, Mesure de l'apport en polyphenols par des questionnaires alimentaires, p.49

, Mesure de l'exposition aux polyphenols par les biomarqueurs, p.50

, II-5-3-2 Etude d'intervention, p.50

, II-5-3-3 Mécanismes d'action, p.51

, II-6 Les méthodes et outils analytiques pour mesurer l'exposition aux polyphénols à l'aide de biomarqueurs, p.53

, II-6-1 Prétraitement de l'échantillon, p.53

, II-6-2 Plateformes analytiques, p.55

, II-6-3 Instrumentation utilisée dans cette, p.56

, Chapitre III : Développement d'une méthode de mesure de 38 polyphenols dans l'urine-Références Bibliographiques

Z. M. Zhang, X. Y. Yang, J. H. Yuan, Z. Y. Sun, and Y. Q. Li, Modulation of NRF2 and UGT1A expression by epigallocatechin-3-gallate in colon cancer cells and BALB/c mice, Chin. Med. J, vol.122, issue.14, pp.1660-1665, 2009.

V. Aires, E. Limagne, A. K. Cotte, N. Latruffe, F. Ghiringhelli et al., Resveratrol metabolites inhibit human metastatic colon cancer cells progression and synergize with chemotherapeutic drugs to induce cell death, Mol Nutr Food Res, vol.57, issue.7, pp.1170-81, 2013.

Y. Luo, S. Wang, Z. Zhou, Z. Wang, Y. Zhang et al., Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-?B) pathway. Tumor Biology, vol.35, pp.11483-11488, 2014.

R. Zamora-ros, D. K. Barupal, J. A. Rothwell, M. Jenab, V. Fedirko et al.,

K. Aleksandrova, K. Overvad, C. Kyro, A. Tjonneland, A. Affret et al., Dietary flavonoid intake and colorectal cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort, Int J Cancer, vol.140, issue.8, pp.1836-1844, 2017.

R. Zamora-ros, C. Not, E. Guino, L. Lujan-barroso, R. M. Garcia et al., Association between habitual dietary flavonoid and lignan intake and colorectal cancer in a Spanish case-control study (the Bellvitge Colorectal Cancer Study), Cancer Causes Control, vol.24, issue.3, pp.549-57, 2013.

K. Nimptsch, X. Zhang, A. Cassidy, M. ;. Song, E. J. O'reilly et al.,

B. Willett, W. C. Fuchs, C. S. Ogino, S. Chan, A. T. Giovannucci et al., Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts, Am J Clin Nutr, vol.103, issue.1, pp.184-91, 2016.

C. G. Fraga, M. Galleano, S. V. Verstraeten, and P. I. Oteiza, Basic biochemical mechanisms behind the health benefits of polyphenols, Mol Aspects Med, issue.6, pp.435-480, 2010.

L. Mamy, D. Patureau, E. Barriuso, C. Bedos, F. Bessac et al., Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review, Crit Rev Environ Sci Technol, vol.2015, issue.12, pp.1277-1377
URL : https://hal.archives-ouvertes.fr/hal-01149053

C. P. Wild, Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology, Cancer Epidemiol Biomarkers Prev, vol.14, issue.8, pp.1847-50, 2005.

K. Zhang, J. Civan, S. Mukherjee, F. Patel, and H. Yang, Genetic variations in colorectal cancer risk and clinical outcome, World J Gastroenterol, vol.20, issue.15, pp.4167-77, 2014.

N. I. Simonds, A. A. Ghazarian, C. B. Pimentel, S. D. Schully, G. L. Ellison et al., Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know?, Genet Epidemiol, vol.40, issue.5, pp.356-65, 2016.

A. Dehghan, Mass spectrometry in epidemiological studies: What are the key considerations?, Eur J Epidemiol, vol.31, issue.8, pp.715-721, 2016.

H. Chang, Y. Wan, J. Naile, X. Zhang, S. Wiseman et al., Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography-electrospray tandem mass spectrometry, J Chromatogr A, issue.4, pp.506-519, 2010.

S. S. Tai and M. J. Welch, Development and Evaluation of a Reference Measurement Procedure for the Determination of Estradiol-17? in Human Serum Using Isotope-Dilution Liquid Chromatography-Tandem, Anal Chem, vol.77, pp.6359-6363, 2005.

O. P. Luzardo, M. Almeida-gonzalez, N. Ruiz-suarez, M. Zumbado, L. A. Henriquez-hernandez et al., Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC-MS/MS and LCESI/MS/MS and its application in two poisoning cases, Sci Justice, vol.55, issue.5, pp.307-322, 2015.

, Bioanalytical Method Validation-Guidance for, Analytical Procedures and Methods Validation for Drugs and Biologics-Guidance for Industry, 2001.

S. Bansal and A. Destefano, Key Elements of Bioanalytical Method Validation for Small Molecules, AAPS J, vol.9, issue.1, pp.109-123, 2007.

J. Haj?lová and J. Zrostlíková, Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices, Journal of Chromatography A, vol.1000, issue.1, pp.181-197, 2003.

P. Panuwet, R. E. Hunter, . Jr, P. E. Souza, X. Chen et al.,

M. E. Kartavenka, K. Ryan, P. B. Barr, and D. B. , Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring, Crit Rev Anal Chem, vol.46, issue.2, pp.93-105, 2016.

J. Scarth, A. Clarke, J. Hands, P. Teale, R. Macarthur et al., Validation of a Quantitative Multi-Residue Urinary Assay for the Detection of Androgen, Oestrogen and Progestagen Abuse in the Bovine, Chromatographia, vol.71, issue.3-4, pp.241-252, 2009.

T. Santa, Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry, Biomed Chromatogr, vol.25, issue.1-2, pp.1-10, 2011.

H. L. Cai, R. H. Zhu, and H. D. Li, Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry, Anal Biochem, vol.396, issue.1, pp.103-114, 2010.

X. Xu, J. M. Roman, H. J. Issaq, L. K. Keefer, T. D. Veenstra et al., Quantitative Measurement of Endogenous Estrogens and Estrogen Metabolites in Human Serum by Liquid Chromatography-Tandem Mass Spectrometry, Anal Chem, vol.79, pp.7813-7821, 2007.

J. You, C. Ding, F. Zhu, X. Sun, Y. Li et al., Mass Spectrometric Identification of

, Multihydroxy Phenolic Compounds in Tibetan Herbal Medicines, Chromatographia, vol.65, issue.9, pp.545-553, 2007.

K. Guo and L. Li, Differential 12C-13C-Isotope Dansylation Labeling and Fast Liquid ChromatographyMass Spectrometry for Absolute and Relative Quantification of the Metabolome, Anal Chem, vol.81, pp.3919-3932, 2009.

K. Guo, C. Ji, and L. Li, Stable-Isotope Dimethylation Labeling Combined with LC-ESI MS for Quantification of Amine-Containing Metabolites in Biological Samples, Anal Chem, vol.79, pp.8631-8638, 2007.

A. Leitner and W. Lindner, Chemistry meets proteomics: the use of chemical tagging reactions for MS-based proteomics, Proteomics, vol.6, issue.20, pp.5418-5452, 2006.

F. Calderon-celis, J. R. Encinar, and A. Sanz-medel, Standardization approaches in absolute quantitative proteomics with mass spectrometry, Mass Spectrom Rev, 2017.

K. Guo and L. Li, High-Performance Isotope Labeling for Profiling Carboxylic Acid-Containing Metabolites in Biofluids by Mass Spectrometry, Anal Chem, vol.82, pp.8789-8793, 2010.

E. Fukusaki, K. Harada, T. Bamba, and A. Kobayashi, An isotope effect on the comparative quantification of flavonoids by means of methylation-based stable isotope dilution coupled with capillary liquid chromatography/mass spectrometry, J Biosci Bioeng, vol.99, issue.1, pp.75-82, 2005.

T. Santa, O. Y. Al-dirbashi, and T. Fukushima, Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry for biomedical analysis, Drug Discov Ther, vol.1, issue.2, pp.108-118, 2007.

D. Chen, W. Han, X. Su, L. Li, and L. Li, Overcoming Sample Matrix Effect in Quantitative Blood Metabolomics Using Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry, Anal Chem, vol.89, issue.17, pp.9424-9431, 2017.

S. Zhao, X. Luo, and L. Li, Chemical Isotope Labeling LC-MS for High Coverage and Quantitative Profiling of the Hydroxyl Submetabolome in Metabolomics, Anal Chem, vol.88, issue.21, pp.10617-10623, 2016.

S. Zhao, M. Dawe, K. Guo, and L. Li, Development of High-Performance Chemical Isotope Labeling LC-MS for Profiling the Carbonyl Submetabolome, Anal Chem, vol.89, issue.12, pp.6758-6765, 2017.

W. Dai, Q. Huang, P. Yin, J. Li, J. Zhou et al., Comprehensive and highly sensitive urinary steroid hormone profiling method based on stable isotope-labeling liquid chromatography-mass spectrometry, Anal Chem, vol.84, issue.23, pp.10245-51, 2012.

K. Goszcz, G. G. Duthie, D. Stewart, S. J. Leslie, and I. L. Megson, Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response?, Br J Pharmacol, vol.174, issue.11, pp.1209-1225, 2017.

A. Umeno, M. Horie, K. Murotomi, Y. Nakajima, and Y. Yoshida, Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones, Molecules, issue.6, p.21, 2016.

N. J. Kang, S. H. Shin, H. J. Lee, and K. W. Lee, Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis, Pharmacol Ther, vol.130, issue.3, pp.310-334, 2011.

G. B. Maru, R. R. Hudlikar, G. Kumar, K. Gandhi, and M. B. Mahimkar, Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials, World J Biol Chem, vol.7, issue.1, pp.88-99, 2016.

D. F. Romagnolo and O. I. Selmin, Flavonoids and cancer prevention: a review of the evidence, J Nutr Gerontol Geriatr, vol.2012, issue.3, pp.206-244

H. D. Woo and J. Kim, Dietary flavonoid intake and risk of stomach and colorectal cancer, World J Gastroenterol, vol.19, issue.7, pp.1011-1020, 2013.

R. Zamora-ros, M. Touillaud, J. A. Rothwell, I. Romieu, and A. Scalbert, Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits, Am J Clin Nutr, vol.100, issue.1, pp.11-26, 2014.

V. Neveu, J. Perez-jimenez, F. Vos, V. Crespy, L. Du-chaffaut et al., Phenol-Explorer: an online comprehensive database on polyphenol contents in foods, Database

G. Williamson, M. N. Clifford, H. Ward, G. Chapelais, G. G. Kuhnle et al., Lack of prospective associations between plasma and urinary phytoestrogens and risk of prostate or colorectal cancer in the European Prospective into Cancer-Norfolk study, Cancer Epidemiol Biomarkers Prev, vol.48, issue.10, pp.2891-2895, 2008.

A. Kuijsten, P. C. Hollman, H. C. Boshuizen, M. N. Buijsman, P. Van-'t-veer et al., Plasma enterolignan concentrations and colorectal cancer risk in a nested case-control study, Am J Epidemiol, vol.167, issue.6, pp.734-776, 2008.

R. Doll and R. Peto, The causes of Cancer-Quantitative estimates of avoidable risks of cancer in the united states today, J. Natl. Cancer Inst, vol.66, issue.6, p.1191, 1981.

D. H. Lee, N. Keum, and E. L. Giovannucci, Colorectal Cancer Epidemiology in the Nurses' Health Study, Am J Public Health, vol.106, issue.9, pp.1599-607, 2016.

A. Samanta, G. Das, and S. K. Das, roles of flavonoids in plants, Int J Pharm Sci Tech, vol.6, pp.12-35, 2011.

S. Hassan and U. Mathesius, The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions, J Exp Bot, vol.63, issue.9, pp.3429-3473, 2012.

V. Lattanzio, V. M. Lattanzio, and A. Cardinali, Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects, Phytochemistry: Advances in Research, pp.23-67, 2006.

P. Batra and A. K. Sharma, Anti-cancer potential of flavonoids: recent trends and future perspectives, vol.3, pp.439-459, 2013.

R. Tsao, Chemistry and biochemistry of dietary polyphenols, Nutrients, vol.2010, issue.12, pp.1231-1277

T. Vogt, Phenylpropanoid biosynthesis, Mol Plant, vol.2010, issue.1, pp.2-20

K. Hermann and L. M. Weaver, The shikimate pathway, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.50, pp.472-503, 1999.

E. Petrussa, E. Braidot, M. Zancani, C. Peresson, A. Bertolini et al., Plant flavonoids-biosynthesis, transport and involvement in stress responses, Int J Mol Sci, vol.14, issue.7, pp.14950-73, 2013.

A. Crozier, I. B. Jaganath, and M. N. Clifford, Dietary phenolics: chemistry, bioavailability and effects on health, Nat Prod Rep, vol.26, issue.8, pp.1001-1044, 2009.

F. Ferreyra, M. L. Rius, S. P. Casati, and P. , Flavonoids: biosynthesis, biological functions, and biotechnological applications, Front Plant Sci, vol.3, p.222, 2012.

C. Li, R. Leverence, J. D. Trombley, S. Xu, J. Yang et al., High Molecular Weight Persimmon (Diospyros kaki L.) Proanthocyanidin: A Highly Galloylated, ALinked Tannin with an Unusual Flavonol Terminal Unit, Myricetin. Journal of Agricultural and Food Chemistry, vol.58, issue.16, pp.9033-9042, 2010.

C. Proestos and M. Komaitis, Analysis of Naturally Occurring Phenolic Compounds in Aromatic Plants by RP-HPLC Coupled to Diode Array Detector (DAD) and GC-MS after Silylation, vol.2, pp.90-99, 2013.

P. Buzzini,

M. Goretti and ;. Turchetti,

F. Ieri,

A. Romani, Antimicrobial and Antiviral Activity of Hydrolysable Tannins. MiniReviews in Medicinal Chemistry, vol.8, pp.1179-1187, 2008.

A. Crozier, I. B. Jaganath, and M. N. Clifford, Dietary phenolics: chemistry, bioavailability and effects on health, Natural Product Reports, vol.26, issue.8, pp.1001-1043, 2009.

D. Del-rio, A. Rodriguez-mateos, J. P. Spencer, M. Tognolini, G. Borges et al., Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases, Antioxidants & Redox Signaling, vol.18, issue.14, pp.1818-1892, 2013.

J. Perez-jimenez, V. Neveu, F. Vos, and A. Scalbert, Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the Phenol-Explorer database, Journal of Agricultural and Food Chemistry, vol.58, issue.8, pp.4959-4969, 2010.

J. Perez-jimenez, V. Neveu, F. Vos, J. Cruz, R. Eisner et al., A systematic analysis of the content of 502 polyphenols in 452 foods and beverages-An application of the Phenol-Explorer database, 25th International Conference on Polyphenols

. Montpellier, C. Manach, A. Scalbert, C. Morand, C. Remesy et al., Polyphenols: food sources and bioavailability, Am J Clin Nutr, vol.79, issue.5, pp.727-774, 2004.

S. Bolca, Bioavailability of Soy-Derived Isoflavones and Human Breast Cancer-Chapter 93

M. I. Genovese, A. C. Barbosa, S. Pinto-mda, and F. M. Lajolo, Commercial soy protein ingredients as isoflavone sources for functional foods, Polyphenols in Human Health and Disease, vol.71, pp.53-61, 2007.

I. E. Milder, I. C. Arts, B. V. Putte, D. P. Venema, P. C. Hollman et al., Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol, Food Addit Contam Part A Chem Anal Control Expo Risk Assess, vol.93, issue.03, pp.1460-1469, 2007.

K. L. Ivey, K. Croft, R. L. Prince, and J. M. Hodgson, Comparison of flavonoid intake assessment methods, Food Funct, vol.7, issue.9, pp.3748-59, 2016.

C. Santos-buelga and G. Williamson, Methods in Polyphenol Analysis Royal Society of Chemistry, 2003.

C. M. Ajila, S. K. Brar, M. Verma, R. D. Tyagi, S. Godbout et al., Extraction and Analysis of Polyphenols: Recent trends, Critical Reviews in Biotechnology, vol.31, issue.3, pp.227-249, 2011.

J. Perez-jimenez, M. E. Diaz-rubio, and F. Saura-calixto, Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects, Nutr Res Rev, vol.26, issue.2, pp.118-147, 2013.

, Anna Vallverdu-Queralt

E. Meudec;-nicolas-sommerer;-cheynier and V. , The Hidden Face of Wine Polyphenol Polymerization Highlighted by High-Resolution Mass Spectrometry, vol.6, pp.336-339, 2017.

P. Pinto and C. N. Santos, Worldwide (poly)phenol intake: assessment methods and identified gaps, Eur J Nutr, vol.56, issue.4, pp.1393-1408, 2017.

O. Song and W. O. , Estimated Dietary Flavonoid Intake and Major Food Sources of U.S. Adults. The journal of Nutrition, vol.137, pp.1244-1252, 2007.

L. Johannot and S. M. Somerset, Age-related variations in flavonoid intake and sources in the Australian population, Public Health Nutrition, vol.9, issue.8, pp.1045-1054, 2006.

M. Ovaskainen, R. Torronen, J. M. Koponen, H. Sinkko, J. Hellstrom et al.,

P. Mattila, Dietary Intake and Major Food Sources of Polyphenols in Finnish Adults, J. Nutr, vol.138, issue.3, pp.562-566, 2008.

J. Perez-jimenez, L. Fezeu, M. Touvier, N. Arnault, C. Manach et al., Dietary intake of 337 polyphenols in French adults, American Journal of Clinical Nutrition, vol.93, pp.1220-1228, 2011.

I. Tarascou, J. M. Souquet, J. P. Mazauric, S. Carrillo, S. Coq et al., The hidden face of food phenolic composition, Arch Biochem Biophys, vol.501, issue.1, pp.16-22, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01243321

L. Gu, M. A. John, F. Hammerstone, G. Beecher, and J. Holden,

D. Haytowitz, S. G. , and R. L. Prior, Concentrations of Proanthocyanidins in Common Foods and Estimations of Normal Consumption. the journal of Nutrition, 2004.

F. Saura-calixto, J. Serrano, and I. Goni, Intake and bioaccessibility of total polyphenols in a whole diet, Food Chemistry, vol.101, issue.2, pp.492-501, 2007.

M. Messina, A brief historical overview of the past two decades of soy and isoflavone research, J Nutr, vol.140, issue.7, pp.1350-1354, 2010.

Y. Fukushima, T. Ohie, Y. Yonekawa, K. Yonemoto, H. Aizawa et al.,

M. Takeuchi, M. Hasegawa, C. Taguchi, and K. Kondo, Coffee and Green Tea As a Large Source of Antioxidant Polyphenols in the Japanese Population, Journal of Agricultural and Food Chemistry, vol.57, issue.4, pp.1253-1259, 2009.

Y. Fukushima, T. Tashiro, A. Kumagai, H. Ohyanagi, T. Horiuchi et al., Coffee and beverages are the major contributors to polyphenol consumption from food and beverages in Japanese middle-aged women, J Nutr Sci, vol.3, p.48, 2014.

C. Taguchi, Y. Fukushima, Y. Kishimoto, N. Suzuki-sugihara, E. Saita et al., Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese, Nutrients, vol.2015, issue.12, pp.10269-81

R. Zamora-ros, V. Knaze, J. Rothwell, B. Hémon, A. Moskal et al.,

L. Nilsson, R. Landberg, T. Key, K. Khaw, N. Wareham et al., Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study, European Journal of Nutrition, 2015.

A. Scalbert, C. Morand, C. Manach, and C. Rémésy, Absorption and metabolism of polyphenols in the gut and impact on health, Biomed Pharmacother, vol.56, pp.276-282, 2002.

L. Actis-goretta, A. Leveques, M. Rein, A. Teml, C. Schafer et al., Intestinal absorption, metabolism, and excretion of (-)epicatechin in healthy humans assessed by using an intestinal perfusion technique, Am J Clin Nutr, vol.98, issue.4, pp.924-957, 2013.

T. L. Farrell, L. Poquet, T. P. Dew, S. Barber, and G. Williamson, Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study, Drug Metab Dispos, vol.2012, issue.2, pp.397-406

B. Wu, K. Kulkarni, S. Basu, S. Zhang, and M. Hu, First-pass metabolism via UDPglucuronosyltransferase: a barrier to oral bioavailability of phenolics, J Pharm Sci, vol.100, issue.9, pp.3655-81, 2011.

W. Mullen, C. A. Edwards, and A. Crozier, Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl-and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions, British Journal of Nutrition, vol.96, issue.01, p.107, 2007.

F. I. Kanaze, M. I. Bounartzi, M. Georgarakis, and I. Niopas, Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects, Eur J Clin Nutr, vol.61, issue.4, pp.472-479, 2007.

C. Gardana, S. Guarnieri, P. Riso, P. Simonetti, and M. Porrini, Flavanone plasma pharmacokinetics from blood orange juice in human subjects, Br J Nutr, vol.98, issue.1, pp.165-72, 2007.

X. Wen and T. Walle, Methylated flavonoids have greatly improved intestinal absorption and metabolic stability, Drug Metab Dispos, vol.34, issue.10, pp.1786-92, 2006.

M. Silberberg, C. Morand, T. Mathevon, C. Besson, C. Manach et al., The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites, European Journal of Nutrition, vol.45, issue.2, pp.88-96, 2006.

C. S. Yang, M. J. Lee, and L. Chen, Human Salivary Tea Catechin Levels and Catechin Esterase Activities. cancer Epidemiology, Biomarkers and Prevention, vol.8, pp.83-89, 1999.

I. A. Ludwig, P. Mena, L. Calani, G. Borges, G. Pereira-caro et al., New insights into the bioavailability of red raspberry anthocyanins and ellagitannins, Free Radic Biol Med, vol.89, pp.758-69, 2015.

G. Woodward, P. Kroon, A. Cassidy, and C. Kay, Anthocyanin stability and recovery: implications for the analysis of clinical and experimental samples, J Agric Food Chem, vol.57, issue.12, pp.5271-5279, 2009.

P. C. Hollman, M. N. Bijsman, Y. Van-gameren, E. P. Cnossen, J. H. De-vries et al., The sugar moiety is a major determinant of the absorption of dietary flavonoids glycosides in man. Free Rad. Res, vol.31, pp.569-573, 1999.

J. K. Prasain and S. Barnes, Metabolism and Bioavailability of Flavonoids in Chemoprevention: Current Analytical Strategies and Future Prospectus, MOLECULAR PHARMACEUTICS, vol.4, pp.846-864, 2007.

T. Walle, Absorption and metabolism of flavonoids, Free Radic Biol Med, vol.36, issue.7, pp.829-866, 2004.

A. J. Day, J. R. Canada, J. C. Diaz, P. A. Kroon, R. Mclauchlan et al., Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase, FEBS Lett, vol.468, pp.166-170, 2000.

A. J. Day, J. M. Gee, M. S. Dupont, I. T. Johnson, and G. Williamson, Absorption of quercetin-3glucoside and quercetin-4-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter, Biochemical Pharmacology, vol.65, issue.7, pp.1199-1206, 2003.

K. Nemeth, G. W. Plumb, J. G. Berrin, N. Juge, R. Jacob et al., Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans, Eur J Nutr, vol.42, issue.1, pp.29-42, 2003.

R. A. Walgren, J. T. Lin, R. K. Kinne, and T. Walle, Cellular Uptake of Dietary Flavonoid Quercetin 4'-beta-Glucoside by Sodium-Dependent Glucose Transporter SGLT1, J. Pharmacol. Exp. Ther, vol.294, pp.837-843, 2000.

J. M. Gee, M. S. Dupont, A. J. Day, G. W. Plumb, G. Williamson et al., Intestinal Transport of Quercetin Glycosides in Rats Involves Both Deglycosylation and Interaction with the Hexose Transport Pathway, J Nutr, vol.130, pp.2765-71, 2000.

A. J. Day, M. S. Dupont, S. Ridley, M. Rhodes, M. J. Rhodes et al., Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver ?-glucosidase activity, FEBS Lett, vol.436, pp.71-75, 1998.

K. Ioku, Y. Pongpiriyadacha, Y. Konishi, Y. Takei, N. Nakatani et al., ?-Glucosidase Activity in the Rat Small Intestine toward Quercetin Monoglucosides, Bioscience, Biotechnology, and Biochemistry, vol.62, issue.7, pp.1428-1431, 1998.

B. Wu, S. Basu, S. Meng, X. Wang, and M. Hu, Regioselective sulfation and glucuronidation of phenolics: insights into the structural basis, Curr Drug Metab, vol.12, issue.9, pp.900-916, 2011.

L. Zhang, Z. Zuo, and G. Lin, Intestinal and Hepatic Glucuronidation of Flavonoids, Molecular Pharmaceutics, vol.4, issue.6, pp.833-845, 2007.

S. Ohno and S. Nakajin, Determination of mRNA expression of human UDPglucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction, Drug Metab Dispos, vol.37, issue.1, pp.32-40, 2009.

X. Liu, V. H. Tam, and M. Hu, Disposition of Flavonoids via Enteric Recycling Determination of the UDP-Glucuronosyltransferase Isoforms Responsible for the Metabolism of Flavonoids in Intact Caco-2 TC7 Cells Using siRNA, Molecular Pharmaceutics, vol.4, issue.6, pp.873-882, 2007.

R. Barrington, G. Williamson, R. N. Bennett, B. D. Davis, J. S. Brodbelt et al., Absorption, Conjugation and Efflux of the Flavonoids, Kaempferol and Galangin, Using the Intestinal CACO-2/TC7 Cell Model, J Funct Foods, vol.1, issue.1, pp.74-87, 2009.

W. Teubner, W. Meinl, S. Florian, M. Kretzschmar, and H. Glatt, Identification and localization of soluble sulfotransferases in the human gastrointestinal tract, Biochem J, vol.404, issue.2, pp.207-222, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478668

Z. Riches, E. L. Stanley, J. C. Bloomer, and M. W. Coughtrie, Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT "pie, Drug Metab Dispos, vol.37, issue.11, pp.2255-61, 2009.

G. Kuhnle, J. P. Spencer, H. Schroeter, B. Shenoy, E. S. Debnam et al., Epicatechin and catechin are O-methylated and glucuronidated in the small intestine, Biochem Biophys Res Commun, vol.277, issue.2, pp.507-519, 2000.

W. Brand, M. G. Boersma, H. Bik, E. F. Hoek-van-den-hil, J. Vervoort et al., Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples, Drug Metab Dispos, vol.38, issue.4, pp.617-642, 2010.

M. K. Shelby, N. J. Cherrington, N. R. Vansell, and C. D. Klaassen, Tissue mRNA expression of the rat UDP-glucuronosyltransferase gene family, Drug Metab Dispos, vol.31, pp.326-333, 2003.

H. Nakano, K. Ogura, E. Takahashi, T. Harada, T. Nishiyama et al., Regioselective Monosulfation and Disulfation of the Phytoestrogens Daidzein and Genistein by Human Liver Sulfotransferases, Drug Metabolism and Pharmacokinetics, vol.19, issue.3, pp.216-226, 2004.

K. A. O'leary, A. J. Day, P. W. Needs, F. A. Mellon, N. M. O'brien et al., Metabolism of quercetin-7-and quercetin-3-glucuronides by an in vitro hepatic model the role of human betaglucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein-2 (MRP2) in flavonoids metabolism, Biochemical Pharmacology, vol.65, pp.479-491, 2003.

M. Monagas, M. Urpi-sarda, F. Sanchez-patan, R. Llorach, I. Garrido et al., Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites, Food Funct, vol.2010, issue.3, pp.233-53

B. Xia, Q. Zhou, Z. Zheng, L. Ye, M. Hu et al., A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut, Mol Pharm, vol.2012, issue.11, pp.3246-58

Z. Liu and M. Hu, Natural polyphenol disposition via coupled metabolic pathways, Expert Opin Drug Metab Toxicol, vol.3, issue.3, pp.389-406, 2007.

A. I. Alvarez, R. Real, M. Perez, G. Mendoza, J. G. Prieto et al., Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response, J Pharm Sci, vol.99, issue.2, pp.598-617, 2010.

W. Brand, P. A. Van-der-wel, M. J. Rein, D. Barron, G. Williamson et al., Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers, Drug Metab Dispos, vol.36, issue.9, pp.1794-802, 2008.

I. B. Jaganath, W. Mullen, C. A. Edwards, and A. Crozier, The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man, Free Radic Res, vol.40, issue.10, pp.1035-1081, 2006.

S. Kamiloglu, E. Capanoglu, C. Grootaert, and J. Van-camp, Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells-A Review, Int J Mol Sci, vol.16, issue.9, pp.21555-74, 2015.

C. Czank, A. Cassidy, Q. Zhang, D. J. Morrison, T. Preston et al., Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study, Am J Clin Nutr, vol.97, issue.5, pp.995-1003, 2013.

T. K. Mcghie, G. D. Ainge, L. E. Barnett, J. M. Cooney, and D. Jensen, Anthocyanin Glycosides from Berry Fruit Are Absorbed and Excreted Unmetabolized by Both Humans and Rats, J. Agric. Food Chem, vol.51, pp.4539-4548, 2003.

S. Pascual-teresa, J. Hallund, D. Talbot, J. Schroot, C. M. Williams et al., Absorption of isoflavones in humans: effects of food matrix and processing, J Nutr Biochem, vol.17, issue.4, pp.257-64, 2006.

C. Manach, G. Williamson, C. Morand, A. Scalbert, and C. Remesy, Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies, Am J Clin Nutr, vol.81, issue.1, pp.230-272, 2005.

M. Clifford, Diet-derived phenols in plasma and tissues and their implications for health, Planta Medica, vol.70, pp.1103-1114, 2004.

L. Marin, E. M. Miguelez, C. J. Villar, and F. Lombo, Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties, Biomed Res Int, p.905215, 2015.

L. Bredsdorff, I. L. Nielsen, S. E. Rasmussen, C. Cornett, D. Barron et al., Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from alpha-rhamnosidase-treated orange juice in human subjects, Br J Nutr, vol.103, issue.11, pp.1602-1611, 2010.

M. Gonthier, V. Cheynier, J. L. Donovan, C. Manach, C. Morand et al., Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols, J. Nutr, vol.133, pp.461-467, 2003.

M. P. Gonthier, C. Remesy, A. Scalbert, V. Cheynier, J. Souquet et al., Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro, Biomed. Pharmacother, pp.536-540, 2006.

S. H. Bang, Y. J. Hyun, J. Shim, S. W. Hong, and D. H. Kim, Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing alpha-L-rhamnosidase from Bifidobacterium dentium, J Microbiol Biotechnol, vol.25, issue.1, pp.18-25, 2015.

S. Deprez, C. Brezillon, S. Rabot, C. Philippe, I. Mila et al., Polymeric Proanthocyanidins Are Catabolized by Human Colonic Microflora into Low-Molecular-Weight Phenolic Acids, J. Nutr, vol.130, pp.2733-2738, 2000.

S. M. Jandhyala, R. Talukdar, C. Subramanyam, H. Vuyyuru, M. Sasikala et al., Role of the normal gut microbiota, World J Gastroenterol, vol.21, issue.29, pp.8787-803, 2015.

K. ;. Vipperla and S. J. O'keefe, The microbiota and its metabolites in colonic mucosal health and cancer risk, Nutr Clin Pract, vol.27, issue.5, pp.624-659, 2012.

T. Clavel and J. O. Mapesa, Phenolics in Human Nutrition: Importance of the Intestinal Microbiome for Isoflavone and Lignan Bioavailability, 2012.

A. Matthies, G. Loh, M. Blaut, and A. Braune, Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats, J Nutr, vol.142, issue.1, pp.40-46, 2012.

H. Schneider, R. Simmering, L. Hartmann, H. Pforte, and M. Blaut, Degradation of quercetin-3glucoside in gnotobiotic rats associated with human intestinal bacteria, Journal of Applied Microbiology, vol.89, pp.1027-1037, 2000.

L. Hanske, G. Loh, S. Sczesny, M. Blaut, and A. Braune, The bioavailability of apigenin-7glucoside is influenced by human intestinal microbiota in rats, J Nutr, vol.139, issue.6, pp.1095-102, 2009.

A. Braune and M. Blaut, Bacterial species involved in the conversion of dietary flavonoids in the human gut, Gut Microbes, vol.7, issue.3, pp.216-250, 2016.

D. Couteau, A. L. Mccartney, G. R. Gibson, G. Williamson, and C. B. Faulds, Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid, Journal of Applied Microbiology, vol.90, pp.873-881, 2001.

J. Beekwilder, D. Marcozzi, S. Vecchi, R. De-vos, P. Janssen et al., Characterization of Rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus, Appl Environ Microbiol, vol.75, issue.11, pp.3447-54, 2009.

R. Llorach, M. Urpi-sarda, O. Jauregui, M. Monagas, and C. Andres-lacueva, An LC-MS-Based Metabolomics Approach for Exploring Urinary Metabolome Modifications after Cocoa Consumption, J Proteome Res, vol.8, pp.5060-5068, 2009.

M. M. Appeldoorn, J. Vincken, A. Aura, P. C. Hollman, and H. Gruppen, Procyanidin Dimers Are Metabolized by Human Microbiota with 2-(3,4-Dihydroxyphenyl)acetic Acid and 5-(3,4Dihydroxyphenyl)-g-valerolactone as the Major Metabolites, Journal of Agricultural and Food Chemistry, vol.57, issue.3, pp.1084-1092, 2009.

M. R. Meselhy, N. Nakamura, and M. Hattori, Biotransformation of (-)-epicatechin 3-O-gallate by human intestinal bacteria, Chemical & Pharmaceutical Bulletin, vol.45, issue.5, pp.888-893, 1997.

S. Roowi, A. Stalmach, W. Mullen, M. E. Lean, C. A. Edwards et al., Green Tea Flavan-3-ols Colonic Degradation and Urinary Excretion of Catabolites by Humans, J. Agric. Food Chem, vol.58, pp.1296-1304, 2010.

S. Stoupi, G. Williamson, F. Viton, D. Barron, L. J. King et al., In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats, Drug Metab Dispos, vol.38, issue.2, pp.287-91, 2010.

S. Stoupi, G. Williamson, J. W. Drynan, D. Barron, and M. N. Clifford, A comparison of the in vitro biotransformation of (-)-epicatechin and procyanidin B2 by human faecal microbiota, Mol Nutr Food Res, vol.54, issue.6, pp.747-59, 2010.

S. Stoupi, G. Williamson, J. W. Drynan, D. Barron, and M. N. Clifford, Procyanidin B2 catabolism by human fecal microflora: partial characterization of 'dimeric' intermediates, Arch Biochem Biophys, vol.501, issue.1, pp.73-81, 2010.

D. Del-rio, A. Rodriguez-mateos, J. P. Spencer, M. Tognolini, G. Borges et al., Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases, Antioxid Redox Signal, vol.18, issue.14, pp.1818-92, 2013.

G. H. Jansen, I. C. Arts, M. W. Nielen, M. Muller, P. C. Hollman et al., Uptake and metabolism of enterolactone and enterodiol by human colon epithelial cells, Arch Biochem Biophys, vol.435, issue.1, pp.74-82, 2005.

L. Xie, T. Akao, K. Hamaki, T. Deyama, and M. Hattori, Biotransformation of Pinoresinol Diglucoside to Mammalian Lignans by Human Intestinal Microflora, and Isolation of Enterococcus faecalis Strain PDG-1 Responsible for the Transformation of ( )-Pinoresinol to ( )-Lariciresinol, Chem. Pharm. Bull, vol.51, issue.5, pp.508-523, 2003.

N. M. Mckeown, M. Marklund, J. Ma, A. B. Ross, A. H. Lichtenstein et al., Comparison of plasma alkylresorcinols (AR) and urinary AR metabolites as biomarkers of compliance in a short-term, whole-grain intervention study, Eur J Nutr, vol.55, issue.3, pp.1235-1279, 2016.

F. Rafii, The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol, Metabolites, vol.2015, issue.1, pp.56-73

K. D. Setchell and C. Clerici, Equol: history, chemistry, and formation, J Nutr, vol.140, issue.7, pp.1355-62, 2010.

R. C. Travis, E. A. Spencer, N. E. Allen, P. N. Appleby, A. W. Roddam et al., Plasma phyto-oestrogens and prostate cancer in the European Prospective Investigation into Cancer and Nutrition, Br J Cancer, vol.100, issue.11, pp.1817-1840, 2009.

C. Kyro, A. Olsen, H. B. Bueno-de-mesquita, G. Skeie, S. Loft et al., Plasma alkylresorcinol concentrations, biomarkers of whole-grain wheat and rye intake, Br J Nutr, vol.111, issue.10, pp.1881-90, 2014.

I. R. Rowland, H. Wiseman, T. A. Sanders, H. Adlercreutz, and E. A. Bowey, Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora, Nutr Cancer, vol.36, issue.1, pp.27-32, 2000.

V. Van-der-velpen, P. C. Hollman, M. Van-nielen, E. G. Schouten, M. Mensink et al., Large inter-individual variation in isoflavone plasma concentration limits use of isoflavone intake data for risk assessment, Eur J Clin Nutr, vol.68, issue.10, pp.1141-1148, 2014.

K. D. Setchell, N. M. Brown, P. Desai, L. Zimmer-nechemias, B. E. Wolfe et al., Bioavailability of Pure Isoflavones in Healthy Humans and Analysis of Commercial Soy Isoflavone Supplements, J Nutr, vol.131, pp.1362-75, 2001.

K. B. Song, C. Atkinson, C. L. Frankenfeld, T. Jokela, K. Wahala et al., Prevalence of Daidzein-Metabolizing Phenotypes Differs between Caucasian and Korean American Women and Girls, J Nutr, vol.136, pp.1347-51, 2006.

H. Akaza, N. Miyanaga, N. Takashima, S. Naito, Y. Hirao et al., Comparisons of Percent Equol Producers between Prostate Cancer Patients and Controls: Case-controlled Studies of Isoflavones in Japanese, Korean and American Residents, Jpn J Clin Oncol, vol.34, issue.2, pp.86-89, 2004.

K. D. Setchell and S. J. Cole, Method of Defining Equol-Producer Status and Its Frequency among Vegetarians, J Nutr, vol.136, pp.2188-93, 2006.

R. A. Vacca, D. Valenti, S. Caccamese, M. Daglia, N. Braidy et al., Plant polyphenols as natural drugs for the management of Down syndrome and related disorders, Neurosci Biobehav Rev, vol.71, pp.865-877, 2016.

M. A. Islam, F. Alam, M. Solayman, M. I. Khalil, M. A. Kamal et al., Dietary Phytochemicals: Natural Swords Combating Inflammation and Oxidation-Mediated Degenerative Diseases, p.5137431, 2016.

N. Suganya, E. Bhakkiyalakshmi, D. V. Sarada, and K. M. Ramkumar, Reversibility of endothelial dysfunction in diabetes: role of polyphenols, Br J Nutr, vol.116, issue.2, pp.223-269, 2016.

G. L. Russo, I. Tedesco, C. Spagnuolo, and M. Russo, Antioxidant polyphenols in cancer treatment: Friend, foe or foil? Semin Cancer Biol, 2017.

M. K. Pandey, S. C. Gupta, A. Nabavizadeh, and B. B. Aggarwal, Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Seminars in Cancer Biology, 2017.

H. Amawi, C. R. Ashby, . Jr, and A. K. Tiwari, Cancer chemoprevention through dietary flavonoids: what's limiting?, Chin J Cancer, vol.36, issue.1, p.50, 2017.

J. Ren, S. Meng, C. E. Lekka, and E. Kaxiras, Complexation of Flavonoids with Iron: Structure and Optical Signatures, J Phys Chem B, vol.112, pp.1845-1850, 2008.

C. Morand and D. Milenkovic, Polyphénols et santé vasculaire mise en évidence du rôle direct des polyphénols dans les effets bénéfiques des agrumes dans la protection vasculaire, Innovations Agronomiques, vol.42, pp.47-62, 2014.

T. W. Sirk, E. F. Brown, M. Friedman, and A. K. Sum, Molecular binding of catechins to biomembranes: relationship to biological activity, Journal of Agricultural and Food Chemistry, vol.57, issue.15, pp.6720-6728, 2009.

H. Yoshioka, H. Haga, M. Kubota, Y. Sakai, and H. Yoshioka, Interaction of (+)-catechin with a lipid bilayer studied by the spin probe method, Biosci Biotechnol Biochem, vol.70, issue.2, pp.395-400, 2006.

X. Yu, S. Chu, A. E. Hagerman, and G. A. Lorigan, Probing the interaction of polyphenols with lipid bilayers by solid-state NMR spectroscopy, J Agric Food Chem, vol.59, issue.12, pp.6783-6792, 2011.

M. Kamihira, H. Nakazawa, A. Kira, Y. Mizutani, M. Nakamura et al., Interaction of tea catechins with lipid bilayers investigated by a quartz-crystal microbalance analysis, Biosci Biotechnol Biochem, vol.72, issue.5, pp.1372-1377, 2008.

P. I. Oteiza, A. G. Erlejman, S. V. Verstraeten, C. L. Keen, and C. G. Fraga, Flavonoid-membrane Interactions: A Protective Role of Flavonoids at the Membrane Surface? Clinical and Developmental Immunology, vol.12, pp.19-25, 2005.

P. Kosinova, K. Berka, M. Wykes, M. Otyepka, and P. Trouillas, Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: implication for their lipid-peroxidation inhibition, J Phys Chem B, vol.2012, issue.4, pp.1309-1327
URL : https://hal.archives-ouvertes.fr/hal-00937903

O. Dangles, C. Dufour, C. Manach, C. Morand, and C. Remesy, Binding of Flavonoids to Plasma Proteins, Methods Enzymol, vol.335, pp.319-352, 2001.

J. Xiao, Y. Zhao, H. Wang, Y. Yuan, F. Yang et al., Noncovalent interaction of dietary polyphenols with common human plasma proteins, J Agric Food Chem, vol.59, issue.19, pp.10747-54, 2011.

J. Xiao, T. Chen, H. Cao, L. Chen, and F. Yang, Molecular property-affinity relationship of flavanoids and flavonoids for HSA in vitro, Mol Nutr Food Res, vol.55, issue.2, pp.310-317, 2011.

H. Cao, X. Jia, J. Shi, J. Xiao, and X. Chen, Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure-affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids, Food Chem, vol.202, pp.383-391, 2016.

Y. S. Tarahovsky, Y. A. Kim, E. A. Yagolnik, and E. N. Muzafarov, Flavonoid-membrane interactions: involvement of flavonoid-metal complexes in raft signaling, Biochim Biophys Acta, vol.1838, issue.5, pp.1235-1281, 2014.

F. Annaba, P. Kumar, A. K. Dudeja, S. Saksena, R. K. Gill et al., Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT, Am J Physiol Gastrointest Liver Physiol, vol.298, issue.3, pp.467-73, 2010.

H. J. Forman, F. Ursini, and M. Maiorino, An overview of mechanisms of redox signaling, J Mol Cell Cardiol, vol.73, pp.2-9, 2014.

C. Feillet-coudray, T. Sutra, G. Fouret, J. Ramos, C. Wrutniak-cabello et al., Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems, Free Radical Biology and Medicine, vol.46, issue.5, pp.624-632, 2009.

C. Lopez-alarcon and A. Denicola, Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays, Anal Chim Acta, vol.763, pp.1-10, 2013.

M. Chalopin, A. Tesse, M. C. Martã-nez, D. Rognan, J. O. Arnal et al., Estrogen Receptor Alpha as a Key Target of Red Wine Polyphenols Action on the Endothelium, PLoS ONE, vol.2010, issue.1, p.8554
URL : https://hal.archives-ouvertes.fr/inserm-00504826

T. Zhang, X. Liang, L. Shi, L. Wang, J. Chen et al., Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(-)equol-induced activation of Nrf2/ARE in endothelial cells, PLoS One, vol.8, issue.11, p.79075, 2013.

H. H. Ho, C. S. Chang, W. C. Ho, S. Y. Liao, C. H. Wu et al., Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-kappaB activity and downregulation of PI3K/AKT/small GTPase signals, Food Chem Toxicol, pp.2508-2524, 2010.

S. S. Chang, V. S. Lee, Y. L. Tseng, K. C. Chang, K. B. Chen et al., Gallic Acid Attenuates Platelet Activation and Platelet-Leukocyte Aggregation: Involving Pathways of Akt and GSK3beta. Evid Based Complement Alternat Med, p.683872, 2012.

N. G. Amado, B. F. Fonseca, D. M. Cerqueira, V. M. Neto, and J. G. Abreu, Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer, Life Sci, pp.545-54, 2011.

M. Al-hanbali, D. Ali, M. Bustami, S. Abdel-malek, R. Al-hanbali et al., Epicatechin suppresses IL-6, IL-8 and enhances IL-10 production with NF-?B nuclear translocationin whole blood stimulated system, Neuroendocrinology Letters, vol.30, pp.131-138, 2009.

P. Vineis, A. Schatzkin, and J. D. Potter, Models of carcinogenesis: an overview, Carcinogenesis, vol.2010, issue.10, pp.1703-1712

J. Mendelsohn, J. W. Gray, P. M. Howley, M. A. Israel, C. B. Thompson et al., The Molecular Basis of Cancer, 2015.

E. L. Abel, J. Digiovanni, J. W. Gray, and P. Howley, Environmental Carcinogenesis-Ch. 7-Mendelsohn, John, The Molecular Basis of Cancer, pp.103-128, 2015.

E. R. Fearon, J. W. Gray, and P. Howley, Colon and Rectal Cancer-Ch. 34-Mendelsohn, John, The Molecular Basis of Cancer, pp.499-514, 2015.

K. ;. Vipperla and S. J. O'keefe, Diet, microbiota, and dysbiosis: a 'recipe' for colorectal cancer, Food Funct, vol.7, issue.4, pp.1731-1771, 2016.

J. Terzic, S. Grivennikov, E. Karin, and M. Karin, Inflammation and colon cancer, Gastroenterology, vol.2010, issue.6, pp.2101-2114

S. B. Baylin, J. W. Gray, and P. Howley, Epigenetics and Cancer-Ch. 5-Mendelsohn, John, The Molecular Basis of Cancer, pp.67-78, 2015.

S. B. Baylin and J. E. Ohm, Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction?, Nat Rev Cancer, vol.6, issue.2, pp.107-123, 2006.

H. Lage, An overview of cancer multidrug resistance: a still unsolved problem, Cell Mol Life Sci, vol.65, issue.20, pp.3145-67, 2008.

D. Andrea, A. D. Gray, J. W. Howley, and P. , DNA Repair Pathways and Human Cancer-Ch. 4-Mendelsohn, John, The Molecular Basis of Cancer, pp.47-66, 2015.

J. Folkman and R. Kalluri, Cancer without disease, Nature, pp.427-787, 2004.

M. J. Bissell and W. C. Hines, Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression, Nat Med, vol.17, issue.3, pp.320-329, 2011.

R. Medzhitov, Origin and physiological roles of inflammation, Nature, issue.7203, pp.428-463, 2008.

E. Z. Chai, K. S. Siveen, M. K. Shanmugam, F. Arfuso, and G. Sethi, Analysis of the intricate relationship between chronic inflammation and cancer, Biochem J, vol.468, issue.1, pp.1-15, 2015.

A. Sica, P. Allavena, and A. Mantovani, Cancer related inflammation: the macrophage connection, Cancer Lett, vol.267, issue.2, pp.204-219, 2008.

S. Edin, M. L. Wikberg, A. M. Dahlin, J. Rutegard, A. Oberg et al., The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer, PLoS One, vol.7, issue.10, p.47045, 2012.

D. F. Quail, J. A. Joyce, J. W. Gray, and P. Howley, Inflammation and Cancer-Ch. 19-Mendelsohn, John, The Molecular Basis of Cancer, pp.285-296, 2015.

S. Reuter, S. C. Gupta, M. M. Chaturvedi, and B. B. Aggarwal, Oxidative stress, inflammation, and cancer: how are they linked? Free Radic, Biol Med, issue.11, pp.1603-1619, 2010.

W. D. Landry and T. G. Cotter, ROS signalling, NADPH oxidases and cancer, Biochem Soc Trans, vol.42, issue.4, pp.934-942, 2014.

P. Kovacic and J. D. Jacintho, Mechanisms of Carcinogenesis Focus on Oxidative Stress and Electron Transfer, Curr. Med. Chem, vol.8, issue.7, pp.773-796, 2001.

P. Patlevic, J. Vaskova, P. Svorc, . Jr, L. Vasko et al., Reactive oxygen species and antioxidant defense in human gastrointestinal diseases, Integr Med Res, vol.5, issue.4, pp.250-258, 2016.

S. Sreevalsan and S. Safe, Reactive Oxygen Species and Colorectal Cancer, Curr Colorectal Cancer Rep, vol.2013, issue.4, pp.350-357

C. Espinosa-diez, V. Miguel, D. Mennerich, T. Kietzmann, P. Sanchez-perez et al., Antioxidant responses and cellular adjustments to oxidative stress, Redox Biol, vol.6, pp.183-97, 2015.

P. C. Hollman, A. Cassidy, B. Comte, M. Heinonen, M. Richelle et al., The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established, J Nutr, vol.141, issue.5, pp.989-1009, 2011.

S. Rizvi, S. T. Raza, F. Ahmed, A. Ahmad, S. Abbas et al., The Role of Vitamin E in Human Health and Some diseases, Sultan Qaboos University Medical Journal, vol.14, issue.2, pp.157-165, 2013.

M. Leenders, A. M. Leufkens, P. D. Siersema, F. J. Van-duijnhoven, A. Vrieling et al., Plasma and dietary carotenoids and vitamins A, C and E and risk of colon and rectal cancer in the European Prospective Investigation into Cancer and Nutrition, Int J Cancer, vol.135, issue.12, pp.2930-2939, 2014.

M. Bruchard and F. Ghiringhelli, Tumor microenvironment: regulatory cells and immunosuppressive cytokines, Med Sci, vol.30, issue.4, pp.429-464, 2014.

H. Korkaya, A. Davis, M. S. Wicha, J. W. Gray, and P. Howley, Cancer Stem Cells and the Microenvironment-Ch. 10Mendelsohn, John, The Molecular Basis of Cancer, pp.157-164, 2015.

C. M. Ghajar, A. L. Correia, M. J. Bissell, J. W. Gray, and P. Howley, The Role of the Microenvironment in Tumor Initiation, Progression, and Metastasis-Ch. 16-Mendelsohn, John, The Molecular Basis of Cancer, pp.239-256, 2015.

J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser et al., GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase

F. Lyon, International Agency for Research on Cancer, 2013.

K. H. Goss and J. Groden, Biology of the Adenomatous Polyposis Coli Tumor Suppressor, Journal of Clinical Oncology, vol.18, issue.9, pp.1967-1979, 2000.

L. R. Ferguson, H. Chen, A. R. Collins, M. Connell, G. Damia et al., Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition, Semin Cancer Biol, vol.35, pp.5-24, 2015.

H. Brenner, M. Kloor, and C. P. Pox, Colorectal cancer. The Lancet, vol.383, pp.1490-1502, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01372131

T. Abbas, M. A. Keaton, and A. Dutta, Genomic instability in cancer, Cold Spring Harb Perspect Biol, vol.5, issue.3, p.12914, 2013.

R. Labianca, G. D. Beretta, B. Kildani, L. Milesi, F. Merlin et al., Colon cancer. Crit Rev Oncol Hematol, vol.74, issue.2, pp.106-139, 2010.

T. Y. Hou, L. A. Davidson, E. Kim, Y. Y. Fan, N. R. Fuentes et al., NutrientGene Interaction in Colon Cancer, from the Membrane to Cellular Physiology, Annu Rev Nutr, vol.36, pp.543-70, 2016.

J. Voutsinas, L. R. Wilkens, A. Franke, T. M. Vogt, L. A. Yokochi et al., Heterocyclic amine intake, smoking, cytochrome P450 1A2 and N-acetylation phenotypes, and risk of colorectal adenoma in a multiethnic population, Gut, vol.2013, issue.3, pp.416-438

V. Aran, A. P. Victorino, L. C. Thuler, and C. G. Ferreira, Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality, Clin Colorectal Cancer, vol.15, issue.3, pp.195-203, 2016.

F. A. Orlando, D. Tan, J. D. Baltodano, T. Khoury, J. F. Gibbs et al., Aberrant crypt foci as precursors in colorectal cancer progression, J Surg Oncol, vol.98, issue.3, pp.207-220, 2008.

N. E. Brown, P. W. Hinds, J. W. Gray, and P. Howley, Tumor Suppressor Genes-Ch. 3-Mendelsohn, John, The Molecular Basis of Cancer, pp.35-46, 2015.

A. Klaus and W. Birchmeier, Wnt signalling and its impact on development and cancer, Nature Reviews Cancer, vol.8, pp.387-398, 2008.

K. Oguma, H. Oshima, M. Aoki, R. Uchio, K. Naka et al., Activated macrophages promote Wnt signalling through tumor necrosis factor-alpha in gastric tumours cells, EMBO J, vol.27, pp.1671-1681, 2008.

M. D. Castellone, H. Teramoto, B. O. Williams, K. M. Druey, and J. S. Gutkind, Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis, Science, vol.310, pp.1504-1510, 2005.

. , World Cancer Report, 2014.

R. R. Huxley, A. Ansary-moghaddam, P. Clifton, S. Czernichow, C. L. Parr et al., The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence, Int J Cancer, vol.125, issue.1, pp.171-80, 2009.

M. Song, W. S. Garrett, and A. T. Chan, Nutrients, foods, and colorectal cancer prevention, Gastroenterology, vol.2015, issue.6, pp.1244-60

K. K. Tsoi, C. Y. Pau, W. K. Wu, F. K. Chan, S. Griffiths et al., Cigarette smoking and the risk of colorectal cancer: a meta-analysis of prospective cohort studies, Clin Gastroenterol Hepatol, vol.7, issue.6, pp.682-688, 2009.

M. M. Derry, K. Raina, C. Agarwal, and R. Agarwal, Identifying molecular targets of lifestyle modifications in colon cancer prevention, Front Oncol, issue.3, p.119, 2013.

E. Botteri, S. Simona-iodice, V. Bagnardi, S. Raimondi, A. B. Lowenfels et al., Smoking and Colorectal Cancer: A Meta-analysis, JAMA, vol.300, pp.2765-78, 2008.

P. S. Liang, T. Y. Chen, and E. Giovannucci, Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis, Int J Cancer, vol.124, issue.10, pp.2406-2421, 2009.

Y. N. Ye, E. S. Liu, V. Y. Shin, W. K. Wu, and C. H. Cho, The modulating role of nuclear factorkappaB in the action of alpha7-nicotinic acetylcholine receptor and cross-talk between 5lipoxygenase and cyclooxygenase-2 in colon cancer growth induced by 4-(N-methyl-N-nitrosamino)1-(3-pyridyl)-1-butanone, J Pharmacol Exp Ther, vol.311, issue.1, pp.123-153, 2004.

J. Z. Zhu, Y. M. Wang, Q. Y. Zhou, K. F. Zhu, C. H. Yu et al., Systematic review with meta-analysis: alcohol consumption and the risk of colorectal adenoma, Aliment Pharmacol Ther, vol.40, issue.4, pp.325-362, 2014.

H. Jayasekara, R. J. Macinnis, R. Room, and D. R. English, Long-Term Alcohol Consumption and Breast, Upper Aero-Digestive Tract and Colorectal Cancer Risk: A Systematic Review and MetaAnalysis, Alcohol Alcohol, vol.51, issue.3, pp.315-345, 2016.

R. F. De-menezes, A. Bergmann, and L. C. Thuler, Alcohol Consumption and Risk of Cancer: a Systematic Literature Review, Asian Pacific Journal of Cancer Prevention, vol.14, issue.9, pp.4965-4972, 2013.

G. Testino, The Burden of Cancer Attributable to Alcohol Consumption, Maedica (Buchar), vol.6, pp.313-320, 2011.

H. K. Na and J. Y. Lee, Molecular Basis of Alcohol-Related Gastric and Colon Cancer, Int J Mol Sci, issue.6, p.18, 2017.

H. K. Seitz and F. Stickel, Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism, Genes Nutr, vol.5, issue.2, pp.121-129, 2010.

A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies, The Lancet, vol.371, issue.9612, pp.569-578, 2008.

E. E. Calle and R. Kaaks, Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms, Nat Rev Cancer, vol.4, issue.8, pp.579-91, 2004.
DOI : 10.1038/nrc1408

S. D. Hursting, J. Digiovanni, A. J. Dannenberg, M. Azrad, D. Leroith et al., Obesity, energy balance, and cancer: new opportunities for prevention, Cancer Prev Res (Phila), vol.2012, issue.11, pp.1260-72
DOI : 10.1158/1940-6207.capr-12-0140

URL : http://cancerpreventionresearch.aacrjournals.org/content/5/11/1260.full.pdf

M. Bardou, A. N. Barkun, and M. Martel, Obesity and colorectal cancer, Gut, vol.2013, issue.6, pp.933-980

, World Cancer Research Fund

, Report: Food, nutrition, physical activity, and the prévention of colorectal cancer, Colorectal Cancer, 2011.

J. Zheng, M. Zhao, J. Li, G. Lou, Y. Yuan et al., Obesity-associated digestive cancers: A review of mechanisms and interventions, Tumour Biol, vol.39, issue.3, p.1010428317695020, 2017.

L. Pietrzyk, A. Torres, R. Maciejewski, and K. Torres, Obesity and Obese-related Chronic Lowgrade Inflammation in Promotion of Colorectal Cancer Development, Asian Pacific Journal of Cancer Prevention, vol.16, issue.10, pp.4161-4168, 2015.

M. J. Khandekar, P. Cohen, and B. M. Spiegelman, Molecular mechanisms of cancer development in obesity, Nat Rev Cancer, vol.11, issue.12, pp.886-95, 2011.

J. O. Aleman, L. H. Eusebi, L. Ricciardiello, K. Patidar, A. J. Sanyal et al., Mechanisms of obesity-induced gastrointestinal neoplasia, Gastroenterology, vol.146, issue.2, pp.357-73, 2014.

D. S. Chan, R. Lau, D. Aune, R. Vieira, D. C. Greenwood et al., Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies, PLoS One, vol.6, issue.6, p.20456, 2011.

E. A. Magee, R. Curno, L. M. Edmond, and J. H. Cummings, Contribution of dietary protein and inorganic sulfur to urinary sulfate toward a biomarker of inorganic sulfur intake, Am J Clin Nutr, vol.80, pp.137-179, 2004.

F. E. Rowan, N. G. Docherty, J. C. Coffey, and P. R. Connell, Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis, Br J Surg, vol.96, issue.2, pp.151-159, 2009.

N. M. Bastide, F. Chenni, M. Audebert, R. L. Santarelli, S. Tache et al., A central role for heme iron in colon carcinogenesis associated with red meat intake, Cancer Res, vol.75, issue.5, pp.870-879, 2015.

A. M. Joosen, G. G. Kuhnle, S. M. Aspinall, T. M. Barrow, E. Lecommandeur et al., Effect of processed and red meat on endogenous nitrosation and DNA damage, Carcinogenesis, vol.30, issue.8, pp.1402-1409, 2009.

L. D. Boada, L. A. Henriquez-hernandez, and O. P. Luzardo, The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences, Food Chem Toxicol, vol.92, pp.236-280, 2016.

R. Baena-ruiz and P. Salinas-hernandez, Diet and cancer: risk factors and epidemiological evidence, Maturitas, vol.77, issue.3, pp.202-210, 2014.

H. Wang, M. Iwasaki, C. A. Haiman, S. Kono, L. R. Wilkens et al., Interaction between Red Meat Intake and NAT2 Genotype in Increasing the Risk of Colorectal Cancer in Japanese and African Americans, PLoS One, vol.10, issue.12, p.144955, 2015.

M. Borges-canha, J. P. Portela-cidade, M. Dinis-ribeiro, A. F. Leite-moreira, and P. Pimentelnunes, Role of colonic microbiota in colorectal carcinogenesis A systematic review, Rev Esp Enferm Dig, vol.107, pp.659-671, 2015.

T. O. Keku, S. Dulal, A. Deveaux, B. Jovov, and X. Han, The gastrointestinal microbiota and colorectal cancer, Am J Physiol Gastrointest Liver Physiol, vol.308, issue.5, pp.351-63, 2015.

J. Kerr, C. Anderson, and S. M. Lippman, Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. The Lancet Oncology, vol.18, pp.457-471, 2017.
DOI : 10.1016/s1470-2045(17)30411-4

E. L. Van-blarigan and J. A. Meyerhardt, Role of physical activity and diet after colorectal cancer diagnosis, J Clin Oncol, vol.33, issue.16, pp.1825-1859, 2015.

T. Boyle, T. Keegel, F. Bull, J. Heyworth, and L. Fritschi, Physical Activity and Risks of Proximal and Distal Colon Cancers: A Systematic Review and Meta-analysis. JNCI-. Natl. Cancer Inst, vol.104, pp.1548-1561, 2012.
DOI : 10.1093/jnci/djs354

URL : https://academic.oup.com/jnci/article-pdf/104/20/1548/23597405/djs354.pdf

H. H. Kyu, V. F. Bachman, L. T. Alexander, J. E. Mumford, A. Afshin et al., Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study, BMJ, vol.354, p.3857, 2013.

S. C. Moore, I. M. Lee, E. Weiderpass, P. T. Campbell, J. N. Sampson et al., Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults, JAMA Intern Med, vol.176, issue.6, pp.816-841, 2016.

C. C. Simons, L. A. Hughes, M. Van-engeland, R. A. Goldbohm, P. A. Van-den-brandt et al., Physical Activity, Occupational Sitting Time, and Colorectal Cancer Risk in the Netherlands Cohort Study, Am J Epidemiol, vol.177, issue.6, pp.514-544, 2013.
DOI : 10.1093/aje/kws280

URL : https://academic.oup.com/aje/article-pdf/177/6/514/379628/kws280.pdf

C. Bressa, M. Bailen-andrino, J. Perez-santiago, R. Gonzalez-soltero, M. Perez et al., Differences in gut microbiota profile between women with active lifestyle and sedentary women, PLoS One, vol.12, issue.2, p.171352, 2017.
DOI : 10.1371/journal.pone.0171352

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171352&type=printable

D. Aune, R. Lau, D. S. Chan, R. Vieira, D. C. Greenwood et al., Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, Ann Oncol, vol.23, issue.1, pp.37-45, 2012.
DOI : 10.1093/annonc/mdr269

URL : https://academic.oup.com/annonc/article-pdf/23/1/37/13786192/mdr269.pdf

N. Keum, D. Aune, D. C. Greenwood, W. Ju, and E. L. Giovannucci, Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies, Int J Cancer, vol.135, issue.8, pp.1940-1948, 2014.
DOI : 10.1002/ijc.28840

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.28840

Y. Ma, P. Zhang, F. Wang, J. Yang, Z. Liu et al., Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies, J Clin Oncol, vol.29, issue.28, pp.3775-82, 2011.

X. Cai, C. Wang, W. Yu, W. Fan, S. Wang et al., Selenium Exposure and Cancer Risk: an Updated Meta-analysis and Meta-regression, Sci Rep, vol.6, 2016.
DOI : 10.1038/srep19213

URL : https://www.nature.com/articles/srep19213.pdf

S. A. Lamprecht and M. Lipkin, Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms, Nat Rev Cancer, vol.3, issue.8, pp.601-615, 2003.
DOI : 10.1038/nrc1144

D. Feldman, A. V. Krishnan, S. Swami, E. Giovannucci, and B. J. Feldman, The role of vitamin D in reducing cancer risk and progression, Nat Rev Cancer, vol.14, issue.5, pp.342-57, 2014.

K. K. Deeb, D. L. Trump, and C. S. Johnson, Vitamin D signalling pathways in cancer: potential for anticancer therapeutics, Nat Rev Cancer, vol.7, issue.9, pp.684-700, 2007.
DOI : 10.1038/nrc2196

M. J. Larriba, J. M. Gonzalez-sancho, A. Barbachano, N. Niell, G. Ferrer-mayorga et al., Vitamin D Is a Multilevel Repressor of Wnt/b-Catenin Signaling in Cancer Cells, Cancers (Basel), vol.2013, issue.4, pp.1242-60

J. Bassaganya-riera, R. Hontecillas, W. T. Horne, M. Sandridge, H. H. Herfarth et al., Conjugated linoleic acid modulates immune responses in patients with mild to moderately active Crohn's disease, Clin Nutr, vol.31, issue.5, pp.721-728, 2012.
DOI : 10.1016/j.clnu.2012.03.002

J. Bassaganya-riera, R. Hontecillas, and D. C. Beitz, Colonic anti-inflammatory mechanisms of conjugated linoleic acid, Clinical Nutrition, vol.21, issue.6, pp.451-459, 2002.

N. P. Evans, S. A. Misyak, E. M. Schmelz, A. J. Guri, R. Hontecillas et al., Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma, J Nutr, vol.140, issue.3, pp.515-536, 2010.
DOI : 10.3945/jn.109.115642

URL : https://academic.oup.com/jn/article-pdf/140/3/515/23949592/515.pdf

M. Thangaraju, G. A. Cresci, K. Liu, S. Ananth, J. P. Gnanaprakasam et al., GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon, Cancer Res, vol.69, issue.7, pp.2826-2858, 2009.

H. M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost et al., Review article: the role of butyrate on colonic function, Aliment Pharmacol Ther, vol.27, issue.2, pp.104-123, 2008.

D. Aune, D. S. Chan, R. Lau, R. Vieira, D. C. Greenwood et al., Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies, BMJ, p.6617, 2011.

W. Frolich and P. Aman, Whole grain for whom and why?, Food Nutr Res, p.54, 2010.

A. Fardet, E. Rock, and C. Rémésy, Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo, Journal of Cereal Science, vol.48, issue.2, pp.258-276, 2008.

P. P. Soderholm, A. H. Koskela, J. E. Lundin, M. J. Tikkanen, and H. C. Adlercreutz, Plasma pharmacokinetics of alkylresorcinol metabolites: new candidate biomarkers for whole-grain rye and wheat intake, Am J Clin Nutr, vol.90, issue.5, pp.1167-71, 2009.

R. Landberg, P. Aman, G. Hallmans, and I. Johansson, Long-term reproducibility of plasma alkylresorcinols as biomarkers of whole-grain wheat and rye intake within Northern Sweden Health and Disease Study Cohort, Eur J Clin Nutr, vol.67, issue.3, pp.259-63, 2013.

C. Kyro, A. Olsen, R. Landberg, G. Skeie, S. Loft et al., J Natl Cancer Inst, vol.106, issue.1, p.352, 2014.

K. Y. Fung, L. Cosgrove, T. Lockett, R. Head, and D. L. Topping, A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate, Br J Nutr, vol.2012, issue.5, pp.820-851

P. Louis, G. L. Hold, and H. J. Flint, The gut microbiota, bacterial metabolites and colorectal cancer, Nature Reviews Microbiology, vol.12, issue.10, pp.661-672, 2014.

Y. Park, D. Spiegelman, D. J. Hunter, D. Albanes, L. Bergkvist et al., Intakes of vitamins A, C, and E and use of multiple vitamin supplements and risk of colon cancer: a pooled analysis of prospective cohort studies, Cancer Causes Control, vol.21, issue.11, pp.1745-57, 2010.

R. Baena-ruiz and P. Salinas-hernandez, Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence, Maturitas, vol.94, pp.13-19, 2016.

K. Masisi, T. Beta, and M. H. Moghadasian, Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies, Food Chem, vol.196, pp.90-97, 2016.

D. Aune, R. Lau, D. S. Chan, R. Vieira, D. C. Greenwood et al., Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies, Gastroenterology, vol.141, issue.1, pp.106-124, 2011.

T. Tanaka, M. Shnimizu, and H. Moriwaki, Cancer chemoprevention by carotenoids, Molecules, vol.2012, issue.3, pp.3202-3244

J. Du, J. J. Cullen, and G. R. Buettner, Ascorbic acid: chemistry, biology and the treatment of cancer, Biochim Biophys Acta, vol.1826, issue.2, pp.443-57, 2012.

M. Pohanka, J. Pejchal1, S. Snopkova, K. Havlickova, J. Z. Karasova et al., Ascorbic Acid An Old Player with a, Broad Impact on Body Physiology Including Oxidative A Review. Mini-Reviews in Medicinal Chemistry, vol.12, pp.35-43, 2012.

S. V. Singh and K. Singh, Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research, Carcinogenesis, vol.2012, issue.10, pp.1833-1875

P. Gupta, S. E. Wright, S. H. Kim, and S. K. Srivastava, Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms, Biochim Biophys Acta, vol.1846, issue.2, pp.405-429, 2014.

S. Mannisto, S. S. Yaun, D. J. Hunter, D. Spiegelman, H. O. Adami et al., Dietary carotenoids and risk of colorectal cancer in a pooled analysis of 11 cohort studies, Am J Epidemiol, vol.165, issue.3, pp.246-55, 2007.

M. G. Hertog, E. J. Feskens, P. C. Hollman, M. B. Katan, and D. Kromhout, Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study, The Lancet, vol.342, pp.1007-1018, 1993.

M. G. Hertog, P. C. Hollman, and M. B. Kahn, Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in The Netherlands, J Agric Food Chem, vol.40, pp.2379-2383, 1992.

L. Marchand and L. , Cancer preventive effects of flavonoids-a review, Biomed Pharmacother, vol.56, pp.296-301, 2002.

B. Ji, W. Chow, A. W. Hsing, J. K. Mclaughlin, Q. Dai et al., Green tea consumption and the risk of pancreatic and colorectal cancers, International Journal of Cancer, vol.70, issue.3, pp.255-258, 1997.

M. Cotterchio, B. A. Boucher, M. Manno, S. Gallinger, A. Okey et al., Dietary Phytoestrogen Intake Is Associated with reduced colorectal cancer risk, J Nutr, vol.136, pp.3046-3053, 2007.

M. Akhter, M. Iwasaki, T. Yamaji, S. Sasazuki, and S. Tsugane, Dietary isoflavone and the risk of colorectal adenoma: a case-control study in Japan, Br J Cancer, vol.100, issue.11, pp.1812-1818, 2009.

M. Rossi, E. Negri, R. Talamini, C. Bosetti, M. Parpinel et al., Flavonoids and colorectal cancer in Italy, Cancer Epidemiol Biomarkers Prev, vol.15, issue.8, pp.1555-1563, 2006.

E. Theodoratou, J. Kyle, R. Cetnarskyj, S. M. Farrington, A. Tenesa et al., Dietary flavonoids and the risk of colorectal cancer, Cancer Epidemiol Biomarkers Prev, vol.16, issue.4, pp.684-93, 2007.

J. A. Kyle, L. Sharp, J. Little, G. G. Duthie, and G. Mcneill, Dietary flavonoid intake and colorectal cancer: a case-control study, Br J Nutr, vol.103, issue.3, pp.429-465, 2010.

Z. Djuric, R. K. Severson, and I. Kato, Association of dietary quercetin with reduced risk of proximal colon cancer, Nutr Cancer, vol.64, issue.3, pp.351-60, 2012.

M. Rossi, E. Negri, M. Parpinel, P. Lagiou, C. Bosetti et al., Proanthocyanidins and the risk of colorectal cancer in Italy, Cancer Causes Control, vol.21, issue.2, pp.243-50, 2010.

H. Jin, Q. Leng, and C. Li, Dietary flavonoid for preventing colorectal neoplasms, Cochrane Database Syst Rev, issue.8, p.9350, 2012.

G. Grosso, J. Godos, R. Lamuela-raventos, S. Ray, A. Micek et al., A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations, Mol Nutr Food Res, issue.4, p.61, 2017.

I. C. Arts, D. R. Jacobs, M. Gross, L. J. Harnack, and A. R. Folsom, Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women's Health Study (United States). Cancer Causes Control, vol.13, pp.373-382, 2002.

C. C. Simons, L. A. Hughes, I. C. Arts, R. A. Goldbohm, P. A. Van-den-brandt et al., Dietary flavonol, flavone and catechin intake and risk of colorectal cancer in the Netherlands Cohort Study, Int J Cancer, vol.125, issue.12, pp.2945-52, 2009.

G. Yang, X. O. Shu, H. Li, W. H. Chow, H. Cai et al., Prospective cohort study of soy food intake and colorectal cancer risk in women, Am J Clin Nutr, vol.89, issue.2, pp.577-83, 2009.

J. M. Yuan, Y. T. Gao, C. S. Yang, and M. C. Yu, Urinary biomarkers of tea polyphenols and risk of colorectal cancer in the Shanghai Cohort Study, International Journal of Cancer, vol.120, issue.6, pp.1344-1350, 2007.

A. Kuijsten, I. C. Arts, P. C. Hollman, P. Van't-veer, and E. Kampman, Plasma enterolignans are associated with lower colorectal adenoma risk, Cancer Epidemiol Biomarkers Prev, vol.15, issue.6, pp.1132-1138, 2006.

Y. Zhou, J. Zheng, Y. Li, D. P. Xu, S. Li et al., Natural Polyphenols for Prevention and Treatment of Cancer, Nutrients, vol.2016, issue.8

K. F. Adams, P. D. Lampe, K. M. Newton, J. T. Ylvisaker, A. Feld et al., Soy protein containing isoflavones does not decrease colorectal epithelial cell proliferation in a randomized controlled trial, Am J Clin Nutr, vol.82, pp.620-626, 2005.

E. H. Vis, G. J. Geerse, S. Eline, E. S. Klaassens, M. A. Van-boekel et al., Possible Mechanisms Behind the Differential Effects of Soy Protein and Casein Feedings on Colon Cancer Biomarkers in the Rat, NUTRITION AND CANCER, vol.51, issue.1, pp.37-44, 2005.

M. Cruz-correa, D. A. Shoskes, P. Sanchez, R. Zhao, L. M. Hylind et al., Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis, Clin Gastroenterol Hepatol, vol.4, issue.8, pp.1035-1043, 2006.

R. E. Carroll, R. V. Benya, D. K. Turgeon, S. Vareed, M. Neuman et al., Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia, Cancer Prev Res (Phila), vol.2011, issue.3, pp.354-64

Z. He, C. Shi, H. Wen, F. Li, B. Wang et al., Upregulation of p53 Expression in Patients with Colorectal Cancer by Administration of Curcumin, Cancer Investigation, vol.29, issue.3, pp.208-213, 2011.

H. Hoensch, B. Groh, L. Edler, and W. Kirch, Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence, World J Gastroenterol, vol.14, issue.14, pp.2187-2193, 2008.

M. K. Shanmugam, J. H. Lee, E. Z. Chai, M. M. Kanchi, S. Kar et al., Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds, Semin Cancer Biol, pp.35-47, 2016.

H. Lewandowska, M. Kalinowska, W. Lewandowski, T. M. Stepkowski, and K. Brzoska, The role of natural polyphenols in cell signaling and cytoprotection against cancer development, J Nutr Biochem, vol.32, pp.1-19, 2016.

N. Khan, V. M. Adhami, and H. Mukhtar, Apoptosis by dietary agents for prevention and treatment of cancer, Biochem Pharmacol, vol.76, issue.11, pp.1333-1342, 2008.

M. Carocho and I. C. Ferreira, The Role of Phenolic Compounds in the Fight against Cancer-A Review. Anti-Cancer Agents in Medicinal Chemistry, vol.13, pp.1236-1258, 2013.

T. Y. Forbes-hernandez, F. Giampieri, M. Gasparrini, L. Mazzoni, J. L. Quiles et al., The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms, Food Chem Toxicol, vol.68, pp.154-82, 2014.

A. Link, F. Balaguer, and A. Goel, Cancer chemoprevention by dietary polyphenols: promising role for epigenetics, Biochem Pharmacol, vol.80, issue.12, pp.1771-92, 2010.

C. S. Yang, H. Wang, G. X. Li, Z. Yang, F. Guan et al., Cancer prevention by tea: Evidence from laboratory studies, Pharmacol Res, vol.64, issue.2, pp.113-135, 2011.

C. S. Yang, X. Wang, G. Lu, and S. C. Picinich, Cancer prevention by tea: animal studies, molecular mechanisms and human relevance, Nat Rev Cancer, vol.9, issue.6, pp.429-468, 2009.

L. A. Beltz, D. K. Bayer, A. L. Moss, and I. M. Simet, Mechanisms of Cancer Prevention by Green and Black Tea Polyphenols. Anti-Cancer Agents in Medicinal Chemistry, vol.6, pp.389-406, 2006.

G. Peng, D. A. Dixon, S. J. Muga, T. J. Smith, and M. J. Wargovich, Green tea polyphenol (-)epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis, Mol Carcinog, vol.45, issue.5, pp.309-328, 2006.

J. T. Hwang, J. Ha, I. J. Park, S. K. Lee, H. W. Baik et al., Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway, Cancer Lett, vol.247, issue.1, pp.115-136, 2007.

G. A. Orner, W. M. Dashwood, C. A. Blum, G. D. Diaz, Q. Li et al., Suppression of tumorigenesis in the Apcmin mouse down-regulation regulation of ?-catenin signaling by a combination of tea plus sulindac, Carcinogenesis, vol.24, pp.263-267, 2003.

H. Xiao, X. Hao, B. Simi, J. Ju, H. Jiang et al., Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats, Carcinogenesis, vol.29, issue.1, pp.113-122, 2008.

X. Hao, H. Xiao, J. Ju, M. J. Lee, J. D. Lambert et al., Green Tea Polyphenols Inhibit Colorectal Tumorigenesis in Azoxymethane-Treated F344 Rats, Nutr Cancer, vol.69, issue.4, pp.623-631, 2017.

X. Hao, M. Bose, J. D. Lambert, J. Ju, G. Lu et al., Inhibition of Intestinal Tumorigenesis in ApcMin/+ Mice by Green Tea Polyphenols (Polyphenon E) and Individual Catechins, NUTRITION AND CANCER, vol.59, issue.1, pp.62-69, 2007.

Z. Dong, W. Ma, C. Huang, and C. S. Yang, Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins, Cancer Res, vol.57, issue.19, pp.4414-4423, 1997.

M. Moretti, J. Bennett, L. Tornatore, A. K. Thotakura, and G. Franzoso, Cancer: NF-kappaB regulates energy metabolism, Int J Biochem Cell Biol, vol.2012, issue.12, pp.2238-2281

L. Tornatore, A. K. Thotakura, J. Bennett, M. Moretti, and G. Franzoso, The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation, Trends Cell Biol, vol.22, issue.11, pp.557-66, 2012.

R. G. Baker, M. S. Hayden, and S. Ghosh, NF-kappaB, inflammation, and metabolic disease, Cell Metab, vol.13, issue.1, pp.11-22, 2011.

H. S. Oz and J. L. Ebersole, Green Tea Polyphenols Mediated Apoptosis in Intestinal Epithelial Cells by a Fadd-Dependent Pathway, J Cancer Ther, vol.2010, issue.3, pp.105-113

M. I. Cerezo-guisado, R. Zur, M. J. Lorenzo, A. Risco, M. A. Martin-serrano et al., Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG, Food Chem Toxicol, vol.84, pp.125-157, 2015.

S. N. Saldanha, R. Kala, and T. O. Tollefsbol, Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate, Exp Cell Res, vol.324, issue.1, pp.40-53, 2014.

Y. Huang, W. Li, Z. Y. Su, and A. N. Kong, The complexity of the Nrf2 pathway: beyond the antioxidant response, J Nutr Biochem, vol.26, issue.12, pp.1401-1414, 2015.

Q. Zhang, X. Tang, Q. Lu, Z. Zhang, J. Rao et al., Green tea extract and (-)epigallocatechin-3-gallate inhibit hypoxia-and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells, Mol Cancer Ther, vol.5, issue.5, pp.1227-1265, 2006.

Y. Y. Choy, M. Fraga, G. G. Mackenzie, A. L. Waterhouse, E. Cremonini et al., The PI3K/Akt pathway is involved in procyanidin-mediated suppression of human colorectal cancer cell growth, Mol Carcinog, vol.55, issue.12, pp.2196-2209, 2016.

S. Gorlach, W. Wagner, A. Pods?dek, K. Szewczyk, M. Kozio?kiewicz et al., Procyanidins From Japanese Quince (Chaenomeles Japonica) Fruit Induce Apoptosis in Human Colon Cancer Caco-2 Cells in a Degree of Polymerization-Dependent Manner, Nutrition and Cancer, vol.63, issue.8, pp.1348-1360, 2011.

H. Zhang, M. Zhang, L. Yu, Y. Zhao, N. He et al., Antitumor activities of quercetin and quercetin-5',8-disulfonate in human colon and breast cancer cell lines, Food Chem Toxicol, vol.2012, issue.5, pp.1589-99

T. Yoshida, M. Konishi, M. Horinaka, T. Yasuda, A. E. Goda et al., Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis, Biochem Biophys Res Commun, vol.375, issue.1, pp.129-162, 2008.

W. Li, B. Du, T. Wang, S. Wang, and J. Zhang, Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53

, Upregulated Modulator of Apoptosis, Chem Biol Interact, vol.177, issue.2, pp.121-128, 2009.

H. S. Lee, H. J. Cho, R. Yu, K. W. Lee, H. S. Chun et al., Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells, Int J Mol Sci, vol.15, issue.2, pp.2722-2759, 2014.

X. Li, J. N. Wang, J. M. Huang, X. K. Xiong, M. F. Chen et al., Chrysin promotes tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced apoptosis in human cancer cell lines, Toxicol In Vitro, vol.25, issue.3, pp.630-635, 2011.

Y. K. Lee, J. T. Hwang, D. Y. Kwon, Y. J. Surh, and O. J. Park, Induction of apoptosis by quercetin is mediated through AMPKalpha1/ASK1/p38 pathway, Cancer Lett, vol.292, issue.2, pp.228-264, 2010.

C. Li, X. Yang, C. Chen, S. Cai, and J. Hu, Isorhamnetin suppresses colon cancer cell growth through the PI3KAktmTOR pathway, Mol Med Rep, vol.9, issue.3, pp.935-975, 2014.

A. A. Dihal, R. A. Woutersen, B. Van-ommen, I. M. Rietjens, and R. H. Stierum, Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2, Cancer Lett, vol.238, issue.2, pp.248-59, 2006.

J. M. Gee, H. Hara, and I. T. Johnson, Suppression of Intestinal Crypt Cell Proliferation and Aberrant Crypt Foci by Dietary Quercetin in Rats, NUTRITION AND CANCER, vol.43, issue.2, pp.193-201, 2002.

S. M. Saud, M. R. Young, Y. L. Jones-hall, L. Ileva, M. O. Evbuomwan et al., Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and beta-catenin, Cancer Res, vol.73, issue.17, pp.5473-84, 2013.

J. Qin, J. Teng, Z. Zhu, J. Chen, and W. J. Huang, Genistein induces activation of the mitochondrial apoptosis pathway by inhibiting phosphorylation of Akt in colorectal cancer cells, Pharm Biol, vol.54, issue.1, pp.74-83, 2016.

X. Xiao, Z. Liu, R. Wang, J. Wang, S. Zhang et al., Genistein suppresses FLT4 and inhibits human colorectal cancer metastasis, Oncotarget, vol.6, pp.3225-3229, 2015.

S. R. Lepri, L. C. Zanelatto, P. B. Silva, D. Sartori, L. R. Ribeiro et al., The effects of genistein and daidzein on cell proliferation kinetics in HT29 colon cancer cells: the expression of CTNNBIP1 (?-catenin), APC (adenomatous polyposis coli) and BIRC5 (survivin), Human Cell, vol.27, issue.2, pp.78-84, 2014.

B. Pampaloni, G. Palmini, C. Mavilia, R. Zonefrati, A. Tanini et al., In vitro effects of polyphenols on colorectal cancer cells, World J Gastrointest Oncol, vol.6, issue.8, pp.289-300, 2014.

H. M. Song, G. H. Park, H. J. Eo, and J. B. Jeong, Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer, Biomol Ther (Seoul), vol.2016, issue.2, pp.140-146

S. Aranganathan and N. Nalini, Antiproliferative efficacy of hesperetin (citrus flavanoid) in 1,2dimethylhydrazine-induced colon cancer, Phytother Res, vol.27, issue.7, pp.999-1005, 2013.

A. P. Subramanian, S. K. Jaganathan, M. Mandal, and E. Supriyanto, Muhamad, II, Gallic acid induced apoptotic events in HCT-15 colon cancer cells, World J Gastroenterol, vol.22, issue.15, pp.3952-61, 2016.

S. K. Jaganathan, Growth inhibition by caffeic acid, one of the phenolic constituents of honey, in HCT 15 colon cancer cells, ScientificWorldJournal, p.372345, 2012.

H. Miki, N. Uehara, A. Kimura, T. Sasaki, T. Yuri et al., Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells, Int J Oncol, vol.2012, issue.4, pp.1020-1028

D. J. Colin, E. Limagne, K. Ragot, G. Lizard, F. Ghiringhelli et al., The role of reactive oxygen species and subsequent DNA-damage response in the emergence of resistance towards resveratrol in colon cancer models, Cell Death Dis, vol.5, p.1533, 2014.

B. Demoulin, M. Hermant, C. Castrogiovanni, C. Staudt, and P. Dumont, Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomerase II and activates the ATM kinase to trigger p53-dependent apoptosis, Toxicol In Vitro, vol.29, issue.5, pp.1156-65, 2015.

S. T. Lin, S. H. Tu, P. S. Yang, S. P. Hsu, W. H. Lee et al., Apple Polyphenol Phloretin Inhibits Colorectal Cancer Cell Growth via Inhibition of the Type 2 Glucose Transporter and Activation of p53-Mediated Signaling, J Agric Food Chem, vol.64, issue.36, pp.6826-6863, 2016.

E. B. Mojzer, M. K. Hrncic, M. Skerget, Z. Knez, and U. Bren, Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects, Molecules, issue.7, p.21, 2016.

M. Gleichenhagen and A. Schieber, Current challenges in polyphenol analytical chemistry. Current Opinion in Food Science, vol.7, pp.43-49, 2016.

Y. Ding, M. Peng, T. Zhang, J. S. Tao, Z. Z. Cai et al., Quantification of conjugated metabolites of drugs in biological matrices after the hydrolysis with beta-glucuronidase and sufatase: a review of bio-analytical methods, Biomed Chromatogr, vol.27, issue.10, pp.1280-95, 2013.

S. Saha, W. Hollands, P. W. Needs, L. M. Ostertag, B. De-roos et al., Human O-sulfated metabolites of (-)-epicatechin and methyl-(-)-epicatechin are poor substrates for commercial aryl-sulfatases: implications for studies concerned with quantifying epicatechin bioavailability, Pharmacol Res, vol.65, issue.6, pp.592-602, 2012.

C. H. Grun, F. A. Van-dorsten, D. M. Jacobs, M. Le-belleguic, E. J. Van-velzen et al., GC-MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies, Journal of Chromatography B, vol.871, issue.2, pp.212-219, 2008.

P. L. Kole, G. Venkatesh, J. Kotecha, and R. Sheshala, Recent advances in sample preparation techniques for effective bioanalytical methods, Biomed Chromatogr, vol.25, issue.1-2, pp.199-217, 2011.

C. Bylda, R. Thiele, U. Kobold, and D. A. Volmer, Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS, Analyst, vol.139, issue.10, pp.2265-76, 2014.

A. Koole, J. Bosman, J. P. Franke, and R. A. De-zeeuw, Multiresidue analysis of beta(2)-agonists in human and calf urine using multimodal solid-phase extraction and high-performance liquid chromatography with electrochemical detection, Journal of Chromatography B, vol.726, issue.1-2, pp.149-156, 1999.

A. Craig, LC-MS Ionization Effect from Solid Phase Extraction Extractables. The Reporter, vol.26, pp.7-9, 2006.

É. A. Souza-silva, N. Reyes-garcés, G. A. Gómez-ríos, E. Boyac?, B. Bojko et al., A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications, TrAC Trends in Analytical Chemistry, vol.71, pp.249-264, 2015.

A. H. Lee, L. Tan, N. Hiramatsu, A. Ishisaka, H. Alfonso et al., Plasma concentrations of coffee polyphenols and plasma biomarkers of diabetes risk in healthy Japanese women, Nutr Diabetes, vol.6, p.212, 2016.

J. K. Prasain, A. Arabshahi, and D. R. Moore,

G. A. Greendale, J. M. Wyss, and S. Barnes, Simultaneous determination of 11 phytoestrogens in human serum using a 2 min liquid chromatography/tandem mass spectrometry method, J Chromatogr B Analyt Technol Biomed Life Sci, vol.878, pp.994-1002, 2010.

C. Wyns, S. Bolca, D. De-keukeleire, and A. Heyerick, Development of a high-throughput LC/APCI-MS method for the determination of thirteen phytoestrogens including gut microbial metabolites in human urine and serum, J Chromatogr B Analyt Technol Biomed Life Sci, vol.878, pp.949-56, 2010.

J. K. Prasain, N. Peng, Y. Dai, R. Moore, A. Arabshahi et al., Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract, Phytomedicine, vol.16, issue.2-3, pp.233-276, 2009.

C. Marmet, L. Actis-goretta, M. Renouf, and F. Giuffrida, Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee, J Pharm Biomed Anal, vol.88, pp.617-642, 2014.

S. Magiera, I. Baranowska, and J. Kusa, Development and validation of UHPLC-ESI-MS/MS method for the determination of selected cardiovascular drugs, polyphenols and their metabolites in human urine, Talanta, vol.89, pp.47-56, 2012.

S. Gao, Q. Zhan, J. Li, Q. Yang, X. Li et al., LC-MS/MS method for the simultaneous determination of ethyl gallate and its major metabolite in rat plasma, Biomed Chromatogr, vol.24, issue.5, pp.472-480, 2010.

S. F. Teunissen, H. Rosing, R. H. Koornstra, S. C. Linn, J. H. Schellens et al., Development and validation of a quantitative assay for the analysis of tamoxifen with its four main metabolites and the flavonoids daidzein, genistein and glycitein in human serum using liquid chromatography coupled with tandem mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci, vol.877, issue.24, pp.2519-2548, 2009.

P. A. Guy, M. Renouf, D. Barron, C. Cavin, F. Dionisi et al., Quantitative analysis of plasma caffeic and ferulic acid equivalents by liquid chromatography tandem mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci, vol.877, issue.31, pp.3965-74, 2009.

N. P. Norskov, C. Kyro, A. Olsen, A. Tjonneland, and K. E. Knudsen, High-Throughput LCMS/MS Method for Direct Quantification of Glucuronidated, Sulfated, and Free Enterolactone in Human Plasma, J Proteome Res, vol.15, issue.3, pp.1051-1059, 2016.

N. P. Norskov, A. Olsen, A. Tjonneland, A. K. Bolvig, H. N. Laerke et al., Targeted LC-MS/MS Method for the Quantitation of Plant Lignans and Enterolignans in Biofluids from Humans and Pigs, J Agric Food Chem, vol.63, issue.27, pp.6283-92, 2015.

S. A. Palma-duran, G. Caire-juvera, . Robles-burgeno, R. Mdel, M. I. Ortega-velez et al., Serum levels of phytoestrogens as biomarkers of intake in Mexican women, International journal of food sciences and nutrition, vol.66, issue.7, pp.819-844, 2015.

R. M. De-ferrars, C. Czank, S. Saha, P. W. Needs, Q. Zhang et al., Methods for isolating, identifying, and quantifying anthocyanin metabolites in clinical samples, Anal Chem, vol.86, issue.20, pp.10052-10060, 2014.

D. M. De-oliveira, C. B. Pinto, G. R. Sampaio, L. Yonekura, R. R. Catharino et al., Development and validation of methods for the extraction of phenolic acids from plasma, urine, and liver and analysis by UPLC-MS, J Agric Food Chem, issue.25, pp.6113-6134, 2013.

M. Martinez-huelamo, S. Tulipani, X. Torrado, R. Estruch, and R. M. Lamuela-raventos, Validation of a New LC-MS/MS Method for the Detection and Quantification of Phenolic Metabolites from Tomato Sauce in Biological Samples, Journal of Agricultural and Food Chemistry, vol.2012, issue.18, pp.4542-4549

I. Baranowska, J. Hejniak, and S. Magiera, Development and validation of a RP-UHPLC-ESI

, MS/MS method for the chiral separation and determination of flavanone, naringenin and hesperetin enantiomers, Talanta, vol.159, pp.181-189, 2016.

M. Urpi-sarda, M. Monagas, N. Khan, R. Llorach, R. Ma-lamuela-raventos et al., Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry, Journal of Chromatography A, issue.43, pp.7258-7267, 2009.

A. Serra, A. Macia, M. P. Romero, M. J. Salvado, M. Bustos et al., Determination of procyanidins and their metabolites in plasma samples by improved liquid chromatography-tandem mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci, vol.877, pp.1169-76, 2009.

R. P. Feliciano, E. Mecha, M. R. Bronze, and A. Rodriguez-mateos, Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine, J Chromatogr A, pp.21-31, 1464.

M. I. Orozco-solano, C. Ferreiro-vera, F. Priego-capote, and M. D. Luque-de-castro, Automated method for determination of olive oil phenols and metabolites in human plasma and application in intervention studies, J Chromatogr A, vol.1258, pp.108-124, 2012.

I. E. Milder, A. Kuijsten, I. C. Arts, E. J. Feskens, E. Kampman et al., Relation between Plasma Enterodiol and Enterolactone and Dietary Intake of Lignans in a Dutch Endoscopy-Based Population, J Nutr, vol.137, pp.1266-1271, 2007.

A. Kuijsten, M. N. Buijsman, I. C. Arts, P. P. Mulder, and P. C. Hollman, A validated method for the quantification of enterodiol and enterolactone in plasma using isotope dilution liquid chromatography with tandem mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci, vol.822, issue.1-2, pp.178-84, 2005.

J. Cao, Y. Zhang, W. Chen, and X. Zhao, The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake, Br J Nutr, vol.103, issue.2, pp.249-55, 2010.

Y. Zhang, J. Cao, W. Chen, J. Yang, D. Hao et al., Reproducibility and relative validity of a food frequency questionnaire to assess intake of dietary flavonol and flavone in Chinese university campus population, Nutr Res, vol.30, issue.8, pp.520-526, 2010.

M. Stobiecki, P. Kachlicki, and E. Grotewold, Isolation and Identification of Flavonoids, The Science of Flavonoids, pp.47-69, 2006.

P. Lucci, J. Saurina, and O. Núñez, Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food, TrAC Trends in Analytical Chemistry, vol.88, pp.1-24, 2017.

E. Stylos, M. V. Chatziathanasiadou, A. Syriopoulou, and A. G. Tzakos, Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) based bioavailability determination of the major classes of phytochemicals, J Chromatogr B Analyt Technol Biomed Life Sci, vol.1047, pp.15-38, 2017.

K. J. Bronsema, R. Bischoff, and N. C. Van-de-merbel, Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci, pp.893-894, 2012.

S. Fekete, J. Schappler, J. Veuthey, and D. Guillarme, Current and future trends in UHPLC, TrAC Trends in Analytical Chemistry, vol.63, pp.2-13, 2014.

S. Fekete, J. L. Veuthey, and D. Guillarme, Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice, J Chromatogr A, pp.1-14, 1408.

S. Fekete, I. Kohler, S. Rudaz, and D. Guillarme, Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis, J Pharm Biomed Anal, vol.87, pp.105-124, 2014.

N. R. Kitteringham, R. E. Jenkins, C. S. Lane, V. L. Elliott, and B. K. Park, Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics, J Chromatogr B Analyt Technol Biomed Life Sci, vol.877, issue.13, pp.1229-1268, 2009.

R. Ramanathan, M. Jemal, S. Ramagiri, Y. Q. Xia, W. G. Humpreys et al., It is time for a paradigm shift in drug discovery bioanalysis: from SRM to HRMS, J Mass Spectrom, vol.46, issue.6, pp.595-601, 2011.

Y. Nie, X. Liu, X. Yang, and Z. Zhao, Review: Recent application of chiral liquid chromatographytandem mass spectrometric methods for enantiomeric pharmaceutical and biomedical determinations, J Chromatogr Sci, vol.51, issue.8, pp.753-63, 2013.

L. K. Hooper, P. A. Rimm, E. B. Cohn, J. S. Harvey, I. Le-cornu et al., Flavonoids, flavonoid-rich foods, and cardiovascular risk, Am. J. Clin. Nutr, vol.88, pp.38-50, 2008.

J. Kim, H. J. Kim, H. Joung, M. K. Park, S. Li et al., Overnight urinary excretion of isoflavones as an indicator for dietary isoflavone intake in Korean girls of pubertal age, Br J Nutr, vol.104, issue.5, pp.709-724, 2010.

T. Bohn, Dietary factors affecting polyphenol bioavailability, Nutr Rev, vol.72, issue.7, pp.429-52, 2014.

P. K. Verkasalo, P. N. Appleby, N. E. Allen, G. Davey, H. Adlercreutz et al., Soya intake and plasma concentrations of daidzein and genistein: validity of dietary assessment among eighty British women (Oxford arm of the European Prospective Investigation into Cancer and Nutrition)

, British Journal of Nutrition, vol.86, issue.03, p.415, 2001.

E. Riboli, K. J. Hunt, N. Slimani, P. Ferrari, T. Norat et al.,

H. B. Mesquita, P. H. Peeters, E. Lund, D. Engeset, C. A. Gonzalez et al., European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection, Public Health Nutr, vol.5, issue.6B, pp.1113-1137, 2002.

H. Ward, G. Chapelais, G. G. Kuhnle, R. Luben, K. Khaw et al., Lack of Prospective Associations between Plasma and Urinary Phytoestrogens and Risk of Prostate or Colorectal Cancer in the European Prospective into Cancer-Norfolk Study, Cancer Epidemiology Biomarkers, vol.17, issue.10, pp.2891-2894, 2008.

M. Urpi-sarda, M. Monagas, N. Khan, R. Llorach, R. M. Lamuela-raventos et al., Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry, J Chromatogr A, issue.43, pp.7258-67, 2009.

R. P. Feliciano, A. Boeres, L. Massacessi, G. Istas, M. R. Ventura et al., Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols, Arch Biochem Biophys, vol.599, pp.31-41, 2016.

I. Baranowska and S. Magiera, Analysis of isoflavones and flavonoids in human urine by UHPLC, Anal Bioanal Chem, vol.399, pp.3211-3219, 2011.

M. Gasperotti, D. Masuero, G. Guella, F. Mattivi, and U. Vrhovsek, Development of a targeted method for twenty-three metabolites related to polyphenol gut microbial metabolism in biological samples, using SPE and UHPLC-ESI-MS/MS, Talanta, vol.128, pp.221-251, 2014.

S. Magiera, C. Uhlschmied, M. Rainer, W. Huck-ch, I. Baranowska et al., GC-MS method for the simultaneous determination of beta-blockers, flavonoids, isoflavones and their metabolites in human urine, J Pharm Biomed Anal, vol.56, issue.1, pp.93-102, 2011.

O. J. Lara-guzmán, R. Álvarez-quintero, E. Osorio, M. Naranjo-cano, and K. Muñoz-durango, GC/MS method to quantify bioavailable phenolic compounds and antioxidant capacity determination of plasma after acute coffee consumption in human volunteers, Food Research International, vol.89, pp.219-226, 2016.

C. Gros and B. Laboues, Study of the Dansylation Reaction of Amino Acids, Peptides and Proteins, European J. Biochem, vol.7, pp.463-470, 1969.

Y. Tapuhi, D. E. Schmidt, W. Lindner, and B. L. Karger, Dansylation of amino-acids for Highperformance liquid chromatography analysis, Analytical Biochemistry, vol.115, pp.123-129, 1980.

R. Bartzatt, Dansylation of aromatic, aliphatic, and medicinal carboxylic acid compounds in 1 M Na2CO3 buffer, Analytica Chimica Acta, vol.488, issue.2, pp.203-209, 2003.

Z. Tang and F. P. Guengerich, Dansylation of unactivated alcohols for improved mass spectral sensitivity and application to analysis of cytochrome P450 oxidation products in tissue extracts, Anal Chem, vol.82, issue.18, pp.7706-7718, 2010.

P. B. Grace and P. Teale, Purification of the crude solution from Helix pomatia for use as betaglucuronidase and aryl sulfatase in phytoestrogen assays, J Chromatogr B Analyt Technol Biomed Life Sci, vol.832, issue.1, pp.158-61, 2006.

A. Leveques, L. Actis-goretta, M. J. Rein, G. Williamson, F. Dionisi et al., UPLCMS/MS quantification of total hesperetin and hesperetin enantiomers in biological matrices, J Pharm Biomed Anal, vol.57, pp.1-6, 2012.

S. H. Hakkinen and A. R. Torronen, Content of flavonols and selected phenolic acids in strawberries and Vaccinium species influence of cultivar, cultivation site and technique, Food Res. Int, vol.33, pp.517-524, 2000.

K. M. Goodrich and A. P. Neilson, Simultaneous UPLC-MS/MS analysis of native catechins and procyanidins and their microbial metabolites in intestinal contents and tissues of male Wistar Furth inbred rats, J Chromatogr B Analyt Technol Biomed Life Sci, vol.958, pp.63-74, 2014.

M. A. Nunez-sanchez, R. Garcia-villalba, T. Monedero-saiz, N. V. Garcia-talavera, M. B. Gomezsanchez et al., Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients, Mol Nutr Food Res, vol.58, issue.6, pp.1199-211, 2014.

P. B. Grace, J. I. Taylor, N. P. Botting, T. Fryatt, M. F. Oldfield et al., Quantification of isoflavones and lignans in serum using isotope dilution liquid chromatography/tandem mass spectrometry, Rapid Commun Mass Spectrom, vol.17, issue.12, pp.1350-1357, 2003.

B. K. Matuszewski, M. L. Constanzer, and C. M. Chavez-eng, Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS, Anal Chem, vol.75, pp.3019-3030, 2003.

A. Pastor, J. Rodriguez-morato, E. Olesti, M. Pujadas, C. Perez-mana et al., Analysis of free hydroxytyrosol in human plasma following the administration of olive oil, J Chromatogr A, pp.183-90, 1437.

N. P. Norskov and K. E. Knudsen, Validated LC-MS/MS Method for the Quantification of Free and Bound Lignans in Cereal-Based Diets and Feces, J Agric Food Chem, vol.64, issue.44, pp.8343-8351, 2016.

M. Muzzio, Z. Huang, S. C. Hu, W. D. Johnson, D. L. Mccormick et al., Determination of resveratrol and its sulfate and glucuronide metabolites in plasma by LC-MS/MS and their pharmacokinetics in dogs, J Pharm Biomed Anal, vol.59, pp.201-209, 2012.

C. L. Frankenfeld, R. E. Patterson, N. K. Horner, M. L. Neuhouser, H. E. Skor et al., Validation of a soy food-frequency questionnaire and evaluation of correlates of plasma isoflavone concentrations in postmenopausal women, Am J Clin Nutr, vol.77, pp.674-80, 2003.

A. Serra, A. Macia, M. P. Romero, J. Valls, C. Blade et al., Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models, Br J Nutr, issue.7, pp.944-52, 2010.

A. Sano, J. Yamakoshi, S. Tokutake, K. Tobe, Y. Kubota et al., Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract, Biosci Biotechnol Biochem, vol.67, issue.5, pp.1140-1143, 2003.

R. R. Holt, S. A. Lazarus, M. C. Sullards, Q. Y. Zhu, D. D. Schramm et al., Procyanidin dimer B2 [epicatechin-(4?-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa, Am J Clin Nutr, vol.76, pp.798-804, 2002.

S. Baba, N. Osakabe, M. Natsume, J. Terao, . Absorption et al., RATS. Free Radical Biology & Medicine, vol.33, pp.142-148, 2002.

J. Perez-jimenez, J. Hubert, L. Hooper, A. Cassidy, C. Manach et al., Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review, Am J Clin Nutr, vol.92, issue.4, pp.801-810, 2010.

M. Akhter, M. Inoue, N. Kurahashi, M. Iwasaki, S. Sasazuki et al., Dietary soy and isoflavone intake and risk of colorectal cancer in the Japan public health center-based prospective study, Cancer Epidemiol Biomarkers Prev, vol.17, issue.8, pp.2128-2163, 2008.

B. Schleipen, T. Hertrampf, K. H. Fritzemeier, F. M. Kluxen, A. Lorenz et al., ERbeta-specific agonists and genistein inhibit proliferation and induce apoptosis in the large and small intestine, Carcinogenesis, vol.32, issue.11, pp.1675-83, 2011.

K. D. Setchell, N. M. Brown, and E. Lydeking-olsen, The Clinical Importance of the Metabolite Equol-A Clue to the Effectiveness of Soy and Its Isoflavone, J. Nutr, vol.132, pp.3577-3584, 2002.

M. A. Hullar, A. N. Burnett-hartman, and J. W. Lampe, Gut microbes, diet, and cancer, Cancer Treat Res, vol.159, pp.377-99, 2014.

C. Kasai, K. Sugimoto, I. Moritani, J. Tanaka, Y. Oya et al., Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: Terminal restriction fragment length polymorphism and nextgeneration sequencing analyses, Oncology Reports, vol.35, issue.1, pp.325-333, 2016.

S. Okuda, T. Yamada, M. Hamajima, M. Itoh, T. Katayama et al., KEGG Atlas mapping for global analysis of metabolic pathways, Nucleic Acids Research, vol.36, pp.423-426, 2008.

D. S. Goldstein, G. Eisenhofer, and I. J. Kopin, Sources and significance of plasma levels of catechols and their metabolites in humans, J Pharmacol Exp Ther, vol.305, issue.3, pp.800-811, 2003.

E. Combet, M. E. Lean, J. G. Boyle, A. Crozier, and D. F. Davidson, Dietary flavonols contribute to false-positive elevation of homovanillic acid, a marker of catecholamine-secreting tumors, Clin Chim Acta, vol.412, issue.1-2, pp.165-174, 2011.

L. Biasutto, E. Marotta, S. Garbisa, M. Zoratti, and C. Paradisi, Determination of quercetin and resveratrol in whole blood-implications for bioavailability studies, Molecules, vol.15, issue.9, pp.6570-6579, 2010.

M. Fiorani and A. Accorsi, Dietary flavonoids as intracellular substrates for an erythrocyte trans-plasma membrane oxidoreductase activity, British Journal of Nutrition, vol.94, issue.03, p.338, 2007.

M. Fiorani, A. Accorsi, and O. Cantoni, Human Red Blood Cells as A Natural Flavonoid Reservoir, Free Radical Research, vol.37, issue.12, pp.1331-1338, 2009.

M. Fiorani, A. Guidarelli, M. Blasa, C. Azzolini, M. Candiracci et al., Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid, J Nutr Biochem, vol.21, issue.5, pp.397-404, 2010.

F. Perez-vizcaino, J. Duarte, and C. Santos-buelga, The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids, J Sci Food Agric, vol.2012, issue.9, pp.1822-1827

R. Bartholome, G. R. Haenen, P. C. Hollman, A. Bast, P. C. Dagniele et al., Deconjugation Kinetics of Glucuronidated Phase II Flavonoid Metabolites by b-glucuronidase from Neutrophils, Drug Metab. Pharmacokinet, vol.25, pp.379-387, 2010.