Skip to Main content Skip to Navigation

Novel metabolic regulations exerted by LKB1 signaling in polarized cells : impact on tissue ontogeny

Abstract : The tumor suppressor LKB1 codes for a serine/threonine kinase. It acts as a key regulator of cell polarity and energy metabolism partly through the activation of the AMP-activated protein kinase (AMPK), a sensor that adapts energy supply to the nutrient demands of cells facing situations of metabolic stress. To achieve metabolic adaptations, AMPK phosphorylates numerous substrates which inhibit anabolic processes while activating catabolic reactions. In particular, AMPK inhibits the mammalian target of rapamycin (mTOR).During my PhD, based on genetically engineered mouse models, I uncovered that Lkb1 signaling is essential for neural crest cells (NCC) formation. NCC are multipotent cells that originate from the neural tube and give rise to various derivatives including bones and cartilage of the face, pigmented cells in the skin and glial and neural cells in peripheral nerves and the enteric nervous system. I demonstrated that Lkb1 is essential for vertebrate head formation and for the differentiation and maintenance of NCC-derivatives in the peripheral nervous system. I also emphasized that LKB1 is acetylated on lysine 48 by the acetyltransferase GCN5 and that this acetylation could regulates cranial NCC ontogeny and head formation. Furthermore, I discovered that Lkb1 controls NCC-derived glial differentiation through metabolic regulations involving amino acid biosynthesis coupled to pyruvate-alanine cycling upstream of mTOR signaling.Phenotypes due to Lkb1 loss in NCC recapitulate clinical features of human disorders called neurocristopathies and therefore suggest that aberrant Lkb1 metabolic signaling underlies the etiology of these pathologies. Abnormal activation of the tumor suppressor p53 has been described in some NCC disorders and p53 inactivation in neurocristopathy mouse models rescues the pathological phenotype. By using a NCC line that can be cultivated as progenitors or differentiated in glial cells in vitro, I demonstrated that Lkb1 expression in NCC-derivatives controls p53 activation by limiting oxidative DNA damage and prevents the formation of lysosomes filled with oxidized proteins and lipids called lipofuscin granules. Interestingly, activation of mTOR and LKB1/AMPK pathways is governed by amino acid sensors and takes place at the lysosome surface. Lysosomes have been proposed as a signaling hub controlling proteolysis and aging. Thus Lkb1 and p53 signaling could converge especially through lysosome homeostasis thereby potentially impacting cellular aging.Strikingly, Sertoli cells, that are epithelial somatic cells, located in seminiferous tubules in testes, and which govern germ cells maturation and whole testis homeostasis, share similar metabolic functions with glial cells. For example, they secrete lactate and alanine to fuel mitochondria of neighboring cells (germ cells or neurons respectively) to control their survival and maturation. During my PhD, we highlighted that Lkb1 is essential for testis homeostasis and spermatogenesis by regulating Sertoli cell polarity and, as observed in glial cells, energy metabolism through pyruvate-alanine cycling. These data suggest that this particular Lkb1 metabolic regulation is conserved in tissues with similar function.Taken together, these studies reveal the underlying molecular mechanisms that coordinately regulate energy metabolism and cell fate. They provide new insights into NCC development and expand our understanding of the role of LKB1 as an energy metabolic regulator. Finally, my PhD projects uncover the existence of a crosstalk between Lkb1 and p53 and underline its importance in NCC disorders.
Complete list of metadatas

Cited literature [670 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Thursday, January 10, 2019 - 2:53:18 PM
Last modification on : Wednesday, October 14, 2020 - 4:16:23 AM
Long-term archiving on: : Thursday, April 11, 2019 - 3:21:10 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01977028, version 1



Anca Gabriela Radu. Novel metabolic regulations exerted by LKB1 signaling in polarized cells : impact on tissue ontogeny. Subcellular Processes [q-bio.SC]. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAV011⟩. ⟨tel-01977028⟩



Record views


Files downloads