Nonlinéarités optiques du second ordre dans le silicium

Résumé : L’explosion de la demande en données a imposé de nouvelles exigences en terme de débit de transmission qui sont de plus en difficiles à satisfaire sans accroître considérablement les consommations énergétiques dans les centres de données, points névralgiques des réseaux de télécommunications. Dans ce contexte, la photonique silicium est considérée comme la solution la plus adaptée pour répondre de ces problématiques en remplaçant les interconnexions métalliques par des liaisons optiques à base de silicium. Le modulateur électro-optique constitue l’un des composants clés de ces liaisons optiques. Cependant, la centrosymétrie du silicium empêche l’exploitation de l’effet Pockels, un phénomène d’optique non linéaire très efficace dans la conception de modulateurs à très grande bande passante et à faible consommation énergétique. Cette limitation peut être néanmoins contournée lorsque des contraintes mécaniques sont appliquées au silicium de façon à briser sa symétrie d’inversion. Plusieurs travaux théoriques et expérimentaux ont alors été entrepris récemment pour mettre en évidence et quantifier l’effet Pockels induit par contraintes dans le silicium. Mais la nature semi-conductrice du silicium rend l’analyse de l’effet Pockels profondément complexe et cela a soulevé une controverse quant à sa réelle existence dans le silicium contraint. En effet, l’influence des porteurs libres dans le silicium et aux interfaces engendrent un fort signal de modulation, noyant la signature de l’effet Pockels. Pour enrayer les effets de porteurs, la solution apportée par le travail de thèse a été d’étudier le signal de modulation à hautes fréquences (> 5 GHz). Plusieurs études hyperfréquences de l’effet Pockels ont donc été menées dans des structures photoniques en silicium contraint et seront présentées dans ce manuscrit de thèse. Les premières études ont été réalisées sur une plate-forme SOI et les résultats expérimentaux ont permis de mettre en évidence la présence d’un signal de modulation électro-optique à hautes fréquences et dont l’intensité dépend clairement de l’orientation cristallographique du silicium et de l’amplitude de la contrainte appliquée sur celui-ci. Sur la base d’un modèle théorique décrivant le tenseur de susceptibilité électrique du second ordre χ(²), un modèle multiphysique a été développé et a permis de décrire de manière très précise à la fois les résultats expérimentaux et la distribution spatiale du χ(²) dans des guides d’onde silicium contraints. Ces travaux ont également permis de montrer que les faibles intensités des champs électriques appliqués dans les guides d’onde silicium, dues à la distribution des porteurs, sont en grande partie responsable de la faible efficacité de modulation par effet Pockels. Une seconde étude a donc été menée sur une plate-forme SOI modifiée et permettant la conception de circuits électriques plus performants avec des champs électriques générés plus intenses. Les résultats expérimentaux obtenus montrent une amélioration d’un facteur 20 de l’efficacité de modulation par effet Pockels en comparaison des premières études. De plus, le modèle multiphysique a de nouveau permis de décrire ces résultats, renforçant donc davantage sa validité. L’ensemble de ces travaux ouvrent notamment comme perspectives la possibilité d’obtenir un diagramme de l’œil électro-optique dans la mesure où une contrainte plus importante est appliquée aux guides d’onde silicium. De plus, le modèle décrivant le tenseur de susceptibilité électrique du second ordre χ(²) peut également être exploité pour décrire le phénomène de génération de seconde harmonique en optique guidée dont l’existence reste encore ambiguë à l’heure actuelle.
Type de document :
Thèse
Optique [physics.optics]. Université Paris-Saclay, 2018. Français. 〈NNT : 2018SACLS565〉
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-01978099
Contributeur : Abes Star <>
Soumis le : vendredi 11 janvier 2019 - 12:04:39
Dernière modification le : dimanche 13 janvier 2019 - 01:10:34

Fichier

74970_BERCIANO_2018_archivage....
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01978099, version 1

Collections

Citation

Mathias Berciano. Nonlinéarités optiques du second ordre dans le silicium. Optique [physics.optics]. Université Paris-Saclay, 2018. Français. 〈NNT : 2018SACLS565〉. 〈tel-01978099〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

29