.11)

for the fluid drop 2:

1

o J(Y—X)'U(Z)(Y)'H(Y)dl(Y)—fc2 u® (y)-K(y - x)n(y)dl(y) =

= a2 (x)u®(x), (2.12)

and for the ambient fluid:

_ % 3 I(y - x)-0© (y)n(y)di(y) - % /02 J(y -x)-aP(y)n(y)di(y)+

¢ [ aO@) Ky -0m@)de) + [ Ky -x)n)diy) = voeu® ().
(2.13)

We emphasize that J(y — x) and K(y - x) are the Green’s function defined
n (2.6), properly modified in order to satisfy the free-slip boundary condition at
To = 0.

Next, taking the linear combination A;(2.11) + A\2(2.12) + (2.13) we obtain
(Manga & Stone, 1993):

Xo(x)u® (x) + Xl(X)Alu(l)(X) + Xx2(x)Au® (x) =
Apl / (g-y)n- Jdl+ / (g-y)n-Jdl+

" (1 —)\1) f u<1>-K-nd1+ (1-X) f u®.K-ndl, (2.14)
Cl C2
where Ap; = (p; — po), with i = 1,2, are the density differences and we drop the
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arguments (y) for n, u, u® and (y-x) for J and K to simplify the notation. We
also made use of the matching condition on the normal stress across the fluid /fluid

interface

(0'(0) - O'(i)) n=-Ap;(gy)n, (i=12). (2.15)

Finally, adopting the dimensionless variables

PN - . (i Ui i .
(%,9)=a'(x,y), u®= ngu( ) (i=1,2) (2.16)

we rewrite eq. (2.14) in its dimensionless form (hat symbols suppressed):

f —(ez-y)n-Jdl—Ff (eQ-y)n-Jdl+(1—)\1)/ u®.K-ndl+
Cq Co C1

u®(x) if xelj
AuM(x) if xel) (2.17)
+(1= ) /C u®.Kendl = { \,u®(x) it xelj

(1+X)/2 uM(x) if xeC)
(1+X2)/2 u®(x) if xeCy

where ey = —g/g is the (upward-pointing) vertical unit vector and T' = Apy/Ap;.
Equations (2.17) allow for a complete calculation of the flow field in the whole
space domain. The first step is to compute the interfacial velocities u¥) and u(®
considering material points x € C; and x € Cy, for which (2.17) reduces to a pair
of coupled Fredholm integral equations of the second kind. As y and x can lie on
the same contour, the resolution of such a system requires the regularization of
the corresponding integrals by ‘subtracting the singularity” at y = x. According
to Pozrikidis (1992), this procedure yields

/C (e2ry)n-Jdl = [C ey (y —x)n-Jdl (2.18)
Z. Z ) ) 1 ..
[C u®(y)-Kndl = fc [ (y) - ()] Kendl - Su (x) (2.19)
where ¢ = 1,2. Thus, we can write:
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2.3. Thin viscous-sheet theory 2. STOKES FLOW

pn:fcl—[(xzy)—(x%)]n-(y)J(y—x)dl(y), for xeCinyeC; (2.20a)

Sa1 = fCQ —(29y)n+(y)I(y -x)dl(y), for xeCianyeCy (2.20b)
Qu = fcl [u(y) —ux)]'K(y —x)n(y)dl(y) for xeCiayeC (2.20¢)
Dy, = _/02 u(y)-K(y -x)n(y)dl(y) for xeCinanyeCy (2.20d)
Sig = -/01 —(z9y)n+(y)I(y -x)dl(y), for xeCynyeC) (2.20e)
P22 = fC’Z - [([Egy) — (ZEQQ;)] H(Y)°J(y - X)dl(y'), for x¢ 02 Ny € 02 (220f)
Dy = —/01 u(y)-K(y-x)n(y)dl(y) for xeCynyeC (2.20g)

Q22 = f02 [u(y) —u(x)]-K(y —-x)n(y)dl(y) for xeConyeCy  (2.20h)

where eq. (2.18) and eq. (2.19) have been used when points x and y are on the same
contour and we indicate with x, the vertical coordinate of the point y deriving
from the dot product esy = es+(r1€1 + 2€3). The same is valid for es+x > z9,.
Combining (2.20) and (2.17), we obtain

1 1+ A

Pll + FSQl + (1 - )\1)[@11 - §u(1)(x)] + (1 — )\2)D21 = 1u(1)(x)

1 o (2.21)
+
Sto+Pay + (1= A1) Dy + (1 - )\Q)l@m - §U(2)(X):| = T2u(2)(x).
Simplifying leads to the final formulation
{PH + FSQI + (1 — )\1)@11 + (]_ - )\2)D21 = u(l)(x) (2 22)
Slg + FPQQ + (]_ - )\1)D12 + (]_ — /\2)Q22 = 11(2) (X)

where the first equation of the system is obtained for x € C} Ay € (2, while
the second is for x € Co Ay € C15. Once u® and u® are known, the velocity
within the drops or in the ambient fluid can be determined if desired by solving

the equations (2.17) for the regions of interest.

2.3 Thin viscous-sheet theory

A lithospheric plate is ~ 100 Km thick and » 1,000 — 10,000 km wide. It moves

and interacts with neighboring plates, deforming in a purely viscous manner on
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2. STOKES FLOW 2.3. Thin viscous-sheet theory

Figure 2.6. From Ribe (2001): Model of a two-dimensional thin sheet of viscous fluid
with variable thickness H(s), constant viscosity 7 and constant excess density dp. s and
z define the local coordinate system related to the sheet’s midsurface, located at z = 0.
The midsurface has inclination 6(s) from the horizontal and curvature K(s) = df/ds. In
the most general case, inertialess flow in the sheet is driven both by its buoyancy and
by externally applied normal P*(s) and tangential T*(s) stresses.

geological time scales. Due to these features, its long-term and large-scale dy-
namics can be investigated with the help of thin viscous-sheet theory (England &
McKenzie, 1982, 1983; Ribe, 1992; Weinstein & Olson, 1992; Ribe, 2001, 2002).
In this section I will show several results that have been systematically adopted
in this thesis. For further details, refer to Ribe (2001).

2.3.1 Exact governing equations

Figure 2.6 shows a characteristic 2-D configuration of a thin sheet of a highly
viscous fluid. The sheet is assumed Newtonian, with a constant viscosity 7, and
is denser by an amount dp than the ambient fluid in which it is immersed. It has
thickness H (s), variable along the arclength coordinate s of the sheet’s midsurface,
and it extends over a characteristic horizontal length scale L, such that e = H/L «<
1, where € defines the slenderness of the sheet. The s— and z—directions constitute
the local reference frame relative to the sheet’s midusrface which lies at z = 0, half-
way between the sheet’s upper and lower surfaces. The midsurface has inclination
0(s) from the horizontal and curvature K (s) = df/ds. The inertialess flow within
the sheet has tangential component u(s,z) and normal component w(s, z). The
velocities at the midsurface are U(s) = u(s,0) and W(s) = w(s,0). In the most

general case, the creeping flow within the sheet is driven both by its buoyancy
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and by extrenally applied normal P*(s) and tangential T*(s) stresses. The exact

equations governing its motion are

% - % (hw) =0 (2.23a)
ag: + % (ho.s) + azs% = —hgs0p (2.23b)
9 (hoy+ 222 0, T - gy (2.23¢)
where o0;; is the stress tensor. Its components are
ass:—p+2%(%—[(w), JZZ:—p+2776(;—ZJ, (2.24a)
et 0]

where h = 1-2K and gss+¢.z = —g(s sinf +z cosf), where s and z are unit vectors
in the s- and 2- directions.

Assuming for simplicity that the forces exerted on the sheet by the ambient
fluid are negligible relative to the bouyancy force, we integrate the momentum

equations (2.23b) and (2.23c) across the sheet, obtaining the global force balances

N kG- -Hgsp (2.25a)
ds
le—Q + KN =-Hg.,0p, (2.25Db)
s
where
H/2 H/2
N = f ossdz, Q= [ 0,.dz (2.26)
—H/2 “H/2

are the ‘resultants’ of the fibre stress oy, and the shear stress o5, respectively.
Next, multypling (2.23b) by z and then integrating, we get an expression describing
the global torque balance

dM 1 dM

— -Q=-—=KH?%g6 — 2.27

T " @ KH g0 = —= (2.27)
where we have used K H « 1. The quantity M is the first moment of the fibre

stress

H/2
M = / 2045d2, (2.28)
_H/2
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Figure 2.7. Time evolution of two material points on the sheet’s midsurface, belonging
to the midsurface element 1. Credits: Neil M. Ribe.

which represents the sheet’s bending moment. By analogy with the above expres-
sion, we refer to N of eq. (2.26), the “zeroth” moment of o4(2) , as the sheet’s

stretching moment.

2.3.2 Midsurface kinematics and constitutive relations for
N and M

Thin-sheet theory is based on the insight that characterizing the deformation of its
midsurface suffices to understand the deformation of the whole sheet. This means
that the stretching (V) and the bending (M) moments defined in the previous
paragraph can be expressed in terms of the midsurface velocities U(s) and W (s)
and their arcwise derivatives. To understand how the midsurface deforms we look
at figure 2.7. The sketch shows the evolution of two endpoints of a line element
1 on the midsurface, evolving from the position z(s) and z(s) +1 at ¢t = 0 to the
position z(s) + U(s)dt and z(s) + 1+ U(s + ds)dt at the new time ¢ + dt, where
U = Us + Wz represents the midsurface velocity vector. The variation of the

midsurface element dl is thus

dl=[U(s+ds) - U(s)]dt (2.29)

which when divided by ds and dt becomes

1dl_U(s+ds)-U(s) _

Tk °s U'=(Us+Wz)', (2.30)

where [l] = ds and a prime indicates a derivative with respect to arclength d/ds.

Noting further that the unit vectors s and z vary as s’ = Kz and z’ = - K's, we can
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expand the derivatives in. (2.30) obtaining

1dl
——=A 2.31
T S +wz (2.31)
where
A=U-KW, w=W'+KU. (2.32)

The parameters A and w are the basic quantities that characterize the midsur-
face deformation. Specifically, A measures the rate of stretching of the midsurface

while w measures its rate of rotation.

With the definitions (2.32) in hand, we seek now for the constitutive relations
describing the stretching (N) and the bending (M) moments of a thin viscous
sheet. We begin by assuming that the deformation of the thin sheet is dominated
by the component o, of the stress tensor, such that o,, and o,, can be neglected
and set to zero. Recalling the definitions given in (2.24), the first hypothesis

05, = 0 implies

0 (u 1 ow

(=)= 2.
0z (h) h? Os (2:33)
Setting w = W(s) on the RHS of (2.33) and considering the first-order Taylor

expansion of A2 around the point z =0,

1
-2 _ ~ 2
h™ = 92k — (K 1+22K +0(2K)?, (2.34)
eq. (2.33) becomes
3(3) = —W'(1+22K) (2.35)
0z \h) ' '

Now we integrate (2.35) subject to w(0) = U and keep only terms that are linear

in z, to obtain

u=U-(W'+KU)z+0(2*) =U - wz. (2.36)

The next step is to exploit the vanishing of ., = 0 to get an expression for the

pressure

ow
=2n——. 2.
=205 (2.37)
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From the continuity equation (2.23a), we find

ow Kw-0u/0s

9z h
As done before, we set w = W (s) on the RHS of the equation and, noticing that
h™t~1+ 2K+ O(zK)?, we obtain

. (2.38)

g_‘: = (KW - 0u/9s)(1 + 2K). (2.39)

Finally, using (2.36) for Ou/ds and dropping the quadratic terms in z we get

g—w=—A(1+2K)+w’z+(’)(22)E—A(1+z[()+w’z, (2.40)
z

which when substituted in (2.37) yields

p=2n[-A(1+z2K)+uw'z]. (2.41)

We can now use (2.41) and (2.36) in the expression for o4, obtaining

2
USS:—p+—n(@—Kw)

h \0s

Ou
m—p+2n($—KW)(1+zK) (2.42)
~An(1+ 2K)A - dnw'z + O(22). (2.43)

Thus, the stretching and the bending moments of the thin viscous sheet are

H/2
N = f 0oz~ AnHA (2.442)
~H/2
H/2 3 H3 .
M = f 2055dz ~ e (w'-KA)= —n—K, (2.44b)
—H/2 3 3

where we introduce in (2.44b) the ‘curling rate’ K, which measures the rate of

change of curvature of the sheet’s midsurface.

2.3.3 Viscous dissipation and bending length

Viscous sheets deform by some combination of bending and stretching. For some
applications such as subduction modeling, it is interesting to understand which
mechanism of deformation dominates. This can be done by calculating sepa-

rately the rates of energy dissipation associated with deformation by bending and
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Table 2.1. Complete set of equations for an evolving thin viscous sheet.

N'-KQ@Q=-Hgsp,

Force balance: Q'+ KN =-Hg,dp

Torque balance: M =Q

Midsurface kinematics: A=U'-KW,w=W'+KU,

K=w-KA
Stretching moment: N =4nHA
Bending moment: M = —(77H3K)/3

Viscous dissipation due to stretching: ¢, = 4nHA?
Viscous dissipation due to bending: ¢, = (77H3K2)/3
Evolution of the midsurface shape: Dx/Dt=Us+ Wz

Evolution of the thickness: DH/Dt=-HA

stretching. Given the thin sheet approximation and the consequent negligible con-
tribution of shear strains to the dissipation, the calculation turns out to be quite
simple. In fact, taking into account the energy balance of an inertialess flow (1.11)
and given the expression for ey, that one obtains from (2.42), the dissipation rate

per unit volume of the sheet is to lowest order

dne2, ~ dn (A - 2K’ (2.45)

Integrating (2.45) across the sheet, we obtain the dissipation rate per unit area of

the midsurface

1 .
0(s) = gnH K> + 4nHA® = 6y + ¢, (2.46)

which is the sum of two contributions associated with deformation by bending
(¢p) and stretching (¢5). Eq. (2.46) is the last expression we need in order to fully
characterize the dynamics of a thin viscous sheet. The complete set of thin-sheet
equations obtained in the present section is summarized in table 2.1. The deriva-
tion of the last two expressions describing the evolution of the sheet’s geometry
can be found in § 6 of Ribe (2001).

To conclude this chapter we show how we can exploit the formula for the

bending moment to determine the crucial length scale characterizing the bending
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response of a subducting lithospheric plate. Indeed, equation (2.44b) shows that
M(s) ~ K(s). Therefore, we might compute K (s) along the sheet’s midsurface
in order to see if the bending moment concentrates in some specific portion of
the sheet. This is done in figure 2.8a, which refers to the subduction model
investigated in Ribe (2010). The figure reports the variation of the normalized
curling rate K as a function of the dimensionless arclength s/h of a subducting
sheet whose thickness is h. Each curve refers to a particular value of the viscosity
ratio () between the subducting sheet and the surrounding fluid. The plot clearly
highlights that there is a zone along the midsurface where the function K is much
higher than in the rest. This is the portion of the sheet where significant bending
occurs, and its characteristic length scale is called the‘bending length’ ¢, (Ribe,
2010). Its precise mathematical definition is illustrated in figure 2.8a for the case
~v =102 it is the distance from the rightmost end of the sheet’s midsurface to
the first zero of K (s) to the left of the point where this function has its global
minimum. In geodynamical terms, ¢, is the sum of the slab length plus the length
of the region seaward of the trench where flexural bulging occurs (figure 2.8b).
The important point here is that the bending length ¢} is the proper length scale
characterizing the bending response of a subducting plate deforming under the
action of gravity. This follows from the fact that unlike in an elastic body, where
M is proportional to the local curvature K, in a viscous sheet M is proportional to
the rate of change of the curvature K. In the elastic case, the bending response is
properly described by a purely geometric length scale such as the minimum radius
of curvature (R, in figure 2.8b). On the contrary, in the viscous case we need a
‘dynamic’ length scale as the bending length which arises only after we actually
solve the equations describing the system. For more details on this last argument,
refer to § 8 of Ribe (2010).
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(a) From Ribe (2010): Normalized curling rate K plotted against

the dimensionles arclength s/h, where h is the sheet’s thickness.

The three curves refer to different setups of the subduction model

presented in the paper which differ only in the value of the vicosity

ratio v between the subducting sheet and the surrounding fluid. The

latter is reported beside each curve. The definition of the bending
length ¢, is indicated for the case vy = 10%.

hsp 1, p1

Mo, Po

Rmin V

(b) Sketch of the leading end of a subducting viscous sheet
characterized by a slab of length ¢, an angle of subduction 6
and a characteristic sinking speed V. In blue is highlighted
the bending length ¢, the sum of the slab length ¢ and of the
length /g, of the region seaward of the trench where flexrual
bulging occurs. The red line shows the minimum radius of
curvature R, of the sheet’s midsurface.

Figure 2.8. Mathematical (a) and geodynamical (b) definitions of the bending length
f, in a subducting viscous sheet.
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Chapter 3
Mechanics of subduction

This chapter contains the results published in: Gerardi G. and Ribe N. M. Bound-
ary Element Modeling of Two-Plate Interaction at Subduction Zones: Scaling
Laws and Application to the Aleutian Subduction Zone. Journal of Geophysical
Research: Solid Farth, 123(6):5227-5248, 2018. The outline of the chapter follows
the one of the paper. The ‘Introduction’ section has been omitted in order to
avoid redundancy.

Here we investigate the mechanics underlying the phenomenon of subduction
using a 2-D numerical model of free subduction in which a Subducting Plate (SP)
and an Overriding Plate (OP) interact across a relatively weak interface. After
introducing the model setup and the numerical technique adopted in the work
(the Boundary Element Method, BEM), we set the stage with an overview of
time-dependent subduction without (SP ONLY case) and with (SP+OP case)
an OP. This section makes clear the critical influence of the subduction interface
strength which, unlike many previous studies (e.g. van Hunen et al., 2000; Babeyko
& Sobolev, 2008; Rodriguez-Gonzalez et al., 2012; Holt et al., 2015a), is treated
here as a variable. Next, we exploit the quasi-static character of Stokes flow to
examine instantaneous solutions of the model equations, for both the SP ONLY
and the SP+OP cases. A key result here is that the surface speed of the SP
always depends logarithmically on the ratio of the surface plate length to the slab
length. We also determine a scaling law for the convergence rate of the sinking slab
as a function of the flexural stiffness of the SP and the dimensionless subduction
interface thickness. We then turn to an analysis of the deformation state of the
OP, using instantaneous BEM solutions interpreted in terms of thin viscous-sheet
theory. These solutions show that the deformation of the OP is dominated by
compression, bending, and (in some cases) extension as one moves from the forearc
to the backarc region. Finally, we apply our results by using BEM solutions with

realistic geometry to infer the long-term strength of the subduction interface in
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A 4 i

Figure 3.1. 2D model geometry of free subuduction of a dense subducting plate (SP)
with viscosity 71 = A1 1o and density p; beneath an overriding plate (OP) with viscosity
N2 = Az 1o and density po in an ambient fluid with viscosity 7y and density pg. The
ambient fluid is infinitely deep and is bounded at zo=0 by a free-slip surface. The
arclength coordinate along the SP’s midsurface is s € [0,Lgp + ¢], while it is sop €
[0, Lop] for the OP arclength coordinate. The symbol ¢, identifies the ‘bending length’
of the SP, equal to the sum of the slab length and the length of the seaward portion of
the SP where flexural bulging occurs (see section 2.3.3 for more details).

the central Aleutian subduction zone.

3.1 Model setup

Figure 3.1 shows the initial configuration (¢ = 0) of the model, and table 3.1
summarizes the notation adopted. The domain is 2D, infinitely deep and bounded
at xo = 0 by a free-slip surface (i.e. impermeable and free of shear traction). Two
thin sheets are immersed in the ambient fluid half-space. Their cross-sectional
areas are 51, So and their interfacial contours are C', Cs, respectively, where the
subscript 1 represents the SP and 2 the OP.

The viscosity of the SP is 71 = A; 19, where 7 is the ambient fluid viscosity.
Its density is p; = po + Ap1, where pg is the ambient fluid density and Ap; > 0 is
the density excess of the SP relative to the ambient fluid. The viscosity of the OP
is A\omo and its density ps can be equal or smaller than py, depending on whether
the OP is neutrally or positively buoyant, respectively.

The SP comprises a flat portion of length Lgp and a bent piece (the slab) of
length ¢ whose leading end subducts with an initial angle #,. The plate has a
constant thickness hgp except for the two rounded ends. The SP’s midsurface lies
halfway between its upper and lower surfaces, and the arclength coordinate along
the midsurface is s € [0, Lgp + £]. At t = 0, the shape of the slab’s midsurface is
analytically specified by its dip 6(s), given by

0(s) = 008* (30 -25) |13 (3.1)
where § = s— Lgp. Eq. (3.1) ensures that the midsurface curvature K(s) = -df/ds
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Table 3.1. Notation

Variable Definition Units
dy Lubrication layer thickness above the plates |m]
ds Lubrication layer thickness between the plates [m]
hsp SP thickness [m]
hop OP thickness [m]
Lgp SP length [m]
Lop OP length [m]

14 Slab length [m]
o Initial dip of the slab’s tip |-]

s Arclength coordinate along SP midsurface [m]
Sop Arclength coordinate along OP midsurface |m]
4 SP contour [m]
Cy OP contour [m]
S1 SP area |m?|
Sy OP area [m?|
Mo Ambient fluid viscosity [Pa s|
Po Ambient fluid density [kg m=3]
p1 SP density [kg m3]
m SP viscosity [Pa s|
A1 = 11 /no; SP viscosity contrast |-]

P2 OP density |kg m=3]
72 OP viscosity [Pa s]
Ao = 19/n0; OP viscosity contrast |-]

I Bending length [m]

is initially zero at both s = Lsp and s = Lgp + /.

The OP comprises at t = 0 a central flat portion with constant thickness hop
and length Lop, bounded on the right by a rounded end and on the left by a
triangular portion separated from the SP by a gap (lubrication layer) of constant
width dy. The exact shape of the triangular piece depends on the choice of ¢ and
ds. Sharp corners that could reduce the accuracy of the numerical method are
avoided by rounding two of the corners of the triangular piece. The arclength

coordinate on the OP’s midsurface is sop € [0, Lop].

Referring again to figure 3.1, we point out that another lubrication layer of
thickness d; is present above the SP and the OP. Its role is to allow an ‘earthlike’
lateral movement of the plates. According to lubrication theory, strong normal
stresses develop in the thin layer and resist the vertical motion of the plates when
they are subjected to a vertical force. In the case of the negatively buoyant SP,
an upward-directed normal stress ~ hgpgAp; is set up in the layer and exactly

compensates the negative buoyancy of the flat portion of the plate, which is then
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free to move laterally in response to slab pull (Ribe, 2010). The situation is oppo-
site for a positively buoyant OP: downward-directed normal stresses ~ hopgAps
prevent the OP from rising towards the free-slip surface, and allow it to deform

freely in response to its buoyancy and the influence of the nearby slab.

3.2 BEM formulation

Because inertia is negligible in the mantle, the flow within the plates and outside
them is governed by the Stokes equation of motion. Stokes flow problems with de-
formable fluid /fluid interfaces can be efficiently solved using the boundary-element
method (BEM). This numerical technique is based on the boundary-integral rep-
resentation of Stokes flow derived in § 2.2. The method is especially well adapted
to tracking fluid-fluid interfaces having continuous curvature, like the ones shown
in figure 3.1. The BEM has several advantages: unwanted wall effects are entirely
absent, the dimensionality of the problem is reduced by one (from 2-D to 1-D in
our case), and it is easy to obtain high (fourth-order) accuracy of the solutions for

the velocity at each time step.

The model problem sketched in figure 3.1 comprises three distinct fluid re-
gions, two of which are singly connected. For this geometry, the (dimensionless)
boundary-integral representation of the flow is the one given in eq. (2.17), where

the dimensionless variables are now defined as follows:

%,9) = hgh(x,y), a0 =10 (j=1,72). 3.2
(%,¥) = hsp(x,¥) Y ( ) (3:2)

When interested in time dependent solutions, we advance in time the material

points x € '] and x € (5 according to:

i—? =u(x) (3.3)
where the dimensionless time is
.~ hgpgA
i sPIsp1, (3.4)
Mo

As described in § 2.2.1, in order to obtain the flow field of our subduction
model, we first need to compute the interfacial velocities of the plates solving the
coupled integral equations (2.22). For the numerical resolution, the contours C

and Cy are discretized using three-node curved elements C,,,(n; = 1,2,..., N7) and
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Chy(n2=1,2,..., Ny), over each of which y, n and u vary as

o3 _ afy X €3
Y(g) - Zmzl ¢m(€)ym7 Il(g) - |8$y % 63|’

u(§) = Lpist O (), (3.5)

where y,, are the (known) nodal coordinates, u,, are the (unknown) nodal ve-
locities and ¢,,(£) are quadratic basis functions defined on a master element ¢ €
[-1,1]. Substitution of (3.5) into (2.22) transforms the integrals over C; and Cj
into sums over the elements C,,, and C,,, each of which is evaluated on £ € [-1,1]
using 6-point Gauss-Legendre quadrature. The resulting system of 4(N;+ N3) cou-
pled linear equations is solved iteratively using the biconjugate gradient algorithm
of Press et al. (1992), yielding the nodal velocities u,, with fourth-order-accuracy.
Finally, the evolution in time of the shape of the plates is obtained by solving (3.3)
with a second-order Runge-Kutta (midpoint) method.

We emphasize that the element size (mesh resolution) is variable along the two
contours, being smaller along the portions that adjoin the thin lubrication layers.
This is done in order to avoid the loss of numerical accuracy that occurs when the
distance between the observation point y and the source point x of the Green’s
functions is smaller then the element size (see Appendix C for more details).

To test the accuracy of the model, we ran simulations for a geometry comprising
two effectively solid (A\; = Ay = 10°) cylinders of radius R with I' = 1, located at
the same depth and separated by a horizontal distance d;. We computed the
horizontal (u;) and vertical (u2) components of the velocity of the cylinders as
well as their spin w, as functions of increasing dy. In the limit dy/R > 1, uy - 0
and w — 0, and uy approaches the prediction of the analytical solution of Wakiya

(1975) for a solid cylinder sinking normal to a free-slip surface.

3.3 Unsteady subduction

We begin our study with an overview of the qualitative features of the temporal
evolution of the system. For reference, we first examine the unsteady subduction
of an isolated SP (from now on the SP ONLY case), adding the OP later to see
how its presence influences the dynamics. We shall refer to the latter case as the
SP+OP case.

Figure 3.2 shows the initial and final states of three simulations starting from
initial configurations given in table 3.2. Figure 3.2a shows the subduction of
an isolated SP to ¢ = 21.5, at which time the slab’s tip is at a depth 6.8hgp
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2p=-2.30hgp

29=-6.80hgp (~ 660km)

£9=-3.60hgp(~ 340km)
(c) £2=-2.30hsp
9=-2.95hgp(~ 275km)

Figure 3.2. Time evolution of free subduction for different configurations: (a) SP
ONLY case, (b) SP+OP case with da2/hsp=0.2, (c) SP+OP case with da/hgp=0.08. In
all cases the thin solid line represents the initial configuration of the system specified in
table 3.2, while the thick solid line corresponds to the final state of the sheets at the
dimensionless time ¢ = thspgAp1/no = 21.5. The vertical coordinate Zo of the deepest
point on the slab and its equivalent in km are indicated. The inset of (c) is a zoomed-in
view of the final state of the system.

(corresponding to a dimensional depth 660 km for hgp = 100 km and d;/hgp = 0.2.)
We then add the OP and run the simulation for the same dimensionless time
t =21.5. The cases shown in figs. 3.2b and 3.2c differ only in the thickness dy of
the lubrication layer between the plates, which is 0.2hgp for the former case and
0.08hgp for the latter.

Comparing the SP ONLY case and both SP+OP cases, we immediately see
that the presence of the OP leads to an overall slowing down of the subduction
process, as indicated by the reduced convergence rate and trench rollback speed.

Moreover, the slowing-down is more pronounced for the smaller lubrication gap
thickness. This is indicated by the depths reached by the slabs at # = 21.5, which

Table 3.2. Initial configurations

SP OoP
6o Lsp/hsp {/hsp A1 do/hsp Lop/hsp hop/hsp Ao T
figure 3.2a 30° 16 5 300 - - - - -
figure 3.2b  30° 16 5} 300 0.2 16 1 300 -0.25
figure 3.2c¢  30° 16 5} 300 0.08 16 1 300 -0.25
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Figure 3.3. Dependence of the convergence rate on the the thickness of the subduction
interface. (a) Subducted length /s of the midsurface of the SP as a function of time
for the three cases of fig. 3.2. The values of dy/hgp indicated are initial values (¢t =
0). (b) Instanstaneous convergence rate of the initial configuration as a function of
the dimensionless gap width ds/hgp. The dimensional convergence rates indicated are

calculated from eq. (3.2) assuming hgp =100 km, 19 = 5.44 x 10%° Pa s, and Ap; = 70 kg
-3

m
are 340 km for dy/hsp=0.2 and 275 km for ds/hsp=0.08. Furthermore, the OP
moves seaward as subduction proceeds, indicating the strong mechanical coupling
of the OP and the SP across the lubrication gap separating them.

A useful parameter for illustrating the evolution of subduction is the length
Uy of the sheet’s midsurface that is below the depth x5 = —hgp —d; of the base
of the plate. The derivative dfs/dt is then the instantaneous convergence rate.
Figure 3.3(a) shows /, —(,/hgp for the three cases of figure 3.2. The convergence
rate is an increasing function of dy at all times. This reflects the influence of the
viscous drag exerted on the SP by the subduction interface, which increases as
dy decreases for a given magnitude of the relative tangential velocity between the
SP and the OP. The subduction interface drag force works against the slab pull,
leading to slower subduction. This effect is emphasized in figure 3.3b, which shows
the instantaneous convergence rate (d/¢,/dt),_, at the initial time as a function of
the dimensionless thickness of the subduction interface. The convergence rate
strongly decreases as the subduction interface becomes thinner.

The dominant role of the parameter ds/hsp becomes even clearer if we examine
the influence of the geometry and physical properties of the OP on the evolution
of ¢5s. To do so, we fix the value of dy/hsp = 0.2 and we explore indivdually the
effect of the OP length Lop/hgsp € [8 — 32], of its thickness hop/hgp € [0.75 - 1.25],
of its viscosity Ag € [150 — 600] and of its density " € [-0.5 - 0]. It arises that all
the different curves ¢4(t) remain identical to the one depicted in fig. 3.3(a), thus
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Figure 3.4. Time evolution of the minimum (dashed line-right axis) and maximum
(solid line-left axis) thickness for the model of fig. 3.2c.

proving that none of the OP properties listed above have any consequence on the
convergence rate. Only the thickness hop shows a certain effect for long times
(t > 10), with a higher value of hop resulting in a lower value of the subducted
length ¢, and viceversa. However, this variation is small (2-3%) compared to the
effect of varying dy/hsp, which is therefore the dominant parameter controlling
l4(t).

To conclude this section, we highlight an interesting feature of the geometry of
the lubrication gap at the end of our SP+OP simulations. While the gap initially
has a constant thickness ds, it evolves during subduction so that it is narrower at
the bottom than at the top (inset of 3.2¢). This aspect is quantified in figure 3.4
where we track the time evolution of the maximum (d5**) and minimum (d3")
thickness of the subduction interface for the model of figure 3.2c. The lubrication
layer quickly widens at the top (increasing d5*) while thinning at the bottom
(decreasing dy). This means that subduction of the SP drags fluid from the
wider to the narrower part of the gap. According to lubrication theory, this is
precisely the condition required to build up a positive excess pressure in the gap

that keeps the two plates apart.

3.4 Thin-sheet analysis: SP kinematics

We begin by recalling the property of instantaneity of slow viscous flow with

negligible inertia. A consequence of this property is that the dynamics of the two
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interacting plates are entirely determined at each instant by the geometry of the
system at that instant and by the fluid properties (i.e. density and viscosity of the
ambient fluid and of the plates). Thus, in order to study the mechanics of SP-OP
interaction it makes sense first to examine quasi-static configurations, without the
added complexity of the purely kinematic time evolution. Following this approach,
in this section and in § 3.5 we shall refer only to instantaneous solutions of the
model (eq. (2.17)) whose geometrical parameters (e.g. 6y, ¢, Lsp, hop etc.) will be
varied in order to represent different subduction zones at some arbitrary instant
in time.

In order to better highlight the effect of the OP, we first review the case of free
subduction of an isolated SP, recalling existing results and obtaining some new

ones.

3.4.1 Instantaneous solutions: SP only

The crucial dimensionless parameter that controls the free subduction of an iso-
lated SP can be determined using a simple scaling analysis of the forces acting
on the portion of the SP that deforms by bending (Ribe, 2010). The analysis is
carried out for a subducting plate whose leading end dips at an angle 6, and sinks
with a vertical velocity Vsiu. Three forces act on the bending portion of the plate:
the negative buoyancy of the slab, the internal viscous resistance to bending, and
the traction applied by the external fluid. Balancing the negative buoyancy and

the external traction yields a typical sinking speed Vgink ~ Vstokes, Where

hsplgApy
Mo '

The characteristic ratio of the internal viscous resistance to the external trac-

Vétokes - (36)

tion is the ‘flexural stiffness’

3
St=%(hg—T) | (3.7)

where ¢, is the ‘bending length’, defined as the distance from the leading end of
the SP’s midsurface to one characteristic zero of the function K (s) that quantifies
the rate of curling of the SP’s midsurface. In geodynamical terms, ¢, is the sum of
the slab length and the length of the region seaward of the trench where flexural
bulging occurs (see § 2.3.3 for details). Ribe (2010) showed that the sinking speed

Vsink obeys a scaling law of the form

= fct(St, 0y), (3.8)
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] 0y = 30°
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Figure 3.5. Dimensionless sinking speed Vsini/Vstokes s a function of the plate stiffness
St for 6y = 30°. Numerical solutions were obtained for Lgp/hgp=16, d;i/hgp € [0.1,0.2],
¢/hsp € [5,10], and A; € [50,10°]. As demonstrated in Ribe (2010), the only effect of
the lubrication layer thickness d is to modify £, hence the flexural stiffness St.

which states that two SPs are dynamically similar if they have the same values of
St and #y. The requirement that 6y be the same for both SPs is the condition for
geometrical similarity of the slab’s midsurface. Numerical solutions (Ribe, 2010)
show that Vs, does not depend on Lgp, which implies that geometrical similarity
of the midsurface of the whole plate is not required.

As an illustration of the scaling law (3.8), fig. 3.5 shows Vaini/Vsiokes vS. St
for 6y = 30°, obtained from BEM solutions for different values of d;/hsp, ¢/hsp,
and 7;/ny. All the points collapse onto a single master curve, validating (3.8).
The master curve has two distinct limits. In the ‘Stokes’ limit St < 1, the slab’s
negative buoyancy is balanced by the external traction. The slope of the curve is
zero, meaning that the sinking speed is controlled entirely by the viscosity 7, of the
ambient fluid. In the ‘flexural’ limit St > 1, by contrast, the negative buoyancy is
balanced by the internal resistance to bending. The slope of the curve is —1, and
the sinking speed is controlled by the viscosity 7; of the SP.

With the definition of St in hand, we now determine a scaling law for the
plate speed Usp, defined as the average horizontal velocity of the midsurface of
the flat portion of the SP. Unlike Vg, Usp depends on the plate length Lgp,
because a longer plate is subject to a greater drag force from the underlying

mantle. Accordingly, the analog of the scaling law (3.8) is

Usp ( Lsp )
= fet | St, 6y, — ). 3.9
VStokes ¢ 0 14 ( )
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Figure 3.6. Dimensionless plate speed Usp/Vsiokes as a function of Lgp/¢ for several
values of St and 0y = 30° (semi-log plot). Values of St € [0.37,14] were obtained using
the following parameters: £/h =7 (ov,e), {/h =5 (0,v,0) and A=10? (e,0), A=103 (v,v),
A=10% (o,0).

Both 6y and Lgp/¢ appear in the list of arguments because both are necessary

to define the geometrical similarity of the sheet’s whole midsurface.

Guided by the proposed scaling law (3.9), we plot in fig. 3.6 the dimensionless
SP speed Usp/Vsiokes as a function of Lgp/f¢ for several values of St and 6y = 30°.
The flexural stiffness St was adjusted by varying both the viscosity ratio A\; and the
slab length ¢, which directly affects ¢;,. Three aspects of the results are noteworthy.
First, the six curves in fig. 3.6 are nonintersecting and appear from top to bottom
in order of increasing St, which validates the assumed form (3.9) of the scaling
law. Second, each curve on this semi-log plot is a nearly perfect straight line,
indicating that the plate speed depends logarithmically on the plate length for a
wide range of values of St. Third, the transition from the Stokes to the flexural
limit is manifest in the decreasing slopes of the curves from top to bottom. For
low values of St, an increase of Lgp increases the drag force on the base of the
plate, and therefore strongly affects Ugp since it is the external viscosity 7y that
governs the plate’s dynamics. On the other hand, for St > 1 Usp becomes much
less sensitive to Lgp since it is the internal viscosity 7; (and no longer the basal

drag) that controls the plate motion.

Both the slope a and the intercept 8 of the lines in fig. 3.6 obviously depend
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Figure 3.7. Values of the slope (left y-axis) and the intercept (right y-axis) extrapolated
from the logarithmic fit of curves Ugp /Vitokes = fct (Lgp/¢) as the ones shown in figure 3.6.
St varies within the range ~ [0.3-14].

on St. Quantifying these relations, we find the more detailed scaling law

Usp
vStokes
where a(St) and 5(St) are shown in fig. 3.7. For St € [0.1,20] and Lgp/¢ € [2,10],

the numerical solutions for Usp/Vsiokes cOllapse onto the universal curve (3.10) to

= B(St) + a(St) log (Lgp/¢) (3.10)

within an error of = 5 %.

To conclude our analysis of the SP ONLY case, we quantify the convergence
speed Voony = dfg/dt. A numerically stable value of this speed is obtained by
running the code for three time steps and defining Vi, as the best-fitting slope
of the curve ¢4(t). The results are shown in fig. 3.8. The numerical solutions show
that Voony, like Vsink, does not depend on the plate length Lgp. However, we find
that Voony depends on the ratio ¢/h. The scaling law therefore has the general

form

VConv ( 14 )
= fet | St, 60y, — | . 3.11
vStokes ¢ o h ( )

The presence of ¢/h in the list of arguments means that dynamical similarity
depends on the geometry of the whole slab, and not just the geometry of its

midsurface.
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Figure 3.8. Dimensionless convergence speed Vioony/Vstokes as a function of the flexural
stiffness St for £/h = 5,6,7,9. The corresponding curve Vsink/Vstokes VS. St is shown for
comparison. The slab dip is fixed at 6y = 60°.

3.4.2 Instantaneous solutions: SP+OP

The next task is to determine how the presence of the OP influences the reference
scaling laws (3.9) and (3.11) for the SP alone. In order to reduce the number
of parameters involved, we shall vary only the OP geometry and the width of
the lubrication layer between the two plates, leaving fixed the OP viscosity ratio
Ay = 10* (quasi-rigid OP) and its buoyancy ratio I' = 0 (neutrally buoyant OP).
This choice is partly motivated by previous results showing that the viscosity and
buoyancy of the OP play a crucial role in determining its stress state but only
weakly influence the SP kinematics (Holt et al., 2015a).

We begin by examining the influence of different geometrical parameters on
the dimensionless plate speed Usp/Vsiokes, following the approach used to build
figure 3.6. However, we now fix both the dip of the slab (=30°) and its viscosity
ratio (=103), which give a nearly constant value of St for all configurations having
the same slab length. While St depends somewhat on the OP thickness and the
thickness of the lubrication layer between the two plates, the dependence on £/hgp
and A; is much stronger, and so it is plausible to consider St constant unless
otherwise specified.

Fig. 3.9 shows the dimensionless plate speed Usp/Vsiokes as a function of Lgp/l
for the SP+OP case. The two solid lines are for the SP ONLY and SP+OP
reference cases whose parameters are given in table 3.3. The four dashed lines
are for variations of the SP+OP reference case with respect to the parameter

indicated.
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Figure 3.9. Dimensionless plate speed Usp/Vsiokes as a function of Lgp/¢ (semi-log
plot) for the SP+OP case. Solid lines: SP ONLY and SP+OP reference cases whose
configuration is given in table 3.3. Dashed lines: variations of the SP4+OP reference
case with respect to the parameter indicated. Lgp/Lop ~ 2 along the line (¥,3), while
Lsp/Lop =~ 4 along the line (m,0).

Table 3.3. Configuration of the reference cases

SP OP
0o ¢/hsp A1 da/hsp Lop/hsp hop/hsp

SP ONLY 30° 7 103 - - -
SP+-OP REF 30° 7 103 0.1 16 1
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The first noteworthy aspect of fig. 3.9 is that all the curves are straight lines.
The dimensionless plate speed therefore depends logarithmically on Lgp/l, just as
it did for the SP ONLY case. We find that this dependence is general, indepen-
dently of the geometry of the system.

Next, we focus on the two solid lines of figure 3.9 labeled as SP+OP REF and
SP ONLY, whose parameters are given in table 3.3. We see that the presence of
the OP decreases Usp, but more strongly for a shorter SP. This means that the
dimensionless SP speed depends on the ratio Lgp/Lop of the lengths of the two
plates. This is confirmed by comparing the SP+OP REF curve with the curve for
a shorter overriding plate (Lop/hsp = 10). We choose the point with Lgp/l = 5.45
on the SP+OP REF curve (black star), and draw a horizontal line that meets
the curve for Lop/hsp = 10 at the point with Lgp/¢ = 3.15 denoted by the white
star. We find that the two starred points have similar values of the ratio Lgp/Lop
€ [2.2,2.4].

Turning to the dependence of Usp on the other geometrical parameters, we
see first that it is essentially independent of hgp. Next, the normalized SP speed
Usp[Vstokes increases when the slab length decreases from 7hgp to Shgp. This is
surprising at first sight, since for a SP alone a shorter (hence stiffer) slab is associ-
ated with a lower value of Usp/Vsiokes (fig. 3.6). The cause of this counterintuitive
behavior lies in the presence of the OP, whose trenchward velocity decreases when
¢/hgsp decreases (figure 3.10a). Since the SP and the OP are strongly coupled by
the lubrication force in the gap between them, the SP necessarily moves faster (to
the right in fig. 3.1) when the OP moves more slowly (to the left).

Finally, we see in fig. 3.9 that an increase in the lubrication gap thickness ds
from 0.1hgp to 0.2hgp increases Usp by a large factor ~ 1.6. This occurs because
increasing dy decreases the lubrication force at the subduction interface that is
responsible for the coupling between the two plates.

In view of the discussion above, we can finally write the scaling law for the SP

speed in the presence of an OP in the general form

L L
Usp [ Vstokes = fct (St,em sp ¢ Lgp dy )

¢ " hgp’ Lop’ hsp (3.12)
Obviously a scaling law with six arguments is too complicated to explore fully,
and so we content ourselves with the results presented above.
Before turning to an examination of the convergence rate Vi, we mention two
interesting features that have emerged from our analysis of the SP speed. The first
concerns the driving mechanism for the motion of the OP. Two forces act on the

OP: the tractions applied by the subduction-induced flow beneath its base, and the
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Figure 3.10. (a) Dimensionless OP speed vs. dimensionless subduction interface
thickness da/hgp, for £/hgp = 5,6,7. The ratio Lgp/¢ = 3.2 is constant. The parameters
not specified explicitly are given in table 3.3. (b) Dimensionless plate speed Usp/Vstokes
as a function of dofr/hsp for the reference case, where dop is the horizontal (as opposed
to normal) separation between the SP and the OP. The slab length is ¢/hgp = 5 and
Lgp/l = 3. The other parameters are those given in table 3.3. The dashed line indicates
the value of Usp/Vstokes for the corresponding SP ONLY case.

lubrication force in the subduction interface. The subduction-induced tractions
are obviously the driving force, as confirmed by the fact that the OP speed is an
increasing function of the parameter ¢/hgp that represents the importance of slab
pull (fig. 3.10a). Because the sum of the forces is zero, the lubrication force must
necessarily be a resisting force. This is confirmed by the fact that Upp decreases
as the subduction interface becomes narrower (fig. 3.10a). Figure 3.11 shows the
subduction-induced flow for ¢/hgp = 7 along with the velocity at the lower surface
of the OP. The vertical gradient of the horizontal velocity near the SP corresponds
to a shear stress that drives the OP leftward.

The second feature concerns the dependence of Usp on the interplate gap width
for values dy > 0.2hgp. Fig. 3.10b shows the dimensionless SP speed Usp/Vsiokes a$
a function of doy /hsp for the reference case, where dyy is the horizontal separation
between the SP and the OP. The dashed line shows the value of Usp/Vsiokes for
the corresponding SP ONLY case. Surprisingly, we find that the presence of the
OP slows down the SP only for small separations dop/hsp < 0.65. For larger
separations, the presence of the OP makes the SP move faster by up to 75%. In
the limit dop/hgp — oo the SP ONLY case is recovered.

We now turn to the influence of the OP on the dimensionless convergence
speed Viony/Vstokes: Numerical solutions show that Vi, is controlled only by the
geometries of the slab’s midsurface and the lubrication gap, and is independent of

Lsp, Lop, and hop. In the presence of the OP, therefore, the generalized form of
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Figure 3.11. Mantle flow generated by the sinking slab at ¢ = 0 for the parameters
of table 3.The oval indicates the velocity gradient corresponding to a shear stress that
drives the OP leftward.

the scaling law (3.11) is

¢ d
VConV/VStokes = fet (Sta HOa . 2 ) .

L2 3.13
hsp ™ hgp (3.13)

Since the gap thickness dy controls the lubrication forces arising at the sub-
duction interface, we expect that parameter to be a critical determinant of the
convergence speed. Fig. 3.12 shows Viony/Vstokes @s a function of the dimensionless
horizontal SP/OP separation dyy/hsp for four values of the flexural stiffness and
0o = 60°. Viony/Vstokes increases strongly with the gap width dog/hgp € [0.05,0.35],
and then reaches a plateau for dyy /hsp ~ 1 where the SP ONLY case (open squares)
is recovered. Unlike the SP speed (fig. 3.10b), the convergence speed Vi, never
exceeds its SP ONLY value.

As a final remark, we note that fig. 3.12 confirms the crucial role played by the
plate’s stiffness St in controlling the kinematics of the SP, as we already saw in
fig. 3.6 for the SP speed Usp. Both Vi, and Usp decrease strongly as St increases,
reflecting the overall slowing down of subduction associated with greater plate
stiffness (fig. 3.5).
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Figure 3.12. Dimensionless convergence speed Viony/Vstokes V8. dimensionless hori-
zontal SP/OP separation dop/hgp, for several values of the flexural stiffness St and 6y =
60°. The dimensionless slab length ¢/hgp = 9 (dashed lines) or 6 (solid lines). The open
squares indicate the values of Viony/Vstokes for the SP ONLY case (dapr/hgp — o0).

3.5 Thin-sheet analysis: OP deformation

In this section we focus on the subduction-induced deformation of the OP. As in
the previous section, we consider only instantaneous solutions of the Stokes equa-
tions for the geometry shown in fig. 3.1. To simplify the notation, the arclength
coordinate sop will be denoted by s.

To understand the deformation of a thin viscous sheet, it suffices to characterize
the deformation of its midsurface. To do this, we solve equation (2.17) for points
x located on the OP midsurface to obtain the midsurface velocity U(s)s+ W (s)z,
where s and z are unit vectors parallel to and perpendicular to the midsurface,
respectively. The deformation of the midsurface is then characterized by the rate
of stretching A and the rate of change of curvature (‘curling rate’) K, which for a

flat sheet are

A=U, K=W", (3.14)

where primes denote d/ds. The quantities A and K measure the rates of deforma-
tion of the midsurface by stretching (or shortening) and by bending, respectively.
Useful measures of the intensities of the stretching and bending deformations

of a thin sheet are the rates of viscous dissipation of energy associated with each.
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Per unit area of the OP midsurface, these are

1 .
9253 = 4772hOPA2, (]5[, = §n2h?())PK27 (315)

where the subscripts s and b refer to stretching/shortening and bending, respec-
tively. The relative magnitudes of ¢,(s) and ¢4(s) indicate which mode of de-
formation is dominant as a function of arclength. We note for future reference
that

. 1 .
op=—-MK, M = —§n2h30PK, (3.16)

where M is the bending moment.

In the rest of this section, all quantities referred to are dimensionless, having
been nondimensionalized using hsp as the length scale and gApihp/ny as the
velocity scale. Consequently, the rates of viscous dissipation of energy will scale

as.

2 Mo
b=—T 4 3.17
e (9Ap1)° (317)

Our first task is to explore how the properties of the SP influence the deforma-
tion of the OP. Our numerical simulations show that the OP deformation depends
neither on Lgp nor on Lop, and so we set these arbitrarily to Lsp = Lop = 16hgp.
We then fix the viscosity ratios of both plates (A\; = A2 = 350), the OP thickness
(hop = hgp) and the interplate gap width (d2/hsp = 0.1), which allows us to focus
on the SP dip 0y and slab length ¢/hgp.

Fig. 3.13, at the top, shows K(s) and A(s) as function of 6, for ¢/hgp = 7
and I' = 0. The steeper the subduction, the higher the magnitude of the bending
moment in the OP. However, the length of the portion of the OP where the bending
moment is significant (= bending length) is independent of #y. The stretching rate
A does not vary monotonically with the slab dip: its magnitude increases from
0y = 30° to 60°, and then decreases from 60° to 90°. For 6y = 30° there is weak
backarc extension for s > 2.7.

The bottom part of fig. 3.13 shows K (s) and A(s) as functions of ¢/hgp for 6,
= 30° and I" = 0. The magnitude of the bending moment does not vary significantly
with the slab length, but the bending portion of the OP becomes longer as the slab
length increases. The magnitude of the compression A < 0 is greater for longer
slabs, while shorter slabs cause weak extension in the OP. The shorter the slab,
the longer the portion of the OP deforming in extension (s > 1.5 for ¢/hgp = 5,
s>2.7 for {[hgp = 7.)
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Figure 3.13. Curling rate K and stretching rate A along the midsurface of the OP
for three different values of 6y, £/hgp = 7, and I" = 0 (top figure) and for three different
values of ¢/hgp, 6y = 30°, and I' = 0 (bottom figure). The other parameters are given in
the text.
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Figure 3.14. Top figure: Curling rate K and stretching rate A along the midsurface of
a neutrally buoyant (I' = 0) or positively buoyant (I' = —0.25) OP. For both cases ¢/hgp
= b and g = 30°. The other parameters are given in the text. Bottom figure: Curling
rate K and stretching rate A for different values of da/hsp, with £/hgp = 5, 6y = 30° and
I' = 0. Arclengths -1 < s < 0 correspond to a leftward extension of the midsurface into
the triangular endpiece of the OP (fig. 3.1).

At the top of fig. 3.14 are shown K(s) and A(s) for two values of T, 6y =
30°, and ¢/hsp = 5. In the previous figures, we saw that a short and shallowly
dipping slab leads to relatively small bending and stretching deformations of the
OP. However, the same two conditions are precisely those that lead to back-arc
extension (around 300 km from the trench assuming hgp = 100 km). Fig. 3.14 (top)
shows that the transition between compression and extension is further encouraged
by OP buoyancy. For example, when I' = —0.25 (Apy = =18 kg/m? assuming Ap; =
70 kg/m3), the stretching rate curve shifts upward and the length of the extension
zone increases. The curling rate K, however, is unaffected.

Fig. 3.15 shows the rates of energy dissipation ¢, and ¢, for the configurations
of the top part of fig. 3.14. The deformation changes from compression-dominated
close to the trench to bending-dominated further away, a general pattern that we
find for many choices of the dimensionless parameters of the model. Only for steep
angles of subduction and (mainly) long slabs is the deformation of the OP almost
exclusively compression-dominated. For the particular case of a positively buoyant
OP (T" < 0), fig. 3.15 shows that there is an additional extension-dominated domain
in the backarc region beyond the bending zone.

To conclude this section, we examine the influence of the thickness of the OP
and of the interplate gap on the OP deformation. As one would expect, varying the
OP thickness within the range hop € [0.75,1.25] changes K and A substantially,
simply because the resistance of the OP to deformation is proportional to hop (for

stretching) and h¥, (for bending).
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Figure 3.15. Rates of energy dissipation due to bending (¢, solid line) and stretch-
ing/shortening (¢s, dashed line) of a positively buoyant OP with I' = —0.25. For com-

parison, the dotted line shows the stretching/shortening curve for a neutrally buoyant
OP (T = 0).
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As for the effect of the subduction channel width ds, it is significant only very
close to the trench. To show this, we extend leftward the OP midsurface (fig-
ure 3.1) into the triangular endpiece, which allows us to calculate K and A for -1
< s < 0. The bottom part of fig. 3.14 shows & and A for three different values of
dy/hsp for a case with ¢/hgp = 5, 6y = 30° and I = 0. The differences among the
three curves are confined essentially to =1 < s < 1. In the near-trench (forearc)
region —1 < s < 0, both K and A increase in magnitude as dy/hsp diminishes,
reflecting the increase of the lubrication pressure in the subduction interface. The
influence of the lubrication force on the deformation of the OP essentially disap-

pears beyond s = 1.

3.6 Geophysical application: evaluation of the in-

terface viscosity of the central Aleutian slab

In this section we apply our BEM model to a real subdction zone in order to
constrain the effective value of the strength of the subduction interface. We start

by defining the dimensionless interface strength of a subduction zone as

h
- %di; (3.18)

where ngr is the viscosity of the fluid in the subduction interface channel. Equa-
tion (3.18) arises from the definition of the shear force acting on the SP across
the subduction interface, and implies that the interface strength can be increased
either by increasing its viscosity or decreasing its thickness dy. In our model, ng;
= 1)9 is constant, but this does not matter because only the ratio ns;/ds is dynam-
ically significant. Thus we can vary the strength of the subduction interface by
varying dy alone.

The next step is to choose a subduction zone that can be reasonably approxi-
mated by our model. Perusing the database of Lallemand et al. (2005), we decided
to focus on the central Aleutian subduction zone. There are two main reasons for
this choice. First, this portion of the Aleutian slab is far from the edges of the
subduction zone, making it reasonable to use a 2-D model with no toroidal flow.
This approximation is validated by the similarity of the geometries and subduction
rates among the three neighboring central Aleutian transects listed in table 3.4.
Second, the central Aleutian slab extends to depths of only 500-550 km, and so
has not yet interacted with a potential viscosity jump at the 660 km discontinuity.
Our model with a constant mantle viscosity is therefore reasonable for subduction

in the Aleutian region. The particular value of the viscosity that we choose is
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Table 3.4. Geometry and convergence rates of the 3 transects of the central Aleutian
slab derived from Lallemand et al. (2005). We assume hgp ~ 100 km. The last line
(‘BEM-segment’) describes the configuration adopted for the simulation and it reports
the corresponding value of Vioony adopted for the comparison.

Observed parameters

Veony [mm yr!] 6o ¢ [km] Depth [km]
CALE4 61.00 58.00° 704 550
CALE5 61.00 59.00° 708 550
CALEG6 59.00 62.00° 640 500

Simulation parameters

Veony [mm yr=t| 6y ¢/hsp Lsp/hsp Lop/hsp hop/hsp T

‘BEM-segment’ 60.33 59.67° 6.84 100.00 70.00 1.25 -0.25

discussed below.

Having selected the subduction zone, we specify the corresponding configura-
tion of our BEM model by averaging the properties given for the three transects
CALE4, CALE5 and CALEG6 tabulated by Lallemand et al. (2005). Table 3.4
gives the relevant parameters for these transects, together with a list (‘BEM-
segment’) of the parameters adopted for the simulation. The lengths Lgp and Lop
of the two plates have been computed as the square roots of the approximate areas
of the subducting Pacific plate (» 10® km?) and the overriding North American
plate (» 8x107 km?). However, the choice of the two lengths is somewhat arbitrary
since the target parameter of our analysis, Vo, depends neither on Lgp nor on
Lop (§ 3.4.2).

Having defined the geometry of the subduction zone, we then run the model
for a reasonable range (Ribe, 2010) of the viscosity ratios of the two plates, A; =
Ao € [150-450|, and for a range of values of the dimensionless interface strength -
€ [0.5-20]. This yields curves of the dimensionless convergence rate as a function
of v. Next, we dimensionalize the calculated convergence rates by multiplying by
the velocity scale Vgiores given by equaion (3.6). To calculate Vsiokes, We assume
hsp = 100 km and Ap; = 70 kg m=3, and take 79 to be the depth-averaged viscosity
in the range 0-1000 km inferred by Mitrovica & Forte (2004). Taking into account
the error bars on the viscosities estimated by Mitrovica & Forte (2004), we find

that the minimum, best-estimate, and maximum values of 7, are
Mooy ~ 3.92x10°Pa's,  mo(pest) ~ 5.44x10*Pa's, o) ~ 6.95x10*Pa s. (3.19)

Thus, we can now obtain the corresponding value of Vioony/Vstokes for the ‘BEM-

segment’ as a function of the mantle viscosities given in 3.19) and find the range
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Figure 3.16. Dimensionless convergence speed plotted against dimensionless interface
strength for different values of the viscosity ratio of the plates: A1 = 150,250,350, 450.
The horizontal dashed lines represent the values of Vioony/Vstokes that correspond to the
true convergence rate of the ‘BEM-segment’, nondimensionalized using the range of
mantle viscosities given by Mitrovica & Forte (2004). See text for more details.

of 7 on the curves Vioony/Vsiokes = fct () that predicts the observed convergence
rate. Figure 3.16 shows the final result, where we find 7 € [1.97-6.25|. To estimate
the corresponding viscosity of the subduction interface, we assume ds/hgp ~ 0.07,
which is equivalent to assuming that the subduction interface is the oceanic crust.
We then find from equation (3.18) that ns; = 0.96-1.72x102%° Pa s.
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Figure 3.17. Principal forces and velocities associated with subduction. The dashed
lines indicate the characteristic velocities of the two plates, and the thick lines indicate
the forces acting on them. Fpop), is the drag force driving the OP motion while the
different forces Fp(;..)- represent the drag resisting the displacement of the portion of
the plate to which they refer. F, and F; are the lubrication forces acting on the two
plates, equal in magnitude and opposite in direction. Fj, is the internal force of the SP
opposing its bending and Fj, is the slab’s negative buoyancy driving the entire system.
The portion of the SP shown, of length ¢, is the portion where the bending moment is
significant.

3.7 Discussion

The main goal of this study has been to get a clearer picture of the mechanics of
subduction, and particularly to explore the role played by the subduction interface.
Figure 3.17 is a schematic diagram of the overall dynamical picture that arises from

our work.

Consider first the SP and its characteristic velocities Vo, and Ugp. Figure 3.17
helps understand the critical role of the subduction interface thickness ratio do/hsp
that appears in the scaling laws (3.13) for Viony and (3.12) for Usp. Once the slab’s
geometrical parameters (6 and ¢/hgp) are fixed and a certain value of the flexural
stiffness (St = Fine/ Fi(siab)-) is obtained, the remaining forces affecting the SP are
the drag force Fp(spy- on its trailing (non-bending) portion and the lubrication
forces F; and F, on the interface. However, we saw in § 3.4.2 that the length
of the trailing part of the SP, and therefore also the drag force Fgp)-, has no
influence on Vio,y. Accordingly, it is mainly the shear force F; that opposes the
convergence. Since Fy o< ng1/da, Vioony is smaller for a thinner (stronger) lubrication
gap and larger for a thicker (weaker) one. Turning now to Usp we recall that this
velocity, unlike Vi, does depend on the trailing plate length and hence also on
Fp(spy-. More precisely, Ugsp is influenced by the sum of F'p(gp)- and the horizontal
resultant of the lubrication forces F; and F;. Thus, again, lower values of dy will

generally decrease Usp, while higher ones will increase it.
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Table 3.5. Horizontal speed ratio of the configurations shown in § 3.4.2 fig. 3.9

Points Lgsp/Lop Usp/Uop

*, 9% 2 0.49
mO 4 0.38

In the derivation of the scaling law (3.12) for Ugp, two other interesting features
have emerged. The first is that Usp, unlike Vi, depends also on the horizontal
speed of the OP as explained in § 3.4.2. Tt follows that two different geometrical
configurations will have the same value of Ugp only if the value of Ugp does not
change, i.e., if Usp/Uop is constant. This explains why the ratio Lsp/Lop appears
in the scaling law (3.12). Among the forces acting on the OP, the only one that
depends on Lop is the resisting drag Fpop)-, since the driving shear force Fpop)+
is determined by the mantle return flow within the wedge and is always confined
to the forearc region of the OP. Thus when we vary Lsp or Lop with all other
geometrical parameters held constant, only the two drag forces that oppose the
motion of the two horizontal plates change. Accordingly, configurations with the
same ratio Lgp/Lop will also have the same ratio Fpsp)-/Fpop)- and, conse-
quently, a constant speed ratio Usp/Ugp. This is confirmed by table 3.5 for the
configurations with different values of Lgp/Lop that were shown in § 3.4.2, fig. 3.9.

The second noteworthy aspect of the scaling law (3.12) is the near-perfect
logarithmic dependence of Usp on the ratio Lgp/¢. Although Usp is still correlated
with the negative buoyancy (F;, o £) that drives the plate and with the resisting
drag force measured by the plate length Lgp, the dependence between these two
quantities turns out to be surprisingly weak, namely logarithmic. This feature
seems to agree with observations in nature, where the speeds of plates attached
to subducting slabs are poorly correlated with their lengths (Conrad & Hager,
1999a).

Turning now to the OP, our first result concerns the forces that drive its motion.
Some studies (e.g. Chen et al., 2015) conclude that the interplate lubrication force,
depending on the configuration of the system, may drive, rather than resist, the
motion of the OP. However, we find that the opposite is always the case. As
shown in fig. 3.2¢ (inset), the subduction interface evolves so that it is narrower
at the bottom than at the top. The downgoing plate therefore drags fluid from
the wider to the narrower part of the gap. According to lubrication theory, this is
just the condition for the existence of a positive pressure within the gap, which is
what keeps the two plates apart. Accordingly, the normal force in the gap resists,

rather than drives, the leftward motion of the OP, regardless of the geometry of
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Str0+ng Bending

Figure 3.18. Deformation of the OP midsurface. The dashed line represents the initial
shape of the midsurface, while the solid line indicates its new position after one time
step. The vertical displacement of the midsurface has been exaggerated by a factor ~
10%. The model is the case £/hgp = 5, 0y = 30° shown in fig. 3.13 (at the bottom).

the plates or the initial gap thickness. The role of the gap thickness is underlined
by fig. 3.10a, which shows that Upp decreases as the lubrication force increases
with decreasing dy. Now, since Fpop)- represents an additional resisting force
associated with the mantle flow below most of the OP, we conclude that the sole
driving force is the shear force Iy (op).. This force is related to the vertical gradient
of horizontal velocity beneath the forearc region of the OP (visible in fig. 3.11).
This means that the only way to increase Upp is to increase the slab length /7,

which leads to a more vigorous return flow below the OP and a larger Fpop)s-

A second result concerns the mechanism of deformation of the OP. According
to thin viscous-sheet theory, the deformation of a thin sheet occurs by a combi-
nation of stretching/shortening and bending. The relative importance of these
two deformation modes is measured by the rates of viscous dissipation of energy
(¢s and ¢y, respectively) associated with them. Calculating these as a function
of arclength along the midsurface of the OP, we found the general pattern shown
in fig. 3.15. Within a distance 1-1.5hgp from the trench (s = 0-0.5hgp) the defor-
mation is always dominated by compression. This is due to the opposing actions
of the (rightward) horizontal resultant of the interplate lubrication force and the
(leftward) driving shear force below the forearc region. Further from the trench,
bending usually becomes dominant (fig. 3.18). The exception is for larger values
of the slab length ¢ and the initial dip 6y, for which compression may dominate
over bending everywhere. This is seen in table 3.6, where the case //hgp=7 and

fo— 60° has no region dominated by bending.

Still further from the trench, in the back-arc region of the OP, both compression
and bending are negligible if the OP is neutrally buoyant (I" = 0). However, when
the OP is positively buoyant (I" < 0), significant stretching of the back-arc region
occurs (fig. 3.14, at the top). In particular, a simple lubrication-theory model for
an isolated OP (Appendix A) shows that the dimensionless stretching rate A of

the back-arc region is

A

A:
4Ny’

(3.20)
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Table 3.6. Length of the OP midsurface that identifies the width of the OP zone where
the deformation is bending-dominated. We report 4 different ¢/hgp, 6y pairs. The other
parameters of the model are the ones corresponding to the cases shown in fig. 3.13.

¢[hsp 6 Width
5 30° se[0.5-2.5]
5 60° se[0.8-2.5]
7 30° se[l.5-3.0]
7 60° none

which is positive (extensional) if T' < 0. This result is only indicative because
the model of an isolated OP treated in Appendix A ignores the substantial shear
traction generated below the forearc region of the OP by the slab-induced mantle
flow. Nevertheless, eq. (3.20) is consistent with the fact that back-arc extension
only occurs in numerical solutions when I' < 0. A similar result has been reported
by Holt et al. (2015a) for a model in which the upper surface of the OP is itself
a free-slip surface. We show in Appendix B that the horizontal extensional stress
found numerically by Holt et al. (2015a) agrees almost exactly with the prediction

of a simple plug-flow model for a spreading viscous gravity current.

The last result regarding the OP deformation concerns the influence of the
subduction interface. Our model confirms the short-range nature of the lubrication
forces that develop within the subduction interface, as also reported by Duarte
et al. (2013) and Chen et al. (2015). In particular, fig. 3.14 (at the bottom)
shows that varying the thickness of the lubrication layer (i.e. the magnitude of
the lubrication forces)influences both the shortening and the bending of the OP,

but only in the forearc region.

In conclusion, we compare the range of values of the dimensionless interface
strength v constrained by our work with values assumed in or constrained by other
published subduction models. As shown in table 3.7, these values vary by a factor
90/0.13 ~ 700, with our inferences (2.0-6.3) being squarely in the middle of the

range. Two important aspects of the numbers in table 3.7 require some comments.

First, we note that three studies (denoted by asterisks) infer values of « from
natural data. Of these, the study of Duarte et al. (2015) stands out on account of
its very large estimate 7 » 90. However, in this study there is a large uncertainty
concerning the characterization of the interface between the two plates. The lab-
oratory experiment starts with the two plates separated by a horizontal distance
dory ~ 1 cm that is comparable to the thickness hgp ~ 1.6 cm of the SP. As sub-
duction proceeds, the two plates move closer together, until they are separated by

a thin (~ 1 mm) interface when the SP approaches the bottom of the tank. The
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Table 3.7. Dimensionless interface strength of different subduction models. The asterisk
indicates studies where v has been inferred by comparison with observed geophysical
data. N=Numerical, E=Experimental. The work of Klein et al. (2016) is based on the
inversion from GPS data.

Study Type y A1 Rheology
This study* N 1.97-6.25 150-450 Linear
Meyer & Schellart (2013)  E  0.13-0.43 200 Linear
Duarte et al. (2015)* E <90 160 Linear
(visco-plastic interface)
Chen et al. (2015) E  5.3-10.00 200 Linear
(visco-plastic interface)
Holt et al. (2015a) N 0.73-1.80 100-2000 Visco-plastic
Klein et al. (2016)* N 0.17-1.3  Elastic lithosphere Visco-elastic
asthenosphere

ratio dyo/hgp thus varies within a range [0.06,0.63] in the course of the experiment.
The value v ~ 90 in table 3.7 is calculated for the smallest value of dy/hgp = 0.06.

Second, when plate velocities observed in nature are used to infer v the assumed
value of the viscosity ratio A; between the SP and the mantle is critical (Duarte
et al., 2015). This is clear in fig. 3.16, where the point of intersection between
the horizontal lines (= real velocity of the transect) and the curves for different
A1 varies significantly. This can be explained using the scaling law (3.13) for the
convergence speed of the SP. Once the slab’s geometry is fixed, Viony depends on
the flexural stiffness St and the ratio da/hgp (or v if we also take into account the
viscosity ratio nsi/no). Now since the geometry is fixed, eq. (3.7) shows that St
depends only on A;, because the bending length ¢, itself does (Ribe, 2010). We

can therefore write

Voony = fet (A1,7) (3.21)

for a model configuration where the geometry is known. Thus, if we fix Vo to a
value obtained from natural data, the value of A\; will be crucial in determining the
corresponding value of . In physical terms, lower values of \; speed up the SP
so that a stronger interface (higher 7) is needed for a given Vi, and vice versa.
Accordingly, a better constraint on the interface strength of real subduction zones
requires a more precise knowledge of the viscosity ratio between the SP and the

underlying mantle.
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3.8 Conclusions

In this work we studied the dynamics of subduction by means of a numerical model
based on the boundary-element method (BEM). Systematically interpreting the
results in the light of thin-viscous sheet theory, we explored the kinematics of the
SP and the deformation of the OP, particularly focusing on the influence of the
subduction interface on those aspects.

Regarding the kinematics of the SP, we first found a scaling law that describes
the convergence speed of the descending slab. Neither the length of the SP nor
that of the OP influences the convergence rate, which is instead controlled by
the slab’s shape, the flexural stiffness St of the plate, and the strength of the
subduction interface. The convergence rate increases as either the stiffness of the
plate or the strength of the subduction interface decreases. Next, we considered
the horizontal speed Usp of the flat portion of the plate. For the case of an isolated
SP, Usp obeys the scaling law Usp/Vsiokes = a(St) + B(St) log(Lsp/l), where o and
B are logarithmic functions of St. Adding the OP to the system, the scaling law
becomes rather complex, with both the strength of the interface and the length
of the OP now being dynamically relevant. However, numerical solutions still
show a perfect logarithmic dependence of Usp/Vsiores O Lsp/f. This very weak
correlation between plate speed and plate length for plates attached to subducting
slabs seems to be in agreement, with natural observations.

Turning to the OP, we found a three-zone pattern of deformation that is similar
for the majority of cases we explored. Close to the trench, the OP is always under
strong compression due to the opposing actions of the horizontal resultant of the
lubrication force within the subduction interface and the shear force below the
forearc region of the OP. The latter force derives from the mantle return flow
and is the sole force driving OP motion. Further from the trench is a second
zone of deformation dominated by bending, except for long subducting slabs and
steep subduction angles for which compression continues to dominate. Finally,
significant extension appears in the back-arc region when the OP is positively
buoyant, a result that we explained using simple analytical thin-layer models.

We concluded by using the BEM model to constrain the interface viscosity
nst of a natural subduction zone, the central portion of the Aleutian subduction
zone. For a realistic range of values of the viscosity ratio between the SP and the
underlying mantle, we found ng; = 0.96—1.72 x102?° Pa s for a corresponding range

of mantle viscosities 79 = 3.92 - 6.95 x 10?° Pa s.
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Chapter 4

Energetics of subduction and

large-scale mantle convection

In this chapter I present the results of the work: Gerardi G., Ribe N. M., & Tackley
P. J. Plate bending, energetics of subduction and modeling of mantle convection:
a boundary element approach. The manuscript is currently under review for Farth
and Planetary Science Letters. Together with the ‘Introduction’ section, here I
omit also the ‘Model setup and BEM formulation’ section included in the original

version of the manuscript.

In this chapter we look at the energetics of subduction using the BEM model
presented in § 3.2. We begin by performing a scaling analysis of instantaneous
solutions of the Stokes equations for plates with a specified geometry. Here, we
find that the fraction R of the total energy dissipation that occurs in the upper
convective boundary layer is controlled by three key parameters: the flexural
stiffness of the SP, the strength of the subduction interface and the shape (dip) of
the descending slab. Next, we examine the time evolution of R(t) during unsteady
subduction of plates with medium /high viscosity. Time dependent solutions show
that R remains always below 0.5, the value corresponding to equipartition of the
dissipation between the boundary layer and the ambient mantle. In conclusion, we
explore the consequences of this result for the Nusselt number/Rayleigh number
relationship Nu ~ Ral, for a convecting system with plates of moderate to high
strength. A crucial result here is that the exponent § can change dramatically
depending on the length scale used to describe the dissipation due to bending of
the SP.
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4.1 Rates of viscous dissipation of energy

The main goal of this work is to quantify the amount of energy dissipated in a
subduction zone and to understand how that dissipation is partitioned among the
different elements of the system. Accordingly, we write the total dissipation rate

Dot as a sum of four contributions, viz.,
Drotat = Dsp + Dop + Dst + Dy (4.1)

where the terms on the right-hand side represent the rates of viscous dissipation
due to the deformation of the subducting plate (Dsp), the overriding plate (Dop),

the subduction interface (Dgr) and the ambient mantle (Dy).

Consider first the total dissipation rate Dry.. The balance of mechanical

energy for a Stokes flow in a volume V' bounded by a surface S is

n Vejej Sua]nj + Vujf] (4.2)

Eq. (4.2) states that the total rate of dissipation in a volume V' (left-hand side) is
the sum of the rate at which the fluid stress o;; does work on S (first term on the
right-hand side) plus the rate at which the gravitational body force f; = —pgd;s
does work on V' (second term). Now introduce the modified pressure p = p + pgxs
and the corresponding modified stress tensor ;; = —pd;; + 2ne;; = 04 — PgT30;;.
Eq. (4.2) then takes the simpler form

., i U7 (4.3)

which states that the total rate of viscous dissipation in V' is equal to the rate at
which the modified stress performs work on S. For the three-fluid domain with a

free-slip upper surface shown in figure 3.1,

Dt + Dyt = f o (=n;)dC + f e (=n;)dC, (4.4a)
Cl 02

B _(1) _ 5(2)
Dgp = /(;1 u;0;;"n;dC, - Dop = /(;2 ;05 n;dC, (4.4b)

()
)
appears in (4.4a) because the normal vector that points out of the volume Sy is

where ¢,/ (i=0,1 or 2) is the modified stress tensor of fluid . The quantity —n;

opposite to n, which was defined as pointing out of the plates. Now substitute

eq. (4.4) into eq. (4.1) and apply the normal stress matching conditions (55;73) -
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52)))71]' =n;Aprgy; for points on Cy (k=1 or 2). The result is

Drotar = Aplg_/; Uiniyjdc"‘APngc u;n;y;dC. (4.5)
1 2

Because we know (i.e., have calculated) the velocity u on C; and Cs, (4.5)
implies that the total dissipation rate can be obtained simply by evaluating two
integrals over the fluid/fluid interfaces. In this study, however, we shall assume a
neutrally buoyant OP (Ap, = 0), whereupon the second integral in (4.5) vanishes.

We now turn to the dissipation rates Dsp and Dop within the two plates.
In principle these could be calculated from (4.3). However, determination of the
stress 0;; on C7 and Cy requires the solution of Fredholm integral equations of
the first kind, which are notorious for their numerical instability. Accordingly, we

exploit thin viscous-sheet theory (see table 2.1 in § 2.3.3) to write

Lgp+¢ 1 .
DSP = / (4771hspA2 + §n1thK2) dS, (46&)
0

Lop 1 . .
DOP = / (4n2hOPA2 + §7’]2h30PK2) dS7 (46b)
0

where A is the rate of stretching of the midsurface of the sheet and K is its rate
of change of curvature. The total rate of dissipation within each plate is thus
the sum of contributions from deformation by stretching/shortening (4nhA?) and
by bending (1/3nh3K2). The quantities A and K are calculated by numerical
differentiation of the velocity u on the sheet’s midsurface as shown in § 2.3.2.
Next, we calculated the rate of viscous dissipation within the SI from the
integral
Dg; = 2770[ e;je;dAst, (4.7)
Ast

where Ag; is the area of the fluid in the lubrication gap between the plates. We
evaluated the integral (4.7) by assuming that the fluid velocity varies linearly
across the gap between the known values on either side.

Finally, the rate of viscous dissipation in the ambient mantle (D) is obtained

from eq.(4.1) once all the other quantities are known.

4.2 Scaling analysis

In this section we determine the crucial dimensionless parameters that control the
energetics of subduction by performing a scaling analysis of instantaneous BEM

solutions. Because inertia is negligible in Stokes flow, the energetic state of the

74



4. ENERGETICS OF SUBDUCTION 4.2. Scaling analysis

hsp 11, p1

Mo, Po

Figure 4.1. Close-up view of the portion of an isolated SP that deforms by bending.
Its characteristic length is the bending length ¢;, which is the sum of the slab length (¢)
and width of the zone of flexural bulging (¢g,). The minimum raidus of curvature of the
plate’s midsurface is Ruyin.

system at any instant is fully determined by the geometry of the plates at that
instant. Time is therefore a mere parameter, which we here ignore by focussing
on the instantaneous geometry shown in figure 3.1.

As a target parameter for our scaling analysis, we define the ‘dissipation ratio’
R

_ Dsp + Dop + Ds1 _ Dy,

R = )
D Total D Total

(4.8)

R is the fraction of the total energy dissipation that occurs in the upper con-

vective boundary layer comprising the two plates plus the SI.

4.2.1 Subduction of an isolated SP

For simplicity we begin by considering the subduction of an isolated SP without
an OP or a SI, for which Dgy, = Dgp. We call this the SP ONLY case.

Figure 4.1 shows a close-up view of the portion of the SP that deforms by bend-
ing. The characteristic length of this portion is the bending length ¢,, which is the
sum of the length ¢ of the slab and the width /g, of the region seaward of the trench
where flexural bulging occurs (Ribe, 2010). If the SP sinks with a characteristic
speed Vi, its rate of change of curvature scales as K~ VSink/ﬁg. Neglecting the
dissipation due to stretching and integrating over the bending length, we see that
(4.6a) implies

2

V2
Dsp ~m1h3p ( ?;k)fl(e). (4.9)
b

The unknown function f;(#) accounts for the influence of the shape of the

midsurface of the SP on the slab’s sinking speed (Ribe, 2010). Next, we estimate
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the total dissipation rate in the ambient mantle by scaling (4.2). This yields

Dy ~ 770Vs21nkf2((9), (4.10)

which is obtained using the scales e;; ~ Vain /0y and Ay ~ £7. Like (4.9), it contains
an unknown function f(0).

Now because Dgy, = Dgp and Dryya = Dsp + Dy, equations (4.9), (4.10) and
(4.8) imply

St
St +F(6)’
where F() = £,(0)/f;(0) and St = 11 /no (hsp/l,)° is the flexural stiffness of the SP

that measures its mechanical resistance to bending (Ribe, 2010).

R (4.11)

Let us now test the scaling law (4.11) against our BEM solutions. To do
this, we run a large number of models for three values of 6y and different values
of {/hsp, Lsp/hsp and A1 = n;/ny, computing for each case the flexural stiffness
St and the dissipation number R. The results are shown in figure 4.2. The
solid symbols show results for which the bending contribution to Dgp exceeds
95%. These collapse onto three master curves, one for each value of 6y, thereby
confirming the scaling law (4.11). In the limit of St > 1, where we can suppose
St > F(6y), R tends to a constant value that is independent of 6y, as expected
from eq. (4.11). Open symbols, shown for completeness, are for models with a
significant (> 5%) stretching contribution to Dgp, and for that reason obey less
well the scaling law (4.11).

The three master curves in figure 4.2 highlight two other interesting features.
First, they tell us something about the temporal evolution of the system. In par-
ticular, the curves show that R increases if either St or 6, increases. Now, during
unsteady subduction, St decreases because the slab length increases, whereas 6
increases because the slab gets steeper. We therefore expect the system to evolve
as indicated by the thick green arrow. We will verify this later during our analysis
of time-dependent BEM solutions. Second, the curves show that R never exceeds
0.7 and is typically < 0.5. The latter value represents the ‘equipartition limit’,
where the dissipation is equally shared between the mantle and the plate. Only
stiff plates exceed this limit.

4.2.2 Subduction below an OP

We add now the OP to the system. For this SP+OP case, Dgr, = Dsp + Dop + Dsg.
We expect the OP to have two opposite effects on the dissipation ratio. On the
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one hand, it should increase R because deformation of the subduction interface
and of the OP itself leads to higher dissipation within the boundary layer. On the
other hand, the OP acts as a no-slip boundary condition on the mantle fluid below,
enhancing the dissipation in that region and decreasing R. The inset of figure 4.3
shows a close-up view of the subduction interface (lubrication gap), which has
thickness ds, inclination angle fs;, and viscosity 7s;. Assuming that layer-parallel
shear in the gap gives the largest contribution to viscous dissipation, we use (4.7)

to scale Dgy as
2 hSP . -1
DSI ~ nSIVConv _d S11 (951) s (4.12)
2

where Viony is the convergence speed of the descending slab. In writing (4.12), we
have assumed that e;; ~ Voony/dst and Agp ~ dahgp/sin (0s1). We defined Viony to

0.001 0.01 0.1
1 L 1 R | L L L PR R R |
o e
wbe?
14 Sot FO.1
"3 e EO
e
).
%) 1 ]
Q 1 iy
1 * 1
0.014 :0' F0.01
] » r
] oo * )
-
18
0.001 ———— —rr : 0.001
0.001 0.01 0.1

PYVC20HVSin (HSI) !

Figure 4.3. Dimensionless subduction interface dissipation rate Dg; as a function of
the group of parameters on the right-hand side of eq. (4.13), for 108 BEM solutions with
)\1 € [150 - 105], )\2 = 250, é/hsp € [5 - 10], Lsp/hsp = Lop/hop = 20, Y€ [2 = 6] and
o = 60°. The range of v used corresponds to that inferred by Gerardi & Ribe (2018) for
the central Aleutian subduction zone. Different values of 0y shift the curve horizontally.
Inset: close-up view of the subduction interface, defined by its thickness ds, inclination
fs1 and viscosity nsi, where ngr = ng for our model. Viony is the convergence speed of the
descending slab.

be the tangential component of the velocity vector on the SP’s midsurface where
it intersects the depth x5 = —hgp —d; (see inset of figure 4.3). To verify (4.12), we

compare it with the predictions of a large number of BEM solutions that include
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an OP. For this purpose, we rewrite (4.12) in dimensionless form as

DSI ~ VVCzonvSin (QSI)_1 3 (413)
where
A 7o ~ 7o nst hsp
Dyt = ———————=Dx, Vioonv = 75— VConv, y=—— (414
hép (gAp1)2 h%P (9Ap1) no da

The quantity v is the dimensionless strength of the SI (Gerardi & Ribe, 2018).
Because ngr = 19 in our model, we explore the influence of v by varying d, alone
(Gerardi & Ribe, 2018). Figure 4.3 shows Dg; as a function of V2, sin (6s1)”" for
108 BEM solutions for the ranges of parameters given in the caption of figure 4.3.
All the points collapse onto a straight line with slope of unity, confirming the
scaling law (4.13).

Turning now to the rate of dissipation within the OP, our BEM solutions show
that the energy dissipated to deform the OP is never more than 0.03Dg,, whatever
system configuration we use. We can therefore safely assume Dy, # Dgp + Dgy for
our SP+OP case study.

A natural next step would be to determine a complete scaling law for R that
includes the effect of the SI and that reduces to (4.11) in the limit v = 0 of an
infinitely weak (i.e., thick) SI. However, this turns out to be impractical given the
large number of parameters involved. Instead, we show in figure 4.4 how the value
of v influences the dissipation ratio R. Dissipation in the ST can enhance R signif-
icantly, but only for low values of the SP’s flexural stiffness (St << 1). In this limit,
Dg; can exceed Dgp by a factor of two or more. However, as soon as St increases
beyond » 2, the effect of v vanishes and we recover to a good approximation the
corresponding SP ONLY case (empty circles in figure 4.4). Moreover, in the limit

v = 0 we recover the SP ONLY results for all values of the stiffness St.

4.3 Unsteady subduction

Our next task is to explore how R varies during unsteady subduction, focussing
on the more realistic SP+OP case. We consider two examples: ‘low viscosity’
with \; = 250 and ‘high viscosity’ with A\; = 2500. The remaining parameters for
both examples are given in table 4.1.

We ran the simulations until the slab’s tip reached the depth x5 = —6.7hgp,
keeping track of R(t) and St(¢). The results are shown in figure 4.5 for \; = 250
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R=0.5

°© SP ONLY case
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Figure 4.4. Dissipation ratio R as a function of the flexural stiffness St of the SP for
three different values of 4. The BEM solutions for the SP+OP system were obtained
for )\1 € [150— 105], Y€ [2 - 6], f/hsp = 7, 90 = 60° and Lsp/hsp = Lop/hop = 20. Empty
circles trace the corresponding curve for the SP ONLY case with 6y = 60°.

Table 4.1. Initial configurations of the models whose time evolutions are shown in
figure 4.5.

SP oP
6o Lsp/hsp {¢/hsp A1 do/hsp Lop/hsp hop/hsp A2
‘Low viscosity’ 30° 20 5} 250 0.25 20 1 250
‘High viscosity’ 30° 20 5} 2500 0.25 20 1 2500

(top) and A; = 2500 (bottom). Figures 4.5a and 4.5¢ show the geometry of the
system at three characteristic times. Figures 4.5b and 4.5d show the corresponding
time evolution of R(t) as a function St(¢) (filled circles). Time increases from right
to left along these curves. The fraction Dg;/Dgy, of the boundary-layer dissipation

that occurs in the SI is also noted for the three times. Finally, the open circles
show R(St) for the same SP but without the OP.

The first important result of figure 4.5 is that R remains always below the
value 0.5 corresponding to equipartition of the dissipation between the boundary
layer and the ambient mantle. Second, the shapes of the curves concerning the
subduction of an isolated SP (figure 4.5b and d, empty circles), which show R
increasing as St decreases, agree with what we expected from our earlier SP ONLY
solutions (Figure 4.2, § 4.2.1). The behavior of the SP+OP case is more complex
(figure 4.5b and d, filled circles). Recall that the temporal evolution of R reflects
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a balance between two competing effects: a dynamical one (R decreases as St and
Dg1/Dgy, decrease with time) and a geometrical one (R increases as the slab dip
increases). For the SP+OP case with Ay = 250, the dynamical effect dominates at
first, leading to a steady decrease of R with time. Then, at St » 0.6, the balance
is reversed and R starts to increase (figure 4.5b). For A\; = 2500, by constrast, the

two effects nearly cancel out, maintaining a constant value R ~ 0.4 (figure 4.5d).

Finally, we note that for A\; = 2500 the simulations for the SP+OP and the
SP ONLY cases have rather similar variations of R as a function of St, where
2 < St < 10. This agrees with the results of figure 4.4, which show that the
influence of the OP on the energetics of the system becomes almost negligible for
St > 2. This is not the case for A\; = 250, for which the SP+OP and the SP ONLY

simulations follow very different paths in the St-R space.

4.4 Parameterized model of mantle convection

We want now to describe the steady-state thermal convection in a cell of length
L, and thickness H (figure 4.6). At the top of cell is the SP which thickens by
conductive cooling as it moves toward the trench, reaching a thickness hgp when
it enters the subduction zone. We assume no heat sources within the system
and we consider a well-mixed mantle (i.e. high mantle Rayleigh numbers, Ra,)
at temperature T,,. The only temperature difference is across the SP, and is

AT =Ty, — Tsut, where Tgu.¢ is the temperature at the SP’s surface.
We begin by defining the Nusselt number (Nu) of the convection cell as the

ratio of the surface heat flow in the presence of convection to that transported
purely by conduction (e.g. Turcotte & Schubert, 2014). The numerator is the
integral over the length L, of the vertical temperature gradient predicted by the
standard half-space cooling model. The denominator is the heat transported by

conduction across the entire thickness of the cell H. We thus have

1/2
Usp ) : (4.15)

Nu=2H (

7T1‘€Lh

where x is the thermal diffusivity and Usp is the horizontal speed of the SP. Scaling

the continuity equation in the convection cell, we obtain
Usp  Vsink

Lh Lz ’

where L, is the vertical distance from the slab’s tip to the lower surface of the SP

(4.16)
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Figure 4.5. Unsteady subduction for two different viscosity ratios of the SP: Ay = 250
(top) and 2500 (bottom). The initial SI strength is 7 = 4 for both cases. (a) and (c):
system geometry (black line=SP, red line=OP) at three different times ty (the initial
time), t; and t2. (b) and (d): dissipation ratio R as a function of the time-varying
flexural stiffness St(¢). Also reported is the value of the ratio Dg;/Dpyp, at the three
times. For comparison, the open circles show R(St) for the same SP but without the
OP. Time increases from right to left along these curves.

L "'~ h tg(0 )
SP | sp/tg(fs1) | Trench

hsp

Ly

Figure 4.6. Geometrical representation of the convection cell.
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(figure 4.6). Equation (4.16) allows us to rewrite (4.15) as

VSink 1/2
HLZ) '

The next step is to determine Vg, in terms of the different contributions to

Nt ~ H( (4.17)

the viscous dissipation at the subduction zone. The global balance of mechanical

energy is

DM + DBL = DM (1 + CR) ~ hSngApleink; (418)

where DBL ~ CRDM, CR = R/(l - R)7 and DTotal ~ hSngApl‘/Sink- Maklng use of
(4.10) for Dy, we obtain

hsplgAp;
mof2(0) (1 + Cr)
Because (4.19) relates the slab’s sinking speed to the coeflicient C that de-

scribes the partitioning of viscous dissipation between the boundary layer and the

Vein ~ (4.19)

mantle, we expect different regimes of mantle convection depending on the value
of OR.

4.4.1 Thermal convection dominated by mantle viscous dis-

sipation

In this section we recover the well-known result for the Nusselt number predicted
by boundary-layer analysis of an isoviscous system. Here the energy dissipated to
deform the lithosphere is negligible (i.e. Dy > Dgp, and Cr — 0). The thickness
of the lithosphere hgp is given by the half-space cooling model as

/{Lh)l/Q
hsp ~ | — . 4.20
e~ (T (1.20)
Substituting (4.16) and (4.19) into (4.20), we obtain
1/3
i (szQ(Q)) , (4.21)
H (Ray,

where the Rayleigh number of the entire cell is Ra, = H3gAp;/(kno). Then
substituting (4.19) into (4.17) and using (4.21), we obtain

/ 1/3
Nu ~ Rag, '? [ ——— 4.92
w~Ra (szm)) , (1.22)
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which is the standard Nusselt number vs. Rayleigh number scaling for an isovis-
cous system.

Our next task is to understand what happens when Cy # 0.

4.4.2 Thermal convection below a strong deforming bound-

ary layer

From the definition Cgr = Dgy,/Dy, we observe that

Cp~ 1 (@)3 F(0) + 22 ( fise ) (VCOHV )2 : (4.23)

Mo \ &y o \dst sin(fs1)f2(0) J\ Vain
where we have used (4.9), (4.10) and (4.12) to scale the different contributions
to the viscous dissipation. Substituting (4.23) into (4.19) we obtain a nonlinear

implicit equation for the sinking speed of the slab:

-1
hsplgAp; [ 1 (hl )3 7St ( hsp )(Vconv)Q]
Vsink ~ ———— |1+ — | — ] F(0) + — : .
Sink nof2(6) no \ &y ©) no \ dst sin(fsp)f2(0) ) \ Vaink
(4.24)

Following the approach of Conrad & Hager (1999b), we define two additional
Rayleigh numbers for the SP and the SI:

BgA B.gA
Ragp = 22201 Rag = S192P1 (4.25)
K RTjs1

These Rayleigh numbers measure the importance of viscous dissipation within
the SP and the SI relative to the energy available within the system. They become
large in the limits Dgp — 0 and/or Dg; — 0 for fixed hgp, which limits correspond
to decreasing viscosity (11 or ngr) and/or increasing length scale (¢, or dgr). In

terms of these Rayleigh numbers, (4.24) can be written as

hspfli

Vin ~R mpy /oy 772
sink ~ Ra f2(9)H3X

3 2 271
<1+ Ram (hﬂ) F(Q)J’_Ram(hSP) : dSI (VConv) '
Rasp H Ragl H H2S1n(081)f2(9) VSink
(4.26)

We now investigate two limiting cases of (4.26).
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Case 1: convection beneath a plate with a short travel time

Consider first the case of a lithosphere that moves from the ridge to the trench
in a time ¢t = L, /Usp < 80 Myr, the age at which seafloor flattening is observed to
begin (e.g. Sclater et al., 1980; Conrad & Hager, 1999b). This implies that hgp
increases continually according to the half-space cooling model. Suppose initially
that the viscous dissipation in the subduction interface is negligible (Rag; — o).

Simplifying (4.26) accordingly and following the same steps as in § 4.4.1, we find

hsp (Rasp L f5(0) )1/3 (4.27)

H Ram Raspf - fl(G)LZ

Now using (4.27) and the simplified form of (4.26) in eq. (4.17) we obtain

1/3
Nu N ( £ F(e) ) Raml/?). (428)

szg(g) - Rasp

The Nusselt number still scales as Ray, "/ 3. but the prefactor decreases as the
dissipation rate within the SP increases (i.e., as Ragp decreases). This result
remains valid as long as the denominator of (4.27) is nonzero, i.e., if Ragp >
f1(0)L,/¢. This condition follows from the fact that when Ragp decreases the
convection progressively slows down, increasing the traveling time of the litho-
sphere. Because the lithosphere then has more time to thicken, Ragp decreases
even further, triggering a positive feedback that leads to an unphysical infinite
plate thickness (Conrad & Hager, 1999b).

To understand the influence of viscous dissipation in the SI, we adopt (4.26) in
its full form. Following again the steps in § 4.4.1 and assuming Ragp > f1(0) L. /¢,

we obtain

(@)3_(@)(‘1_%1 A )N( A ) (4.29)
H H H? Ragr Ra,,

where Ay = CZ(Lz/0)/sin (bs1), Az = (Lz/0)f2(0) and Cy = Viony/Vsink. Our BEM
simulations show that Cy is always less than unity, and we treat it here as a
constant. Obtaining representative values of A; and A, from our BEM solutions,
we solve (4.29) numerically for Ragi(dsr, ns1) < 0.4 and Ra,,(H) € [1.6 x 10° - 1.3 x
10%]. We find that hgp/H ~ Ra,,'”® and Nu ~ Ra,,'”® to within a negligible error.
We conclude that for convection below a short SP for which the half-space cooling
model applies, the scaling law Nu ~ Ra,'/® remains valid even in the presence of

viscous dissipation in the subduction interface.
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Case 2: convection below a plate with a long travel time

We now assume that the travel time of the plate is sufficiently long (> 80 Myr) that
thermal thickening has stopped by the time it reaches the trench. The dependence
of hsp on Ra,, then breaks down and hsp/H becomes a simple constant in the
model, with hgp always at its maximum value. Nevertheless, we assume that the
amount of heat evacuated by the cell still corresponds to the heat lost during
the thickening of the plate, while the amount of heat loss occurring after seafloor
flattening occurs remains negligible. This implies that (4.17) continues to apply
for our analysis.

Considering both contributions Dg; and Dgp to the viscous dissipation, we
substitute (4.26) into (4.17) and obtain

- 11/2
Nu ~ | Ray, ¢ 3 hse/H ,
sz2(9) + Ram (@) F(Q) + Ram (hsp ) d%IC\Z/
Rasp H RaSI H stin(HSI)fg(G)
| Cr ]
(4.30)

where the bracket highlights the definition of Cr. We now use (4.30) to determine
the value of the exponent ( that would appear in the corresponding Nu-Ral,
relationship. Observing that Nu-Ral, implies 5 = (ANu/dRay, )(Ran/Nu), we find
that (4.30) implies

1/2
1+ CR‘

8= (4.31)

Eq. (4.31) shows that [ strongly depends on the dissipation partition coefficient
Cr. We note that also the models showed in Conrad & Hager (1999b) follow
equation (4.31).

4.5 Influence of the lengthscales ¢, vs. R, on dis-

sipation partitioning

We now show how the estimates of the dissipation partitioning coefficient Cg and
the heat transport exponent § change dramatically depending on the length scale

(0p or Ryin) used to characterize the bending response of the SP. We begin by
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Figure 4.7. (a) Overestimation factor « as a function of the dimensionless cell thick-
ness H for viscosity ratios A; = 250 and 2500. Time increases from left to right. The
intersections with the vertical straight lines give the values of « for the two characteristic
depths H; and H,. (b) Time evolution of Ry, (filled circles) and £, (empty circles) for
A1 = 2500.

defining

Dgp|g,, ( Oy )3
o = min - _ 432
Dsple, Riin (4.32)

as the factor by which Dgp is overestimated if R, is adopted instead of ¢, all

else being equal. We estimate a in a realistic way by running time-dependent
BEM simulations starting from the initial conditions reported in table 4.1. Next,
for both the ‘low viscosity’ and ‘high viscosity’ cases we stop the simulations at
two characteristic depths Hi/hgp = H, = 6.7 and Hy/hgp = H, = 10.0. Owing to
the quasi-stationarity of Stokes flow, these instantaneous configurations can be

assumed to be representative for the purposes of our steady-state analysis.

Figure 4.7a shows that « increases rapidly as the slab progressively sinks,
illustrating the strong influence of the chosen length scale in the evaluation of
Dgp. For the two characteristic depths H; and H,, for example, we find oy = 33
and g = 134 respectively when A; = 250 (empty circles), and a3 = 16 and as = 51
respectively when A; = 2500 (filled circles). The dependence of « on the depth
H is explained by figure 4.7b, which shows the dimensionless lengths éb and ]A%min
as functions of H for A\; = 2500. As the slab penetrates deeper, the bending
length increases while the minimum radius of curvature tends to stabilize to a
constant value. The ratio ¢,/ Ry, and thus the overestimate of the dissipation
Dsp, therefore increases with the depth H. For A\; = 250, the gap between the two
curves of figure 4.7b becomes even wider, which is why « is larger for the ‘low

viscosity’ case (empty circles, figure 4.7a).

To show how the overestimation of Dgp documented above influences the in-
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Table 4.2. Values of the coefficient §, the energetic ratio Cgr|r and the corresponding
exponent (|, where L = ¢, or Ry, for four combinations of values of H and ;.

H )\1 5 « CR |€b CR|Rmm /B|£b B|Rmin

6.7 250 0.81 33 0.48 19 034 0.03
6.7 2500 0.52 16 0.67 11 0.30 0.04
10.0 250 0.49 134 0.81 90 028 =0
10.0 2500 0.62 51 0.97 32025 0.02

ferred value of 3, we calculate the quantity

a+0
CR|Rmin = ( 1+ 5 ) OR|Eb7 (433)

where o, § = Dgi/Dsp|s,, and Crls, are determined from the BEM simulations.
The corresponding values of § are then obtained from (4.31). The results are
summarized in table 4.2 for our four characteristic combinations of H and AL
If we use Ry, as the bending length scale, the estimate of the boundary-layer
dissipation Dgp is much higher, resulting in values of 3 close to zero in all cases.
If, however, we adopt the correct length scale ¢, 5 € [0.30,0.34] for H=6.7 and
S €[0.25,0.28] for H =10. This shows that one’s assumption about the thickness
of the convection cell plays a role in the determination of .

In light of table 4.2, we conclude that it is crucial to use the dynamic length
scale ¢, rather than the purely geometric length R, to characterize the bending
response of a viscous plate (Ribe, 2010). This follows from the fact that the
bending moment within a viscous plate is proportional to the rate of change of
the curvature of its midsurface and not to the curvature itself, as it would be in
an elastic plate.

In closing, we remark that the neglect of volumetric heat sources in our pa-
rameterized convection model makes it most appropriate for convection in the
upper mantle (H = 670 km). Internal heating has to be considered in models of
whole-mantle convection with H = 2880 km (Turcotte & Schubert, 2014).

4.6 Conclusions

In this work we studied the energetics of subduction using a numerical model
based on the BEM. We endeavored to shed light on two topics: the partitioning
of viscous dissipation among the different elements of a subduction zone (i.e. the
subducting plate, the subduction interface and the mantle); and the influence

of the energy dissipated in subduction zones on parameterized models of mantle
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convection.

By means of a scaling analysis of instantaneous BEM solutions for an isolated
SP, we found that the ratio R of the energy dissipated in the upper boundary
layer to the total energy dissipation obeys the scaling law R ~ St/[St + F(6)],
where St (the “flexural stiffness”) represents the SP’s mechanical resistance to
bending and F(0) is a function that accounts for the effect of the dip 6 of the
descending slab. Adding an OP to the system, we found that R also depends
on a third parameter v, the dimensionless strength of the subduction interface.
Turning to unsteady subduction, we observed that the time evolution of R(%)
depends on the SP/mantle viscosity ratio A;. Nonetheless, for both the ‘low
viscosity’ (A; = 250) and ‘high viscosity’ (A1 = 2500) cases explored, we observed
that R(t) remains always below the value 0.5 corresponding to equipartition of the
dissipation between the boundary layer and the mantle. We conclude that energy
dissipation during free subduction is never dominated by the plate bending and
interface shearing contributions. Interestingly, we also noticed that the importance
of the dissipation in the subduction interface decreases as subduction proceeds.

Turning to the influence of strong subduction zones on mantle convection, we
found that it primarily depends on the travel time of the lithosphere from the ridge
to the trench. For short travel times < 80 Myr, the thickness hgp of the lithosphere
when it enters the subduction zone is described by the classical half-space cooling
model and depends on the mantle Rayleigh number Ra,. The Nusselt number
is then Nu ~ Ra,,” with 8 = 1/3, as for an isoviscous mantle. For long travel
times, by contrast, hgp is a constant. The heat transfer scaling exponent is then
£ =0.5/(1+CR), where Cr = R/(1-R) is the ratio of the boundary-layer dissipation
rate to that within the surrounding mantle. The partitioning factor Cr depends
strongly on the length scale one adopts to characterize the bending of the SP. If
the minimum radius of curvature R, of the plate is used, as in several previous
studies, the bending dissipation of the SP is strongly overestimated and g — 0. If
however one uses the correct length scale, the “bending length” ¢, 3 € [0.30,0.34]
for H/hsp = 6.7 and [ € [0.25,0.28] for H/hsp = 10, where H is the depth of
the convecting layer. Our overall conclusions are that strong subduction zones do
not dominate the viscous dissipation associated with mantle convection, and that
subduction zone dissipation leads to relatively small departures from the classical

Nu ~ Ray,'/® heat transfer law.
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Chapter 5

Laboratory modeling of mantle

convection

Together with numerical models, laboratory experiments have long played a cen-
tral role in mantle convection investigations. A typical setup of a laboratory
model consists of a fish tank filled with a fluid at which a gradient of temperature
is applied in order to generate the thermal instability. The fluid is character-
ized by a high Prandtl number (i.e. Pr > 100), which ensures the dominance of
viscous over inertial effects (Davaille & Limare, 2015). The gradient of temper-
ature and the thickness of the fluid layer are then properly adjusted in order to
have a Rayleigh number within the range pertinent for mantle convection. The
setup usually follows a Rayleigh-Bénard configuration with the fluid layer heated
from below and/or cooled from above (e.g. Nataf & Richter, 1982). However, ex-
periments with internal heating have also been performed (Limare et al., 2015).
The majority of studies which can be found in literature adopt Newtonian fluids,
such as silicon oils, sugar syrups, glycerol (e.g. Giannandrea & Christensen, 1993;
Namiki & Kurita, 1999; Davaille & Vatteville, 2005). Due to their strong strong
temperature-dependent viscosity, sugar syrups have proved to be particularly suit-
able for the modeling of solid-state creep of mantle material (e.g. Nataf & Richter,
1982; Davaille & Jaupart, 1993; Androvandi et al., 2011). In accordance with an-
alytical studies (e.g. Jaupart & Parsons, 1985; Solomatov, 1995), different regimes
of thermal convection are observed in a laboratory experiment, depending on the
viscosity contrast between the upper and bottom boundary of the fluid layer: the
‘whole layer regime’, at low viscosity contrasts, where the entire fluid layer takes
part in the convective motion; the ‘sluggish lid regime’, at intermediate viscosity
contrasts, where convection occurs beneath a strong upper boundary layer which

moves and deforms dissipating a significant amount of energy; the ‘stagnant lid
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regime’, at high viscosity contrasts, where convection takes place under a stagnant
lid which passively transports the heat brought from below by convection.

There is a fundamental element of mantle convection that laboratory exper-
iments can not still capture: plate tectonics. In fact, although a strong plate
on the surface can be obtained using a fluid with a strong temperature-dependent
viscosity, the breakage of such plate (i.e. the lithosphere) and the following regime
of ‘plate tectonics convection’ has not been observed yet. We know that to make
plate tectonics works, weakening and shear localization are required. In numerical
models weak zones within the lithosphere can be induced implementing pseu-
doplastic yielding, whereby plate boundaries develop instantaneously when the
stress exceed locally a yield stress (Tackley, 2000; Grigné et al., 2005). However,
this operation requires the use of yield stress values that are smaller than what
is known for mantle material (Kohlstedt et al., 1995). In order to obtain plate
boundaries adopting a consistent yield stress, a specific weakening mechanism in-
ducing localized deformation is required and, in the last years, a number of them
have been suggested, as for example lattice preferred orientation of olivine (Tom-
masi et al., 2009), two-phase “self-lubricating” rheology (Bercovici, 2003) or shear
heating (Kaus & Podladchikov, 2006; Crameri & Kaus, 2010). Concerning labora-
tory models, experiments run with aqueous colloidal dispersions of nanoparticles
have lately shown several interesting features. Thanks to their particular rheol-
ogy, these fluids can indeed generate a superficial lid which breaks in different
‘plates’, leading also to episodic subduction events. Exploring further this type of
material seems thus a promising route to follow in order to generate self-consistent
plate tectonics in the lab. Clarifying the dynamics underlying these systems might
also lead to a better comprehension on the weakening mechanism generating plate

boundaries on the Earth.

5.1 Drying of colloidal systems

What makes a colloidal dispersion particularly interesting is the type of rheology
which characterized it. In a detailed study, Di Giuseppe et al. (2012) investigated
the rheological transitions which a colloidal dispersion of silica nanoparticles (com-
mercial name LudoxHS40) undergoes when subject to drying. Removing the water
from the samples, thus increasing the solid volume fraction ¢,, the authors stud-
ied the rheological behavior of the colloid finding the regime diagram reported
in figure 5.1a. As one immediately sees, the critical parameter controlling the
rheological transitions is ¢,. In fact, depending on this parameter, the distance

between the nanoparticles changes accordingly, influencing the particle-particle in-
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Figure 5.1. From Di Giuseppe et al. (2012): (a) regime diagram of aqueous mono-
disperse silica colloid (LudoxHS40) as a function of the solid volume fraction and the
applied stress. The black filled symbols indicate results obtained by the authors. (b)
sketch showing the possible spatial arrangement of the nanoparticles within the colloid
as a function of the solid volume fraction.
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teraction and, consequently, the energetically favorable configuration of the solid
phase within the colloid (figure 5.1b). The latter is what ultimately controls the
mechanical response of the colloid at a given applied stress. As illustrate in fig-
ure b.la the LudoxHS40 is characterized by four different rheological regimes.
Regime I, for ¢, < 0.30, where the colloid is constituted of a network of repelling
isolated nanoparticles and it behaves as a Newtonian fluid, for any applied stress.
Regime II, for 0.31 < ¢, < 0.35, where the nanoparticles start to aggregate, form-
ing small clusters which induce solid-like properties, such as elasticity and a yield
stress. Within this range of ¢,, the colloid behaves as a visco-elastic sol, exhibit-
ing a shear-thinning rheology. Regime III, for 0.35 < ¢, < 0.47, where most of the
particles have aggregated in stable structures which, however, can still deform and
rearrange at high shear. At ¢, ~ 0.35 is the sol-gel transition and the colloid is
now a visco-elastic gel which maintains a shear-thinning rheology. Finally, regime
IV, for ¢, > 0.51, where the colloid has undergone the glass transition and behaves
as an elastic-brittle solid. More details on the rheological characterization of such

material can be found in Di Giuseppe et al. (2012).

Let us now consider a layer of Ludox in an experimental setup similar to the
one shown in figure 5.3. The tank is dried from above, equivalent of cooling as both
rock cooling and solution dessication are diffusion processes (§ 7 of Bacchin et al.,
2018), and heated uniformly from below. As shown in Davaille et al. (2017), in such
configuration the laboratory model is characterized by an infinite Prandtl number
and a high Rayleigh number, as appropriate for mantle convection modeling. A
typical evolution of this type of convection experiment can be extrapolated by
the curve of figure 5.2a, which shows how the evaporation rate Vg varies through
time (§ 8 of Bacchin et al., 2018). Looking at the trend of Vg, we can individuate
five different stages of convection. First, there is a regime of vigorous convection
‘CONV’” where Vg remains roughly constant. Here, as the water evaporates at the
free surface, ¢, locally increases generating a thin boundary layer at the top of
the tank, whose thickness ¢ increases with the time. In case this boundary layer
becomes gravitationally unstable and sinks, it is readily replaced by hot upwellings
rising from below and the layer surface results continuously rejuvenated. The

solutal Rayleigh number measuring locally the instability of the boundary layer is
defined as

A 3
Rag, = 22T (5.1)
Rel)

where Ap is the density contrast due to heterogeneities in the solid volume fraction

o, K. represents the chemical diffusivity and all the other parameters are defined
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Figure 5.2. From Bacchin et al. (2018): (a) time-evolution of the evaporation rate
during an experiment involving the drying of LudoxHS40. The evaporation rate is nor-
malized by the corresponding evaporation rate of pure water in the the same setup. (b)
top view of the tank showing the buckling deformation of the visco-elastic skin and the
effect related to the impact of a hot upwelling. (c¢) side view of the tank, composed of
superposed images, showing the subduction of the skin. For this experiment, presented
in Davaille et al. (2017), the plume-induced subduction mechanism has been suggested.
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as usual. In a typical experiment Rag, € [108 — 101 ] (Davaille et al., 2017). We
enter in the second regime ‘SL1” when ¢, on the top reaches the critical value which
marks the sol-gel transition (¢, ~ 0.35). Due to the formation of the superifical jelly
skin, which acts as a barrier against the upward flow of the water, Vg decreases
significantly. At the same time, convection continues to take places below the skin
and a Stagnant Lid regime develops. Now, as the water continues to flow through
the skin, it generates pressure gradients and in-plane stresses in the skin, which, in
turn, starts to visco-elastically buckle. This deformation is shown in the top view
of the tank reported in figure 5.2b. The buckling instability grows in amplitude
with time due to the spatial confinement of the skin and the increasing of stresses
related to the continuous evaporation of water. At one point, because of the high
strain and stress at which it is subjected, the skin leaves the elastic regime and
it starts to deform plastically until it eventually breaks. Then, due to its higher
density with respect to the underlying fluid, it sinks toward the bottom. This is the
third regime ‘Subduction” where spontaneous, one-sided subduction events appear,
showing also the characteristic “trench roll back” feature of natural subduction
zones, as highlighted in figure 5.2c. Furthermore, as new fluid reaches the surface
and dries, new skin is continuously formed and the cycle of buckling deformation
and subduction is repeated. Even if we cannot speak yet of true and continuous
plate tectonics, this ‘Subduction’ regime presents striking similarities with what
is observed on Earth. Here, the combination between a strong buckling instability
and the particular rheology of the skin (i.e. the lithosphere), seems to lead to
the rupture and the consequent initiation of subduction. Another mechanism
triggering subduction, involving the impact of a rising plume on the lower part of
the skin, has also been proposed (Davaille et al., 2017). This might be valid, in
particular, when bottom heating is significant. In any case, as the system continues
to dry, the system reaches a critical point where the top layer is so stiff and thick
that cannot be broken anymore. It starts the ‘SL2’ regime where convection is in a
second Stagnant Lid mode and subduction stops. Vg smoothly decreases through
time, while the skin continuously thickens. When it approaches the bottom of
the tank, Vg abruptly decreases and the convection finally stops. This is the ‘No

Convection’ regime.

5.2 Preliminary results

Aiming to better understand the dynamics underlying the drying of a colloidal
dispersion, in the last part of the thesis we run a laboratory experiment, similar

to the one described in the previous section. The setup of the experiment is
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Top view

Figure 5.3. Experimental setup of a drying convection experiment. The colloid layer
into the tank (green) is dried from above by an air stream whose temperature (T') and
humidity (Rh) are controlled by a climatic chamber. For our experiment is 7" = 25°C and
Rh = 30%. The tank is placed on a metal plate that can be heated if needed. Further
below there is a weight scale that records the mass lost during the experiment because
of the evaporation of water.
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illustrated in figure 5.3. For our study, we adopted a LudoxTM50 silica colloidal
dispersion from Sigma-Aldrich. We used a 30x30x5 cm tank, placed in a climatic
chamber, where the temperature and the humidity were kept at the constant
values of T = 25°C and Rh = 30%, respectively. The bottom boundary of the tank
was maintained at the room temperature, without providing any heating. The
tank was on a scale to record the evolution of mass and evaporation rate. The

experiment lasted one day.

5.2.1 Observations

In figure 5.4b is reported the time-evolution of the evaporation rate Vg recorded
during our experiment. The curve is characterized by 3 different zones: Zone
1, 50 < t < 200, where Vg rapidly decreases; Zone 2, 200 < ¢t < 1600, where
Ve remains around the value Vi = 0.008 g/s (blue line), showing a slow (but
constant) decreasing starting from ¢ > 540; Zone 3, ¢t > 1600, where Vg begins
to decrease rapidly again. In analogy with what has been shown in figure 5.2a,
Zone 1 seems to correspond to the ‘SL1’ regime of convection. In fact, in our
experiment, the ‘CONV’ regime seems to be missing and we assist directly to
a rapid formation on the top of a gel skin with a consequent decreasing of the
evaporation rate. In this regime, as the gel continues to form, we record a first
subduction /resurfacing event which starts at ¢ = 80 min (figure 5.5a) and evolves
followed by news subduction/resurfacing events (figure 5.5b). This leads to a
complete rejuvenation of the superficial gel skin. Next, as Vg stabilizes around the
constant value of Vg =0.008 g/s, we enter in the Zone 2. This is the ‘Subduction’
regime of figure 5.2a. Here cycles of gel breakage, subduction and gel regeneration
repeat continuously and in a local scale instead of leading to complete resurfacing.
Unfortunately, we could not get photos of the tank during this stage of convection.
However, the side view of the tank given in figure 5.6, taken at the end of the
experiment, clearly shows a “rich” subduction history. In particular, we can notice
the subduction of two “fat slabs”, as highlighted by the red circle at the bottom left
corner of figure 5.6. Within the Zone 2, we can see that at one point (¢ = 540 min),
glass begins to form on the surface of the tank (figure 5.5¢). This event roughly
corresponds with the point where Vg starts slowly to decrease (third red dot
figure 5.4c). Finally, as the superficial layer of glass spreads on the entire surface
(figure 5.5d) and thickens, subduction/surface regeneration events are more and
more rare and we approach the beginning of the ‘SL2’, where convection takes

place below a stiff “glass lid”.
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Figure 5.4. (a) Vg —t curve shown in figure 5.2a. (b) Vg —t curve of our experiment.
The green dashed lines compare the three regimes of convection of our experiment with
the ones identified in (a). The red dots correspond to the four top views of the tank
reported in figure 5.5. The sharp peaks at ¢t » 1200 min ¢ ~ 1350 min are related to
external perturbations.
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Old Surface

(a) Zone 1: The gel breaks on the sur-

face and a first subduction/resurfacing

event is recorded. The red line shows

the wrinkle which moves as indicated

by the red arrow. New fluid rises from
the left side of the wrinkle.

Old Surface

New Fluid

(b) Zone 1: Here we can appre-

ciate the evolution of the subduc-

tion/resurfacing event shown in fig-

ure 5.5a, as well as the starting of new

subduction /resurfacing events (red line
at the bottom).

(c) Zone 2: the glass transition starts
to take place and white, solid material
appears (red circles).

(d) Zone 3: The glass phase covers

a large part of the surface. Some

fluid-like material is, however, still

presents. R1-R2-R3-R4 indicate the re-

gions where the samples listed in ta-
ble 5.1 have been taken.

Figure 5.5. Top view of the tank during the experiment, showing the time evolution
of the skin. The photos have been taken at ¢ = 80 min (a), t = 170 min (b), ¢ = 540 min
(c), t =1475 min (d), which correspond to the four red dots of figure 5.4b.
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Figure 5.6. A side view of the tank taken at the end of the experiment. The image shows
that, during the experiment, a significant amount of superifical material (translucent)
has sunk in the underlying fluid layer. In the bottom left corner of the picture, we can
notice two “fat slabs” lying on the bottom of the tank. S-D1-D2 represents the depths
at which the samples listed in table 5.1 have been taken.

5.2.2 In situ measurements

As it immediately appears from the comparison of the Vg —t curves of figures 5.4a
and 5.4b, using two different colloids (LudoxHS40 for what concerns figure 5.4a
and LudoxTM50 for what concerns figure 5.4b) for the same type of experiment, it
can lead to different results. This follows from the fact that changing the properties
of the dispersed phase in the colloid (i.e. the silica nanoparticles), the physical-
chemical phenomena which control molecular aggregation vary accordingly and
the response of the colloidal system observed at the marcoscopic scale results
different. For the present case, what changes between the two types of colloid is the
hydrodynamic radius rg which, measured by means of dynamic light scattering in
the initial semi-dilute suspension (¢ < 0.22), results 7y ~ 15 nm for the LudoxHS40
and rg » 30 nm for the LudoxTMb50. As we can see in figure 5.7, a different value
of rg influences tremendously the correlation between the rheology of the colloid
and the particle volume fraction ¢y.

In order to shed light on the composition and the nano-scale structure of the
LudoxTM50 adopted in our study, we analyzed several samples taken at the end
of the experiment. For each sample, which generally was around 15.0 mg, we
performed two type of measurements: i) the thermal gravimetric analysis (TGA),
where the mass of the sample is measured over time as the temperature changes;
ii) the differential scanning calorimetry (DSC), where the apparatus measures the
amount of heat absorbed/released by the sample as a function of temperature.
The TGA has been carried out in a dynamic nitrogen atmosphere of 40 mL /min,

varying the temperature with a rate of 5°C/min from room temperature to 7" =
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Figure 5.7. Phase diagrams for the LudoxHS40 (a) and the LudoxTM50 (b). The
figures report the relative viscosity of the colloid (normalized by the viscosity of the
water) as a function of the particle volume fraction. The GEL state is defined by G’ > G”,
where G’ is the storage modulus, characterizing the stored elastic energy and G” is the
loss modulus, characterizing the energy dissipated by heat (Di Giuseppe et al., 2012).
The elongated bars show the viscosity variations for strain-rates between 107!(white)
and 103 (black) 1/s. The sol-gel transition is at ¢, = 0.35 for the LudoxHS40 and at
¢p = 0.48 for the LudoxTM50. The gel-glass transition is at ¢, = 0.51 for the LudoxHS40
and at ¢p = 0.62 for the LudoxTM50. Measurements of Erika Di Giuseppe.
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Table 5.1. Properties of the samples analyzed with the TGA and the DSC techniques.
The position of the sample in the tank is specified by the region (figure 5.5d) and the
depth (figure 5.6). The two samples ‘SI1” and ‘S12’ are the two “fat slabs” shown in
figure 5.6. Samples 6 and 7 have been taken at slightly lower levels than the depth D1.
The temperature in brackets in the column referring to AT, indicates the melting point
of free water. The sol-gel transition is at ¢ = 0.48. The gel-glass transition at ¢y = 0.62
(see figure 5.7).

Samples Region Depth ¢, Phase AT, [°C|] d |[nm]

#1 R1 S 0.39 Sol 7.49 (0.56) 12.7
#2 R1 D1 0.59 Gel 7.87 12.1
#3 R1 D2 039 Sol 6.93(0.28) 13.7
#4 R2 S 0.65 Glass 6.74 14.1
#5 R2 D1 0.64 Glass 7.21 13.2
#6 R2 D1- 0.64 Glass 7.59 12.5
H#7 R2 D1-- 0.68 Glass 7.31 13.0
#8 R2 D2 032 Sol 6.93 (0.56) 13.7
#9 R3 S 0.53  Gel 7.02 13.5
#10 R3 D2 034 Sol 7.40 (0.47) 12.8
#11 R4 ‘SIT” 0.57  Gel 7.31 13.0
#12 R4 ‘S1I27 0.60 Gel 7.64 12.4

250°C and of 10°C/min beyond. The DSC has been carried out in a dynamic
nitrogen atmosphere of 25 mL/min, decreasing the temperature with a rate of
-5°C/min from room temperature to —60°C and then increasing it with a rate
of 2°C/min up to 20°C. We analyzed 12 samples taken at different depth and
in different regions of the tank, as indicated in table 5.1. Two of these samples
were part of the “fat slabs” shown in figure 5.6. This analysis has been done at
the Laboratoire Léon Brillouin of the CEA Saclay thanks to the precious help of
Christiane ALBA-SIMIONESCO and Oriana OSTA.

An example of the output obtained from the TGA is shown in figure 5.8. Since
at the end of this type of measurement only the silica solid phase of the sample
is left, we exploited the TGA to extrapolate the silica weight fraction y, and the

corresponding solid volume fraction ¢y, according to

Xs
o =

- (5.2)
Xs T (1 - Xs) *

pPsi’
PwW

where pg; = 2.36 g/cm? is the density of silicon and pw = 1.00 g/cm? is the density
of water. The results on the solid volume fraction are summarized in the 4th
column of table 5.1. The data show that at the end of the drying experiment,
the colloid presents all the three phases: sol, gel and glass. Region 1 of the tank
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Figure 5.8. TGA measurement reporting the variation of the mass of the sample (in
percentage) as a function of the temperature.

(see figure 5.5d) presents sol on the surface and a gel layer immediately below. At
the depth of D2 (see figure 5.6), the sol phase appears again. This composition,
clearly highlights that in this region there is still fluid from below rising toward the
surface. Region 2 is composed of a thick layer of glass which covers the underlying
sol. Region 3 is instead characterized by a gel layer on the surface which underlies
the sol-phase. The samples referring to the “fat slabs” have a gel composition, thus
showing that they were on the top of the tank and that they subducted during

the experiment.

Concerning the DSC, an example of the outputs is reported in figure 5.9.
Measuring the heat flow as temperature varies, this technique can identify the
temperature at which physical transitions occur, as they are identified by the
absorption /release of latent heat, which is much higher than the sensible heat.
The DSC is useful to obtain an information regarding the average size of the pores
of the solid network of silica nanoparticles which forms in the colloid during the
drying. Indeed, the water entrapped within such a structure undergoes a melting
temperature depression AT, which is related to the pore diameter d through the
Gibbs-Thomson equation (Alba-Simionesco et al., 2006):

(81 = y51)V
A,-Z—'m = Tonputk — Trnpore = 22—, 5.3
pulk P A buik (5:3)
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Figure 5.9. DSC measurement reporting the amount of heat released (blue curve)
or absorbed (red curve) by the sample as a function of the temperature. The peaks
correspond to phase transitions of the water contained in the sample: freezing (blue
curve), melting (red curve). (a) refers to a glass-like or gel-like samples, while (b) refers
to a sol-like sample. The latter shows two melting points of the water, as this is both in
a confined-state and in a bulk-state within such type of sample (see text for details).

104



5. LABORATORY MODELING OF MANTLE CONVECTION

where T}, puur and 1T}, ,ore are the melting temperatures of bulk water crystals and
of confined water nanocrystals, respectively, v and ~s, are the silica/ice and
silica/liquid water surface tensions, v is the molar volume of the liquid water
and A, pur 1s the bulk latent heat of melting. Due to the dependence of the
quantities g1, vsr, and v on the pore diameter d, eq. (5.3) is usually adopted in an
experimental-fitting form. Relevant to our case study, where water nanocrystals
melt in a solid structure composed of silica nanoparticles, is the fitting equation
proposed by Lu et al. (2013):
AT, =2 (5.4)
d

which easily correlates d with the AT, obtained from the DSC measurements.

For all the samples (sol-like, gel-like and glass-like), the DSC showed a melting
temperature depression of the confined water between 6.74°C' and 7.87°C' (6th
column of table 5.1), corresponding to an average pore diameter ranging from
12 to 14 nm (7th column of table 5.1). The data did not show any correlations
between d and the solid volume fraction of the samples ¢,. However, as highlighted
in figure 5.9b, for sol-like samples the DSC additionally recorded the melting
temperature of water crystals not affected by any confinement effect (7, = 0°C).
This means that in this phase we have both confined and bulk (or free) water.

The pore diameter d resulted half the nanoparticle hydrodynamic radius (ryg ~
30 nm). This suggests that all the three phases are characterized by dense packed
structures of nanoparticles. In the glass and gel phases these structures probably
build a semi-ordered, continuous network of nanoparticles. In the sol phase, due
to the presence of free water, they assume more likely the form of dense clusters
that keep a certain distance between them.

Ongoing work involves the characterization of the colloid at the different stages
of the drying experiment. This will help to unmask the correlation between the
physical-chemical phenomena controlling the nanoparticles aggregation and the

macroscopic response of the colloidal system.
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Conclusions

This thesis was devoted to the study of the phenomenon of subduction. For
this purpose, we developed a 2-D free subducion model, based on the Boundary
Element Method, able to mimic the interaction between a Subducting Plate (SP)
and an Overriding Plate (OP) across a Subduction Interface (ST) with a tunable
strength. Then, we systematically interpreted the numerical solutions of the model
exploiting concepts of thin viscous-sheet theory. This helped us to determine
quantitative scaling laws expressing relations among key dimensionless parameters
of the system.

We examined subduction from two main points of view: first, we investigated
the phenomenon in a ‘local’ context, aiming to better understand the mechan-
ics underlying it; then, we moved to a ‘global’ context, exploring the effect of
subduction zones in the frame of large-scale mantle convection.

Exploring subduction locally, we focused our investigation on the SP kinemat-
ics and the OP deformation, paying particular attention at the influence of the
SI strength on both these aspects of subduction. Regarding the SP kinematics,
we first found that the convergence speed of the sinking slab (Voony) is mainly
controlled by three parameters: the subduction angle 6, the flexural stiffness
St of the SP and the strength ~ of the SI. For instance, Vi, increases as we
move from shallow to steep subduction (increasing of y) or if either the stiff-
ness of the SP or the strength of the ST decreases. Interestingly, such speed did
not show any dependency neither on the length of the SP (Lgp) nor on that of
the OP (Lop). Next, we analyzed the horizontal plate speed (Usp) of the flat
portion of the SP and, considering first our subduction model in the SP ONLY
configuration (i.e. without the OP), we found that Usp obeys the scaling law
Usp/Vstokes = a(St) + 5(St) log(Lsp/¢), where o and /3 are logarithmic functions
of St. The main result here is the perfect logarithmic dependence of Usp/Vsiokes
on the geometrical ratio Lgp/¢, a result which we found systematically also in
the SP4+OP configuration and for whatever model setups we investigated. This
very weak correlation between plate speed and plate length for plates attached to

subducting slabs seems to be in agreement with natural observations. Turning to
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the OP deformation, we detected a characteristic pattern of deformation that re-
peated similarly for the majority of cases we explored. Close to the trench, the OP
is always under strong compression due to the opposing actions of the horizontal
resultant of the lubrication force within the ST and the shear force below the fore-
arc region of the OP. This latter force, generated by the mantle return flow, results
as the sole driving force triggering the OP motion. Further from the trench there
is a second zone of deformation dominated by the bending of the OP. This zone
disappears only if one considers steep subduction angles and, especially, long sub-
ducting slabs for which compression continues to dominate. Finally, a third mode
of deformation, characterized by significant extension in the backarc region of the
OP, arises when the OP is positively buoyant. We explained such result by means
of simple analytical thin-layer models. In conclusion of this first part, we adopted
our BEM model to infer the long-term strength of the subduction interface in the
central Aleutian subduction zone. For a realistic range of values of the viscosity
ratio between the SP and the underlying mantle, we found ns; = 0.96 — 1.72 x 1020

Pa s for a corresponding range of mantle viscosities 79 = 3.92 — 6.95 x 10%° Pa s.

Next, we turned to the analysis of the energetics of subduction. In particular,
we quantified the amount of viscous energy that is dissipated in a subduction zone,
discussing then the effects that this might have on large-scale mantle convection.
Considering first the SP ONLY configuration, by means of a scaling analysis of
the instantaneous rates of viscous dissipation associated with the deformation of
the SP and of the underlying mantle, we found that the ratio R of the energy
dissipated in the upper boundary layer to the total energy dissipation obeys the
scaling law R ~ St/[St + F(0)], where, again, a crucial parameter is the stiffness
St of the SP and F(0) represents a function that accounts for the effect of the
subduction angle 6. Adding the OP to the system, we found that R also depends
on the SI strength v, which takes into account the dissipation of energy related to
the deformation of the SI, particularly relevant for weak SPs. Then, we explored
the temporal evolution of the dissipation ratio R(t) for a SP/mante viscosity ratio
A1 = 250 and A\ = 2500. The interesting result here is that R(¢) remains always
below the value 0.5, thus showing that the energy dissipation during free subduc-
tion is never dominated by the plate bending and interface shearing contributions.
In light of these results, we finally moved on the study of large-scale mantle con-
vection in presence of strong subduction zones. More specifically, we investigated
the influence of the energy dissipation at subduction zones on the exponent § of
the scaling law Nu ~ Ra,,”, where 3 = 1/3 in the classical derivation concerning
an isoviscous fluid layer. With the help of a parameterized model of mantle con-

vection, we first showed that a crucial parameter is the time ¢ employed by the
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lithosphere to travel from the ridge to the trench of the subudction zone. Indeed,
we distinguished between two cases depending on whether or not the travel time
achieves the value ¢ ~ 80 Myr, which is commonly indicated as the age at which
seafloor flattening is observed to occur. If ¢ < 80 Myr, the thickness hgp of the SP
when it enters the subduction zone is described by the classical half-space cool-
ing model and depends on the mantle Rayleigh number Ra,,. In such case, for
a reasonable range of energy dissipation at the subduction zone, associated with
both the SP bending and the SI shearing, we found S = 1/3, as for an isoviscous
mantle. Differently, when ¢ > 80 Myr and hgp is not anymore a function of Ray,,
we found that 8 varies according to = 0.5/ (1 + CRr), where Cr = R/(1 - R) is
the ratio of the boundary-layer dissipation rate to that within the surrounding
mantle. What drammaticaly influences the result here is the length scale that
one adopts to characterize the bending of the SP. We demonstrated that if the
minimum radius of curvature of the plate is used (Rn,) the bending dissipation
of the SP is strongly overestimated leading thus to 5 — 0. By contrast, using
the correct length scale, the ‘bending length’ ¢, we found that 5 € [0.25 — 0.34],
depending on the depth of the convecting layer which one considers. This suggests
that strong subduction zones do not dominate the viscous dissipation associated
with mantle convection and that they lead to relatively small departures from the

classical Nu ~ Raml/ 3

heat transfer law. In light of such results, we conclude that
viscous dissipation at subduction zones can not be the cause underlying the fail-
ure of parameterized cooling models in predicting the present-day Urey ratio for
the Earth. We need to look somewehere else in order to reconcile the arguments
coming from geodynamical and geochemical investigations.

In the last part of the thesis, aiming to validate our last results concerning
large-scale mantle convection, we investigated a convection experiment based on
the drying of a colloidal system. Preliminary results seem to confirm some results
that have lately been published. This type of experiment seem to effectively
captures the essence of Earth’s mantle convection and the particular features which
characterized it, as, for instance, the breakage of the strong upper boundary layer
(i.e. the lithosphere) and the subsequent phenomenon of subduction. Investigate
further the link between nano-scale phenomena, colloid rheology transitions and
macroscopic response of the system seems a promising route to explore in order
to have a clearer picture of how mantle convection works and to unmask the

weakening mechanism leading to subduction initiation on Earth.
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Appendix A

Stretching rate of a thin-viscous
sheet below a lubrication layer

bounded by a free-slip surface

Our goal is to show that a positively buoyant OP beneath a thin lubrication layer
tends to deform in extension. For this purpose, we consider an isolated OP, and
assume that the shear stress acting on its upper surface is much larger than that
on its lower surface. To simplify the notation, we set z; - s, x5 - 2z, and u; - u.
The global force balance in the horizontal (s-) direction is (Ribe, 2001)

(47]2hOPU,), + Osz|z:—d1 = 07 (Al)

where primes denote d/ds, og.|.,-_q4, i the shear stress acting on the upper surface
of the OP, and the quantity in parentheses is the integral of the fibre stress o,
across the OP. To determine o, in the lubrication layer, we start from the s-

component of the momentum equation in the lubrication limit, which is

0%u
"=y A2
p =" 922 (A.2)
Since the OP is much more viscous than the lubrication layer, the effective
boundary condition on the horizontal velocity is u|.-_q, = 0. Integrating eq. (A.2)
subject to that condition and the free-slip surface condition du/dz|.-o = 0, we

obtain

du d
0s2(8,—dy) » 7708—(3, —dy) = —pl—l-
< To
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Eq. (A.1) then becomes

4772hOPU” - p/dl =0. (A4)

Now integrate eq. (A.4) once subject to the condition that both U’ and p vanish
at s =0, which yields

d
U’ !

= . A5
4772h0Pp (A-5)

Now the pressure in the OP is given by the solution of Ribe (2010), viz.,

V3s

P 2 .
—————— =-1+exp(-s/ly) — —=exp (-s/2{y) sin—, A6
hora i, p (=s/to) 7 p (—=5/20) 2 (A.6)
where
Aohd 3\ e
60:(—2 SP 1) . (A7)

Combining (A.5) and (A.6), we obtain

4no
d1gAp;

2 \/53
U'=-1 -s/ly) — — -5/24y) sin—. A8
+exp (=s/(o) \/gexp( s/2(o) sin 20, (A.8)
Eq. (A.8) describes the stretching rate of an OP that is sufficiently long that
the two ends do not influence each other. Far from the ends of the OP (s> (),

the stretching rate is

_digApy

4ns
which shows that the OP deforms by extension (U’ > 0) if it is positively buoyant
(Apy <0).

We now verify our assumption that the shear stress on the lower surface of the

U’ =

(A.9)

OP (= F;) is negligible compared to that on the upper surface (= F;). Consider
the portion of the OP of length ~ ¢y adjoining the end s = 0, where the shear stress
on the bottom surface is largest. From the above solution, we already know that

F} ~p'dy ~ hopgQApz/lo, (A.10)

where the scale for p’ comes from eq. (A.6). Now, the shear stress on the base of
the OP is

F; ~ W [y ~ di* gApa/\/Aahop, (A.11)



where the scale for W comes from eq. (B6) of Ribe (2010). Taking the ratio of

the two stresses and using eq. (A.7), we obtain

Fy “y3( da
775" (i) 12

For small values of d;/hop and large viscosity contrasts As (as in our study),
F;|Ff «< 1.

The analysis above is for an isolated OP, and succeeds in showing that a
positively buoyant OP should deform in extension. However, in our BEM model
the OP is not isolated, but is strongly influenced by the shear stress induced on its
base by the sinking of the neighboring slab. This additional shear stress is much
larger than F, and so our assumption F; <« F} breaks down. The results of the
derivation above should therefore be interpreted as indicative rather than as an

accurate reflection of the BEM model.



Appendix B

Spreading gravity current below a

free-slip surface

Inspired by the model of Holt et al. (2015a), we consider a buoyant layer of fluid
(the OP) bounded above by a free-slip surface. The OP has thickness hop, density
pop and viscosity nop, while the underlying fluid has density py = pop — Ap and
viscosity mv << nop. To lowest order, the horizontal velocity is constant across
the layer (plug flow). The horizontal force balance within the layer is (Canright
& Morris, 1993)

U ,
—[h%P+8hop(go—Pp)U]=0, (B.1)

where U’ = 90U [0s. Integrating (B.1) once, we obtain

710 /
h2p + 8hop (QAPP) U'=F, (B.2)

where ' is a constant. At the ends of the OP, U’ = hop = 0, which requires F = 0.

Therefore

hopgA
U = -LoPI2L (B.3)
8nop
Now from thin viscous-sheet theory, the horizontal normal stress in the OP is

0ss = 4noplU’, or

_ horgAp
Ogs = —————.
2
With the values hop = 80 km and Ap = =130 kg m~3 used by Holt et al. (2015a),
eq. (B.4) gives o4 ~ 50 MPa. This agrees almost exactly with the numerical
prediction of fig. 15a of Holt et al. (2015a).

(B.4)
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Appendix C

Numerical implementation

We ran all the simulations using a nonuniform mesh with increased resolution along
the upper surfaces of the plates and along the portions adjoining the subduction
interface (figure C.1). This choice follows from the requirement that the distance
between the observation point and the integration point in the Green’s functions
used in the BEM approach must always be larger than the size of the element in
order to avoid loss of accuracy (Pozrikidis, 1992). In our problem, this requires
paying particular attention to the discretization of the subduction interface where
two surfaces are close together.

With these considerations in mind, we built our mesh as follows. We began
by choosing the lower limit of the interface thickness upon which to calibrate the
corresponding resolution at the interface. Once this is done, we can safely go to
wider interfaces being sure that the accuracy criterion explained above is satisfied.
We fixed this value at dy = 0.08hgp, which represents a robust limit to simulate
sufficiently strong interfaces (7 = 12.5) in a wide range of viscosity ratios, that
is, 102 < \; < x10%, ¢ = 1 or 2. Thinner interfaces (e.g., d2 = 0.05hgp) could have

been adopted but not in combination with high viscosity ratios (\; > 5 x 10%)

......

Figure C.1. Mesh of the model.
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for which we obtained unphysical flow fields. Next, we imposed a reasonable
resolution for the lower surface of the plates (=0.1hgp) and we quadrupled it at
the interface obtaining a constant element size of ~ 0.025hgp. For the instantaneous
solutions of the model, this mesh represents a good balance between accuracy and
computational cost: decreasing the resolution by a factor of 2 led to an average
error of 10% while increasing it by the same factor resulted in exactly the same
flow field but with a significant slowdown in the computational time.

Finally, we made sure that the mesh maintained adequate resolution during
time-dependent simulations. In principle, the natural evolution of the interface(not
constrained with any ‘contact algorithm’) could reduce the thickness of the lubri-
cation layer to below the fixed element size 0.025hgp. To verify that this does
not occur, we started from an initial SI thickness ds = 0.08hgp and let the system
evolve until the slab’s tip reached the depth zo = —6.6hgp, keeping trace of the
minimum distance d3'"(t) between the two plates. We observed that dy'™ never
went below » 0.068, so that the accuracy criterion was fulfilled. We also verified
that doubling the resolution of the mesh did not result in any significant changes

in the computed flow field.
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Fi1GURE 1: Coupe transversale 3D de la zone de subduction sous l'ile de Java, Bali, Lombok et
Sumbawa en Indonésie. Crédits : Yves R. Descatoir, Earth Observatory of Singapore.

La subduction est une des principales expressions superficielles de la convection mantellique et
représente un ingrédient crucial de la géodynamique globale. Cela affecte différents processus de
la Terre comme la génération de méga tremblements de terre et volcans explosifs ou le recyclage
des especes volatiles dans l'intérieur profond. Malgré son importance évidente, plusieurs aspects
de ce phenomen restent a clarifier.

Une vue rapprochée d’une zone de subduction est donnée en figure 1. Nous voyons ici la plaque
plongeante océanique (Subducting Plate-SP), & gauche, la plaque continentale (Overriding Plate-
OP), & droite, et la zone entre les deux ot la plaque plongeante commence & se plier et & plonger
dans le manteau, appelée frontiére de plaques. Cette configuration typique capture les principales
caractéristiques d’un systeme de subduction. En developpant un model numerique de subduction
libre, dont la géométrie est montrée en figure 2, dans ce travail, nous avons étudié trois aspects
fondamentaux du phénomeéne de subduction.

1 Dynamique de la plaque de subduction océanique

Tout d’abord, nous nous sommes concentrés sur deux vitesses caractéristiques de la plaque
de subduction océanique et nous avons déterminé les lois d’échelle qui les decrivent. La vitesse
de subduction (Voony) est décrite par la loi suivante :

VConv ( l )
Joonv _ tet (g, ——, St ) , 1
Vstokes %" hgp 7 e

ol Vstokes représente la vitesse & laquelle la plaque descend (dans la limite de Stokes), 6y est
I’angle de subduction, ¢ et hgp sont des parametres qui decrivent la géométrie de la plaque
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FIGURE 2: Modele géométrique 2D de subduction libre d’une plaque plongeante caractérisée par
une viscosité n; = A1 79 et une densité p;, sous une plaque continentale caractérisée par une
viscosité 172 = Ao 79 et une densité ps. Les deux plaques sont immergées dans un fluide ambiant
de viscosité g et une densité py qui est infiniment profond et délimité au sommet (x5=0) par une
surface “free-slip”. Le symbole £, représente le parametre “bending length”, égale a la somme de
la longueur ¢ de la plaque plongeante et de la portion de la plaque plongeante située vers la mer
ou se produit un bombement.

plongeante (voir figure 2) et St et y représentent deux parametres adimensionels. Le premier, St,

est défini de la maniere suivante :
A 3
st= 1 (ﬂ) 2)
o \ b

et décrit la résistance mécanique opposée par la plaque plongeante a la flexion. Le deuxieme,
v, représente la résistance de l'interface de subduction et décrit la contrainte de cisaillement
agissant a l'interface entre les deux plaques. Sa definition mathématique est la suivante :

nst ( hsp
=2 =) 3
v no(d2>/ (3)

ou 7jg1 représente la viscosité a long terme de l'interface de subduction. Ce dernier parametre,
a été deduit pour une zone de subduction réelle utilisant la loi d’echelle (1). En comparant la
vitesse de subduction Vgony calculée par notre modele avec celle des transects centraux de la
zone de subduction des Aléoutiennes, nous avons trouvé ngsy ~ 0.37q.

Pour ce qui concerne la vitesse horizontale (Usp) de la partie plate de la plaque plongeante, de
longueur Lgp (voir figure 2), nous avons trouvé que les parametres St et 7y et plusieurs parametres
géométriques controllent cette vitesse, conformément a la loi suivante :

Usp < Lsp ¢ Lgp )
= fet | Oy, —, —, ——, St, . 4
Vstokes "¢ " hsp’ Lop 7 @

Ce qui est intéressant a remarquer ici, c’est la dépendance logarithmique presque parfaite
entre Ugp et la longeur Lsp que les solutions numériques ont montré. Cela semble étre en accord
avec des observations naturelles qui montrent, effectivement, une faible corrélation entre Ugp et
Lgp.

2 Déformation de la plaque continentale

Ensuite, nous avons essayé de mieux comprendre comment se déforme une plaque continentale
dans une zone de subduction. Notre modele de subduction montre que la plaque continentale
suit un motif récurrent de déformation qui peut étre divisé en trois zones :
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FIGURE 3: Taux de dissipation d’énergie dus & la flexion (¢, ligne continue) et

étirement /raccourcissement (¢s, ligne tiretée) d’une plaque continentale moins dense que le
manteau (I' = Apy/Ap; # 0). La variable s représente la coordonnée horizontale qui loca-
lise la plaque continentale (voir figure 2). Pour comparaison, la ligne pointillée montre la courbe
d’étirement /raccourcissement d’une plaque continentale avec la méme densité que le manteau

(' =0).



1. Déformation dominée par la compression : proche de la frontiere entre les plaques, sur une
distance de ~ 100/150 km, la plaque continentale subit une forte compression. Ceci est
di aux actions opposées de la résultante horizontale (vers la droite) de la force agissant a
I'interface, et de la force de cisaillement qui agit en-dessous de la plaque continentale en
la déplagant (& gauche) vers la plaque plongeante ;

2. Déformation dominée par la flexion : plus loin de la frontiére entre les plaques (= 150,/300
Km), les solutions numériques montrent que la plaque continentale consomme presque
toute I'énergie en fléchissant vers le haut. En revanche, si nous considérons une plaque
plongeante caractérisée par une valeur élevée de la longueur ¢ et/ou de l'angle de sub-
duction 6y, la compression reste le mode de déformation qui consomme la majorité de
I’énergie disponible ;

3. Déformation dominée par lextension : encore plus loin de la frontiere entre les plaques
(=~ 400 Km), la compression et la flexion sont négligeables si la plaque continentale a la
méme densité que le manteau. Cependant, si nous supposons que la plaque continentale
est plus légére que le manteau, une extension significative apparait. En effet, ce résultat
est directement lié a I’équation qui décrit l’extension de la plaque continentale dans un
modele simplifié de subduction :

a=- G900 o)
412
ol nous avons une déformation par extension (A > 0) quand la plaque continentale est
moins dense que le manteau Apy < 0.

3 Partitionnement de la dissipation d’énergie visqueuse
dans une zone de subduction

Dans la derniére partie de ce travail nous nous sommes concentrés sur ’aspect énergétique
du phénomene de subduction. En fait, en fonction de cela, I’évolution thermique de la Terre peut
changer drastiquement. Un parametre crucial pour ce type d’analyse est le rapport entre la somme
de ’énergie consommée pour deformer la plaque plongeante (Dgp) plus I’énergie consommée pour
déformer l'interface de subduction (Dg;) et I’énergie totale disponible dans le systeme (Drotal) :

Dsp + Ds1  DgL (©6)
DTotal DTotal ’

ou nous indiquons avec Dgy, 'énergie dissipée pour déformer ’ensemble de la couche limite

supérieure.

Nous explorons comment R varie pendant la subduction en prenant deux exemples : “faible
contraste de viscosité”, avec A\; = 250 et “contraste de viscosité élevé”, avec A1 = 2500. Les
parametres restants pour les deux exemples sont donnés dans le tableau 1. Nous avons exécuté
les simulations jusqu’a ce que la plaque plongeante atteigne la profondeur xzo = —6.7hgp ~ 660
km, en suivant R(¢) et St(t). Les résultats sont indiqués dans la figure 4 pour A; = 250 (en haut)
et Ay = 2500 (en bas). Les figures 4a et 4c montrent la géométrie du systéme a trois moments
caractéristiques. Les figures 4b et 4d illustrent I’évolution temporelle correspondante de R(t)
en fonction de St(t). Le temps augmente de droite & gauche le long de ces courbes. La fraction
Dg1/Dgy, de la dissipation de la couche limite qui se produit dans le SI est également notée pour
les trois moments.

Le premier résultat important de figure 4 est que R reste toujours en dessous de la va-
leur 0.5 correspondant a I’équipartition de la dissipation entre la couche limite et le manteau.

R=
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FIGURE 4: Subduction pour deux rapports de viscosité différents : A\ = 250 (haut) et A\; = 2500
(bas). La valeur initiale de la résistance de l'interface de subduction est v = 4 dans les deux cas.
(a) et (c) : géométrie du systeme (ligne noire=SP, ligne rouge=OP) & trois moments différents
to (le temps initial), t; et t2. (b) et (d) : rapport de dissipation R en fonction de la rigidité en
flexion variable dans le temps St(¢). La valeur du rapport Dg;/Dgy, est également indiquée aux
trois moments.

TABLE 1: Configurations initiales des modeles dont les évolutions temporelles sont illustrées en
figure 4.

SP OP
6o Lsp/hsp {¢/hsp M dao/hsp Lop/hsp hop/hsp Ao

“faible viscosité” 30° 20 5 250 0.25 20 1 250
“viscosité élevé”  30° 20 ) 2500 0.2 20 1 2500




Deuxiemement, les figures 4b et 4d montrent que I’évolution temporelle de R reflete un équilibre
entre deux effets concurrentiels : un effet dynamique (R diminue lorsque St et Dg;/Dpy, diminuent
avec le temps) et un effet géométrique (R augmente lorsque 'angle de subduction augmente).
Pour le cas A\; = 250, l'effet dynamique domine d’abord, conduisant & un diminution stable de
R avec le temps. Puis, & St & 0.6, le solde est inversé et R commence & augmenter (figure 4b).
Pour A\; = 2500, en revanche, les deux effets s’annulent presque, maintenant une valeur constante
R =~ 0.4 (figure 4d). 1l est intéressant de noter que dans les deux cas, 'importance relative de la
dissipation & linterface (Dgr/Dpgr,) diminue pendant la subduction.

4 Convection thermique sous une couche limite rigide et
déformante

Au vu des résultats obtenus, nous avons exploré l'effet de la dissipation d’energie dans les
zones de subduction sur la convection du manteau. Pour cela, en partant de ’analyse de la couche
limite & I’état d’équilibre, nous avons développé un modele simplifié de la convection mantellique.

Nous commengons par calculer le nombre de Nusselt (Nu) comme étant le rapport du flux
thermique de surface en présence de convection a celui transporté uniquement par conduction
(e.g. Turcotte & Schubert, 2014). Le numérateur est I'intégrale sur toute la longueur horizontale
L; du gradient de température vertical prédit par le modele standard de refroidissement en
demi-espace. Le dénominateur est la chaleur transportée par conduction sur toute ’épaisseur du
manteu H. Nous avons donc

Usp >1/2

7TI€Lh

(7)

ou k est la diffusivité thermique et Ugp est la vitesse horizontale du SP. En mettant a 1’échelle
I’équation de continuité, on obtient

Nu:2H<

Usp  Vsink
T, ~ L. (8)

ou L, est la distance verticale entre la pointe (plus en bas) de la plaque plongeante et sa surface
inférieure. I’équation 8 nous permet de réécrire 7 comme

Vsmk> 12

Nu ~ H (HL (9)

A partir de ’équilibre global de I’énergie mécanique, nous pouvons écrire Vgjpx comme

hsplgAp:

_ (10)
nof2(0)(1 + R)

VSink ~
ot R=R/(1— R) = Dg/D.

Parce que (10) relie la vitesse d’enfoncement de la plaque plongeante au coefficient R qui décrit
la répartition de la dissipation visqueuse entre la couche limite et le manteau, nous prévoyons
différents régimes de convection du manteau en fonction de le valeur de R.

D’abord, nous notons que si R= 0, nous trouvons le résultat standard

Nu ~ Ray,'/3 (11)
ot Ray, = H3gApy/(kmo) est le nombre de Rayleigh du manteau.

En revanche, si R # 0, nous obtenons deux cas limites. Considérons d’abord le cas d’une
lithosphere qui se déplace vers la fosse océanique en un temps t < 80 Myr, 'age a laquelle



I'aplatissement du fond marin commence a étre observé. Dans ce cas la, la loi d’échelle Nu ~
Ram'/? reste valable méme en présence de dissipation visqueuse dans la zone de subduction.
Si t > 80 Myr, par contre, nous trouvons la loi d’échelle Nu ~ RaZ , avec

12
1+ R

L’équation (12) montre que § dépend fortement du partitionnement de la dissipation d’énergie
visqueuse décrit par R. En utilisant notre modele 2D de subduction, nous avons trouvé §
[0.25 — 0.34] pour les cas montrés dans la figure 4. Nos calculs montrent qu'il est fondamental
d’utiliser I’échelle de longueur correcte ¢, (“bending length”) pour caractériser la déformation
en flexion de la plaque plongeante. En revanche, si nous utilisons le rayon de courbure minimum
Ruin, la dissipation d’énergie associée avec la flexion de la plaque plongeante est fortement
surestimée et nous obtenons 5 — 0.

Notre conclusion générale est que le phénomene de subduction ne domine pas la dissipation
visqueuse associée a la convection du manteau et que la dissipation d’énergie dans une zone de
subduction entraine des écarts relativement faibles par rapport a la loi classique du transfert
thermique. 11 est donc probablement nécessaire de chercher ailleurs pour concilier les arguments
géodynamiques et géochimiques concernant ’histoire thermique de la Terre.

(12)
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