P. D. Adams, R. W. Grosse-kunstleve, L. W. Hung, T. R. Ioerger, A. J. Mccoy et al., PHENIX: building new software for automated crystallographic structure determination, Acta Crystallogr. D Biol. Crystallogr, vol.58, pp.1948-1954, 2002.

C. Aicart-ramos, R. A. Valero, and I. Rodriguez-crespo, Protein palmitoylation and subcellular trafficking, Biochim. Biophys. Acta, vol.1808, pp.2981-2994, 2011.

J. R. Aires, T. Kohler, H. Nikaido, P. , and P. , Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides, Antimicrob. Agents Chemother, vol.43, pp.2624-2628, 1999.

H. Akama, M. Kanemaki, M. Yoshimura, T. Tsukihara, T. Kashiwagi et al., Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end, J. Biol. Chem, vol.279, pp.52816-52819, 2004.

V. N. Bavro, Z. Pietras, N. Furnham, L. Perez-cano, J. Fernandez-recio et al., Assembly and channel opening in a bacterial drug efflux machine, Mol. Cell, vol.30, pp.114-121, 2008.

Y. Bayram, M. Parlak, C. Aypak, and I. Bayram, Three-year review of bacteriological profile and antibiogram of burn wound isolates in Van, Turkey, Int. J. Med. Sci, vol.10, pp.19-23, 2013.

P. Beltrao, P. Bork, N. J. Krogan, and V. Van-noort, Evolution and functional cross-talk of protein post-translational modifications, Mol. Syst. Biol, vol.9, p.714, 2013.

W. Bereket, K. Hemalatha, B. Getenet, T. Wondwossen, A. Solomon et al., Update on bacterial nosocomial infections, Eur. Rev. Med. Pharmacol. Sci, vol.16, pp.1039-1044, 2012.

L. F. Bernal-perez, L. Prokai, and Y. Ryu, Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan: a method to distinguish protein N-terminal acetylation, Anal. Biochem, vol.428, pp.13-15, 2012.

V. Cattoir, , 2004.

, The CCP4 suite: programs for protein crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.52, pp.760-763, 1994.

J. M. Chalker, G. J. Bernardes, Y. A. Lin, D. , and B. G. , Chemical modification of proteins at cysteine: opportunities in chemistry and biology, Chem. Asian J, vol.4, pp.630-640, 2009.

R. Chuanchuen, C. T. Narasaki, and H. P. Schweizer, The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan, J. Bacteriol, vol.184, pp.5036-5044, 2002.

I. W. Davis, A. Leaver-fay, V. B. Chen, J. N. Block, G. J. Kapral et al., MolProbity: all-atom contacts and structure validation for proteins and nucleic acids, Nucleic Acids Res, vol.35, pp.375-383, 2007.

W. L. Delano, The PyMOL Molecular Graphics System, 2002.

P. Emsley, C. , and K. , Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

L. Federici, D. Du, F. Walas, H. Matsumura, J. Fernandez-recio et al., The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 A resolution, J. Biol. Chem, vol.280, pp.15307-15314, 2005.

Y. Ferrandez, L. Monlezun, G. Phan, H. Benabdelhak, P. Benas et al., Stoichiometry of the MexA-OprM binding, as investigated by blue native gel electrophoresis, Electrophoresis, vol.33, pp.1282-1287, 2012.

M. A. Fischbach, W. , and C. T. , Antibiotics for emerging pathogens, Science, vol.325, pp.1089-1093, 2009.

P. B. Ghosh and M. W. Whitehouse, 7-chloro-4-nitrobenzo-2-oxa-1,3diazole: a new fluorigenic reagent for amino acids and other amines, Biochem. J, vol.108, pp.155-156, 1968.

K. Hede, Antibiotic resistance: an infectious arms race, Nature, vol.509, 2014.

W. Kabsch, Automatic porocessing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, J. Appl. Crystallogr, vol.26, pp.795-800, 1993.

V. Koronakis, A. Sharff, E. Koronakis, B. Luisi, and C. Hughes, Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export, Nature, vol.405, pp.914-919, 2000.

A. Kovacs-simon, R. W. Titball, M. , and S. L. , Lipoproteins of bacterial pathogens, Infect. Immun, vol.79, pp.548-561, 2011.

R. Kulathila, M. Indic, . Van-den, and B. Berg, Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump, PLoS ONE, vol.6, 2011.

H. T. Lei, J. R. Bolla, N. R. Bishop, C. C. Su, Y. et al., Crystal structures of CusC review conformational changes accompanying Frontiers in Microbiology | www.frontiersin.org 9, vol.6, p.667, 2014.

, folding and transmembrane channel formation, J. Mol. Biol, vol.426, pp.403-411

H. T. Lei, T. H. Chou, C. C. Su, J. R. Bolla, N. Kumar et al., Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel, PLoS ONE, vol.9, p.97475, 2014.

X. Z. Li and H. Nikaido, Efflux-mediated drug resistance in bacteria: an update, Drugs, vol.69, pp.1555-1623, 2009.

X. Z. Li and K. Poole, Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa, J. Bacteriol, vol.183, pp.12-27, 2001.

M. E. Linder and R. J. Deschenes, Palmitoylation: policing protein stability and traffic, Nat. Rev. Mol. Cell Biol, vol.8, pp.74-84, 2007.

L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, I. Engels et al., A new antibiotic kills pathogens without detectable resistance, Nature, vol.517, pp.455-459, 2015.

P. D. Lister, D. J. Wolter, H. , and N. D. , Antibacterialresistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clin. Microbiol. Rev, vol.22, pp.582-610, 2009.

V. R. Matias, A. Al-amoudi, J. Dubochet, and T. J. Beveridge, , 2003.

, Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa, J. Bacteriol, vol.185, pp.6112-6118

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

S. O. Meroueh, K. Z. Bencze, D. Hesek, M. Lee, J. F. Fisher et al., Three-dimensional structure of the bacterial cell wall peptidoglycan, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.4404-4409, 2006.

T. Mima, H. Sekiya, T. Mizushima, T. Kuroda, and T. Tsuchiya, Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa, Microbiol. Immunol, vol.49, pp.999-1002, 2005.

B. Miroux and J. E. Walker, Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels, J. Mol. Biol, vol.260, pp.289-298, 1996.

K. Mitra, I. Ubarretxena-belandia, T. Taguchi, G. Warren, and D. M. Engelman, Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.4083-4088, 2004.

Y. Morita, J. Tomida, and Y. Kawamura, MexXY multidrug efflux system of Pseudomonas aeruginosa, Front. Microbiol, vol.3, p.408, 2012.

A. Nakajima, Y. Sugimoto, H. Yoneyama, N. , and T. , Localization of the outer membrane subunit OprM of resistance-nodulation-cell division family multicomponent efflux pump in Pseudomonas aeruginosa, J. Biol. Chem, vol.275, pp.30064-30068, 2000.

A. Nakajima, Y. Sugimoto, H. Yoneyama, N. , and T. , High-level fluoroquinolone resistance in Pseudomonas aeruginosa due to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation, Microbiol. Immunol, vol.46, pp.391-395, 2002.

H. Nakayama, K. Kurokawa, and B. L. Lee, Lipoproteins in bacteria: structures and biosynthetic pathways, FEBS J, vol.279, pp.4247-4268, 2012.

H. Nikaido, Multidrug resistance in bacteria, Annu. Rev. Biochem, vol.78, pp.119-146, 2009.

H. Nikaido and J. M. Pages, Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria, FEMS Microbiol. Rev, vol.36, pp.340-363, 2012.

J. Olivares, A. Bernardini, G. Garcia-leon, F. Corona, B. M. Sanchez et al., The intrinsic resistome of bacterial pathogens, Front. Microbiol, vol.4, p.103, 2013.

G. Phan, H. Benabdelhak, M. B. Lascombe, P. Benas, S. Rety et al., Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel, Structure, vol.18, pp.507-517, 2010.

K. Poole, Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins, Clin. Microbiol. Infect, vol.10, pp.1-16, 1999.

X. Robert, G. , and P. , Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res, vol.42, pp.320-324, 2014.

H. P. Schweizer, Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions, Genet. Mol. Res, vol.2, pp.48-62, 2003.

C. C. Su, A. Radhakrishnan, N. Kumar, F. Long, J. R. Bolla et al., Crystal structure of the Campylobacter jejuni CmeC outer membrane channel, Protein Sci, vol.23, pp.954-961, 2014.

J. G. Tooley, S. Tooley, and C. E. , New roles for old modifications: emerging roles of N-terminal post-translational modifications in development and disease, Protein Sci, vol.23, pp.1641-1649, 2014.

L. Urzhumtseva, P. V. Afonine, P. D. Adams, and A. Urzhumtsev, Crystallographic model quality at a glance, Acta Crystallogr. D Biol. Crystallogr, vol.65, pp.297-300, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00442902

C. Walsh, Where will new antibiotics come from?, Nat. Rev. Microbiol, vol.1, pp.65-70, 2003.

M. R. Yen, C. R. Peabody, S. M. Partovi, Y. Zhai, Y. H. Tseng et al., Protein-translocating outer membrane porins of Gramnegative bacteria, Biochim. Biophys. Acta, vol.1562, pp.359-359, 2002.

H. References-akama, T. Matsuura, S. Kashiwagi, H. Yoneyama, S. Narita et al., Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa, J. Biol. Chem, vol.279, pp.25939-25942, 2004.

V. N. Bavro, Z. Pietras, N. Furnham, L. Pérez-cano, J. Fernández-recio et al., Assembly and channel opening in a bacterial drug efflux machine, Mol. Cell, vol.30, pp.114-121, 2008.

D. Du, Z. Wang, N. R. James, J. E. Voss, E. Klimont et al., Structure of the AcrAB-TolC multidrug efflux pump, Nature, vol.509, pp.512-515, 2014.

Y. Ferrandez, L. Monlezun, G. Phan, H. Benabdelhak, P. Benas et al., Stoichiometry of the MexA-OprM binding, as investigated by blue native gel electrophoresis, Electrophoresis, vol.33, pp.1282-1287, 2012.

L. Guan, N. , and T. , Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonas aeruginosa, J. Bacteriol, vol.183, pp.1734-1739, 2001.

P. Hinchliffe, M. F. Symmons, C. Hughes, and V. Koronakis, Structure and operation of bacterial tripartite pumps, Annu. Rev. Microbiol, vol.67, pp.221-242, 2013.

T. K. Janganan, V. N. Bavro, L. Zhang, M. I. Borges-walmsley, and A. R. Walmsley, Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump, Mol. Microbiol, vol.88, pp.590-602, 2013.

J. Kim, H. Jeong, S. Song, H. Kim, K. Lee et al., Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode, Mol. Cells, vol.38, pp.180-186, 2015.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

X. Z. Li, L. Zhang, and K. Poole, Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance, J. Bacteriol, vol.180, pp.2987-2991, 1998.

O. Lomovskaya, H. I. Zgurskaya, M. Totrov, and W. J. Watkins, Waltzing transporters and "the dance macabre" between humans and bacteria, Nat. Rev. Drug Discov, vol.6, pp.56-65, 2006.

V. Mokhonov, E. Mokhonova, E. Yoshihara, R. Masui, M. Sakai et al., Multidrug transporter MexB of Pseudomonas aeruginosa: overexpression, purification, and initial structural characterization, vol.40, pp.91-100, 2005.

D. Nehme and K. Poole, Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study Frontiers in Microbiology | www, J. Bacteriol, vol.6, pp.6118-6127, 2007.

H. Nikaido, Multidrug resistance in bacteria, Annu. Rev. Biochem, vol.78, pp.119-146, 2009.

J. M. Pages and L. Amaral, Mechanism of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria, Biochim. Biophys. Acta, vol.1794, pp.826-833, 2009.

G. Phan, H. Benabdelhak, M. Lascombe, P. Benas, S. Rety et al., Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM Channel, Structure, vol.18, pp.507-517, 2010.

L. Ponchon, M. Catala, B. Seijo, M. El-khouri, F. Dardel et al., Co-expression of RNA-protein complexes in Escherichia coli and applications to RNA biology, Nucleic Acids Res, vol.41, 2013.

C. C. Su, M. Li, R. Gu, Y. Takatsuka, G. Mcdermott et al., Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway, J. Bacteriol, vol.188, pp.7290-7296, 2006.

M. F. Symmons, E. Bokma, E. Koronakis, C. Hughes, and V. Koronakis, The assembled structure of a complete tripartite bacterial multidrug efflux pump, Proc. Natl. Acad. Sci, vol.106, pp.7173-7178, 2009.

Y. Takatsuka and H. Nikaido, Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network, J. Bacteriol, vol.188, pp.7284-7289, 2006.

N. Tamura, S. Murakami, Y. Oyama, M. Ishiguro, Y. et al., Direct interaction of multidrug efflux transporter acrb and outer membrane channel tolc detected via site-directed disulfide cross-linking ?, Biochemistry, vol.44, pp.11115-11121, 2005.
DOI : 10.1021/bi050452u

D. G. Thanassi, L. W. Cheng, and H. Nikaido, Active efflux of bile salts by Esherichia coli, J. Bacteriol, vol.179, pp.2512-2518, 1997.
DOI : 10.1128/jb.179.8.2512-2518.1997

URL : https://jb.asm.org/content/179/8/2512.full.pdf

E. B. Tikhonova, Y. Yamada, and H. I. Zgruskaya, Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC, Chem. Biol, vol.18, pp.454-463, 2011.

E. B. Tikhonova and H. I. Zgurskaya, AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex, J. Biol. Chem, vol.279, pp.32116-32124, 2004.
DOI : 10.1074/jbc.m402230200

URL : http://www.jbc.org/content/279/31/32116.full.pdf

T. Touzé, J. Eswaran, E. Bokma, E. Koronakis, C. Hughes et al., Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system, Mol. Microbiol, vol.53, pp.697-706, 2004.

S. Trépout, J. C. Taveau, H. Benabdelhak, T. Granier, A. Ducruix et al., Structure of reconstituted bacterial membrane efflux pump by cryo-electron tomography, Biochim. Biophys. Acta, vol.1798, pp.1953-1960, 2010.

A. Verchère, M. Dezi, V. Adrien, I. Broutin, and M. Picard, In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa, Nat. Commu, vol.6, p.6890, 2015.

J. W. Weeks, T. Celaya-kolb, S. Pecora, and R. Misra, AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening, Mol. Microb, vol.75, pp.1468-1483, 2010.

H. I. Zgurskaya and H. Nikaido, Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.7190-7195, 1999.

, Conflict of Interest Statement: The authors declare that the research was con

©. Copyright, . Enguéné, . Verchère, . Phan, and P. Broutin, This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, 2015.

P. D. Lister, D. J. Wolter, and N. D. Hanson, Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clin Microbiol Rev, vol.22, pp.582-610, 2009.

L. D. Sabath, M. Jago, and E. P. Abraham, Cephalosporinase and penicillinase activities of a-lactamase from Pseudomonas pyocyanea, Biochem J, vol.96, pp.739-752, 1965.

N. Masuda, N. Gotoh, C. Ishii, E. Sakagawa, S. Ohya et al., Interplay between chromosomal-lactamase and the MexAB-OprM efflux system in intrinsic resistance to-lactams in Pseudomonas aeruginosa, Antimicrob Agents Chemother, vol.43, pp.400-402, 1999.

D. M. Livermore, R. J. Williams, M. A. Lindridge, R. C. Slack, and J. D. Williams, Pseudomonas aeruginosa isolates with modified beta-lactamase inducibility: effects on beta-lactam sensitivity, Lancet, pp.1466-1467, 1982.

J. Fung-tomc, T. J. Dougherty, F. J. Deorio, V. Simich-jacobson, and R. E. Kessler, Activity of cefepime against ceftazidime-and cefotaximeresistant Gram-negative bacteria and its relationship to beta-lactamase levels, Antimicrob Agents Chemother, vol.33, pp.498-502, 1989.

B. Moya, A. Dötsch, C. Juan, J. Blazquez, L. Zamorano et al., Lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein, PLoS Pathog, vol.5, 2009.

G. Cabot, A. A. Ocampo-sosa, M. A. Dominguez, J. F. Gago, C. Juan et al., Spanish Network for Research in Infectious Diseases (REIPI). 2012. Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones, Antimicrob Agents Chemother, vol.56, pp.6349-6357

M. Castanheira, J. C. Mills, D. J. Farrell, and R. N. Jones, Mutation-driven-lactam resistance mechanisms among contemporary ceftazidimenonsusceptible, Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother, vol.58, pp.3681-3695, 2014.

B. Henrichfreise, I. Wiegand, W. Pfister, and B. Wiedemann, Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation, Antimicrob Agents Chemother, vol.51, pp.4062-4070, 2007.

G. Cabot, A. A. Ocampo-sosa, F. Tubau, M. D. Macia, C. Rodriguez et al., Spanish Network for Research in Infectious Diseases (REIPI). 2011. Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study, Antimicrob Agents Chemother, vol.55, pp.1906-1911

D. Hocquet, P. Berthelot, M. Roussel-delvallez, R. Favre, K. Jeannot et al., Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections, Antimicrob Agents Chemother, vol.51, pp.3531-3536, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00464781

B. Moya, L. Zamorano, C. Juan, J. L. Perez, Y. Ge et al., Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients, Antimicrob Agents Chemother, vol.54, pp.1213-1217, 2010.

S. Mushtaq, M. Warner, and D. M. Livermore, In vitro activity of ceftazidimeNXL104 against Pseudomonas aeruginosa and other nonfermenters, J Antimicrob Chemother, vol.65, pp.2376-2381, 2010.

G. A. Jacoby, AmpC-lactamases, Clin Microbiol Rev, vol.22, pp.161-182, 2009.

S. D. Lahiri, M. R. Johnstone, P. L. Ross, R. E. Mclaughlin, N. B. Olivier et al., Avibactam and class C-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance, Antimicrob Agents Chemother, vol.58, pp.5704-5713, 2014.

/. Aac, , pp.3057-3071

B. W. Holloway, Genetic recombination in Pseudomonas aeruginosa, J Gen Microbiol, vol.13, pp.572-581, 1955.

L. G. Rahme, E. J. Stevens, S. F. Wolfort, J. Shao, R. G. Tomkins et al., Common virulence factors for bacterial pathogenicity in plants and animals, Science, vol.268, pp.1899-1902, 1995.

L. E. Bryan, S. Kwan, and A. J. Godfrey, Resistance of Pseudomonas aeruginosa mutants with altered control of chromosomal-lactamase to piperacillin, ceftazidime, and cefsulodin, Antimicrob Agents Chemother, vol.25, pp.382-384, 1984.

C. Richardot, P. Plésiat, D. Fournier, L. Monlezun, I. Broutin et al., Carbapenem resistance in cystic fibrosis strains of Pseudomonas aeruginosa as a result of amino acid substitutions in porin OprD, Int J Antimicrob Agents, vol.45, pp.529-532, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01695313

S. E. West, H. P. Schweizer, C. Dall, A. K. Sample, and R. Lj, Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa, Gene, vol.148, issue.94, pp.90237-90239, 1994.

C. , Performance standards for antimicrobial susceptibility testing; 24th informational supplement. M100-S24, 2014.

B. Curran, J. D. Grundmann, H. Pitt, T. Dowson, and C. G. , Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa, J Clin Microbiol, vol.42, pp.5644-5649, 2004.

G. Cabot, S. Bruchmann, X. Mulet, L. Zamorano, B. Moya et al., Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC, Antimicrob Agents Chemother, vol.58, pp.3091-3099, 2014.

J. Dumas, C. Perron, K. Köhler, and T. , Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR, FEMS Microbiol Lett, vol.254, pp.217-225, 2006.

J. Jo, F. Brinkman, and R. Hancock, Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins, Antimicrob Agents Chemother, vol.47, pp.1101-1111, 2003.

J. M. Rodriguez-martinez, L. Poirel, and P. Nordmann, Extended-spectrum cephalosporinases in Pseudomonas aeruginosa, Antimicrob Agents Chemother, vol.53, pp.1766-1771, 2009.

V. H. Tam, A. N. Schilling, M. T. Larocco, L. O. Gentry, K. Lolans et al., Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa, Clin Microbiol Infect, vol.13, pp.413-418, 2007.

L. Zamorano, B. Moya, J. C. Oliver, and A. , Differential-lactam resistance response driven by ampD or dacB (PBP4) inactivation in genetically diverse Pseudomonas aeruginosa strains, J Antimicrob Chemother, vol.65, pp.1540-1542, 2010.

J. M. Rodriguez-martinez, L. Poirel, and P. Nordmann, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa, Antimicrob Agents Chemother, vol.53, pp.4783-4788, 2009.

S. Dahyot, I. Broutin, C. De-champs, H. Guillon, and H. Mammeri, Contribution of asparagine 346 residue to the carbapenemase activity of CMY-2, FEMS Microbiol Lett, vol.345, pp.147-153, 2013.

D. M. Livermore, S. Mushtaq, K. Barker, R. Hope, M. Warner et al., Characterization of beta-lactamase and porin mutants of Enterobacteriaceae selected with ceftaroline avibactam (NXL104), J Antimicrob Chemother, vol.67, pp.1354-1358, 2012.

S. M. Drawz, M. Taracila, E. Caselli, F. Prati, and R. A. Bonomo, Exploring sequence requirements for C3/C4 carboxylate recognition in the Pseudomonas aeruginosa cephalosporinase: insights into plasticity of the AmpC-lactamase, Protein Sci, vol.20, pp.941-958, 2011.

N. Woodford, J. F. Turton, and D. M. Livermore, Multiresistant Gramnegative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance, FEMS Microbiol Rev, vol.35, pp.736-755, 2011.

A. Fernandez-olmos, M. Garcia-castillo, J. M. Alba, M. I. Morosini, A. Lamas et al., Population structure and antimicrobial susceptibility of both nonpersistent and persistent Pseudomonas aeruginosa isolates recovered from cystic fibrosis patients, J Clin Microbiol, vol.51, pp.802-815, 2013.

M. Garcia-castillo, L. Maiz, M. I. Morosini, M. Rodriguez-banos, L. Suarez et al., Emergence of a mutL mutation causing multilocus sequence typing-pulsedfield gel electrophoresis discrepancy among Pseudomonas aeruginosa isolates from a cystic fibrosis patient, J Clin Microbiol, vol.50, pp.1777-1778, 2012.

A. E. Warren, C. M. Boulianne-larsen, C. B. Chandler, K. Chiotti, E. Kroll et al., Genotypic and phenotypic variation in Pseudomonas aeruginosa reveals signatures of secondary infection and mutator activity in certain cystic fibrosis patients with chronic lung infections, Infect Immun, vol.79, pp.4802-4818, 2011.

A. Oliver and A. Mena, Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance, Clin Microbiol Infect, vol.16, pp.798-808, 2010.

L. Crémet, N. Caroff, C. Giraudeau, A. Reynaud, J. Caillon et al., Detection of clonally related Escherichia coli isolates producing different CMY-lactamases from a cystic fibrosis patient, J Antimicrob Chemother, vol.68, pp.1032-1035, 2013.

A. Oliver, R. Canton, P. Campo, F. Baquero, and J. Blazquez, High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection, Science, vol.288, pp.1251-1254, 2000.

G. G. Zhanel, P. Chung, H. Adam, S. Zelenitsky, A. Denisuik et al., Ceftolozane/tazobactam: a novel cephalosporin/ beta-lactamase inhibitor combination with activity against multidrugresistant Gram-negative bacilli, Drugs, vol.74, pp.31-51, 2014.

T. A. Blizzard, H. Chen, S. Kim, J. Wu, K. Young et al., Side chain SAR of bicyclic beta-lactamase inhibitors (BLIs). 1. Discovery of a class C BLI for combination with imipinem, Bioorg Med Chem Lett, vol.20, pp.918-921, 2010.

P. Esacs, , vol.59, p.6255, 2015.

, Antimicrobial Agents and Chemotherapy

J. R. Aires, T. Köhler, H. Nikaido, and P. Plésiat, Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides, Antimicrobial Agents and Chemotherapy, vol.43, issue.11, pp.2624-2628, 1999.

J. R. Aires, J. C. Pechère, C. Van-delden, and T. Köhler, Amino acid residues essential for function of the MexF efflux pump protein of Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.46, issue.7, pp.2169-2173, 2002.

H. Akama, M. Kanemaki, M. Yoshimura, T. Tsukihara, T. Kashiwagi et al., Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: Dual modes of membrane anchoring and occluded cavity end, Journal of Biological Chemistry, vol.279, issue.51, pp.52816-52819, 2004.

H. Akama, T. Matsuura, S. Kashiwagi, H. Yoneyama, S. I. Narita et al., Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa, Journal of Biological Chemistry, vol.279, issue.25, pp.25939-25942, 2004.

K. J. Aldred, R. J. Kerns, and N. Osheroff, Mechanism of quinolone action and resistance, Biochemistry, vol.53, issue.10, pp.1565-1574, 2014.

C. Andersen, E. Koronakis, E. Bokma, J. Eswaran, D. Humphreys et al., Transition to the open state of the TolC periplasmic tunnel entrance, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.11103-11108, 2002.

J. Anes, M. P. Mccusker, S. Fanning, and M. Martins, The ins and outs of RND efflux pumps in Escherichia coli, Frontiers in Microbiology, vol.6, p.587, 2015.

I. Arechaga, B. Miroux, S. Karrasch, R. Huijbregts, B. De-kruijff et al., Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1F(o) ATP synthase, FEBS Letters, vol.482, issue.3, pp.215-219, 2000.

T. Arimoto and T. Igarashi, Role of prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein-specific signal peptidase II (LspA) in localization and physiological function of lipoprotein MsmE in Streptococcus mutans, Oral Microbiology and Immunology, vol.23, issue.6, pp.515-519, 2008.

A. Aubry, N. Veziris, E. Cambau, C. Truffot-pernot, V. Jarlier et al., Novel gyrase mutations in quinolone-resistant and-hypersusceptible clinical isolates of Mycobacterium tuberculosis: Functional analysis of mutant enzymes, Antimicrobial Agents and Chemotherapy, vol.50, issue.1, pp.104-112, 2006.

J. Bai, R. Bhagavathi, P. Tran, K. Muzzarelli, D. Wang et al., Evidence that the Cterminal region is involved in the stability and functionality of, OprM in E. coli. Microbiological Research, vol.169, issue.5-6, pp.425-431, 2014.

J. Bai, L. Mosley, and J. A. Fralick, Evidence that the C-terminus of OprM is involved in the assembly of the VceAB-OprM efflux pump, FEBS Letters, vol.584, issue.8, pp.1493-1497, 2010.

E. Z. Baum, S. M. Crespo-carbone, B. J. Morrow, T. A. Davies, B. D. Foleno et al., Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.53, issue.7, pp.2785-2790, 2009.

M. Baumgärtner, U. Kärst, B. Gerstel, M. Loessner, J. Wehland et al., Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes, Journal of Bacteriology, vol.189, issue.2, pp.313-324, 2007.

V. N. Bavro, Z. Pietras, N. Furnham, L. Pérez-cano, J. Fernandez-recio et al., Assembly and Channel Opening in a Bacterial Drug Efflux Machine, Molecular Cell, vol.30, issue.1, pp.114-121, 2008.

V. N. Bavro, Z. Pietras, N. Furnham, L. Pérez-cano, J. Fernández-recio et al., Assembly and Channel Opening in a Bacterial Drug Efflux Machine, Molecular Cell, vol.30, issue.1, pp.114-121, 2008.

M. Berrazeg, K. Jeannot, V. Y. Ntsogo-enguéné, I. Broutin, S. Loeffert et al., Mutations in beta-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins, Antimicrobial Agents and Chemotherapy, vol.59, issue.10, pp.6248-6255, 2015.

J. M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, and L. V. Piddock, Molecular mechanisms of antibiotic resistance, Nature Reviews Microbiology, vol.42, issue.13, pp.42-51, 2015.

C. Blumer, S. Heeb, G. Pessi, and D. Haas, Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites, Proceedings of the National Academy of Sciences of the United States of America, vol.96, issue.24, pp.14073-14078, 1999.

E. Bokma, E. Koronakis, S. Lobedanz, C. Hughes, and V. Koronakis, Directed evolution of a bacterial efflux pump: Adaptation of the E. coli TolC exit duct to the Pseudomonas MexAB translocase, FEBS Letters, vol.580, issue.22, pp.5339-5343, 2006.

J. R. Bolla, C. Su, S. V. Do, A. Radhakrishnan, N. Kumar et al., Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump, PloS One, vol.9, issue.6, p.97903, 2014.

R. A. Bonomo and D. Szabo, Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa, Clin.Infect.Dis, vol.43, issue.2, pp.49-56, 2006.

D. G. Brown, T. L. May-dracka, M. M. Gagnon, and R. Tommasi, Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens, Journal of Medicinal Chemistry, vol.57, issue.23, pp.10144-10161, 2014.

I. Bunikis, K. Denker, Y. Östberg, C. Andersen, R. Benz et al., An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds, PLoS Pathogens, issue.2, p.4, 2008.

K. Bush and J. F. Fisher, Epidemiological Expansion, Structural Studies, and Clinical Challenges of New ?-Lactamases from Gram-Negative Bacteria, Annual Review of Microbiology, 2011.

J. M. Buyck, P. Plésiat, H. Traore, F. Vanderbist, P. M. Tulkens et al., Increased Susceptibility of Pseudomonas aeruginosa to macrolides and ketolides in eukaryotic cell culture media and biological fluids due to decreased expression of oprM and increased outer-membrane permeability, Clinical Infectious Diseases, vol.55, issue.4, pp.534-542, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01695413

G. Cabot, L. Zamorano, B. Moyà, C. Juan, A. Navas et al., Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation supply rates, Antimicrobial Agents and Chemotherapy, vol.60, 2016.

L. Cao, R. Srikumar, and K. Poole, MexAB-OprM hyperexpression in NalC-type multidrugresistant Pseudomonas aeruginosa: Identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719, Molecular Microbiology, vol.53, issue.5, pp.1423-1436, 2004.

M. Castanheira, J. C. Mills, D. J. Farrell, and R. N. Jones, Mutation-Driven ?-Lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible pseudomonas aeruginosa isolates from U.S. hospitals, Antimicrobial Agents and Chemotherapy, vol.58, issue.11, 2014.
DOI : 10.1128/aac.03681-14

URL : https://aac.asm.org/content/58/11/6844.full.pdf

P. Chahales and D. G. Thanassi, A more flexible lipoprotein sorting pathway, Journal of Bacteriology, vol.197, issue.10, pp.1702-1704, 2015.
DOI : 10.1128/jb.00051-15

URL : https://jb.asm.org/content/197/10/1702.full.pdf

J. D. Chambless, S. M. Hunt, and P. S. Stewart, A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials, Applied and Environmental Microbiology, vol.72, issue.3, pp.2005-2013, 2005.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: All-atom structure validation for macromolecular crystallography, Acta Crystallographica Section D: Biological Crystallography, vol.66, issue.1, pp.12-21, 2010.
DOI : 10.1107/97809553602060000884

R. Chuanchuen, T. Murata, N. Gotoh, and H. P. Schweizer, Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump, Antimicrobial Agents and Chemotherapy, vol.49, issue.5, pp.2133-2136, 2005.

P. Courvalint and M. Arthura, MINIREVIEW Genetics and Mechanisms of Glycopeptide Resistance in Enterococci, vol.37, pp.1563-1571, 1993.

G. Cox and G. D. Wright, Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions, International Journal of Medical Microbiology, vol.303, issue.6-7, pp.287-292, 2013.
DOI : 10.1016/j.ijmm.2013.02.009

. Crameri, E. Whitehorn, E. Tate, and W. P. Stemmer, Improved green fluorescent protein by molecular evolution using DNA shuffling, Nature Biotechnology, vol.14, issue.3, pp.315-319, 1996.
DOI : 10.1038/nbt0396-315

D. M. Daigle, L. Cao, S. Fraud, M. S. Wilke, A. Pacey et al., Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa, Journal of Bacteriology, vol.189, issue.15, pp.5441-5451, 2007.

L. Daury, F. Orange, J. Taveau, and A. Verchère, Tripartite assembly of RND multidrug efflux pumps, 1-30, 2016.
DOI : 10.1038/ncomms10731

URL : https://www.nature.com/articles/ncomms10731.pdf

F. De-angelis, J. K. Lee, J. D. O'connell, L. J. Miercke, K. H. Verschueren et al., Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.11038-11043, 2010.

C. R. Dean, M. Visalli, S. J. Projan, P. Sum, and P. Bradford, Efflux-Mediated Resistance to Tigecycline ( GAR-936 ) in Pseudomonas aeruginosa Efflux-Mediated Resistance to Tigecycline ( GAR-936 ) in Pseudomonas aeruginosa PAO1, Antimicrobial Agents and Chemoterapy, vol.47, issue.3, pp.972-78, 2003.

A. H. Delcour, Outer Membrane Permeability and Antibiotic Resistance, Biochim Biophys Acta, vol.1794, issue.5, pp.808-816, 2009.
DOI : 10.1016/j.bbapap.2008.11.005

URL : http://europepmc.org/articles/pmc2696358?pdf=render

M. P. Delisa, D. Tullman, and G. Georgiou, Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway, p.100, 2003.

J. A. Delmar, C. Su, and E. W. Yu, Structural Mechanisms of heavy-metal extrusion by the Cus efflux system, Biometals, vol.26, issue.4, pp.593-6079, 2013.

Y. Doi, A. C. Ghilardi, J. Adams, . De-oliveira, D. Garcia et al., High prevalence of metallo-?-lactamase and 16S rRNA methylase coproduction among imipenem-resistant Pseudomonas aeruginosa isolates in Brazil, Antimicrobial Agents and Chemotherapy, vol.51, issue.9, pp.3388-3390, 2007.

J. Dreier and P. Ruggerone, Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa, Frontiers in Microbiology, vol.6, p.660, 2015.

D. Du, Z. Wang, N. R. James, J. E. Voss, E. Klimont et al., Structure of the AcrAB-TolC multidrug efflux pump, Nature, vol.509, issue.7501, pp.512-515, 2015.

D. Du, Z. Wang, N. R. James, J. E. Voss, E. Klimont et al., Structure of the AcrAB-TolC multidrug efflux pump, Nature, vol.509, issue.7501, pp.512-515, 2014.

E. Sauvage and M. T. , Glycosyltransferases and Transpeptidase/Penicillin-binding Proteins: Valuable Targets for new Antibacterials. Antibiotics, vol.5, p.12, 2016.

S. Eda, H. Maseda, and T. Nakae, An elegant means of self-protection in Gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space, Journal of Biological Chemistry, vol.278, issue.4, pp.2085-2088, 2003.

T. Eicher, H. Cha, M. Seeger, L. Brandstätter, J. El-delik et al., Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.5687-92, 2012.

T. Eicher, M. A. Seeger, C. Anselmi, W. Zhou, L. Brandstätter et al., Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. eLife, 3, e03145, 2014.

B. M. Elena, C. Breidenstein, and R. E. De-la-fuente-nunez, Pseuomonas aeruginosa: all roads lead to resistance, Trends in Microbiology, vol.19, issue.8, pp.419-426, 2011.

C. Elkins and H. Nikaido, Substrate Speci city of the RND-Type Multidrug Ef ux Pumps AcrB and AcrD of, Society, vol.184, issue.23, pp.6490-6498, 2002.

P. Emsley and K. Cowtan, Coot: Model-building tools for molecular graphics, Acta Crystallographica Section D: Biological Crystallography, vol.60, issue.12 I, pp.2126-2132, 2004.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallographica Section D: Biological Crystallography, vol.66, issue.4, pp.486-501, 2010.

L. Federici, D. Du, F. Walas, H. Matsumura, J. Fernandez-recio et al., The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å resolution, Journal of Biological Chemistry, vol.280, issue.15, pp.15307-15314, 2005.

L. Fernández and R. E. Hancock, Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance, Clinical Microbiology Reviews, vol.25, issue.4, pp.661-681, 2012.

J. Fernandez-recio, F. Walas, L. Federici, J. Venkatesh-pratap, V. N. Bavro et al., A model of a transmembrane drug-efflux pump from Gram-negative bacteria, FEBS Letters, vol.578, issue.1-2, pp.5-9, 2004.

Y. Ferrandez, L. Monlezun, G. Phan, H. Benabdelhak, P. Benas et al., Stoichiometry of the MexA-OprM binding, as investigated by blue native gel electrophoresis, Electrophoresis, vol.33, issue.8, pp.1282-1287, 2012.

C. Filip, G. Fletcher, J. L. Wulff, and C. F. Earhart, Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate, Journal of Bacteriology, vol.115, issue.3, pp.717-739, 1973.

A. Fukuda, S. I. Matsuyama, T. Hara, J. Nakayama, H. Nagasawa et al., Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals, Journal of Biological Chemistry, vol.277, issue.45, pp.43512-43518, 2002.

E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins et al., Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook, pp.571-607, 2005.

R. J. Gillis, K. G. White, K. Choi, V. E. Wagner, H. P. Schweizer et al., Molecular Basis of Azithromycin-Resistant Pseudomonas aeruginosa Biofilms, Antimicrob. Agents Chemother, vol.49, issue.9, pp.3858-3867, 2005.

N. Gotoh, H. Tsujimoto, A. Nomura, K. Okamoto, M. Tsuda et al., Functional replacement of OprJ by OprM in the MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa, FEMS Microbiology Letters, vol.165, issue.1, pp.21-27, 1998.

N. P. Greene, P. Hinchliffe, A. Crow, A. Ababou, C. Hughes et al., Structure of an atypical periplasmic adaptor from a multidrug efflux pump of the spirochete Borrelia burgdorferi, FEBS Letters, vol.587, issue.18, pp.2984-2988, 2013.

S. Grkovic, M. H. Brown, R. A. Skurray, A. Repressor, and B. Subtilis, Regulation of Bacterial Drug Export Systems, vol.66, pp.671-701, 2006.

M. Gurung, D. C. Moon, M. D. Tamang, J. Kim, Y. C. Lee et al., Emergence of 16S rRNA methylase gene armA and cocarriage of blaIMP-1 in Pseudomonas aeruginosa isolates from South Korea, Diagnostic Microbiology and Infectious Disease, vol.68, issue.4, pp.468-470, 2010.

L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith, Tight regulation, modulation, and highlevel expression by vectors containing the arabinose P(BAD) promoter, Journal of Bacteriology, vol.177, issue.14, 1995.

C. L. Hagan, T. J. Silhavy, and D. Kahne, ?-Barrel Membrane Protein Assembly by the Bam Complex, Annual Review of Biochemistry, vol.80, issue.1, pp.189-210, 2011.

M. Hainrichson, I. Nudelman, and T. Baasov, Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases, Org Biomol Chem, vol.6, issue.2, pp.227-239, 2008.

K. A. Hassan, L. D. Elbourne, L. Li, H. K. Gamage, Q. Liu et al., An ace up their sleeve: A transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens, Frontiers in Microbiology, vol.6, 2015.

K. A. Hassan, Q. Liu, P. J. Henderson, and I. T. Paulsen, Homologs of the Acinetobacter baumannii acei transporter represent a new family of bacterial multidrug efflux systems, mBio, vol.6, issue.1, pp.1-5, 2015.

M. K. Higgins, E. Bokma, E. Koronakis, C. Hughes, and V. Koronakis, Structure of the periplasmic component of a bacterial drug efflux pump, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.9994-9999, 2004.

P. G. Higgins, A. C. Fluit, D. Milatovic, J. Verhoef, and F. J. Schmitz, Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa, International Journal of Antimicrobial Agents, vol.21, issue.5, pp.409-413, 2003.

P. Hinchliffe, N. P. Greene, N. G. Paterson, A. Crow, C. Hughes et al., Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump, FEBS Letters, vol.588, issue.17, pp.3147-3153, 2014.

E. C. Hobbs, X. Yin, B. J. Paul, J. L. Astarita, and G. Storz, Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance, Proceedings of the National Academy of Sciences, vol.109, issue.41, pp.16696-16701, 2012.

D. Hocquet, P. Nordmann, F. El-garch, L. Cabanne, and P. Plésiat, Involvement of the MexXYOprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.50, issue.4, pp.1347-1351, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00464785

L. R. Hoffman, D. A. Argenio, M. J. Maccoss, Z. Y. Zhang, R. A. Jones et al., Aminoglycoside antibiotics induce bacterial biofilm formation, Nature, vol.436, issue.7054, pp.1171-1175, 2005.

D. C. Hooper, Mechanisms of bacterial resistance to quinolones, pp.97-118, 1993.

L. W. Hung, H. B. Kim, S. Murakami, G. Gupta, C. Y. Kim et al., Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution, Journal of Structural and Functional Genomics, vol.14, issue.2, pp.71-75, 2013.

F. Husain, M. Bikhchandani, and H. Nikaido, Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli, Journal of Bacteriology, vol.193, issue.20, pp.5847-5849, 2011.

G. A. Jacoby and A. A. Medeiros, More extended-spectrum Î 2-lactamases, Section Title: Microbial Biochemistry, vol.35, pp.1697-1704, 1991.

T. K. Janganan, V. N. Bavro, L. Zhang, M. I. Borges-walmsley, and A. R. Walmsley, Tripartite efflux pumps: Energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump, Molecular Microbiology, vol.88, issue.3, pp.590-602, 2013.

T. K. Janganan, V. N. Bavro, L. Zhang, D. Matak-vinkovic, N. P. Barrera et al., Evidence for the Assembly of a Bacterial Tripartite Multidrug Pump with a Stoichiometry of 3:6:3, Journal of Biological Chemistry, vol.286, issue.30, pp.26900-26912, 2011.

W. Jin, J. I. Wachino, K. Kimura, K. Yamada, and Y. Arakawa, New plasmid-mediated aminoglycoside 6?-N-acetyltransferase, AAC(6?)-Ian, and ESBL, TLA-3, from a Serratia marcescens clinical isolate, Journal of Antimicrobial Chemotherapy, vol.70, issue.5, pp.1331-1337, 2014.
DOI : 10.1093/jac/dku537

URL : https://academic.oup.com/jac/article-pdf/70/5/1331/2021690/dku537.pdf

J. T. Jo, F. S. Brinkman, E. W. Robert, and R. E. Hancock, Aminoglycoside Efflux in Pseudomonas aeruginosa : Involvement of Novel Outer Membrane Proteins Aminoglycoside Efflux in Pseudomonas aeruginosa : Involvement of Novel Outer Membrane Proteins, vol.47, pp.1101-1111, 2003.

J. M. Johnson and G. M. Church, Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps, Journal of Molecular Biology, vol.287, issue.3, pp.695-715, 1999.

Y. Katayama, T. Ito, and K. Hiramatsu, A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus, Antimicrobial Agents and Chemotherapy, vol.44, issue.6, pp.1549-1555, 2000.

J. Kim, H. Jeong, S. Song, H. Kim, K. Lee et al., Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Suggests an Alternative Assembly Mode. Molecules and Cells, vol.38, pp.180-186, 2015.

T. J. Knowles, A. S. Tucker, M. Overduin, and I. R. Henderson, Membrane protein architects : the role of the BAM complex in outer membrane protein assembly, Nature Reviews Microbiology, vol.7, pp.206-214, 2009.

T. Köhler, S. F. Epp, L. K. Curty, and J. Pechère, Characterization of MexT , the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa Characterization of MexT , the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa, vol.181, pp.6300-6305, 1999.

T. Köhler, M. Michéa-hamzehpour, U. Henze, N. Gotoh, L. K. Curty et al., Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa, Molecular Microbiology, vol.23, issue.2, pp.345-354, 1997.

S. Kojima and H. Nikaido, Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.2629-2663, 2013.

V. Koronakis, J. Li, E. Koronakis, and K. Stauffer, Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals, Molecular Microbiology, vol.23, issue.3, pp.617-626, 1997.

V. Koronakis, A. Sharff, E. Koronakis, B. Luisi, and C. Hughes, Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export, Nature, issue.6789, pp.914-923, 2000.

I. R. Krauss, A. Merlino, A. Vergara, and F. Sica, An overview of biological macromolecule crystallization, International Journal of Molecular Sciences, 2013.

G. Krishnamoorthy, E. B. Tikhonova, G. Dhamdhere, and H. I. Zgurskaya, On the role of TolC in multidrug efflux: the function and assembly of AcrAB-TolC tolerate significant depletion of intracellular TolC protein, Molecular Microbiology, vol.87, issue.5, pp.982-997, 2013.

G. Krishnamoorthy, E. B. Tikhonova, and H. I. Zgurskaya, Fitting periplasmic membrane fusion proteins to inner membrane transporters: Mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB, Journal of Bacteriology, vol.190, issue.2, pp.691-698, 2008.
DOI : 10.1128/jb.01276-07

URL : https://jb.asm.org/content/190/2/691.full.pdf

R. Kulathila, R. Kulathila, M. Indic, . Van-den, and B. Berg, Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump, PLoS ONE, vol.6, issue.1, pp.1-7, 2011.

S. Kwon, S. K. Kim, D. Lee, and J. F. Kim, Comparative genomics and experimental evolution of Escherichia coli BL21(DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction, Scientific Reports, vol.5, p.16076, 2015.

V. S. Lamzin, Automated refinement of protein models, Acta Crystallogr D Biol Crystallogr, vol.49, pp.129-147, 1993.

V. S. Lamzin and K. S. Wilson, Automated refinement for protein crystallography, Methods in Enzymology, vol.277, pp.269-305, 1997.
DOI : 10.1016/s0076-6879(97)77016-2

D. Landman, S. Bratu, M. Alam, and J. Quale, Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B, Journal of Antimicrobial Chemotherapy, vol.55, issue.6, pp.954-957, 2005.

D. Landman, C. Georgescu, D. A. Martin, and J. Quale, Polymyxins revisited, Clinical Microbiology Reviews, vol.21, issue.3, pp.449-465, 2008.
DOI : 10.1128/cmr.00006-08

URL : https://cmr.asm.org/content/21/3/449.full.pdf

C. H. Lau, D. Hughes, and K. Poole, MexY-promoted aminoglycoside resistance in Pseudomonas aeruginosa: Involvement of a putative proximal binding pocket in aminoglycoside recognition, mBio, vol.5, issue.2, pp.1-10, 2014.

J. Lee, J. Song, and K. S. Ko, Identification of nonclonal Pseudomonas aeruginosa isolates with reduced colistin susceptibility in Korea, Microbial Drug Resistance, vol.17, issue.2, pp.299-304, 2011.

H. T. Lei, T. H. Chou, C. C. Su, J. R. Bolla, N. Kumar et al., Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel, PLoS ONE, issue.6, p.9, 2014.

H. Lei, J. R. Bolla, C. Su, and E. W. Yu, Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation, Journal of Molecular Biology, vol.426, issue.2, pp.403-411, 2014.

H. Li, Y. F. Luo, B. J. Williams, T. S. Blackwell, and C. M. Xie, Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies, International Journal of Medical Microbiology, 2012.

X. Z. Li, N. Barré, and K. Poole, Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa, The Journal of Antimicrobial Chemotherapy, vol.46, issue.6, pp.885-893, 2000.

X. Z. Li, K. Poole, and H. Nikaido, Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes, Antimicrobial Agents and Chemotherapy, vol.47, issue.1, pp.27-33, 2003.

J. F. Linares, I. Gustafsson, F. Baquero, and J. L. Martinez, Antibiotics as intermicrobial signaling agents instead of weapons, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.19484-19489, 2006.

P. D. Lister, D. J. Wolter, and N. D. Hanson, Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clinical Microbiology Reviews, vol.22, issue.4, pp.582-610, 2009.

C. Llanes, T. Köhler, I. Patry, B. Dehecq, C. Van-delden et al., Role of the MexEFOprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin, Antimicrobial Agents and Chemotherapy, vol.55, issue.12, pp.5676-5684, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01695633

S. Lobedanz, E. Bokma, M. F. Symmons, E. Koronakis, C. Hughes et al., A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps, Proc Natl Acad Sci U S A, vol.104, issue.11, pp.4612-4617, 2007.

J. B. Lyczak, C. L. Cannon, and G. B. Pier, Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist, Microbes and Infection, vol.2, issue.9, pp.1051-1060, 2000.

M. D. Maciá, D. Blanquer, B. Togores, J. L. Pérez, and A. Oliver, Hypermutation Is a Key Factor in Development of Multiple-Antimicrobial Resistance in Pseudomonas aeruginosa Strains Causing Chronic Lung Infections Hypermutation Is a Key Factor in Development of MultipleAntimicrobial Resistance in Pseudomonas aeruginosa, Society, vol.49, issue.8, pp.3382-3386, 2005.

W. Mao, M. S. Warren, D. S. Black, T. Satou, T. Murata et al., On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: The large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition, Molecular Microbiology, vol.46, issue.3, pp.889-901, 2002.

V. Martti, Polymyxins and their novel derivatives, Curr Opin Microbiol, vol.13, issue.5, pp.574-581, 2010.

H. Maseda, K. Saito, A. Nakajima, and T. Nakae, Variation of the mexT gene, a regulator of the MexEF-OprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa, FEMS Microbiology Letters, vol.192, issue.1, pp.107-112, 2000.

H. Maseda, H. Yoneyama, and T. Nakae, Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.44, issue.3, pp.658-664, 2000.

N. Masuda, E. Sakagawa, S. Ohya, N. Gotoh, and T. Nishino, Hypersusceptibility of the Pseudomonas aeruginosa nfxB mutant to beta-lactams due to reduced expression of the ampC beta-lactamase, Antimicrobial Agents and Chemotherapy, vol.45, issue.4, pp.1284-1290, 2001.

N. Masuda, E. Sakagawa, S. Ohya, N. Gotoh, H. Tsujimoto et al., Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.44, issue.9, pp.2242-2246, 2000.

S. Matrat, A. Aubry, C. Mayer, V. Jarlier, and E. Cambau, Mutagenesis in the ?3?4 GyrA helix and in the toprim domain of GyrB refines the contribution of Mycobacterium tuberculosis DNA gyrase to intrinsic resistance to quinolones, Antimicrobial Agents and Chemotherapy, vol.52, issue.8, pp.2909-2914, 2008.

Y. Matsumoto, K. Hayama, S. Sakakihara, K. Nishino, H. Noji et al., Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels, PLoS ONE, vol.6, issue.4, pp.1-12, 2011.

S. Maurer-stroh and F. Eisenhaber, Myristoylation of viral and bacterial proteins, Trends in Microbiology, 2004.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.

J. E. Mcgowan, Resistance in nonfermenting Gram-negative bacteria: Multidrug resistance to the maximum, American Journal of Infection Control, issue.5, p.34, 2006.

P. Mcinerney, P. Adams, and M. Z. Hadi, Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase, Molecular Biology International, p.287430, 2014.

L. D. Mech, A Gray Wolf (Canis lupus) Delivers Live Prey to a Pup, Canadian Field-Naturalist, vol.128, issue.2, pp.189-190, 2014.
DOI : 10.22621/cfn.v128i2.1584

URL : http://www.canadianfieldnaturalist.ca/index.php/cfn/article/download/1584/1601

E. Meddows, B. Le-bourdellès, S. Grimwood, K. Wafford, S. Sandhu et al., Identification of Molecular Determinants That Are Important in the Assembly of NMethyl-D-aspartate Receptors, Journal of Biological Chemistry, vol.276, issue.22, pp.18795-18803, 2001.

N. Mesaros, Y. Glupczynski, L. Avrain, N. E. Caceres, P. M. Tulkens et al., A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa, Journal of Antimicrobial Chemotherapy, vol.59, issue.3, pp.378-386, 2007.

J. K. Middlemiss and K. Poole, Differential Impact of MexB Mutations on Substrate Selectivity of the MexAB-OprM Multidrug Efflux Pump of Pseudomonas aeruginosa Differential Impact of MexB Mutations on Substrate Selectivity of the MexAB-OprM Multidrug Efflux Pump of Pseudomonas aerugino, vol.186, pp.1258-1269, 2004.

J. Mikolosko, K. Bobyk, H. I. Zgurskaya, and P. Ghosh, Conformational Flexibility in the Multidrug Efflux System Protein AcrA, Structure, vol.14, issue.3, pp.577-587, 2006.

T. Mima, S. Joshi, M. Gomez-escalada, and H. P. Schweizer, Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins, Journal of Bacteriology, vol.189, issue.21, pp.7600-7609, 2007.

B. Miroux and J. E. Walker, Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels, Journal of Molecular Biology, vol.260, issue.3, pp.289-298, 1996.

V. V. Mokhonov, E. I. Mokhonova, H. Akama, and T. Nakae, Role of the membrane fusion protein in the assembly of resistance-nodulation-cell division multidrug efflux pump in Pseudomonas aeruginosa, Biochemical and Biophysical Research Communications, vol.322, issue.2, pp.483-492, 2004.

E. I. Mokhonova, V. V. Mokhonov, H. Akama, and T. Nakae, Forceful large-scale expression of "problematic" membrane proteins, Biochemical and Biophysical Research Communications, vol.327, issue.3, pp.650-655, 2005.

L. Monlezun, G. Phan, H. Benabdelhak, M. Lascombe, V. Y. Enguéné et al., New OprM structure highlighting the nature of the N-terminal anchor, Frontiers in Microbiology, vol.6, pp.1-10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02150031

Y. Morita, N. Kimura, T. Mima, T. Mizushima, and T. Tsuchiya, Roles of MexXY-and MexABmultidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1, The Journal of General and Applied Microbiology, vol.47, issue.1, pp.27-32, 2001.

Y. Morita, T. Murata, T. Mima, S. Shiota, T. Kuroda et al., Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1, Journal of Antimicrobial Chemotherapy, vol.51, issue.4, pp.991-994, 2003.

Y. Morita, J. Tomida, and Y. Kawamura, Responses of Pseudomonas aeruginosa to antimicrobials, Frontiers in Microbiology, vol.4, issue.422, pp.1-8, 2014.

C. Muller, P. Plésiat, and K. Jeannot, A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and ?-lactams in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.55, issue.3, pp.1211-1221, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01695642

S. Murakami, R. Nakashima, E. Yamashita, T. Matsumoto, and A. Yamaguchi, Crystal structures of a multidrug transporter reveal a functionally rotating mechanism, Nature, vol.443, issue.7108, pp.173-179, 2006.

S. Murakami, R. Nakashima, E. Yamashita, and A. Yamaguchi, Crystal structure of bacterial multidrug efflux transporter AcrB, Nature, issue.6907, pp.587-593, 2002.

S. Murakami, N. Tamura, A. Saito, T. Hirata, and A. Yamaguchi, Extramembrane Central Pore of Multidrug Exporter AcrB in Escherichia coli Plays an Important Role in Drug Transport, Journal of Biological Chemistry, vol.279, issue.5, pp.3743-3748, 2004.

T. Murata, M. Kuwagaki, T. Shin, N. Gotoh, and T. Nishino, The substrate specificity of tripartite efflux systems of Pseudomonas aeruginosa is determined by the RND component, Biochemical and Biophysical Research Communications, vol.299, issue.2, pp.2626-2634, 2002.

G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner et al., REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallographica Section D: Biological Crystallography, vol.67, issue.4, pp.355-367, 2011.

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallographica Section D: Biological Crystallography, 1997.

S. Nagakubo, K. Nishino, and T. Hirata, The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System , MdtABC The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter, Journal of Bacteriology, vol.184, issue.15, pp.4161-4167, 2002.

A. Nakajima, Y. Sugimoto, H. Yoneyama, and T. Nakae, Localization of the outer membrane subunit OprM of resistance-nodulation-cell division family multicomponent efflux pump in Pseudomonas aeruginosa, Journal of Biological Chemistry, vol.275, issue.39, pp.30064-30068, 2000.

R. Nakashima, K. Sakurai, S. Yamasaki, K. Hayashi, C. Nagata et al., Structural basis for the inhibition of bacterial multidrug exporters, Nature, vol.500, issue.7460, pp.102-108, 2013.

R. Nakashima, K. Sakurai, S. Yamasaki, K. Nishino, and A. Yamaguchi, Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket, Nature, vol.480, issue.7378, pp.565-574, 2011.

S. I. Narita and H. Tokuda, Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins, Journal of Biological Chemistry, vol.282, issue.18, pp.13372-13378, 2007.

D. Nehme, X. Z. Li, R. Elliot, and K. Poole, Assembly of the MexAB-OprM Multidrug Efflux System of Pseudomonas aeruginosa: Identification and Characterization of Mutations in mexA Compromising MexA Multimerization and Interaction with MexB, Journal of Bacteriology, vol.186, issue.10, pp.2973-2983, 2004.

H. Nikaido, Prevention of Drug Access to Bacterial Targets : Permeability Barriers and Active Efflux, Science, vol.264, issue.5157, pp.382-388, 1994.

H. Nikaido, Multidrug resistance in bacteria, Annual Review of Biochemistry, vol.78, pp.119-165, 2009.

V. Y. Ntsogo-enguéné, A. Verchère, G. Phan, I. Broutin, and M. Picard, Catch me if you can: a biotinylated proteoliposome affinity assay for the investigation of assembly of the MexA-MexBOprM efflux pump from Pseudomonas aeruginosa, Frontiers in Microbiology, vol.6, pp.1-8, 2015.

A. Ocaktan, H. Yoneyama, and T. Nakae, Use of fluorescence probes to monitor function of the subunit proteins of the MexA-MexB-OprM drug extrusion machinery in pseudomonas aeruginosa, Journal of Biological Chemistry, vol.272, issue.35, pp.21964-21969, 1997.

A. A. Ocampo-sosa, G. Cabot, C. Rodriguez, E. Roman, F. Tubau et al., Alterations of OprD in carbapenem-intermediate and-susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a spanish multicenter study, Antimicrobial Agents and Chemotherapy, vol.56, issue.4, pp.1703-1713, 2012.

M. M. Ochs, M. P. Mccusker, M. Bains, and R. E. Hancock, Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids, Antimicrobial Agents and Chemotherapy, vol.43, issue.5, pp.1085-1090, 1999.

T. Ohene-agyei, J. D. Lea, and H. Venter, Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets, FEMS Microbiology Letters, vol.333, issue.1, pp.20-27, 2012.

S. Okuda and H. Tokuda, Lipoprotein Sorting in Bacteria, Annual Review of Biochemistry, vol.65, pp.239-259, 2011.

A. O. Olaitan, S. Morand, and J. Rolain, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria, Frontiers in Microbiology, vol.5, p.643, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01771500

J. Olivares, C. Álvarez-ortega, and J. L. Martinez, Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.58, issue.7, pp.3904-3913, 2014.

J. Olivares, A. Bernardini, G. Garcia-leon, F. Corona, M. B. Sanchez et al., The intrinsic resistome of bacterial pathogens, Frontiers in Microbiology, vol.4, pp.1-15, 2013.

C. T. Ong, P. R. Tessier, C. Li, C. H. Nightingale, and D. P. Nicolau, Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexAMexB-OprM efflux pumps, Diagnostic Microbiology and Infectious Disease, vol.57, issue.2, pp.153-161, 2007.

K. M. Overbye and J. F. Barrett, Antibiotics: Where did we go wrong? Drug Discovery Today, 2005.

J. M. Pagès, L. Monlezun, I. Broutin, and A. Davin-regli, Les mécanismes d'efflux et la résistance chez Pseudomonas aeruginosa. Revue Francophone Des Laboratoires, pp.63-72, 2011.

E. Papanikou, S. Karamanou, and A. Economou, Bacterial protein secretion through the translocase nanomachine, Nat.Rev.Microbiol, vol.5, pp.839-851, 2007.

X. Pei, P. Hinchliffe, M. F. Symmons, E. Koronakis, R. Benz et al., Structures of sequential open states in a symmetrical opening transition of the TolC exit duct, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.2112-2117, 2011.

G. Phan, H. Benabdelhak, M. B. Lascombe, P. Benas, S. Rety et al., Structural and Dynamical Insights into the Opening Mechanism of P. aeruginosa OprM Channel, Structure, vol.18, issue.4, pp.507-517, 2010.

G. Phan, M. Picard, and I. Broutin, Focus on the Outer Membrane Factor OprM, the Forgotten Player from, Efflux Pumps Assemblies. Antibiotics, vol.4, issue.4, pp.544-566, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02150041

J. Piton, S. Petrella, M. Delarue, G. André-leroux, V. Jarlier et al., Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase, PLoS ONE, issue.8, p.5, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01126607

D. Pletzer and H. Weingart, Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora, BMC Microbiology, vol.14, p.185, 2014.

K. Poole, Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria, Antimicrobial Agents and Chemotherapy, vol.44, issue.9, pp.2233-2241, 2000.

K. Poole, Resistance to beta-lactam antibiotics, Cellular and Molecular Life Sciences : CMLS, issue.17, pp.2200-2223, 2004.

K. Poole, Efflux-mediated antimicrobial resistance, Journal of Antimicrobial Chemotherapy, 2005.

K. Poole, Pseudomonas aeruginosa: Resistance to the max, Frontiers in Microbiology, vol.2, issue.65, pp.1-13, 2011.

K. Poole, K. Tetro, Q. Zhao, S. Neshat, D. E. Heinrichs et al., Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression, Antimicrobial Agents and Chemotherapy, vol.40, issue.9, pp.2021-2028, 1996.

K. M. Pos, Drug transport mechanism of the AcrB efflux pump, Biochimica et Biophysica Acta, vol.1794, issue.5, pp.782-793, 2009.

K. M. Pos, A. Schiefner, M. A. Seeger, and K. Diederichs, Crystallographic analysis of AcrB, FEBS Letters, vol.564, issue.3, pp.333-339, 2004.

A. Potron, L. Poirel, and P. Nordmann, Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology, International Journal of Antimicrobial Agents, vol.45, issue.6, pp.568-585, 2015.

L. Pumbwe, M. J. Everett, R. E. Hancock, and L. J. Piddock, Role of gyrA mutation and loss of OprF in the multiple antibiotic resistance phenotype of Pseudomonas aeruginosa G49, FEMS Microbiology Letters, vol.143, issue.1, pp.25-28, 1996.

A. Purssell and K. Poole, Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa, Microbiology, pp.2058-2073, 2013.

C. P. Randall, K. R. Mariner, I. Chopra, and A. J. Neill, The target of daptomycin is absent from Escherichia coli and other Gram-negative pathogens, Antimicrobial Agents and Chemotherapy, vol.57, issue.1, pp.637-639, 2013.

M. D. Resh, Fatty acylation of proteins: new insights into membrane targeting of myristylated and palmitoylated proteins, Biochimica et Biophysica Acta-Molecular Cell Research, issue.1, pp.1-16, 1999.

C. Richardot, P. Juarez, K. Jeannot, I. Patry, and P. Plésiat, Amino Acid Substitutions Account for Most MexS Alterations in Clinical nfxC Mutants of Pseudomonas aeruginosa, vol.60, pp.2302-2310, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687774

L. Robbel and M. A. Marahiel, Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery, Journal of Biological Chemistry, 2010.

C. Robichon, D. Vidal-ingigliardi, and A. P. Pugsley, Depletion of apolipoprotein Nacyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli, Journal of Biological Chemistry, vol.280, issue.2, pp.974-983, 2005.

A. Robicsek, J. Strahilevitz, G. Jacoby, M. Macielag, D. Abbanat et al., Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase, Nature Medicine, vol.12, issue.1, pp.83-88, 2006.

J. M. Rodríguez-martínez, L. Poirel, and P. Nordmann, Extended-spectrum cephalosporinases in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.53, issue.5, pp.1766-1771, 2009.

J. M. Rodríguez-martínez, L. Poirel, and P. Nordmann, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.53, issue.11, pp.4783-4788, 2009.

E. J. Rubin, C. M. Herrera, A. A. Crofts, and M. S. Trent, PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance, Antimicrobial Agents and Chemotherapy, vol.59, issue.4, pp.2051-2061, 2015.

S. Sandoval-motta and M. Aldana, Adaptive resistance to antibiotics in bacteria: a systems biology perspective, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.8, issue.3, pp.253-267, 2016.

K. Sankaran and H. C. Wu, Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol, Journal of Biological Chemistry, vol.269, issue.31, pp.19701-19706, 1994.

H. Schägger, W. Cramer, and G. Jagow, Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis, Analytical Biochemistry, 1994.

H. Schägger and J. G. Von, Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form, Anal Biochem, issue.2, pp.223-254, 1991.

S. Schuster, M. Vavra, and W. V. Kern, Evidence of a substrate discriminating entrance channel in the lower porter domain of the multidrug resistance efflux pump AcrB, Antimicrobial Agents and Chemotherapy, 2016.

H. P. Schweizer, Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: Unanswered questions, Genetics and Molecular Research, vol.2, issue.1, pp.48-62, 2003.

M. Seeger, A. Schiefner, T. Eicher, F. Verrey, K. Diederichs et al., Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism, Science, issue.5791, pp.1295-1298, 2006.

G. Sennhauser, P. Amstutz, C. Briand, O. Storchenegger, and M. G. Grütter, Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors, PLoS Biology, vol.5, issue.1, pp.106-0113, 2007.

G. Sennhauser, M. A. Bukowska, C. Briand, and M. G. Grütter, Crystal Structure of the Multidrug Exporter MexB from Pseudomonas aeruginosa, Journal of Molecular Biology, vol.389, issue.1, pp.134-145, 2009.

K. J. Shaw, P. N. Rather, R. S. Hare, and G. H. Miller, Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes, Microbiological Reviews, vol.57, issue.1, pp.138-163, 1993.

L. L. Silver, Challenges of Antibacterial Discovery, Clinical Microbiology Reviews, vol.24, issue.1, pp.71-109, 2011.

V. Slynko, M. Schubert, S. Numao, M. Kowarik, M. Aebi et al., NMR structure determination of a segmentally labeled glycoprotein using in vitro glycosylation, Journal of the American Chemical Society, vol.131, issue.3, pp.1274-1281, 2009.

M. L. Sobel, D. Hocquet, L. Cao, P. Plesiat, and K. Poole, Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.49, issue.5, pp.1782-1786, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01696230

M. Solé, A. Fàbrega, N. Cobos-trigueros, L. Zamorano, M. Ferrer-navarro et al., In vivo evolution of resistance of Pseudomonas aeruginosa strains isolated from patients admitted to an intensive care unit: Mechanisms of resistance and antimicrobial exposure, Journal of Antimicrobial Chemotherapy, vol.70, issue.11, pp.3004-3013, 2015.

T. F. Solov'eva, O. D. Novikova, and O. Y. Portnyagina, Biogenesis of ?-barrel integral proteins of bacterial outer membrane, Biochemistry. Biokhimii ? a, vol.77, issue.11, pp.1221-1257, 2012.

R. Srikumar, T. Kon, N. Gotoh, and K. Poole, Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain, Antimicrob Agents Chemother, vol.42, issue.1, pp.65-71, 1998.

P. Staron, K. Forchhammer, and I. Maldener, Structure-function analysis of the ATP-driven glycolipid efflux pump DevBCA reveals complex organization with TolC/HgdD, FEBS Letters, vol.588, issue.3, pp.395-400, 2014.

J. F. Stegmeier, G. Polleichtner, N. Brandes, C. Hotz, and C. Andersen, Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps, Biochemistry, vol.45, issue.34, pp.10303-10312, 2006.

D. R. Storm, Mechanism of Bacitracin Action-Specific Lipid-Peptide Interaction, Annals of the New York Academy of Sciences, vol.235, issue.MAY10, pp.387-398, 1974.

G. Storz, Y. I. Wolf, and K. S. Ramamurthi, Small proteins can no longer be ignored, Annual Review of Biochemistry, vol.83, pp.753-77, 2014.

C. Stover, X. Pham, A. Erwin, S. Mizoguchi, P. Warrener et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.406, issue.6799, pp.959-964, 2000.

C. C. Su, F. Long, M. T. Zimmermann, K. R. Rajashankar, R. L. Jernigan et al., Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli, Nature, vol.470, issue.7335, pp.558-562, 2011.

C. C. Su, A. Radhakrishnan, N. Kumar, F. Long, J. R. Bolla et al., Crystal structure of the Campylobacter jejuni CmeC outer membrane channel, Protein Science, vol.23, issue.7, pp.954-961, 2014.

C. C. Su, F. Yang, F. Long, D. Reyon, M. D. Routh et al., Crystal structure of the membrane fusion protein CusB from Escherichia coli, J Mol Biol, vol.393, issue.2, pp.342-355, 2009.

C. Su, F. Long, M. T. Zimmermann, R. Kanagalaghatta, R. L. Jernigan et al., Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli, Nature, vol.470, issue.7335, pp.558-562, 2011.

C. Su, F. Long, H. Lei, J. R. Bolla, S. V. Do et al., Charged amino acids (R83, E567, D617, E625, R669 and K678) of CusA are required for metal-ion transport in the Cus efflux system, Journal of Microbiology, vol.422, issue.3, pp.429-441, 2012.

C. Su, H. Nikaido, and E. W. Yu, Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay, FEBS Letters, vol.581, issue.25, pp.4972-4976, 2007.

N. V. Subramanian-krishnan, Outer membrane protein A and OprF-Versatile roles in Gramnegative bacterial infections, Febs Journal, vol.279, issue.6, pp.919-931, 2012.

E. Sugawara, K. Nagano, and H. Nikaido, Alternative folding pathways of the major porin OprF of Pseudomonas aeruginosa, FEBS Journal, 2012.

M. Swamy, Y. Kulathu, S. Ernst, M. Reth, and W. W. Schamel, Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes, Immunology Letters, vol.104, issue.1-2, pp.131-137, 2006.

M. Swamy, S. Minguet, G. M. Siegers, B. Alarcon, and W. W. Schamel, A native antibodybased mobility-shift technique (NAMOS-assay) to determine the stoichiometry of multiprotein complexes, Journal of Immunological Methods, vol.324, issue.1-2, pp.74-83, 2007.

M. F. Symmons, E. Bokma, E. Koronakis, C. Hughes, and V. Koronakis, The assembled structure of a complete tripartite bacterial multidrug efflux pump, Proc Natl Acad Sci U S A, vol.106, issue.17, pp.7173-7178, 2009.

M. F. Symmons, R. L. Marshall, and V. N. Bavro, Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies, Frontiers in Microbiology, vol.6, pp.1-20, 2015.

A. Tabata, H. Nagamune, T. Maeda, K. Murakami, Y. Miyake et al., Correlation between Resistance of Pseudomonas aeruginosa to Quaternary Ammonium Compounds and Expression of Outer Membrane Protein OprR, Amtimicrobial Agents and Chemotherapy, vol.47, issue.7, pp.2093-2099, 2003.

Y. Takatsuka and H. Nikaido, Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism, Journal of Bacteriology, vol.191, issue.6, pp.1729-1737, 2009.

S. Tamber and R. E. Hancock, On the mechanism of solute uptake in Pseudomonas, Frontiers in Bioscience : A Journal and Virtual Library, vol.8, pp.472-83, 2003.

N. Tamura, S. Murakami, Y. Oyama, M. Ishiguro, and A. Yamaguchi, Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking, Biochemistry, vol.44, issue.33, pp.11115-11121, 2005.

M. Terada, T. Kuroda, S. I. Matsuyama, and H. Tokuda, Lipoprotein Sorting Signals Evaluated as the LolA-dependent Release of Lipoproteins from the Cytoplasmic Membrane of Escherichia coli, Journal of Biological Chemistry, vol.276, issue.50, pp.47690-47694, 2001.

E. B. Tikhonova, Q. Wang, and H. I. Zgurskaya, Chimeric Analysis of the Multicomponent Multidrug Efflux Transporters from Gram-Negative Bacteria, Society, vol.184, issue.23, pp.6499-6507, 2002.

E. B. Tikhonova, Y. Yamada, and H. I. Zgurskaya, Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC, Chemistry and Biology, vol.18, issue.4, pp.454-463, 2011.

E. B. Tikhonova and H. I. Zgurskaya, AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex, Journal of Biological Chemistry, vol.279, issue.31, pp.32116-32124, 2004.

T. Touzé, J. Eswaran, E. Bokma, E. Koronakis, C. Hughes et al., Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system, Molecular Microbiology, vol.53, issue.2, pp.697-706, 2004.

T. Touzé, J. Eswaran, E. Bokma, E. Koronakis, C. Hughes et al., Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system, Molecular Microbiology, vol.53, issue.2, pp.697-706, 2004.

Q. T. Tran, M. Dupont, J. P. Lavigne, J. Phevalier, J. M. Pages et al., Occurrence of efflux mechanism and cephalosporinase variant in a population of enterobacter aerogenes and klebsiella pneumoniae isolates producing extended-spectrum ?-lactamases, 2009.

, Antimicrobial Agents and Chemotherapy, vol.53, issue.4, pp.1652-1656

S. Trépout, J. Taveau, H. Benabdelhak, T. Granier, A. Ducruix et al., Structure of reconstituted bacterial membrane efflux pump by cryo-electron tomography, Biochimica et Biophysica Acta-Biomembranes, vol.1798, issue.10, pp.1953-1960, 2010.

J. Trias and H. Nikaido, Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.34, issue.1, pp.52-57, 1990.

J. Trias and H. Nikaido, Protein D2 Channel of the Pseudomonas aeruginosa Outer Membrane Has a Binding Site for Basic Amino Acids and Peptides *, The Journal of Biochemical Chemistry, vol.265, issue.26, pp.15680-15684, 1990.

J. L. Trouillet, . Vuagnat, N. Kassis, J. Chastre, and C. Gibert, Pseudomonas aeruginosa ventilator-associated pneumonia: comparison of episodes due to piperacillinresistant versus piperacillin-susceptible organisms, Clinical Infectious Diseases, vol.34, issue.8, 2002.

A. Tschumi, C. Nai, Y. Auchli, P. Hunziker, P. Gehrig et al., Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria, Journal of Biological Chemistry, vol.284, issue.40, pp.27146-27156, 2009.

T. Tsuchido and M. Takano, Senzitization by heat treatment of Escherichia coli K-12 cells to hydrophobic antibacterial compounds, Antimicrobial Agents and Chemotherapy, vol.32, issue.11, pp.1680-1683, 1988.

A. V. Vargiu and H. Nikaido, Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.20637-20642, 2012.

A. V. Vargiu, P. Ruggerone, T. J. Opperman, S. T. Nguyen, and H. Nikaido, Inhibition of E. coli AcrB multidrug efflux pump by MBX2319: molecular mechanism and comparison with other inhibitors, Antimicrobial Agents and Chemotherapy, vol.58, issue.10, 2014.

G. Vediyappan, T. Borisova, and J. A. Fralick, Isolation and characterization of VceC gain-offunction mutants that can function with the AcrAB multiple-drug-resistant efflux pump of Escherichia coli, Journal of Bacteriology, vol.188, issue.11, pp.3757-3762, 2006.

D. Veesler, S. Blangy, C. Cambillau, and G. Sciara, There is a baby in the bath water: AcrB contamination is a major problem in membrane-protein crystallization, Acta Crystallographica Section F: Structural Biology and Crystallization Communications, vol.64, issue.10, pp.880-885, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01617665

A. Verchère, I. Broutin, and M. Picard, Hoechst likes to play hide and seek ? use it with caution! Analytical Biochemistry, vol.440, pp.117-119, 2013.

A. Verchère, M. Dezi, V. Adrien, I. Broutin, and M. Picard, In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa, Nature Communications, vol.6, p.6890, 2015.

A. Verchère, M. Dezi, I. Broutin, and M. Picard, In vitro investigation of the MexAB efflux pump from Pseudomonas aeruginosa, Journal of Visualized Experiments : JoVE, issue.84, 2014.

M. A. Visalli, E. Murphy, S. J. Projan, and P. A. Bradford, AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis, Antimicrobial Agents and Chemotherapy, vol.47, issue.2, pp.665-669, 2003.

C. Vogne, J. R. Aires, C. Bailly, D. Hocquet, and P. Plésiat, Role of the Multidrug Efflux System MexXY in the Emergence of Moderate Resistance to Aminoglycosides among Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis, Antimicrobial Agents and Chemotherapy, vol.48, issue.5, pp.1676-1680, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01696291

T. R. Walsh, Emerging carbapenemases: A global perspective, International Journal of Antimicrobial Agents, vol.36, 2010.

B. Wang, J. Weng, and W. Wang, Substrate binding accelerates the conformational transitions and substrate dissociation in multidrug efflux transporter AcrB, Frontiers in Microbiology, vol.6, pp.1-11, 2015.

J. W. Weeks, V. N. Bavro, and R. Misra, Genetic assessment of the role of AcrB ?-hairpins in the assembly of the TolC-AcrAB multidrug efflux pump of E scherichia coli, Molecular Microbiology, vol.91, issue.5, pp.965-975, 2014.

J. W. Weeks, L. M. Nickels, A. T. Ntreh, and H. I. Zgurskaya, Non-equivalent roles of two periplasmic subunits in the function and assembly of triclosan pump TriABC from Pseudomonas aeruginosa, Molecular Microbiology, vol.98, issue.2, pp.343-356, 2015.

C. Wehmeier, S. Schuster, E. Fähnrich, W. V. Kern, and J. A. Bohnert, Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance, Antimicrobial Agents and Chemotherapy, vol.53, issue.1, 2009.

A. Welch, C. U. Awah, S. Jing, H. W. Van-veen, and H. Venter, Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa, The Biochemical Journal, vol.430, issue.2, pp.355-364, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509878

S. E. West, H. P. Schweizer, C. Dall, A. K. Sample, and L. J. Runyen-janecky, Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa, Gene, vol.148, issue.1, pp.90237-90239, 1994.

D. N. Wilson, Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nature Reviews. Microbiology, vol.12, issue.1, pp.35-48, 2014.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, Acta Crystallographica Section D: Biological Crystallography, 2011.

M. H. Wong, E. W. Chan, and S. Chen, Evolution and Dissemination of OqxAB-Like Efflux Pumps, an Emerging Quinolone Resistance Determinant among Members of Enterobacteriaceae, Antimicrobial Agents and Chemotherapy, vol.59, issue.6, pp.3290-3297, 2015.

G. D. Wright, The antibiotic resistome: the nexus of chemical and genetic diversity, Nat.Rev.Microbiol, vol.5, pp.175-186, 2007.

G. D. Wright, Molecular mechanisms of antibiotic resistance, Chemical Communications, vol.47, issue.14, p.4055, 2011.

J. Xia, J. Gao, and W. Tang, Nosocomial infection and its molecular mechanisms of antibiotic resistance, BioScience Trends, vol.10, issue.1, pp.14-21, 2016.

Y. Xu, M. Lee, A. Moeller, S. Song, B. Yoon et al., Funnel-like Hexameric Assembly of the Periplasmic Adapter Protein in the Tripartite Multidrug Efflux Pump in Gram-negative Bacteria, Journal of Biological Chemistry, vol.286, issue.20, 2011.

Y. Xu, A. Moeller, S. Jun, M. Le, B. Yoon et al., Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of Gram-negative Bacteria, Journal of Biological Chemistry, vol.287, issue.15, 2012.

A. Yamaguchi, R. Nakashima, and K. Sakurai, Structural basis of RND-type multidrug exporters, Frontiers in Microbiology, vol.6, pp.1-19, 2015.

H. Yamanaka, T. Nomura, N. Morisada, S. Shinoda, and K. Okamoto, Site-directed mutagenesis studies of the amino acid residue at position 412 of Escherichia coli TolC which is required for the activity, Microbial Pathogenesis, vol.33, issue.2, pp.81-89, 2002.

K. Yamane, Y. Doi, K. Yokoyama, H. Kurokawa, N. Shibata et al., Genetic Environments of the rmtA Gene in Pseudomonas aeruginosa Clinical Isolates Genetic Environments of the rmtA Gene in Pseudomonas aeruginosa Clinical Isolates, Antimicrobial Agents and Chemotherapy, vol.48, issue.6, pp.2069-2074, 2004.

Y. Yamano, T. Nishikawa, and Y. Komatsu, Outer membrane proteins responsible for the penetration of beta-lactams and quinolones in Pseudomonas aeruginosa, J Antimicrob Chemother, vol.26, issue.2, pp.175-184, 1990.

X. Q. Yao, N. Kimura, S. Murakami, and S. Takada, Drug uptake pathways of multidrug transporter AcrB studied by molecular simulations and site-directed mutagenesis experiments, Journal of the American Chemical Society, vol.135, issue.20, pp.7474-7485, 2013.

R. Yonehara, E. Yamashita, and A. Nakagawa, Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa, Proteins: Structure, Function, and Bioinformatics, p.1, 2015.

H. Yoneyama, A. Ocaktan, N. Gotoh, T. Nishino, and T. Nakae, Subunit swapping in the Mexextrusion pumps in Pseudomonas aeruginosa, Biochemical and Biophysical Research Communications, vol.244, issue.3, pp.898-902, 1998.

E. W. Yu, Structural Basis of Multiple Drug-Binding Capacity of the AcrB Multidrug Efflux Pump, Science, vol.300, issue.5621, pp.976-980, 2003.

E. W. Yu, J. R. Aires, G. Mcdermott, and H. Nikaido, A periplasmic drug-binding site of the AcrB multidrug efflux pump: A crystallographic and site-directed mutagenesis study, Journal of Bacteriology, vol.187, issue.19, pp.6804-6815, 2005.

E. W. Yu, J. R. Aires, and H. Nikaido, AcrB multidrug efflux pump of Escherichia coli: Composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity, Journal of Bacteriology, vol.185, issue.19, pp.5657-5664, 2003.

E. W. Yu, G. Mcdermott, H. I. Zgurskaya, H. Nikaido, and D. E. Koshland, Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump, Science, vol.300, pp.976-980, 2003.

S. Yum, Y. Xu, S. Piao, S. H. Sim, H. M. Kim et al., Crystal Structure of the Periplasmic Component of a Tripartite Macrolide-Specific Efflux Pump, Journal of Molecular Biology, vol.387, issue.5, pp.1286-1297, 2009.

H. I. Zgurskaya, J. W. Weeks, A. T. Ntreh, L. M. Nickels, and D. Wolloscheck, Mechanism of coupling drug transport reactions located in two different membranes, Frontiers in Microbiology, vol.6, pp.1-13, 2015.

H. I. Zgurskaya, Y. Yamada, E. B. Tikhonova, Q. Ge, and G. Krishnamoorthy, Structural and functional diversity of bacterial membrane fusion proteins, Biochimica et Biophysica Acta, vol.1794, issue.5, pp.794-807, 2009.

B. K. Ziervogel and B. Roux, The binding of antibiotics in OmpF porin, Structure, vol.21, issue.1, pp.76-87, 2013.