, Ces thématiques devraient connaître des développements encore plus poussés à l'avenir, puisqu'un projet visant à utiliser ces nano-résonateurs pour extraire la lumière de couches luminescentes a été déposé. Les outils que j'ai développés et le savoir-faire que j'ai

S. Bozhevolny and T. Sondergaard, General properties of slow-plasmon resonant nanostructures : nano-antennas and resonators, Optics Express, vol.15, p.10869, 2007.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang et al., Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas, Nature Photonics, vol.8, pp.835-840, 2014.

E. Ozbay, Plasmonics : merging photonics and electronics at nanoscale dimensions, Science, vol.311, pp.189-192, 2006.

R. W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Philosophical Magazine, vol.4, pp.396-402, 1902.

L. Rayleigh, Note on the remarkable case of diffraction spectra described by prof. wood, Philosophical Magazine, vol.14, pp.60-65, 1907.

R. W. Wood, On the dynamical theory of gratings, Proceedings of the Royal Society, vol.79, pp.399-416, 1907.

J. Strong, Effect of evaporated films on energy distribution in grating spectra, Physical Review, vol.49, pp.291-296, 1936.

R. W. Wood, Anomalous diffraction gratings, Physical Review, vol.48, pp.928-936, 1935.

C. H. Palmer, Parallel diffraction grating anomalies, Journal of Optical Society of America, vol.42, pp.269-276, 1952.

C. H. Palmer, Diffraction grating anomalies, ii, coarse gratings, Journal of Optical Society of America, vol.46, pp.50-53, 1956.

U. Fano, The theory of anomalous diffraction gratingd and of quasi-stationary waves on metallic surfaces (sommerfield's waves), Journal of Optical Society of America, vol.31, pp.213-222, 1941.

D. Pines, Collective energy losses in solids, Review of Modern Physics, vol.28, p.184, 1956.

A. Hessel and A. A. Oliner, A new theory of wood's anomalies on optical gratings, Applied Optics, vol.4, pp.1275-1297, 1965.

D. Maystre, Plasmonics, vol.167, 2012.

D. Maystre, Sur la diffraction d'une onde plane par un réseau métallique de conductivité finie, Optics Communication, vol.6, pp.50-54, 1972.

D. Maystre, Sur la diffraction d'une onde plane électromagnétique par un réseau métallique, Optics Communication, vol.8, pp.216-219, 1973.

M. Nevière, R. Petit, and M. Cadilhac, About the theory of optical grating couplerwaveguide systems, Optics Communication, vol.8, p.113, 1973.

M. Nevière, P. Vincent, R. Petit, and M. Cadilhac, Systematic study of resonances of holographic thin film couplers, Optics Communication, vol.9, p.48, 1973.

R. H. Ritchie, Plasma losses by fast electrons in thin films, Physical Review, vol.106, pp.871-881, 1957.

P. Drude, Zur elektronentheorie des metalle, Annalen der Physik, vol.306, pp.566-613, 1900.

H. Liu and P. Lalanne, Microscopic theory of the extraordinary optical transmission, Nature, vol.452, issue.7188, pp.728-731, 2008.

J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors : review, Sensors and Actuators B : Chemical, vol.54, pp.3-15, 1999.

M. Faraday, The bakerian lecture : experimental relations of gold (and other metals) to light, Philosophical Transactions Royal Society of London, vol.147, pp.145-181, 1857.

G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösunger, Annalen der Physik, vol.330, pp.377-445, 1908.

H. Fröhlich, General theory of the static dielectric constant, Transactions of the Faraday Society, vol.44, pp.238-243, 1948.

J. Haes, A. , and R. P. Van-duyne, A nanoscale optical biosensor : sensitivity and selectivity of an approac based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, Journal of the American Chemical Society, vol.124, pp.10596-10604, 2002.

X. Luo, A. Morrin, A. J. Killiard, and M. R. Smyth, Application of nanoparticles in electrochemical sensors and biosensors, Electroanalysis, vol.18, pp.319-326, 2006.

O. Neumann, D. Neumann, A. , E. Silva, C. Ayala-orozco et al., Nanoparticle-mediated, light-induced phase separations, Nano Letters, vol.15, pp.7880-7885, 2015.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander et al., Solar vapor generation enabled by nanoparticles, ACS Nano, vol.7, pp.42-49, 2013.

C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Letters, vol.5, pp.709-711, 2005.

Q. Min, C. Chen, P. Berini, and R. Gordon, Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications, Optics Express, vol.18, pp.19009-19019, 2010.

Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, Long-range surface plasmon fieldenhanced raman scattering spectroscopy based on evanescent field excitation, The Journal of Physical Chemistry Letters, vol.2, pp.2218-2222, 2011.

P. Berini, Plasmon-polariton modes guided by a metal film of finite width, Optics Letters, vol.24, pp.1011-1013, 1999.

P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width : bound modes of asymmetric structures, Physical Review B, vol.63, pp.125417-125432, 2001.

P. Berini and I. De-leon, Surface plasmon-polariton amplifiers and lasers, Nature Photonics, vol.6, pp.16-24, 2012.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature, vol.440, pp.508-511, 2006.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne et al., Obserbation of plasmon propagation, redirection, and fan-out in silver nanowires, Nano Letters, vol.6, pp.1822-1826, 2006.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers et al., Silver nanowires as surface plasmon resonators, Physical Review Letters, vol.95, p.257403, 2005.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, Elements for plasmonic nanocircuits with three-dimensional slot waveguides, Advenced Materials, vol.22, pp.5120-5124, 2010.

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J. Pelouard et al., Ultrasmall metal-insultor-metal nanoresonators : impact of slow-wave effects on the quality factor, Optics Express, vol.20, pp.16880-16891, 2012.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang et al., Controlled-reflectance surfaces with film-coupled colloidal nanoantennas, Nature, vol.492, pp.86-89, 2012.

J. B. Lassiter, X. Chen, X. Liu, C. Ciracì, T. B. Hoang et al., Third-harmonic generation enhancement by film-coupled plasmonic stripe resonators, Acs Photonics, vol.1, pp.1212-1217, 2014.

A. Moreau, C. Cirací, and D. R. Smith, Impact of nonlocal response on metallodielectric multilayers and optical patch antennas, Physical Review B, vol.87, p.45401, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00756683

M. Dechaux, P. Tichit, C. Ciracì, J. Benedicto, R. Pollès et al., Influence of spatial dispersion in metals on the optical response of deeply subwavelength slit arrays, Physical Review B, vol.93, p.45413, 2016.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu et al., Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing, Nano Letters, vol.11, pp.4366-4369, 2011.

A. Cattoni, P. Ghenuche, A. Haghiri-gosnet, D. Decanini, J. Chen et al., ?3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography, Nano Letters, vol.11, pp.3557-3563, 2011.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. Watt, H. E. Assender et al., Plasmonic gas sensing using nanocube patch antennas, Advanced Optical Materials, 2016.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su et al., Large-area metasurface perfect absorbers from visible to near-infrared, Advanced Materials, vol.27, issue.48, pp.8028-8034, 2015.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, Gap plasmon-based metasurfaces for total control of reflected light, Scientific Reports, vol.3, 2013.

P. Mühlschlegel, H. Eisler, O. J. Martin, B. Hecht, and D. Pohl, Resonant optical antennas, Science, vol.308, pp.1607-1609, 2005.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith et al., Ultrafast spontaneous emission source using plasmonic nanoantennas, Nature Communications, vol.6, p.7788, 2015.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. Hugonin et al., Controlling spontaneous emission with plasmonic optical patch antennas, Nano Letters, vol.13, issue.4, pp.1516-1521, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00821543

R. Faggiani, J. Yang, and P. Lalanne, Quenching, plasmonic, and radiative decays in nanogap emitting devices, ACS Photonics, vol.2, issue.12, pp.1739-1744, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01381391

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne et al., Light propagation with phase discontinuities : generalized laws of reflection and refraction, Science, vol.334, pp.333-337, 2011.

S. Larouche, Y. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, Infrared metamaterial phase holograms, Nature Materials, vol.11, pp.450-454, 2012.

C. Cirací, J. B. Lassiter, A. Moreau, and D. R. Smith, Quasi-analytic study of scattering from optical plasmonic patch antennas, Journal of Applied Physics, vol.114, p.163108, 2013.

P. T. Bowen and D. R. Smith, Coupled-mode theory for film-coupled plasmonic nanocubes, Physical Review B, vol.90, p.195402, 2014.

J. Defrance, C. Lemaître, R. Ajib, J. Benedicto, E. Mallet et al., Moosh : A numerical swiss army knife for the optics of multilayers in octave/matlab, Journal of Open Research Software, vol.4, p.13, 2016.

C. Lemaître, E. Mallet, M. Mihailovic, A. Moreau, P. Tichit et al., Moosh : un couteau suisse numérique pour l'optique ondulatoire, Bulletin de l'Union des Physiciens, 2016.

J. C. Maxwell, A dynamical theory of the electromagnetic field, Philosophical Transactions of the Royal Society of London, vol.155, pp.459-512, 1865.

S. Larouche and L. Martinu, Openfilters : open-source software for the design, optimization, and synthesis of optical filters, Applied Optics, vol.47, pp.219-230, 2008.

F. Krayzel, R. Pollès, A. Moreau, M. Mihailovic, and G. Granet, Simulation and analysis of exotic non-specular phenomena, Journal of the European Optical Society-Rapid publications, vol.5, p.10025, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00511196

J. Benedicto, R. Pollès, C. Cirací, E. Centeno, D. R. Smith et al., Numerical tool to take nonlocal effects into account in metallo-dielectric multilayers, Journal of the Optical Society of America, vol.32, pp.1581-1588, 2015.

M. G. Moharam and T. K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction, Journal of the Optical Society of America A, vol.71, pp.811-818, 1981.

P. Lalanne and G. M. Morris, Highly improved convergence of the coupled-wave method for tm polarization, Journal of the Optical Society of America A, vol.13, pp.779-784, 1996.

G. Granet and B. Guizal, Efficient implementation of the coupled-wave method for metallic lamellar gratings in tm polarization, Journal of the Optical Society of America A, vol.13, pp.1019-1023, 1996.

L. Li, Use of fourier series in the analysis of discontinuous periodic structures, Journal of the Optical Society of America A, vol.13, pp.1870-1876, 1996.

L. Li, Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings, Journal of the Optical Society of America A, vol.13, pp.1024-1035, 1996.

N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1976.

G. Granet, Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution, Journal of the Optical Society of America A, vol.16, pp.2510-2516, 1999.

G. Granet and J. Plumey, Parametric formulation of the fourier modal method for crossed surface-relief gratings, Journal of Optics A : Pure and Applied Optics, vol.4, p.145, 2002.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, Multicoated gratings-a differential formalism applicable to the entire optical region, Journal of the Optical Society of America A, vol.72, pp.839-846, 1982.

J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science, vol.312, pp.1780-1782, 2006.

J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, pp.185-200, 1994.

W. C. Chew and W. H. Weedon, A 3d perfectly matched medium for modified maxwell's equations with stretched coordinates, Microwave and Optical Technology Letters, vol.7, pp.599-604, 1994.

W. C. Chew, J. M. Jin, and E. Michielssen, Complex coordinate stretching as a generalized absorbing boundary condition, Microwave and Optical Technology Letters, vol.15, pp.363-369, 1997.

D. S. Katz, E. T. Thiele, and A. Taflove, Validation and extension to three dimensions of the berenger pml absorbing boundary condition for fd-td meshes, IEEE Microwave Guided Wave Letters, vol.4, pp.268-270, 1994.

C. Ciracì, R. Hill, J. Mock, Y. Urzhumov, A. Fernández-domínguez et al., Probing the ultimate limits of plasmonic enhancement, Science, vol.337, issue.6098, pp.1072-1074, 2012.

C. M. Watts, X. Liu, and W. J. Padilla, Metamaterial electromagnetic wave absorbers, Advanced Materials, vol.24, issue.23, 2012.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone et al., Time-reversed lasing and interferometric control of absorption, Science, vol.331, issue.6019, pp.889-892, 2011.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, vol.391, pp.667-669, 1998.

J. Porto, F. Garcia-vidal, and J. Pendry, Transmission resonances on metallic gratings with very narrow slits, Physical Review Letters, vol.83, p.2845, 1999.

U. Fano, Effects of configuration interaction on intensities and phase shifts, Physical Review, vol.124, pp.1866-1878, 1961.

K. M. Siegbahn, Electron spectroscopy for atoms, molecules and condensed matter, Nobel Lecture, 1981.

J. J. Richardson, M. Björnmalm, and F. Caruso, Technology-driven layer-by-layer assembly of nanofilms, Science, vol.348, pp.411-423, 2015.

Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, vol.298, pp.2176-2179, 2002.

J. Dejeu, Films de deux polymères auto-assemblés : chlorydrate de polyallylamine (pah) et polystyrène sulfonate de sodium (pss)

, mécanique de croissance et stabilité, 2007.