G. Essentials-of, , 2017.

L. East and C. M. Isacke, The mannose receptor family, Biochim Biophys Acta-Gen Subj, vol.1572, issue.2-3, pp.364-386, 2002.

G. Tabarani, M. Thépaut, and D. Stroebel, DC-SIGN Neck Domain Is a pH-sensor Controlling Oligomerization: SAXS AND HYDRODYNAMIC STUDIES OF EXTRACELLULAR DOMAIN, J Biol Chem, vol.284, issue.32, pp.21229-21240, 2009.

J. K. Sprokholt, R. J. Overmars, and T. Geijtenbeek, DC-SIGN in Infection and Immunity BT-CType Lectin Receptors in Immunity, vol.2016, pp.129-150

C. N. Scanlan, J. Offer, N. Zitzmann, and R. A. Dwek, Exploiting the defensive sugars of HIV-1 for drug and vaccine design, Nature, vol.446, p.1038, 2007.

A. Berzi, S. Ordanini, and B. Joosten, Pseudo-Mannosylated DC-SIGN Ligands as, Immunomodulants. Sci Rep, vol.6, p.35373, 2016.

P. Gemeiner, D. Mislovi?ová, and J. Tká?, Lectinomics: II. A highway to biomedical/clinical diagnostics, Biotechnol Adv, vol.27, issue.1, pp.1-15, 2009.

A. Tamburrini, S. Achilli, and F. Vasile, Facile access to pseudo-thio-1,2-dimannoside, a new glycomimetic DC-SIGN antagonist, Bioorg Med Chem, vol.25, issue.19, pp.5142-5147, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01561634

D. M. Czajkowsky, J. Hu, Z. Shao, and R. J. Pleass, Fc-fusion proteins: new developments and future perspectives, EMBO Mol Med, vol.4, issue.10, pp.1015-1028, 2012.

A. Chapman-smith, C. Jr, and J. E. , The enzymatic biotinylation of proteins: a posttranslational modification of exceptional specificity, Trends Biochem Sci, vol.24, issue.9, pp.359-363, 1999.

J. M. Antos, G. Chew, and C. P. Guimaraes, Site-Specific N-and C-Terminal Labeling of a Single Polypeptide Using Sortases of Different Specificity, J Am Chem Soc, vol.131, issue.31, pp.10800-10801, 2009.

J. Bw, H. Da, J. Cc, K. Ra, C. Sc et al., Molecular features of the sortase enzyme family, FEBS J, vol.282, issue.11, pp.2097-2114, 2015.

A. A. Bashirova, T. Geijtenbeek, and G. Van-duijnhoven, A Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Grabbing Nonintegrin (Dc-Sign)-Related Protein Is Highly Expressed on Human Liver Sinusoidal Endothelial Cells and Promotes HIV-1 Infection, J Exp Med, vol.193, issue.6, pp.671-678, 2001.

S. Chen, F. Li, and T. Hsu, CLEC5A is a critical receptor in innate immunity against Listeria infection, Nat Commun, vol.8, issue.1, p.299, 2017.

P. J. Schatz, Use of Peptide Libraries to Map the Substrate Specificity of a Peptide-Modifying Enzyme: A 13 Residue Consensus Peptide Specifies Biotinylation in Escherichia coli

, Bio/Technology, vol.11, p.1138, 1993.

A. S. Powlesland, E. M. Ward, S. K. Sadhu, Y. Guo, M. E. Taylor et al., Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins, J Biol Chem, vol.281, issue.29, pp.20440-20449, 2006.

J. D. Stone, M. N. Artyomov, A. S. Chervin, A. K. Chakraborty, H. N. Eisen et al., Interaction of Streptavidin-Based Peptide-MHC Oligomers (Tetramers) with Cell-Surface T Cell Receptors

, J Immunol, vol.187, issue.12, pp.6281-6290, 2011.

M. W. Popp, J. M. Antos, G. M. Grotenbreg, E. Spooner, and H. L. Ploegh, Sortagging: a versatile method for protein labeling, Nat Chem Biol, vol.3, p.707, 2007.

,

X. Guo, Q. Wang, B. M. Swarts, and Z. Guo, Sortase-Catalyzed Peptide?Glycosylphosphatidylinositol Analogue Ligation, J Am Chem Soc, vol.131, issue.29, pp.9878-9879, 2009.

R. Parthasarathy, S. Subramanian, and E. T. Boder, Sortase A as a Novel Molecular "Stapler" for Sequence-Specific Protein Conjugation, Bioconjug Chem, vol.18, issue.2, pp.469-476, 2007.

T. T. Nguyen, K. L. Sly, and J. C. Conboy, Comparison of the Energetics of Avidin, Streptavidin, NeutrAvidin, and Anti-Biotin Antibody Binding to Biotinylated Lipid Bilayer Examined by Second-Harmonic Generation, Anal Chem, vol.84, issue.1, pp.201-208, 2012.

A. Jain and K. Cheng, The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis, J Control Release, vol.245, pp.27-40, 2017.

M. Stappers, A. E. Clark, and V. Aimanianda, Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus, Nature, vol.555, p.382, 2018.

,

Á. Santos, A. Hadjivasiliou, and F. Ossa, Oligomerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR: Sequence variation and stability differences, Protein Sci, vol.26, issue.2, pp.306-316, 2017.

M. Kobayashi-sakamoto, R. Tamai, E. Isogai, and Y. Kiyoura,

J. R. Rainville, M. Tsyglakova, and G. E. Hodes, Deciphering sex differences in the immune system and depression, Front. Neuroendocrinol, 2017.

K. M. Yatim and F. G. Lakkis, A Brief Journey through the Immune System, Clin. J. Am. Soc. Nephrol, vol.10, issue.7, pp.1274-1281, 2015.

C. A. Janeway and R. Medzhitov, Innate Immune Recognition, Annu. Rev. Immunol, vol.20, issue.1, pp.197-216, 2002.

M. D. Turner, B. Nedjai, T. Hurst, and D. J. Pennington, Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease, Biochim. Biophys. Acta-Mol. Cell Res, vol.1843, issue.11, pp.2563-2582, 2014.

H. Herwald and A. Egesten, The Origin of a Paradigm, J. Innate Immun, vol.8, issue.3, pp.221-222, 2016.

J. M. Den-haan, R. Arens, and M. C. Van-zelm, The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells, Immunol. Lett, vol.162, issue.2, pp.103-112, 2014.

B. Geering, C. Stoeckle, S. Conus, and H. Simon, Living and dying for inflammation: neutrophils, eosinophils, basophils, Trends Immunol, vol.34, issue.8, pp.398-409, 2013.

C. Hajjar, The NOX Family of Proteins Is Also Present in Bacteria, mBio, vol.8, issue.6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01635428

S. R. , L. John, K. R. , S. Vivek, M. Michael et al., Macrophages: A review of their role in wound healing and their therapeutic use, Wound Repair Regen, vol.24, issue.4, pp.613-629, 2016.

G. Holleran, The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease, Int. J. Mol. Sci, vol.18, issue.10, p.2020, 2017.

W. E. Paul, Bridging Innate and Adaptive Immunity, Cell, vol.147, issue.6, pp.1212-1215, 2011.

S. Maldonado and P. Fitzgerald-bocarsly, Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection, Frontiers in Immunology, vol.8, p.1705, 2017.

D. Dieke, S. D. , V. Rieneke, K. Yvette, G. T. et al., Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines, J. Leukoc. Biol, vol.102, issue.4, pp.1017-1034, 2017.

C. Qu, N. Brinck-jensen, M. Zang, and K. Chen, Monocyte-derived dendritic cells: targets as potent antigen-presenting cells for the design of vaccines against infectious diseases, Int. J. Infect. Dis, vol.19, p.2013

C. Qian and X. Cao, Dendritic cells in the regulation of immunity and inflammation, Semin. Immunol, vol.35, pp.3-11, 2018.

L. Chen and D. B. Flies, Molecular mechanisms of T cell co-stimulation and co-inhibition, Nat. Rev. Immunol, vol.13, issue.4, pp.227-242, 2013.

F. Sallusto, J. Geginat, and A. Lanzavecchia, Central Memory and Effector Memory T Cell Subsets: Function, Generation, and Maintenance, Annu. Rev. Immunol, vol.22, issue.1, pp.745-763, 2004.

J. C. Hoving, G. J. Wilson, and G. D. Brown, Signalling C-Type lectin receptors, microbial recognition and immunity, Cell. Microbiol, vol.16, issue.2, pp.185-194, 2014.

J. Luban, Innate immune sensing of HIV-1 by dendritic cells, Cell Host Microbe, vol.12, issue.4, pp.408-418, 2012.

A. Rubartelli and M. T. Lotze, Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox, Trends Immunol, vol.28, issue.10, pp.429-436, 2007.

T. P. Monie and T. P. Monie, A Snapshot of the Innate Immune System, The Innate Immune System, pp.1-40, 2017.

P. G. Vallés, A. G. Lorenzo, V. Bocanegra, and R. Vallés, Acute kidney injury: what part do toll-like receptors play?, Int. J. Nephrol. Renovasc. Dis, vol.7, pp.241-251, 2014.

S. M. Levitz and D. T. Golenbock, Beyond empiricism: Informing vaccine development through innate immunity research, Cell, vol.148, issue.6, pp.1284-1292, 2012.

L. Zaffaroni and F. Peri, Recent advances on Toll-like receptor 4 modulation: new therapeutic perspectives, Future Med. Chem, vol.10, issue.4, pp.461-476, 2018.

T. Kawai and S. Akira, The roles of TLRs, RLRs and NLRs in pathogen recognitionInt Immunol, Int. Immunol, vol.21, issue.4, pp.317-337, 2009.

T. B. Geijtenbeek and S. I. Gringhuis, Signalling through C-type lectin receptors: shaping immune responses, Nat. Rev. Immunol, vol.9, p.465, 2009.

V. S. , G. J. , and K. Yvette, Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses, Immunol. Cell Biol, vol.86, issue.7, pp.580-587, 2008.

D. Solís, A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code, Biochim. Biophys. Acta-Gen. Subj, vol.1850, issue.1, pp.186-235, 2015.

W. C. Boyd and E. Shapleigh, Specific Precipitating Activity of Plant Agglutinins (Lectins)," Science (80-. ), vol.119, pp.419-419, 1954.

M. R. Cummings and R. D. , C-Type Lectins, Essentials of Glycobiology, 2017.

Y. Feng, Role of selectins and their ligands in human implantation stage, Glycobiology, vol.27, issue.5, pp.385-391, 2017.

A. S. Powlesland, E. M. Ward, S. K. Sadhu, Y. Guo, M. E. Taylor et al., Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins, J. Biol. Chem, vol.281, issue.29, pp.20440-20449, 2006.

M. R. Leach and D. B. Williams, Calnexin and Calreticulin, Molecular Chaperones of the Endoplasmic Reticulum BT-Calreticulin: Second Edition, pp.49-62, 2003.

N. M. Dahms and M. K. Hancock, P-type lectins, Biochim. Biophys. Acta-Gen. Subj, vol.1572, issue.2-3, pp.317-340, 2002.

Z. A. and G. J. , The C-type lectin-like domain superfamily, FEBS J, vol.272, issue.24, pp.6179-6217, 2005.

K. Neumann, Clec12a Is an Inhibitory Receptor for Uric Acid Crystals that Regulates Inflammation in Response to Cell Death, Immunity, vol.40, issue.3, pp.389-399, 2014.

J. Brown, Structure of the fungal ?-glucan-binding immune receptor dectin-1: Implications for function, Protein Sci, vol.16, issue.6, pp.1042-1052, 2007.

K. Drickamer and M. E. Taylor, Recent insights into structures and functions of C-type lectins in the immune system, Curr. Opin. Struct. Biol, vol.34, pp.26-34, 2015.

A. Jonas, Identification of Multiple Druggable Secondary Sites by Fragment Screening against DC-SIGN, Angew. Chemie Int. Ed, vol.56, issue.25, pp.7292-7296, 2017.

Z. Xiaohui, B. D. , and M. V. , Molecular Basis of the Dynamic Strength of the Sialyl Lewis XSelectin Interaction, ChemPhysChem, vol.5, issue.2, pp.175-182, 2004.

J. T. Monteiro and B. Lepenies, Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity, Viruses, vol.9, issue.3, p.59, 2017.

G. D. Brown, J. A. Willment, and L. Whitehead, C-type lectins in immunity and homeostasis, Nat. Rev. Immunol, 2018.

D. Sancho and C. Reis-e-sousa, Signaling by myeloid C-type lectin receptors in immunity and homeostasis, Annu. Rev. Immunol, vol.30, pp.491-529, 2012.

O. Gross, Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence, Nature, vol.459, p.433, 2009.

M. J. Robinson, D. Sancho, E. C. Slack, S. Leibundgut-landmann, and C. R. Sousa, Myeloid C-type lectins in innate immunity, Nat. Immunol, vol.7, p.1258, 2006.

J. S. Bonifacino, E. C. Dell&#039, and . Angelica, Molecular Bases for the Recognition of Tyrosinebased Sorting Signals, J. Cell Biol, vol.145, issue.5, pp.923-926, 1999.

L. Shen, M. L. Lang, and W. F. Wade, The ins and outs of getting in: structures and signals that enhance BCR or Fc receptor-mediated antigen presentation, Immunopharmacology, vol.49, issue.3, pp.227-240, 2000.

A. Engering, The Dendritic Cell-Specific Adhesion Receptor DC-SIGN Internalizes Antigen for Presentation to T Cells, J. Immunol, vol.168, issue.5, pp.2118-2126, 2002.

T. Sx, M. Dl, R. Jp, M. Blagojevic, and N. Jr, Epithelial discrimination of commensal and pathogenic Candida albicans, Oral Dis, vol.22, issue.S1, pp.114-119, 2016.

S. I. Gringhuis, J. Den-dunnen, M. Litjens, B. Van-het-hof, Y. Van-kooyk et al., CType Lectin DC-SIGN Modulates Toll-like Receptor Signaling via Raf-1 Kinase-Dependent Acetylation of Transcription Factor NF-kappaB, Immunity, vol.26, issue.5, pp.605-616, 2007.

B. L. Van-den, G. S. , and G. T. , An evolutionary perspective on C-type lectins in infection and immunity, Ann. N. Y. Acad. Sci, vol.1253, issue.1, pp.149-158, 2012.

N. Masamichi, I. Akemi, K. Yu, M. Naoki, Y. Kazuo et al., Crystal structures of carbohydrate recognition domain of blood dendritic cell antigen-2 (BDCA2) reveal a common domain-swapped dimer, Proteins Struct. Funct. Bioinforma, vol.82, issue.7, pp.1512-1518, 2014.

E. Riboldi, Human C-type Lectin Domain Family 4, Member C (CLEC4C/BDCA-2/CD303) Is a Receptor for Asialo-galactosyl-oligosaccharides, J. Biol. Chem, vol.286, issue.41, pp.35329-35333, 2011.

S. A. Jégouzo, H. Feinberg, T. Dungarwalla, K. Drickamer, W. I. Weis et al., A Novel Mechanism for Binding of Galactose-terminated Glycans by the C-type Carbohydrate Recognition Domain in Blood Dendritic Cell Antigen 2, J. Biol. Chem, vol.290, issue.27, pp.16759-16771, 2015.

N. Kanazawa, K. Tashiro, and Y. Miyachi, Signaling and immune regulatory role of the dendritic cell immunoreceptor (DCIR) family lectins: DCIR, DCAR, dectin-2 and BDCA-2, Immunobiology, vol.209, issue.1-2, pp.179-190, 2004.

B. Reizis, A. Bunin, H. S. Ghosh, K. L. Lewis, and V. Sisirak, Plasmacytoid Dendritic Cells: Recent Progress and Open Questions, Annu. Rev. Immunol, vol.29, pp.163-183, 2011.

G. Tabarani, DC-SIGN Neck Domain Is a pH-sensor Controlling Oligomerization: SAXS AND HYDRODYNAMIC STUDIES OF EXTRACELLULAR DOMAIN, J. Biol. Chem, vol.284, issue.32, pp.21229-21240, 2009.

T. B. Geijtenbeek, Identification of DC-SIGN, a Novel Dendritic Cell Specific ICAM-3 Receptor that Supports Primary Immune Responses, Cell, vol.100, issue.5, pp.575-585, 2000.

J. J. Garcia-vallejo and Y. Van-kooyk, The physiological role of DC-SIGN: A tale of mice and men, Trends Immunol, vol.34, issue.10, pp.482-486, 2013.

T. B. Geijtenbeek, S. J. Van-vliet, G. C. Van-duijnhoven, C. G. Figdor, and Y. Van-kooyk, DC-SIGN, a Dentritic Cell-Specific HIV-1 Receptor Present in, Placenta That Infects T Cells In Trans-A Review, vol.22, pp.19-23, 2001.

A. L. Smith, L. Ganesh, K. Leung, J. Jongstra-bilen, J. Jongstra et al., Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells, J. Exp. Med, vol.204, issue.2, pp.421-430, 2007.

E. J. Soilleux, DC-SIGN (dendritic cell-specific ICAM-grabbing non-integrin) and DC-SIGN-related (DC-SIGNR): friend or foe?, Clin. Sci, vol.104, issue.4, pp.437-446, 2003.

H. Feinberg, D. A. Mitchell, K. Drickamer, and W. I. Weis, Structural Basis for Selective Recognition of Oligosaccharides by DC-SIGN and DC-SIGNR, Science (80-. ), vol.294, issue.5549, pp.2163-2166, 2001.

D. A. Mitchell, A. J. Fadden, and K. Drickamer, A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands, J. Biol. Chem, vol.276, issue.31, pp.28939-28984, 2001.

Y. Guo, Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR, Nat. Struct. &Amp; Mol. Biol, vol.11, p.591, 2004.

H. Feinberg, Y. Guo, D. A. Mitchell, K. Drickamer, and W. I. Weis, Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR, J. Biol. Chem, vol.280, issue.2, pp.1327-1362, 2005.

Y. Guo, Dissecting Multivalent Lectin-Carbohydrate Recognition Using Polyvalent Multifunctional Glycan-Quantum Dots, J. Am. Chem. Soc, vol.139, issue.34, pp.11833-11844, 2017.

R. Celerino-da-silva, L. Segat, and S. Crovella, Role of DC-SIGN and L-SIGN receptors in HIV-1 vertical transmission, Hum. Immunol, vol.72, issue.4, pp.305-311, 2011.

K. E. , V. G. , G. T. , and V. K. Yvette, Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation, Cell. Microbiol, vol.7, issue.2, pp.157-165, 2004.

F. Grünebach, M. M. Weck, J. Reichert, and P. Brossart, Molecular and functional characterization of human Dectin-1, Exp. Hematol, vol.30, issue.11, pp.1309-1315, 2002.

K. A. , Dectin-1 Is Expressed in Human Lung and Mediates the Proinflammatory Immune Response to Nontypeable Haemophilus influenzae, MBio, vol.5, issue.5, pp.1492-1506, 2014.

B. N. Gantner, R. M. Simmons, S. J. Canavera, S. Akira, and D. M. Underhill, Collaborative Induction of Inflammatory Responses by Dectin-1 and Toll-like Receptor 2, J. Exp. Med, vol.197, issue.9, pp.1107-1117, 2003.

J. R. Nerren and M. H. Kogut, The selective Dectin-1 agonist, curdlan, induces an oxidative burst response in chicken heterophils and peripheral blood mononuclear cells, Vet. Immunol. Immunopathol, vol.127, issue.1-2, pp.162-166, 2009.

B. Ferwerda, Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections, N. Engl. J. Med, vol.361, issue.18, pp.1760-1767, 2009.

L. M. Graham and G. D. Brown, The Dectin-2 family of C-type lectins in immunity and homeostasis, Cytokine, vol.48, issue.1-2, pp.148-155, 2009.

K. Sato, Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses, J. Biol. Chem, vol.281, issue.50, pp.38854-66, 2006.

T. Ishikawa, Identification of Distinct Ligands for the C-type Lectin Receptors Mincle and Dectin-2 in the Pathogenic Fungus Malassezia, Cell Host Microbe, vol.13, issue.4, pp.477-488, 2018.

H. Feinberg, S. A. Jégouzo, M. J. Rex, K. Drickamer, W. I. Weis et al., Mechanism of pathogen recognition by human dectin-2, J. Biol. Chem, vol.292, issue.32, pp.13402-13414, 2017.

L. Bi, CARD9 mediates dectin-2-induced IkappaBalpha kinase ubiquitination leading to activation of NF-kappaB in response to stimulation by the hyphal form of Candida albicans, J. Biol. Chem, vol.285, issue.34, pp.25969-77, 2010.

J. C. Muñoz-garcía, Langerin-Heparin Interaction: Two Binding Sites for Small and Large Ligands As Revealed by a Combination of NMR Spectroscopy and Cross-Linking Mapping Experiments, J. Am. Chem. Soc, vol.137, issue.12, pp.4100-4110, 2015.

M. Thépaut, Structural Studies of Langerin and Birbeck Granule: A Macromolecular Organization Model, Biochemistry, vol.48, issue.12, pp.2684-2698, 2009.

E. , Glycosaminoglycans Are Interactants of Langerin: Comparison with gp120 Highlights an Unexpected Calcium-Independent Binding Mode, PLoS One, vol.7, issue.11, p.50722, 2012.

L. De-witte, Langerin is a natural barrier to HIV-1 transmission by Langerhans cells, Nat. Med, vol.13, p.367, 2007.

W. Liu, Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node, J. Biol. Chem, vol.279, issue.18, pp.18748-58, 2004.

F. Zhang, S. Ren, and Y. Zuo, DC-SIGN, DC-SIGNR and LSECtin: C-Type Lectins for Infection, Int. Rev. Immunol, vol.33, issue.1, pp.54-66, 2014.

A. Dominguez-soto, The DC-SIGN-related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells, Blood, vol.109, issue.12, pp.5337-5345, 2007.

D. Zhao, The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein, PLoS Pathog, vol.12, issue.3, p.1005487, 2016.

A. S. Powlesland, A novel mechanism for LSECtin binding to Ebola virus surface glycoprotein through truncated glycans, J. Biol. Chem, vol.283, issue.1, pp.593-602, 2008.

T. Gramberg, Interactions of LSECtin and DC-SIGN/DC-SIGNR with viral ligands: Differential pH dependence, internalization and virion binding, Virology, vol.373, issue.1, pp.189-201, 2008.

A. Furukawa, Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.43, pp.17438-17443, 2013.

Y. Miyake, C-type Lectin MCL Is an FcR?-Coupled Receptor that Mediates the Adjuvanticity of Mycobacterial Cord Factor, Immunity, vol.38, issue.5, pp.1050-1062, 2013.

S. J. Williams, Sensing Lipids with Mincle: Structure and Function, Front. Immunol, vol.8, p.1662, 2017.

F. Behler, Macrophage-inducible C-type lectin Mincle-expressing dendritic cells contribute to control of splenic Mycobacterium bovis BCG infection in mice, Infect. Immun, vol.83, issue.1, pp.184-96, 2015.

R. Kiyotake, M. Oh-hora, E. Ishikawa, T. Miyamoto, T. Ishibashi et al., Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses, J. Biol. Chem, vol.290, issue.42, pp.25322-25332, 2015.

N. D. Rambaruth, S. A. Jégouzo, H. Marlor, M. E. Taylor, and K. Drickamer, Mouse Mincle: Characterization as a Model for Human Mincle and Evolutionary Implications, Molecules, vol.20, issue.4, pp.6670-6682, 2015.

H. Feinberg, Mechanism for Recognition of an Unusual Mycobacterial Glycolipid by the Macrophage Receptor Mincle, J. Biol. Chem, vol.288, issue.40, pp.28457-28465, 2013.

C. D. Braganza, T. Teunissen, M. S. Timmer, and B. L. Stocker, Identification and Biological Activity of Synthetic Macrophage Inducible C-Type Lectin Ligands, Front. Immunol, vol.8, p.1940, 2017.

R. L. Schnaar, Glycobiology simplified: diverse roles of glycan recognition in inflammation, J. Leukoc. Biol, vol.99, issue.6, pp.825-838, 2016.

G. A. Rabinovich, Y. Van-kooyk, and B. A. Cobb, Glycobiology of immune responses, Ann. N. Y. Acad. Sci, vol.1253, 2012.

J. E. Turnbull and R. A. Field, Emerging glycomics technologies, Nat. Chem. Biol, vol.3, p.74, 2007.

H. Ghazarian, B. Idoni, and S. B. Oppenheimer, A glycobiology review: carbohydrates, lectins, and implications in cancer therapeutics, Acta Histochem, vol.113, issue.3, pp.236-247, 2011.

F. Schwarz and M. Saebi, Mechanisms and principles of N-linked protein glycosylation, Curr. Opin. Struct. Biol, vol.21, issue.5, pp.576-582, 2011.

F. Higel, A. Seidl, F. Sörgel, and W. Friess, N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins, Eur. J. Pharm. Biopharm, vol.100, pp.94-100, 2016.

H. Gabius, How to Crack the Sugar Code, vol.63, 2017.

H. Gabius, S. André, J. Jiménez-barbero, A. Romero, and D. Solís, From lectin structure to functional glycomics: principles of the sugar code, Trends Biochem. Sci, vol.36, issue.6, pp.298-313, 2011.

P. Gemeiner, Lectinomics: II. A highway to biomedical/clinical diagnostics, Biotechnol. Adv, vol.27, issue.1, pp.1-15, 2009.

P. H. Seeberger, Glycan arrays and other tools produced by automated glycan assembly, Perspect. Sci, vol.11, pp.11-17, 2017.

M. Anderluh, DC-SIGN Antagonists-A Paradigm of C-Type Lectin Binding Inhibition, 2012.

T. B. Geijtenbeek, DC-SIGN, a Dendritic Cell Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells, Cell, vol.100, issue.5, pp.587-597, 2000.

A. Tamburrini, Facile access to pseudo-thio-1,2-dimannoside, a new glycomimetic DC-SIGN antagonist, Bioorg. Med. Chem, vol.25, issue.19, pp.5142-5147, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01561634

V. Porkolab, Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition, ACS Chem. Biol, vol.13, issue.3, pp.600-608, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01726168

R. José and J. , 1,2-Mannobioside Mimic: Synthesis, DC-SIGN Interaction by NMR and Docking, and Antiviral Activity, ChemMedChem, vol.2, issue.7, pp.1030-1036, 2007.

E. Wamhoff, 19F NMR-Guided Design of Glycomimetic Langerin Ligands, ACS Chem. Biol, vol.11, issue.9, pp.2407-2413, 2016.

M. J. Borrok and L. L. Kiessling, Non-Carbohydrate Inhibitors of the Lectin DC-SIGN, J. Am. Chem. Soc, vol.129, issue.42, pp.12780-12785, 2007.

K. C. Garber, K. Wangkanont, E. E. Carlson, and L. L. Kiessling, A general glycomimetic strategy yields non-carbohydrate inhibitors of DC-SIGN, Chem. Commun, vol.46, issue.36, pp.6747-6749, 2010.

S. L. Mangold, L. R. Prost, and L. L. Kiessling, Quinoxalinone Inhibitors of the Lectin DC-SIGN, vol.3, issue.3, pp.772-777, 2012.

R. C. , Principles of Glycan Recognition, Essentials of Glycobiology, 2017.

J. M. Antos, Site-Specific N-and C-Terminal Labeling of a Single Polypeptide Using Sortases of Different Specificity, J. Am. Chem. Soc, vol.131, issue.31, pp.10800-10801, 2009.

B. W. , D. A. , C. C. , R. A. , S. C. et al., Molecular features of the sortase enzyme family, FEBS J, vol.282, issue.11, pp.2097-2114, 2015.

D. A. Levary, R. Parthasarathy, E. T. Boder, and M. E. Ackerman, Protein-Protein Fusion Catalyzed by Sortase A, PLoS One, vol.6, issue.4, p.18342, 2011.

T. Sijbrandij, N. Cukkemane, K. Nazmi, E. C. Veerman, and F. J. Bikker, Sortase A as a Tool to Functionalize Surfaces, Bioconjug. Chem, vol.24, issue.5, pp.828-831, 2013.

S. R. Taylor, M. E. Drickamer, and K. , Discovery and Classification of Glycan-Binding Proteins, Essentials of Glycobiology, 2017.

Y. C. Lee and R. T. Lee, Carbohydrate-Protein Interactions: Basis of Glycobiology, Acc. Chem. Res, vol.28, issue.8, pp.321-327, 1995.

L. L. Kiessling, J. E. Gestwicki, and L. E. Strong, Synthetic multivalent ligands in the exploration of cell-surface interactions, Curr. Opin. Chem. Biol, vol.4, issue.6, pp.696-703, 2000.

T. Johannssen and B. Lepenies, Glycan-Based Cell Targeting To Modulate Immune Responses, Trends Biotechnol, vol.35, issue.4, pp.334-346, 2017.

T. Georges, Mannose hyperbranched dendritic polymers interact with clustered organization of DC-SIGN and inhibit gp120 binding, FEBS Lett, vol.580, issue.10, pp.2402-2408, 2006.

A. Berzi, Pseudo-Mannosylated DC-SIGN Ligands as Immunomodulants, Sci. Rep, vol.6, p.35373, 2016.

D. A. Mitchell, Manipulation of cytokine secretion in human dendritic cells using glycopolymers with picomolar affinity for DC-SIGN, Chem. Sci, vol.8, issue.10, pp.6974-6980, 2017.

J. Luczkowiak, Glycofullerenes Inhibit Viral Infection, Biomacromolecules, vol.14, issue.2, pp.431-437, 2013.

D. Arosio, Effective Targeting of DC-SIGN by ?-Fucosylamide Functionalized Gold Nanoparticles, Bioconjug. Chem, vol.25, issue.12, pp.2244-2251, 2014.

D. Safari, Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine, Nanomedicine, vol.7, issue.5, pp.651-662, 2012.

F. Alberto, C. F. Javier, and J. Jesús, Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics, Chem.-A Eur. J, vol.21, issue.30, pp.10616-10628, 2015.

M. S. Itano, Super-Resolution Imaging of C-Type Lectin and Influenza Hemagglutinin Nanodomains on Plasma Membranes Using Blink Microscopy, Biophys. J, vol.102, issue.7, pp.1534-1542, 2012.

K. Brzezicka, U. Vogel, S. Serna, T. Johannssen, B. Lepenies et al., Influence of Core ?1,2-Xylosylation on Glycoprotein Recognition by Murine C-type Lectin Receptors and Its Impact on Dendritic Cell Targeting, ACS Chem. Biol, vol.11, issue.8, pp.2347-2356, 2016.

O. H. Hashim, J. J. Jayapalan, and C. Lee, Lectins: an effective tool for screening of potential cancer biomarkers, PeerJ, vol.5, p.3784, 2017.

K. Nakajima, Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis, Cancer Med, vol.4, issue.2, pp.293-302, 2015.

I. Gudelj, Low galactosylation of IgG associates with higher risk for future diagnosis of rheumatoid arthritis during 10 years of follow-up, Biochim. Biophys. Acta-Mol. Basis Dis, vol.1864, issue.6, pp.2034-2039, 2018.

K. Jaroslav, ?. Juraj, G. Peter, K. Tibor, and T. Jan, Glycan and lectin microarrays for glycomics and medicinal applications, Med. Res. Rev, vol.30, issue.2, pp.394-418, 2010.

F. Kamena, Synthetic GPI array to study antitoxic malaria response, Nat. Chem. Biol, vol.4, p.238, 2008.

J. Stevens, O. Blixt, J. C. Paulson, and I. A. Wilson, Glycan microarray technologies: tools to survey host specificity of influenza viruses, Nat. Rev. Microbiol, vol.4, p.857, 2006.

A. Zoran, Internalization and Accumulation in Dendritic Cells of a Small pH-Activatable Glycomimetic Fluorescent Probe as Revealed by Spectral Detection, ChemBioChem, vol.16, issue.18, pp.2660-2667, 2015.

C. Bies, C. Lehr, and J. F. Woodley, Lectin-mediated drug targeting: history and applications, Adv. Drug Deliv. Rev, vol.56, issue.4, pp.425-435, 2004.

H. Yu and J. Lin, Intracellular delivery of membrane-impermeable hydrophilic molecules to a hepatoblastoma cell line by asialoglycoprotein-labeled liposomes, vol.99, 2000.

D. H. Dube and C. R. Bertozzi, Glycans in cancer and inflammation-potential for therapeutics and diagnostics, Nat. Rev. Drug Discov, vol.4, p.477, 2005.

C. A. Aarnoudse, J. J. Vallejo, E. Saeland, and Y. Van-kooyk, Recognition of tumor glycans by antigen-presenting cells, Curr. Opin. Immunol, vol.18, issue.1, pp.105-111, 2006.

P. J. Tacken, I. J. De-vries, R. Torensma, and C. G. Figdor, Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting, Nat. Rev. Immunol, vol.7, p.790, 2007.

P. J. Tacken, Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody, Blood, vol.106, issue.4, pp.1278-1285, 2005.

I. Moraes and M. Archer, Methods for the Successful Crystallization of Membrane Proteins BTStructural Proteomics: High-Throughput Methods, pp.211-230, 2015.

K. Brzezicka, B. Echeverria, S. Serna, A. Van-diepen, C. H. Hokke et al., Synthesis and Microarray-Assisted Binding Studies of Core Xylose and Fucose Containing N-Glycans, ACS Chem. Biol, vol.10, issue.5, pp.1290-1302, 2015.

, Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light, Zeitschrift für Naturforschung A, vol.23, p.2135, 1968.

R. B. Schasfoort, Chapter 1 Introduction to Surface Plasmon Resonance, Handbook of Surface Plasmon Resonance, pp.1-26, 2017.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications, Sensors (Basel), vol.15, issue.5, pp.10481-10510, 2015.

P. Schuck and H. Zhao, The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing, Methods Mol. Biol, vol.627, pp.15-54, 2010.

S. Cecioni, A. Imberty, and S. Vidal, Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands, Chem. Rev, vol.115, issue.1, pp.525-561, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01146938

W. B. Turnbull and A. H. Daranas, On the Value of c: Can Low Affinity Systems Be Studied by Isothermal Titration Calorimetry?, J. Am. Chem. Soc, vol.125, issue.48, pp.14859-14866, 2003.

W. D. , F. M. , W. M. , and T. W. Bruce, Efficient N-Terminal Labeling of Proteins by Use of Sortase, Angew. Chemie Int. Ed, vol.51, issue.37, pp.9377-9380, 2012.

R. Chen, W. Schmidmayr, C. Krämer, U. Chen-schmeisser, and U. Henning, Primary structure of major outer membrane protein II (ompA protein) of Escherichia coli K-12, Proc. Natl. Acad. Sci. U. S. A, vol.77, issue.8, pp.4592-4596, 1980.

W. Guo, L. González-candelas, and P. E. Kolattukudy, Cloning of a novel constitutively expressed pectate lyase gene pelB from Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI) and characterization of the gene product expressed in Pichia pastoris, J. Bacteriol, vol.177, issue.24, pp.7070-7077, 1995.

C. F. Schierle, M. Berkmen, D. Huber, C. Kumamoto, D. Boyd et al., The DsbA Signal Sequence Directs Efficient, Cotranslational Export of Passenger Proteins to the Escherichia coli Periplasm via the Signal Recognition Particle Pathway, J. Bacteriol, vol.185, issue.19, pp.5706-5713, 2003.

E. , Alteration of the Langerin Oligomerization State Affects Birbeck Granule Formation, Biophys. J, vol.108, issue.3, pp.666-677, 2015.

M. Schlapschy, S. Grimm, and A. Skerra, A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli, Protein Eng. Des. Sel, vol.19, issue.8, pp.385-390, 2006.

A. Picciocchi, C-Terminal Engineering of CXCL12 and CCL5 Chemokines: Functional Characterization by Electrophysiological Recordings, PLoS One, vol.9, issue.1, p.87394, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01073781

V. Norbert, Selective Targeting of Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin (DC-SIGN) with Mannose-Based Glycomimetics: Synthesis and Interaction Studies of Bis(benzylamide) Derivatives of a Pseudomannobioside, Chem.-A Eur. J, vol.19, issue.15, pp.4786-4797, 2013.

H. Feinberg, R. Castelli, K. Drickamer, P. H. Seeberger, and W. I. Weis, Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins, J. Biol. Chem, vol.282, issue.6, pp.4202-4211, 2007.

T. B. Geijtenbeek, Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1, J. Biol. Chem, vol.277, issue.13, pp.11314-11334, 2002.

D. L. Flaviana, The Lipid A from Rhodopseudomonas palustris Strain BisA53 LPS Possesses a Unique Structure and Low Immunostimulant Properties, Chem.-A Eur. J, vol.23, issue.15, pp.3637-3647, 2016.

A. B. Biter, A. H. De-la-peña, R. Thapar, J. Z. Lin, and K. J. Phillips, DSF Guided Refolding As A Novel Method Of Protein Production, Sci. Rep, vol.6, p.18906, 2016.

E. Boeri-erba and C. Petosa, solution of 3 8 (160 mg, 0.117 mmol) and 4 9 (126 mg, 0.141 mmol, 1.2eq) in dry CH2Cl2 with molecular sieves was stirred at room temperature for 1h. To this mixture, TMSOTf (3 µL, 0.017 mmol, 15 %) was added and stirred until TLC showed complete conversion of the starting material (1 h). The reaction was quenched by adding triethylamine (20 µL), filtered through a plug of Celite® and the filtrate was concentrated. The crude was purified by flash chromatography obtaining 5 (185 mg, 76%), The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes, vol.24, pp.1176-1192, 2015.

, 10.5 (c=0.5. CHCl3); 1 H NMR (500 MHz, CDCl3) ? 7.92-7.61 (m, 12H, Ar), vol.7, p.54

T. , J. =-;-m, 2. , H. , H. et al., (m, 2H, H-6bC, H-6aA), 3.39 (dd, J = 11.0, 3.8 Hz, 1H, H-6bA, m, 1H, H-5E), 2.04 (s, 3H, CH3 Ac), 2.03 (s, 3H, CH3 Ac), 1.99 (s, 3H, CH3 Ac), 1.97 (s, 3H, CH3 Ac), 1.87 (s, 3H, CH3 Ac), 1.85 (s, 3H, CH3 Ac), 1.42-1.22 (m, 4H, CH2, vol.1

, +0.9, p.500

, MHz, CDCl3) ? 7.95-7.47 (m, 12H, Ar), 7.34-7.20 (m, 9H, Ar), 7.20-7.11 (m, 1H, Ar), 7.03-6.92 (m, 7H, Ar)

1. Hz, H. -1b-;-m, 3. , H. , H. et al., 2x CH2 Bn), 4.59 (d, J = 12.1 Hz, 1H, CH2 Bn

S. Serna, B. Kardak, N. Reichardt, and M. Martin-lomas, Tetrahedron Asymmetry, vol.20, pp.851-856, 2009.

C. Unverzagt, S. Eller, S. Mezzato, and R. Schuberth, Chem. Eur. J, vol.14, pp.1304-1311, 2007.

, mmol) and 4 2 (80 mg, 0.092 mmol, 1.3 eq) in dry CH2Cl2 (14 mL) with molecular sieves was stirred at room temperature for 1h. The mixture was cooled down to-40°C, TMSOTf (2 µL, 15%) was added and stirred at this temperature until TLC showed complete conversion of the starting material (1 h). The reaction was quenched by adding triethylamine (5 µL), vol.6598, 2003.

7. H1e', H. , H. , H. , H. et al., 1?4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-?-D-glucopyranosyl-(1?4)-2-acetamido3,6-di-O-benzyl-2-deoxy-?-D-glucopyranoside 1. A solution of 7 (32 mg, 11.91 µmol) in n-butanol: ethylene diamine (4:1, 500 µL) was heated at 120°C (3x30 minutes) under microwave irradiation. The mixture was concentrated, co-evaporated with toluene and ethanol and dried under high vacuum overnight. The crude was dissolved in pyridine (1 mL), cooled to 0°C and Ac2O (0.5 mL) and DMAP (1 mg) were added. After overnight reaction at room temperature, the mixture was concentrated and purified by column chromatography in EtOAc:MeOH 95:5, obtaining the crude peracetylated compound. The peracetylated compound is dissolved in MeOH (2 mL) and 0.5M NaOMe in MeOH was added (50 µL, 4.73 (d, J = 12.5 Hz, 1H, CH2 Bn), 4.61 (d, J = 12.1 Hz, 1H, CH2 Bn), 4.54 (s, 1H, H-1C), 4.50-4.25 (m, 10H, 5x, vol.1

1. Hz, 2. H1d'-;-m, H. H6bc, H. , H. et al., H-6bD, H-6aD', H-6bD', H-6aE, H-6bE, H-6aE', H-6bE, m, 3H, H-5E, CH2N3), 3.193.13 (m, 2H, H-5C, H-5E'), 1.99 (s, 3H, CH3 Ac), 1.98 (s, 3H, CH3 Ac), 1.85 (s, 3H, CH3 Ac, vol.1

, H-2D), 4.03-3.94 (m, 2H, H-4A, H-4B), 3.94-3.37 (m, 40H), 3.20-3.11 (m, 2H, H-5C, H-5E'), 1.99 (s, 3H, CH3 Ac), 1.98 (s, 3H, CH3 Ac), 1.85 (s, 3H, CH3 Ac), 1.83 (s, 3H, CH3 Ac), 1.62-1.52 (m, 4H, 2xCH2 linker), 1.47-1.37 (m, 2H, CH2 linker). 13 C NMR (from HSQC experiment 126MHz, MeOD) ? 128.0, 4-galactosylation of 1: A solution (1.65 mL) of 1 (6.09 mg, 3.41 µmol), uridine 5'-diphospho-?-Dgalactose disodium salt UDP-Gal 20 (179 µL, 3.58 µmol, 1.05 eq), bovine serum albumin BSA (1 mg), bovine milk ?-1,4-galactosyltransferase (100 mU), MnCl2 (2 mM) and Hepes buffer (50mM, pH=7.4) was incubated at 37°C overnight. The resulting mixture was heated at 95°C for 5 min to precipitate the enzyme. After centrifugation, the supernatant was purified by semipreparative HPLC (C18 10x250 mm 5 µm, ammonium formate 20 mM:ACN gradient A) and the collected fractions were evaporated and freeze-dried obtaining 1.53 mg (0.726 µmol, 21%) of compound 10, 1.20 mg (0.613 µmol, 18%) of compound 9, 1.55 mg (0.793 µmol, 23%) of compound 8 and 1.35 mg (0.754 µmol, 22%) of compound 1. 5-azidopentyl ?, vol.8, p.55

, ): m/z: calcd C95H137N7O46Na: 2134.8488 [M+Na] + , found 2134.8472. ?-1,4-galactosylation of 2: A solution (0.5 mL) of 2 (2.13 mg, 1.19 µmol), uridine 5'-diphospho-?-Dgalactose disodium salt UDP-Gal 20 mM (72 µL, 1.44 µmol, 1.21 eq), bovine serum albumin BSA (1 mg), bovine milk ?-1,4-galactosyltransferase(100 mU), MnCl2 (2 mM) and Hepes buffer (50 mM, pH=7.4) was incubated at 37°C for 24h. The resulting mixture was heated at 95 °C for 5 min to precipitate the enzyme. After centrifugation, the supernatant was purified by HPLC (C18 10x100 mm, ACN: H2O 0.1% formic acid, gradient B) and the collected fractions were evaporated and freeze-dried obtaining 720 ?g (0.327 µmol, .10 (m, 1H), 2.05 (s, 3H), 2.03 (s, 3H), 1.78 (s, 3H), 1.78 (s, 3H), 1.61-1.50 (m, 4H), 1.40-1.31 (m, 3H). 13 C NMR (from HSQC experiment 126MHz, MeOD), vol.3, p.3

. Ac, HRMS (MALDI): m/z: calcd C102H143N7NaO46: 2224.8958 [M+Na] + , found 2224.8909. ?-1,4-galactosamination of 1: A solution (1 mL) of 1 (5.77 mg, 3.22 µmol), uridine 5'-diphospho-2acetamido-2-deoxy-?-D-galactosamine disodium salt UDP-GalNAc 20mM (178 µL, 3.22 µmol, 1.1 eq), double mutant ?-1,4-galactosyltranferase (400 µL), MnCl2 (10 mM) in Hepes buffer (50mM, pH=7.4) was incubated at 37°C for 44h. The resulting mixture was heated at 95°C for 5 min to precipitate the enzyme. After centrifugation the supernatant was purified by semi-preparative HPLC (ACN:H2O, C18 10x250 mm, 5µm, gradient C). The fractions were concentrated and freeze-dried, obtaining 1.89 mg (0.861 µmol, 26%) of compound 16, 1.67 mg (0.837 µmol, 26 %) of compound 15, 1.48 mg (0.742 µmol, 23%) of compound 14 and 1.118 mg (0.625 µmol, 19%) of compound 1 5-azidopentyl 2, 1.83 (s, 3H, CH3 Ac), 1.82 (s, 3H, CH3 Ac), 1.63-1.52 (m, 4H, 2xCH2 linker), 1.48-1.38 (m, 2H, CH2 linker). 13 C NMR (from HSQC experiment 126MHz, MeOD) ?: 129.1, 128.7, 128.5, 128.5, 128.1, 128.1, 104.7(C-1F, C-1F'), 102.3(C-1A), 101.4(C-1C, C-1E'), vol.101

H. Bn, H. , H. , H. , H. et al., 01 (s, 3H, CH3 Ac), 1.99 (s, 3H, CH3 Ac), 1.97 (s, 3H, CH3 Ac), 1.85 (s, 3H, CH3 Ac), 1.83 (s, 3H, 23%) was obtained. 1 H NMR (500 MHz, MeOD) ? 7.43-7.14 (m, 20H, Ph), 5.07 (s, 1H, H-1D), 5.04-4.96 (m, 2H, 2x CH2 Bn, vol.2

H. Bn, H. , 3. , H. , H. et al., (m, 40H), 3.28-3.22 (m, 4H, CH2N3, H-5B, H-5E), 3.20-3.14 (m, 1H, H-5C), 3.11-3.05 (m, 1H, H-5E'), 2.04 (s, 3H, CH3 Ac), 1.98 (s, 6H, 2x CH3 Ac), 1.83 (s, 6H, 2x CH3 Ac), 1.62-1.53 (m, 4H, After ?-1,4-galactosamination of 1 (5.77 mg, 3.22 µmol) and HPLC purification of the crude using gradient C, 15 (1.668 mg, 0.837 µmol, 26 %) was obtained. 1 H NMR (500 MHz, MeOD) ? 7.45-7.10 (m, 20H, Ph), 5.07 (d, J = 1.5 Hz, 1H, H-1D ), 5.01-4.96 (m, 2H, 2x CH2 Bn, vol.101, p.3

. Ac, MnCl2 (20 mM) in MES 80mM buffer pH 6.5 was incubated at room temperature for 48h. The resulting mixture was heated at 95°C for 5 min to precipitate the enzyme. After centrifugation the supernatant was purified by semipreparative HPLC (C18 10x250 mm, 5µm, gradient D, Ammonium formate 20 mM:ACN) and the collected fractions were evaporated and freeze-dried obtaining 1.04 mg of 17 (60%). 1 H NMR (500 MHz, MeOD) ? 7, 1.83 (d, J = 1.4 Hz, 6H 2xCH3 Ac), 1.62-1.51 (m, 4H, 2xCH2), 1.49-1.37 (m, 2H, CH2). 13 C NMR from HSQC experiment (126 MHz, MeOD) ? 127.76, 127.74, 127.68, 127.3, 126.9, vol.4, p.2

H. Ch2-bn and H. , , vol.3, p.3

3. Ac-;-s and . Ac, mL) of 15 (1.60 mg, 0.803 µmol), guanosine 5?-diphospho-?L-fucose sodium salt GDP-Fucose 20 mM (118.5 µL, 2.35 µmol, 2.9 eq), ?-1,3-fucosyltranferase CeFUT6 (110 µL), MnCl2 (20 mM) in MES 80mM buffer pH 6.5 was incubated at room temperature for 48h. The resulting mixture was heated at 95°C for 5 min to precipitate the enzyme, 16.5. HRMS (MALDI): m/z: calcd C97H140N8NaO45: 2159.8805 [M+Na] + , found 2159.8953. 5-azidopentyl 2-acetamido-2-deoxy-?-D-glucopyranosyl-(1?2)-?-Dmannopyranosyl-(1?3), p.500

2. , H. , H. , J. Hz, 2. Bn-;-m et al., MHz, MeOD) ? 7.43-7.13 (m, 20H, Ph)

3. Hz and H. , 13 C NMR from HSQC experiment (126 MHz, MeOD)

, After centrifugation, the supernatant was purified by semi-preparative HPLC (C18 10x250 mm 5µm, ammonium formate 20 mM:ACN, gradient E) and the collected fractions were evaporated and freeze-dried obtaining 118 ?g of 21 (0.047 ?mol, 10%), 300 ?g of 19 (0.128 ?mol, 27%) and 44 ?g of 20 (0.018 ?mol 4%) and 0.148 mg (0.674 ?mol, 14%) 5-azidopentyl ?-L-fucopyranosyl-(1?3)-[2-acetamido-2-deoxy-?-D-galactopyranosyl(1?4), 3-fucosylation of 16: A solution (1 mL) of 16 (1.05 mg, 0.476 µmol), guanosine 5?-diphospho-?-L-fucose sodium salt GDP-Fucose 20 mM (51.5 µL, 1.03 µmol, 2.2 eq), ?-1,3-fucosyltranferase CeFUT6 (60 µL), MnCl2 (20 mM) in MES 80mM buffer pH 6.5 was incubated at room temperature for 48h, vol.1

3. Hz, H. -6g-;-m, 3. , H. , H. Bn-;-m et al., M+Na] + , found 2362.9724. 5-azidopentyl 2-acetamido-2-deoxy-?-D-galactopyranosyl-(1?4)-2-acetamido-2deoxy-?-D-glucopyranosyl-(1?2)-?-D-mannopyranosyl-(1?3)-{?-L-fucopyranosyl-(1?3)-[2-acetamido2-deoxy-?-D-galactopyranosyl-(1?4)]-2-acetamido-2-deoxy-?-D-glucopyranosyl-(1?2)-?-Dmannopyranosyl-(1?6)}-?-D-mannopyranosyl-(1?4)-2-acetamido-3,6, H NMR (500 MHz, MeOD) ? 7.44-7.13 (m, 20H, Ph), vol.1

, After centrifugation the supernatant was purified by semi-preparative HPLC (ACN:H2O, C18 10x250 mm 5µm, gradient C). The fractions were concentrated and freezed-dried, obtaining 664 ?g (0.284 µmol, 60%) of compound 20. 5-azidopentyl ?-L-fucopyranosyl, A solution (0.5 mL) of 18 (1 mg, 0.468 µmol), uridine 5'-diphospho-2-acetamido-2-deoxy-?-D-galactosamine disodium salt UDP-GalNAc 20mM (35 µL, 0.702 µmol, 1.5 eq), double mutant ?-1,4-galactosyltranferase (50 µL)

, After ?-1,3-fucosylation of 16 (1.05 mg, 0.476 µmol) and HPLC purification of the crude using gradient E, the collected fractions were evaporated and freeze-dried obtaining 0, vol.118

H. Nmr, 500 MHz, MeOD) ? 9.18-8.58 (m, vol.20

5. Hz, H. , H. , H. Ch2)-;-m, 5. et al., H-1A), 5.84 (d, J = 8.1 Hz, 1H, H-1E'), 5.67 (d, J = 3.1 Hz, 1H, H-2C), 2x CH2 ), 5.95 (d, J = 8.1 Hz, vol.1, p.61

M. Mhz, General hydrogenation procedure: Glycan (0.5-1 mg) is dissolved in 0.5 mL of MeOH containing trifluoroacetic acid (0.1%). The mixture was hydrogenated on a H-Cube hydrogenation apparatus, using 10%Pd/C as catalyst, MeOH containing 0.1%TFA as mobile phase at 2 mL/min, at 30°C and full H2. The collected fraction was concentrated to dryness and purify with SampliQ high performance graphitized carbon cartridges eluting the compound in a mixture of H2O:ACN 8:2. 5-aminopentyl ?-D-galactopyranosyl-(1?4)-2-acetamido-2-deoxy-?-Dglucopyranosyl-(1?2)-?-D-mannopyranosyl-(1?3)-[2-acetamido-2

. Mhz, HRMS (MALDI): m/z calcd for C61H105N5O41Na: 1586.6177, found 1586.6042. 5-aminopentyl 2-acetamido-2-deoxy-?-D-galactopyranosyl-(1?4)-2-acetamido-2deoxy-?-D-glucopyranosyl-(1?2)-?-D-mannopyranosyl-(1?3)-[2-acetamido-2-deoxy-?-Dglucopyranosyl-(1?2)-?-D-mannopyranosyl-(1?6)]-?-D-mannopyranosyl-(1?4)-2-acetamido-2-deoxy?-D-glucopyranosyl-(1?4)-2-acetamido-2-deoxy-?-D-glucopyranoside 24. The general hydrogenation procedure was applied to 786 ?g (0.39 µmol) of compound 14 and 506 ?g of 24 (80% of yield) were obtained. 1 H NMR (500 MHz, D2O) ? 5.12 (s, 1H), The general hydrogenation procedure was applied to 1.20 mg (0.793 µmol) of 9 and 782 ?g of 24 (81% yield) were obtained. 1 H NMR (500 MHz, D2O) ? 5.12 (s, 1H), 4.93 (s, 1H), 4.64-4.53 (m, 3H), 4.49 (t, J = 8.0 Hz, 2H), 4.25 (d, J = 2.6 Hz, 1H), 4.21-4.17 (m, 1H), 4.11 (dd, J = 3.1, 1.3 Hz, 1H), 4.03-3.40 (m, 47H), 2.99 (t, J = 7.7 Hz, 2H), 2.09 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.72-1.63 (m, 2H), 1.63-1.55 (m, 2H), 1.45-1.34 (m, 2H). 13 C NMR from HSQC experiment (126 MHz, D2O) ? 102.9, vol.2

T. and J. , (1?4)-2-acetamido-2-deoxy-?-D-glucopyranosyl-(1?4)2-acetamido-2-deoxy-?-D-glucopyranoside 29. The general hydrogenation procedure was applied to 810 ?g, Hz, 2H), 2.10 (s, 3H), 2.09 (s, 3H), 2.05 (d, J = 1.6 Hz, 9H), vol.2

, 10 (s, 3H), 2.08 (s, 3H), 2.06 (s, 6H), 2.05 (s, 3H), 2.04 (s, 3H), 1.72-1.64 (m, 2H), 1.64-1.56 (m, 2H), 1.45-1.37 (m, 2H), 1.28 (d, J = 6.4 Hz, 3H). 13 C NMR from HSQC experimente ? 101, m, 5H), 3.00 (t, J = 7.6 Hz, 2H, vol.2, p.1, 2016.

S. Achilli, B. Didak, C. Vivès, M. Thépaut, L. Landemarre et al., C-type lectins receptor (CLR) arrays to screen immunocompatibility and reactivity of biological sample, 2016.

S. Achilli, B. Didak, C. Vivès, M. Thépaut, L. Landemarre et al., C-type lectins receptor (CLR) arrays to screen immunocompatibility and reactivity of biological sample, IBS day, 2016.

S. Achilli, B. Didak, C. Vivès, M. Thépaut, L. Landemarre et al., C-type lectins receptor (CLR) arrays to screen immunocompatibility and reactivity of biological sample, 19th European Carbohydrate Symposium EUROCARB, 2017.

S. Achilli, C. Vivès, M. Thépaut, S. Serna, N. Reichardt et al., TETRALEC, Artificial Tetrameric Lectins, a tool for multivalency enhancement