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Abstract:

In a highly competitive environment, one of the key challenges for operators and
providers of video telephony services is to ensure the highest quality of experience
(QoE). There is a strong need for a measure that re�ects users satisfaction and per-
ception of these services. The audio-visual quality of a video call must be controlled
to meet two main needs. The �rst concerns the planning of new technologies under
development. The second is focused on the control of existing communications by
assessing the quality of the services o�ered and evaluating them.

Two approaches are used to evaluate audio-visual quality: subjective tests by
collecting scores given by participants on quality scales, after viewing and listening
to audiovisual sequences and objective metrics based on automatic audio / video or
audiovisual quality evaluation algorithms. Concerning telephony services, decades
of research, standardization work and network exploitation, have allowed operators
to master the automatic monitoring tools and to determine the representative met-
rics of voice quality. However, the metrics for measuring the audiovisual quality of a
conversational services are not yet mature and not exploited by telecommunication
operators.

The present work focuses on �nding representative metrics of the perception of
the video telephony and videoconferencing services quality. These objective metrics
are calculated from the audio and video signals. Subjective tests are conducted to
collect the judgment of service users on the perceived quality according to di�erent
levels of degradation. We studied the impact of network conditions (packet loss,
jitter and desynchronization) on the QoE of a video call. The general principle is
then to establish a correlation between the selected objective metrics and the per-
ceived quality as expressed by the users. The results showed that new metrics of
overall audiovisual quality that take into account the temporal aspect of video are
more powerful than image quality based metrics. On the other hand, the use of a
machine learning approach represents a solution to generate a global quality pre-
diction model from the degradation metrics (blur, pixelization, image freezing, etc.).

Keywords: Quality of experience, audiovisual quality, conversational service,
evaluation, subjective measures, objective metrics
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Résumé:

Dans un contexte fortement concurrentiel, l'un des principaux enjeux pour les
opérateurs et les fournisseurs de services de visiophonie est de garantir aux utilisa-
teurs une qualité d'expérience (QoE) optimale. Il existe un fort besoin d'une mesure
qui re�ète la satisfaction et la perception des utilisateurs de ces services. La qual-
ité audiovisuelle d'un appel vidéo doit être contrôlée pour répondre à deux besoins
principaux. Le premier concerne la plani�cation de nouvelles technologies en cours
de développement. Le second est axé sur le contrôle des communications existantes
en évaluant la qualité des services o�erts.

Aujourd'hui, deux approches sont utilisées pour évaluer la qualité audiovisuelle
: les tests subjectifs en collectant des notes données par des participants sur des
échelles de qualité, après visualisation et écoute de séquences audiovisuelles et les
métriques objectives basées sur des algorithmes automatiques d'évaluation de la
qualité d'un signal audio, vidéo ou audiovisuel. Concernant les services de télé-
phonie, des décennies de recherche, de standardisation et d'exploitation des réseaux
ont permis aux opérateurs de maitriser les outils de diagnostic et de déterminer les
métriques représentatives de la qualité vocale. Cependant, les méthodes de mesure
de la qualité audiovisuelle des services conversationnels ne sont pas encore matures
et peu exploitées par les opérateurs de télécommunication.

Le présent travail est centré sur la recherche de métriques représentatives de la
perception de la qualité des �ux associés aux services de visiophonie et de visiocon-
férence. Ces métriques objectives sont calculées à partir du signal audio et vidéo.
Des tests subjectifs sont menés a�n de collecter le jugement des utilisateurs du ser-
vice sur la qualité perçue en fonction de di�érents niveaux de dégradations. Nous
avons étudié l'impact des conditions réseau (perte de paquet, jigue et désynchroni-
sation) sur la QoE d'un appel vidéo. Le principe général est ensuite d'établir une
corrélation forte entre les métriques objectives sélectionnées et la qualité perçue telle
qu'elle est exprimée par les utilisateurs. Les résultats ont montré que les nouvelles
métriques de qualité globale audiovisuelle qui prennent en compte l'aspect tem-
porel de la vidéo sont plus performantes que les métriques basées qualité d'images.
D'autre part l'utilisation d'une approche machine learning représente une solution
pour générer un modèle de prédiction de la qualité globale à partir des métriques
de dégradation (�ou, pixellisation, gel d'images, . . . )

Mots clès: Qualité d'expérience, qualité audiovisuelle, service conversationnel,
évaluation, mesures subjectives, mesures objectives.
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Introduction

The �rst telecommunication permitting the transmission of speech between two peo-
ple in real time was possible with the invention of the telephone in 1873 by Alexander
Graham Bell. However, in a complete-distance communication, the need to add our
own image in video quickly imposed itself. It was in 1972 that the CNET (French
national center for telecommunication studies) established a �rst videophone link
over broadband links between Paris and Lannion. The �rst consumer application
was launched in 1984, during the "optic Fiber" experiment in Biarritz. Since then,
with the deployment of new technologies of mobile networks, with increasing avail-
able bandwidth, the evolution of internet protocols and development of the devices
(smart phones, cameras, PC, ...) video conversational services are becoming increas-
ingly popular.

Video telephony, a technology that allows to see and interact with the interlocu-
tor, o�ers di�erent possibilities. "Point-to-point" is the closest thing to a phone
conversation: two users are connected via video. "Multipoint" allows two or more
people to take part in a video conference from a meeting room, a computer (in the
o�ce or at home), a smart phone or a tablet. The third option is broadcasting,
which is a one-way signal transmission technique to a large number of customers.
Broadcasting gives others the ability to access a meeting using software rather than
hardware.

The challenge for operators and service providers is to o�er to their customers
the best possible Quality of Experience (QoE). The study of the QoE has been the
subject of much scienti�c research to de�ne it, to identify the impact factors and to
investigate the methods to evaluate it. Monitoring the quality guides the actions of
diagnosis and identi�cation of the artifact causes. Thus, there is a strong need for
automatic tools and metrics to evaluate the audiovisual quality of a video call as
perceived by the end user.

The purpose of the work presented in this document is to contribute to studying
the audiovisual quality perception in the context of a video call. We will focus on
the essential impairments that may impact the user experience of a video telephony
service which are related to network conditions. Subjective studies are conducted
and objective models are evaluated in order to propose a toolbox for monitoring and
diagnostic of the global quality of a visiophony service.

In Chapter I we will start with presenting the general context of the thesis by
explaining the issues and the motivations of our research studies. We will de�ne the
principle technologies and network architecture allowing the development of a visio-
phony service. Finally, we will discuss the constraints we encountered to conduct
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modulations on a consistent set of databases related to information collected from
a service in use. Then, we will introduce the work methodology that we adopted
throughout the thesis.

In Chapter II , we will present the state of the art and the researche conducted
in the domain of the evaluation of audiovisual quality. First of all, it is essential to
de�ne the concept of QoE. Next, we will highlight the di�erent impact factors that
may in�uence the perception of the quality of a conversational service. Then, we
will detail the two types of approaches existing to evaluate the quality: subjective
and objective methods.

Chapter III , is dedicated to the presentation of the subjective experiments we
conducted. We will present the methodologies, and the processes of the subjective
tests we implemented. Then, we will analyze the results. We are interested in as-
sessing the perception of video call service users under di�erent conditions, and to
constitute a sequences database to evaluate the performance of the objective quality
metrics. We investigated the video, audio and audiovisual quality and asynchrony
perception under two di�erent situations: a non-interactive and an interactive con-
versational one. We analyzed the e�ects of network impairments (packet loss, delay)
on perceived audiovisual, audio and video quality. We also evaluate the impact of
experimental context and scene complexity on the quality perception in case of video
calls. Furthermore, we propose new acceptability thresholds of audio-video asyn-
chrony in video telephony context and study the e�ect of synchronization in the
presence and absence of network degradation.

In Chapter IV , we will investigate in more details the perception of the au-
dio/video synchronization in a speci�ed study. Thus, we will show the results of two
subjective tests conducted in order to better understand the in�uence of the time
o�set between the audio and the video media streams of video telephony contents
in the presence of other impairments. We also compare between the subjective per-
ception of quality and asynchrony in laboratory and in crowdsourcing contexts.

Once we collected di�erent databases (from our subjective experiments and other
public databases) composed of sequences with their subjective scores, we are able
to apply objective metrics and conduct statistical and correlation studies. Thus,
Chapter V is devoted to evaluating the prediction accuracy of the existent ob-
jective video, audio and audiovisual quality models. The main contribution of this
chapter is to propose a representative global video quality metric that correlates
best with the subjective perception. Furthermore, we will interest to no-reference
single artifact based metrics by evaluating their performance in detecting di�erent
impairments that can occur for instance in a video conference call. We will associate
each detected artifact to a speci�c cause or source ( codec, network, rate adaptation
...) and will propose annoyance thresholds. Concerning the audiovisual quality we
will consider the ITU-T G.1070 parametric computational model for point-to-point
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videophone applications over IP networks.

The evaluation of the objective metrics allows us to determine the most accu-
rate and representative of an audiovisual perception. Thus inchapter VI we will
give methodology and primary results of applying machine learning algorithms on
no-reference single artifact detection metrics in order to generate a global quality
prediction model.

Finally, chapter VII concludes this thesis, and presents the di�erent perspec-
tives and directions for future research.
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1.1 Thesis Issue

Over the years, multimedia applications have conquered many segments of the
telecommunications industry. We are dealing today with multimedia services in
many areas, starting with the various digital television systems, video-telephony,
video-on-demand (VOD), Internet Protocol television (IPTV) or simply video-sharing
services like YouTube or Dailymotion. Multimedia services represent an important
part of the global IP tra�c that is constantly growing. In the last statistics reported
in [3], mobile video services will generate three quarters of mobile data tra�c by
2020. Among the most popular multimedia services, the video conversational ap-
plications are in full development. In a competitive market, various Over The Top
(OTT) players are emerging: Skype, Messenger, Facetime, WeChat, Duo, etc. For
example, the statistics show that Skype has more than 300 million monthly active
users [4] with 3 billion minutes per day spend on Skype video calls [5].

Fourth-generation mobile access networks (4G or LTE: Long Term Evolution
[6]) de�ned by the 3GPP (3rd Generation Partnership Project) [7] allowed an in-
crease in communication bitrate and bandwidth. As mobile operators already have
signi�cant experience in communication services, it is natural to take advantage of
these developments in the access networks. Thus, mobile operators focus on video
communications to leverage the video demand opportunity. Now, the launch of
mobile voice over IP services is more and more via the integration of video and
communication. This is referred to as ViLTE (Videotelephony over LTE) [8].

The development of these services and the end-to-end optimization of these
systems are closely linked to the perception of quality by the user and his satisfaction
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with the service rendered. In this sense, there is a strong need for a measure of
user satisfaction and perception. Indeed, media service providers are increasingly
interested in evaluating the performance of their services as perceived by end-users,
in order to improve and better understand the needs of their customers. Network
operators are also interested in this measure to optimize network resources and
possibly (re)con�gure network settings to increase user satisfaction. Audiovisual
quality measurement techniques are used to address two main cases. The �rst one
concerns the planning of new telecommunication technologies under development,
such as speech/video coding or speech/video denoising algorithms. The second one
is focused on monitoring existing telecommunications by assessing the quality of the
o�ered services and evaluating them.

There are several ways to get information about perceived quality. On the one
hand, subjective evaluations are carried out in well equipped laboratories to inves-
tigate the perception of the end user. On the other hand, objective measures of
quality are often used to study the measurable parameters of the whole system,
describing the Quality of Service (QoS) in a technical way. However, these parame-
ters cannot describe all the variables that in�uence the perception of quality on the
end-user side. For this reason, Quality of Experience (QoE) was de�ned to better
re�ect the quality perceived by end users.

For telephony services, decades of research and standardization works (notably
by ITU-T, IETF, ETSI, etc.) and the operation of networks have allowed to deter-
mine representative metrics of the quality perceived by the end-user (delay, audio
quality, echo, noise, loss of information, etc.)[9] and to develop automatic tools al-
lowing to know the performance of the network and its impact on end-to-end quality
(such as passive probes to capture and analyze data �ows in networks, or automatic
systems used in mobile networks to perform tests that reproduce the experience of
a client).

However, telecommunication operators and vendors have not strong expertise
when it comes to ensure the supervision of these new videophone services. Indeed,
there is a lack of experience to determine the right representative metrics and the
associated thresholds to judge the acceptability of the quality of a service and to use
tools with reliability and e�ciency. The added value of the services o�ered by these
operators lies largely in the fact that they are quality guaranteed. For example,
4G mobile access networks guarantee privileged processing of data transmitted on
bearers marked by a Quality Call Indicators (QCI). QCI is a parameter present in
the signaling at the establishment of an IP �ow and making it possible to �x its main
features, including its order of priority [10]. Thus, the QCI is equal to 1 for voice
(low latency and packet loss with guaranteed bit rate), 2 for video (lower priority
and packet loss but higher latency with guaranteed bitrate) and 5 for IMS signaling
(absolute priority, without guaranteed bitrate), as opposed to the so-called Over The
Top or OTT services, which use a non-prioritized best e�ort IP data transmission
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channel. However, without any means of controlling (and ultimately proving) this
end-to-end quality gain, this competitive advantage is partly ine�ective.

This is why the development of appropriate methods for measuring and mon-
itoring the perceived quality of these new services is becoming a major challenge
for telecommunication operators. Beyond the complexity of access to data (sepa-
ration of signaling and real-time data transport �ows, security by data encryption,
privacy), there is the question of the relevance of network indicators to represent
the perceived impairments by the �nal user.

As mentioned above, the state of the art is rich in terms of voice or telephony
quality measure. The main dimensions of perceived quality which are also found
in regulatory systems, such as those applied in France for �xed telephony [11] and
mobile telephony [12] are then:

� access to the service (service availability, call setup time),

� the intrinsic quality of conversational speech signal (generally characterized
by scores between 1 for "very bad" and 5 for "excellent" called Mean Opinion
Scores or MOS),

� the maintenance of the call (e�ciency of cell changes in mobile networks, hung
up prematurely).

Voice quality metrics are well mastered, most often standardized (notably by
the ITU, in the E, G and P series of recommendations [13]), and the methods
for evaluating them are proven by long years of experience. The most emblematic
method, known as the Perceptual Objective Listening Quality Assessment (POLQA)
[14, 15] , concerns the measurement of mean opinion scores from an analysis of
the audio signal received from a transmission chain and its comparison with the
corresponding reference in the sending side.

These di�erent metrics are integrated into test or supervision tools, manufac-
tured by some specialized companies (for example the French companies Witbe,
IP-label and Opale Systems, but also, among others, Rohde & Schwarz, Opticom,
Keysight, Viavi or Exfo) and sold (often very expensive) to telecommunication op-
erators.

The voice quality measurement tools, thanks to a long experience, are now em-
bedded reliable metrics useful to diagnose and correct problems. The situation is
absolutely di�erent for conversational audiovisual services, for several reasons.

� Technical complexity of measuring video quality. The video content is far
more complex than the speech because of the amount of spatial and temporal
information it contains.
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� In�uence of the coding and the transmission in IP networks.

� Multiplicity and complexity of used terminals and screens of di�erent size (PC,
smartphone, TV, etc.)

However, the operational needs are beginning to emerge. For many years, test
tool manufacturers have been o�ering solutions dedicated to the supervision of au-
diovisual streaming services and trying to adapt them to the problem of conversa-
tional services. The technical di�culties mentioned above indicate that, most of the
time, these tools are specialized on a service available with a given image format
and on a given terminal model. In addition, the absence of universally recognized
or standardized metric results in an abundance of proprietary methods that are in-
comparable among themselves and whose correlation with the perception of the end
user is questionable.

Operators are therefore reluctant to embark on major investments whose relia-
bility is not proven. There are certain standards, but telecommunications operators
urgently need tools that are adapted to their needs. This will be made possible
if they have the most possible generic knowledge about representative metrics of
the quality perceived by their customers and how to estimate them automatically,
but also if this knowledge is shared with the ecosystem, especially manufacturers
of measurement tools. The latter have every interest in being able to justify the
relevance of their technical approach on the basis of results published in scienti�c
journals or in standardization bodies. The �nal bene�t of this work goes to the user
of the services, to which we can provide a veri�able quality of service.

Based on the rapid growth of the use of these services, as well as on the available
state of the art from telephony and in the �eld of audiovisual broadcasting services,
the elaboration of reliable, long-lasting and recognized solutions for monitoring con-
versational services is necessary.

1.2 Technical context

1.2.1 ViLTE

Long-Term Evolution (LTE) is a standard for high-speed wireless communication
for mobile devices and data terminals, based on the2nd and 3rd mobile network gen-
eration technologies. LTE networks can deliver mobile broadband with greater data
capacity and lower latency. However, as there is no circuit-switched voice domain in
LTE, the mobile industry has adopted a globally interoperable IP-based voice and
video calling solution for LTE, known as VoLTE, which also enables development
of new innovative communication services. VoLTE is a foundation for a modern
user experience including services like HD voice, video calling, HD conferencing, IP
messaging and contact management, as well as new innovative services.
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Based on the IP Multimedia Subsystem (IMS) core network, voice services over
LTE can be enhanced to a high quality conversational video calls by adding a video
capability, providing users with synchronized full-duplex voice and videostreams.
With the video communication over cellular LTE network (ViLTE), users can the-
oretically make one-to-one or one-to-many video calls, switch to video at any point
during a call, and drop video at any point to continue with just voice.

ViLTE represents an opportunity for operators to o�er a high-quality voice,
video, and rich multimedia experience to end users, in order to compete against
OTT applications. In addition to the quality of experience, ViLTE is supposed to
allow operators to provide security and �exibility, what the OTT video apps cannot
guarantee. However, mobile operators' deployment of ViLTE applications has not
been widespread with only 16 launches as of August 2017 (in comparison, there are
113 VoLTE launches and 621 LTE Launches). Therefore, it is important to identify
the factors and challenges that block the adoption of ViLTE.

To fully exploit the potential of ViLTE, the services provided by di�erent op-
erators must be interconnected. In fact, subscribers must be able to reach others
without having to worry about whether the called party is subscribed to the calling
party's network. As ViLTE possesses a very diverse set of parameters, it is more
challenging to interconnect ViLTE services than to interconnect VoLTE services, re-
ducing the bene�t of ViLTE for operators through additional cost and complexity.
In addition, ViLTE is a video calling service with a guaranteed quality and conse-
quently may impact stability of the network unless network resources are planned
carefully. This requires consideration and time, which increases complexity of the
service whose demand is not widespread. Lastly, it may be di�cult to coordinate
interconnect charging and troubleshooting in interconnection scenarios due to orga-
nizational reasons.

Country Operator
Argentina Movistar
Australia Telstra

Brazil TIM Brasil
Indonesia Smartfren

Macau CTM
Slovakia 4ka
Turkey Turkcell

Argentina Personal
Czech Rep T-Mobile

Table 1.1: ViLTE deployment status (source: GSA)
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1.2.2 RCS IP video call

Rich Communication Services (RCS) is a functionality of IMS de�ned by the GSM
association and o�ers to the customer a set of innovative features to complete the
basic functionality o�ered by SMS: the customer can initiate individual or group
chat sessions and have rich voice and video calls. RCS combined with VoLTE can
bring new opportunities for operators and enable them to compete against OTT
players.

RCS has the advantage of inter-working between networks and devices, unlike
OTT services (no application is required on the caller and callee sides). For operators
with an IMS network, RCS compatible devices connect through appropriate access
such as Wi-Fi, LTE and 3G. The device must then register and authenticate with
the ability to use the RCS messaging service.

Once the device is registered, the IMS network routes all RCS messages to the
RCS messaging service and to other IMS networks. RCS services include standalone
messaging, 1-to-1 and group chat, �le sharing, sending audio messages, enhanced
voice communication before and during the call, geolocation. RCS o�ers better
quality thanks to the possibility of integrating QoS and Resources Management.

The RCS IP video call service allows to a user under only 3G or LTE network
cover to use the ViLTE service which guarantees a quality of service during the video
telephony call on IP and the continuity of the service with failover on the circuit
domain if the HSPA coverage or LTE is no longer available during the videophone
session. If the usage is switched on the 2G radio the call continues with only the
voice component. If the call is switched to the 3G radio, the video call can continue
in circuit mode.

1.2.3 WebRTC

WebRTC is an open source standard for the web multimedia conferencing systems
published by Google in 2011 [16]. It is a technology speci�ed by the World Wide Web
Consortium (W3C) and the Internet Engineering Task Force (IETF) to provide real-
time communication capabilities to media-capable end points (e.g. browsers, native
applications) [17]. It represents an HTML5 extension for real-time communications,
enabling live media communications between two or more parties using standardized
web technologies.

It has been developed to enable communication with only few lines of JavaScript
code, without any plugins, and it is supported in browsers such as Chrome, Fire-
fox and Opera [18]. IETF has de�ned a set of protocols to exchange data (voice,
video, text, etc.) in peer-to-peer mode, including NAT traversal protocols with ICE
(Interactive Connectivity Establishment). A key issue is that the signalling pro-
tocol between end points is not fully speci�ed and left to service providers. The
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only signalling constraint is to rely on JavaScript Session Establishment Protocol
(JSEP) [19] which makes use of Session Description Protocol (SDP) to exchange
media capabilities and other parameters (e.g. ICE candidates).

The standardization goal is to de�ne a WebRTC API that enables a web appli-
cation running on any device, through secure access to the input peripherals (such
as webcams and microphones), to exchange real-time media and data with a remote
party in a peer-to-peer fashion. Details on the WebRTC architecture and principle
APIs are given in Appendix 7.

A comparison between the listed above video call technologies is summarized in
Table 1.2.

Technology WebRTC RCS ViLTE
De�nition Web Real-Time

Communications
Rich Communica-
tions Services

Video over LTE

Developed by Open Source,
Web Developer
Community

Telecom Stan-
dard, GSMA

Telecom Standard,
GSMA, 3GPP

Standard API: W3c,
RTCWeb(transport):
IETF

IR.84 v12.0, IR.74
v2.0

IR.94 v12.0, 3GPP
(TS 26.114 v15.0.0)

Providers OTT & operators Network Opera-
tors

Network Operators

Prerequisites None IMS IMS
Device Platform and De-

vice independent:
Web, Mobile

Modern and com-
patible smart-
phones

Modern smartphones

Coverage Internet Data Cellular (3G, 4G) Cellular (4G)
Audio codecs Opus (RFC

7874), AMR,
AMR-WB, G722

AMR AMR, AMR-WB

Video codecs VP8,VP9, H.264 H.263, H.264 H.264, H.265
RTCP Sender Report

(SR) & Receiver
Report (RR)

SR & RR SR & RR

Adaptation
Error recovery

SAVPF( Secure
Audio Video
Pro�le Feedback)

AVP (Audio
Video Pro�le)

Extended AVP Feed-
back

Table 1.2: Overall WebRTC - RCS - ViLTE comparison



12 Chapter 1. Context

1.3 Re�ection

The aim of this thesis is to study and propose representative metrics of perceived
quality associated with video calling and video conferencing services. These metrics
are to be determined using information from the audio signal and video, but also
by analyzing the service elements accessible at the terminal or network equipment
(service platforms, in particular). Our �rst focus was to model the perceived quality
of the audiovisual services using technical information collected at the terminals and
networks using datamining methods.

Thus, the research studies have to rely on o�ine methods, to collect and ana-
lyze usage and perception data in large quantities from the users themselves. This
requires access to the technical and usage data of a video conversational Orange
service with a large number of customers. To achieve this goal we determined three
possible tracks:

� ViLTE: possible deployment in addition to VoLTE in some countries.

� Web RTC: several internal projects giving place to experiments.

� Orange Libon: OTT solution already widely deployed, but not yet in video
context.

A study conducted in 2014 by Orange Labs on digitalization and uni�ed com-
munications has shown that WebRTC solutions would strengthen Internet and data
access services for Small and Medium size Entreprises (SME). Following this �rst
study and technical experiments, it was decided, as part of a research project, to
conduct an experiment with Orange Ivory Coast's teams on an application developed
internally named "PLACE" to:

� technically test the solution in Ivory Coast,

� measure and validate the bit rates required for good audio and video quality,

� evaluate perceived quality for di�erent communication scenarios,

� evaluate the quality of the service "PLACE".

We consider "PLACE" for our WebRTC option solution.
Libon [20] is a voice-over-IP communication application developed by Orange.

It o�ers High De�nition (HD) voice calling out to mobile numbers, voice mail and
online chat messaging features on iPhone and Android clients.

Between ViLTE, WebRTC and Libon, our choice of the adequate solution for
our study was based on several criteria. First, it is essential to precise if the service
is existent, how many users use it and if it is commercialized. Then it comes to
determine the availability of the technical information ( from network and terminal),
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the client perception information (test results, embedded agent, regular feedback
via polls, ...) and the way to access to these information (con�dentiality/right of
use, access rights, organization of the database, ...). Table1.3 summarizes the
comparison between the services.

ViLTE WebRTC Libon
Voice service Yes Yes Yes
Type of service Operator video

call
collaborative ex-
perimentation

Commercial

Number of
users

0 "Place": 40 Around 1 million

Video service No Yes No
Technical Yes Yes Yes
information
Network infor-
mation

IP Probes, SIP IP
and RTP metrics

No PF data collection

Terminal infor-
mation

No GetStats Collection of
usage data +
random question-
naire

Type of collect No "Place" 1 ticket
per call

Centralized col-
lection server

Identi�cation
data

No Yes Yes

Application No No Yes
polls
Access to data No Yes (for "Place") Partially
Con�dentiality No possibility of

anonymizing the
data

very important

Table 1.3: Overall WebRTC - RCS - ViLTE comparison

After analyzing the possible solutions to apply QoE modeling of video telephony
and visioconference services, we notice that there is not a satisfactory solution.

� For ViLTE: di�culties in its deployment in France; no client data available

� For WebRTC: limited number of users of Orange applications (Place)

� For Libon: no video service o�ered.

In order to increase the accuracy of a predictive model, it is essential to have a
fairly consistent database. Taking as the �rst selection factor the size of the available
database, we chose the Libon service. On the other hand, despite the fact that Libon
is only providing a voice call service, it had a prototype of the video component that
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was considered to be integrated later (this was at the beginning of the thesis). We
have launched our statistical studies on voice call data with the objective of applying
the same methodology with video calls once they are deployed. This study is a �rst
step for using huge network data and demonstrating opportunities o�ered by big
data and statistical tools. The next steps are to develop this kind of methodology
with new data sets and to share models via existing Orange research tools. Detailed
description of the collected Libon database and the obtained results are presented
in Appendix II. Statistical and correlation studies show that after pre-treatment of
the database and elimination of the outlier information, we are face to insu�cient
volumetry. On the other hand, the database is fragmented: di�culty to �nd users
with close pro�le (same country, access network, codec, ...).

Given these impossibilities and technical constraints that have made the inte-
gration of visiophony services is still in development and that there is not, at the
beginning of the thesis, a usable Orange service for video call data collection, we went
back to classic solutions namely the conduct of subjective test companies. Thus,
we studied the impact of network degradation on the video call service end user
perception and we investigated the representative objective metrics for the global
quality and for the detection of possible video artifacts with the determination of
the corresponding annoyance thresholds.

In next Chapter, we will present the state of the art in audiovisual quality
evaluation before presenting our research works and contributions in the followings
Chapters.
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Introduction

With the rapid development of broadband telecommunication technologies and the
expansion of mobility (3G, LTE, 5G and WIFI), various applications (e.g. video
telephony, video-sharing and e-learning) have been created to complement face-
to-face conversations. They are usually low-cost, compatible with mobile devices,
capable of transmitting multimedia contents, thus have achieved widespread pop-
ularity. However, the quality of service (QoS) of these new applications is usually
not guaranteed. In practice, with IP-based networks, there is no guarantee that the
streams transmit without errors. Many processes in the supply chain may degrade
the perceptual quality. Meanwhile, telecommunication operators are competing to
o�er an optimal user experience to their customers. Their main goal is to estab-
lish a trade-o� between the user satisfaction and the available network resources.
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Thus, special attention is paid to assess the quality of experience through the de-
velopment of tools and the implementation of evaluation methods. For audiovisual
service providers, the Quality of Experience (QoE) is particularly studied through
the perception of the quality of the media (ie the quality of the audio and/or video
signals returned to the user). Perceived quality, and more broadly QoE, becomes a
key element that must be studied and measured.

In this chapter, we will present the state of the art and the researches conducted
in the domain of the evaluation of the audiovisual quality. First of all, it is essential
to de�ne the concept of Quality of Experience. Next, we will highlight the di�erent
impact factors that may in�uence the perception of the quality of a conversational
service. Then, we will detail the two types of approaches existing to evaluate the
quality: the subjective and the objective methods.

2.1 Perception of quality: de�nitions and concepts

In order to take full account of the impact of QoE in current and future conversa-
tional services, it should �rst be necessary to de�ne this notion precisely. Because
of the multiplicity of criteria that can be taken into account, it is di�cult to de�ne
a concept as broad as the QoE.

The term QoE appears in many works. In [21] Kalevi Kilkki proposed a generic
de�nition of the QoE: the basic character or nature of direct personal participation
or observation. We can �nd an extensive study of the meaning of quality and
experience in [22]. The writer has de�ned the experience as the individual stream
of perceptions ( of feelings, sensory percepts and concepts) that occurs in a particular
situation of reference. Therefore, experiencing may have direct relation with feelings
not only with pragmatic concepts. The quality is presented asthe judgment of the
user based on those feelings and his expectations. These de�nitions are in coherence
with the latest de�nition of QoE presented by QUALINET through its white paper
[23]:

QoE is the degree of delight or annoyance of the user of an application
or service. It results from the ful�llment of his or her expectations with
respect to the utility and/or enjoyment of the application or service in
the light of the users personality and current state.

This de�nition is now considered as the universal one adopted by the experts
of the domain and by the ITU-T Study Group 12. In this de�nition, the term
"personality" is used to mean "the characteristics of a person who count for a
coherent pattern of feelings, thoughts and actions" [24]. The term "current state"
is used to mean "temporal or situational changes in a person's feelings, thoughts or
behavior". It can be noted that the current state (relaxed, happy, stressed, etc.)
is both an in�uential factor of the QoE, but also a consequence of the experience.
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Finally, two words can draw our attention in the above de�nition of the quality of
experience:

� Application: software and/or hardware that allows the interaction of a given
content. This may include entertainment, information, documentaries...

� Service: Use that we can make of something.

In the context of conversational services, QoE can be in�uenced by many factors
such as the type of service or the service itself, the content, the network, the broad-
cast material, the application used, the context of use, expectation, past experience,
etc [25]. In the following section we will de�ne and classify the di�erent factors and
parameters that impact the user perception of a conversational audiovisual service.

2.2 In�uence factors

Existing studies have proposed classi�cations of factors impacting QoE, often termed
QoE in�uence factors, for various types of multimedia services [26, 27, 28, 29]. While
a factor is a characteristic which in�uences QoE, it is not a part of the perceived QoE
itself. Extensive work on factor classi�cation has been performed by S. Jumisko-
Pyykkö [30] in the form of a User-Centered Quality of Experience (UC-QoE) model
where characteristics of the user, system/service, and context of use are identi�ed
as contributing to di�erent experiential dimensions of QoE.

In the context of communication services and applications, the factors in�uencing
QoE are de�ned by QUALINET in its white paper [ 23] as any characteristic of a
user, system, service, application, or context whose actual state or setting may have
in�uence on the Quality of Experience for the user. Thus, there are many factors
that have an impact on perceived audiovisual quality. These factors depend on the
application, network technology, user terminal, etc. In [31] the authors classi�ed the
impact factors of general networked services and electronic communication services
and applications into three categories:

� Human in�uence factors: any variant or invariant property or characteristic
of a human user (demographic and socio-economic back-ground, physical and
mental constitution, user's emotional state).

� System in�uence factors: properties and characteristics that determine the
technically produced quality of an application or service.

� Context in�uence factors: are factors that embrace any situational property
to describe the user's environment.

More speci�cally, in the context of videoconferencing services, the impact factors
of QoE are studied in [32]. The authors consider that the QoE has three dimensions:
System, User and Context. The System dimension is composed of the technical pa-
rameters which are the application QoS, the System QoS and the Network QoS. The
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context one represents the socio-cultural, the situational and the interactional condi-
tions. The user dimension de�nes the role played by the user in the communication
(case of group conversation).

Considering all the studies conducted in de�ning and listing the possible factors
impacting the QoE, we propose in the following section our own classi�cation of these
factors in video conversational services, depending on the source of the degradation.

2.2.1 Network conditions

Network conditions belong to the category of System in�uence factors. Network
design and management are a key element in the quality of a video-conference call.
Typically, network conditions include packet loss, delay, jitter, and bandwidth fac-
tors. The e�ect of these parameters on the perceived quality depends essentially on
the type of the multimedia application. Several studies investigated the impact of
network impairments on the QoE in di�erent contexts [33, 34, 35]. In [36] authors
showed that video content characteristics, the encoding scheme and the error con-
cealment, a�ect the visibility of artifacts caused by network errors (packet loss and
jitter).

For video-conference applications, which are real-time services, the packet loss
rate and the bandwidth are the most important network parameters. Since there is
interactivity, delay and jitter also play an important role, adding echo and loss of
audio/video synchronization.

2.2.2 Applicative characteristics

The content type of the video and the audio streams has an obvious and strong
impact on the overall perceived quality. For example, the luminance level, the
spatial and temporal complexities of the scenes and the ambient noise of the room
have a signi�cant impact on quality, especially when there are other factors, such
as very low bit rate encoding and/or packet loss in the network. Source parameters
that depend on the characteristics of the sequence, such as the nature of the scene
(eg, amount of movement, details, texture, color, contrast, frame size, noise level,
audio frequency, etc.) also have an impact on Human perception of the quality of
the video.

Encoding or compression parameters are important content factors. For stronger
video compression, these will usually give visible blocking (rectangular shaped) dis-
tortions and blurring, whereas wavelet based techniques mostly give blurring distor-
tions as in JPEG 2000. As examples of these parameters, we can mention the type
of used codec (H.264, HEVC, MPEG-2, etc.), number of bits per sample, bit rate,
frame rate, number of layers in the case of layer coding, etc [37, 38].
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For audio, the coding also depends on the content type and service. Several lossy
compression codecs are used for audio media. Among the applicative parameters
in�uencing the audio quality we can mention the quality improvement techniques
such as: echo cancellation, Silence detection and suppression, error correction and
interleaving.

2.2.3 Context

The context characterizes the environment in which the user makes his video call.
The context in�uence factors have been considered in di�erent studies Here we
consider as context factor the one who belong to the following categories:

� Psychological context and Sociocultural background which refer to the pro�le
of the user and its emotional state. These factors are highly complex because
of their subjectivity and strong relation to internal states and processes. This
makes them rather immaterial and therefore much more di�cult to compre-
hend. Several studies were interessted in investigating the importance of these
human factors and their impact on the QoE [39, 40, 41, 42, 43]. In some em-
pirical studies, subjective and physiological indicators are taken into account
in QoE evaluation.

� Spatial and temporal context including user location (home, work, outdoor,
indoor, airport ...), time of day or week (morning, late at night, weekend
...). The location and space, including movements and transitions between
locations have an important impact on the quality of a video communication.
In [44] authors give a detailed explanation of these factors.

� Use case (motivation): interview, call with friend, meeting. activity( walking,
stable ...)

We can cite, as context parameters, the ambient noise level of the room, the
loudspeakers / microphone used, the capabilities of the decoder/computer... This
type of parameters is di�cult to measure and the most often uncontrollable.

2.2.4 Impact of desynchonization

When transmitting data, it does not really matter when a packet is delayed from
arriving. However, with real time conversational communication, the overall delay
between the image and the sound is extremely important. The time that elapses
between a person, who says something, and another who watches and listens to what
has been said, should be as low as possible. Otherwise, a lip desynchronisation will
be noticeable.

Large delay values result in loss of interactivity. In the case of real-time com-
munications, from the application point of view, the delay is generated due to ana-
log/digital conversion, signal compression and decompression, packet encapsulation,
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Figure 2.2: End-to-End communication chain of a video-conference service

2.3 Subjective evaluation methods

Subjective assessments is the most accurate way to measure the quality of a multi-
media stream. In subjective experiments, a number of subjects (observers or partic-
ipants) are invited to attend a set of tests and to judge the quality of the media or
the inconvenience caused by the distortions. The average of the values obtained for
each test sequence is known as Mean Opinion Score (MOS). In general, subjective
assessments are costly and time-consuming. As a result, the number of experiments
that can be carried out is limited and, therefore, an appropriate methodology must
be used to make the best use of resources. In the following sections we will de�ne
the di�erent protocols used in subjective audiovisual, video and audio tests.

2.3.1 Audiovisual quality

Although it is widely accepted that the perceived media quality is a multidimensional
phenomenon, the vast majority of evaluation methodologies assume that the quality
of an audio and/or video signal can be described by a scalar on a one-dimensional
quality scale. The notion of quality is then reduced to a general impression or
overall quality, integrating all the underlying dimensions. The scores collected for
each individual are then averaged, for a given test sequence, on all participants.
The average score of opinion or the MOS (Mean Opinion Score) obtained, will then
determine the level of quality of the evaluated signal.

The ITU has made recommendations for subjective testing procedures. In gen-
eral, these recommendations focus on evaluating a single modality, audio or video,
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at a time. For example, ITU-T P.800, ITU-T P.805, ITU-T P.806, ITU-T P.835
[48, 49, 50, 51] are recommended for voice quality assessment, Recommendations
ITU-R BS.1284-1 [52], ITU-R BS.1534-1 [53] and TU-R BS.1116-1 [54] allow the
evaluation of audio quality while ITU-R BT.500-13 [55] and ITU-R BT.1788 [56]
are dedicated to video quality assessment.

Some standards also suggest methods for evaluating a given modality (audio or
video) in an audiovisual context: ITU-R BS.775-3 [57] and ITU-R BS.1286 [58] allow
the evaluation of multichannel audio (digital television broadcasting) and audio
systems, in general, in the presence of an accompanying image.

In our context of videoconferencing services, in general multimedia systems, the
recommendation ITU-T P.910 [59] provides methods for evaluating video quality.
Only two standards are dedicated to the subjective evaluation of audiovisual quality
for an interactive (ITU-T P.920, [ 60]) or non-interactive (ITU-T P.911, [ 61]) context.

ITU-T P.911 proposes audiovisual quality (AV) assessment methods for non-
interactive multimedia applications (passive context of listening and viewing: TV,
multimedia, etc.). The quality judgment is made on a single scale at the end of the
visualization and the listening of each audiovisual test sequence. Four methods are
proposed under this standard; they are described in the following paragraphs.

Absolute Category Rating (ACR) method

The ACR method, also known as the Single Stimulus Method (SSM), consists of
assigning a quality score after each visualized/heard AV sequence. The given score
should re�ect the participant's view of the perceived overall audiovisual quality,
ie the combined audio and video quality. This evaluation is performed on a �ve-
or nine-point (interval) categorical scale that is explained by �ve items (Excellent-
Good-Fair-Bad-Poor). An illustration of the recommended scales is given in Figure
2.3. The ACR method is an inexpensive method from the point of view of its
application, treatment and analysis of the results. It also has the advantage of
being able to qualify test systems and obtain their ranking according to the level of
quality associated with them.

Degradation Category Rating (DCR) method

The DCR method proposes a presentation of the AV test sequences in pairs.
The sequences constituting the pair are identical to the di�erence that the �rst one
is always presented without degradations (reference) while the second is processed
by the system to be evaluated (and therefore liable to involve degradations). The
processed sequence is always presented after the reference. Only the processed se-
quence is evaluated by the participants in comparison with the reference condition.
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Figure 2.4: Scale of quality degradation (DMOS) at 5 levels.

The scale of assessment here corresponds to a scale of perception of the degradation
(DMOS) as presented in Figure2.4. The duration of the test sequences and the
voting time are identical to those recommended in the ACR method. The main ad-
vantage of this method is that it allows a rapid quali�cation of the level of discomfort
associated with certain degradations generated by the systems under consideration.

Paired Comparison (PC) method

The PC method consists in presenting two identical sequences, with the di�er-
ence that each sequence is treated by a di�erent test system. The reference sequence
(without degradation) can also be included as an additional test system. All com-
binations of sequence pairs A, B, C, etc. should be evaluated (AB, BA, CA, etc.)
and presented in the two possible orders (AB, BA, etc.). The overall AV quality
judgment is here expressed through a judgment of preference for one or the other
sequence of the pair. This judgment is made after the presentation of each pair.
This method is particularly recommended for the comparison of quasi-equivalent
and/or high-quality systems. The recommended duration for the test sequences is
approximately ten seconds, the duration of the voting time must be less than or
equal to ten seconds.

Single-stimulus continuous quality evaluation (SSCQE) method
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A �nal method, the SSCQE method, is a continuous assessment method to col-
lect the evaluation of the participants during the visualization of the test sequences
for which the quality level �uctuates. The testers report their judgment by means
of a slider which can be moved along a continuous scale. This allows a score to
be assigned between 0 and 100 where 100 represents a perfect quality. The scale is
divided into �ve equal segments corresponding to the �ve-point quality scale, the
items characterizing the di�erent levels are identical to those of the ACR method.
No reference is given to serve as a basis for subjective evaluation. The duration of
test sequences proposed is much greater than the previous methods. This can be
between three and thirty minutes.

The choice of one method over another will be guided according to whether the
�xed objective corresponds to a �ne discrimination between several systems, to a
quali�cation of systems or to a detection of degradations.

ITU-T P.920 [ 60] provides recommendations for the evaluation of audiovisual
communication services (interactive multimedia applications such as videoconfer-
encing). The proposed communication tasks (< 5 min) should encourage partic-
ipants to communicate in the most natural possible way and remain focused on
the audiovisual media. ITU-T P.920 describes di�erent communication scenarios to
engage the participant in the activity: question/answer set, comparison of stories
or images, etc. The evaluation of audiovisual quality is carried out on the basis
of a multi-criteria approach. In particular, it is possible to ask the participants to
judge the overall audiovisual quality but also the audio and video qualities judged
separately. In this case the assessment scale is the ACR one with �ve-points level.
It is possible to ask the participants to assess the e�ort needed to interrupt using
the categories: No E�ort, Minor E�ort, Moderate E�ort, Considerable E�ort, or
Extreme E�ort. The communications di�culty and acceptability of communication
can be assessed using a binary choice: Yes or No.

2.3.2 Video quality

For subjectively evaluating the video quality of multimedia applications, the test
protocole is described in Recommendation ITU-T. P.910 [59]. This document pro-
vides information on video display conditions, selection criteria for observers and test
equipment, evaluation procedures, and methods of data analysis. Before choosing
the method to be used, we must take into account the application and the objectives
of the evaluation.

According to the ITU-T. P.910, there are two categories of subjective assess-
ments:

� Quality assessments: the scores given by the participants are on a quality scale,
ie, the quality of the video displayed is good or bad. These evaluations are
used to evaluate the performance of the systems used in optimal conditions.
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� Depreciation tests: judgments made by subjects are on a scale of value, ie, the
distortions of the displayed video are visible or imperceptible. These evalua-
tions are used to assess the ability of systems to maintain video quality under
non optimal conditions. These methods are often used to measure quality
degradation caused by coding or transmission patterns.

The assessment scales, for quality assessment or for the evaluation of degrada-
tion, may be continuous or discrete. Judgments can also be categorical or non-
categorical, adjectival or numerical. Depending on how presenting the video se-
quence, evaluation methods can be classi�ed as a single or double stimulus. In the
simple stimulus approach, only the test sequence is presented, while in the double
stimulus method, a pair of sequences (test sequence and the corresponding reference
sequence) are presented together. The evaluation procedures of ITU-T Rec. P.910
are as for P.911: ACR, DCR and PC.

2.3.3 Speech quality

ITU P.800 [48] describes the methods and procedures for conducting a subjective
assessments of speech transmission quality. The most commonly used method is
Absolute Category Rating (ACR). The Degradation Category Rating (DCR) is also
used on some occasions. Subjective assessment is usually performed under an acous-
tically treated room.

ACR tests are most commonly used to assess the integral quality of speech (ITU-
T Rec. P.800 [48]). In this type of test, a group of listeners evaluates a series of
audio �les (voice) using a �ve-value scale, without having to listen to the original
sequence.

When good quality speech samples are evaluated, the ACR method tends to
be insensitive to small quality degradations. The DCR degradation category as-
sessment procedure, which relies in particular on a disturbance scale and a high
quality reference, seems to be suitable for evaluating good quality speech. The sub-
jects noted the level of degradation and discomfort by comparing with the original
speech signal. In order to standardize subjective tests, ITU P.800 de�nes detailed
conditions such as test material characteristics and the test environment. Subjec-
tive tests are normally performed in a controlled laboratory area, double-walled,
soundproofed room.

2.4 Objective evaluation methods

The current methods of quality assessment are mainly standardized by the Inter-
national Telecommunication Union (ITU)[ 62] allowing a comparison of results from
di�erent laboratories. The ITU-T G.1011 Recommendation provides a reference
guide to QoE assessment methodologies [63]. According to the ITU studies [63, 64],
objective metrics may be classi�ed into �ve main categories depending on the type
of input data:
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� Media-layer models use the audio or video streams to evaluate the perceived
quality. For these models the characteristics of the stream content and decoder
strategies such as error concealment are usually taken into account. The model
ITU-T J.247 [ 65] for video quality assessment belongs to this category.

� Parametric packet-layer model use only the packet header (TCP, RTP, UDP,
IP, etc.) information without having access to the media signal. Such mod-
els are well suited for in-service non-intrusive multimedia quality monitoring.
Among this category we may indicate the Recommendation ITU P.1201 [66].

� Parametric planning models use the quality planning parameters (bandwidth,
packet loss rate, delay, frame rate, resolution, etc.) for network and termi-
nals to predict the quality. For example, the models G.1070 [67] and G.1071
[68] are parametric models for estimating video and audio qualities for video-
telephony and streaming applications respectively. The E-model (Rec. G.107)
is a planning model for audio quality.

� Bitstream-layer models predict the QoE based on both encoded bit stream
and packet-layer information without performing a complete decoding. These
models can be used in situations where one does not have access to decoded
video sequences. The Recommendations ITU P.1202[69] and P.1203 [70] are
bitstream layer models for video and audiovisual media streaming quality as-
sessment.

� Hybrid models are a combination of two or more models from the preceding.
These models analyze the media signal, the bitstream information and packet
header to estimate the perceived quality. For instance, ITU J.343 [71]is on of
the developed hybrid models.

In the following sections we will describe in more details examples of models and
metrics for audiovisual, video and audio quality assessment belonging to the above
categories.

2.4.1 Audiovisual global quality metrics

2.4.1.1 ITU-T P.1201 model

P.1201 [66] describes a parametric non-intrusive model for the assessment of audio-
visual media streaming quality. It is a no-reference algorithm for monitoring the
audio, video and audiovisual quality of streaming based services. The model is com-
posed of two sub-standards describing individual models for two types of application
areas:

� ITU-T P.1201.1 speci�es the model algorithm for the lower resolution (LR)
application area (mobile TV)

� ITU-T P.1201.2 speci�es the model algorithm for the higher resolution (HR)
application area (IPTV).
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The two ITU-T P.1201 model algorithms are no-reference (i.e., non-intrusive)
models which operate by analyzing packet header information available from re-
spective packet trace data, provided to the model algorithms in the packet capture
format (PCAP). Further input information on more general aspects of the stream,
such as the video resolution, which may not be available from packet header infor-
mation, is provided to the model algorithm out-of band, for example in the form
of stream-speci�c side information. As output, the model algorithms provide indi-
vidual estimates of audio, video and audiovisual quality in terms of the �ve-point
absolute category rating (ACR) mean opinion score (MOS) scale. Further, diagnos-
tic information on causes of quality degradation can also be made available [66].

For mobile application area, the block diagram of the P.1201.1 model is shown
in Fig 2.5.

Packet header 
information 

(RTP, UDP, IP)  

Parameter extraction 
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Parameter calculation 
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Side 
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Video MOS 

Audio MOS 

Available to all 
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Figure 2.5: Block diagram of P.1201.1 model

Audio quality estimation module: Taking as input the packet header informa-
tion, the RTP timestamp, sequence number, and payload parameters are extracted
by the audio parameter extraction module. Then, the parameter calculation mod-
ule estimates the length of the lost audio frame per audio RTP packet using the
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extracted audio RTP timestamp and clock rate. At the same time, it calculates
the number of audio packets per RTP timestamp. The lost audio frame length in
milliseconds is the calculated using average audio burst packet loss length and audio
frame length.

Video quality estimation module: Taking as input the packet header infor-
mation, the video RTP timestamp, sequence number, market bit, and payload are
�rstly extracted. Then, the parameter calculation module for video estimates video
packet-loss length based on the video RTP sequence number and lost bytes for lost
video RTP packets using the same method as that of parameter calculation for audio
module.

Audiovisual quality estimation module: is an integration model that combine
scores calculated by video and audio modules into a global audiovisual quality score.

Recommendation ITU-T P.1201 is veri�ed and recommended for unreliable con-
tent transmission (transmission over RTP/UDP for lower resolution, and transmis-
sion over MPEG2-TS/RTP/UDP or MPEG2-TS/UDP for higher resolution. Re-
cently, a new Recommendation ITU-T P.1203 is published and restricted to reliable
content transmission as in TCP protocols. ITU-T P.1203 is a parametric bitstream-
based quality assessment model of progressive download and adaptive audiovisual
streaming services over reliable transport [70].

2.4.1.2 ITU-T G.1070 model

ITU-T G.1070 [67] describes a parametric computational model for point-to-point
videophone applications over IP networks standardized by ITU in 2012. The algo-
rithm estimates the perceived quality based on measurement parameters, but not
based on the actual video and audio signals. The inputs of the model are infor-
mation about codec, coded bitrate, transport errors and client information about
bu�ering.

The algorithm is trained to estimate the quality for typical and average audiovi-
sual content, and give the same score for a given codec, bit rate and transport error
situation independent of the audiovisual content.

This parametric algorithm is able to score live video, since detailed information
about the source video is not required. The algorithm typically requires information
about codec and coded bit rate. This type of algorithm may still be applicable when
only an encrypted bitstream is available.

G.1070 model is composed of three quality modules: the Audio, the Video and
the Audiovisual modules. As output, the modules provide individual estimation of
the audio and video qualities and the model combines all of them in an integration
function for overall audiovisual quality on the 5-point ACR scale (MOSA , MOSV

and MOSAV ) [72].
The speech quality model is inspired by the recommendations G.107 and G.107.1

with the same parameters. The model is described as follows: For narrowband
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Figure 2.6: ITU-T Rec.1070 model

speech:
Q = 93; 193� Idte � Ieef f (2.1)

Idte de�nes the degradation caused by talker echo as follows:
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Ie � ef f represents the degradation caused by speech coding and packet loss
and is de�ned as:

Ieef f = Ies + (95 � Ies):
Ppls

Ppls + Bpl s
(2.5)

and for the Wideband audio

Q = 129 � IdteW B � Ieef f;W B (2.6)

The video quality estimation module is de�ned by the following equation:

Vq = 1 + I coding exp(�
Pplv
DP plv

) (2.7)
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where I coding expresses the video quality impacted by the coding distortion:
video bit rate and video frame rate. DP plv is the packet loss robustness factor which
represents the degree of video quality robustness due to packet loss.Pplv represents
the packet loss rate.

The general audiovisual quality estimation module is:

MM q = m1MM SV + m2MM T + m3MM SV MM T + m4 (2.8)

where MM SV represents audio-visual quality and is de�ned as:

MM SV = m5Sq + m6Vq + m7SqVq + m8 (2.9)

MM T represents the degree of the audio-visual quality due to audio/video delay
and synchronization and is expressed as:

MM T = max(AD + MS; 1) (2.10)

AD = m9(TS + TV ) + m10 (2.11)

MS = min (m11(TS � TV ) + m12; 0)ifT S � TV (2.12)

MS = min (m13(TV � TS) + m14; 0)ifT S < T V (2.13)

where AD is the absolute audiovisual delay andMS is the audiovisual media
synchronization.

The G.1070 model can be applicable only for the conditions summarized in the
table 2.1.

Codec type MPEG-4, MPEG-3, ITU-T G.1070
Video format QVGA, QQVGA, VGA

Video display size (inch) 4.2, 2.1, 9.2

Table 2.1: Conditions of ITU G.1070 model

In the literature, various studies suggested methods to improve the quality assess-
ment accuracy of the G.1070 model and thus to get better correlation between the
calculated objective scores and the results of subjective tests. Considering that the
video quality have high variations depending on video content, in [73, 74] Joskowicz
et al. proposed an enhancement of the model by taking into account the char-
acteristics of the video content. A new parameter representing an estimation of
spatial-temporal activity is included in the model. The evaluation of the enhanced
model shows that it performs much better than the original model and correlates
better with the subjective quality perception.

In [75] Narvekar et al. presented a method to estimate the video parameters
of the G.1070's input in order to use the G.1070 video quality estimation model
for monitoring applications. An estimation function is added to compute bit rate,
frame rate, and packet loss rate from the received encoded video bit stream. These
parameters are then used by a G.1070 video quality model.
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In order to make the G.1070 model up to date with the continuous development
of the video telephony applications, subjective studies are conducted to propose a
set of coe�cients to extend the G.1070 opinion model to support current generation
of video codecs (H.265/HEVC, VP9) and full-HD video format [76, 77].

More recently, Huawei Technologies Co. Ltd. are interested in studying the
G.1070 model and are conducting studies to extend the usage cases of the model.
The video codecs type are in continuous development and the resulted stream quality
is in�uenced. Thus, Jing Xiao and Shijun Zhang carried out a series of training
experiments to obtain coe�cients for the H.264 codec in its Hight Pro�le (HP)
and Baseline Pro�le (BP) with di�erent parameters. On the basis of eight tests,
parameter values for the parameters v1 to v12 have been derived for the H.264 codec
on small screen (6 inches). Details on the tests are described in the contributions
C-129 [78] and C-130 [79] discussed in the ITU meeting on September 2017. The
results have been �tted using the algorithm described in Rec. G.1070.

Codec H.264 H.264 H.264 H.264 H.264 H.264 H.264 H.264
BP BP BP BP HP hP HP HP

Format VGA 4 CIF 720p 1080p VGA 4 CIF 720p 1080p
Bit 128, 128, 256, 512, 128, 128, 256, 512,

rate (bps) 192, 256, 384, 768, 192, 256, 384, 768,
512, 512, 512, 1024, 512, 512, 512, 1024,
768, 1024, 2048, 4096, 768, 1024, 2048, 4096,
1024 1280 3200 6400 1024 1280 3200 6400

Frame 8, 15, 8, 15, 8, 15, 8, 15, 8, 15, 8, 15, 8, 15, 8, 15,
rate (fps) 30 30 30 30 30 30 30 30

Packet loss 0,0.5, 0,0.5, 0,0.5, 0,0.5, 0,0.5, 0,0.5, 0,0.5, 0,0.5,
rate (%) 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3

Table 2.2: Conditions of ITU G.1070 extended model

2.4.2 Video quality metrics

The objective evaluation of video quality was �rst performed with simple signal pro-
cessing tools such as the Peak signal-to-noise ratio (PSNR) and Structural SIMilarity
index (SSIM). These metrics are basically used for �xed image quality evaluation. In
order to adapt these image based metrics, extended versions are developed applying
temporal pooling methods. Various research studies have shown that these objec-
tive measures are limited and do not correlate well with subjective opinions [80, 81].
The use of more elaborated objective methods is therefore necessary. Then, the
major challenge is to design a metric that models the behavior of the human visual
system. This problematic has already been studied on a large scale and a variety
of algorithms for video quality estimation have been proposed [82, 83]. However,
few standards are developped and confusions on representative quality metrics exist.
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The objective video quality metric models that result in ITU are mainly validated
in the Video Quality Experts Group (VQEG)[ 84].

Some researchs proposed parametric-packet layer, parametric planning, and bitstream-
layer models in [85, 86]. Commonly, the limitation of the packet-layer and bitstream-
layer models is the fact that they are adapted to speci�c codecs and network pro-
tocols. Furthermore, they are dedicated to particular services, in general for IPTV
and streaming video quality assessment.

In this thesis we are interested in full reference media-layer video quality models
and no-reference media-layer video quality metrics. We propose an up-to-date review
and performance comparison of the existing metrics.

2.4.2.1 Full Reference (FR) metrics

Research studies have been conducted to compare the performance of the state-
of-the-art full reference objective video quality metrics. In one of the most recent
reviews (2011) S. Chikkerur et al. [87] classi�ed full reference metrics into three
categories: (i) traditional point-based metrics (MSE, PSNR), (ii) natural visual
characteristics and (iii) perceptual Human Visual System (HVS). They performed
a comparison evaluation of the reviewed FR metrics on the LIVE Video quality
database. They found that the metrics MS-SSIM, VQM and MOVIE are the best
performing video quality assessment algorithms. Further, principles of perceptual
models for predicting video quality and survey of objective metrics are investigated
in [82, 88, 89].

In video quality assessment, Full Reference (FR) metrics perform a comparison
between a reference free degradation video stream and a distorted video stream. In
this type of approach, we assume that the loss of quality is directly related to an
error signal added to a signal initially "Perfect". Since this type of metrics requires
the entire reference video to be available, they are not useful in real time evaluation
and in monitoring. Full Reference metrics generally impose a precise spatial and
temporal alignment of the two signals.

The selected algorithms, later studied, are widely cited in the literature, and
have been reported to have good performance. Moreover, the authors of the selected
metrics have released the source codes of their respective metrics. Therefore, the
presented results are easy to reproduce. The ten FR video quality assessment metrics
described in the following subsections include Peak Signal to Noise Ratio (PSNR),
Structural SIMilarity index (SSIM) [ 105], Multi-Scale Structural SIMilarity index
(MS-SSIM) [92], Video Quality Metric (VQM) [ 93] (including its general model and
videoconferencing model), MOtion-based Video Integrity Evaluation (MOVIE) [95]
, ViS3 [97], SSIMplus [99] and Video Multi-method Assessment Fusion (VMAF)
[101].

Objective MOS prediction metrics are also standardized by the ITU (J. series
recommendations) to assess the video quality. It would be interesting to compare
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Metric Year Approach Pooling
method

Value
Range

Execution
time

Tool

(normalized
based on
PSNR)

PSNR Mean square
error mea-
surement

Mean over
the frames

[0, 100] 1 MSU soft-
ware [90]

SSIM
[91]

2004 Structural
distortion
measurement

Mean over
the frames

[0, 1] 1.05 MSU soft-
ware [90]

MS-
SSIM
[92]

2003 Multi-scale
structural
distortion
measurement

Mean over
the frames

[0, 1] 2 MSU soft-
ware [90]

VQM
[93]

2004 Edge impair-
ment �lter

Compute
Temporal
Information
(TI)

[0, 1] 30 NTIA soft-
ware [94]

MOVIE
[95]

2010 Gabor �lter
bank

Temporal
distortions
index

[0, 1] 456 Source
Code [96]

ViS3 [97] 2014 detection-
based and
appear-
ance based
strategies of
the MAD
algorithm

Spatiotemporal
dissimilar-
ity index

[0, 100] 23 Matlab
code [98]

SSIMplus
[99]

2015 Contrast sen-
sitivity func-
tion

Mean over
the frames

[0, 100] 4 SSIMwave
software
[100]

VMAF
[101]

2016 Machine
Learning

Temporal
information
among the
elementary
metrics

[0, 100] 26 Source code
[102]

OPVQ
[103]

2016 ITU-T J.247 Mean over
the frames

[1,5] 19 OpenVQ
Toolkit
[104]

Table 2.3: Characteristics of full reference objective metrics
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their prediction accuracy with the diverse full reference metrics. Unfortunetly, we do
not have access to these models because of their commercial licenses. For instance,
the model J.247 is owned by the company OPTICOM. We introduce in our study
an open source implementation of this model named OPVQ [103]. In Table 2.3 we
summarize the characteristics of the surveyed metrics. In the following subsections,
Fref and Fdist denote the reference and distorted video frames respectively. The
subscript ref denotes reference anddist distorted video streams. Moreover,W and
H represent the width and the height of videos respectively.

Peak Signal to Noise Ratio (PSNR)
PSNR is the most widely used FR objective signal distortion and quality metric. It
is a pixel base signal quality comparison metric by quantifying the error between
the distorted signal and the reference signal and is de�ned as:

PSNR = 10 log10
L 2

MSE
(2.14)

Where L is the dynamic range of the pixel values, e.g., for 8 bits/pixel image we
have L = 2 8 � 1 = 255 and MSE is the Means Square Error de�ned as:

MSE =
1

W H

HX

j =1

WX

i =1

(Fref (i; j ) � Fdist (i; j ))2 (2.15)

The PSNR is used to express the quality of reconstruction of an image compres-
sion lossy algorithm. When the reference and the degraded images are identical, the
value of PSNR is unde�ned (+ 1 ). It is very commonly used because there are many
situations where its use makes sense and is very suitable for optimization methods.
Moreover, its simplicity calculation and execution speed are arguments that justify
its use quasi-exclusive by the signal processing community. Furthermore, there is
currently little metric questioning its use. PSNR is highly criticized because it does
not well correlate with the human perception of the measured quality. Indeed, it
does not model the human visual system, assumes that the visual quality decreases
when signal distortion increases. However, it is well known that the quality depends
not only on distortions but also on the content of the image, or also on the location
of distortions.

Moreover, in the case of video assessment, approaches such as PSNR, do not
take into account the temporal content of the video as they are calculated on each
image pixel by pixel, which sometimes has a disastrous e�ect on metric results
(time-synchronization, spatial or temporal misalignment).

Finally, across contents there is no strong and consistent relationship between
these metrics and the average subjective opinion score of observers. Researches in
recent decades tend to develop objective metrics, essentially full reference, taking
into account the characteristics of the human visual system. Other approaches, such
as structural approaches have been implemented based on local similarities.
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Structural Similarity (SSIM)

It is developed by Z. Wang et al. and presented in [105]. SSIM is a metric
that calculates the similarity between two signals. Basically, it is used for quality
assessment of images. In the case of video signals, SSIM index is applied frame-by-
frame on the luminance component of the video [91], and the overall SSIM index for
the video is computed as the average of the frame-level quality scores. Unlike PSNR,
it does not compare images pixel by pixel but by properly selected smallN � N
blocks. Thus, SSIM is sensitive to the structural distortions as the case of the human
eye sensitive to changes in the structure. Consequently, SSIM has a signi�cantly
reduced computational costs and still provide good experimental results.

Similarity index is measured within sliding window. Thus, the formula to calcu-
late SSIM between two windowsX and Y of common sizeN � N is:

SSIM (Fref ; Fdist ) =
(2� ref � dist + c1)(2� ref;dist + c2)

(� 2
ref + � 2

dist + c1)( � 2
ref + � 2

dist + c2)
(2.16)

With � ref and � dist are the average intensities ofFref and Fdist respectively. � 2
ref

and � 2
dist are the variances ofFref and Fdist respectively, � ref;dist is the covariance

of Fref and Fdist . c1 and c2 are two variables to stabilize the division with weak
denominator.

Multi-scale Structural Similarity (MS-SSIM)

MS-SSIM is an extension of SSIM index that incorporates the details of the
frame at di�erent resolutions (or scales) [92]. A low-pass �lter is iteratively applied
to the reference and degraded frame. Then, a process of sub-sampling of the �ltered
image by a factor of 2 from the previous iteration is applied. At each scale, the
MS-SSIM algorithm evaluates the value of SSIM and attributes less weight to the
luminance term unlike the contrast and structure terms.

MS-SSIM is computed as fellow:

MSSSIM =
1

M w

M wX

i =1

SSIM (F i
ref ; F i

dist ) (2.17)

With M w is the total number of scales, andF i
ref and F i

dist are frame contents at
the i � th local window. We used the extension of theMSSSIM index to video by
applying it frame-by-frame on the luminance component of the video and the overall
MSSSIM index for the video was computed as the average of the frame level quality
scores. This metric has been shown to outperform the SSIM index and many other
image quality assessment algorithms.
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Figure 2.7: Block diagram of the VQM-G general model [1]

NTIA General Model (VQM-G)

VQM NTIA metric [ 1] proceeds in several steps as shown on Fig.2.7.
A calibration step is performed to compare the sequences to be evaluated, con-

sidering:

� Alignment and spatial adjustment between the two sequences: specify the hor-
izontal and vertical spatial shift of the processed video relative to the original
video.

� Estimation of the region of interest on both the original and processed video
streams for feature extraction: a column of pixels "J" does not belong to the
region of interest if it is black (mean of pixels valuesM J < 20) or if the average
pixel level of the mean value for successive columns indicates a black border
(M J � 1 > M J ).

� Estimation of the perceived contrast and brightness level.

� Alignment and temporal correction between the two sequences: estimating
video delay by correlating lower resolution frames, sub-sampled in space and
extracted from the reference and degraded video streams.

The calibration makes the VQM metric not sensitive to horizontal and verti-
cal shifts of the image, temporal shifts of the video stream, and changes in image
contrast and brightness.
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Then, local features are extracted from the reference sequence and the distorted
one before comparing them. The extraction of the features is performed by ele-
mentary spatio-temporal regions. Such a region is a set of pixels de�ned by its
two spatial dimensions and its temporal dimension. The VQM model computes six
features. Two features characterize spatial activity: derived from horizontal and
vertical spatial gradients to describe perceptual distortions of edges (blurring and
blocking). The third feature characterizes distortions in chromatic components, the
fourth characterizes local contrast. The �fth feature represents the amount of tem-
poral information (the standard deviation of the absolute value of the di�erence
between consecutive video frames at time t and t-1 and). Finally, the sixth repre-
sents the product of the features of the local contrast and the Temporal Information
(TI).

By comparing the extracted features from the processed video with those ex-
tracted from the reference video, quality parameters that describe changes in the
video quality are computed. Three comparison functions are used: error ratio, log-
arithmic ratio, and the Euclidean distance. Finally, a linear regression of these
parameters de�nes the global VQM measure.

NTIA Videoconferencing model (VQM-V)

This model is optimized to achieve maximum objective to subjective correla-
tion for videoconferencing context [106]. The di�erence between this model and the
general model described above is the selection of the used parameters. Videoconfer-
encing model consists of a linear combination of six parameters. Four parameters are
based on features extracted from spatial gradients of the Y luminance component,
and two parameters are based on features extracted from the absolute temporal
information of the Y luminance component. The impairment types measured by
VQM-V model are blurring, block distortion and jerky/unnatural motion. Error
blocks and color distortions included in the general model are not present in VQM-
V model.

Open Perceptual Video Quality metric (OPVQ)

OPVQ is an implementation of the model described in ITU-T J.247 Annex B
[103]. The algorithm has four main steps presented in the block diagram in Fig.2.8.

The �rst step is a simple pre-processing step consisting of some prede�ned crop-
ping based on the video resolution. Next, �ne alignment is done in the spatial
domain, i.e. the sequences should at this point be aligned from start to �nish.
Chroma correction is also performed, using histogram correction. The third step
is the distortion analysis which generates four separate indicators. The �rst two
ones measure intra-frame distortion for the luma and chroma channels respectively.
Distortion is measured as introduction or loss of edges in a speci�c frame. Indicators
three and four measure inter-frame distortion, i.e. the amount of change at a speci�c
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the standard deviation to the mean of the Temporal MOVIE scores for that frame.
The spatial component employs the outputs of the spatio-temporal Gabor �lters

applied on a multi-scale decomposition of the reference and the distorted videos.
Then, a model of contrast masking captures the spatial distortions. Spatial distor-
tions in the video such as blur, ringing, false contouring, blocking, noise and so on
can be captured using errors computed between corresponding Gabor sub-bands of
the reference and test videos.

SpatialMOV IE =
1
�

�X

j =1

F QS(t j ) (2.19)

F QS is the similar as de�ned for the Temporal MOVIE. The �nal MOVIE index
for the video sequence is computed as the product of these two index.

MOV IE = SpatialMOV IE � T emporalMOV IE (2.20)

The key di�erence of this method is that a subset of spatio-temporal Gabor
�lters are selected adaptively at each location based on the direction and speed
of motion, such that the major axis of the �lter set is oriented along the motion
trajectories of the reference video. The video quality assessment process is carried
out with coe�cients computed from these selected �lters only.
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Figure 2.9: Vis3 diagram chart

It was recently proposed by Phong V. and Damon M. Chandler in [97]. The
algorithm estimates video quality by measuring spatial distortion (V iS1) and spatio-
temporal dissimilarity ( V iS2).
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value V iS2 of the distorted video.
The �nal estimated score of the perceived video quality degradation is a geo-

metric mean of the spatial distortion and the spatiotemporal dissimilarity values.

V iS3 =
p

V iS1 � V iS2 (2.21)
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Figure 2.11: SSIMplus diagram chart

SSIMplus is among the latest metric that has been developed by Zhou Wang's
team [99]. This objective metric evaluates the quality of experience QoE for video
services unlike the other metrics (SSIM, MS-SSIM . . . ) that assess pure video quality
without taking into account the conditions and the viewing context. For example a
video that has VGA resolution and looks great on an iPhone might look awful when
it is displayed in full screen on a 31� monitor or 55� TV. Here we could evocate the
limitations of video quality assessment (PSNR, SSIM ...)

� Network condition not considered.

� Receiving device (speed, power, memory...) not considered.

� Display device not considered.

� Display resolution not considered.

� Viewing condition/environment not considered.

SSIMplus algorithm o�ers the ability to apply the metric to di�erent viewing
devices and conditions. The available display devices considered in calculating QoE
scores are: iPhone 5S, iPad Air, Lenovo W530 laptop, Sony 55� TV, Sony 55� TV
(TV-Expert). SSIMplus rates the videos on a scale of 1 to 100, with 20-point gaps
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separating the video into meaningful human measure: bad (0), poor, fair, good, or
excellent (100) as it looks to a human viewer.

The SSIMplus algorithm performs a multi-scale transformation on the reference
and distorted video frames (see Fig. 2.11). Then, a quality maps are computed
based on a structure comparison function between subsequent reference and dis-
torted scales. The quality of all the scales is determined by performing spatial
pooling of the quality maps based on the local information content and distortion.
The perceptual quality of the distorted frame is calculated using a weighted combi-
nation of the scale-wise quality values. The weights are determined using a method
that takes into account the properties of the display device and viewing conditions.
These parameters include: 1) average or range of user viewing distance, 2) sizes of
viewing window and screen; 3) screen resolution; 4) video scaling; 5) screen contrast;
6) replay temporal resolution; 7) illumination condition of the viewing environment;
8) viewing angle; 9) viewing window resolution; 10) post-�ltering and image resizing
methods; 11) device model; 12) screen gamma correction parameter; 13) video scan
type (interlaced or progressive).

Video Multi-Method Assessment Fusion (VMAF)

Figure 2.12: The block diagram of the Vmaf model

It is a recent metric developed by a research group of the University of South
California and the company Net�ix and published in June 2016 [101]. For the pur-
poses of improving its video streaming service with automated quality monitoring,
Net�ix is interested in the quality of the videos broadcast. According to the authors,
the main properties that must satisfy a video quality metric are: 1) accuracy in cap-
turing human perception of quality, 2) consistency across contents, 3) possibility to
be run at scale and 4) adequate to streaming use case. Net�ix proposes a full refer-
ence predictive model based on a machine learning regression algorithm, speci�cally
the Support Vector Machine (SVM) algorithm. As its name suggests, the VMAF
predict the video quality by combining multiple elementary quality metrics.
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� Visual Information Fidelity [ 108] is a statistical visual image quality model in
wavelet domain. It is based on distortion and Human Visual System (HVS)
modeling. VIF score is the ratio between the visual information of the dis-
torted and the reference frame. The visual information of both frames is
quanti�ed by the mutual information between the input frame and the output
of the HVS model.

� Detail Loss Metric (DLM)[ 109] is an image quality assessment algorithm. It
refers to measuring the loss of useful information which a�ects the content
visibility.

� Motion metric quanti�es the amount of motion in a sequence. It is measured
by the temporal di�erence between adjacent frames.

Since the VMAF model is constructed from a machine learning algorithm, the
prediction performance and accuracy depend on the consistency of the learning
database. Thus, Net�ix has generated a video data set that re�ects the types of
artifacts that cause the degradation of video streaming quality. Two types of impair-
ments are identi�ed: compression artifacts and scaling artifacts. Thus, the model
is trained on 334 sequences (34 references and 300 distorted) of 6 seconds long with
di�erent contents (TV shows and movies) and di�erent characteristics in terms of
spatial and temporal complexities. The source videos are encoded with H.264/AVC
at wide range of bitrates from 375 kbps to 20.000 kbps and at resolutions ranging
from 384� 288 to 1920� 1080.

2.4.2.2 No Reference (NR) metrics

Most recent researches developed accurate full reference models that correlate well
with the human video quality perception. However, these metrics are not useful for
monitoring and troubleshooting an application working in real time as this is the
case for video conference calls. In this context, there is a great need to focus on no
reference metrics.

Most of the no-reference approaches estimate video quality by qualifying the
presence of some degradations in the video stream. The most commonly quoted in-
dicators are thus linked with conventional impairments such as: bluriness, blockiness
or jerkiness, known as the most common artifacts of compression methods (H.26x,
MPEG and their derivates). A blocking measure for compression video sequences
has been proposed by Vlachos in [110]. Eventually, several other implementations
of the metric are developed to detect the block e�ect in videos. A performance
comparison between three blockiness metrics has been carried on by S. Winkler et
al. in [111].

X. Yuanyi et al. [ 112] developed a new no-reference video quality metric for
detecting temporal jerkiness caused by frame freezing. Their algorithm is based on
detecting freeze events, extracting a set of features corresponding to the distortion
and then training a neural network on a large database. In real time transmission,
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packet loss artifacts are the common source of quality degradation for conversa-
tional applications over IP and wireless network. This is not the case for adaptative
streaming over TCP. In [113], authors developed a metric that evaluate the quality of
sequences reconstructed after packet loss impairments. Based on the video stream,
they analyze the continuity of macroblock data on edges between consecutive frames.

Other studies tried to combine a set of objective measures in order to generate
a NR model that estimate the overall video quality [114, 115]. They trained a
multilayer perception neural network (MLP) estimator of global MOS quality score.
Working on the bit-stream, A. Raake et al. [116, 117] proposed a no-reference
method for estimating the visibility of packet losses in standard (SD) and high
de�nition (HD) H.264/AVC video sequences. Within the Study Group 12 of the
International Telecommunication Union (ITU), parametric no reference standards
(P.1201, P.1202 and P.1203) are developed [69, 66, 70]. These models estimate global
video quality by analyzing the bitstream packet-header information.

2.4.3 Audio quality metrics

The objective measurements of voice quality in modern communication networks
can be intrusive or non-intrusive. The intrusive methods analyze the transmitted
(original) and received (degraded) speech signals. Thus, these methods compare
the reference speech signal with the corresponding distorted signal. Non-intrusive
methods allow estimation of the perceived voice quality by exploiting information
extracted from the receiver side. Non-intrusive methods use only the degraded (re-
ceived) speech signal to estimate the corresponding voice quality [63]. Intrusive
methods are more accurate than non-intrusive ones, but they are not suitable for
real-time tra�c monitoring because of the need for reference data. A typical in-
trusive method is based on the latest ITU P.863, Perceptual Objective Listening
Quality Assessment (POLQA) [14].

Non-intrusive methods are more appropriate for real-time tra�c monitoring since
they do not need the reference signal. There are two categories of non-intrusive
methods: those based on the signal and those based on parameters-based method.
An example of a non-intrusive signal-based method is thevocal tract model [118],
which aims to predict voice quality by directly analyzing the speech signal being
listened to (a degraded signal) without the reference signal.

Intrusive/signal-based methods: POLQA, ETSI TS 103 281

The basic idea of intrusive methods is that a signal is injected into the system
under test, and the degraded output is compared by the objective test system to the
input signal considered as the reference. Therefore, intrusive assessment techniques
require access to both the transmission and reception ends of communication.

The following models are typically used:
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Figure 2.13: Intrusive objective tool implementation

POLQA: POLQA is the result of collaboration between three companies (Op-
ticom, Swissqual and TNO) and was standardized by ITU-T in 2011 in the Recom-
mendation P.863 [14]. POLQA takes into account signals in narrowband, wideband
and super-wideband (50-14000 Hz). It can be used for the evaluation of speech
transmission quality in 3G, 4G / LTE and VoIP networks, and speech processing
systems such as noise reduction systems and so on.

POLQA only takes into account the impairments related to the listening context
such as ambient noise at the speaker level, the loss of packets ... The impairments
perceived during a conversational situation such as the echo are not taken account
by this model. However, contrary to the objective models of the listening context,
POLQA integrates a module estimating the impact of reverberation on the quality
which is a phenomenon rather related to the context of phrase or conversation. In
addition, the reference and input gradient signals of this model may be electrical
or acoustic in nature (i.e. the signals are captured via an acoustic interface). It
operates in two operating modes, one of which is dedicated exclusively to narrow-
band audio signals (NB mode) and the other allows application to audio signals up
to super-wide band (SWB mode) and covers all three audio bands (narrow band,
enlarged band and super-enlarged band). POLQA provides an overall quality score
ranging from 1 to 4.5 for NB mode and from 1 to 4.75 for SWB mode.

ETSI TS 103 281 model: ETSI TS 103 281 [119] describes two models
addressing the speech quality, background noise quality, and overall quality, as mea-
sured according to ITU-T Rec. P.835. It predicts the speech quality experienced
with super-wideband and fullband terminals in the presence of background noise.
The Technical Speci�cation also provides evaluation results comparing model pre-
dictions to subjective data. Further, ETSI TS 103 106 [120] describes a model used
with mobile terminals, as well as an evaluation of model performance. It can esti-
mate quality in 3 dimensions: S-MOS-LQO (speech quality), N-MOS-LQO (noise
intrusiveness), G-MOS-LQO (global quality).
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Non-intrusive, parameter-based methods: E-model, P.564
For network planning, objective models have been developed to predict quality based
on parameters.

Recommendation P.564: Recommendation P.564 [121] de�nes a set of min-
imum performance criteria to be achieved by single-end objective models in a listen-
ing context such as PsyVoIP [122] and VQMon respectively developed by Psytech-
nics and Telchemy. These models are mainly used to monitor the real-time trans-
mission quality of IP networks. They estimate speech quality from the information
contained in the Real-Time Protocol (RTP), User Datagram Protocol (UDP), and
IP protocol headers, such as the packet loss rate, the type of codec used, and so on.

E-model: The E-model is a non-intrusive model for planning and predicting
the voice quality of end-to-end transmission. It was developed by ETSI [123]) as an
end-to-end tool for network designers and later standardized by the ITU in Recom-
mendation G.107 [124]. The E model is used to measure echo, transmission delay
and modern transmission impairments such as non-linear impairments related to
low-rate codecs. Thus, it may be applied to predict voice quality in a conversational
situation. The quality of transmission is expressed using a scalar called "transmis-
sion evaluation factor", noted R, whose expression is given by:

R = R0 � I s � I d � I e;ef f + A (2.22)

where

� R0: basic signal-to-noise ratio (SNR), including noise sources such as circuit
noise and room noise. It is the value that we obtain if the transmission is
perfect.

� I s: combination of all impairments, which occur more or less simultaneously
with the voice signal.

� I d: quali�es the impairments caused by delay and the echo.

� I e;ef f : impairments caused by low bit rate codecs and packet losses.

� A: allows the E-model to take into account the users indulgence toward the
quality of the communication systems used (wired system, mobile, the terminal
used, the use of the hands-free kit).

In the context of narrowband telephony, the scalar R values vary between 0 (very
poor quality) and 100 (excellent quality). In addition, the factor can be converted
to a MOS score (scale ranging from 1 to 5) as follows:

MOSCQE =

8
<

:

1 si R < 0
1 + 0:035R + R(R � 60)(100� R):7:10� 6 si.0 < R < 100
4:5 si R > 100

(2.23)
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whereMOSCQE is the estimation of voice quality in a conversational situation.
A simpli�ed version of the model has been proposed [125]. This version takes into
account only the degradation caused by the codecs and the network conditions. Its
expression is given by:

R = R0 � I codec � I packetloss � I delay (2.24)

where the parametersI codec, I packetloss and I delay quantify the defects introduced
by the codecs, the packet losses and the transmission delay. Model E was primarily
for narrow-band telephony communications until 2011. Its extension to Wideband
transmissions is standardized in ITU-T Recommendation G.107.1 where the maxi-
mum value of the R factor is 129 [126].

E-model has been a key element for evaluating the performances of di�erent
network for various telecommunication services. We found in [127] a review for
some evaluations of E-model. Some modi�ed E-model examples were presented in
[127] to be more suitable for VoIP service. The applicability of E-model in the case
of VoLTE was discussed and the necessity of studying jitter bu�er algorithms was
considered.
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Introduction

Measuring the audiovisual quality of a multimedia stream is a complex task. Today,
there is no other evaluator than the human eye and ear, coupled with his brain.
This is why it is interesting to involve human observers and to ask them for their
qualitative judgment in the evaluation of a videoconferencing service. However, car-
rying out such subjective tests raises many questions when they are implemented.
The variability of human judgment, the control of the conditions of evaluation and
the number of judgments necessary for a given representative judgment are all pa-
rameters to master.

As we saw in Chapter 2, the majority of these points have been the subject
of research, and sometimes standardized at the international level mostly by the
ITU. These standardized methodologies are di�erent from each other and can be
adapted to the context of the subjective test and to the application. In this chapter
we present the methodologies and the processes of the subjective tests we imple-
mented. Then, we introduce some statistical tools useful to the analysis of the
results provided by the methodologies.

Our subjective studies have two purposes: to assess the perception of video
conference service users under di�erent conditions, and to constitute a sequences
database to evaluate the performance of the objective quality metrics. We investi-
gate the video, audio and audiovisual quality and asynchrony perception under two
di�erent situations: a non-interactive and an interactive conversational one. We
analyze the e�ects of network impairments (packet loss, delay) on perceived audio-
visual, audio and video quality. We evaluate the impact of experimental context and
scene complexity on the quality perception in case of video calls. Furthermore, we
propose new acceptability thresholds of audio-video asynchrony in video telephony
context and study the e�ect of synchronization in the presence and absence of net-
work degradation. The audio/video synchronization perception is more investigated
in a speci�ed study that we present in Chapter 4.

The remainder of this chapter is organized as follows. Section3.1 de�nes the
common elements of our test procedures. The statistical analysis that we performed
are explained in Section3.2. The experimental results of the conducted subjective
tests are presented and discussed in Section3.3 and 3.4. Section 3.5 introduces the
external databases we used to complete our subjective test database in order to
evaluate the objective models.
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3.1 Common elements of the test procedures

The implementation of a subjective audiovisual quality test must comply with the
recommendations of the ITU to ensure the reliability and reproducibility of the test.
Although they are intended for di�erent measurements, the standardized methodolo-
gies that we present share some common experimental conditions. These conditions
are the panel of observers, the environment of observation and the global conduct
of the sessions.

3.1.1 Selection of subjects

We know that for the same observed sequence, the judgments given by di�erent
individuals are generally not identical. In other words, evaluation is not stable from
one individual to another. Several factors are responsible for this, such as the state
of fatigue, knowledge of the sequence, the observer's general experience in video
quality assessment, or personal appreciation.

In our subjective tests performed in the laboratory we call on non-expert ob-
servers, i.e they are not confronted with the video and audio quality evaluation
in their professional activity. All participants are examined for their visual acuity
through the Snellen test (Figure3.1) and their color perception defects through the
Ishihara test (Figure 3.2). The observer should have a visual acuity of 10/10 for
both eyes with or without correction. Moreover, we made sure that all the subjects
reported having a normal audition. For greater reliability of the results, a panel
between 15 and 20 of participants will give statistically usable results [61, 48]. The
panel should also be representative in age, gender and experience. We recruited the
subjects from a "Testers database" of Orange and we paid them to participate in
the experiments.

Figure 3.1: Used visual acuity test (Snellen).
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Display device calibration

Calibrating a screen consists of making four important settings.

� The maximum brightness of the screen (white point).

� Gamma.

� Color temperature (in Kelvin).

� The minimum luminosity (Black point).

In order to calibrate our display devices, we have used a tool to neutralize
the display defects of the screen and to automatically adjust the hardware
settings (brightness, contrast, white point, etc.) so that the display device
ensures that it displays the widest range of possible colors.

Figure 3.3: Display device calibration

3.1.3 Global conduct of the sessions

The overall structure of a test session is common to most of the methodologies we
used. The procedure for presenting the sequences is speci�c to each test context and
will be described in detail later. The main steps of a subjective audiovisual quality
session in chronological order are:

� acuity and colors perception tests,

� instructions,

� training session,

� main test.

After the selection of observers meeting the visual testing criteria, a session is
preceded by an explanation of the type of methodology, the scoring system, the
presentation protocol and any useful elements. The psychological conditions in
which the observer is placed are both di�cult to de�ne and very in�uential on
his assessment, which gives great importance to this preliminary explanation and
instructions. As recommended in ITU-T Rec. P.910, we started the test with
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a few typical conditions to anchor the judgment of the observers. The scores of
this training session are not taken into account in the �nal results. At the end of
the session, an individual assessment is carried out in order to detect any possible
misapprehensions.

A test session consists of a variable number of sequences, which corresponds to
the evaluation of a perceived quality under di�erent conditions. Our sequences have
generally a duration between 8 and 10 seconds in order to leave a su�cient time for
observers to give a stable score. During the test session, the sequences are presented
in a random order. Indeed, when a sequence of good quality follows a sequence of
poor quality, it will be over-evaluated. These context e�ects are limited by a random
sequencing of the sequences. In total, we respected the fact that a test session does
not exceed 30 to 60 minutes, including explanations and the training session.

3.2 Statistical methodology

During a subjective quality assessment, a signi�cant amount of data is collected. It
is then necessary to carry out some tests before translating this data into results.
Thus, inter-observer coherence is evaluated. As a result of this veri�cation, the
assessment scores of some observers may be rejected. This step can therefore be
critical in obtaining the results of a methodology since it requires a minimum number
of observers. Once the inter-observer coherence of the results has been veri�ed,
synthesis tools are used to draw conclusions. Simple statistical tools are often used,
but depending on the type of test, more advanced tools may be useful. Here we
present algorithms for the subjects screening and statistical tools for synthesizing
results.

3.2.1 Subjects screening

After collecting the subjective scores, it is essential to validate in order to eliminate
all subjects whose data might be biased. Multiple reasons may be the cause of
invalid subject's scores, including lack of concentration of the subject, failures on
the part of the experimenter, the video playback system, or the rating save system.
Thus, a screening method must be applied to remove the outliers and to only retain
subjects who are able to rate video sequences consistently. In our analysis, we used
the two following screening algorithms. We rejected observers that are discarded by
both of the algorithms.

ITU-R BT.1788 (SAMVIQ)

ITU-R BT.1788 [128], also known as SAMVIQ, demands that subjects have
a stable and coherent method to vote degradation of quality. This technique re-
jects subjects who do not associate with other subjects (i.e., rank impairments
di�erently). The rejection criteria uses the linear correlation coe�cient of Pearson
betweenx and y:
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with i is the test condition, x i the mean score of all observers on conditioni , yi

is the score of an observer on conditioni and Nc is the total number of stimulus
(numberofconditions � numberofscenes). The SAMVIQ screening algorithm also
uses the Spearman rank correlation coe�cient between these samex and y:

r s(x; y) = 1 �
6 �

N cP

i =1
[r (x i ) � r (yi )]2

N 3
c � Nc

(3.2)

with r (x) is the ranking order of the elementx. The rejection algorithm then
evaluates the di�erence between the minimum of these two coe�cients for the con-
cerned observer and for all the other observers. If the minimum of an observer is
above a certain threshold, then he is rejected.

Algorithm 1: ITU BT.1788 subject screening

if [mean(r ) � sdt(r )] > MCT: then
Rejection threshold = MCT

else
Rejection threshold = [ mean(r ) � sdt(r )]

if [r (obsi )] > Rejection threshold. then
obsi is not discarded

else
obsi is discarded

wherer is the minimum of the Pearson and Spearman correlation; mean(r) is the
average of the correlations of all the observers;sdt(r ) is the standard deviation of all
observers' correlations; MCT is Maximum Correlation Threshold which is equal to
0.85 for SAMVIQ and DSCQS methods and equal to 0.7 for SS and DSIS methods.

VQEG Multimedia Phase I Test Plan

This screening algorithm is presented in the VQEG Multimedia Phase I Test
Plan in Annex VI. The rejection criteria tests consistency of the raw scores using
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Pearson correlation on both a per-clip basis and averaging scores across all scenes
associated with one impairment (i.e., per-HRC or Hypothetical Reference Circuit).
This technique rejects subject who do not associate with other subjects (e.g., rank
impairments di�erently). The thresholds �xed to be appropriate for ACR tests are
equal to 0:75 for the Pearson correlation per observer and to0:8 for the Pearson
correlation per HRC.

3.2.2 Correlations and statistical tests

Mean Opinion Score

Once the tests are performed, the results are analyzed and combined in a single note
per video sequence describing its average quality. This note called Mean Opinion
Score (MOS) is given by the following formula:

MOS(i ) =
1

Nobs

NobsX

j =1

Notei (j ) (3.3)

whereNobs is the total number of participants and Notei (j ) is the quality score
a�ected to the sequencei by the observerj .

Con�dence interval

A con�dence interval is often associated with each MOS score, thus reducing the
impact of possible errors. It is generally set at 95

[MOS(i ) � ej ; MOS(i ) + ej ] (3.4)

where

ej = 1 :96� j (3.5)
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Statistical test

In order to analyze the impact of the di�erent test conditions on the quality per-
ception, we used of the Mann-Whitney U statistical test. We set the signi�cant
di�erence level to � = 0 :05. If we consider the two hypothesis:

(
H 0 : Px = Py

H 1 : Px 6= Py
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where Px is the law distribution of the observation X = ( x1; x2; :::; xnx ) and Py is
the law distribution of the observation Y = ( y1; y2; :::; yny ). The test involves the
calculation of a static value called U. The rule decision is the following:

(
ifU � c (H 1)is true,

ifU > c (H 0)is true.

where c is a critical value determined from the Mann-Whitney table.

ANOVA

ANOVA (ANalysis Of VAriance) is a statistical technique for comparing averages
of more than two populations. In our subjective tests, we used the ANOVA method
in order to test whether data from several groups have a common mean. This
determines whether the groups are actually signi�cantly di�erent in the measured
characteristic. We carried ANOVA as follows: one-way ANOVA, a simple special
case of the linear model. The one-way ANOVA form of the model is :

yij = � j + " ij (3.7)

Where yij is a matrix of observations in which each column represents a di�erent
group. � j is a matrix whose columns are the group means." ij is a matrix of random
disturbances.

Principal Component Analysis (PCA)

It a multidimensional descriptive method to synthesize complex statistical data. It
consists in projecting the data in a space of reduced size in order to highlight possible
structures most relevant within the data. The most relevant attributes are presented
according to their importance. PCA method calculates a set of variables, called
principal components, representing a linear combination of the original variables.
The principal components form an orthogonal basis for the space of the data. This
method allow us analyzing the di�erent modalities and factors that have the most
impact on the global quality perception.

3.3 Test 1 : Non interactive videoconferencing test

3.3.1 Objectives

In this section, we present a non-interactive audiovisual quality assessment experi-
ment conducted on audiovisual clips collected using a PC-based videoconferencing
application connected via a local IP network. Through the analyses of the exper-
imental results, we try to better understand the in�uence of network impairments
(packet loss, jitter, delay) on the perceived audio and video qualities, as well as
their interaction e�ect on the overall audiovisual quality in videoconferencing appli-
cations. Furthermore, our objective is to update the human perception acceptability
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limits of audio-video synchronization for video conferencing. We investigated the
contribution of this synchronization to the audiovisual quality independently and
accompanied with network impairments. Finally, we propose an integration model
to estimate the audiovisual quality in the studied context.

3.3.2 Related work and motivation

Taking into account the multi-modality of an audiovisual content, it is essential to
consider the interaction between audio and video qualities in order to evaluate the
human audiovisual quality perception. Previous studies have shown that individual
audio and video qualities in�uence the perceived audiovisual quality but not with the
same degree. Indeed, it depends on many factors such as the subject attention, the
usage context, the audiovisual content or the experimental environment [129, 130].
For content corresponding to news, teleconference or music clip, the audio stream
quality has greater weight on the overall quality [131]. In addition, some studies
have shown that there is a signi�cant mutual interaction between the video and the
audio quality [132].

Models have been proposed for various types of contents and di�erent types of
degradation [130, 131]. However, there are few studies addressing the impact of
the network settings on perceived multimedia quality [130, 133]. In [134, 135], the
authors studied the quality of multimedia content and they found that both auditory
and visual qualities contribute signi�cantly to perceived multimedia quality, but they
did not take network errors into consideration in their proposed models.

Another factor that considerably in�uences the perceived quality is the audio-
video synchronization. Most of the studies that investigated this problem are old
[136] and the proposed acceptability threshold must be updated to be more adapted
to current solutions. Nowadays, the habits of using video communication services by
customers have changed, their requirements are evolving and technologies of video
restitution are advancing.

Furthermore, most of studies that proposed models for estimating multimedia
quality focused on synchronized contents [129]. They analyzed the impact of network
and application impairments separately from the audio-video synchronization. The
impact of the packet loss on audio-visual communication was well investigated in
[137, 138]. These studies concerned the synchronization problem caused by the
packet loss, but only in IPTV scenarios (not for videoconferencing applications). In
addition, the combination of the network impairments and non-synchronized audio
and video has not been well studied in the literature.

Through this subjective test, we study the impact of the audio and video qualities
on overall audiovisual quality in the context of video telephony on PC; propose
new acceptability thresholds of audio-video asynchrony in video telephony context;
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dia contents at a broad range of quality from hardly perceptible to highly annoying
levels of impairments, as recommended in [141]. Applying di�erent network delays
for audio and video streams generated the asynchrony between them. A negative
value of the delay means that the audio stream is delayed according to the video
and a positive value means that it is advanced.

The values of the packet loss and jitter shown in Table3.1 below had been set
empirically (by experts who observed the results on the contents and selected those
which represent an actual case of use). The percentage of the packet loss is calculated
on the basis of 100 received packets. Packet loss patterns di�er from network to
network and over time. Due to time constraints, in our study we just tested one
of two major model categories: random loss. We note that the percentage of audio
packet loss is more important than the video packet loss because of the stationarity
of the audio codec and the low complexity of its correction mechanisms. The jitter
applied on video stream is more important that the audio stream because the size
of video packets is much more important than the size of the audio packets. The
asynchrony values were decided based on prior knowledge [142].

Video packet loss VPL ( %) 0, 0.5, 1, 2
Audio packet loss APL (%) 0, 2, 5, 20
Video jitter (ms) 0, 60
Audio jitter (ms) 0, 30
Audio-video asynchrony (ms) -400, -250, -150, 0, +50, +150, +400

Table 3.1: Experiment parameters

3.3.5 Source sequences

For the experiment, six sequences were selected to represent di�erent contexts of
real life video calls (Restaurant, Desk, Sofa, Poster, Hall and Park)(see Fig.3.5)
�lmed by Orange teams. The audiovisual sequences are characterized by di�erent
properties of audio and video contents.

� Restaurant scene represents a man that makes a video call in a dining hall:
high complexity (a lot of details, and noisy background).

� Desk scene represents a woman that makes a video call in a private environ-
ment (o�ce): low complexity (not much movement), few details and texture
(solid color jacket, white wall) sound ambiance quiet.

� Sofa scene represents a man that makes a video call in a private environment
(sofa): average complexity (few movements, few details and texture (striped
wall, yellow pillow), sound ambiance quiet or little noisy).

� Poster scene represents a woman making a video call in a private environment
(o�ce) and showing a poster to her interlocutor: high complexity (a lot of
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Restaurant Desk Sofa

Poster Hall Park

Figure 3.5: Frame captures from the original sequences.

movement (moving camera), a lot of details (text), sound ambiance quiet).

� Hall scene represents a man making a video call in a public place (hall of the
company): high complexity (a lot of movement, a lot of details and texture).

� Park scene represents a man that makes a video call in a public garden: high
complexity (a lot of movements, details and a very noisy background).

The duration of the sequences is between8 and 10 seconds. The sequences
represent di�erent levels of spatial and temporal complexities (Fig. 3.6). The spa-
tial perceptual Information (SI) indicates the amount of spatial detail of a picture.
Greater the value of SI, more the scene is spatially complex. As described in P.911,
SI is based on the Sobel �lter and it present the maximum value of the standard
deviation over the pixels in each Sobel-�ltred frame:

SI = max time f stdspace[Sobel(Fn )]g (3.8)

The temporal perceptual Information (TI) indicates the amount of temporal
changes of a video sequence. More the sequences contains high motion higher the
value of TI is. The measure of TI is computed as the maximum over time of the
standard deviation over space ofM n (i; j ) over all pixels in the positions i and j
(P.911).

T I = max time f stdspace[M n (i; j )]g (3.9)

whereM n (i; j ) is the di�erence between pixels at the same position in the frame,
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Video Audio
Codec H.264/AVC Codec AMR Wideband

(constrained baseline)
Bit rate 768 kbps Bit rate 23.85 kbps
Resolution VGA (640� 480) Channels 1
Frame rate 15 fps Sampling 48000 Hz
GOP size 10 frames frequency
Video color
scheme

16 bit YUV (4:2:0)

Table 3.2: Experimental conditions used in the subjective study

In the audio-only test, after each presentation the subjects were asked to evaluate
the audio quality(MOSA ) whereas in video-only test they were asked to evaluate
the perceived video quality (MOSV ). In order to study the impact of individual
audio and video qualities on the overall quality, in the audiovisual test, subjects
assess audio and video qualities (MOS AV

A and MOS AV
V ) beside overall audiovisual

quality ( MOSAV ). Subjects also evaluated the audio-video asynchrony (MOSsynch )
in the audiovisual test.

To measure the perceived quality, a subjective scaling method is required. For
the video, audio and audiovisual quality, we used a �ve-level MOS scale and for the
synchronization, we used a speci�c 5 point impairment scale (see2.3.1).

Test Duration Sequences Conditions Outputs
Audio only 10min 36 5 MOSA

Video only 10min 36 5 MOSV

Audiovisual 1h30 176 33 MOSAV

MOS AV
A

MOS AV
V

MOSsynch

Table 3.3: Test organization

A total of 30 subjects (13 male, 17 female) participated in the experiment. We
realized the audio-only and the video-only test in the same session with15 subjects
while the audiovisual test was carried out with the other 15 subjects. They were
provided with a high quality headphone (Stax SR-404) for sound reproduction. The
experiment was performed in an acoustically treated room especially designed for
audio and video quality tests. The signals were presented to the subjects via an
LCD computer monitor with a 1024� 768 resolution. The evaluation score was
indicated on a tablet next to the screen on the right of the subjects.

Subjects were carefully introduced to the assessment method, the impairment
types, the opinion scale, the stimulus presentation and timing before the start of
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the experiment. The test session was preceded by a training session lasting5 min-
utes. The range and type of impairments were presented in training session, which
contained some sequences from those used in the test session. In the audio-only and
audiovisual tests, subjects were allowed to adjust the playout to a comfortable level
from the sound card during the training session, but not during the test session.
Subjects were allowed to take breaks when they feel tired.

3.3.7 Results analysis

The test results were summarized by computing the averaged MOS values for each
test condition over the six sequences and the con�dence interval (CI) of the estimated
mean. Before calculating the MOS subjective scores, we processed to the screening
of the subjects. We used the algorithm described in [147] in order to detect and
eliminate possible outliers. Our screening results show that no subject has to be
excluded.

We used of the Mann-Whitney U statistical test in order to analyze the impact
of the di�erent test conditions on the quality perception and the interaction between
the audio and video streams and their impact on the overall quality perception. We
used this statistical test because our data does not follow the normal distribution.

Audio-video quality Interaction

The plots in Fig. 3.7 show the MOS scores averaged over all sequences for both
test sessions. They demonstrate that the experiments have been properly designed,
as the subjective rates uniformly span over the entire range of quality levels. By
plotting MOSV vs. MOS AV

V and MOSA vs. MOS AV
A , and calculating their linear

correlation coe�cients � , we noticed that the perceived audio and video qualities are
weakly in�uenced by the audiovisual context. Performing Mann-Whitney test on
the audio and video MOS revealed that there is not a signi�cant di�erence between
scores of the two sessions ( audio-only and video-only vs. audiovisual) (MOSA vs.
MOS AV

A , pvalue = 0.936; MOSV vs. MOS AV
V , pvalue = 0.924). Thus, subjects rate

the quality of the audio and video streams when they are separated in the same way
as when they are coupled.

We are also interested in studying the mutual interaction between the individual
audio and video streams. A statistical test revealed that in an audiovisual context
the impact of the video impairments on the perceived audio quality is not signi�cant
(pvalue= 0.665). On another hand, the audio impairments have a small impact on
the perceived video quality. For the same video quality level,MOS AV

V values de-
crease slightly with the percentage of audio packet loss. This drop in MOS scores
is more signi�cant in the case of good and average video quality levels (0%VPL,
0.5%VPL). When the video quality is already poor (1%VPL and 2%VPL), quality
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(a) (b)

(c)

Figure 3.7: Mutual interaction between audio (a) and video (b) qualities and the
impact of audio and video quality on overall audiovisual quality (c).

judgment is not a�ected by the audio degradation (there is not a signi�cant di�er-
ence). For a non-interactive evaluation of video telephony content, a similar study
also revealed a small but not signi�cant mutual in�uence between audio and video
qualities [148].

Fig. 3.7 (c) shows the interaction between audio and video quality levels in in�u-
encing the overall audiovisual quality. The presented results were averaged over all
delays (synchronous and not synchronous contents) and over all contents. An anal-
ysis of the subjective data reveals that for the same audio quality levels, decreasing
the video quality generally results in inferior audiovisual ratings. Alongside, for the
same video quality, decreasing the audio quality generally results in inferior audiovi-
sual ratings. The impact of video impairments on audiovisual quality at good audio
quality level is more signi�cant than at poor and bad audio quality levels. Con-
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cerning the jitter condition, it had the biggest impact on decreasing the perceived
quality. Sequences generated with jitter impairment presented the lower audiovisual
quality. Thus, we measured the impact of jitter independently, without crossing it
with packet loss in order to not bias the subjective results.

In order to study the in�uence of audio quality AQ, video quality VQ and the
synchronization on the overall audiovisual quality AVQ, we performed a Principal
Component Analysis (PCA). We constructed four dimensional test vector composed
of MOS AV

A , MOS AV
V , MOSsynch and MOSAV . In Fig. 3.8(a), we represent the

eigenvalues corresponding to the four principal components. The �rst two compo-
nents account for 88.81% of the variance. The PCA results from Fig.3.8(b) show
the in�uence of individual modalities on the overall audiovisual quality. From these
results we are able to conclude that both AQ and VQ contribute to AVQ. It can be
observed that the synchronization is an important factor that impacts considerably
the perception of audiovisual quality. Thus, it is essential to more investigate the
relation between the synchronization values and the quality evaluation.

We note that generally the video quality in�uences the overall audiovisual quality
more than the audio quality as revealed in [146]. The Pearson correlation between
MOS AV

V and MOSAV is equal to 87.6% while the correlation betweenMOS AV
A

and MOSAV is equal to 75.6%. On another hand, the Pearson correlation between
MOSsynch and MOSAV is equal to 70.1%.

(a) (b)

Figure 3.8: Principal Component Analysis
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MOSAV = � 0 + � 1MOS AV
A + � 2MOS AV

V

+ � 3MOS AV
A � MOS AV

V + � 4DMOS synch (3.12)

The correlation results of regression analysis are summarized in Table3.4.

Model R2

MOSA 0.57
MOSV 0.77

MOSA + MOSV 0.94
MOSA � MOSV 0.95

MOSA + MOSV + MOSA � MOSV 0.94
MOSA + MOSV + DMOS synch 0.94
MOSA � MOSV + DMOS synch 0.96

MOSA + MOSV + MOSA � MOSV + DMOS synch 0.94

Table 3.4: Linear correlation of models

From the shown results, we note that the multiplicative with the synchronization
term model solely provides the best �t. We applied this model to the subjective test
results and we found a linear correlation (R2) between subjective and estimated
qualities equal to 96.6% and a root mean square error (RMSE ) equal to 0.13.
The mean of the 95% con�dence interval (MCI ) for the subjective MOS was 0.22.
The evaluation error of the model was less than the statistical ambiguity of the
subjective score (i.e.,RMSE < MCI ), so the quality evaluation accuracy of the
model is su�cient for practical use. By applying multiple regression analysis we
determined the constants. Thus, our model is the following:

MOSAV = 1 :57 + 0:16MOS AV
A � MOS AV

V � 0:15DMOS synch (3.13)

In comparison, early studies already suggested multiplicative models [146, 150]
but all of them were based on synchronized contents, while the model we proposed
here takes into account the asynchrony and is based on pure network impairments.

3.3.8 Summary

In this section, we presented an audiovisual quality study for videoconferencing in
the presence of IP network transmission errors and extended the scope by introduc-
ing asynchronous contents. The results showed that both audio and video quality
contribute to the overall audiovisual quality with a general domination of video
quality. We proposed an integration model to predict multimedia quality which
takes into account desynchronized contents with pure network impairments. In the
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Figure 3.10: Predicted vs.MOSAV model from Eq. 1.3 with 95% con�dence interval
.

next section we study further the questions of audiovisual quality and asynchrony
in a more realistic interactive context.

3.4 Test 2 : Interactive videoconferencing test

3.4.1 Objectives

Through this subjective test we try to discuss the following questions:

Q1: What is the impact of scene complexity on the perceived audio, video and
audiovisual qualities?

Q2: What is the impact of scene complexity on audio-video desynchronization ac-
ceptability?

Q3: Are the perception of audiovisual, audio and video qualities the same in non-
interactive and interactive contexts?

In our experiment, we are also interested in audio and video synchronization
since it is a factor that considerably in�uences the perceived quality of multimedia
services [151]. Thus, we precise and compare the thresholds of asynchronization
acceptability between the non-interactive and the interactive contexts.

3.4.2 Related work and motivation

Interactive conversational subjective experiments are closer to a real-life video-
telephony, or video-conferencing calls than non-interactive experiments. However,
current audiovisual assessment researches mainly focus on non-interactive applica-
tions, such as video-on-demand, streaming or IPTV services [135, 130, 131]. Few
studies have been conducted for evaluating audiovisual quality in conversational
context [152, 150, 153].
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In [154], the authors assessed the perceived VVoIP (Voice and Video-over-IP)
conversational quality under di�erent network conditions (packet loss and delay).
On the other hand, some recent studies were interested in determining the factors
that impact the perceived conversational quality. For example, in [152] the authors
studied the in�uence of the conversational scenario and communication task on
the perceived quality. They showed that the subjects' concentration on audio or
video quality depends on the type of scenario, which in�uences their judgment. In
[150], the in�uence of the experiment context on the audiovisual modalities was
also investigated. Through their comparative study, the authors concluded that
for test conditions of low audiovisual quality level, the MOS scores collected in an
interactive context are greater than the ones collected in a non-interactive one. On
the opposite, when the level of audiovisual quality is high, the experimental context
does not seem to have an impact on the perceived quality.

All these studies focused on the impact of the conversational task and the sce-
nario on the subjective scores. However, they do not explore the e�ect of the scene
complexity on the perceived conversational quality. In real life video-conference
communication, the environment around the persons varies according to their po-
sition (desk, open space, home, etc.). The di�erences between the environments
correspond to the variation of spatial and temporal complexity of the scene. Our
contribution consists in studying the in�uence of the scene complexity and the test
context on the perceived audiovisual quality under certain network transmission
conditions.

3.4.3 Experimental set-up and recording

To perform this test under a controllable environment, we used an internal video con-
ferencing software. Figure3.11depicts the videoconferencing test bed con�guration
used for the experiment. User PC1 and user PC2 are two identical videoconfer-
encing systems (hardware and software), running our videoconferencing software,
placed in two separate rooms and connected via a local Ethernet IP network. They
were used by the subjects to make video calls. The audio-visual communication
protocol H.323 [139] was used to transmit calls between two users.

Both terminals were controlled remotely. Network degradations (packet loss and
delay) introduced on the video or audio streams were realized from a remote room.
To introduce di�erent sets of packet loss for audio and video streams and to generate
audio and video delay, we inserted in the transmission path a machine equipped with
the network simulator �Netdisturb�.

The video conversation window was shown in the VGA (640 � 480) resolution.
The video and audio setting (codecs and bit rates) are the same as the non interactive
test and were unchanged throughout the test. During every conversation, we took
simultaneously a screen record of the multimedia communication contents. We also
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Figure 3.11: Simulation platform design.

capture IP packets transmitted over the network (PCAP �les using Wireshark).
To ensure a perfect playback, all recorded multimedia sequences were processed
and stored as raw YUV 4:2:0 for the video stream and uncompressed Pulse Code
Modulation (PCM) for the audio stream.

3.4.4 Conditions

We simulated IP network impairments including packet loss and delay. We generated
two levels of audio and video packet loss which represent the extreme ranges of
quality: 1- hardly perceptible, 2-highly annoying. The con�gured distribution law
of packet loss rates was random. All conditions were symmetric so that the test
participants experienced the same quality on both ends of the connection. We
randomized the order of the conditions. Table3.5 provides an overview of the
transmission parameters evaluated in this study.

3.4.5 Methodology and test protocol

In order to consider the in�uence of scene complexity and keep the experiment time
within limits, we have only con�gured the two rooms with two di�erent levels of
video complexity:
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Video packet loss VPL ( %) 0, 0.5, 2
Audio packet loss APL (%) 0, 5, 20

Audio Delay AD (ms) 0, 250, 400
Video Delay VD (ms) 0, 150, 400

Table 3.5: Experiment conditions

� Room 1 : where the background behind the subject is a simple white wall
(see Fig. 3.12.a).

� Room 2 : where the scene has a certain spatial and temporal complexity. A
poster and a plant behind the subject, and one Orange sta� walk behind him
from time to time (see Fig 3.12.b).

The rooms have been acoustically treated and they have a similar audio background.

(a) (b)

Figure 3.12: Screen captures of the conversation in Room 1 (a) and Room 2 (b).

The test has been conducted in an interactive scenario. We proposed a game to
stimulate the conversation between the two subjects. For a subject, the objective
of the game, was to let its partner guess a word without using the word itself or �ve
additional words listed on a card. We gave each subject 20 cards. This conversation
task is similar to the Name-Guessing task from the ITU-T Recommendation P.920
[60]. The subjects could also discuss on their own topic if they prefer. The duration
of each conversation was around three or four minutes. Each discussion corresponds
to a speci�c set of impairments of audio and video. The subjects tested 9 di�erent
conditions where the audio and video impairments are independent (limited by the
test duration, the interaction between the conditions was not tested).

Twenty subjects (9 male, 11 female) participated in the experiment. They were
all inexperienced in evaluating audiovisual quality in such a context, but the major-
ity had already experienced a video-conference call. Each subject was individually
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briefed about the goal and the procedure of the experiment. A training session of
3 minutes preceded the actual test. The purpose of this session was to make the
subjects familiar with the testing procedure and the variations of audio and video
quality. During the training the IP �ow was impaired by the same type of distortions
as the main test.

In this experiment, subjects were asked to rate the perceived overall audiovisual
quality ( MOSAV ), audio quality ( MOSA ) and video quality (MOSV ) as well as
the audio-video synchrony annoyance (MOSsynch ). An absolute category rating
(ACR) was used for collecting subjective quality judgments. The subjects rated the
qualities and the synchronization using the �ve-grade scales presented in2.3.

3.4.6 Results analysis

The results of the subjective experiment are summarized by averaging the scores
assigned by the panel of participants for each conversation. We calculate the Mean
Opinion Score (MOS) and the corresponding Con�dence Interval (CI).

For the comparison between the experiment interactive and non-interactive con-
texts and between the scene complexity, the Mann-Whitney U test [155] is used since
the data does not follow the normal distribution. We set the signi�cant di�erence
level to � = 0 :05.

Prior to the MOS computation, a screening of the subjects is preceded using the
algorithm described in [156] in order to detect and exclude possible outliers, that is,
subjects whose evaluation signi�cantly deviates from others. Our screening results
show that no subject has to be excluded.

In�uence of the experiment context: interactive vs non-interactive

In this section, we investigate the in�uence of the experimental context (non-interactive
vs. interactive) on audiovisual quality (AVQ), video quality (VQ), audio quality
(AQ) and audio-video synchronization acceptability. Figure 3.13 shows the MOS
scores obtained in the two contexts averaged over all scenes. By comparing the
two plots in Figure 3.13.a, we observe that there is a signi�cant di�erence between
MOSAV scores in case of0:5% video packet loss and20% audio packet loss. This
may indicate that subjects are more sensitive to low video impairments when they
communicate than when they passively watch an audiovisual sequence. The inter-
active task may make the subjects discriminant and severe in the assessment of
the audiovisual quality since the video impairments may have more psychological
impact on the visual communication they are involved in. However, for important
VPL (2%) the quality is poor enough that there is not a signi�cant di�erence be-
tween subjective scores in the two contexts. The subjects give a signi�cantly higher
quality note in the interactive context than in the non-interactive context when the
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(a) (b)

(c) (d)

Figure 3.13: Interactive vs. non-interactive MOS scores

audio quality is very low. This may indicate that their attention on the audiovisual
quality judgment may be diverted by the guessing game.

For the perceived video quality, Figure3.13.b shows no signi�cant di�erence be-
tween the two contexts. Subjects perception of the video quality and concentration
on the artifacts are the same. Nevertheless, we report a signi�cant di�erence of
perceived audio quality between the two contexts (Figure3.13.c). Considering the
variances, we note that for the interactive test there was not a signi�cant di�erence
between reference and 5%APL condition, while for the non-interactive there was
this signi�cant di�erence � indicating that the impairments are more noticeable in
the non-interactive context. The reason of this variance may be that the audio im-
pairments are more noticeable when the subjects are just viewing and listening to
an audiovisual content. Then, they are more concentrated and they are more able
to notice the impairments.

Concerning the thresholds of desynchronization acceptability, as it can be seen
in Figure 3.13.d, there is not a signi�cant di�erence between the two test contexts.
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(a) (b)

(c) (d)

Figure 3.14: Impact of scene complexity for interactive experiment context.

These results may be true for our tested conditions where only one modality
(video or audio) was impaired at the time (no interaction between the conditions).
Previous studies showed that when both audio and video were impaired, di�erences
in MOS ratings were found [150].

In�uence of scene complexity for interactive experiment

In this session, we investigate the in�uence of the scene complexity on multimedia
quality and audio-video synchronization acceptability for each experiment context.

Figure 3.14shows theMOSAV , MOSV , MOSA and MOSsynch scores associated
to 95% con�dence intervals, according to the quality condition and scene complexity.
"R1" denotes the perception of the complex scene of Room 2 from Room 1; and
"R2" denotes the perception of the simple scene of Room 1 from Room 2.

We can see that generally the perceived AVQ is higher in a simple scene than that
in a complex scene at the same degradation levels (an average drop ofMOSAV score
is about 0.5). The statistical test reveals that there is a signi�cant di�erence between
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subjectiveMOSAV scores for the two rooms. This may indicate that when a scene is
composed of complex spatial and temporal elements (presence of high frequencies in
the picture and high amount of temporal activity), the network impairments would
have a greater impact, and the artefacts (block loss and blockiness) would be more
visible. In fact, scenes with high temporal and spatial complexities require more bit
rate to be encoded. At a constant bandwidth, more encoding artefacts will occur
and the e�ciency of the packet loss concealment algorithm is reduced [157].

For the video quality (Figure 3.14.b), there is not a signi�cant di�erence between
Room1 and Room2. We have expected to have a signi�cant di�erence in the results
because the complexity of the scenes is guessed to have a stronger impact on video
quality than on audio quality. This may be explained by the fact that the di�erence
of complexity between the scenes is not su�cient to have an impact on the perceived
video quality. To add a precision detail and explain this observation, we take two
indicative sequences from the recorded conversations and we calculate the SI and
TI indexes:

� For the complex scene : TI= 47, SI= 79

� For the simple scene : TI= 29, SI= 61

Thus, from this observation we might open a question to discuss in a future study:
from which di�erence of scene complexity we could detect a signi�cant di�erence in
perceived video quality?

For the perceived audio quality (Figure 3.14.c), there is no signi�cant di�erence
between the results for the two rooms. This is logic since the spatial complexity is
not expected to have an e�ect on audio quality. Furthermore, the audio background
deployed in our experiment was the same when it comes to the both rooms used.
Thus, the used audio background did not allow to reveal any impact in this case.

Figure 3.14.d shows that the synchronization annoyance of the subjects is also
in�uenced by the spatial and temporal complexity of the perceived scene. The
di�erences in MOSsynch are statistically signi�cant. These plots of synchroniza-
tion acceptability are coherent with the MOSAV results even if the di�erence of
MOSsynch between the two rooms is more important. This may indicate that an
increased temporal activity has a direct impact on perceived lip synchronization
since the movements disturb subject concentration.

In�uence of scene complexity for non-interactive experiment

In order to stay coherent with the conversational test we present in this part a
comparison between subjective results of the "Sofa" and the "Hall" scene. We
chose these sequence scenes due to the di�erence of spatial and temporal complexity
between them (see Figure3.6) and to the similarity they have with the interactive
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Figure 3.15: Impact of scene complexity for non-interactive experiment context.
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scene content. "Sofa" sequence represents a simple scene where a guy is sitting
at the sofa and talking, with white wall in its back. "Hall" sequence represents
a person talking and showing a landscape (spatial complexity) in traveling mode
(spatial complexity).

In Figure 3.15, MOSAV , MOSV , MOSA and MOSsynch scores are represented
and associated with 95% con�dence intervals, according to the quality condition
for each scene. We report a signi�cant di�erence inMOSAV scores between the
sequences for all the test conditions except the reference, 20%APL and 400 ms
video delay. Thus, compared with Figure3.15.a, we deduce that overall quality
perception is in�uenced by the complexity of the perceived scene in both interactive
and non-interactive context. This observation a�rms that the environment and
the position of the person on the video call is a parameter to take into account to
evaluate the perceived communication quality. This complexity impact could be
studied through a non-interactive experiment.

For the video quality, there is a signi�cant di�erence in MOSV (Figure 3.15.b).
In fact, the subjective scores of the complex scene ("Hall") are lower than that of
the simple scene. This observation is justi�ed by the fact that video artifacts caused
by packet losses are more visible with sequence complexity. We notice that the SI
di�erence between the two scenes here is much bigger than that in the interactive
context. This may explain why we did not observe a signi�cant di�erence in MOSV

in the interactive context.

As it can be seen in Figure3.15.c there is not a signi�cant di�erence of audio
score between the two scenes. This result is expected since scene complexity has
not an e�ect on audio quality perception, and consistent with the �nding in the
interactive context.

Figure 3.15.d shows that the subjects' reaction to desynchronization annoyance
is the same for the two scenes, no signi�cant di�erence is noticed. Thus, unlike
the interactive context, in a non-interactive context the scene complexity does not
impact audio-video synchronization perception. Previous studies have shown that in
a passive context, large delay in the audiovisual signals does not necessarily impact
the quality perception as test subjects accommodate for it [158].

3.5 Other test databases

In our subjective tests that we have described in the previous sections we have
mainly studied network-type impact factors (jitter, packet loss and delay). However,
there are also the application factors that impact the perceived quality of a video
conference call (see Section2.2.2) and that have not been studied. In order to
complete our knowledge and to broaden the spectrum of conditions, degradation
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and contents, we need to collect other bases of sequences.

In the literature most of the available and easy to access databases are for video
quality tests. We choose subjective databases with variety of the included impair-
ment types: transmission error (packet loss, jitter, freezing, etc.), coding (variable
bit rates), frame rate, di�erent error concealment algorithms. These databases will
come complete the sequences of our subjective tests and will be used in two major
axes of our researches:

� Evaluate the performance of the objective video metrics

� Constitute a training database of a machine learning algorithm

The characteristics of all the databases described below are summarized in Table
3.6.

3.5.1 LIVE Mobile video quality assessment Database

The Live Mobile database is developed by the Laboratory for Image and Video
Engineering at the University of Texas. It's one of the most popular public VQA
databases used by researchers to evaluate objective video quality assessment algo-
rithms for wireless video transmission with regards to their e�cacy in predicting
visual quality. The importance of the LIVE Mobile VQA database is that it con-
tains temporal distortions in addition to compression and packet loss distortion. In
total, the distortion conditions consist of 4 conditions for H.264 compression impair-
ments, 4 wireless-packet losses, 4 duration of frame freezes, 3 rates adapted and 5
temporal dynamics per reference. Details on these distortions are explained by au-
thors in [159]. The videos were viewed on a mobile terminal : Motorola Atrix. The
test methodology used in assessing the sequences is the single stimulus continuous
quality evaluation (SSCQE) with hidden reference.

� Compression impairments: encode source videos with H.264 Scalable Video
Codec (SVC) at four bit rates (R1 < R 2 < R 3 < R 4) between 0:7Mbps and
6Mbps. 40 distorted videos are in this category.

� Frame freezes on stored video delivery and real time live video delivery: four
conditions were simulated for each source video which leads to a total of 40
distorted videos.

� Rate adaptation: change the coding bit rate during the video. We have 30
rate adapted distorted videos.

� Temporal dynamics: simulate multiple switches of the coding rate yielding 50
distorted videos.

� Wireless channel packet loss. 40 distorted videos are generated.
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3.5.2 EPFL-PoliMI video quality assessment Database

The EPFL-PoliMI (Ecole Polytechnique Fédérale de Lausanne and Politecnico di
Milano) video quality assessment database is freely available for download on [160].
It was speci�cally designed for the evaluation of transmission over IP network im-
pairments. Packet loss distortions with di�erent percentages (0.1%, 0.4%, 1%, 3%,
5%, 10%) are simulated in this video quality assessment test database. All sequences
have been encoded with the H.264/AVC encoder adopting the High Pro�le.

3.5.3 SD ROI database

This database is developped by Boulos et al. in [161]. It contains videos of 6 di�erent
source contents with for each content, 14 H.264 coding conditions with or without
error transmission simulations. The speci�city of this database is that the spatial
position of the transmission errors depends on the Region of Interest (RoI) in the
video frames. The RoI are de�ned using an eyetracker algorithm. Then, some slice
losses are introduced in the RoI and outside of it to test the impact of both the error
propagation and the spatial location of the loss on the perceived quality. When the
losses were outside the RoI, they occurred in the slices adjacent to the RoI. All losses
were in a single I-picture to allow a longer temporal propagation.

3.5.4 SVC4QoE Replace Slice database

This database is developed by Y. Pitrey et al. in [162, 163]. It is designed for
the evaluation of mobile transmission quality. It contains 9 contents with for each
content, the reference (without processing or degradation) and 14 di�erent impair-
ment conditions. The sequences are coded with h264 and h264/SVC codecs with
simulated transmission errors. Two error concealment algorithms were tested using
the h264/SVC capability:

� Frame level concealment.

� pixel level concealment.

3.5.5 SVC4QoE Temporal Switch database

Developed by Y. Pitrey et al. [164, 165] this database is designed for evaluating the
impact of network behavior and encoder con�guration on the visual quality using
SVC-based error concealment. It contains h264 and h264/SVC encoded sequences
at di�erent QP values. Several switching conditions were created between the QP
values in order to test the impact of temporal quality switching on the perceived
quality.



3.5.
O

ther
test

databases
81

Live Mobile EPFL SD RoI SVC4QoE SVC4QoE
Replace Slice Temporal Switch

Year 2012 2010 2009 2011 2011
Nbr. of sequences 170 78 84 140 390
Nbr. of references 8 6 6 9 11
Resolution HD 1280� 720 CIF SD (720� 576 VGA VGA
Duration 10 s 8 to 10 s 10 s 10 s 10 s
Frame rate 30 fps 30 fps 20 fps 30 fps 30 fps
Distortion types H.264 encoding packet loss Packet loss H.264 encoding H.264 encoding

wireless packet loss H.264/SVC encoding
frame freezes transmission errors
rate adaptation
temporal dynamic

Encoder H.264 AVC H.264 AVC H.264/AVC H.264 H.264
Assessment method SSCQE-HR SS ACR-HR ACR-HR ACR-HR
Subjective scores DMOS [0; 5] MOS [0; 5] MOS[1; 5] MOS[1; 5] MOS[1; 5]
Nbr. of subjects 36 40 25 29 28

Table 3.6: Properties of subjective VQA databases
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3.6 Summary

We present two modalities of subjective audiovisual quality test. This work focus
on investigating audiovisual quality in interactive and non-interactive contexts and
under di�erent scene complexities. By comparing non-interactive vs. interactive
test results, we summarize that statistically there is not a signi�cant di�erence of
MOSA , MOSV and MOSsynch scores between the two experimental contexts. Thus,
in future experiments we can rely on non-interactive test results and apply them on
a conversational context. However, consideringMOSAV scores we note a signi�cant
di�erence between the two contexts.

Besides, the results show that the scene complexity has an impact on the per-
ceived audiovisual quality in both contexts and on the perception of audio-video
synchronization in the interactive context. The di�erent observation on the impact
of the scene complexity on the video quality in the two contexts requires a further
study. Limited by the experiment duration we studied only two di�erent scene in
the interactive context. We had not covered a wide range of spatial and temporal
complexity.
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Introduction

The reduction of the temporal alignment between the auditory and visual infor-
mation can alter the audiovisual perception as a multimodal event. In real time
audiovisual conversation, the presence of desynchronization between the image and
the sound can have a detrimental e�ect on the interactivity of the conversation and
thus on the perceived quality. Consequently, it is necessary to control the temporal
relationship between the audio and video signals so that the quality perceived by the
user is not altered. As we mentioned in Chapter2, audio/video desynchronization
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is one of the most important factors to consider as the main cause of audiovisual
degradation.

We have investigated the impact of desynchronization on the audiovisual quality
perception in the context of videoconferencing contents in Chapter3. The results
showed that there is the same dissymmetry aspect for both TV and videotelephony
applications, but with larger acceptability thresholds, rather at least 150 and 250
ms respectively [166]. The reason for this di�erence is not necessarily linked to the
context; the design of the respective subjective tests, and in particular the question
asked, can have also an impact. This is why we planned a new subjective test that
included conditions with these values of delay as well as higher values, in order to
see if the actual acceptability thresholds could be even higher.

Furthermore, we are interested in the interaction between di�erent types of im-
pairments and the audio/video synchronization that can lead to visual masking
e�ects. In particular, we want to study if changing from high to low resolution or if
the video codec bit rate can impact user perception of asynchrony. The interaction
between asynchrony and packet loss (audio or video) can lead to visual masking
as well. Thus, we will give answer elements to this problematic that it is not yet
studied in the literature.

We realized non-interactive subjective audiovisual tests with two objective of
assessing audio, video and audiovisual qualities and de�ning asynchrony perception
thresholds. Two separate tests have been conducted. One in laboratory, following
the protocol of ITU-T P.911 [61], and the second one on a crowdsourcing platform.
In fact, laboratory quality studies are time consuming and expensive, so researchers
often run small studies with less coverage in terms of tested conditions. The crowd-
sourcing approach allows having a large and diverse panel of subjects in realistic
user settings. Some researchers on QoE assessment developed speci�c crowdsourcing
platforms and show the e�ciency of the crowdsourcing method [167, 168, 169, 170].

In this chapter, we show the results of the two subjective tests conducted in order
to better understand the in�uence of the time o�set between the audio and the video
media streams of videotelephony contents with the presence of other impairments.
We also compare between the subjective perception of quality and asynchrony in
laboratory and crowdsourcing contexts.

4.1 Test plan

Since most elements of the test plan are common between the two subjective studies,
in this section only the di�erences will be highlighted. In our subjective tests we
simulated asynchrony conditions with the presence of video IP packet loss, audio IP
packet loss, video coding bitrate and video resolution. We simulated the video and
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audio packet losses on the audiovisual sequences by applying a random loss pattern.
The values of the packet loss percentages had been set empirically by experts who
observed the results on the contents and selected those which represent an actual
case of use. In Chapter3 we showed that an audio IP packet loss value under 5%
has no signi�cance impact on subjective quality perception as a value over 5% is not
realistic and the quality become very degraded. Thus, in our test plan we have only
one condition for audio quality. We considered three video coding bit rate values
in order to cover a wide range of visual quality (from good quality with 768 kbps
to bad quality with 64 kbps). Three resolution conditions are studied to represent
cases of use of a videoconferencing service on mobile, tablet and even PC.

The di�erent values for all these variables are given in Table4.1.

Audio/video delay Video IP packet Audio IP packet Video coding Video resolution
(ms) (NOTE) loss (%) loss (%) bitrate (kbps)

-400 0 0 768 640 � 480 VGA
-300 1 5 384 320 � 240 QVGA
-250 2 64 1280 � 720 720p

0
150
300
400
NOTE negative values stand for when sound is delayed with respect to image,

positive values stand for when image is delayed with respect to sound.

Table 4.1: Variables for the subjective test

Our reference condition consists in :

� no delay,

� no packet loss,

� bit rate at 768 kbps,

� resolution at 720p.

All seven conditions with di�erent values of delay between audio and video have
been repeated in presence of one single variation from the reference condition. There
are in total seven possibilities (1% video IP packet loss, 2% video IP packet loss, 5%
audio packet loss, 384 kbps, 64 kbps, VGA, QVGA). Together with the reference
condition, this makes a total of 7 � (7 + 1) = 56 conditions.

For both tests, after each presentation the subjects were asked to evaluate the
overall audiovisual quality (MOSAV ), the audio and video qualities (MOS A

A and
MOS V

V ) and the audio-video asynchrony (MOSsynch )(See Appendix9). To measure
the perceived video, audio and audiovisual quality, we used an ACR �ve-level MOS
scale and for the synchronization, we used a speci�c 5 point DMOS impairment
scale as described in the recommendation P.911 [61].



86 Chapter 4. Perception of asynchrony: two subjective test studies

Restaurant Desk Hall
Scene 1 Scene 2 Scene 3

Figure 4.1: Screen shot of the used video contents

4.1.1 Tested contents

Three di�erent video scenes have been selected, taken from our non-interactive sub-
jective test that we described in Section3.3. These contents are "Restaurant",
"Desk" and "Hall" (see Figure 4.1). The duration of these scenes stand between
8 and 10 seconds. The selection of these three scenes has been driven by the need
to have a wide representation of the bi-dimensional space composed of the dimen-
sions �spatial information� and �temporal information� (see Figure 4.6) representing
respectively the complexity and the amount of motion in the video part of the
sequences, as de�ned in P.911.

Concerning the audio of these scenes, they represent also a good variety. The
"Desk" scene is recorded in a quiet place, while the "Restaurant" scene includes
some cafeteria noise and the "Hall" scene has a little reverberation. The audio sig-
nal has been coded with the same codec used in our previous tests which is AMR
WB codec at 23.85 kbps.

In total, 56 conditions with 3 scenes bring to a total number of 168 sequences to
view and assess.

4.1.2 Laboratory subjective test procedure

For the test in laboratory, 32 persons were involved (23 females and 9 males with
ages from 16 to 55 years). To view and assess 168 sequences, the test for each
participant took approximately two hours, divided into two one-hour sessions with
a break. Before that, they had a training session on 5 sequences in order to become
familiar with the test procedure and adjust the viewing distance and the sound
volume.

The material to run the test was composed of:

� a PC screen (DELL 24�) where the video part of the sequences was displayed,

� a high quality headset (signature connected to an ampli�er (STAX, SRM-
006tII) in order to adjust the sound volume,

� a tablet to enter the answers to all four questions after each sequence.
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The room where the test has been conducted is quiet and isolated from outside
(acoustically treated); the light has been adjusted to 20 lux. All the materials were
put on a table and the tester were sitting on a mobile chair allowing adjusting the
viewing distance.

4.1.3 Crowdsourcing subjective test procedure

The concept of crowdsourcing, as a novel QoE assessment methodology, means to
outsource subjective studies to a crowd in the Internet and calling on outsider testers
to realize them. The crowdsourcing process consists in recruiting anonymous group
of people to perform an audiovisual subjective quality test with their own devices and
in their own environment. This unsupervised test context raises several di�culties
and challenges [171]. In fact, crowdsourcing approach o�ers several facilities and
advantages, allowing to bene�t from a very large number of participants with a
reduced cost compared to the standard laboratory test, as well as to face the problem
of insu�ciency of the data obtained by the classical methods.

In our context, as far as the crowdsourcing test is concerned, the test procedure
has to be adjusted. In particular, due to the test duration constraints (less than 15
minutes), we chose to reduce by a factor of 6 the global corpus of 168 test sequences,
so we decided that the number of scores that each participant visualized and assessed
is only 28 sequences.

It is assumed in P.911 that the minimum number of participants to a subjective
test is 15 in order to have good consistency and accuracy. Thus, the number of
scores for all sequences when applying the crowdsourcing approach was equivalent
or higher than this threshold.

A possibility could have been to design 6 separate tests comprising each of them
28 sequences, and to propose it to at least 15 testers. We decided not to do so,
because there was a signi�cant risk that the content of all individual tests could not
be equivalent in terms of perceived quality, introducing thus a bias. Instead, it has
been decided to have a fully randomized choice of sequences to be proposed to each
tester.

However, this selection has a drawback: one is never sure if all sequences received
enough scores. In other words, the minimum number of testers to get involved in a
test in order to obtain at least a given number of scores for all sequences is unknown.
In order to get some good idea, we ran 500 iterations of the selection of 28 elements
in a whole set of 168 repeated 100, 120 or 150 times, and we looked at the number
of these elements that were selected at least 15 times. The results are presented in
Table 4.2.

This means that, if 150 persons are involved in the test, at least 163 sequences
will be viewed and scores 15 times or more, and it is very likely that all of them
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Number of testers 100 120 150
Minimum 109 143 163
Maximum 131 162 168

Table 4.2: Number of sequences with at least 15 scores

will. This is why our test has been designed for approximately this number of par-
ticipants. At the end of the test, there was still the possibility to ask a few people
to test a �xed set of sequences containing the ones with less than 15 scores. In this
study all sequences have been viewed and scored at least 15 times as expected. For
future studies on subjective quality test in crowdsourcing, we suggest to consider
such a random approach. In our methodology we want to clarify that the number
of testers per condition is considered as limited. We did not try to make a real
crowdsourcing campaign but rather to use crowdsourcing tools to try to replace a
formal subjective test.

The existing crowdsourcing frameworks for QoE assessment were studied and
compared in [172]. In our case, the main criteria for our choice is that, since the
audio part of the tested sequences is in French, native speakers for this language
were required. Thus, we chose a crowdsourcing platform called �FouleFactory� [173]
as it is the only platform that could allow this as far as we are aware. This platform
responded well to our requirements, and in addition it assured a massive recruitment
of testers ( among their database of 50000 users) and it took less than 24 hours to
get our 120 ratings. FouleFactory was in charge of rewarding the testers. Once
recruited, testers were redirected to the URL of the test platform itself, on a server
hosted by Orange.

A total of 146 persons took part in this test. 120 of them have been recruited
by Foulefactory, the remaining were voluntary employees of Orange, not expert in
quality assessment.

Once connected to the test platform, each tester had to respect the following
protocol before starting the test:

� read a �rst page (see below Figure4.2) giving information and simple recom-
mendations concerning how to pass the test,

� visualize and evaluate �ve learning sequences (the same ones than for the P.911
test) in order to get more familiar with the impairments and with the scoring
scales.

At the end of the test, the tester had to answer to a little questionnaire concern-
ing some personal information useful for further statistics:

� What age group do you belong to?

1. 18-30 years
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Figure 4.2: Recommendations before the test on the crowdsourcing platform (in
French)labels of questions (in French)

2. 31-45 years

3. 46-60 years

4. more than 60 years

� Are you ... ?

1. Male

2. Female

� What type of audio equipment did you use for the test?

1. Headphone

2. Earphones

3. Loud speaker

Since the crowdsourcing environment is not controlled, researches proposed to
add during and after the test, content questions and reliability checks in order to
ensure the quality and the relevence of scores. These questions are considered to
improve the reliability of the ratings by reinforcing the attention of workers and
to be used to post-screening the possible unreliable workers. However, analysis re-
sults presented in [174] show that these consistency question are not e�cient for
post-screening and it is recommended to use the standard deviation as a criteria.
Following these conclusions, in our test, no consistency question has been asked.
However, before rewarding a tester (and taking his answers into account), the con-
sistency of his answers was checked, by comparing them to the mean of all individual
answers. Only the data from testers who gave at least for 5 conditions (out of 28)
scores deviating by at least 1 point on the MOS scale from the mean value over all
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Figure 4.3: Perception of asynchrony in absence of other factors

NOTE 1: negative values stand for when sound is delayed with respect to image, positive values
stand for when image is delayed with respect to sound; NOTE 2 : 1 = Very annoying ; 2 =
Annoying ; 3 = Slightly annoying; 4 = Perceptible but not annoying; 5 = Imperceptible

testers for the four questions were discarded. This concerned 4 persons out of 120.
A �ner screening of scores has also been performed as usually done after formal
subjective tests [156].

4.2 Subjective test analysis

The main reason to launch this series of tests was the need for a better knowledge of
interaction between audio-video synchronization and other QoE factors. The answer
to this question can mainly be found when analyzing the scores obtained by the
�desynchronization� annoyance question. In this section, we examine this question
for each factor. Before that, an examination of the answers to this question in the
reference condition is necessary. They are illustrated on Figure4.3.

Fig. 4.3 shows that the type of scene has no in�uence on the asynchrony per-
ception in the reference condition, in this study. Furthermore, the acceptability
thresholds are in line with previous knowledge [46, 166]:

� an image delayed by 150 ms is not perceived, but a sound delayed by 250 is
perceived (but not annoying),

� the asynchrony is more perceptible for a given delay timing when audio leads
video than when audio lags video.

In the following, we will see how far the introduction of video and audio quality
factors can in�uence these observations.
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Figure 4.4: In�uence of video resolution on the perception of asynchrony

4.2.1 Video resolution

The fact to have a smaller image is not a quality factor by itself, even if the results
of the subjective tests show that the smallest images (with unchanged bitrate at
768 kbps) get better scores. This applies also for the question on asynchrony. On
Figure 4.4, we can see indeed that this factor has small in�uence on the perception
of asynchrony. This e�ect is identical for all levels of spatial complexity tested in
this study..

4.2.2 Video coding bitrate

The results show that the perceived quality decreases with the video coding bitrate.
This concerns not only pure video quality, but also global quality, as well as the
perception of asynchrony. This decrease depends on the type of video content, and
in particular its spatial complexity: �Desk� (exhibiting the lowest spatial complexity)
is the least concerned (a little bit more than �Restaurant�) while �Hall� (exhibiting
the highest spatial complexity) is the most impacted (see Figure Fig.4.5). As far as
the perception of asynchrony is concerned, it is in�uenced by video coding bit rate
only at very low rates. This in�uence is especially visible for The �Hall� scene, with
scores dropping down close to 3 even without delay between audio and video (the
global video quality is so bad that it is no longer possible to follow the movements
of the lips), while for other scenes scores remain above 4 for low delays.

4.2.3 Video IP packet loss

Here again, the increase of the magnitude of this impairments results, without sur-
prise, into a decrease in the asynchrony annoyance scales. This decrease depends
on the scene, and again, �Hall� scene, with the highest complexity, is the most im-
pacted, as can be seen on Figure4.6. An interesting thing to remark is that for all
types of scene, with video delays of 300 ms or more, the perception of asynchrony
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Figure 4.5: In�uence of video bit rate on the perception of asynchrony
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Figure 4.6: In�uence of video IP packet loss on the perception of asynchrony

seems to decrease when packet loss is present (for �Restaurant� and �Desk�) when
it increases with audio delay.

4.2.4 Audio IP packet loss

From Figure 4.7) we notice that the scores for asynchrony perception reach lower
values in the presence of audio packet loss. This decrease depends on the audio
content of the tested scene, and in particular on the presence of noise in the back-
ground, which is the case for �Restaurant� (cafeteria noise). We see also the same
trend as in the case of video packet loss when the video delay is high.
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Figure 4.7: In�uence of audio IP packet loss on the perception of asynchrony
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Figure 4.8: Blocks of test conditions. �Deg.� is equivalent to: 1%VPL (Video Packet
Loss),2%VPL, 5%APL (Audio Packet Loss), 384 kbps, 64 kbps, QVGA and VGA.

4.3 Comparison between results from laboratory and crowd-
sourcing tests

As seen in the section4.1, both tests have been conducted with as much common
characteristics as possible. The main di�erences are the number of scores per con-
dition (32 in the P.911 test, between 15 and 25 for the crowdsourcing test), the
number of sequences tested by each tester (all in the laboratory test, only 1/6th of
them for the crowdsourcing test) and without the control of the testing conditions
(lighting, viewing distance, screen, listening device) for the crowdsourcing test.

In Figures 4.9 to 4.13, one can see the mean scores for all 168 tested sequences,
presented question by question for each content and for the mean over all the con-
tents. The green curves show the scores for the laboratory test, the red ones for
the crowdsourcing one. Conditions are divided into 8 blocks of 7 conditions. We
present a zoom on the axis in Figure4.8.
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4.3.1 Global quality

The red and green curves in Figure4.9 are rather close to each other. This cor-
responds to a very good level of correlation between both sets of data (around 92
%). However, it can be seen that video impairments (packet loss, lower bit rate)
are scored more severely by testers following the crowdsourcing procedure (this is
mostly visible for the �Restaurant� scene). This could be explained by the fact that
the viewing distance (out of control) can be shorter for them than for formal tests
in laboratory where a distance equivalent to 3 times the height of the screen has
been applied by default.
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Figure 4.9: Comparison of mean scores of both tests for global quality

4.3.2 Audio quality

This is the question with the lowest level of correlation between both sets of data
(around 60% only), as illustrated by Figure 4.10. In particular, laboratory results



4.3. Comparison between results from laboratory and crowdsourcing
tests 95

1

2

3

4

5

M
O

S
_
A 

Restaurant 

Laboratory Crowdsourcing

1

2

3

4

5

M
O

S
_
A 

Desk 

Laboratory Crowdsourcing

(a) (b)

1

2

3

4

5

M
O

S
_
A 

Hall 

Laboratory Crowdsourcing

1

2

3

4

5

M
O

S
_
A 

All scenes 

Laboratory Crowdsourcing

(c) (d)

Figure 4.10: Comparison of mean scores of both tests for audio quality
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Figure 4.11: Comparison of mean scores of both tests for audio quality with a
distinction based on listening device

show a very good discrimination between conditions with and without audio impair-
ments, whereas this is not the case for the crowdsourcing test. This is particularly
true with the �Hall� scene where the red curve does not exhibit lower scores for the
conditions with audio packet loss compared to conditions with video packet loss or
video coding with low bitrate.

The relatively low correlation resulting from this �nding could be explained by
the fact that the test environment was out of our control. Furthermore, most testers
(86 out of 146) used loudspeakers. Figure4.11 is similar to Figure 4.10, but the
mean scores from the crowdsourcing testers using only headset have been added
(blue curve). Unfortunately, the number of scores per condition becomes then too
low (down to 5 for some sequences) to have fully relevant statistics, but a quick look
at the relative positions of curves shows that the discrimination between conditions
with and without audio impairments is enhanced with headset. This result is another
good illustration of the di�culty to master audio listening conditions outside a
laboratory environment.

4.3.3 Video quality

This is the question for which both sets of data are best correlated, up to 95%
(see also Figure4.12). Here, the replacement of a laboratory test by an approach
based on crowdsourcing is obviously less problematic. This can be explained by the
fact that di�erence in terms of media rendering is not as big as for audio between
laboratory and home contexts for this study.
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Figure 4.12: Comparison of mean scores of both tests for video quality
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Figure 4.13: Comparison of mean scores of both tests for perception of asynchronism
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4.3.4 Desynchronization perceptibility

For the desynchronization perceptibility, the correlation between both sets of data
reaches 78%. As illustrated on Figure4.13, generally, scores in the crowdsourcing
context are more severe, in particular with the highest o�sets between sound and
image, but both methods are equivalent in terms of discrimination between good
and bad conditions (i.e. the di�erence between scores with and without delay is
large)

One can also see that both groups of testers judge the in�uence of video and
audio quality factors on the perception of desynchronization more or less in the
same way. The reason why the correlation is lower than for video and global quality
questions is the same than for audio quality. If the sound is more di�cult to listen
to (as this is the case with the crowdsourcing approach), then sensitivity to an o�set
against image is certainly decreased.

An obvious factor a�ecting the delay between video and audio is the distance
between the loudspeaker (or, more generally, the electro-acoustic transducer) and
the tester. If re�ections of the direct sound have a signi�cant amplitude then these
could provide misleading, or at least alternative, cues of synchronization. Headset
provides a very good control in two ways: the delay introduced is very small and
the ratio of direct to reverberant sound is very large. However, this is dependent on
the goodness of �t. The �delity of the loudspeaker, or the headset, also a�ects the
character of the sound heard by the tester.

Some di�erences between scores with both test methods can however be observed
in a few isolated cases. For instance, the participants in the laboratory test give lower
score for all conditions with the �Hall� scene and a 64 kbps video bitrate, whereas
those following the crowdsourcing approach do not notice asynchrony problem with
low delay.

As a global conclusion, we can say that the use of a crowdsourcing approach (with
enough participants, allowing at least 15 scores per sequence under test) leads to
results that are equivalent to those of laboratory P.911 tests when it comes to video
quality and global audiovisual quality on various types of contents representative of
a videotelephony conversation. Nevertheless, the results are less promising as far
as perception of asynchronism and (mostly) audio quality is concerned, where the
crowdsourcing approach yields underestimation of quality and lower discrimination
between bad and good conditions. The di�erence between the media rendering
hardware used in laboratory and at home, as well as the uncontrolled acoustic
environment, is certainly the main explanation.
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of all future subjective and objective QoE methods addressing the assessment of the
perceived quality of audiovisual conversational services.

The comparison between the results of the laboratory test and those of the
crowdsourcing test demonstrate that:

� If the test protocol used in the crowdsourcing test is faithful to the one in lab-
oratory, it is possible to obtain a strong and statistically signi�cant correlation
to the scores given in the laboratory. This is true for the audiovisual, video
and asynchrony perception questions. The only exception concerns the audio
quality perception.

� The test design in the crowdsourcing context seems to have a minor in�uence
on the reliability of subjective scores on these three scales. In particular, the
restriction of each individual test to only 1/6th of the whole set of sequences
is not an issue.

� In our context, the use of a consistency check based on content questions is not
necessary. An a posteriori screening of scores is enough. This is also con�rmed
by outputs from similar studies conducted in audio-only contexts.

� The assessment of audio quality with a crowdsourcing approach seems more
di�cult in an audiovisual context than in a pure audio context. The uncon-
trolled environment in the test (used headset, loud speaker, volume adjust-
ment, background noise . . . etc.) has a greater impact. This implies also that
the constraints in terms of listening conditions for future similar tests must be
much stronger.
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Introduction

Literature proposes numerous methods for objective evaluation of the audio, video
and audiovisual qualities. The objective of this chapter is to evaluate the accuracy
of the main existing approaches and metrics in predicting quality. The applications
of objective quality evaluation are various. Post-processing, transmission, sensors
or displays are elements that can be subject to speci�c quality criteria. Our main
contribution is to investigate the performance of the objective models according to
di�erent impairments that can occur for instance in a video conference call.
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5.1 Full reference video quality metrics

In this section, we evaluate the prediction accuracy of the full-reference video quality
metrics de�ned in 2.4.2on three di�erent subjective databases: the Live Mobile video
quality Database, the EPFL database and the videoconferencing database developed
within the non-interactive test ( 3.3). In our work, we conduct an updated study of
the existing set of full-reference metrics in the state of the art.

5.1.1 Performance evaluation and comparative study

We study the global full reference metrics in order to identify the representative
metrics that have a good accuracy in predicting the subjective MOS score. As for
all objective metrics, we evaluate the performance of the full reference metrics under
study using three statistical indicators [175]:

1. Accuracy prediction: refers to the ability to predict the subjective quality
ratings with low error. The Pearson Linear Correlation Coe�cient (PLCC)
was computed. For two datasetsX = f x1; x2; :::; xN g and Y = f y1; y2; :::; yN g
with x and y the means of the respective datasets, the PLCC is de�ned by:

PLCC =
P

(x i � x)(yi � y)
p P

(x i � x)2
p P

(yi � y)2
(5.1)

2. Monotonicity prediction: refers to the degree to which the relationship between
the subjective quality ratings and the predicted measure can be described
by a monotone function. The Spearman Rank Order Correlation Coe�cient
(SROCC) was used:

SROCC =
P

(X i � X 0)(Yi � Y 0)
p P

(X i � X 0)2
p P

(Yi � Y 0)2
(5.2)

with X i and Yi are the ranks of the ordered data seriesx i and yi respectively;
X 0 and Y 0 denote the respective midranks.

3. Consistency prediction: measures the ratio of wrong predicted scores by the
objective model to the total number of scores. The Root Mean Square Error
(RMSE) was computed. For a datasetf x1; x2; :::; xN g, with x is the mean
value:

RMSE =

r
1
N

X
(x i � x)2 (5.3)

The PLCC and RMSE are computed after performing a non-linear mapping on
the objective measures using the cubic polynomial mapping function recommended
in [175]. This function is used in order to �t the objective model scores to the sub-
jective scores.
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The correlation values of the objective video quality metrics with the subjec-
tive scores are di�erent. We cannot compare the performance of the metrics based
only on the absolute di�erence between the correlations. It is necessary to inves-
tigate whether this di�erence in performance is statistically signi�cant or not. For
this purpose, we used a statistical Fisher test based on averaged quality scores as
suggested in [175]. The F-test assumes that the scores are independent and have
a Gaussian normal distribution. We used a Shapiro-Wilk normality test and we
con�rm that for all databases the data sets have the Gaussian distribution. We per-
formed the F-test on the variance of the objective models at a 95% signi�cance level.

The performance of all metrics in terms of the PLCC, SROCC and RMSE for
the four video quality assessment databases are summarized on Table5.1. The best
performing metrics are highlighted in bold font for each test database and each
criterion. It can be noted that the correlation scores on the EPFL database are sig-
ni�cantly higher than the other databases and are in the range between 0.87% and
0.93%. This can be explained by the similarity of impairment types simulated in
this database: only packet losses. It can be interpreted as an equivalent sensitivity
of all the metrics to packet loss errors.

All three statistical measures (PLCC, SROCC and RMSE) show that generally
three metrics, i.e. SSIMplus, ViS3 and VMAF outperform the other metrics. The
common characteristic of these metrics is that they are video metrics ones that
include the movement information in their quality assessment algorithms. On the
other hand, classic image based metrics (PSNR, SSIM and MS-SSIM) are least cor-
related with the subjective video quality judgment.

By comparing the two VQM models (NTIA general and videoconferencing model)
there is no signi�cant di�erence between the correlation values for all databases ex-
cept for Orange1 and Orange2 databases. For these sequences, VQM Videoconfer-
encing model outperforms the NTIA General model. We can explain this result by
the fact that the video contents of these databases are the closest to a videoconfer-
encing context. Consequently, subjective scores are more in�uenced by this context.
On the other hand, we note that both VQM General and V QMV models have the
less correlations on Orange2 database. This can be interpreted by the optimization
of these models for video sequences encoded with H.263 and MPEG-4 [176], while
Orange2 database contains H.256/HEVC encoded sequences.

The objective MOS prediction OPVQ model shows a good performance for EPFL
and LIVE databases. Even though this model provides support for only a limited
set of spatial resolutions (VGA, CIF and QCIF) and has been tested and validated
for VGA resolution only, our correlation results prove that it could be applied on HD
sequences. Furthermore, the coe�cient parameters of the OPVQ model are trained
on a data set containing quality impairments related to H. 264, H. 264 / SVC and
MPEG - 4 coding, transmission errors, temporal dynamics (switches in video coding
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bit rates during the sequence). We �nd all these degradations simulated in the Live
Mobile database which explain the obtained correlation value 85%. However, the
model has lower performances for the two Orange databases. We could explain that
for two reasons: Orange databases contain 1) di�erent degradation types (jitter,
HEVC coding, frame rate changes) and 2) di�erent contents from the training data
set used to compute the mapping coe�cients of the model.

The main strength of MOVIE algorithm is video quality estimation according to
motion trajectories. The metric is accurate in detecting distortions that appear in re-
gions containing movement. This explains the good MOVIE performance for EPFL
and Orange 1 databases. In fact, it is known that unlike application distortions
(coding, frame rate, resolution, etc.) independent from the content, transmission
impairments (in particular the packet loss) infect objects on movement (which do
not belong to the scene background).

A previous review [87] in 2011 showed that MOVIE had the best correlation
with subjective opinions on LIVE video quality database, before the appearance
of Vis3, SSIMplus and VMAF. The major drawback of MOVIE is its extremely
high calculation complexity. MOVIE is the most complex metric in our experiment,
which needs much more time than any other metric. This prevents its practical use
in operational context.

Results shown in Table5.1 reveal that Vis3 is competitive against the other met-
rics. The spatio-temporal dissimilarity estimation based on the video decomposition
into spatio-temporal slices (STS) makes the algorithm less sensible to the tempo-
ral loss of alignment between the reference and the degraded sequences. In fact,
due to the videoconferencing software and the recording process used to generate
the Orange 1 database, we notice a slight misalignment in frames of the reference
and those of the test videos. This di�erence impacts all the other objective metrics
scores that are based on frame by frame comparison except ViS3 which is based
on the Group Of Pictures (GOP) comparison. Thus, the most correlated metric
for Orange 1 database (in terms of PLCC and SROCC) is ViS3. Furthermore, the
performance comparison of ViS3 with the state-of-the-art video quality metrics in
[97] reveals that for IP packet loss impairments, VQM General model and MOVIE
outperform Vis3 for some databases. However, our correlation results on EPFL and
Orange 1 databases prove that for videoconferencing contents ViS3 may be a good
indicator for video quality in transmission error conditions too.

By comparing all the results we notice that generally, for all the databases and
all degradation types, SSIMplus is one of the most competitive metrics. Despite the
fact that our subjective test databases do not contain impairments in the range of
device variability and viewing conditions, SSIMplus shows an accurate video quality
prediction ability. In the results reported in Tab. 5.1, we precise that for the LIVE
Mobile database we considered the SSIMplus metric values on all the sequences in-
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cluding the frame freeze conditions. However, conditions with frozen frames have
a large temporal misalignment between the reference and the degraded sequences
which gives lower SSIMplus scores and thus decreases the correlation values. The
SSIMplus software version that we used was not designed to handle freezing but
there is a feature built in a commercial SSIMplus LIveMonitor software that auto-
matically aligns frames up to 10 seconds di�erence.

Concerning the VMAF metric, it is highly correlated with the subjective results
for all the databases except for the Orange1 database. We recall that the VMAF
metric approach is based on a machine learning algorithm. Consequently its pre-
diction accuracy largely depends on the characteristics of the training database:
impairment types, codec con�guration, resolution, frame rate, etc. Indeed, this
model has been currently learned on sequences with only degradation caused by
changes in resolution and di�erent encoding bit rates. Thus, the poor correlation of
VMAF for Orange1 database can be explained by the fact that only network impair-
ments (packet loss and jitter) were simulated in this database. The EPFL database
also contains only transmission errors but VMAF shows a good prediction accuracy
(PLCC=91%, SROCC=92%, RMSE=0.55). In fact, IP network video packet loss
depends highly on the used degradation simulator, the test bed and especially the
video decoder and the jitter bu�er. For the Orange1 database, some experts vi-
sualized the sequences and chose those with more perceived and annoying packet
loss (degradation in regions of interest). Furthermore, a random model was used
to simulate packet loss degradation for Orange1 database while the Gilbert-Elliot
model was used for EPFL database. This di�erence between the models can explain
the di�erence of the degradation perception.

Table 5.2 reports the statistical signi�cance results of the F-test. Each entry
in the table consists of 4 symbols corresponding to the databases "EPFL", "LIVE
Mobile", "Orange1" and "Orange2". The symbol "+" indicates that the statistical
performance of the VQA metric in the column is superior to that of the metric in
the row. The symbol "-" means the opposite, while "0" indicates that the statistical
performance of the metric in the row is equivalent to that of the metric in the column.
Generally, statistical analysis shows that at a 95% con�dence interval, all other
metrics outperform PSNR and SSIM. It also proves that most consistent results
with a high accuracy have been achieved by three metrics, i.e. ViS3, SSIMplus and
VMAF.
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PSNR SSIM MS-SSIM VQM-G VQM-V OPVQ MOVIE Vis3 SSIMplus VMAF

EPFL database

PLCC 0,88 0,89 0,89 0.90 0.89 0.91 0,87 0,92 0,93 0,91
SROCC 0,87 0,91 0,92 0.88 0.90 0.89 0,87 0,90 0,92 0,92
RMSE 0,68 0,66 0,65 0.61 0.65 0.60 0,71 0,58 0,54 0,55

Live Mobile database

PLCC 0,71 0,65 0,65 0.83 0.82 0.85 0,71 0,84 0.84 0,86
SROCC 0,65 0,60 0,65 0.79 0.77 0.82 0,64 0,75 0.76 0,77
RMSE 0,62 0,66 0,66 0.50 0.52 0.52 0,61 0,52 0.46 0,45

Orange database 1

PLCC 0,72 0,79 0,81 0.69 0.72 0.66 0,74 0,85 0,79 0,22
SROCC 0.68 0,71 0,77 0.72 0.74 0.67 0,72 0,82 0,74 0,23
RMSE 0.45 0.46 0,46 0.49 0.46 0.51 0,53 0.42 0,48 0,68

Orange database 2

PLCC 0.48 0.52 0.48 0.55 0.58 0.57 0.73 0.74 0.81 0.82
SROCC 0.57 0.63 0.62 0.32 0.37 0.54 0.53 0.91 0.75 0.76
RMSE 0.61 0.60 0.61 0.53 0.51 0.61 0.54 0.52 0.41 0.43

Table 5.1: Statistical correlations of full reference metrics with the MOS scores
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PSNR SSIM MS-SSIM VQM-G VQM-V OPVQ MOVIE ViS3 SSIMplus VMAF

PSNR 0 0 0 0 0 0 0 0 0 0 + 0 0 + 0 + 0 + 0 + 0 + 0 + 0 0 0 + 0 + + + 0 + + + + + - +

SSIM 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 + 0 + 0 + 0 + 0 + 0 + 0 + + + + + 0 + 0 + - +

MS-SSIM 0 0 - 0 0 0 0 0 0 0 0 0 0 + - + 0 + - + 0 + - + 0 + 0 + 0 + + + 0 + 0 + 0 + - +

VQMG 0 - 0 - 0 - 0 0 0 - + - 0 0 0 0 0 0 0 0 0 0 0 0 0 - + + 0 0 + + 0 + + + 0 + - +

VQMV 0 - 0 - 0 - 0 - 0 - + - 0 0 0 0 0 0 0 0 0 0 - 0 0 - 0 + 0 0 + + 0 + + + 0 + - +

OPVQ 0 - 0 - 0 - 0 - 0 - + - 0 0 0 0 0 0 + 0 0 0 0 0 0 - + + 0 0 + + 0 0 + + 0 0 - +

MOVIE 0 0 0 - 0 - 0 - 0 - 0 - 0 + - - 0 + 0 - 0 + - - 0 0 0 0 + + + + + + + + + + - +

ViS3 0 - - - 0 - - - 0 - - - 0 0 - - 0 0 - - 0 0 - - - - - 0 0 0 0 0 0 0 - + 0 0 - +

SSIMplus 0 - - - - - 0 - 0 - 0 - 0 0 - - 0 0 - - 0 0 - - - - - - 0 0 + - 0 0 0 0 0 0 - 0

VMAF - - + - 0 - + - 0 - + - 0 - + - 0 - + - 0 0 + - - - + - 0 0 + - 0 0 + 0 0 0 0 0

Table 5.2: Statistical signi�cance table based on residuals between model predictions and the MOS values for respectively the EPFL,
LIVE Mobile, Orange1 and Orange2 databases. The symbol "+" indicates that the statistical performance of the VQA metric in the
column is superior to the one in the row. The symbol "-" means the opposite, while "0" indicates that the statistical performance
of the metrics in the row and in the column are equivalents.
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5.1.2 Summary

In this section we have conducted an updated survey of the developed media-layer
full reference objective video quality models. We carried out a performance com-
parison of ten di�erent objective metrics in the context of video calling and video-
conferencing. The comparison of metrics was performed based on their prediction
accuracy, monotonicity and stability. In this study, we used two public video quality
databases (EPFL and LIVE Mobile) and two databases created as part of our au-
diovisual videoconferencing subjective quality tests in Orange Labs. Experimental
results show that metrics which include information about temporal video aspect in
the quality estimation algorithm outperform other metrics. For the EPFL database
which contains only the packet loss transmission errors, all the metrics are well
correlated with the subjective video quality perception, with a little preference for
OPVQ, Vis3, SSIMplus and VMAF. For the same degradation type with contents
closer to those in the videoconferencing context, ViS3 statistically outperforms the
other tested metrics.

In what concerns impairments caused by the H.264 and the HEVC coding bi-
trates VMAF and SSIMplus are the most competitive metrics. For a cross degrada-
tion types database, OPVQ, VMAF, ViS3 and SSIMplus have an equal statistical
performance that exceed the other metrics. Thus, experimental results show that
there is no universal metric which is best for all distortion types and contents.
For evaluating the in�uence of codec type, coding bitrate and frame rate changes,
OPVQ, ViS3, SSIMplus and VMAF can give out objective scores better correlated
with the MOS. However, further studies are needed to optimize the OPVQ algorithm
for the new generation of video codecs such as the HEVC. In the case of network
transmission errors, we have a high probability to obtain a temporal misalignment
between the reference and the degraded sequences. As a result, the scores of metrics
based on frame by frame comparison are biased. In that case, we recommend the use
of the ViS3 metric because its algorithm is based on computing quality on the GOP
and the STS. VMAF is a promising model for video quality since it is constructed
using the machine learning approach. Its performance can be enhanced by enriching
the learning data set with large simple of impairment and contents types, and by
training other better objective metrics such as the SSIMplus, ViS3...etc.

5.2 No reference video quality metrics

The majority of the state of the art studies about no reference metrics are limited to
the common degradation types and are dedicated to a speci�c context (streaming,
MPEG, HEVC coding, IP transmission, etc) [177, 178, 179, 180, 181]. The main fo-
cus of our work is automatic assessment of video quality in real time conversational
services. In this context, it is necessary to detect a large set of distortion types.
We consider no reference video metrics that have not been evaluated previously.
These metrics are the key indicators of audiovisual quality developed by the De-
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partment of Telecommunications in the AGH University of Science and Technology.
This research work is a part of the MOAVI (Monitoring Of Audiovisual Quality by
Key Indicators) project within the Video Quality Experts Group (VQEG)[ 2]. The
proposed metrics estimate the presence of di�erent video quality impairments such
as Blockiness, Block loss, Blur, Noise, Flickering, etc. Our evaluation results aim to
identify the conditions under which these simple NR metrics can be used e�ectively
and in line with human perception in our use case for video-telephony.

In our study we consider also a global no reference video quality metric in order
to compare its performance with the one of the single artifact based MOAVI metrics.
We chose the completely blind Video Integrity Oracle VIIDEO metrics because its
a video based metric ( take into account the temporal aspect of the video) unlike
other metrics that are image quality based.

5.2.1 De�nition of MOAVI key indicators

By exploring end to end transmission of a video content in a multimedia conversation
stream, the artefact Key Performance Indicators (KPI) can be grouped into four
categories [182].

Figure 5.1: End-to-end transmission chain with the generated impairments

� Capturing : blur, exposure time, noise, interlacing.

� Processing: blockiness, �ickering, blur.

� Transmission: blockloss, freezing, slicing, blackout.

� Display: blackout, slicing.

We selected a set of no reference metrics that we judge representative of the
type of degradation that may infect a video conference or a video-telephony call.
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Therefore, in our study we put a focus on investigating the e�ect of the processing
and transmission artifacts on the quality perceived by video services users.

Blockiness

It refers to the visibility of encoded blocks in the image. The implemented
algorithm is descibed in [183]. Blockiness e�ect is detected by comparing separately
the pixel luminance for intra and inter pairs of a single coding block. In order
to consider the temporal aspect in a video and to be conform to a real use case
application the metric is calculated on a time window (over all the video frames).
The mean value for the window represents the blockiness level. The annoyance
visibility threshold of Blockiness is equal to 0.9. Below this value, the artifact is
more visible.

Blockloss

Block loss occurs when the packets containing the video stream are lost or dam-
aged during transmission. This artifact is manifested by �xed color in regions of the
image. This artifact is estimated by determining horizontal and vertical edges in
every video frame. If these edges do not correspond to an object, the macro-block
is classi�ed as lost. The total number of lost events indicates the visibility of block
loss artifact. The annoyance visibility threshold is equal to 5. Above this value lost
locks are more visible.

Blur

This artifact is a deformation of the whole video frame, characterized by reduc-
tion of the sharpness in the contours and a loss of spatial details. The implemented
algorithm is based on calculating the cosine of the angle between plane perpendicu-
lars in adjacent pixels [183]. The annoyance visibility threshold is equal to 5. More
the value of this metric is important, more the blur impairment is visible.

Flickering

It is a temporal artifact that appears mostly in the textured areas. It is illus-
trated by �icker of lines or blocks of frames, making the video unstable. Linked to
block �ltering in the decoder and in the encoder, the artifact is illustrated by strong
di�erence in temporal contrast from one frame to another. The detection of this
artifact is based on calculating the average absolute di�erence in pixel luminance
for each16� 16 macro block [183]. Typical value for a sequence without distortion
is equal to 0.125.
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Freezing

Video freeze occurs when a picture is not updated. This distortion can be de-
tected by checking for changes in the picture between consecutive decoded frames.
A non zero value of this metric indicates the presence of frozen frames.

Slicing

Loss of some encoder video slices introduce high distortion to the video quality.
Slicing artifact is manifested by destroyed video lines. Perception of this distortion
is dependent on the encoder and decoder con�guration. Slice prediction algorithms
are implemented in decoder in order to reconstruct lost slices. Slicing upper value
threshold for sequences without distortion is 0.

Spatial Activity

It describes the number of details on a video. A scene containing high frequencies
corresponding to lot of details has a great spatial activity value. This metric is
de�ned in the recommendation P.910 of the ITU [59] as the spatial information and
is based on edge detection �ltering. A sequence with normal SA has a value between
0 and 60. Above this threshold, a video is considered as spatially complex.

Temporal Activity

This metric indicates the amount of movements in a sequence. This metric is
based on the motion di�erence feature which is the di�erence between the pixel
values (of the luminance plane) at the same location but at successive times or
frames. A sequence with normal TA has a value between 0 and 20. Greater the
value of the metric, greater temporal activity is contained in the sequence.

5.2.2 Performance evaluation and comparative study of MOAVI
metrics

We evaluate the performance of the metrics under study using the same statistical
indicators used in5.1.1. As recommanded in [175] we applied a non-linear mapping
before computing PLCC and RMSE coe�cients. We used the cubic polynomial
mapping function reported to perform well empirically.

In the web site of the metrics [2], a table with the annoyance visibility thresholds
is set. Through our study, we �nd interesting to evaluate the accuracy of these
thresholds and to investigate the variation of the metrics values according to the
content and the degradation type.
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Blockiness Blockloss Blur Freezing Slicing Flickering
PLCC 0,73 0,57 0,17 NA 0.15 0,34

SROCC 0,75 0,63 0,04 NA 0.15 0,07
RMSE 0,91 1,10 1,32 NA 1.32 1,36

Table 5.3: Statistical correlations of the non reference metrics with MOS scores of
EPFL database
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Figure 5.3: Blockiness(a) and Blockloss events(b) variation on EPFL database

5.2.2.1 Evaluation on EPFL database

For the EPFL video quality database, only transmission errors are applied on source
videos encoded in H.264/AVC. As shown in Table5.3, the most correlated metrics
with the MOS scores (and thus the most interesting in terms of diagnostics of per-
ceived degradation due to IP impairments) are logically: Blockiness and Blockloss.
This result is expected since these metrics correspond to the impairments caused by
packet losses and bit errors.

For the Blockiness metric, a sequence without distortion has a value between 0.9
and 1.01. As represented in Fig.5.3.a, from 3% of packet loss we notice the appear-
ance of blockiness on the sequences �Foreman� and �Hall�; against from 5% for the
sequences �News� and �Paris�. However, for the �Mobile� sequence, even with 10%
of packet losses the metric values are above the threshold of artifact detection. This
can be explained by the fact that the �Mobile� sequence corresponds to the content
whith the highest spatial and temporal activities (see Table5.4). Therefore, con-
secutive frames on the video are di�erent, which minimizes the detection of blocks.
This result is in coherence with ones reported by P. Romaniak et al. in [183]. Based
on the masking theory, they explained that high spatial and temporal activities are
maskers to the blockiness artifact. On the other hand, �Mother� sequence has the
lower SA and TA. Then, blockiness is visible even with 0% and 0.1% rates of packet
losses.
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Foreman Hall Mobile Mother News Paris
Spatial
Activity

90.9 126.9 206.5 57.3 132.9 176.1

Temporal
Activity

14.4 4.8 22.6 3.3 7.2 8.9

Table 5.4: Spatial and Temporal complexities of EPFL database

We can conclude that for transmission packet loss impairment, Blockiness met-
ric is not independent and cannot be used in cross content assessment. It must be
coupled with information on temporal and spatial activities. For the Blockloss met-
ric, we compute for each content the total number of blockloss events. Actually, we
scanned frame by frame the values of Blockloss metric, then we consider a Blockloss
event when the value of the metric exceeds 5. The greater the total occurrence of
events is, the greater the block loss impairment is visible and annoying. Results are
shown in Fig. 5.3.b. For all the sequences, blockloss e�ect occur more from 3% of
packet loss rate.

In order to identify for each condition the representative metric(s), we have
applied a decision tree and regression algorithm on the objective and subjective
scores with a signi�cance level equal to 5%.

5.2.2.2 Evaluation on Live Mobile database

Table 5.5 shows that none of the selected no reference metrics is well correlated
with the subjective MOS scores. Therefore, we cannot decide which are the more
representative metrics for estimating the distortions in this database.

Blockiness Blockloss Blur Freezing Slicing Flickering
PLCC 0,29 0,17 0,16 0,22 0,15 0,32

SROCC 0,26 0,07 0,05 0,23 0,09 0,16
RMSE 0,84 0,86 0,86 0,85 0,86 0,83

Table 5.5: Statistical correlations of NR metrics with MOS scores of LIVE Mobile
database

Since the Live Mobile video quality database contains sequences with di�erent
types of impairments and the metrics are distortion speci�c, we tried to evaluate
the metrics by type of degradation. To do so, we divide the database according to
the degradation types3.5.1.
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Blockiness Blockloss Blur Freezing Slice Flickering

Compression

PLCC 0,41 0,24 0,41 NA 0,35 0,60
SROCC 0,35 0,18 0.39 NA 0,29 0,59
RMSE 1,05 1,11 1,07 NA 1,2 0,91

Frame freezes

PLCC 0,25 0,46 0,26 0,28 0,23 0,21
SROCC 0,10 0,36 0,20 0,20 7,33E-04 0,07
RMSE 0,43 0,39 0,43 0,43 0,43 0,44

Rate adaptation

PLCC 0,35 0,17 0,28 NA 0,27 0,34
SROCC 0,44 0,06 0,04 NA 0,07 0,39
RMSE 0,61 0,63 0,63 NA 0,63 0,61

Temporal dynamic

PLCC 0,28 0,31 0,36 NA 0,23 0,23
SROCC 0,19 0,18 0,20 NA 0,18 0,19
RMSE 0,44 0,43 0,42 NA 0,44 0,44

Wireless channel packet loss

PLCC 0,49 0,60 0,31 NA 0,47 0,43
SROCC 0,47 0,57 0,05 Na 0,32 0,31
RMSE 0,97 0,89 1,06 NA 0,99 0,97

Table 5.6: Correlation analysis for each condition of the LIVE database

bf hc la po rb sd ss tk
Spatial
Activity

45,3 60,2 30,8 90,9 59,5 43,4 63,2 63,8

Temporal
Activity

15,7 15,6 13,9 22,4 21,4 13,9 19,9 16,5

Table 5.7: Spatial and Temporal complexities of LIVE Mobile database
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5.2.2.3 Compression

By analyzing the results on Table5.6 we notice that the metrics that may be able
to detect the compression artifacts are: Flickering, Blur and Blockiness. We �nd
the same artifacts classi�ed in the processing level (see Subsection5.2.1). Previews
study [183] shows that �ickering is the most annoying temporal impairment due to
inter-frames coding and in particular for H.264/AVC encoded sequences. We con-
�rm this observation with the percentage of correlation equal to 60% between the
�ickering metric and the subjective scores.

We investigate the evolution of the most correlated metrics' values in order to
evaluate the e�ectiveness of their annoyance visibility threshold values. For the
Flickering and Blockiness metrics, all the results values are above the detection
threshold which explains that these artifacts are visible in all the sequences. We
con�rm this results after visualizing the sequences.

Concerning the Blur metric, we obtained the lowest values (inferior to 5: the
limit value for sequences without distortion) for the content �po�. However, the
sequence �la� had the greater values of Blur. In order to explain these results, we
must consider the properties of video content. Thus, we must take into account the
spatial and temporal complexities of the source sequences (see Table5.7).

Greater spatial and temporal complexities lead to the non-detection of blur dis-
tortion. After applying a decision tree algorithm, we can conclude that for compres-
sion conditions Blockiness, Blur and Flickering metrics are to be considered.

5.2.2.4 Frame freezes

In the case of freezed frames, the subjects view a �xed image during few seconds.
As a result, we �nd the best correlation with the metrics freezing and blockloss.
Comparing to the other conditions we notice that the freezing metric results are
non-zero only for this condition. As a sequence, we can con�rm that this metric is
able to detect the presence of image freeze. We consider the Freezing metric as the
representative indicator in condition of frame freeze.

Moreover, since frame freeze is a transmission impairment, it is associated with
the generation of blockloss in some frames. After analyzing the results of blockloss
event indicator, we found that the values are non null only for the contents "la",
"bf" and "sd" which correspond to the lower temporal ans spatial activities. This
result is not su�cient to consider blockloss metric for freezing condition.

5.2.2.5 Rate adaptation

An interesting observation from the results is that single and abrupt switch from
rate Rx to rate Ry and then switch back to Ry (where Rx < Ry ) causes blockiness
artifacts in the video. This impairment is visible in all the sequences.
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5.2.2.6 Temporal Dynamics

Unlike the conditions of rate adaptation, here we have a multiple switches between
bit rates: change from Rx to Ry with passing by an intermediate rate Rz. We
note that the Blur metric is the more correlated with subjective quality perception.
We can conclude that multiple rate switches cause the generation of blur in video
sequences. Blur degradation is more visible on �la� content and less visible on �po�
sequence.

5.2.2.7 Wireless channel packet loss

Simulating packet losses in the wireless channel is the source of several artifacts as
shown in the table 5.6. We �nd the same metrics that we retain in the case of the
EPFL database, as we have the same impairment types. Blockiness and Flickering
are the more visible artifacts detected in the condition of wireless packet loss.

5.2.2.8 Evaluation on Orange videoconferencing dataset

Slicing, Flickering and Blockiness are the distortion speci�c metrics that characterize
the IP packet loss impairments simulated on Orange video conference database. By
examining the results of the metric Blockiness we observe that the values are quasi
constant and in the range of sequences without distortion. Concerning the values
of blockloss events, they are always equal to 0. After observing the sequences we
notice the presence of artifacts associated to slicing distortion more than Blockiness
distortion. Thus we represent in Fig. 5.4 the results of the metric slicing. The value
of slicing metric increases with the rate of packet loss. As it is represented, the
sequences �Park�, �Hall� and �Poster� have the greater values for the metric. These
scenes are highly temporal complex and this explains why slicing distortion is more
visible.

Blockiness Blockloss Blur Freezing Slice Flickering
PLCC 0,26 0,25 0,20 NA 0,42 0,08

SROCC 0,28 0,26 0,14 NA 0,39 0,10
RMSE 0,70 0,70 0,71 NA 0,66 0,73

Table 5.8: Correlations of non reference metrics with MOS scores of Orange database

5.2.3 Completely Blind Video Integrity Oracle VIIDEO metric

VIIDEO [ 184] is a completely blind video quality metric which does not require
the presence of the reference video or human judgments for training. The metric
does not model any distortion speci�c information, but only models the statistical
`naturalness' (or lack thereof) of the video. The algorithm is based on the inter
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Figure 5.4: Slicing metric Orange database

sub band correlations to quantify the degree of distortion present in the video and
hence to predict human judgments of video quality. Furthermore, the time complex-
ity of every step in the video intrinsic integrity and distortion evaluation algorithm
are analyzed. VIIDEO metric assumes that for a video of good quality, its local
statistics of frame di�erences processed by local mean removal and divisive contrast
normalization should follow a generalized Gaussian distribution.

We calculate the correlation between the VIIDEO quality values and the subjec-
tive MOS scores of the databases EPFL, LIVA and our subjective Orange databases.
The results presented in Table5.9 show that the VIIDEO metric outperforms the
MOAVI single artifact based metrics. This can be explained by the fact that VI-
IDEO is a global quality estimation methods and it is more correlated with the MOS
score which is also global subjective perception of the quality.

Database PLCC SROCC RMSE
EPFL 0.8740 0.8434 0.7005
LIVE 0.6847 0.7180 0.6717

Orange 0.6725 0.6109 0.6688

Table 5.9: Correlations of VIIDEO non reference metric with MOS scores

5.2.4 Summary

In this section, we presented a performance evaluation study of six video quality
assessment metrics developed by MOAVI VQEG project. The study involved three
test databases with large sample of impairment types. We �nd that the metrics
may be representative indicators of video quality. For each condition (encoding,
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packet loss, signal attenuation, etc) we identi�ed the representative metrics that
we recommend to take into account (see Table5.10). According to the obtained
results, it can be seen that for transmission impairments, distortions perceived by
end user can be manifested by block loss events, slicing or freezing. In what concerns
impairments related to encoding, they are essentially blur, blockiness and �ickering.
These metrics and thresholds constitute a part of the tool box to diagnose video
quality in communication services.

Distortion type Representative metrics Threshold
H.264 encoding Blockiness 0.9

Blur 5
Flickering 0.125

Packet loss Blockloss events 19
slicing 68

Frame freeze freezing 0
Temporal Activity 20

Rate adaptation Blockiness 0.9
�ickering 0.125

Temporal dynamics Blur 5
Spatial activity 60

Table 5.10: Summary of representative metrics for each condition

5.3 Audio quality metrics

In this section for the evaluation of objective audio quality models we will consider
the POLQA model in SWB mode. The reasons why we study this model are:

1. it is representative of the �rst objective models able to characterize the per-
ceived defects in the super wide band telephony communication context,

2. its code is accessible to us,

3. it is widely used in state of the art.

Other models exits, like PESQ [185] and the E-model [126], but none of them can
be applied on SWB signals. This explains why we restrict our study on POLQA.We
are investigating the predictive accuracy of this model in the case of a conversation
audio recordings.

The database we considered here is the one of our non-interactive subjective test
composed of 6 source sequences. Since the POLQA model is a full-reference model
it was not possible to apply it to our interactive subjective test records since we do
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Sequence Restaurant Desk Sofa Poster Hall Park
Pearson correlation 0.962 0.986 0.940 0.816 0.979 0.710

Spearman correlation 0.923 0.954 0.912 0.820 0.948 0.796
RMSE 0.15 0.13 0.11 0.16 0.18 0.25

Table 5.11: POLQA correlation with subjective scores

not have the corresponding reference signal.

We recall the audio degradation conditions applied in our database: 2%, 5% and
20% packet loss and 30ms of jitter. POLQA in its SWB mode provides an overall
quality score ranging from 1 to 4.75. The correlation results of POLQA scores with
subjective scores are shown in Table5.11.

These results con�rm the relevance of the POLQA model for assessing audio
quality. Unfortunately, this tool is applicable only in a Full reference context. For
an application in a SWB No-Reference context, there is currently no tool, but it
is expected that soon ITU-T will standardize such a model (current work ongoing
under the so-called P.SPELQ study item at ITU-T Q.9/12), with expected perfor-
mance equivalent to POLQA [186].

5.4 Global audiovisual quality model: ITU-T G.1070
standard

In this section, we study the prediction accuracy and the relevance of the ITU-
T Recommendation G.1070 �Opinion model for video-telephony applications� (2012)
model [67] (including the recent proposed updates not yet included in the standard),
initially meant for planning purposes only.

5.4.1 Performance study

As we showed in2.4.1most of the research studies for evaluating and enhancing the
G.1070 model are only related to the video quality module. The global audiovisual
quality estimated by the model including audio quality has not been investigated
yet. An essential factor in�uencing the audiovisual quality of video phony applica-
tions is the synchronization between the audio and the video streams.

On another hand, the speech quality estimation of the G.1070 model is based on
the ITU-T Recommendation G.107.1, known as the E-Model. Some studies within
the SG12 of the ITU contribute to the development of the E-model. They show
that the E-model is validated and largely accepted although there are some aspects
under study such as delay, echo, additivity of equipment degradation factors, etc.
Indeed, the subjects did not rate transmission delays as low as the E-model pre-
dicts. The present E-Model supports Wide Band audio signal and not yet Super
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Wide Band signal. Furthermore, it is a planning model and it is not proved that it
can be applicable for quality measure.

In the followings, we evaluate the G.1070 model based on our interactive and
non-interactive subjective test results. The audio, video and audiovisual quality
models are evaluated on our subjective tests databases using three performance
metrics: the Pearson Linear Correlation Coe�cient (PLCC), the Spearman Rank
Order Correlation Coe�cient (SROCC) and the Root Mean Square Error (RMSE)
5.1.1. The results are summarized in Table5.12.

PLCC SROCC RMSE
Non-interactive Audiovisual quality 0.47 0.49 0.63

subjective Video quality 0.93 0.93 0.57
test data base Audio quality 0.12 0.43 1.42

Interactive Audiovisual quality 0.36 0.51 0.76
subjective Video quality 0.85 0.73 0.41

test data base Audio quality 0.42 0.58 1.28

Table 5.12: G.1070 model correlation with subjective results

As being observed in Table5.12and Fig. 5.5, the audiovisual and audio modules
have much lower performances compared to the video module. This result can
be explained by the fact that the audio and audiovisual modules take as input
parameters the speech and the video delays, whereas the video module does not.
From Figure 5.5we notice that all the conditions where the error between the G.1070
output and the subjective score is important, are the conditions with a speech delay
(points circled). Thus, we can point out that G.1070 model underestimates the audio
and audiovisual quality in cases of audio delay and it considers that this impairment
deteriorates the quality with a greater extent than that perceived by subjects. If
we ignore the audio delay conditions and we calculate the correlation between the
model metric and the subjective scores we �nd the results presented in table5.13.

PLCC SROCC RMSE
Non-
interactive

Audiovisual quality 0.85 0.49 0.63

subjective Video quality 0.91 0.93 0.57
test data
base

Audio quality 0.98 0.91 1.42

Table 5.13: Correlation between G.1070 model results and subjective scores without
audio delay conditions

Comparing with the correlation results in table 5.12, it is clear that this model
provides a good estimation of subjective quality dealing with packet loss and video
delay. For the non-interactive and the interactive subjective databases, we have the
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same results. This can indicate that this type of test scenario does not have an
e�ect on the quality estimation process.

5.4.2 Proposal to enhance G.1070 model

In the previous subsection, we showed that the performance of ITU-T Recommen-
dation G.1070 in terms of predicting the audio, video and audiovisual perceived
qualities of video telephony communications was depending on whether audio or
video was advanced in time compared to the other medium. When audio is delayed,
the performance of the audio and audiovisual quality prediction (expressed in terms
of ability to predict subjective test results) drops dramatically.

In the following, we will try to �nd explanations, and we will propose some
possible corrections of the code of G.1070 in order to overcome this issue. It has to
be mentioned however that the lack of data (only two conditions with audio delayed
compared to video in an interactive context) cannot lead to �rm conclusions, further
data must be gathered and analyzed.

In the algorithms of G.1070's opinion model, the audio delay is taken into account
at three locations in the calculations.

1. In the audio module, the computation of speech transmission ratingQ is com-
posed of one part without impact of delay (Ie � ef f ) and another one supposed
to address the impact of talker echo (Idte). The formulate corresponding to
this latter are modeling the annoyance due to talker echo, as per ITU-T G.131,
based on two parameters: the echo loudness and the echo delay, making the
assumption that the echo delay is equal to twice the one-way transmission
delay.

2. In the audiovisual module, the global quality estimation MMq is a combination
of two factors :

(a) MMSV represents audio-visual quality and is itself a combination of video
quality V q and audio quality Sq. Sq is a translation of Q from the
transmission rating scale to the MOS scale, thus it takes into account the
talker echo factor Idte .

(b) MMT is for the global impact of delay. It takes into account the absolute
delay of the global stream (AD) plus the asynchronism between audio
and video (MS).

The cause of the bad prediction can be found in either of these three sections
of the G.1070 model's algorithm. We will see in the following how this can be
checked for each of the potential causes, and what are the results once a modi�ed
algorithm is applied on the data used in 5.4.1. In order to test the correlation
between the subjective MOS scores and the model results, we used three statistical
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indicators: the Pearson Linear Correlation Coe�cient (PLCC), the Spearman Rank
Order Correlation Coe�cient (SROCC) and the Root Mean Square Error (RMSE).

In the audio module

with Idte without Idte
PLCC SROCC RMSE PLCC SROCC RMSE

Audio quality 0.12 0.43 1.42 0.92 0.87 0.78
Audiovisual global quality 0.47 0.49 0.63 0.84 0.89 0.34

Table 5.14: Compared performances of prediction by G.1070 of audiovisual quality
scores with and without Idte in the audio module for non-interactive subjective test

with Idte without Idte
PLCC SROCC RMSE PLCC SROCC RMSE

Audio quality 0.42 0.58 1.23 0.74 0.09 0.99
Audiovisual global quality 0.36 0.51 0.76 0.87 0.89 0.42

Table 5.15: Compared performances of prediction by G.1070 of audiovisual quality
scores with and without Idte in the audio module for interactive subjective test

with Idte with Idd
PLCC SROCC RMSE PLCC SROCC RMSE

Audio quality 0.12 0.43 1.42 0.77 0.82 0.78
Audiovisual global quality 0.47 0.49 0.63 0.81 0.85 0.37

Table 5.16: Compared performances of prediction by G.1070 of audiovisual quality
scores withIdte and Idd in the audio module for non-interactive subjective test

with Idte with Idd
PLCC SROCC RMSE PLCC SROCC RMSE

Audio quality 0.42 0.58 1.23 0.81 0.52 0.89
Audiovisual global quality 0.36 0.51 0.76 0.86 0.88 0.44

Table 5.17: Compared performances of prediction by G.1070 of audiovisual quality
scores withIdte and Idd in the audio module for interactive subjective test

Depending on the echo level, the greater the audio delay is, the biggerIdte gets
and the smallerQ is. The simplest to check the relation between the delay andQ is
well taken into account by the algorithm is to remove the computation ofIdte from
the model. Thus, Q = 93 � Ie � ef f . By doing so, there is no longer possibility to
take audio delay into account in the computation of audio quality, so the expected
result would be to have no really better prediction of audio quality in conditions
where there is important delay.
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However, the observed results are rather di�erent.

� For the non-interactive context (see Table5.14), audio and audiovisual global
quality predictions are enhanced (more in terms of correlation than of mean
error).

� For the interactive context (see Table5.15), the trend is similar, with the no-
table exception of SROCC for the audio quality metric. This can be explained
by the very small number of considered points, here a small change in score
rank ordering can have a big impact on monotony measurement.

All this tends to prove that, during our test, even for interactive tests with high
levels of asynchronism, subjects did not consider delay as a major matter of concern
compared to other degradations (in our case: IP packet loss). A similar study on
another database (with higher interactivity) seems necessary.

Thus, we can observe that the simple suppression of a factor is not satisfying.
The e�ect of delay has to be taken into account somehow inside the audio module of
G.1070, even for an application in contexts where this factor seems to play a minor
role.

Since Idte is not giving full satisfaction, another solution has to be found. We
did not investigate so far in our research, but we simply took a look at the source of
the audio part of G.1070: the E-model of ITU-T Recommendation G.107. There,
one can �nd a speci�c factor for pure delay, not present in G.1070. This factor is
called Idd. By replacing the computation of Idte by the one of Idd, one can expect
much more accurate results for the audio quality. This is proven at least on our data
bases. As far as audiovisual quality is concerned, the improvement is also obvious
as can be seen in Tables5.16 and 5.17. Here again, the only observed exception
concerns the SROCC for the audio quality question.

In the MMsv part of the audiovisual module

The formula between the audio, video and audiovisual quality combines them glob-
ally, without distinction between quality dimensions like delay. Therefore, we felt
undesirable to modify it unless absolutely necessary. Since we found another way
to enhance signi�cantly the performance of the model, such a modi�cation has not
been undertaken.

In the MMt part of the audiovisual module

As seen in the section above on audio quality estimation, there are two potential
ways to take pure audio delay into account in G.1070: in the audio module with the
Idd factor, or in the audiovisual module with the computation of MS. We wondered
whether both could be used together or if they could introduce some redundancy.
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with Idd only with MS only with both
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

Audiovisual 0.84 0.87 0.33 0.84 0.89 0.34 0.81 0.85 0.37
global quality

Table 5.18: Compared performances of prediction by G.1070 of audiovisual quality
scores with Idd and MS (and both) in the audiovisual module for non-interactive
subjective test

with Idd only with MS only with both
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

Audiovisual 0.89 0.91 0.39 0.88 0.89 0.42 0.86 0.88 0.44
global quality

Table 5.19: Compared performances of prediction by G.1070 of audiovisual qual-
ity scores with Idd and MS (and both) in the audiovisual module for interactive
subjective test

The results show that this is the case, both correlation factors and mean error
are getting a little bit worse in case of joint use (see Tables5.18 and 5.19). They
prove also that there is no obvious best solution to take pure delay into account
betweenIdd (with maybe a small advantage for the latter) and MS.

Discussion

The use of the talker echo factorIdte in G.1070 is clearly the major source for bad
predictions when it comes to conditions with high audio delays (even if this needs
to be studied further on a database where delay is much more felt as an issue by
testers, and on a larger set of conditions). We recommend modifying G.1070 in
order to remove this factor, or at least to recommend clearly a null default value for
this factor (or a TELR default value above 100 dB) for videotelephony applications,
where headphones are of wide use.

However, this removal has to be compensated by another factor to take into
account the delay in the audio module of G.1070. For this purpose, we recommend
to simply adopt the Idd factor from G.107. Nevertheless, by introducing this new
factor, one generates redundancy with the MS factor used in the integration module
of G.1070. Since the use of either MS orIdd seems to reach very similar results and
performance, we recommend to get rid of this MS factor in cases where the audio
delay is superior to video delay.

We discussed this issue on the basis of the contribution proposed by Orange at
the joint session of Qs 7 and 13. It was raised that it is preferable to not introduce
directly on the audio quality module a factor taking into account audio delay because
otherwise it must do the same for the video module. The delay impact of quality
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must be taken into account only in the multimedia quality integration function.
Thus, MS must not be modi�ed and the idea of introducing Idd from G.107 in the
code of G.1070 must be abandoned.

On another hand, the case of audio quality assessment in the absence of echo is
not well covered by the present model, and this is due to the fact that we can not
put the Idte value to 0 because of a too weak default value of the attenuation of
echo (65 db). It will therefore be allowed, in the particular case where we have the
certainty of no echo to setIdte to 0.

5.4.3 Evaluation of the G.1070 extension

As presented in Chapter2, Huawei Technologies Co. Ltd. proposed an extension of
the G.1070 model to take into consideration the H.264 codec in its High Pro�le (HP)
and Baseline Pro�le (BP) with di�erent parameters. We are interested in evaluating
this proposition, in order to validate if the application of the new model coe�cient
values, adapted to actual formats, brings a real progress in terms of correlation with
subjective scores.

Codec Resolution Bit rate @ framerate
H.264 Baseline Pro�le VGA 64@15fps

H.264 High Pro�le (640� 480) 128@15fps
256@15fps
384@15fps
576@15fps
128@30fps
256@30fps
384@30fps
576@30fps
768@30fps

Table 5.20: Database conditions

Correlation G.1070 Extended G.1070
Pearson 0.82 0.92

Spearman 0.67 0.85
RMSE 0.81 0.64

Table 5.21: Correlations between G.1070 and subjective scores

We collected a database of audiovisual sequences elaborated during a subjective
test on videotelephony scenarios carried out by Orange. The conditions of this test



132 Chapter 5. Objective quality metrics evaluation

correspond to some of the use cases concerned by this extension and are presented
in Table 5.20.

We applied the G.1070 model as described on the ITU recommendation and the
extension version on our database. Then we calculated the correlation coe�cients
between the two G.1070 scores and the subjective scores (see Table5.21).

By comparing the correlation results, we note that extending the model with spe-
ci�c coe�cients for the H.264 coding in Baseline pro�le and High pro�le conditions
yields video quality scores closer to the subjective scores.
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Introduction

The evaluation of video quality is a complex task given the multiplicity of parameters
impacting the perceived media. The quality assessment subjective tests methodol-
ogy, despite giving the exact perception of the quality, could not be used in real
time. On the other hand, we have shown in Chapter5 that the objective tools and
models are numerous and that there is no representative metric for all degradation
conditions.

In our study context of videoconferencing and video telephony services, we have
shown through our subjective tests in Chapter3 that the global audiovisual quality
is generally more in�uenced by the video quality than the audio quality. This is
why we focus mostly on assessing video quality of a videoconferencing service in
real time. In this case, we consider no-reference metrics studied in Chapter5 since
in real time application reference signal is not available. Each of these metrics allow
to measure the level of a single type of distortion impacting a video signal. How-
ever, the human perception of the quality does not distinguish between the types of
distortion but it gives a global appreciation of the quality. Our idea is then to try
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to combine all the MOAVI single artifact based metrics into a global video quality
model generated by Machine Learning (ML) methods.

Machine Learning (ML) consists in the design and development of programs and
algorithms which have the capability to automatically improve their performance on
the basis of either their own experience over time, or earlier data provided by other
programs [187]. We distinguish two types of Machine Learning algorithms: unsuper-
vised and supervised learning. The unsupervised algorithm consists in estimating
the structure of an unlabeled data. The use case of an unsupervised algorithm is
the classi�cation of data into categories. On the other side, the supervised learning
is used when the category structure of the database is already known. Thus, the
supervised learning predicts a function or a model that maps the database to the
prede�ned class labels. In our case we are considering supervised learning, and we
are interested in classi�cation methods because of the discrete and labeled nature
of our dataset and because our objective it to predict a variable.

In this chapter we present Machine Learning techniques for modeling the depen-
dencies of di�erent video impairments to the global video quality perception using
subjective quality feedback.

6.1 Data mining tool

For our machine learning and data mining studies we used a software called �Khiops�
[188]. The Khiops tool integrates the work done at Orange Labs on data preparation,
automatic variable construction for multi-table databases and large-scale modeling.

Khiops allows to quickly perform the descriptive and explanatory phases in a
Data Mining project. The database must be formatted according to a text �le for-
mat, with a line per record, one header line containing the variable names and a
�eld separator (tabulation by default).

The �rst step is the speci�cation of the data dictionary, which is the choice of the
variable types (Categorical, Numerical, Date, Time or Time stamp) in the database
to analyze. This dictionary is automatically built by Khiops owing to a parsing
of the database �le. The built dictionary is saved in a dictionary �le, which basic
syntax allows easy modi�cations. The Data Miner must then validate the variable
types in the built dictionary, and eventually specify which variables to ignore in the
analysis or construct new variables owing the derivation rule language.

The second step checks the correctness of the database �le. In this step, Khiops
parses the database �le and completely checks formatting or variable type errors.

The third step, the most important one, is to analyze the predictive value of the
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explanatory variables or pairs of variables. In supervised analysis, when a target
variable is speci�ed, Khiops evaluates the predictive importance of any numerical
or categorical explanatory variable, and of any pair of explanatory variables. Two
reports, for uni-variate and bi-variate analysis, are produced at the end of the data
analysis, based on the train data set. They summarize the information contained
in each analyzed variable or pair of variables. In the case of supervised tasks, a
scoring model is computed as well, based on a Selective Naive Bayes predictor. A
modeling report summarizes the features of the built classi�er or regressor. Two
evaluation reports, based on the train and test data, evaluate the performance of
the scoring model. New dictionaries and scoring dictionary, are produced, allowing
a deployment of the scoring model.

The fourth step is the deployment step. This is done by applying the new
dictionary or the scoring dictionary on new data, in order to compute score variables.
This functionality can also be used to construct any new variable, described using
the derivation rule language.

6.2 Descriptive analysis

The performance of each model generated by machine learning method depends
directly on the used training database. The more database contains values rep-
resentative of the �nal use cases and conditions, the more accurate the predictive
model is. Thus, in our case we collected all the subjective databases available to us
(either from our subjective tests or public databases) and presented in Chapter3.
Our training database consists in a total of 1130 data lines. Each line consists in a
video sequence on which all the MOAVI metrics are applied and a subjective MOS
score is associated.

6.2.1 Target variable

For our model, the variable that we try to predict is the subjective MOS score that
we consider as the "Target variable". Since the MOS is a numerical and continuous
variable, it must be discritized in order to be considered by the ML algorithm.
Thus, from MOS values we associate new variable that we call "Quality" having
four values:

� Excellent: if MOS � 4

� Good: if 3 � MOS � 4

� Fair: if 2 � MOS � 3

� Bad: if MOS � 2

We �xed this division because it is the one that gives the best balanced values
distribution as shown in Figure 6.1
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Figure 6.1: Target variable distribution

6.2.2 Outliers treatments

We consider a value as outlier when it stand out too much from the values gener-
ally observed on a variable. The process carried out concerned all the variables to
remove the clearly incoherent values that are outside the range of 95% of the con�-
dence interval. Visualization of the distribution and of the evolution of the mean of
the variables, made it possible to judge the relevance of keeping or not these values
in the sample. This treatment removed outliers that accounted for only less than
1% of the sample.

Before processing to the training of the ML model it is essential to have an idea
on the distribution of the variables according to the Target as shown in Figure6.2
(in these representations we draw our attention on the fact that the presentation of
the four levels of the target variable does not follow the order of evolution of the
quality.)

6.3 Selective naive Bayes model: obtaining a global video
quality score

In our case, the variable to predict is the "Quality" metric de�ned above. Given
the categorical nature of this target variable, we have the choice between a number
of ML prediction methods, such as decision trees, random forests, and so on. Our
choice is the Selective Naive Bayes (SNB) method because of:

� its simplicity,

� it is adapted to large volumes of data,

� its good performance often rented in publications [189],

� it is implemented in the software (Khiops) that we used.





138
Chapter 6. Machine Learning approach for global no-reference video

model generation

6.3.1 Model results

As input for the ML algorithm we consider all the MOAVI metrics without doing
a pre-selection of only the most correlated ones with subjective scores, as found in
Chapter 5. However, the SNB algorithm de�nes the variables that are the most
related to the MOS scores through an indicator called "Level". The level represents
the evaluation of the predictive importance of the variable. It is a value between 0
(variable without predictive interest) and 1 (variable with optimal predictive impor-
tance). Figure 6.3 shows the distribution of the level values of our variables. The
most correlated variable with subjective scores in our database is clearly Block loss
event.

Figure 6.3: Level distribution

In Khiops datamining tool we �xed 70% of the database used for training and
30% for testing. The samples are chosen randomly by the algorithm. The table
presented in Figure 6.1 shows the predictor evaluation on the test and training
samples. The SNB classi�er is evaluated using the following criteria:

� Accuracy: evaluates the proportion of correct prediction.

� Compression: evaluates the predicted target probabilities using a negative log
likelihood approach and is normalized (between 0 and 1) using the baseline
predictor.

� AUC: area under the ROC curve (AUC) which evaluates the ordering of the
predicted scores per target value.

For our generated model we have 0.44 of accuracy, 0.09 for compression and
0.69 AUC which corresponds not to a �ne prediction. According to these evaluation
indicators, the generated model is not accurate for video quality assessment.

A confusion matrix is reported for the classi�er, to compare the predicted values
(pre�xed by $) and the actual values ones. As shown in Figure6.4, for Bad and
Good values, the model gives a correct prediction in 70% of the cases. However,
for Fair and Excellent the model gives a correct prediction in less than 50% of the
cases. This can be explained by the fact that Fair and Good classes are close to
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Name Type AUC Compression Accuracy
Selective Naive Bayes Train 0.7077 0.1341 0.5082

Optimal Train 1 1 1
Selective Naive Bayes Test 0.6915 0.0917 0.4438

Optimal Test 1 1 1

Table 6.1: Predictor evaluation

Figure 6.4: Confusion matrix

each other and over-represented in our database.

Moreover, the cumulative gain curve, drawn in Figure6.5, evaluates the quality
of the model. The green curve corresponds to the results of the SNB model applied
on the test sample database. The purple one corresponds to an optimal model. The
black curve corresponds to the worst model, that is to say the one that is equivalent
to a random choice of the class.

Based only on MOAVI single artifact based metrics it is shown that the ML ap-
proach generate a model that is not accurate in predicting the global video quality.
Thus, we have the idea to add another no-reference metric to the training variables
which is VIIDEO. This metric will bring information on the global quality of the se-
quence (not dedicated for a speci�c distortion) that could enhance the performance
of the prediction model.

We apply the same methodology as described above, we add the VIIDEO metric
values for all our 1130 sequences and we re-run the training and testing processes.
The evaluation of the generated prediction model presented in Table6.2 shows
clearly that the accuracy of the model is improved 0.618.

The new confusion matrix presented in Figure6.6 shows that the new model
makes less error in quality prediction compared to the one trained only on MOAVI
metrics. For Fair and Excellent classes the model gives more that 50% of correct
prediction. For the Good class it gives 79.31% of correct prediction. For the Bad
class it reaches 91% of correct prediction which is particularly interesting because
for a monitoring and diagnostic tool it is important to detect a Bad quality when


























































































