Y. Zhang, P. Sivakumaran, A. E. Newcomb, D. Hernandez, N. Harris et al., Cardiac Repair With a Novel Population of Mesenchymal Stem Cells Resident in the Human Heart, Stem Cells, vol.33, pp.3100-3113, 2015.

L. Toro, M. Li, Z. Zhang, H. Singh, Y. Wu et al., MaxiK channel and cell signalling, Pflugers Arch, vol.466, pp.875-886, 2014.

M. T. Nelson and J. M. Quayle, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol, vol.268, pp.799-822, 1995.

G. J. Waldron, C. , and W. C. , Activation of vascular smooth muscle K+ channels by endothelium-derived relaxing factors, Clin. Exp. Pharmacol. Physiol, vol.26, pp.180-184, 1999.

E. A. Ko, J. Han, I. D. Jung, and W. S. Park, Physiological roles of K+ channels in vascular smooth muscle cells, J Smooth Muscle Res, vol.44, pp.65-81, 2008.

R. B. Tajhya, X. Hu, M. R. Tanner, R. Huq, N. Kongchan et al., Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts, Cell Death Dis, vol.7, 2016.

K. Wang, T. Xue, S. Tsang, R. Van-huizen, C. W. Wong et al., Electrophysiological properties of pluripotent human and mouse embryonic stem cells, Stem Cells, vol.23, pp.1526-1534, 2005.

J. F. Heubach, E. M. Graf, J. Leutheuser, M. Bock, B. Balana et al., Electrophysiological properties of human mesenchymal stem cells, J. Physiol, vol.554, pp.659-672, 2004.

G. Li, H. Sun, X. Deng, and C. Lau, Characterization of ionic currents in human mesenchymal stem cells from bone marrow, Stem Cells, vol.23, pp.371-382, 2005.

K. S. Park, K. H. Jung, S. H. Kim, K. S. Kim, M. R. Choi et al., Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein, Stem Cells, vol.25, pp.2044-2052, 2007.

J. H. Park, S. J. Park, M. K. Chung, K. H. Jung, M. R. Choi et al., High expression of large-conductance Ca2+-activated K+ channel in the CD133+ subpopulation of SH-SY5Y neuroblastoma cells, Biochem. Biophys. Res. Commun, vol.396, pp.637-642, 2010.

Y. Zhang, G. Li, H. Che, H. Sun, X. Li et al., Characterization of functional ion channels in human cardiac c-kit+ progenitor cells, Basic Res Cardiol, vol.109, p.407, 2014.

J. Wiecha, B. Münz, Y. Wu, T. Noll, H. Tillmanns et al., Blockade of Ca2+Activated K+ Channels Inhibits Proliferation of Human Endothelial Cells Induced by Basic Fibroblast Growth Factor, JVR, vol.35, pp.363-371, 1998.

C. R. Kuhlmann, A. K. Most, F. Li, B. M. Münz, C. A. Schaefer et al., Endothelin-1-induced proliferation of human endothelial cells depends on activation of K+ channels and Ca+ influx, Acta Physiol. Scand, vol.183, pp.161-169, 2005.

H. Hu, M. He, R. Tao, H. Sun, R. Hu et al., Characterization of ion channels in human preadipocytes, J. Cell. Physiol, vol.218, pp.427-435, 2009.

M. He, W. Liu, H. Sun, W. Wu, J. Liu et al., Effects of ion channels on proliferation in cultured human cardiac fibroblasts, Journal of Molecular and Cellular Cardiology, pp.198-206, 2011.

M. C. Shepherd, S. M. Duffy, T. Harris, G. Cruse, M. Schuliga et al., KCa3.1 Ca2+ activated K+ channels regulate human airway smooth muscle proliferation, Am. J. Respir. Cell Mol. Biol, vol.37, pp.525-531, 2007.

H. Ouadid-ahidouch, M. Roudbaraki, P. Delcourt, A. Ahidouch, N. Joury et al., Functional and molecular identification of intermediate-conductance Ca(2+)-activated K(+) channels in breast cancer cells: association with cell cycle progression, Am. J. Physiol, vol.287, pp.125-134, 2004.

Y. Zhang, G. Li, H. Che, H. Sun, G. Xiao et al., Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells, PLoS ONE, vol.10, 2015.

X. L. Deng, C. P. Lau, K. Lai, K. F. Cheung, G. K. Lau et al., Cell cycle-dependent expression of potassium channels and cell proliferation in rat mesenchymal stem cells from bone marrow, Cell Proliferation, vol.40, pp.656-670, 2007.

S. He, D. Nakada, and S. J. Morrison, Mechanisms of stem cell self-renewal, Annu. Rev. Cell Dev. Biol, vol.25, pp.377-406, 2009.

G. Ye, H. Guan, J. Karush, F. Wang, X. Xu et al., Effects of Ca2+-activated potassium and inward rectifier potassium channel on the differentiation of endothelial progenitor cells from human peripheral blood, Mol Biol Rep, vol.41, pp.3413-3423, 2014.

Y. Zhang, J. Yue, H. Che, H. Sun, H. Tse et al., BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells, J. Cell. Physiol, vol.229, pp.202-212, 2014.

T. Schilling, C. Stock, A. Schwab, and C. Eder, Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration, Eur. J. Neurosci, vol.19, pp.1469-1474, 2004.

A. K. Weaver, V. C. Bomben, and H. Sontheimer, Expression and function of calciumactivated potassium channels in human glioma cells, Glia, vol.54, pp.223-233, 2006.

C. J. Li, R. Heim, P. Lu, Y. Pu, R. Y. Tsien et al., Dynamic redistribution of calmodulin in HeLa cells during cell division as revealed by a GFP-calmodulin fusion protein technique, J. Cell. Sci, vol.112, pp.1567-1577, 1999.

E. M. Abdelalim, T. Takada, F. Toyoda, M. Omatsu-kanbe, H. Matsuura et al., In vitro expression of natriuretic peptides in cardiomyocytes differentiated from monkey embryonic stem cells, Biochem. Biophys. Res. Commun, vol.340, pp.689-695, 2006.

A. Adewumi, O. Aflatoonian, B. Ahrlund-richter, L. Amit, M. Andrews et al., Characterization of human embryonic stem cell lines by the International Stem Cell Initiative, Nat. Biotechnol, vol.25, pp.803-816, 2007.

T. Afroze, L. L. Yang, C. Wang, R. Gros, W. Kalair et al., Calcineurin-independent regulation of plasma membrane Ca2+ ATPase-4 in the vascular smooth muscle cell cycle, Am. J. Physiol. Cell Physiol, vol.285, pp.88-95, 2003.

O. Agbulut, M. Menot, Z. Li, F. Marotte, D. Paulin et al., Temporal patterns of bone marrow cell differentiation following transplantation in doxorubicin-induced cardiomyopathy, Cardiovasc. Res, vol.58, pp.451-459, 2003.

A. M. Aguiar, . De, C. Kuligovski, M. T. Costa, . Da et al., Alkaline phosphatasepositive cells isolated from human hearts have mesenchymal stem cell characteristics, Stem Cell Discov, vol.01, p.71, 2011.

N. Ahmed, D. Linardi, I. Decimo, R. Mehboob, M. A. Gebrie et al., Characterization and Expression of Sphingosine 1-Phosphate Receptors in Human and Rat Heart, Front. Pharmacol, vol.8, 2017.

A. Attar, N. Carrion, C. Ghostine, S. Garcin, I. Vilquin et al., , 2003.

. Long-term, year) functional and histological results of autologous skeletal muscle cells transplantation in rat, Cardiovasc. Res, vol.58, issue.1, pp.142-148

A. E. Alewijnse, S. L. Peters, and M. C. Michel, Cardiovascular effects of sphingosine-1phosphate and other sphingomyelin metabolites, Br. J. Pharmacol, vol.143, pp.666-684, 2004.

D. Alexander, M. Rieger, C. Klein, N. Ardjomandi, R. et al., Selection of osteoprogenitors from the jaw periosteum by a specific animal-free culture medium, PloS One, vol.8, 2013.

C. Alfarano, C. Roubeix, R. Chaaya, C. Ceccaldi, D. Calise et al., Intraparenchymal injection of bone marrow mesenchymal stem cells reduces kidney fibrosis after ischemia-reperfusion in cyclosporine-immunosuppressed rats, Cell Transplant, vol.21, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00852839

M. L. Allende, T. Yamashita, and R. L. Proia, G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation, Blood, vol.102, pp.3665-3667, 2003.

T. Al-maqtari, K. U. Hong, B. N. Vajravelu, A. Moktar, P. Cao et al., Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells, PloS One, vol.12, p.174242, 2017.

J. Altman, Autoradiographic investigation of cell proliferation in the brains of rats and cats, Anat. Rec, vol.145, pp.573-591, 1963.

J. Altman, Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb, J. Comp. Neurol, vol.137, pp.433-457, 1969.

J. Altman and G. D. Das, Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats, J. Comp. Neurol, vol.124, pp.319-335, 1965.

Y. Amoh, L. Li, R. Campillo, K. Kawahara, K. Katsuoka et al., Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.17734-17738, 2005.

Y. Ang, R. N. Rivas, A. J. Ribeiro, R. Srivas, J. Rivera et al., Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis, Cell, vol.167, pp.1734-1749, 2016.

P. Antonitsis, E. Ioannidou-papagiannaki, A. Kaidoglou, and C. Papakonstantinou, In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5azacytidine, Interact. Cardiovasc. Thorac. Surg, vol.6, pp.593-597, 2007.

P. Anversa, J. Kajstura, A. Leri, and R. Bolli, Life and death of cardiac stem cells: a paradigm shift in cardiac biology, Circulation, vol.113, pp.1451-1463, 2006.

T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. Van-der-zee et al., Isolation of putative progenitor endothelial cells for angiogenesis, Science, vol.275, pp.964-967, 1997.

F. Z. Asumda, C. , and P. B. , Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells, Differ. Res. Biol. Divers, vol.83, pp.106-115, 2012.

B. Attali, N. Wang, A. Kolot, A. Sobko, V. Cherepanov et al., Characterization of delayed rectifier Kv channels in oligodendrocytes and progenitor cells, J. Neurosci. Off. J. Soc. Neurosci, vol.17, pp.8234-8245, 1997.

M. Azhar, J. E. Schultz, I. Grupp, G. W. Dorn, P. Meneton et al., Transforming growth factor beta in cardiovascular development and function, Cytokine Growth Factor Rev, vol.14, pp.391-407, 2003.

X. Bai, J. Ma, Z. Pan, Y. Song, S. Freyberg et al., , 2007.

, Electrophysiological properties of human adipose tissue-derived stem cells, Am. J. Physiol. Cell Physiol, vol.293, pp.1539-1550

M. L. Bakker, G. J. Boink, B. J. Boukens, A. O. Verkerk, M. Van-den-boogaard et al., T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells, Cardiovasc. Res, vol.94, pp.439-449, 2012.
DOI : 10.1093/cvr/cvs120

URL : https://academic.oup.com/cardiovascres/article-pdf/94/3/439/17236732/cvs120.pdf

L. B. Balsam, A. J. Wagers, J. L. Christensen, T. Kofidis, I. L. Weissman et al., , 2004.

, Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium, Nature, vol.428, pp.668-673

L. Barile, E. Messina, A. Giacomello, and E. Marbán, Endogenous cardiac stem cells, Prog. Cardiovasc. Dis, vol.50, pp.31-48, 2007.

S. A. Bayer, Changes in the total number of dentate granule cells in juvenile and adult rats: A correlated volumetric and 3H-thymidine autoradiographic study, Exp. Brain Res, vol.46, pp.315-323, 1982.

C. Bearzi, M. Rota, T. Hosoda, J. Tillmanns, A. Nascimbene et al., Human cardiac stem cells, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.14068-14073, 2007.

C. Bearzi, A. Leri, F. Lo-monaco, M. Rota, A. Gonzalez et al., Identification of a coronary vascular progenitor cell in the human heart, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.15885-15890, 2009.

L. Becciolini, E. Meacci, C. Donati, F. Cencetti, E. Rapizzi et al., Sphingosine 1phosphate inhibits cell migration in C2C12 myoblasts, Biochim. Biophys. Acta, vol.1761, pp.43-51, 2006.

A. Behfar, L. V. Zingman, D. M. Hodgson, J. Rauzier, G. C. Kane et al., Stem cell differentiation requires a paracrine pathway in the heart, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.16, pp.1558-1566, 2002.

S. Belin, F. Kaya, G. Duisit, S. Giacometti, J. Ciccolini et al., Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression, PloS One, vol.4, p.4409, 2009.

A. P. Beltrami, K. Urbanek, J. Kajstura, S. M. Yan, N. Finato et al., Evidence that human cardiac myocytes divide after myocardial infarction, N. Engl. J. Med, vol.344, pp.1750-1757, 2001.

A. P. Beltrami, L. Barlucchi, D. Torella, M. Baker, F. Limana et al., Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell, vol.114, pp.763-776, 2003.

N. Benamer, N. Fares, P. Bois, and J. Faivre, Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts, Biochem. Biophys. Res. Commun, vol.408, pp.6-11, 2011.

O. Bergmann, S. Zdunek, A. Felker, M. Salehpour, K. Alkass et al., Dynamics of Cell Generation and Turnover in the Human Heart, Cell, vol.161, pp.1566-1575, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225091

M. J. Berridge, M. D. Bootman, and P. Lipp, Calcium-a life and death signal, Nature, vol.395, pp.645-648, 1998.

M. J. Berridge, P. Lipp, and M. D. Bootman, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol, vol.1, pp.11-21, 2000.

D. M. Bers, Cardiac excitation-contraction coupling, Nature, vol.415, pp.198-205, 2002.

M. Biel, A. Schneider, and C. Wahl, Cardiac HCN channels: structure, function, and modulation, Trends Cardiovasc. Med, vol.12, pp.206-212, 2002.

C. Bielmann, S. Rignault-clerc, L. Liaudet, F. Li, T. Kunieda et al., Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth, Basic Res. Cardiol, vol.110, p.455, 2015.

B. Biteau, C. E. Hochmuth, J. , and H. , JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut, Cell Stem Cell, vol.3, pp.442-455, 2008.

M. Bjerknes and H. Cheng, Multipotential stem cells in adult mouse gastric epithelium, Am. J. Physiol. Gastrointest. Liver Physiol, vol.283, pp.767-777, 2002.

S. Björklund, S. Palmberg, S. Rask, A. Westerdahl, and K. Törnquist, Effects of sphingosine 1-phosphate on calcium signaling, proliferation and S1P2 receptor expression in PC Cl3 rat thyroid cells, Mol. Cell. Endocrinol, vol.231, pp.65-74, 2005.

D. J. Blackiston, K. A. Mclaughlin, L. , and M. , Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle, Cell Cycle Georget. Tex, vol.8, pp.3527-3536, 2009.

A. Blatt, D. Robinson, G. Cotter, S. Efrati, Y. Simantov et al., Improved regional left ventricular function after successful satellite cell grafting in rabbits with myocardial infarction, Eur. J. Heart Fail, vol.5, pp.751-757, 2003.

R. Bolli, A. R. Chugh, D. Amario, J. H. Loughran, M. F. Stoddard et al., Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial, Lancet Lond. Engl, vol.378, pp.1847-1857, 2011.

S. Bollini, N. Smart, R. , and P. R. , Resident cardiac progenitor cells: at the heart of regeneration, J. Mol. Cell. Cardiol, vol.50, pp.296-303, 2011.

A. M. Bond, G. Ming, and H. Song, Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later, Cell Stem Cell, vol.17, pp.385-395, 2015.

A. Boni, K. Urbanek, A. Nascimbene, T. Hosoda, H. Zheng et al., Notch1 regulates the fate of cardiac progenitor cells, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.15529-15534, 2008.

T. Brand and M. D. Schneider, The TGF beta superfamily in myocardium: ligands, receptors, transduction, and function, J. Mol. Cell. Cardiol, vol.27, pp.5-18, 1995.

D. N. Brindley, D. English, C. Pilquil, K. Buri, L. et al., Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids, Biochim. Biophys. Acta, vol.1582, pp.33-44, 2002.

I. Bruzauskaite, D. Bironaite, E. Bagdonas, V. A. Skeberdis, J. Denkovskij et al., Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers, Stem Cell Res. Ther, vol.7, p.67, 2016.

L. Bu, X. Jiang, S. Martin-puig, L. Caron, S. Zhu et al., Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages, Nature, vol.460, pp.113-117, 2009.

K. J. Buckler, TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing, Pflugers Arch, vol.467, pp.1013-1025, 2015.

K. Budde, R. L. Schmouder, R. Brunkhorst, B. Nashan, P. W. Lücker et al., First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients, J. Am. Soc. Nephrol. JASN, vol.13, pp.1073-1083, 2002.

H. Bühring, V. L. Battula, S. Treml, B. Schewe, L. Kanz et al., Novel markers for the prospective isolation of human MSC, Ann. N. Y. Acad. Sci, vol.1106, pp.262-271, 2007.

M. Bujak and N. G. Frangogiannis, The role of TGF-beta signaling in myocardial infarction and cardiac remodeling, Cardiovasc. Res, vol.74, pp.184-195, 2007.

P. E. Burger, X. Xiong, S. Coetzee, S. N. Salm, D. Moscatelli et al., Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.7180-7185, 2005.

P. W. Burridge, S. Thompson, M. A. Millrod, S. Weinberg, X. Yuan et al., A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability, PloS One, vol.6, 2011.

G. Bussolati, C. , and P. , Editorial: the oxytocin/oxytocin receptor system-expect the unexpected, Endocrinology, vol.142, pp.1377-1379, 2001.

C. Cai, X. Liang, Y. Shi, P. Chu, S. L. Pfaff et al., Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart, Dev. Cell, vol.5, pp.877-889, 2003.

J. Cai, A. Cheng, Y. Luo, C. Lu, M. P. Mattson et al., Membrane properties of rat embryonic multipotent neural stem cells, J. Neurochem, vol.88, pp.212-226, 2004.

S. Calise, S. Blescia, F. Cencetti, C. Bernacchioni, C. Donati et al., Sphingosine 1phosphate stimulates proliferation and migration of satellite cells: role of S1P receptors, Biochim. Biophys. Acta, vol.1823, pp.439-450, 2012.

V. A. Cameron, M. T. Rademaker, L. J. Ellmers, E. A. Espiner, M. G. Nicholls et al., , 2000.

. Atrial, ANP) and brain natriuretic peptide (BNP) expression after myocardial infarction in sheep: ANP is synthesized by fibroblasts infiltrating the infarct, Endocrinology, vol.141, pp.4690-4697

C. Campagnoli, I. A. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono et al., Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow, Blood, vol.98, pp.2396-2402, 2001.

A. I. Caplan, Molecular and cellular differentiation of muscle, cartilage, and bone in the developing limb, Prog. Clin. Biol. Res, vol.217, pp.307-318, 1986.

C. A. Carr, D. J. Stuckey, J. J. Tan, S. C. Tan, R. S. Gomes et al., Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 weeks-an MRI study, PloS One, vol.6, p.25669, 2011.

P. Cassoni, A. Sapino, L. Munaron, S. Deaglio, B. Chini et al., Activation of functional oxytocin receptors stimulates cell proliferation in human trophoblast and choriocarcinoma cell lines, Endocrinology, vol.142, pp.1130-1136, 2001.

C. Castaldo, F. Di-meglio, D. Nurzynska, G. Romano, C. Maiello et al., CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression, Stem Cells Dayt. Ohio, vol.26, pp.1723-1731, 2008.

W. A. Catterall, Voltage-Gated Calcium Channels, Cold Spring Harb. Perspect. Biol, vol.3, 2011.

W. A. Catterall and T. M. Swanson, Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels, Mol. Pharmacol, vol.88, pp.141-150, 2015.

S. A. Chamuleau, E. Van-belle, and P. A. Doevendans, Enhancing cardiac stem cell differentiation into cardiomyocytes, Cardiovasc. Res, vol.82, pp.385-387, 2009.

S. S. Chan, J. Chen, S. Hwang, I. Wang, H. Li et al., , 2009.

, Salvianolic acid B-vitamin C synergy in cardiac differentiation from embryonic stem cells, Biochem. Biophys. Res. Commun, vol.387, pp.723-728

F. Charron and M. Nemer, GATA transcription factors and cardiac development, Semin. Cell Dev. Biol, vol.10, pp.85-91, 1999.

F. C. Chatelain, D. Bichet, D. Douguet, S. Feliciangeli, S. Bendahhou et al., TWIK1, a unique background channel with variable ion selectivity, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.5499-5504, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00731871

H. Che, G. Xiao, H. Sun, Y. Wang, L. et al., Functional TRPV2 and TRPV4 channels in human cardiac c-kit+ progenitor cells, J. Cell. Mol. Med, vol.20, pp.1118-1127, 2016.

J. Chen, H. Liu, J. Liu, J. Qi, B. Wei et al., H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs, Nat. Genet, vol.45, pp.34-42, 2013.

J. Chen, R. Tao, H. Sun, H. Tse, C. Lau et al., Multiple Ca2+ signaling pathways regulate intracellular Ca2+ activity in human cardiac fibroblasts, J. Cell. Physiol, vol.223, pp.68-75, 2010.

J. C. Cheng, C. B. Matsen, F. A. Gonzales, W. Ye, S. Greer et al., Inhibition of DNA methylation and reactivation of silenced genes by zebularine, J. Natl. Cancer Inst, vol.95, pp.399-409, 2003.

K. R. Chien and E. N. Olson, Converging pathways and principles in heart development and disease: CV@CSH, Cell, vol.110, pp.153-162, 2002.

I. Chimenti, R. R. Smith, T. Li, G. Gerstenblith, E. Messina et al., Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice, Circ. Res, vol.106, pp.971-980, 2010.

J. J. Chong, V. Chandrakanthan, M. Xaymardan, N. S. Asli, J. Li et al., Adult cardiac-resident MSC-like stem cells with a proepicardial origin, Cell Stem Cell, vol.9, pp.527-540, 2011.

J. J. Chong, E. Forte, and R. P. Harvey, Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells, Stem Cell Res, vol.13, pp.592-614, 2014.

A. H. Christensen, F. C. Chatelain, I. G. Huttner, M. S. Olesen, M. Soka et al., The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size, J. Mol. Cell. Cardiol, vol.97, pp.24-35, 2016.

C. Christov, F. Chrétien, R. Abou-khalil, G. Bassez, G. Vallet et al., Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners, Mol. Biol. Cell, vol.18, pp.1397-1409, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00128985

A. R. Chugh, G. M. Beache, J. H. Loughran, N. Mewton, J. B. Elmore et al., Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance, Circulation, vol.126, pp.54-64, 2012.

F. Ciccolini, T. J. Collins, J. Sudhoelter, P. Lipp, M. J. Berridge et al., Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation, J. Neurosci. Off. J. Soc. Neurosci, vol.23, pp.103-111, 2003.

D. E. Clapham, Calcium signaling, Cell, vol.131, pp.1047-1058, 2007.

P. Codega, V. Silva-vargas, A. Paul, A. R. Maldonado-soto, A. M. Deleo et al., Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche, Neuron, vol.82, pp.545-559, 2014.

E. Coppi, A. M. Pugliese, S. Urbani, A. Melani, E. Cerbai et al., ATP modulates cell proliferation and elicits two different electrophysiological responses in human mesenchymal stem cells, Stem Cells Dayt. Ohio, vol.25, pp.1840-1849, 2007.

S. Corey, G. Krapivinsky, L. Krapivinsky, and D. E. Clapham, Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh. J. Biol. Chem, vol.273, pp.5271-5278, 1998.

S. R. Cunha, T. J. Hund, S. Hashemi, N. Voigt, N. Li et al., Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation, Circulation, vol.124, pp.1212-1222, 2011.

G. F. Curley, M. Hayes, B. Ansari, G. Shaw, A. Ryan et al., Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat, Thorax, vol.67, pp.496-501, 2012.

D. 'amario, D. Fiorini, C. Campbell, P. M. Goichberg, P. Sanada et al., Functionally-Competent Cardiac Stem Cells Can Be Isolated from Endomyocardial Biopsies of Patients with Advanced Cardiomyopathies, Circ. Res, vol.108, pp.857-861, 2011.

A. Das, J. James, J. Rahnenführer, W. Thoreson, S. Bhattacharya et al., Retinal properties and potential of the adult mammalian ciliary epithelium stem cells, Vision Res, vol.45, pp.1653-1666, 2005.

D. 'ascenzo, M. Piacentini, R. Casalbore, P. Budoni, M. Pallini et al., Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation, Eur. J. Neurosci, vol.23, pp.935-944, 2006.

J. Davaille, C. Gallois, A. Habib, L. Li, A. Mallat et al., , 2000.

, Antiproliferative properties of sphingosine 1-phosphate in human hepatic myofibroblasts. A cyclooxygenase-2 mediated pathway, J. Biol. Chem, vol.275, pp.34628-34633

E. P. Davis, F. Waffarn, and C. A. Sandman, Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full-term infants, Dev. Psychobiol, vol.53, pp.175-183, 2011.

P. De-koninck and H. Schulman, Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations, Science, vol.279, pp.227-230, 1998.

A. Dellavalle, M. Sampaolesi, R. Tonlorenzi, E. Tagliafico, B. Sacchetti et al., Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells, Nat. Cell Biol, vol.9, pp.255-267, 2007.

F. Deng, H. Lei, Y. Hu, L. He, H. Fu et al., Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells, Cell Tissue Bank, vol.17, pp.147-159, 2016.

X. Deng, H. Sun, C. Lau, L. , and G. , Properties of ion channels in rabbit mesenchymal stem cells from bone marrow, Biochem. Biophys. Res. Commun, vol.348, pp.301-309, 2006.

X. L. Deng, C. P. Lau, K. Lai, K. F. Cheung, G. K. Lau et al., Cell cycle-dependent expression of potassium channels and cell proliferation in rat mesenchymal stem cells from bone marrow, Cell Prolif, vol.40, pp.656-670, 2007.

J. E. Dennis, A. Merriam, A. Awadallah, J. U. Yoo, B. Johnstone et al., A Quadripotential Mesenchymal Progenitor Cell Isolated from the Marrow of an Adult Mouse, J. Bone Miner. Res, vol.14, pp.700-709, 1999.

A. Deten, A. Hölzl, M. Leicht, W. Barth, and H. G. Zimmer, Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats, J. Mol. Cell. Cardiol, vol.33, pp.1191-1207, 2001.

A. Deten, H. C. Volz, S. Clamors, S. Leiblein, W. Briest et al., , 2005.

, Hematopoietic stem cells do not repair the infarcted mouse heart, Cardiovasc. Res, vol.65, pp.52-63

L. Devito, H. Badraiq, A. Galleu, D. K. Taheem, S. Codognotto et al., Wharton's jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1(+) subpopulation, Regen. Med, vol.9, pp.723-732, 2014.

D. Nicola, M. Carlo-stella, C. Magni, M. Milanesi, M. Longoni et al., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli, Blood, vol.99, pp.3838-3843, 2002.

J. M. Diver, S. O. Sage, and J. A. Rosado, The inositol trisphosphate receptor antagonist 2aminoethoxydiphenylborate (2-APB) blocks Ca2+ entry channels in human platelets: cautions for its use in studying Ca2+ influx, Cell Calcium, vol.30, pp.323-329, 2001.

R. E. Dolmetsch, K. Xu, L. , and R. S. , Calcium oscillations increase the efficiency and specificity of gene expression, Nature, vol.392, pp.933-936, 1998.

M. Dominici, K. Le-blanc, I. Mueller, I. Slaper-cortenbach, F. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, pp.315-317, 2006.

C. Donati, F. Cencetti, P. Nincheri, C. Bernacchioni, S. Brunelli et al., Sphingosine 1-phosphate mediates proliferation and survival of mesoangioblasts, Stem Cells Dayt. Ohio, vol.25, pp.1713-1719, 2007.

C. Donati, F. Cencetti, and P. Bruni, Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology, Front. Physiol, vol.4, p.338, 2013.

J. Dorfman, M. Duong, A. Zibaitis, M. P. Pelletier, D. Shum-tim et al., , 1998.

, Myocardial tissue engineering with autologous myoblast implantation, J. Thorac. Cardiovasc. Surg, vol.116, pp.744-751

K. Drabek, L. Gutiérrez, M. Vermeij, T. Clapes, S. R. Patel et al., The microtubule plus-end tracking protein CLASP2 is required for hematopoiesis and hematopoietic stem cell maintenance, Cell Rep, vol.2, pp.781-788, 2012.

Y. Du, D. Li, C. Han, H. Wu, L. Xu et al., Exosomes from HumanInduced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/ Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol, vol.43, pp.611-625, 2017.

G. Duester, Retinoic acid synthesis and signaling during early organogenesis, Cell, vol.134, pp.921-931, 2008.
DOI : 10.1016/j.cell.2008.09.002

URL : https://doi.org/10.1016/j.cell.2008.09.002

G. Dupont, G. Houart, D. Koninck, and P. , Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model, Cell Calcium, vol.34, pp.485-497, 2003.

C. E. Eckfeldt, E. M. Mendenhall, and C. M. Verfaillie, The molecular repertoire of the "almighty" stem cell, Nat. Rev. Mol. Cell Biol, vol.6, pp.726-737, 2005.

M. A. Edalatmanesh, A. R. Bahrami, E. Hosseini, M. Hosseini, and S. Khatamsaz, Bone marrow derived mesenchymal stem cell transplantation in cerebellar degeneration: a behavioral study, Behav. Brain Res, vol.225, pp.63-70, 2011.

E. E. Egom, J. S. Bae, R. Capel, M. Richards, Y. Ke et al., Effect of sphingosine-1-phosphate on L-type calcium current and Ca(2+) transient in rat ventricular myocytes, Mol. Cell. Biochem, vol.419, pp.83-92, 2016.

L. M. Eisenberg, L. Burns, and C. A. Eisenberg, Hematopoietic cells from bone marrow have the potential to differentiate into cardiomyocytes in vitro, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol, vol.274, pp.870-882, 2003.

G. M. Ellison, C. Vicinanza, A. J. Smith, I. Aquila, A. Leone et al., Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair, Cell, vol.154, pp.827-842, 2013.

M. Y. Emmert, L. S. Emmert, A. Martens, I. Ismail, I. Schmidt-richter et al., Higher frequencies of BCRP+ cardiac resident cells in ischaemic human myocardium, Eur. Heart J, vol.34, pp.2830-2838, 2013.

J. F. Engelhardt, Stem cell niches in the mouse airway, Am. J. Respir. Cell Mol. Biol, vol.24, pp.649-652, 2001.

R. M. Enmon, K. C. O'connor, H. Song, D. J. Lacks, and D. K. Schwartz, Aggregation kinetics of well and poorly differentiated human prostate cancer cells, Biotechnol. Bioeng, vol.80, pp.580-588, 2002.

P. Enyedi, C. , and G. , Molecular background of leak K+ currents: two-pore domain potassium channels, Physiol. Rev, vol.90, pp.559-605, 2010.

M. A. Esteban, T. Wang, B. Qin, J. Yang, D. Qin et al., , 2010.

, Vitamin C enhances the generation of mouse and human induced pluripotent stem cells, Cell Stem Cell, vol.6, pp.71-79

G. P. Fadini, E. Boscaro, S. De-kreutzenberg, C. Agostini, F. Seeger et al., Time Course and Mechanisms of Circulating Progenitor Cell Reduction in the Natural History of Type 2 Diabetes, Diabetes Care, vol.33, pp.1097-1102, 2010.

C. G. Fan, F. W. Tang, Q. J. Zhang, S. H. Lu, H. Y. Liu et al., Characterization and neural differentiation of fetal lung mesenchymal stem cells, Cell Transplant, vol.14, pp.311-321, 2005.

S. Fang, J. Wei, N. Pentinmikko, H. Leinonen, and P. Salven, Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell, PLoS Biol, vol.10, 2012.

A. Faroni, S. W. Rothwell, A. A. Grolla, G. Terenghi, V. Magnaghi et al., Differentiation of adipose-derived stem cells into Schwann cell phenotype induces expression of P2X receptors that control cell death, Cell Death Dis, vol.4, p.743, 2013.

S. Feliciangeli, F. C. Chatelain, D. Bichet, L. , and F. , The family of K2P channels: salient structural and functional properties, J. Physiol, vol.593, pp.2587-2603, 2015.

K. J. Fernandes, I. A. Mckenzie, P. Mill, K. M. Smith, M. Akhavan et al., A dermal niche for multipotent adult skin-derived precursor cells, Nat. Cell Biol, vol.6, pp.1082-1093, 2004.
DOI : 10.1038/ncb1181

J. Ferreira-martins, C. Rondon-clavo, D. Tugal, J. A. Korn, R. Rizzi et al., Spontaneous calcium oscillations regulate human cardiac progenitor cell growth, Circ. Res, vol.105, pp.764-774, 2009.
DOI : 10.1161/circresaha.109.206698

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.109.206698

A. Fiorio-pla, D. Maric, S. Brazer, P. Giacobini, X. Liu et al., Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation, J. Neurosci. Off. J. Soc. Neurosci, vol.25, pp.2687-2701, 2005.

O. Forostyak, N. Romanyuk, A. Verkhratsky, E. Sykova, and G. Dayanithi, Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors, Stem Cells Dev, vol.22, pp.1506-1521, 2013.

O. Forostyak, S. Forostyak, S. Kortus, E. Sykova, A. Verkhratsky et al., Physiology of Ca2+ signalling in stem cells of different origins and differentiation stages, Cell Calcium, vol.59, pp.57-66, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000108

N. Frey, T. A. Mckinsey, and E. N. Olson, Decoding calcium signals involved in cardiac growth and function, Nat. Med, vol.6, pp.1221-1227, 2000.
DOI : 10.1038/81321

K. Fukuda, Reprogramming of bone marrow mesenchymal stem cells into cardiomyocytes, C. R. Biol, vol.325, pp.1027-1038, 2002.
DOI : 10.1016/s1631-0691(02)01524-x

N. Gaborit, L. Bouter, S. Szuts, V. Varro, A. Escande et al., Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart, J. Physiol, vol.582, pp.675-693, 2007.

E. Gambini, G. Pompilio, A. Biondi, F. Alamanni, M. C. Capogrossi et al., C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment, Cardiovasc. Res, vol.89, pp.362-373, 2011.
DOI : 10.1093/cvr/cvq292

URL : https://academic.oup.com/cardiovascres/article-pdf/89/2/362/17199684/cvq292.pdf

E. J. Gang, D. Bosnakovski, C. A. Figueiredo, J. W. Visser, and R. C. Perlingeiro, SSEA-4 identifies mesenchymal stem cells from bone marrow, Blood, vol.109, pp.1743-1751, 2007.
DOI : 10.1182/blood-2005-11-010504

URL : http://www.bloodjournal.org/content/109/4/1743.full.pdf

J. G. Garcia, F. Liu, A. D. Verin, A. Birukova, M. A. Dechert et al., Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edgdependent cytoskeletal rearrangement, J. Clin. Invest, vol.108, pp.689-701, 2001.

S. Gardner, D. Alzhanov, P. Knollman, D. Kuninger, R. et al., TGF-? inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II, Mol. Endocrinol. Baltim. Md, vol.25, pp.128-137, 2011.

C. E. Gargett, Uterine stem cells: what is the evidence?, Hum. Reprod. Update, vol.13, pp.87-101, 2007.

N. Gassanov, F. Er, N. Zagidullin, M. Jankowski, J. Gutkowska et al., Retinoid acidinduced effects on atrial and pacemaker cell differentiation and expression of cardiac ion channels, Differ. Res. Biol. Divers, vol.76, pp.971-980, 2008.

M. S. Gay, Y. Li, F. Xiong, T. Lin, and L. Zhang, Dexamethasone Treatment of Newborn Rats Decreases Cardiomyocyte Endowment in the Developing Heart through Epigenetic Modifications, PloS One, vol.10, p.125033, 2015.

N. Gellings-lowe, J. S. Swaney, K. M. Moreno, and R. A. Sabbadini, Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-?-stimulated collagen production by cardiac fibroblasts, Cardiovasc. Res, vol.82, pp.303-312, 2009.

M. Ghosh, K. M. Helm, R. W. Smith, M. S. Giordanengo, B. Li et al., A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell, Am. J. Respir. Cell Mol. Biol, vol.45, pp.459-469, 2011.

G. Gimpl and F. Fahrenholz, The oxytocin receptor system: structure, function, and regulation, Physiol. Rev, vol.81, pp.629-683, 2001.

S. Gojo, N. Gojo, Y. Takeda, T. Mori, H. Abe et al., In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells, Exp. Cell Res, vol.288, pp.51-59, 2003.

K. Golan, O. Kollet, and T. Lapidot, Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling. Pharmaceuticals, vol.6, pp.1145-1169, 2013.

M. A. Goodell, H. Nguyen, and N. Shroyer, Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments, Nat. Rev. Mol. Cell Biol, vol.16, pp.299-309, 2015.

L. Grajales, J. García, K. Banach, and D. L. Geenen, Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development, J. Mol. Cell. Cardiol, vol.48, pp.735-745, 2010.

L. Grajales, L. E. Lach, P. Janisch, D. L. Geenen, and J. García, Temporal expression of calcium channel subunits in satellite cells and bone marrow mesenchymal cells, Stem Cell Rev, vol.11, pp.408-422, 2015.

S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.13625-13630, 2000.

P. J. Gruber, S. W. Kubalak, T. Pexieder, H. M. Sucov, R. M. Evans et al., RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice, J. Clin. Invest, vol.98, pp.1332-1343, 1996.

K. Guan and G. Hasenfuss, Cardiac resident progenitor cells: evidence and functional significance, Eur. Heart J, vol.34, pp.2784-2787, 2013.

F. Guilak, B. T. Estes, B. O. Diekman, F. T. Moutos, and J. M. Gimble, 2010 Nicolas Andry Award: Multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering, Clin. Orthop, vol.468, pp.2530-2540, 2010.

J. M. Gulbis, S. Mann, and R. Mackinnon, Structure of a Voltage-Dependent K+ Channel ? Subunit, Cell, vol.97, pp.943-952, 1999.

E. Gussoni, Y. Soneoka, C. D. Strickland, E. A. Buzney, M. K. Khan et al., Dystrophin expression in the mdx mouse restored by stem cell transplantation, Nature, vol.401, pp.390-394, 1999.

J. Gutkowska, M. Jankowski, and J. Antunes-rodrigues, The role of oxytocin in cardiovascular regulation, Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol, vol.47, pp.206-214, 2014.

W. Han, W. Bao, Z. Wang, and S. Nattel, Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle, Circ. Res, vol.91, pp.790-797, 2002.

X. D. Han, S. W. Chung, and P. M. Wong, Identification of a unique membrane-bound molecule on a hemopoietic stem cell line and on multipotent progenitor cells, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.11014-11018, 1995.

Y. Han, J. Chen, Z. Liu, Y. Zhou, J. Xia et al., Functional ion channels in mouse cardiac c-kit(+) cells, Am. J. Physiol. Cell Physiol, vol.298, pp.1109-1117, 2010.

P. Hannanta-anan and B. Y. Chow, Optogenetic Control of Calcium Oscillation Waveform Defines NFAT as an Integrator of Calcium Load, Cell Syst, vol.2, pp.283-288, 2016.

S. I. Hashem and W. C. Claycomb, Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes, Mol. Cell. Biochem, vol.383, pp.161-171, 2013.

T. J. Hawke and D. J. Garry, Myogenic satellite cells: physiology to molecular biology, J. Appl. Physiol. Bethesda Md, vol.91, pp.534-551, 1985.

S. E. Haynesworth, M. A. Baber, and A. I. Caplan, Cell surface antigens on human marrowderived mesenchymal cells are detected by monoclonal antibodies, Bone, vol.13, pp.69-80, 1992.

S. He, D. Nakada, and S. J. Morrison, Mechanisms of stem cell self-renewal, Annu. Rev. Cell Dev. Biol, vol.25, pp.377-406, 2009.

Z. He, H. Li, S. Zuo, Z. Pasha, Y. Wang et al., Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes, Stem Cells Dev, vol.20, pp.1771-1778, 2011.

J. Heineke, M. Auger-messier, J. Xu, T. Oka, M. A. Sargent et al., Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart, J. Clin. Invest, vol.117, pp.3198-3210, 2007.

J. F. Heubach, E. M. Graf, J. Leutheuser, M. Bock, B. Balana et al., Electrophysiological properties of human mesenchymal stem cells, J. Physiol, vol.554, pp.659-672, 2004.

H. Hibino, A. Inanobe, K. Furutani, S. Murakami, I. Findlay et al., Inwardly rectifying potassium channels: their structure, function, and physiological roles, Physiol. Rev, vol.90, pp.291-366, 2010.

A. M. Hierlihy, P. Seale, C. G. Lobe, M. A. Rudnicki, and L. A. Megeney, The post-natal heart contains a myocardial stem cell population, FEBS Lett, vol.530, pp.239-243, 2002.

T. Hochgreb, V. L. Linhares, D. C. Menezes, A. C. Sampaio, C. Y. Yan et al., A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field, Dev. Camb. Engl, vol.130, pp.5363-5374, 2003.

W. M. Hoogaars, A. Engel, J. F. Brons, A. O. Verkerk, F. J. De-lange et al., Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria, Genes Dev, vol.21, pp.1098-1112, 2007.

M. Horackova, R. Arora, R. Chen, J. A. Armour, P. A. Cattini et al., Cell transplantation for treatment of acute myocardial infarction: unique capacity for repair by skeletal muscle satellite cells, Am. J. Physiol. Heart Circ. Physiol, vol.287, pp.1599-1608, 2004.

A. Hotchkiss, T. Feridooni, F. Zhang, and K. B. Pasumarthi, The effects of calcium channel blockade on proliferation and differentiation of cardiac progenitor cells, Cell Calcium, vol.55, pp.238-251, 2014.

S. R. Houser and J. D. Molkentin, Does contractile Ca2+ control calcineurin-NFAT signaling and pathological hypertrophy in cardiac myocytes?, Sci. Signal, vol.1, p.31, 2008.

H. Hu, M. He, R. Tao, H. Sun, R. Hu et al., Characterization of ion channels in human preadipocytes, J. Cell. Physiol, vol.218, pp.427-435, 2009.

Q. Hu, S. Deshpande, K. Irani, and R. C. Ziegelstein, Ca2+] i Oscillation Frequency Regulates Agonist-stimulated NF-?B Transcriptional Activity, J. Biol. Chem, vol.274, pp.33995-33998, 1999.

Q. Hu, V. Natarajan, and R. C. Ziegelstein, Phospholipase D regulates calcium oscillation frequency and nuclear factor-kappaB activity in histamine-stimulated human endothelial cells, Biochem. Biophys. Res. Commun, vol.292, pp.325-332, 2002.

T. J. Hund and P. J. Mohler, Ankyrin-based targeting pathway regulates human sinoatrial node automaticity, Channels Austin Tex, vol.2, pp.404-406, 2008.

M. G. Iachininoto, S. Capodimonti, M. V. Podda, C. G. Valentini, M. Bianchi et al., In vitro cardiomyocyte differentiation of umbilical cord blood cells: crucial role for c-kit(+) cells, Cytotherapy, vol.17, pp.1627-1637, 2015.

C. B. Iancu, D. Iancu, I. Ren?ea, S. Hostiuc, D. Dermengiu et al., Molecular signatures of cardiac stem cells, Romanian J. Morphol. Embryol. Rev. Roum. Morphol. Embryol, vol.56, pp.1255-1262, 2015.

H. Ikeda, H. Satoh, M. Yanase, Y. Inoue, T. Tomiya et al., Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5, Gastroenterology, vol.124, pp.459-469, 2003.

P. S. Anker, S. A. Scherjon, C. Kleijburg-van-der-keur, W. A. Noort, F. H. Claas et al., Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation, Blood, vol.102, pp.1548-1549, 2003.

G. Innamorati, E. Fontana, F. Steccanella, K. Gandhi, G. Bassi et al., , 2017.

, Pleiotropic effects of sphingosine-1-phosphate signaling to control human chorionic mesenchymal stem cell physiology, Cell Death Dis, vol.8, p.2930

K. Inniss, M. , and H. , Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate, Stem Cells Dev, vol.15, pp.789-796, 2006.

A. Itzhaki-alfia, J. Leor, E. Raanani, L. Sternik, D. Spiegelstein et al., Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells, Circulation, vol.120, pp.2559-2566, 2009.

D. Ivanyuk, G. Budash, Y. Zheng, J. A. Gaspar, U. Chaudhari et al., Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/?-Catenin Signaling Pathway, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol, vol.36, pp.810-830, 2015.

K. A. Jackson, S. M. Majka, H. Wang, J. Pocius, C. J. Hartley et al., Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells, J. Clin. Invest, vol.107, pp.1395-1402, 2001.

J. Jäderstad, L. M. Jäderstad, J. Li, S. Chintawar, C. Salto et al., Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.5184-5189, 2010.

S. Jang, H. Cho, Y. Cho, J. Park, J. et al., Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin, BMC Cell Biol, vol.11, p.25, 2010.

J. A. Jansen, T. A. Van-veen, J. M. De-bakker, and H. V. Van-rijen, Cardiac connexins and impulse propagation, J. Mol. Cell. Cardiol, vol.48, pp.76-82, 2010.

S. Jin, D. Tian, J. Chen, L. Zhu, S. Liu et al., Passive sensitization increases histaminestimulated calcium signaling and NF-?B transcription activity in bronchial epithelial cells, Acta Pharmacol. Sin, vol.27, pp.708-714, 2006.

Y. Jin, E. Knudsen, L. Wang, Y. Bryceson, B. Damaj et al., , 2003.

, Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation, Blood, vol.101, pp.4909-4915

Z. Jin, E. J. Goetzl, and J. S. Karliner, Sphingosine Kinase Activation Mediates Ischemic Preconditioning in Murine Heart, Circulation, vol.110, pp.1980-1989, 2004.

P. V. Johnston, T. Sasano, K. Mills, R. Evers, S. Lee et al., Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy, Circulation, vol.120, p.1083, 2009.

R. Jüttermann, E. Li, J. , and R. , Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.11797-11801, 1994.

J. Kajstura, A. Leri, N. Finato, C. Di-loreto, C. A. Beltrami et al., Myocyte proliferation in end-stage cardiac failure in humans, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.8801-8805, 1998.

J. Kajstura, M. Rota, B. Whang, S. Cascapera, T. Hosoda et al., Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion, Circ. Res, vol.96, pp.127-137, 2005.

M. S. Kaplan and J. W. Hinds, Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs, Science, vol.197, pp.1092-1094, 1977.

S. J. Kattman, A. D. Witty, M. Gagliardi, N. C. Dubois, M. Niapour et al., Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines, Cell Stem Cell, vol.8, pp.228-240, 2011.

A. Kawamoto and D. W. Losordo, Endothelial Progenitor Cells for Cardiovascular Regeneration, Trends Cardiovasc. Med, vol.18, pp.33-37, 2008.

S. Kawano, S. Shoji, S. Ichinose, K. Yamagata, M. Tagami et al., Characterization of Ca(2+) signaling pathways in human mesenchymal stem cells, Cell Calcium, vol.32, pp.165-174, 2002.

S. Kawano, K. Otsu, S. Shoji, K. Yamagata, and M. Hiraoka, Ca(2+) oscillations regulated by Na(+)-Ca(2+) exchanger and plasma membrane Ca(2+) pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells, Cell Calcium, vol.34, pp.145-156, 2003.

S. Kawano, K. Otsu, A. Kuruma, S. Shoji, E. Yanagida et al., ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells, Cell Calcium, vol.39, pp.313-324, 2006.

T. Kawata, T. Ishizuka, H. Tomura, T. Hisada, K. Dobashi et al., Sphingosine 1-phosphate inhibits migration and RANTES production in human bronchial smooth muscle cells, Biochem. Biophys. Res. Commun, vol.331, pp.640-647, 2005.

G. M. Keating, Azacitidine: a review of its use in higher-risk myelodysplastic syndromes/acute myeloid leukaemia, Drugs, vol.69, pp.2501-2518, 2009.

M. C. Keith, X. Tang, Y. Tokita, Q. Li, S. Ghafghazi et al., Safety of intracoronary infusion of 20 million C-kit positive human cardiac stem cells in pigs, PloS One, vol.10, 2015.

B. A. Kelly, A. J. Lewandowski, S. A. Worton, E. F. Davis, M. Lazdam et al., Antenatal glucocorticoid exposure and long-term alterations in aortic function and glucose metabolism, Pediatrics, vol.129, pp.1282-1290, 2012.

A. Y. Khakoo and T. Finkel, Endothelial progenitor cells, Annu. Rev. Med, vol.56, pp.79-101, 2005.

Y. S. Kim, A. , and Y. , A long road for stem cells to cure sick hearts: update on recent clinical trials, Korean Circ. J, vol.42, pp.71-79, 2012.

C. F. Kim, E. L. Jackson, A. E. Woolfenden, S. Lawrence, I. Babar et al., Identification of bronchioalveolar stem cells in normal lung and lung cancer, Cell, vol.121, pp.823-835, 2005.

T. Kimura, T. Watanabe, K. Sato, J. Kon, H. Tomura et al., Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Biochem. J. 348 Pt, vol.1, pp.71-76, 2000.

K. Kitisin, T. Saha, T. Blake, N. Golestaneh, M. Deng et al., Tgf-Beta signaling in development, Sci. STKE Signal Transduct. Knowl. Environ, p.1, 2007.

M. J. Kluk and T. Hla, Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration, Circ. Res, vol.89, pp.496-502, 2001.

Y. M. Klyachkin, P. R. Nagareddy, S. Ye, M. Wysoczynski, A. Asfour et al., Pharmacological Elevation of Circulating Bioactive Phosphosphingolipids Enhances Myocardial Recovery After Acute Infarction, Stem Cells Transl. Med, vol.4, pp.1333-1343, 2015.

S. C. Kolwicz, S. M. Macdonnell, B. F. Renna, P. O. Reger, R. Seqqat et al., Left ventricular remodeling with exercise in hypertension, Am. J. Physiol. Heart Circ. Physiol, vol.297, pp.1361-1368, 2009.
DOI : 10.1152/ajpheart.01253.2008

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770762/pdf

Y. Kong, H. Wang, T. Lin, W. , and S. , Sphingosine-1-phosphate/S1P Receptors Signaling Modulates Cell Migration in Human Bone Marrow-Derived Mesenchymal Stem Cells, Mediators Inflamm, 2014.
DOI : 10.1155/2014/565369

URL : http://downloads.hindawi.com/journals/mi/2014/565369.pdf

P. D. Kotova, V. Y. Sysoeva, O. A. Rogachevskaja, M. F. Bystrova, A. S. Kolesnikova et al., Functional expression of adrenoreceptors in mesenchymal stromal cells derived from the human adipose tissue, Biochim. Biophys. Acta, vol.1843, pp.1899-1908, 2014.

G. Krapivinsky, E. A. Gordon, K. Wickman, B. Velimirovi?, L. Krapivinsky et al., , 1995.

, The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)channel proteins, Nature, vol.374, pp.135-141

H. Kubo, A. , and K. , The bloody fate of endothelial stem cells, Genes Dev, vol.17, pp.322-329, 2003.
DOI : 10.1101/gad.1071203

URL : http://genesdev.cshlp.org/content/17/3/322.full.pdf

H. Kubo, N. Jaleel, A. Kumarapeli, R. M. Berretta, G. Bratinov et al., Increased cardiac myocyte progenitors in failing human hearts, Circulation, vol.118, pp.649-657, 2008.
DOI : 10.1016/j.cardfail.2008.06.102

URL : http://circ.ahajournals.org/content/118/6/649.full.pdf

S. Kuçi, Z. Kuçi, H. Kreyenberg, E. Deak, K. Pütsch et al., CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties, Haematologica, vol.95, pp.651-659, 2010.

C. R. Kuhlmann, A. K. Most, F. Li, B. M. Münz, C. A. Schaefer et al., Endothelin-1-induced proliferation of human endothelial cells depends on activation of K+ channels and Ca+ influx, Acta Physiol. Scand, pp.161-169, 2005.

H. G. Kuhn, H. Dickinson-anson, and F. H. Gage, Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation, J. Neurosci. Off. J. Soc. Neurosci, vol.16, pp.2027-2033, 1996.

R. C. Kukreja, Myriad roles of voltage-activated potassium channel subunit Kv?1.1 in the heart, Am. J. Physiol.-Heart Circ. Physiol, vol.312, pp.546-548, 2017.

M. Kukuljan, E. Rojas, K. J. Catt, and S. S. Stojilkovic, Membrane potential regulates inositol 1,4,5-trisphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs, J. Biol. Chem, vol.269, pp.4860-4865, 1994.
DOI : 10.1016/s0006-3495(97)78706-x

URL : https://doi.org/10.1016/s0006-3495(97)78706-x

S. A. Kuznetsov, P. H. Krebsbach, K. Satomura, J. Kerr, M. Riminucci et al., Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.12, pp.1335-1347, 1997.

S. A. Kuznetsov, M. H. Mankani, S. Gronthos, K. Satomura, P. Bianco et al., , 2001.

, Circulating Skeletal Stem Cells. J. Cell Biol, vol.153, pp.1133-1140

L. Lagostena, D. Avitabile, E. De-falco, A. Orlandi, F. Grassi et al., Electrophysiological properties of mouse bone marrow c-kit+ cells co-cultured onto neonatal cardiac myocytes, Cardiovasc. Res, vol.66, pp.482-492, 2005.

L. K. Landeen, D. A. Dederko, C. S. Kondo, B. S. Hu, N. Aroonsakool et al., Mechanisms of the negative inotropic effects of sphingosine-1-phosphate on adult mouse ventricular myocytes, Am. J. Physiol. Heart Circ. Physiol, vol.294, pp.736-749, 2008.

F. Lang, E. Shumilina, M. Ritter, E. Gulbins, A. Vereninov et al., Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death, Contrib. Nephrol, vol.152, pp.142-160, 2006.

D. Langer, Y. Ikehara, H. Takebayashi, R. Hawkes, and H. Zimmermann, The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones, Neuroscience, vol.150, pp.863-879, 2007.

K. Laugwitz, A. Moretti, J. Lam, P. Gruber, Y. Chen et al., Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages, Nature, vol.433, pp.647-653, 2005.
DOI : 10.1038/nature03215

URL : http://europepmc.org/articles/pmc5578466?pdf=render

G. Laurie, Patenting Stem Cells of Human Origin, 2004.

E. Lázár, H. A. Sadek, and O. Bergmann, Cardiomyocyte renewal in the human heart: insights from the fall-out, Eur. Heart J, vol.38, pp.2333-2342, 2017.

L. Scouarnec, S. Bhasin, N. Vieyres, C. Hund, T. J. Cunha et al., Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.15617-15622, 2008.

K. P. Leclair, R. G. Palfree, P. M. Flood, U. Hammerling, and A. Bothwell, Isolation of a murine Ly-6 cDNA reveals a new multigene family, EMBO J, vol.5, pp.3227-3234, 1986.

J. Lee, D. H. Bhang, A. Beede, T. L. Huang, B. R. Stripp et al., Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis, Cell, vol.156, pp.440-455, 2014.

J. Y. Lee, Z. Qu-petersen, B. Cao, S. Kimura, R. Jankowski et al., Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing, J. Cell Biol, vol.150, pp.1085-1100, 2000.

K. Lee, T. K. Kuo, J. Whang-peng, Y. Chung, C. Lin et al., In vitro hepatic differentiation of human mesenchymal stem cells, Hepatol. Baltim. Md, vol.40, pp.1275-1284, 2004.

B. Leobon, I. Garcin, P. Menasche, J. Vilquin, E. Audinat et al., Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.7808-7811, 2003.

J. J. Lepore, T. P. Cappola, P. A. Mericko, E. E. Morrisey, and M. S. Parmacek, GATA-6 regulates genes promoting synthetic functions in vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol, vol.25, pp.309-314, 2005.

A. Leri, J. Kajstura, A. , and P. , Cardiac stem cells and mechanisms of myocardial regeneration, Physiol. Rev, vol.85, pp.1373-1416, 2005.

R. S. Lewis, Calcium oscillations in T-cells: mechanisms and consequences for gene expression, Biochem. Soc. Trans, vol.31, pp.925-929, 2003.

G. Li and X. Deng, Functional ion channels in stem cells, World J. Stem Cells, vol.3, pp.19-24, 2011.

L. Li and T. Xie, Stem cell niche: structure and function, Annu. Rev. Cell Dev. Biol, vol.21, pp.605-631, 2005.

G. Li, H. Sun, X. Deng, and C. Lau, Characterization of ionic currents in human mesenchymal stem cells from bone marrow, Stem Cells Dayt. Ohio, vol.23, pp.371-382, 2005.

G. Li, X. Deng, H. Sun, S. S. Chung, H. Tse et al., Ion Channels in Mesenchymal Stem Cells from Rat Bone Marrow, STEM CELLS, vol.24, pp.1519-1528, 2006.

L. Li, J. Mignone, M. Yang, M. Matic, S. Penman et al., Nestin expression in hair follicle sheath progenitor cells, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.9958-9961, 2003.

M. Li, N. Naqvi, E. Yahiro, K. Liu, P. C. Powell et al., c-kit is required for cardiomyocyte terminal differentiation, Circ. Res, vol.102, pp.677-685, 2008.

W. Li, Y. Hayashida, Y. Chen, and S. C. Tseng, Niche regulation of corneal epithelial stem cells at the limbus, Cell Res, vol.17, pp.26-36, 2007.

R. Liao, O. Pfister, M. Jain, and F. Mouquet, The bone marrow-cardiac axis of myocardial regeneration, Prog. Cardiovasc. Dis, vol.50, pp.18-30, 2007.

S. Liebau, C. Pröpper, T. Böckers, F. Lehmann-horn, A. Storch et al., Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation, J. Neurochem, vol.99, pp.426-437, 2006.

G. C. Liggins, H. , and R. N. , A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants, Pediatrics, vol.50, pp.515-525, 1972.

C. G. Lim, S. Kim, H. Suh-kim, Y. Lee, and S. C. Ahn, Characterization of ionic currents in human neural stem cells, Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol, vol.12, pp.131-135, 2008.

A. Linke, P. Müller, D. Nurzynska, C. Casarsa, D. Torella et al., Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.8966-8971, 2005.

J. Liu, A. Hsu, J. Lee, D. E. Cramer, and M. Lee, To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient, World J. Biol. Chem, vol.2, pp.1-13, 2011.

Y. Liu, X. Wang, Y. Tang, J. Chen, X. Lv et al., Simvastatin ameliorates rat cerebrovascular remodeling during hypertension via inhibition of volume-regulated chloride channel, Hypertens. Dallas Tex, vol.56, pp.445-452, 1979.

A. Llucià-valldeperas, B. Sanchez, C. Soler-botija, C. Gálvez-montón, S. Roura et al., Physiological conditioning by electric field stimulation promotes cardiomyogenic gene expression in human cardiomyocyte progenitor cells, Stem Cell Res. Ther, vol.5, p.93, 2014.

P. J. Lockyer, S. Kupzig, and P. J. Cullen, CAPRI regulates Ca2+-dependent inactivation of the Ras-MAPK pathway, Curr. Biol, vol.11, pp.981-986, 2001.

J. S. Long, Y. Fujiwara, J. Edwards, C. L. Tannahill, G. Tigyi et al., Sphingosine 1-phosphate receptor 4 uses HER2 (ERBB2) to regulate extracellular signal regulated kinase-1/2 in MDA-MB-453 breast cancer cells, J. Biol. Chem, vol.285, pp.35957-35966, 2010.

M. Losa, V. Latorre, M. Andrabi, F. Ladam, C. Sagerström et al., A tissue-specific, 2017.

D. P. Lotshaw, Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels, Cell Biochem. Biophys, vol.47, pp.209-256, 2007.

W. Lu, N. Yaoming, R. Boli, C. Jun, Z. Changhai et al., mHCN4 genetically modified canine mesenchymal stem cells provide biological pacemaking function in complete dogs with atrioventricular block, Pacing Clin. Electrophysiol. PACE, vol.36, pp.1138-1149, 2013.

W. Lu, X. Xiu, Y. Zhao, G. , and M. , Improved Proliferation and Differentiation of Bone Marrow Mesenchymal Stem Cells Into Vascular Endothelial Cells With Sphingosine 1-Phosphate, Transplant. Proc, vol.47, pp.2035-2040, 2015.

C. Luneau, R. Wiedmann, J. S. Smith, W. , and J. B. , Shaw-like rat brain potassium channel cDNA's with divergent 3' ends, FEBS Lett, vol.288, pp.163-167, 1991.

M. B. Luskin, Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone, Neuron, vol.11, pp.173-189, 1993.

H. Ma, K. Venkatachalam, J. B. Parys, and D. L. Gill, Modification of Store-operated Channel Coupling and Inositol Trisphosphate Receptor Function by 2-Aminoethoxydiphenyl Borate in DT40 Lymphocytes, J. Biol. Chem, vol.277, pp.6915-6922, 2002.

M. Maceyka, K. B. Harikumar, S. Milstien, and S. Spiegel, Sphingosine-1-phosphate signaling and its role in disease, Trends Cell Biol, vol.22, pp.50-60, 2012.

S. N. Macfarlane and H. Sontheimer, Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes, Glia, vol.30, pp.39-48, 2000.

W. R. Maclellan and M. D. Schneider, Genetic dissection of cardiac growth control pathways, Annu. Rev. Physiol, vol.62, pp.289-319, 2000.

D. Macrin, J. P. Joseph, A. A. Pillai, D. , and A. , Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence, Stem Cell Rev, 2017.

M. K. Majumdar, M. A. Thiede, J. D. Mosca, M. Moorman, and S. L. Gerson, Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells, J. Cell. Physiol, vol.176, pp.57-66, 1998.

M. K. Majumdar, M. Keane-moore, D. Buyaner, W. B. Hardy, M. A. Moorman et al., Characterization and functionality of cell surface molecules on human mesenchymal stem cells, J. Biomed. Sci, vol.10, pp.228-241, 2003.

R. R. Makkar, R. R. Smith, K. Cheng, K. Malliaras, L. E. Thomson et al., Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial, Lancet Lond. Engl, vol.379, pp.895-904, 2012.

S. Malmersjö, P. Rebellato, E. Smedler, H. Planert, S. Kanatani et al., Neural progenitors organize in small-world networks to promote cell proliferation, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.1524-1532, 2013.

M. E. Mangoni, B. Couette, E. Bourinet, J. Platzer, D. Reimer et al., Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.5543-5548, 2003.

C. M. Martin, A. P. Meeson, S. M. Robertson, T. J. Hawke, J. A. Richardson et al., Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart, Dev. Biol, vol.265, pp.262-275, 2004.

J. Massagué, S. Cheifetz, T. Endo, and B. Ginard, Type beta transforming growth factor is an inhibitor of myogenic differentiation, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.8206-8210, 1986.

K. Matsuura, T. Nagai, N. Nishigaki, T. Oyama, J. Nishi et al., Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes, J. Biol. Chem, vol.279, pp.11384-11391, 2004.

J. T. Maxwell, M. B. Wagner, D. , and M. E. , Electrically Induced Calcium Handling in Cardiac Progenitor Cells, Stem Cells Int, p.8917380, 2016.

K. J. Mccullagh and R. C. Perlingeiro, Coaxing stem cells for skeletal muscle repair, Adv. Drug Deliv. Rev, vol.84, pp.198-207, 2015.

T. J. Mcdonnell and J. O. Oberpriller, The response of the atrium to direct mechanical wounding in the adult heart of the newt, Notophthalmus viridescens. An electron-microscopic and autoradiographic study, Cell Tissue Res, vol.235, pp.583-592, 1984.

C. K. Means and J. H. Brown, Sphingosine-1-phosphate receptor signalling in the heart, Cardiovasc. Res, vol.82, pp.193-200, 2009.

C. K. Means, S. Miyamoto, J. Chun, and J. H. Brown, S1P1 receptor localization confers selectivity for Gi-mediated cAMP and contractile responses, J. Biol. Chem, vol.283, pp.11954-11963, 2008.

P. Menasché, A. A. Hagège, M. Scorsin, B. Pouzet, M. Desnos et al., Myoblast transplantation for heart failure, Lancet Lond. Engl, vol.357, pp.279-280, 2001.

P. Menasché, A. A. Hagège, J. Vilquin, M. Desnos, E. Abergel et al., Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction, J. Am. Coll. Cardiol, vol.41, pp.1078-1083, 2003.

E. Messina, L. De-angelis, G. Frati, S. Morrone, S. Chimenti et al., Isolation and expansion of adult cardiac stem cells from human and murine heart, Circ. Res, vol.95, pp.911-921, 2004.

T. Miki, M. Suzuki, T. Shibasaki, H. Uemura, T. Sato et al., Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1, Nat. Med, vol.8, pp.466-472, 2002.

C. Miller, An overview of the potassium channel family, Genome Biol, vol.1, 2000.

M. Mimeault and S. K. Batra, Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies, Stem Cells Dayt. Ohio, vol.24, pp.2319-2345, 2006.

R. Mishra, K. Vijayan, E. J. Colletti, D. A. Harrington, T. S. Matthiesen et al., Characterization and functionality of cardiac progenitor cells in congenital heart patients, Circulation, vol.123, pp.364-373, 2011.

S. Mishra, V. Reznikov, V. A. Maltsev, N. A. Undrovinas, H. N. Sabbah et al., Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts, J. Physiol, vol.593, pp.1409-1427, 2015.

A. V. Molofsky, R. Pardal, T. Iwashita, I. Park, M. F. Clarke et al., Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation, Nature, vol.425, pp.962-967, 2003.
DOI : 10.1038/nature02060

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/62726/1/nature02060.pdf

R. J. Montoro, Y. , and R. , Gap junctions in developing neocortex: a review, Brain Res. Brain Res. Rev, vol.47, pp.216-226, 2004.
DOI : 10.1016/j.brainresrev.2004.06.009

A. Moreau, A. Mercier, O. Thériault, M. Boutjdir, B. Burger et al., , 2017.

. Biophysical, Molecular, and Pharmacological Characterization of Voltage-Dependent Sodium Channels From Induced Pluripotent Stem Cell-Derived Cardiomyocytes, Can. J. Cardiol, vol.33, pp.269-278

A. Moretti, L. Caron, A. Nakano, J. T. Lam, A. Bernshausen et al., Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification, Cell, vol.127, pp.1151-1165, 2006.
DOI : 10.1016/j.cell.2006.10.029

URL : https://doi.org/10.1016/j.cell.2006.10.029

S. J. Morrison and A. C. Spradling, Stem cells and niches: mechanisms that promote stem cell maintenance throughout life, Cell, vol.132, pp.598-611, 2008.
DOI : 10.1016/j.cell.2008.01.038

URL : https://doi.org/10.1016/j.cell.2008.01.038

M. Moubarak, C. Magaud, Y. Saliba, A. Chatelier, P. Bois et al., Effects of atrial natriuretic peptide on rat ventricular fibroblasts during differentiation into myofibroblasts, Physiol. Res, vol.64, pp.495-503, 2015.
DOI : 10.1016/s1878-6480(15)30167-1

URL : https://doi.org/10.1016/s1878-6480(15)30167-1

S. Mukaddam-daher, M. Jankowski, D. Wang, A. Menaouar, and J. Gutkowska, Regulation of cardiac oxytocin system and natriuretic peptide during rat gestation and postpartum, J. Endocrinol, vol.175, pp.211-216, 2002.
DOI : 10.1677/joe.0.1750211

B. Muller-borer, G. Esch, R. Aldina, W. Woon, R. Fox et al., Calcium dependent CAMTA1 in adult stem cell commitment to a myocardial lineage, PloS One, vol.7, p.38454, 2012.
DOI : 10.1371/journal.pone.0038454

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0038454&type=printable

B. J. Muller-borer, W. E. Cascio, G. L. Esch, H. Kim, W. B. Coleman et al., Mechanisms controlling the acquisition of a cardiac phenotype by liver stem cells, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.3877-3882, 2007.

C. E. Murry, M. H. Soonpaa, H. Reinecke, H. Nakajima, H. O. Nakajima et al., Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts, Nature, vol.428, pp.664-668, 2004.
DOI : 10.1038/nature02446

N. Naeem, K. Haneef, N. Kabir, H. Iqbal, S. Jamall et al., DNA methylation inhibitors, 5-azacytidine and zebularine potentiate the transdifferentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes, Cardiovasc. Ther, vol.31, pp.201-209, 2013.
DOI : 10.1111/j.1755-5922.2012.00320.x

H. Nakagami, K. Maeda, R. Morishita, S. Iguchi, T. Nishikawa et al., Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells, Arterioscler. Thromb. Vasc. Biol, vol.25, pp.2542-2547, 2005.
DOI : 10.1161/01.atv.0000190701.92007.6d

URL : https://www.ahajournals.org/doi/pdf/10.1161/01.ATV.0000190701.92007.6d

M. T. Nelson and J. M. Quayle, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol, vol.268, pp.799-822, 1995.

J. M. Nerbonne, Molecular Basis of Functional Myocardial Potassium Channel Diversity, Card. Electrophysiol. Clin, vol.8, pp.257-273, 2016.
DOI : 10.1016/j.ccep.2016.01.001

URL : http://europepmc.org/articles/pmc4893780?pdf=render

K. Ng, S. Schwarzer, M. R. Duchen, and A. Tinker, The intracellular localization and function of the ATP-sensitive K+ channel subunit Kir6.1, J. Membr. Biol, vol.234, pp.137-147, 2010.

K. Niederreither and P. Dollé, Retinoic acid in development: towards an integrated view, Nat. Rev. Genet, vol.9, pp.541-553, 2008.
DOI : 10.1038/nrg2340

URL : https://hal.archives-ouvertes.fr/inserm-00311222

K. Niederreither, V. Subbarayan, P. Dollé, C. , and P. , Embryonic retinoic acid synthesis is essential for early mouse post-implantation development, Nat. Genet, vol.21, pp.444-448, 1999.
DOI : 10.1038/7788

K. Niederreither, J. Vermot, I. Le-roux, B. Schuhbaur, P. Chambon et al., The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system, Dev. Camb. Engl, vol.130, pp.2525-2534, 2003.

P. Nigro, G. L. Perrucci, A. Gowran, M. Zanobini, M. C. Capogrossi et al., c-kit(+) cells: the tell-tale heart of cardiac regeneration?, Cell. Mol. Life Sci. CMLS, vol.72, pp.1725-1740, 2015.

P. Nincheri, P. Luciani, R. Squecco, C. Donati, C. Bernacchioni et al., Sphingosine 1-phosphate induces differentiation of adipose tissuederived mesenchymal stem cells towards smooth muscle cells, Cell. Mol. Life Sci. CMLS, vol.66, pp.1741-1754, 2009.

J. Nishino, I. Kim, K. Chada, and S. J. Morrison, Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression, Cell, vol.135, pp.227-239, 2008.

W. A. Noort, A. B. Kruisselbrink, P. S. Anker, M. Kruger, R. L. Van-bezooijen et al., Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice, Exp. Hematol, vol.30, pp.870-878, 2002.

M. Noseda, M. Harada, S. Mcsweeney, T. Leja, E. Belian et al., PDGFR? demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium, Nat. Commun, vol.6, p.6930, 2015.

A. S. Novgorodov, M. El-alwani, J. Bielawski, L. M. Obeid, and T. I. Gudz, Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.21, pp.1503-1514, 2007.

M. D. O'connor, M. D. Kardel, I. Iosfina, D. Youssef, M. Lu et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells, Stem Cells Dayt. Ohio, vol.26, pp.1109-1116, 2008.

H. Oh, S. B. Bradfute, T. D. Gallardo, T. Nakamura, V. Gaussin et al., Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.12313-12318, 2003.
DOI : 10.1073/pnas.2132126100

URL : http://www.pnas.org/content/100/21/12313.full.pdf

H. Oh, X. Chi, S. B. Bradfute, Y. Mishina, J. Pocius et al., Cardiac muscle plasticity in adult and embryo by heartderived progenitor cells, Ann. N. Y. Acad. Sci, vol.1015, pp.182-189, 2004.

A. Olivera, H. M. Rosenfeldt, M. Bektas, F. Wang, I. Ishii et al., , 2003.

, Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors, J. Biol. Chem, vol.278, pp.46452-46460

A. Olschewski, Y. Li, B. Tang, J. Hanze, B. Eul et al., Impact of TASK-1 in human pulmonary artery smooth muscle cells, Circ. Res, vol.98, pp.1072-1080, 2006.

N. Onohara, M. Nishida, R. Inoue, H. Kobayashi, H. Sumimoto et al., TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy, EMBO J, vol.25, pp.5305-5316, 2006.

M. Orciani, M. A. Mariggiò, C. Morabito, G. Di-benedetto, D. Primio et al., Functional characterization of calcium-signaling pathways of human skin-derived mesenchymal stem cells, Skin Pharmacol. Physiol, vol.23, pp.124-132, 2010.

D. Orlic, J. Kajstura, S. Chimenti, D. M. Bodine, A. Leri et al., Transplanted adult bone marrow cells repair myocardial infarcts in mice, Ann. N. Y. Acad. Sci, vol.938, pp.221-229, 2001.

D. Orlic, J. Kajstura, S. Chimenti, F. Limana, I. Jakoniuk et al., Mobilized bone marrow cells repair the infarcted heart, improving function and survival, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.10344-10349, 2001.

S. Orrenius, B. Zhivotovsky, and P. Nicotera, Regulation of cell death: the calcium-apoptosis link, Nat. Rev. Mol. Cell Biol, vol.4, pp.552-565, 2003.

M. K. Osmond, A. J. Butler, F. C. Voon, and R. Bellairs, The effects of retinoic acid on heart formation in the early chick embryo, Dev. Camb. Engl, vol.113, pp.1405-1417, 1991.

S. J. Padayatty, H. Sun, Y. Wang, H. D. Riordan, S. M. Hewitt et al., Vitamin C pharmacokinetics: implications for oral and intravenous use, Ann. Intern. Med, vol.140, pp.533-537, 2004.

A. Pajoohesh-ganji and M. A. Stepp, In search of markers for the stem cells of the corneal epithelium, Biol. Cell, vol.97, pp.265-276, 2005.

J. Paquin, B. A. Danalache, M. Jankowski, S. M. Mccann, and J. Gutkowska, Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.9550-9555, 2002.

L. A. Pardo, Voltage-gated potassium channels in cell proliferation, Physiol. Bethesda Md, vol.19, pp.285-292, 2004.

J. Park, Y. Kim, and M. Yoo, The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila, Aging, vol.1, pp.637-651, 2009.

K. S. Park, K. H. Jung, S. H. Kim, K. S. Kim, M. R. Choi et al., Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein, Stem Cells Dayt. Ohio, vol.25, pp.2044-2052, 2007.

Z. Pasha, Y. Wang, R. Sheikh, D. Zhang, T. Zhao et al., Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium, Cardiovasc. Res, vol.77, pp.134-142, 2008.

J. M. Patterson, M. H. Johnson, D. B. Zimonjic, and T. A. Graubert, Characterization of Ly-6M, a novel member of the Ly-6 family of hematopoietic proteins, Blood, vol.95, pp.3125-3132, 2000.

S. G. Payne, S. Milstien, and S. Spiegel, Sphingosine-1-phosphate: dual messenger functions, FEBS Lett, vol.531, pp.54-57, 2002.
DOI : 10.1016/s0014-5793(02)03480-4

R. W. Pelton, B. Saxena, M. Jones, H. L. Moses, and L. I. Gold, Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development, J. Cell Biol, vol.115, pp.1091-1105, 1991.

T. M. Perney and L. K. Kaczmarek, The molecular biology of K+ channels, Curr. Opin. Cell Biol, vol.3, pp.663-670, 1991.
DOI : 10.1016/0955-0674(91)90039-2

T. Peterkin, A. Gibson, M. Loose, and R. Patient, The roles of GATA-4,-5 and-6 in vertebrate heart development, Semin. Cell Dev. Biol, vol.16, pp.83-94, 2005.

B. E. Petersen, B. Grossbard, H. Hatch, L. Pi, J. Deng et al., Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers, Hepatol. Baltim. Md, vol.37, pp.632-640, 2003.
DOI : 10.1053/jhep.2003.50104

O. Pfister, F. Mouquet, M. Jain, R. Summer, M. Helmes et al., , 2005.

, CD31-but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation, Circ. Res, vol.97, pp.52-61

A. H. Piersma, K. G. Brockbank, R. E. Ploemacher, E. Van-vliet, K. M. Brakel-van-peer et al., Characterization of fibroblastic stromal cells from murine bone marrow, Exp. Hematol, vol.13, pp.237-243, 1985.

M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas et al., Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, pp.143-147, 1999.
DOI : 10.1126/science.284.5411.143

V. Planat-benard, J. Silvestre, B. Cousin, M. André, M. Nibbelink et al., Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives, Circulation, vol.109, pp.656-663, 2004.
DOI : 10.1161/01.cir.0000114522.38265.61

URL : https://hal.archives-ouvertes.fr/hal-00409575

A. Polzin, K. Piayda, P. Keul, L. Dannenberg, A. Mohring et al., Plasma sphingosine-1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease, J. Mol. Cell. Cardiol, vol.110, pp.35-37, 2017.
DOI : 10.1016/j.yjmcc.2017.07.004

M. Prakriya, L. , and R. S. , Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors, J. Physiol, vol.536, pp.3-19, 2001.

S. T. Price, T. H. Beckham, J. C. Cheng, P. Lu, X. Liu et al., Sphingosine 1-Phosphate Receptor 2 Regulates the Migration, Proliferation, and Differentiation of Mesenchymal Stem Cells, Int. J. Stem Cell Res. Ther, vol.2, 2015.
DOI : 10.23937/2469-570x/1410014

URL : https://doi.org/10.23937/2469-570x/1410014

P. J. Psaltis, A. C. Zannettino, S. G. Worthley, G. , and S. , Concise review: mesenchymal stromal cells: potential for cardiovascular repair, Stem Cells Dayt. Ohio, vol.26, pp.2201-2210, 2008.
DOI : 10.1634/stemcells.2008-0428

M. Pucéat, TGFbeta in the differentiation of embryonic stem cells, Cardiovasc. Res, vol.74, pp.256-261, 2007.

Q. Qian, H. Qian, X. Zhang, W. Zhu, Y. Yan et al., 5Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase, Stem Cells Dev, vol.21, pp.67-75, 2012.

F. Quaini, K. Urbanek, A. P. Beltrami, N. Finato, C. A. Beltrami et al., Chimerism of the transplanted heart, N. Engl. J. Med, vol.346, pp.5-15, 2002.

P. Quijada, N. Hariharan, J. D. Cubillo, K. M. Bala, J. M. Emathinger et al., Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment, J. Biol. Chem, vol.290, pp.25411-25426, 2015.

P. Quint, M. Ruan, L. Pederson, M. Kassem, J. J. Westendorf et al., , 2013.

, Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways, J. Biol. Chem, vol.288, pp.5398-5406

F. Rahman, F. Al-frouh, B. Bordignon, M. Fraterno, J. Landrier et al., , 2014.

, Ascorbic acid is a dose-dependent inhibitor of adipocyte differentiation, probably by reducing cAMP pool. Front, Cell Dev. Biol, vol.2, p.29

F. Rahman, B. Bordignon, R. Culerrier, F. Peiretti, S. Spicuglia et al., Ascorbic acid drives the differentiation of mesoderm-derived embryonic stem cells. Involvement of p38 MAPK/CREB and SVCT2 transporter, Mol. Nutr. Food Res, p.61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01798873

F. Rastegar, D. Shenaq, J. Huang, W. Zhang, B. Zhang et al., Mesenchymal stem cells: Molecular characteristics and clinical applications, World J. Stem Cells, vol.2, pp.67-80, 2010.

M. Z. Ratajczak, M. Suszynska, S. Borkowska, J. Ratajczak, and G. Schneider, The role of sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) in the trafficking of normal and malignant cells, Expert Opin. Ther. Targets, vol.18, pp.95-107, 2014.

W. Reik, Stability and flexibility of epigenetic gene regulation in mammalian development, Nature, vol.447, pp.425-432, 2007.

H. Reinecke, V. Poppa, and C. E. Murry, Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting, J. Mol. Cell. Cardiol, vol.34, pp.241-249, 2002.

K. Reiss, J. Kajstura, X. Zhang, P. Li, E. Szoke et al., Acute myocardial infarction leads to upregulation of the IGF-1 autocrine system, DNA replication, and nuclear mitotic division in the remaining viable cardiac myocytes, Exp. Cell Res, vol.213, pp.463-472, 1994.

R. R. Resende, J. L. Da-costa, A. H. Kihara, A. Adhikari, L. et al., Intracellular Ca2+ regulation during neuronal differentiation of murine embryonal carcinoma and mesenchymal stem cells, Stem Cells Dev, vol.19, pp.379-394, 2010.

T. L. Reus, A. W. Robert, M. B. Da-costa, A. M. De-aguiar, and M. A. Stimamiglio, Secretome from resident cardiac stromal cells stimulates proliferation, cardiomyogenesis and angiogenesis of progenitor cells, Int. J. Cardiol, vol.221, pp.396-403, 2016.

T. Reya, C. , and H. , Wnt signalling in stem cells and cancer, Nature, vol.434, pp.843-850, 2005.

S. Rignault-clerc, C. Bielmann, L. Liaudet, B. Waeber, F. Feihl et al., , 2017.

M. Heimfeld, S. Spangrude, G. J. Weissman, and I. L. , Mouse hematopoietic stemcell antigen Sca-1 is a member of the Ly-6 antigen family, Natriuretic Peptide Receptor B modulates the proliferation of the cardiac cells expressing the Stem Cell Antigen-1. Sci. Rep. 7, 41936. van de Rijn, vol.86, pp.4634-4638, 1989.

P. Robert, P. Tsui, M. P. Laville, G. P. Livi, H. M. Sarau et al., EDG1 receptor stimulation leads to cardiac hypertrophy in rat neonatal myocytes, J. Mol. Cell. Cardiol, vol.33, pp.1589-1606, 2001.

J. A. Rodríguez-gómez, K. L. Levitsky, and J. López-barneo, T-type Ca2+ channels in mouse embryonic stem cells: modulation during cell cycle and contribution to self-renewal, Am. J. Physiol. Cell Physiol, vol.302, pp.494-504, 2012.

H. Rosen, R. Stevens, M. Hanson, E. Roberts, and M. Oldstone, Sphingosine-1-Phosphate and Its Receptors: Structure, Signaling, and Influence, vol.82, pp.637-662, 2013.

N. Rosenblatt-velin, M. G. Lepore, C. Cartoni, F. Beermann, P. et al., FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes, J. Clin. Invest, vol.115, pp.1724-1733, 2005.

A. Rossini, C. Frati, C. Lagrasta, G. Graiani, A. Scopece et al., Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin, Cardiovasc. Res, vol.89, pp.650-660, 2011.

M. Rubart, M. H. Soonpaa, H. Nakajima, and L. J. Field, Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation, J. Clin. Invest, vol.114, pp.775-783, 2004.

P. P. Rumyantsev and A. Borisov, DNA synthesis in myocytes from different myocardial compartments of young rats in norm, after experimental infarction and in vitro, Biomed. Biochim. Acta, vol.46, pp.610-615, 1987.

K. Ryoo and J. Park, Two-pore Domain Potassium Channels in Astrocytes, Exp. Neurobiol, vol.25, pp.222-232, 2016.

Y. Ryu, N. Takuwa, N. Sugimoto, S. Sakurada, S. Usui et al., Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells, Circ. Res, vol.90, pp.325-332, 2002.

R. Sackstein, The Bone Marrow Is Akin to Skin: HCELL and the Biology of Hematopoietic Stem Cell Homing11Reprinted from, J. Investig. Dermatol. Symp. Proc, vol.122, pp.215-223, 2004.

M. Sakaue and M. Sieber-blum, Human epidermal neural crest stem cells as a source of Schwann cells, Dev. Camb. Engl, vol.142, pp.3188-3197, 2015.

S. Salomone and C. Waeber, Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects, Front. Pharmacol, vol.2, p.9, 2011.

M. G. Sanna, J. Liao, E. Jo, C. Alfonso, M. Ahn et al., Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate, J. Biol. Chem, vol.279, pp.13839-13848, 2004.

C. Sassoli, A. Frati, A. Tani, G. Anderloni, F. Pierucci et al., Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation, PloS One, vol.9, p.108662, 2014.

H. Sato, M. Takahashi, H. Ise, A. Yamada, S. Hirose et al., Collagen synthesis is required for ascorbic acid-enhanced differentiation of mouse embryonic stem cells into cardiomyocytes, Biochem. Biophys. Res. Commun, vol.342, pp.107-112, 2006.

G. Schaarschmidt, F. Wegner, S. C. Schwarz, H. Schmidt, and J. Schwarz, Characterization of voltage-gated potassium channels in human neural progenitor cells, PloS One, vol.4, p.6168, 2009.

W. Scharbrodt, Y. Abdallah, S. A. Kasseckert, D. Gligorievski, H. M. Piper et al., Cytosolic Ca2+ oscillations in human cerebrovascular endothelial cells after subarachnoid hemorrhage, J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab, vol.29, pp.57-65, 2009.

M. Schiller, D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing, J. Dermatol. Sci, vol.35, pp.83-92, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00147401

J. A. Schriefer, P. R. Lewis, and J. W. Miller, Role of fetal oxytocin in parturition in the rat, Biol. Reprod, vol.27, pp.362-368, 1982.

R. A. Schulz, Y. , and K. E. , Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development, Dev. Biol, vol.266, pp.1-16, 2004.

O. Sedan, K. Dolnikov, N. Zeevi-levin, N. Leibovich, M. Amit et al., , 2008.

, 5-Inositol trisphosphate-operated intracellular Ca(2+) stores and angiotensin-II/endothelin-1 signaling pathway are functional in human embryonic stem cell-derived cardiomyocytes, Stem Cells Dayt. Ohio, vol.4, pp.3130-3138

S. Seino, ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies, Annu. Rev. Physiol, vol.61, pp.337-362, 1999.

T. Seki and Y. Arai, Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat, J. Neurosci. Off. J. Soc. Neurosci, vol.13, pp.2351-2358, 1993.

H. Y. Seok, J. Chen, M. Kataoka, Z. Huang, J. Ding et al., Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy, Circ. Res, vol.114, pp.1585-1595, 2014.

C. Serradifalco, P. Catanese, L. Rizzuto, F. Cappello, R. Puleio et al., Embryonic and foetal Islet-1 positive cells in human hearts are also positive to c-Kit, Eur. J. Histochem. EJH, vol.55, p.41, 2011.

S. Shi, X. Wu, X. Wang, W. Hao, H. Miao et al., Differentiation of Bone Marrow Mesenchymal Stem Cells to Cardiomyocyte-Like Cells Is Regulated by the Combined Low Dose Treatment of Transforming Growth Factor-?1 and 5-Azacytidine, Stem Cells Int, p.3816256, 2016.

H. Y. Shin, Y. H. Hong, S. S. Jang, H. G. Chae, S. L. Paek et al., A role of canonical transient receptor potential 5 channel in neuronal differentiation from A2B5 neural progenitor cells, PloS One, vol.5, p.10359, 2010.

B. Short, N. Brouard, R. Driessen, and P. J. Simmons, Prospective isolation of stromal progenitor cells from mouse BM, Cytotherapy, vol.3, pp.407-408, 2001.

Y. Si, Y. Zhao, H. Hao, J. Liu, Y. Guo et al., Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity, Diabetes, vol.61, pp.1616-1625, 2012.

T. Siminiak, R. Kalawski, D. Fiszer, O. Jerzykowska, J. Rze?niczak et al., Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up, Am. Heart J, vol.148, pp.531-537, 2004.

D. L. Simpson, R. Mishra, S. Sharma, S. K. Goh, S. Deshmukh et al., A strong regenerative ability of cardiac stem cells derived from neonatal hearts, Circulation, vol.126, pp.46-53, 2012.

D. K. Singla, D. Kumar, and B. Sun, Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells, Biochem. Biophys. Res. Commun, vol.332, pp.135-141, 2005.

H. G. Slager, W. Van-inzen, E. Freund, A. J. Van-den-eijnden-van-raaij, and C. L. Mummery, Transforming growth factor-beta in the early mouse embryo: implications for the regulation of muscle formation and implantation, Dev. Genet, vol.14, pp.212-224, 1993.

E. Smedler and P. Uhlén, Frequency decoding of calcium oscillations, Biochim. Biophys. Acta, vol.1840, pp.964-969, 2014.

D. O. Smith, J. L. Rosenheimer, K. , and R. E. , Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells, PloS One, vol.3, 1604.

R. R. Smith, L. Barile, H. C. Cho, M. K. Leppo, J. M. Hare et al., Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens, Circulation, vol.115, pp.896-908, 2007.

M. Sobiesiak, K. Sivasubramaniyan, C. Hermann, C. Tan, M. Orgel et al., The mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase, Stem Cells Dev, vol.19, pp.669-677, 2010.

G. Solanas and S. A. Benitah, Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche, Nat. Rev. Mol. Cell Biol, vol.14, pp.737-748, 2013.

S. Song, J. Li, L. Zhu, L. Cai, Q. Xu et al., Irregular Ca(2+) oscillations regulate transcription via cumulative spike duration and spike amplitude, J. Biol. Chem, vol.287, pp.40246-40255, 2012.

M. H. Soonpaa and L. J. Field, Survey of studies examining mammalian cardiomyocyte DNA synthesis, Circ. Res, vol.83, pp.15-26, 1998.

S. Spiegel and S. Milstien, Sphingosine-1-phosphate: an enigmatic signalling lipid, Nat. Rev. Mol. Cell Biol, vol.4, pp.397-407, 2003.

M. Stadtfeld, E. Apostolou, F. Ferrari, J. Choi, R. M. Walsh et al., Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells, Nat. Genet, vol.44, pp.1-2, 2012.

D. Y. Stainier and M. C. Fishman, Patterning the zebrafish heart tube: acquisition of anteroposterior polarity, Dev. Biol, vol.153, pp.91-101, 1992.

R. R. Stewart, T. Zigova, and M. B. Luskin, Potassium currents in precursor cells isolated from the anterior subventricular zone of the neonatal rat forebrain, J. Neurophysiol, vol.81, pp.95-102, 1999.

J. Stieber, S. Herrmann, S. Feil, J. Löster, R. Feil et al., The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.15235-15240, 2003.

A. Stroh, H. Tsai, L. Wang, F. Zhang, J. Kressel et al., Tracking stem cell differentiation in the setting of automated optogenetic stimulation, Stem Cells Dayt. Ohio, vol.29, pp.78-88, 2011.

M. Studeny, F. C. Marini, J. L. Dembinski, C. Zompetta, M. Cabreira-hansen et al., Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents, J. Natl. Cancer Inst, vol.96, pp.1593-1603, 2004.

W. Stühmer, J. P. Ruppersberg, K. H. Schröter, B. Sakmann, M. Stocker et al., Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain, EMBO J, vol.8, pp.3235-3244, 1989.

S. Sun, Y. Liu, S. Lipsky, and M. Cho, Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.21, pp.1472-1480, 2007.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol.131, pp.861-872, 2007.

Y. Takuwa, H. Ikeda, Y. Okamoto, N. Takuwa, and K. Yoshioka, Sphingosine-1-phosphate as a mediator involved in development of fibrotic diseases, Biochim. Biophys. Acta, vol.1831, pp.185-192, 2013.

Y. N. Tallini, K. S. Greene, M. Craven, A. Spealman, M. Breitbach et al., c-kit expression identifies cardiovascular precursors in the neonatal heart, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.1808-1813, 2009.

B. Tang, Y. Li, C. Nagaraj, R. E. Morty, S. Gabor et al., Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells, Am. J. Respir. Cell Mol. Biol, vol.41, pp.476-483, 2009.

R. Tao, C. Lau, H. Tse, L. , and G. , Functional ion channels in mouse bone marrow mesenchymal stem cells, Am. J. Physiol. Cell Physiol, vol.293, pp.1561-1567, 2007.

R. Tao, C. Lau, H. Tse, L. , and G. , Regulation of cell proliferation by intermediateconductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells, Am. J. Physiol. Cell Physiol, vol.295, pp.1409-1416, 2008.

M. Tarnowski and A. L. Sieron, Adult stem cells and their ability to differentiate, Med. Sci. Monit. Int. Med. J. Exp. Clin. Res, vol.12, pp.154-163, 2006.

P. Taupin, Neural progenitor and stem cells in the adult central nervous system, Ann. Acad. Med. Singapore, vol.35, pp.814-820, 2006.

J. A. Thomson, J. Itskovitz-eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel et al., Embryonic stem cell lines derived from human blastocysts, Science, vol.282, pp.1145-1147, 1998.

C. E. Tognon, H. E. Kirk, L. A. Passmore, I. P. Whitehead, C. J. Der et al., Regulation of RasGRP via a Phorbol Ester-Responsive C1 Domain, Mol. Cell. Biol, vol.18, pp.6995-7008, 1998.

C. Toma, M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler, Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart, Circulation, vol.105, pp.93-98, 2002.

J. G. Toma, M. Akhavan, K. J. Fernandes, F. Barnabé-heider, A. Sadikot et al., Isolation of multipotent adult stem cells from the dermis of mammalian skin, Nat. Cell Biol, vol.3, pp.778-784, 2001.

T. Tomida, K. Hirose, A. Takizawa, F. Shibasaki, and M. Iino, NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation, EMBO J, vol.22, pp.3825-3832, 2003.

Y. Tomita, K. Matsumura, Y. Wakamatsu, Y. Matsuzaki, I. Shibuya et al., Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart, J. Cell Biol, vol.170, pp.1135-1146, 2005.

P. Tompa, R. Töth-boconádi, F. , and P. , Frequency decoding of fast calcium oscillations by calpain, Cell Calcium, vol.29, pp.161-170, 2001.

F. M. Tonelli, A. K. Santos, D. A. Gomes, S. L. Da-silva, K. N. Gomes et al., Stem cells and calcium signaling, Adv. Exp. Med. Biol, vol.740, pp.891-916, 2012.

L. Toro, M. Li, Z. Zhang, H. Singh, Y. Wu et al., MaxiK channel and cell signalling, Pflugers Arch, vol.466, pp.875-886, 2014.
DOI : 10.1007/s00424-013-1359-0

URL : http://europepmc.org/articles/pmc3969412?pdf=render

T. D. Tran, O. Zolochevska, M. L. Figueiredo, H. Wang, L. Yang et al., Histamine-induced Ca 2+ signalling is mediated by TRPM4 channels in human adipose-derived stem cells, Biochem. J, vol.463, pp.123-134, 2014.

T. D. Tran, S. Yao, W. H. Hsu, J. M. Gimble, B. A. Bunnell et al., Arginine vasopressin inhibits adipogenesis in human adipose-derived stem cells, Mol. Cell. Endocrinol, vol.406, pp.1-9, 2015.

K. A. Tropea, E. Leder, M. Aslam, A. N. Lau, D. M. Raiser et al., Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.302, pp.829-837, 2012.

W. Y. Tsang, A. Spektor, D. J. Luciano, V. B. Indjeian, Z. Chen et al., CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability, Mol. Biol. Cell, vol.17, pp.3423-3434, 2006.
DOI : 10.1091/mbc.e06-04-0371

URL : http://europepmc.org/articles/pmc1525247?pdf=render

P. Uhlén, P. M. Burch, C. I. Zito, M. Estrada, B. E. Ehrlich et al., Gain-offunction/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.2160-2165, 2006.

F. Ulloa-montoya, C. M. Verfaillie, and W. Hu, Culture systems for pluripotent stem cells, J. Biosci. Bioeng, vol.100, pp.12-27, 2005.

K. Urbanek, F. Quaini, G. Tasca, D. Torella, C. Castaldo et al., Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.10440-10445, 2003.
DOI : 10.1073/pnas.1832855100

URL : http://www.pnas.org/content/100/18/10440.full.pdf

K. Urbanek, M. Rota, S. Cascapera, C. Bearzi, A. Nascimbene et al., Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival, Circ. Res, vol.97, pp.663-673, 2005.

V. Vacanti, E. Kong, G. Suzuki, K. Sato, J. M. Canty et al., Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture, J. Cell. Physiol, vol.205, pp.194-201, 2005.

M. Valente, D. S. Nascimento, A. Cumano, P. , and P. , Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis, Stem Cells Dev, vol.23, pp.2263-2273, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01071565

M. Van-haele, R. , and T. , Hepatic Progenitor Cells: An Update, Gastroenterol. Clin. North Am, vol.46, pp.409-420, 2017.

M. Vecellio, V. Meraviglia, S. Nanni, A. Barbuti, A. Scavone et al., In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors, Neth. Heart J. Mon. J. Neth. Soc. Cardiol. Neth. Heart Found, vol.7, pp.163-169, 2008.

P. Van-vliet, T. P. De-boer, M. A. Van-der-heyden, M. K. El-tamer, J. P. Sluijter et al., Hyperpolarization induces differentiation in human cardiomyocyte progenitor cells, Stem Cell Rev, vol.6, pp.178-185, 2010.

S. Wakitani, T. Saito, and A. I. Caplan, Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine, Muscle Nerve, vol.18, pp.1417-1426, 1995.

G. J. Waldron, C. , and W. C. , Activation of vascular smooth muscle K+ channels by endothelium-derived relaxing factors, Clin. Exp. Pharmacol. Physiol, vol.26, pp.180-184, 1999.

S. A. Walker, S. Kupzig, D. Bouyoucef, L. C. Davies, T. Tsuboi et al., Identification of a Ras GTPase-activating protein regulated by receptor-mediated Ca2+ oscillations, EMBO J, vol.23, pp.1749-1760, 2004.

M. H. Walkup and D. A. Gerber, Hepatic stem cells: in search of, Stem Cells Dayt. Ohio, vol.24, pp.1833-1840, 2006.

B. Wang, A. Borazjani, M. Tahai, A. L. Curry, J. De et al., Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells, J. Biomed. Mater. Res. A, vol.94, pp.1100-1110, 2010.

F. Wang, J. R. Van-brocklyn, J. P. Hobson, S. Movafagh, Z. Zukowska-grojec et al., Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis, J. Biol. Chem, vol.274, pp.35343-35350, 1999.
DOI : 10.1074/jbc.274.50.35343

URL : http://www.jbc.org/content/274/50/35343.full.pdf

G. Wang, G. Dayanithi, R. Newcomb, L. , and J. R. , An R-type Ca(2+) current in neurohypophysial terminals preferentially regulates oxytocin secretion, J. Neurosci. Off. J. Soc. Neurosci, vol.19, pp.9235-9241, 1999.

K. Wang, T. Xue, S. Tsang, R. Van-huizen, C. W. Wong et al., Electrophysiological properties of pluripotent human and mouse embryonic stem cells, Stem Cells Dayt. Ohio, vol.23, pp.1526-1534, 2005.

S. Wang, J. Wang, R. Luo, W. Cui, W. et al., Potassium channel currents in rat mesenchymal stem cells and their possible roles in cell proliferation, Clin. Exp. Pharmacol. Physiol, vol.35, pp.1077-1084, 2008.

T. Wang, K. Chen, X. Zeng, J. Yang, Y. Wu et al., The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-Cdependent manner, Cell Stem Cell, vol.9, pp.575-587, 2011.
DOI : 10.1016/j.stem.2011.10.005

URL : https://doi.org/10.1016/j.stem.2011.10.005

X. Wang, Q. Hu, Y. Nakamura, J. Lee, G. Zhang et al., The role of the sca-1+/CD31-cardiac progenitor cell population in postinfarction left ventricular remodeling, Stem Cells Dayt. Ohio, vol.24, pp.1779-1788, 2006.

C. D. Waring, C. Vicinanza, A. Papalamprou, A. J. Smith, S. Purushothaman et al., The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation, Eur. Heart J, vol.35, pp.2722-2731, 2014.

F. M. Watt, Role of integrins in regulating epidermal adhesion, growth and differentiation, EMBO J, vol.21, pp.3919-3926, 2002.

J. P. Weick, M. Austin-johnson, and S. Zhang, Developmental regulation of human embryonic stem cell-derived neurons by calcium entry via transient receptor potential channels, Stem Cells Dayt. Ohio, vol.27, pp.2906-2916, 2009.

B. E. Welm, S. B. Tepera, T. Venezia, T. A. Graubert, J. M. Rosen et al., Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population, Dev. Biol, vol.245, pp.42-56, 2002.
DOI : 10.1006/dbio.2002.0625

URL : https://doi.org/10.1006/dbio.2002.0625

C. Wiese, T. Nikolova, I. Zahanich, S. Sulzbacher, J. Fuchs et al., Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin, Int. J. Cardiol, vol.147, pp.95-111, 2011.

A. R. Williams and J. M. Hare, Mesenchymal stem cells: Biology, patho-physiology, translational findings, and therapeutic implications for cardiac disease, Circ. Res, vol.109, pp.923-940, 2011.

R. T. Windh, M. J. Lee, T. Hla, S. An, A. J. Barr et al., Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins, J. Biol. Chem, vol.274, pp.27351-27358, 1999.

S. O. Winitsky, T. V. Gopal, S. Hassanzadeh, H. Takahashi, D. Gryder et al., Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro, PLoS Biol, vol.3, p.87, 2005.
DOI : 10.1371/journal.pbio.0030087

URL : https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0030087&type=printable

A. M. Wobus, G. Kaomei, J. Shan, M. C. Wellner, J. Rohwedel et al., Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes, J. Mol. Cell. Cardiol, vol.29, pp.1525-1539, 1997.
DOI : 10.1006/jmcc.1997.0433

D. Woodbury, E. J. Schwarz, D. J. Prockop, and I. B. Black, Adult rat and human bone marrow stromal cells differentiate into neurons, J. Neurosci. Res, vol.61, pp.364-370, 2000.
DOI : 10.1002/1097-4547(20000815)61:4<364::aid-jnr2>3.3.co;2-3

X. Wu, B. Chang, N. S. Blair, M. Sargent, A. J. York et al., Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents, J. Clin. Invest, vol.119, pp.976-985, 2009.

G. G. Wulf, K. Luo, K. A. Jackson, M. K. Brenner, and M. A. Goodell, Cells of the hepatic side population contribute to liver regeneration and can be replenished with bone marrow stem cells, Haematologica, vol.88, pp.368-378, 2003.

L. Xin, D. A. Lawson, and O. N. Witte, The Sca-1 cell surface marker enriches for a prostateregenerating cell subpopulation that can initiate prostate tumorigenesis, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.6942-6947, 2005.
DOI : 10.1073/pnas.0502320102

URL : http://www.pnas.org/content/102/19/6942.full.pdf

L. Xiu, N. Chang, L. Yang, X. Liu, L. Yang et al., Intracellular sphingosine 1-phosphate contributes to collagen expression of hepatic myofibroblasts in human liver fibrosis independent of its receptors, Am. J. Pathol, vol.185, pp.387-398, 2015.

W. Xu, X. Zhang, H. Qian, W. Zhu, X. Sun et al., Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro, Exp. Biol. Med. Maywood NJ, vol.229, pp.623-631, 2004.
DOI : 10.1177/153537020422900706

E. Yanagida, S. Shoji, Y. Hirayama, F. Yoshikawa, K. Otsu et al., Functional expression of Ca2+ signaling pathways in mouse embryonic stem cells, Cell Calcium, vol.36, pp.135-146, 2004.
DOI : 10.1016/j.ceca.2004.01.022

L. Yang, M. H. Soonpaa, E. D. Adler, T. K. Roepke, S. J. Kattman et al., Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population, Nature, vol.453, pp.524-528, 2008.
DOI : 10.1038/nature06894

X. Yang, L. Pabon, and C. E. Murry, Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes, Circ. Res, vol.114, pp.511-523, 2014.

Y. Yang, L. Gharibeh, R. Li, Y. Xin, J. Wang et al., GATA4 loss-of-function mutations underlie familial tetralogy of fallot, Hum. Mutat, vol.34, pp.1662-1671, 2013.

Z. X. Yang, Z. Han, Y. R. Ji, Y. W. Wang, L. Liang et al., CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties, PloS One, vol.8, p.59354, 2013.
DOI : 10.1371/journal.pone.0059354

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0059354&type=printable

Y. Yarden, W. J. Kuang, T. Yang-feng, L. Coussens, S. Munemitsu et al., Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand, EMBO J, vol.6, pp.3341-3351, 1987.
DOI : 10.1002/j.1460-2075.1987.tb02655.x

T. Yasuda, A. , and D. J. , Physiological roles of ion channels in adult neural stem cells and their progeny, J. Neurochem, vol.114, pp.946-959, 2010.
DOI : 10.1111/j.1471-4159.2010.06822.x

T. Yasuda, P. F. Bartlett, A. , and D. J. , K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells, Mol. Cell. Neurosci, vol.37, pp.284-297, 2008.
DOI : 10.1016/j.mcn.2007.10.003

B. Ye, Ca2+ oscillations and its transporters in mesenchymal stem cells, Physiol. Res, vol.59, pp.323-329, 2010.

N. Ye, R. Zhang, Y. Zhao, X. Feng, Y. Wang et al., Effect of 5-azacytidine on the protein expression of porcine bone marrow mesenchymal stem cells in vitro, Genomics Proteomics Bioinformatics, vol.4, pp.18-25, 2006.

M. Yi, Q. Zhao, J. Tang, W. , and C. , A theoretical modeling for frequency modulation of Ca2+ signal on activation of MAPK cascade, Biophys. Chem, vol.157, pp.33-42, 2011.

J. U. Yoo, T. S. Barthel, K. Nishimura, L. Solchaga, A. I. Caplan et al., The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells, J. Bone Joint Surg. Am, vol.80, pp.1745-1757, 1998.

R. G. Young, D. L. Butler, W. Weber, A. I. Caplan, S. L. Gordon et al., Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.16, pp.406-413, 1998.

H. Yu, J. Wen, R. Wang, W. Shen, S. Duan et al., Critical role of type 2 ryanodine receptor in mediating activity-dependent neurogenesis from embryonic stem cells, Cell Calcium, vol.43, pp.417-431, 2008.

P. Yuan, M. D. Leonetti, A. R. Pico, Y. Hsiung, and R. Mackinnon, Structure of the Human BK Channel Ca2+-Activation Apparatus at 3.0 Å Resolution, Science, vol.329, pp.182-186, 2010.
DOI : 10.1126/science.1190414

URL : http://europepmc.org/articles/pmc3022345?pdf=render

K. E. Yutzey, J. T. Rhee, and D. Bader, Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart, Dev. Camb. Engl, vol.120, pp.871-883, 1994.

S. J. Zacharek, C. M. Fillmore, A. N. Lau, D. W. Gludish, A. Chou et al., Lung stem cell self-renewal relies on BMI1-dependent control of expression at imprinted loci, Cell Stem Cell, vol.9, pp.272-281, 2011.

I. Zahanich, E. M. Graf, J. F. Heubach, U. Hempel, S. Boxberger et al., Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.20, pp.1637-1646, 2005.

P. S. Zammit, T. A. Partridge, and Z. Yablonka-reuveni, The skeletal muscle satellite cell: the stem cell that came in from the cold, J. Histochem. Cytochem. Off. J. Histochem. Soc, vol.54, pp.1177-1191, 2006.

D. Zeineddine, E. Papadimou, K. Chebli, M. Gineste, J. Liu et al., Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development, Dev. Cell, vol.11, pp.535-546, 2006.

J. Zhang, N. Honbo, E. J. Goetzl, K. Chatterjee, J. S. Karliner et al., Signals from type 1 sphingosine 1-phosphate receptors enhance adult mouse cardiac myocyte survival during hypoxia, Am. J. Physiol. Heart Circ. Physiol, vol.293, pp.3150-3158, 2007.

J. Zhang, L. Zhang, Q. Wu, H. Liu, and L. Huang, Recombinant human brain natriuretic peptide therapy combined with bone mesenchymal stem cell transplantation for treating heart failure in rats, Mol. Med. Rep, vol.7, pp.628-632, 2013.

Y. Zhang, P. Sivakumaran, A. E. Newcomb, D. Hernandez, N. Harris et al., Cardiac Repair With a Novel Population of Mesenchymal Stem Cells Resident in the Human Heart, Stem Cells Dayt. Ohio, vol.33, pp.3100-3113, 2015.

Y. Zhang, J. Yue, H. Che, H. Sun, H. Tse et al., BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells, J. Cell. Physiol, vol.229, pp.202-212, 2014.

Y. Zhang, G. Li, H. Che, H. Sun, X. Li et al., Characterization of functional ion channels in human cardiac c-kit+ progenitor cells, Basic Res. Cardiol, vol.109, p.407, 2014.

Y. Zhang, G. Li, H. Che, H. Sun, G. Xiao et al., Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells, PloS One, vol.10, 2015.

Z. Zhang, Y. He, D. Tuteja, D. Xu, V. Timofeyev et al., Functional roles of Cav1.3(alpha1D) calcium channels in atria: insights gained from genetargeted null mutant mice, Circulation, vol.112, pp.1936-1944, 2005.

W. Zhao, J. Li, D. Cao, X. Li, L. Zhang et al., Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis, World J. Gastroenterol, vol.18, pp.1048-1058, 2012.

Z. Zhao, Z. Chen, X. Zhao, F. Pan, M. Cai et al., Sphingosine1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions, J. Biomed. Sci, vol.18, p.37, 2011.

Y. Zhou, X. Yang, H. Li, L. Han, and W. Jiang, Genetically-engineered mesenchymal stem cells transfected with human HCN1 gene to create cardiac pacemaker cells, J. Int. Med. Res, vol.41, pp.1570-1576, 2013.

L. Zhu, Y. Luo, T. Chen, F. Chen, T. Wang et al., Ca2+ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells, J. Cell Sci, vol.121, pp.2511-2518, 2008.

L. Zhu, S. Song, Y. Pi, Y. Yu, W. She et al., Cumulated Ca2 + spike duration underlies Ca2 + oscillation frequency-regulated NF?B transcriptional activity, J. Cell Sci, vol.124, pp.2591-2601, 2011.

T. Zimmer, V. Haufe, and S. Blechschmidt, Voltage-gated sodium channels in the mammalian heart, Glob. Cardiol. Sci. Pract, pp.449-463, 2014.

P. A. Zuk, M. Zhu, P. Ashjian, D. A. De-ugarte, J. I. Huang et al., Human adipose tissue is a source of multipotent stem cells, Mol. Biol. Cell, vol.13, pp.4279-4295, 2002.

, Après avoir sélectionné et caractérisé une population de cellules souches d'origine mésenchymateuse, isolée à partir d'auricules humaines, exprimant le marqueur W8B2 (CSCs W8B2+), nous nous sommes focalisés (par les techniques de RT-qPCR à haut rendement, d'immuno-marquage, de western-blot et de fluorescence calcique) sur

, Les résultats montrent que CSCs W8B2+ tendent à se différencier en cellules pacemaker

. Certains-gènes-spécifiques-nodaux,-comme-tbx3, . Hcn, L. Icat, K. V. , and N. , expriment durant la différenciation. L'enregistrement de l'activité calcique (via une sonde optogénétique) montre la présence d'oscillations calciques qui évoluent en fréquence et en intensité pendant la différenciation. Les stocks-IP3 sensibles et l'échangeur NCX

, Nous avons ensuite étudié l'importance du canal BKCa et des récepteurs sphingosine 1phosphate (S1P) dans la régulation des propriétés fondamentales des CSCs W8B2+

, L'inhibition du BKCa diminue la prolifération cellulaire en accumulant les cellules à la phase G0/G1, réprime l'auto-renouvellement mais n'affecte pas la migration

, Mots-clés : thérapie cellulaire, cellules souches cardiaques humaines, cellules mésenchymateuses, différenciation, canaux ioniques, signalisation calcique, canal BKCa, sphingosine 1-phosphate, optogénétique