R. Patschke, X. Zhang, D. Singh, J. Schindler, C. R. Kannewurf et al., Thermoelectric Properties and Electronic Structure of the Cage Compounds A2BaCu8Te10 (A = K

G. S. Mater-;-nolas, M. Beekman, J. Gryko, G. A. Lamberton, T. M. Tritt et al., Thermal Conductivity of Elemental Crystalline Silicon Clathrate Si136, Appl. Phys. Lett, vol.13, issue.2, pp.910-912, 2001.

A. Bhardwaj and D. K. Misra, Enhancing Thermoelectric Properties of a p-Type Mg3Sb2-Based Zintl Phase Compound by Pb Substitution in the Anionic Framework, vol.4, pp.34552-34560, 2014.

E. S. Toberer, A. Zevalkink, N. Crisosto, and G. J. Snyder, The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation, Adv. Funct. Mater, issue.24, pp.4375-4380, 2010.

, Zintl Compounds. J. Mater. Sci. Mater. Electron, vol.2012, issue.12, pp.2289-2292

T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao et al., Realizing High Figure of Merit in Heavy-Band p-Type Half-Heusler Thermoelectric Materials, Phys. Chem. Chem. Phys, vol.5, issue.26, pp.20023-20029, 2014.

P. Lucas, C. Conseil, Z. Yang, Q. Hao, S. Cui et al., Thermoelectric Bulk Glasses Based on the Cu-As-Te-Se System, General Introduction-A Bird's Eye View on Thermoelectrics, vol.2013, pp.8917-8925
URL : https://hal.archives-ouvertes.fr/hal-00860123

S. Cui, C. Boussard-plédel, L. Calvez, F. Rojas, K. Chen et al., Comprehensive Study of Tellurium Based Glass Ceramics for Thermoelectric Application, Adv. Appl. Ceram, vol.114, pp.42-47, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01231165

J. B. Vaney, G. Delaizir, E. Alleno, O. Rouleau, A. Piarristeguy et al., A Comprehensive Study of the Crystallization of Cu-As-Te Glasses: Microstructure and Thermoelectric Properties, J. Solid State Chem, vol.2013, issue.28, pp.212-217, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00824217

A. P. Gonçalves, E. B. Lopes, O. Rouleau, C. Godart, A. P. Gonçalves et al., Conducting Glasses as New Potential Thermoelectric Materials: The Cu-Ge-Te Case, J. Solid State Chem, vol.40, issue.8, pp.26-30, 2010.

A. Banik, U. S. Shenoy, S. Anand, U. V. Waghmare, and K. Biswas, Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties

. Mater, , vol.27, pp.581-587, 2015.

Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen et al., Convergence of Electronic Bands for High Performance Bulk Thermoelectrics, Nature, vol.473, issue.7345, pp.66-69, 2011.

L. D. Hicks and M. S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit, Phys. Rev. B, issue.19, pp.12727-12731, 1993.

J. M. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers et al., Demonstration of Electron Filtering to Increase the Seebeck Coefficient in InGaAs/InGaAlAs Superlattices, General Introduction-A Bird's Eye View on Thermoelectrics, p.34, 2006.

, Proc. Natl. Acad. Sci, vol.110, pp.13261-13266, 2013.

S. Lin, W. Li, Z. Chen, J. Shen, B. Ge et al., Tellurium as a High-Performance Elemental Thermoelectric, Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials, vol.7, pp.1043-1053, 2007.

H. Wang, Y. Pei, A. D. Lalonde, and G. J. Snyder, Weak Electron-Phonon Coupling Contributing to High Thermoelectric Performance in n-Type PbSe, Proc. Natl. Acad. Sci, vol.109, pp.9705-9709, 2012.

Y. Pei, A. D. Lalonde, H. Wang, and G. J. Snyder, Low Effective Mass Leading to High Thermoelectric Performance, Energy Environ. Sci, vol.2012, issue.7, pp.7963-7969

Y. Pei, H. Wang, and G. J. Snyder, Band Engineering of Thermoelectric Materials, Adv. Mater, vol.2012, issue.46, pp.6125-6135

X. Shi, L. Chen, and C. Uher, Recent Advances in High-Performance Bulk Thermoelectric Materials, Int. Mater. Rev, issue.6, pp.379-415, 2016.
DOI : 10.1080/09506608.2016.1183075

L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou et al., All-Scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance, Energy Environ. Sci, vol.2013, issue.11, pp.3346-3355

Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu et al., Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1-ySey, J. Am. Chem. Soc, vol.2012, issue.24, pp.10031-10038

J. Androulakis, I. Todorov, D. Chung, S. Ballikaya, G. Wang et al., Thermoelectric Enhancement in PbTe with K or Na Codoping from Tuning the Interaction of the Light-and Heavy-Hole Valence Bands, Phys. Rev. B, vol.2010, issue.11, p.115209

S. Roychowdhury, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Tailoring of Electronic Structure and Thermoelectric Properties of a Topological Crystalline Insulator by Chemical Doping, Angew. Chem. Int. Ed, vol.54, issue.50, pp.15241-15245, 2015.

G. Tan, L. Zhao, F. Shi, J. W. Doak, S. Lo et al., High Thermoelectric Performance of P-Type SnTe via a Synergistic Band Engineering and Nanostructuring Approach, J. Am. Chem. Soc, vol.136, issue.19, pp.7006-7017, 2014.

, General Introduction-A Bird's Eye View on Thermoelectrics, p.35

A. Orabi, R. Mecholsky, N. A. Hwang, J. Kim, W. Rhyee et al., Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys, Chem. Mater, vol.28, issue.1, pp.376-384, 2016.

G. Tan, F. Shi, J. W. Doak, H. Sun, L. Zhao et al., Extraordinary Role of Hg in Enhancing the Thermoelectric Performance of p-Type SnTe, Energy Environ. Sci, vol.2014, issue.53, pp.267-277

X. Zhang, D. Wang, H. Wu, M. Yin, Y. Pei et al., Simultaneously Enhancing the Power Factor and Reducing the Thermal Conductivity of SnTe via Introducing Its Analogues, Energy Environ. Sci, vol.2017, issue.11, pp.2420-2431

Z. Zheng, X. Su, R. Deng, C. Stoumpos, H. Xie et al., Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity

, J. Am. Chem. Soc, vol.140, issue.7, pp.2673-2686, 2018.

D. Wu, L. Zhao, S. Hao, Q. Jiang, F. Zheng et al., Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3 Doping, J. Am. Chem. Soc, vol.136, issue.32, pp.11412-11419, 2014.

S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of p-Type Ge1-xSbxTe, Chem. Mater, vol.27, issue.20, pp.7171-7178, 2015.

S. Perumal, P. Bellare, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring, Chem. Mater, vol.2017, issue.24, pp.10426-10435

X. Liu, T. Zhu, H. Wang, L. Hu, H. Xie et al., Low Electron Scattering Potentials in High Performance Mg2Si0.45Sn0.55 Based Thermoelectric Solid Solutions with Band Convergence, Adv. Energy Mater, vol.2013, issue.9, pp.1238-1244

W. Liu, X. Tan, K. Yin, H. Liu, X. Tang et al., Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of Mg2Si1-xSnx Solid Solutions, Phys. Rev. Lett, vol.2012, issue.16, p.166601

L. Wu, X. Li, S. Wang, T. Zhang, J. Yang et al., Resonant LevelInduced High Thermoelectric Response in Indium-Doped GeTe, NPG Asia Mater, vol.2017, issue.1, p.343
DOI : 10.1038/am.2016.203

URL : https://doi.org/10.1038/am.2016.203

K. Hoang, S. D. Mahanti, -. Electronic-structure-of-ga, -. In, T. Heremans et al., Chapter 1: General Introduction-A Bird's Eye View on Thermoelectrics, Phys. Rev. B, issue.8, pp.554-557, 2008.

B. Yu, Q. Zhang, H. Wang, X. Wang, H. Wang et al., Thermoelectric Property Studies on Thallium-Doped Lead Telluride Prepared by Ball Milling and Hot Pressing, Z. Effect of Silicon and Sodium on Thermoelectric Properties of Thallium-Doped Lead Telluride-Based Materials. Nano Lett, vol.2010, issue.1, pp.2324-2330, 2012.

Q. Zhang, S. Yang, Q. Zhang, S. Chen, W. Liu et al., Enhancement of Thermoelectric Figure-of-Merit by Resonant States of Aluminium Doping in Lead Selenide, Energy Environ. Sci, vol.2013, issue.34, pp.5246-5251

Q. Zhang, F. Cao, K. Lukas, W. Liu, K. Esfarjani et al., Study of the Thermoelectric Properties of Lead Selenide Doped with Boron, Gallium, Indium, or Thallium, J. Am. Chem. Soc, vol.2012, issue.42, pp.17731-17738

A. Bali, H. Wang, G. J. Snyder, R. C. Mallik, A. Bali et al., Thermoelectric Properties of Indium Doped PbTe1-ySey Alloys, High Thermoelectric Performance of n-Type PbTe1?ySy Due to Deep Lying States Induced by Indium Doping and Spinodal Decomposition, vol.116, pp.572-582, 2014.

A. Banik, U. S. Shenoy, S. Saha, U. V. Waghmare, and K. Biswas, High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence, J. Am. Chem. Soc, vol.138, issue.39, pp.13068-13075, 2016.

S. Roychowdhury, U. S. Shenoy, U. V. Waghmare, and K. Biswas, An Enhanced Seebeck Coefficient and High Thermoelectric Performance in p-Type In and Mg Co-Doped Sn1?xPbxTe via the Co-Adjuvant Effect of the Resonance Level and Heavy Hole Valence Band, J. Mater

, Chem. C, vol.2017, issue.23, pp.5737-5748

G. Tan, F. Shi, S. Hao, H. Chi, L. Zhao et al., Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence, General Introduction-A Bird's Eye View on Thermoelectrics, vol.137, pp.1203-1207, 2015.

X. J. Tan, G. Q. Liu, J. T. Xu, H. Z. Shao, J. Jiang et al., Element-Selective Resonant State in M-Doped SnTe (M = Ga, vol.2016, pp.20635-20639
DOI : 10.1039/c6cp03688k

T. C. Harman, P. J. Taylor, D. L. Spears, and M. P. Walsh, Thermoelectric Quantum-Dot Superlattices with High ZT, J. Electron. Mater, vol.29, issue.1, pp.1-2, 2000.
DOI : 10.1007/s11664-000-0117-1

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett et al., Enhanced Thermoelectric Performance of Rough Silicon Nanowires, Nature, issue.7175, pp.163-167, 2008.

A. K. Samal and T. Pradeep, Room-Temperature Chemical Synthesis of Silver Telluride Nanowires, J. Phys. Chem. C, issue.31, pp.13539-13544, 2009.
DOI : 10.1021/jp901953f

URL : http://www.dstuns.iitm.ac.in/listpdf/189.pdf

R. Venkatasubramanian, E. Siivola, T. ;. Colpitts, and B. O'quinn, Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Nature, issue.6856, pp.597-602, 2001.

L. D. Hicks and M. S. Dresselhaus, Thermoelectric Figure of Merit of a One-Dimensional Conductor, Phys. Rev. B, issue.24, pp.16631-16634, 1993.

T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang, Experimental Proof-ofPrinciple Investigation of Enhanced Z3DT in (001) Oriented Si/Ge Superlattices, Appl. Phys

. Lett, , pp.1490-1492, 2000.

Y. I. Ravich, B. A. Efimova, and V. I. Tamarchenko, Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides, Phys. Status Solidi B, issue.1, pp.11-33, 1971.

L. D. Hicks, T. C. Harman, M. S. Dresselhaus, B. A. Cook, M. J. Kramer et al., Use of Quantum-well Superlattices to Obtain a High Figure of Merit from Nonconventional Thermoelectric Materials, Analysis of Nanostructuring in High Figure-of-Merit Ag1-xPbmSbTe2+m Thermoelectric Materials, vol.63, pp.3230-3232, 1993.

. Funct and . Mater, , vol.19, pp.1254-1259, 2009.

K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan et al., High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures, Nature, vol.2012, issue.7416, pp.414-418
DOI : 10.1038/nature11439

, General Introduction-A Bird's Eye View on Thermoelectrics, p.38

J. He, M. G. Kanatzidis, and V. P. Dravid, High Performance Bulk Thermoelectrics via a Panoscopic Approach, Mater. Today, vol.16, issue.5, pp.166-176, 2013.
DOI : 10.1016/j.mattod.2013.05.004

URL : https://doi.org/10.1016/j.mattod.2013.05.004

K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Science, issue.5659, pp.818-821, 2004.

S. N. Girard, J. He, C. Li, S. Moses, G. Wang et al., In Situ Nanostructure Generation and Evolution within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity, Nano Lett, issue.8, pp.2825-2831, 2010.

J. Androulakis, C. Lin, H. Kong, C. Uher, C. Wu et al., Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics: Enhanced Performance in Pb1xSnxTe?PbS, J. Am. Chem. Soc, vol.129, issue.31, pp.869-875, 2007.

J. R. Sootsman, R. J. Pcionek, H. Kong, C. Uher, and M. G. Kanatzidis, Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation

. Mater, , vol.18, pp.4993-4995, 2006.

Q. Zhang and Y. , Increased Thermoelectric Performance by Cl Doping in Nanostructured AgPb18SbSe20?xClx, Nano Energy, vol.2013, issue.2, pp.1121-1127

B. Qiu, H. Bao, G. Zhang, Y. Wu, and X. Ruan, Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures, Comput. Mater. Sci, vol.2012, issue.1, pp.278-285

Z. Tian, K. Esfarjani, and G. Chen, Enhancing Phonon Transmission across a Si/Ge Interface by Atomic Roughness: First-Principles Study with the Green's Function Method, Phys. Rev. B, vol.2012, issue.23, p.235304

K. Esfarjani, G. Chen, H. T. Stokes, D. L. Medlin, and G. J. Snyder, Interfaces in Bulk Thermoelectric Materials: A Review for Current Opinion in Colloid and Interface Science, Curr. Opin. Colloid Interface Sci, vol.84, issue.8, pp.226-235, 2009.

L. Zhao, V. P. Dravid, and M. G. Kanatzidis, The Panoscopic Approach to High Performance Thermoelectrics, Energy Environ. Sci, vol.2013, issue.1, pp.251-268
DOI : 10.1039/c3ee43099e

, Phase Morphology Effects on the Thermoelectric Properties of Pb0.25Sn0.25Ge0.5Te. Acta Mater, pp.1499-1507, 2013.

K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Science, issue.5659, pp.818-821, 2004.
DOI : 10.1126/science.1092963

L. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan et al., Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals, Nature, vol.508, issue.7496, pp.373-377, 2014.

Z. Chen, B. Ge, W. Li, S. Lin, J. Shen et al., VacancyInduced Dislocations within Grains for High-Performance PbSe Thermoelectrics
DOI : 10.1038/ncomms13828

URL : https://www.nature.com/articles/ncomms13828.pdf

K. Commun-;-kirievsky, M. Shlimovich, D. Fuks, and Y. Gelbstein, An Ab Initio Study of the Thermoelectric Enhancement Potential in Nano-Grained TiNiSn, Phys. Chem. Chem. Phys, vol.2014, issue.15, pp.20023-20029, 2017.

T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao et al., High Efficiency Half-Heusler Thermoelectric Materials for Energy Harvesting, Mechanical, and Structural Properties of Highly Efficient Nanostructured n-and p-Silicides for Practical Thermoelectric Applications. J. Elec Mater, vol.2015, pp.1703-1711, 2014.
DOI : 10.1002/aenm.201500588

B. Du, F. Gucci, H. Porwal, S. Grasso, A. Mahajan et al., Flash Spark Plasma Sintering of Magnesium Silicide Stannide with Improved Thermoelectric Properties, J. Mater. Chem. C, vol.2017, issue.6, pp.1514-1521
DOI : 10.1039/c6tc05197a

URL : https://pubs.rsc.org/en/content/articlepdf/2017/tc/c6tc05197a

A. P. Gonçalves, E. B. Lopes, O. Rouleau, C. Godart, A. P. Gonçalves et al., Conducting Glasses as New Potential Thermoelectric Materials: The Cu-Ge-Te Case, Thermoelectric Properties of Highly-Crystallized Ge-Te, vol.40, pp.1015-1017, 2010.

P. Lucas, C. Conseil, Z. Yang, Q. Hao, S. Cui et al., Thermoelectric Bulk Glasses Based on the Cu-As-Te-Se System, Se Glasses Doped with Cu/Bi. Materials, vol.10, pp.8917-8925, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00860123

J. B. Vaney, G. Delaizir, E. Alleno, O. Rouleau, A. Piarristeguy et al., A Comprehensive Study of the Crystallization of Cu-As-Te Glasses: Microstructure and Thermoelectric Properties, J. Mater. Chem. A, vol.2013, issue.23, pp.42-47, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00824217

J. B. Vaney, A. Piarristeguy, A. Pradel, E. Alleno, B. Lenoir et al., Thermal Stability and Thermoelectric Properties of CuxAs40?xTe60?ySey Semiconducting Glasses, J. Solid State Chem, vol.203, issue.26, pp.212-217, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00824047

, Possible Mechanism for Hole Conductivity in Cu-As-Te Thermoelectric Glasses, p.53

, the European Synchrotron Radiation Facility: The General-Purpose EXAFS Bending-Magnet Beamline BM23, J. Synchrotron Rad, vol.22, issue.6, pp.1548-1554, 2015.

Y. Joly, L. X-ray-;-hedin, B. I. Lundqvist, M. G. Kim, D. Kim et al., Absorption near-Edge Structure Calculations beyond the Muffin-Tin Approximation, 2064. (29), vol.1971, p.125120, 2001.

, Unusual Li-Ion Storage through Anionic Redox Processes of Bacteria-Driven Tellurium Nanorods, J. Mater. Chem. A, vol.2015, issue.33, pp.16978-16987

S. Y. Savrasov and D. Y. Savrasov, Full-Potential Linear-Muffin-Tin-Orbital Method for Calculating Total Energies and Forces, Phys. Rev. B, issue.19, pp.12181-12195, 1992.

G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, issue.16, pp.11169-11186, 1996.

G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, issue.3, pp.1758-1775, 1999.

H. Z. Nowotny, Die Krystallstructur von Cu2Te, vol.37, p.40, 1946.

S. Kashida, W. Shimosaka, M. Mori, and D. Yoshimura, Valence Band Photoemission Study of the Copper Chalcogenide Compounds, Cu2S, Cu2Se and Cu2Te, J. Phys. Chem. Solids, vol.64, issue.12, pp.2357-2363, 2003.

R. F. Bader, Atoms in Molecules, Encyclopedia of Computational Chemistry

W. Tang, E. Sanville, G. Henkelman, S. Wei, and A. Zunger, A Grid-Based Bader Analysis Algorithm without Lattice Bias, J. Phys.: Condens. Matter, vol.21, issue.8, pp.8958-8981, 1988.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton et al., Electron-EnergyLoss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study, J. Electron. Spectro. Rel. Phenomena, vol.57, issue.3, pp.901-908, 1998.

, Possible Mechanism for Hole Conductivity in Cu-As-Te Thermoelectric Glasses, p.54

Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-revurat, Y. P. Chen et al., 245418. (41) Orgel, L. E. Stereochemistry of Metals of the B Sub-Groups. Part I. Ions with Filled d-Electron Shells, J. Chem. Soc, issue.24, pp.4186-4190, 1958.

J. Z. Liu and P. C. Taylor, General Structural Model for Semiconducting Glasses, Solid State Commun, vol.70, issue.1, pp.81-85, 1989.

A. P. Gonçalves, E. B. Lopes, G. Delaizir, J. B. Vaney, B. Lenoir et al., Semiconducting Glasses: A New Class of Thermoelectric Materials?, J. Solid State Chem, vol.193, issue.43, pp.26-30, 2012.

, Thermoelectrics of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi Chapter, p.55

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz et al., An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, p.97

K. Schwarz, . Techn, and . Universität-wien, , 2001.

F. Tran, P. Blaha, and K. Schwarz, Band Gap Calculations with Becke-Johnson Exchange Potential, J. Phys. Condens. Matter, vol.19, issue.19, 2007.

A. F. May, E. S. Toberer, A. Saramat, G. J. Snyder, E. S. Toberer et al., Characterization and Analysis of Thermoelectric Transport in N-Type Ba8Ga16?xGe30+x, Adv. Funct. Mater, issue.12, pp.4375-4380, 2009.

T. J. Scheidemantel, C. Ambrosch-draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Transport Coefficients from First-Principles Calculations, Phys. Rev. B, issue.36, p.125210, 2003.

G. K. Madsen, Automated Search for New Thermoelectric Materials: The Case of LiZnSb, J. Am. Chem. Soc, vol.128, issue.37, pp.12140-12146, 2006.

G. K. Madsen, D. J. Singh, and . Boltztrap, A Code for Calculating Band-Structure Dependent Quantities, Comput. Phys. Commun, vol.175, issue.1, pp.67-71, 2006.

C. C. Li, F. Drymiotis, L. L. Liao, H. T. Hung, J. H. Ke et al., Interfacial Reactions between PbTe-Based Thermoelectric Materials and Cu and Ag Bonding Materials, J. Mater. Chem. C, vol.2015, issue.40, pp.10590-10596

B. Srinivasan, F. Gucci, C. Boussard-pledel, F. Cheviré, M. J. Reece et al., Enhancement in Thermoelectric Performance of N-Type Pb-Deficit Pb-Sb-Te Alloys, J. Alloys Compd, vol.729, pp.198-202, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613123

H. S. Dow, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min et al., Effect of Ag or Sb Addition on the Thermoelectric Properties of PbTe, J. Appl. Phys, vol.2010, issue.11, p.113709

J. He, M. G. Kanatzidis, and V. P. Dravid, High Performance Bulk Thermoelectrics via a Panoscopic Approach, Mater. Today, vol.16, issue.5, pp.166-176, 2013.

L. Zhao, V. P. Dravid, and M. G. Kanatzidis, The Panoscopic Approach to High Performance Thermoelectrics, Energy Environ. Sci, vol.2013, issue.1, pp.251-268

B. Qiu, H. Bao, G. Zhang, Y. Wu, and X. Ruan, Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures, Comput. Mater. Sci, vol.2012, issue.1, pp.278-285

L. Zhang, J. Wang, Z. Cheng, Q. Sun, Z. Li et al., Lead-Free SnTe-Based Thermoelectrics: Enhancement of Thermoelectric Performance by Doping with Gd/Ag, J. Mater. Chem. A, vol.2016, issue.20, pp.7936-7942

K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher et al., Strained Endotaxial Nanostructures with High Thermoelectric Figure of Merit, Effect of Processing Route on the Thermoelectric Performance of CuPb18SbTe20, vol.2011, pp.10401-10408

S. Lo, J. He, K. Biswas, M. G. Kanatzidis, and V. P. Dravid, Phonon Scattering and Thermal Conductivity in P-Type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials

. Funct and . Mater, , vol.22, pp.5175-5184, 2012.

Z. Li, J. Li, . Fine, H. Ning, G. D. Mastrorillo et al., Enhanced Thermoelectric Performance of Porous Magnesium Tin Silicide Prepared Using Pressure-Less Spark Plasma Sintering, Grained and Nanostructured AgPbmSbTem+2 Alloys with High Thermoelectric Figure of Merit at Medium Temperature, vol.2014, pp.17426-17432

S. N. Girard, K. Schmidt-rohr, T. C. Chasapis, E. Hatzikraniotis, B. Njegic et al., Analysis of Phase Separation in High Performance PbTe-PbS Thermoelectric Materials, Adv. Funct. Mater, vol.23, issue.6, pp.747-757, 2013.

H. Wang, A. D. Lalonde, Y. Pei, and G. J. Snyder, The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions, Adv. Funct. Mater, vol.23, issue.12, pp.1586-1596, 2013.

A. Orabi, R. Mecholsky, N. A. Hwang, J. Kim, W. Rhyee et al., Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys, Chem. Mater, vol.28, issue.1, pp.376-384, 2016.

G. Tan, F. Shi, J. W. Doak, H. Sun, L. Zhao et al., Extraordinary Role of Hg in Enhancing the Thermoelectric Performance of P-Type SnTe, Energy Environ. Sci, vol.2014, issue.1, pp.267-277

G. Tan, L. Zhao, F. Shi, J. W. Doak, S. Lo et al., High Thermoelectric Performance of P-Type SnTe via a Synergistic Band Engineering and Nanostructuring Approach, J. Am. Chem. Soc, vol.136, issue.19, pp.7006-7017, 2014.

H. J. Goldsmid and J. W. Sharp, Estimation of the Thermal Band Gap of a Semiconductor from Seebeck Measurements, J. Electron. Mater, vol.28, issue.7, pp.869-872, 1999.

J. L. Wang, H. Wang, G. J. Snyder, X. Zhang, Z. H. Ni et al., Effect of Processing Route on the Thermoelectric Performance of CuPb18SbTe20, p.99

, Appl. Phys, vol.2013, issue.40, p.405301

, Thermoelectric Performance of n-type Pb-deficit Pb-Sb-Te Alloys, p.100

J. R. Sootsman, D. Y. Chung, and M. Kanatzidis, New and Old Concepts in Thermoelectric Materials, Angew. Chem. Int. Ed, vol.48, issue.1, pp.8616-8639, 2009.

P. Vaqueiro and A. V. Powell, Recent Developments in Nanostructured Materials for HighPerformance Thermoelectrics, J. Mater. Chem, issue.43, pp.9577-9584, 2010.

M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee et al., New Directions for Low-Dimensional Thermoelectric Materials, Adv. Mater, vol.19, issue.8, pp.1043-1053, 2007.

Z. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, Nanostructured Thermoelectric Materials: Current Research and Future Challenge, Prog. Nat. Sci. Mater. Int, vol.2012, issue.6, pp.535-549

, Enhancement in Thermoelectric Performance of n-type Pb-deficit Pb-Sb-Te Alloys, p.109

H. Wang, A. D. Lalonde, Y. Pei, and G. J. Snyder, The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions, Adv. Funct. Mater, vol.23, issue.12, pp.1586-1596, 2013.

S. Lo, J. He, K. Biswas, M. G. Kanatzidis, and V. P. Dravid, Phonon Scattering and Thermal Conductivity in P-Type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials

. Funct and . Mater, , vol.22, pp.5175-5184, 2012.

M. Ohta, K. Biswas, S. Lo, J. He, D. Y. Chung et al., Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in P-Type PbTe Doped with Na2Te, Adv. Energy Mater, vol.2012, issue.9, pp.1117-1123

M. Samanta and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)1-2x(GeSe)x(GeS)x: Competition between Solid Solution and Phase Separation, J. Appl. Phys, vol.2016, issue.17, p.175101

, Chem. Soc, vol.139, issue.27, pp.9382-9391, 2017.

M. K. Jana, K. Pal, A. Warankar, P. Mandal, U. V. Waghmare et al., Intrinsic RattlerInduced Low Thermal Conductivity in Zintl Type TlInTe2, J. Am. Chem. Soc, vol.2017, issue.12, pp.4350-4353

A. D. Lalonde, Y. Pei, H. Wang, and ;. Snyder,

. Mater and . Today, , vol.14, pp.526-532, 2011.

Y. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier et al., Optimum Carrier Concentration in N-Type PbTe Thermoelectrics, Adv. Energy Mater, vol.2014, issue.13, p.1400486

A. D. Lalonde, Y. Pei, and G. J. Snyder, Reevaluation of PbTe1?xIx as High Performance N-Type Thermoelectric Material, Energy Environ. Sci, vol.2011, issue.6, pp.2090-2096

J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki et al., Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, vol.321, issue.5888, pp.554-557, 2008.

M. Han, K. Hoang, H. Kong, R. Pcionek, C. Uher et al., Substitution of Bi for Sb and Its Role in the Thermoelectric Properties and Nanostructuring in Ag1?xPb18MTe20, Chem. Mater, vol.20, issue.10, pp.3512-3520, 2008.

Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen et al., Convergence of Electronic Bands for High Performance Bulk Thermoelectrics, Nature, vol.473, issue.7345, pp.66-69, 2011.

D. Bilc, S. D. Mahanti, E. Quarez, K. Hsu, R. Pcionek et al., Resonant States in the Electronic Structure of the High Performance Thermoelectrics AgPbmSbTe2+m: The Role of

A. Microstructures, Phys. Rev. Lett, issue.14, p.146403, 2004.

Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu et al., Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in P-Type PbTe, PbSe, and PbTe1-ySey, Enhancement in Thermoelectric Performance of n-type Pb-deficit Pb-Sb-Te Alloys, vol.2012, pp.10031-10038

S. Roychowdhury, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Tailoring of Electronic Structure and Thermoelectric Properties of a Topological Crystalline Insulator by Chemical Doping

, Angew. Chem. Int. Ed, vol.54, issue.50, pp.15241-15245, 2015.

L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou et al., All-Scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance, Energy Environ. Sci, vol.2013, issue.11, pp.3346-3355

P. Jood, M. Ohta, M. Kunii, X. Hu, H. Nishiate et al., Enhanced Average Thermoelectric Figure of Merit of N-Type PbTe1?xIx-MgTe, J. Mater. Chem. C, vol.2015, issue.40, pp.10401-10408

G. Tan, F. Shi, S. Hao, L. Zhao, H. Chi et al., Non-Equilibrium Processing Leads to Record High Thermoelectric Figure of Merit in PbTe-SrTe, Thermoelectric Properties of P-Type Nanostructured PbTe-MTe, vol.7, pp.1529-1537, 2016.

Z. Li, J. Li, P. F. Poudeu, J. Angelo, A. D. Downey et al., Fine-Grained and Nanostructured AgPbmSbTem+2 Alloys with High Thermoelectric Figure of Merit at Medium Temperature, High Thermoelectric Figure of Merit and Nanostructuring in Bulk P-Type Na1?xPbmSbyTem+2, vol.2014, p.300937

, Angew. Chem. Int. Ed, vol.45, issue.23, pp.3835-3839, 2006.

J. R. Sootsman, H. Kong, C. Uher, J. J. Angelo, C. Wu et al., Nanostructures versus Solid Solutions: Low Lattice Thermal Conductivity and Enhanced Thermoelectric Figure of Merit in Pb9.6Sb0.2Te10-xSex Bulk Materials, Angew. Chem. Int. Ed, vol.47, issue.45, pp.14347-14355, 2006.

H. S. Dow, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min et al., Effect of Ag or Sb Addition on the Thermoelectric Properties of PbTe, Enhancement in Thermoelectric Performance of n-type Pb-deficit Pb-Sb-Te Alloys, vol.2010, pp.2995-2999, 2010.

A. F. May, J. Fleurial, and G. J. Snyder, Thermoelectric Performance of Lanthanum Telluride Produced via Mechanical Alloying, Phys. Rev. B, issue.12, p.125205, 2008.

A. F. May, T. Ikeda, L. A. Collins, V. A. Ravi, F. S. Gascoin et al., Self-Assembled Nanometer Lamellae of Thermoelectric PbTe and Sb2Te3 with Epitaxy-like Interfaces. Chem, 2010.

. Mater, , vol.19, pp.763-767, 2007.

T. Ikeda, V. A. Ravi, L. A. Collins, S. M. Haile, and G. J. Snyder, Development and Evolution of Nanostructure in Bulk Thermoelectric Pb-Te-Sb Alloys, J. Electron. Mater, vol.36, issue.7, pp.716-720, 2007.

T. Ikeda, V. Ravi, L. A. Collins, S. M. Haile, and G. J. Snyder, Development of Nanostructures in Thermoelectric Pb-Te-Sb Alloys, 25th International Conference on Thermoelectrics, pp.172-175, 2006.

T. Ikeda, S. M. Haile, V. A. Ravi, H. Azizgolshani, F. Gascoin et al., Solidification Processing of Alloys in the Pseudo-Binary PbTe-Sb2Te3 System, Acta Mater, vol.55, issue.4, pp.1227-1239, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00182201

B. Srinivasan, C. Boussard-pledel, V. Dorcet, M. Samanta, K. Biswas et al., Thermoelectric Properties of Highly-Crystallized Ge-Te
URL : https://hal.archives-ouvertes.fr/hal-01504059

, Se Glasses Doped with Cu/Bi, Materials, vol.2017, issue.4, p.328

S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of P-Type Ge1-xSbxTe, Chem. Mater, vol.27, issue.20, pp.7171-7178, 2015.
DOI : 10.1021/acs.chemmater.5b03434

B. Srinivasan, S. Cui, C. Prestipino, A. Gellé, C. Boussard-pledel et al., Possible Mechanism for Hole Conductivity in Cu-As
DOI : 10.1021/acs.jpcc.7b04555

URL : https://hal.archives-ouvertes.fr/hal-01613090

T. Thermoelectric-glasses, ;. Xanes, and E. Study, J. Phys. Chem. C, vol.2017, issue.26, pp.14045-14050

A. Banik, U. S. Shenoy, S. Anand, U. V. Waghmare, and K. Biswas, Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties, Chem. Mater, vol.27, issue.2, pp.581-587, 2015.
DOI : 10.1021/cm504112m

, Enhancement in Thermoelectric Performance of n-type Pb-deficit Pb-Sb-Te Alloys, p.112

A. Orabi, R. Mecholsky, N. A. Hwang, J. Kim, W. Rhyee et al., Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys, Chem. Mater, vol.28, issue.1, pp.376-384, 2016.

C. M. Jaworski, J. Tobola, E. M. Levin, K. Schmidt-rohr, J. P. Heremans et al., Carrier-Concentration-Dependent Transport and Thermoelectric Properties of PbTe Doped with Sb2Te3, Mater. Trans, vol.46, issue.12, pp.2690-2693, 2005.

P. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. Jia et al., Enhanced Thermoelectric Properties of PbTe Alloyed with Sb2Te3, J. Phys. Condens. Matter, vol.17, issue.43, p.7319, 2005.

E. S. Toberer, A. F. May, and G. J. Snyder, Zintl Chemistry for Designing High Efficiency Thermoelectric Materials, Chem. Mater, vol.22, issue.3, pp.624-634, 2010.

D. Cheikh, B. E. Hogan, T. Vo, P. V. Allmen, K. Lee et al., A High-Temperature, High-ZT Thermoelectric Material, vol.2018, pp.698-709
DOI : 10.1016/j.joule.2018.01.013

M. G. Kanatzidis, Pr3-xTe4: Boost in ZT from Spike at the Fermi Level, but Not before a Good Synthesis, Joule, vol.2018, issue.4, pp.583-584

, Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, p.113

Y. Gelbstein and J. Davidow, Highly Efficient Functional GexPb1?xTe Based Thermoelectric Alloys
DOI : 10.1039/c4cp02399d

, Phys. Chem. Chem. Phys, vol.2014, issue.37, pp.20120-20126

Y. Gelbstein, J. Davidow, S. N. Girard, D. Y. Chung, and M. Kanatzidis, Controlling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for High Thermoelectric Performance

, Adv. Energy Mater, vol.2013, issue.6, pp.815-820

E. Hazan, O. Ben-yehuda, N. Madar, and Y. Gelbstein, Functional Graded Germanium-Lead Chalcogenide-Based Thermoelectric Module for Renewable Energy Applications, Adv. Energy Mater, vol.2015, issue.11, p.1500272

D. Wu, L. Zhao, S. Hao, Q. Jiang, F. Zheng et al., Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3

. Doping, J. Am. Chem. Soc, vol.136, issue.32, pp.11412-11419, 2014.

S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of P-Type Ge1-xSbxTe, Chem. Mater, vol.27, issue.20, pp.7171-7178, 2015.

S. Perumal, S. Roychowdhury, and K. Biswas, Reduction of Thermal Conductivity through Nanostructuring Enhances the Thermoelectric Figure of Merit in Ge1?xBixTe, Inorg. Chem. Front, vol.2016, issue.1, pp.125-132

, Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, p.125

J. K. Lee, M. W. Oh, B. S. Kim, B. K. Min, H. W. Lee et al., Influence of Mn on Crystal Structure and Thermoelectric Properties of GeTe Compounds, Electron. Mater. Lett, vol.10, issue.4, pp.813-817, 2014.

Y. Gelbstein, B. Dado, O. Ben-yehuda, Y. Sadia, Z. Dashevsky et al., High Thermoelectric Figure of Merit and Nanostructuring in Bulk P-Type Gex(SnyPb1?y)1?xTe Alloys Following a Spinodal Decomposition Reaction, Chem. Mater, vol.22, issue.3, pp.1054-1058, 2010.

L. Wu, X. Li, S. Wang, T. Zhang, J. Yang et al., Resonant Level-Induced High Thermoelectric Response in Indium-Doped GeTe, NPG Asia Mater, vol.2017, issue.1, p.343

S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang et al., Nanostructures in HighPerformance (GeTe)x(AgSbTe2)100? x Thermoelectric Materials, Nanotechnology, vol.19, issue.24, p.245707, 2008.

B. A. Cook, M. J. Kramer, X. Wei, J. L. Harringa, and E. M. Levin, Nature of the Cubic to Rhombohedral Structural Transformation in (AgSbTe2)15(GeTe)85 Thermoelectric Material

, Appl. Phys, vol.101, issue.5, p.53715, 2007.

S. Perumal, S. Roychowdhury, and K. Biswas, High Performance Thermoelectric Materials and Devices Based on GeTe, J. Mater. Chem. C, vol.2016, issue.32, pp.7520-7536

F. D. Rosi, J. P. Dismukes, and E. F. Hockings, Semiconductor Materials for Thermoelectric Power Generation up to 700 o C, Electr. Eng, vol.79, issue.13, pp.450-459, 1960.

T. Schröder, S. Schwarzmüller, C. Stiewe, J. De-boor, M. Hölzel et al., The Solid Solution Series (GeTe)x(LiSbTe2)2 (1 ? x ? 11) and the Thermoelectric Properties of (GeTe)11(LiSbTe2)2, Inorg. Chem, issue.19, pp.11288-11294, 2013.

T. Schröder, T. Rosenthal, N. Giesbrecht, S. Maier, E. Scheidt et al., TAGS-Related Indium Compounds and Their Thermoelectric Properties-the Solid Solution Series (GeTe)xAgInySb1?yTe2 (x = 1-12; y = 0.5 and 1), J. Mater

. Chem, , vol.2, pp.6384-6395, 2014.

X. Shi, J. R. Salvador, J. Yang, and H. Wang, Prospective Thermoelectric Materials: (AgSbTe2)100-x (SnTe)x Quaternary System (x = 80, 85, 90, and 95), Sci. Adv. Mater, vol.2011, issue.4, pp.667-671

E. M. Levin, R. Hanus, M. Hanson, W. E. Straszheim, and K. Schmidt-rohr, Thermoelectric Properties of Ag2Sb2Ge46 ? xDyxTe50 Alloys with High Power Factor, Phys. Status Solidi A, issue.12, pp.2628-2637, 2013.

F. Fahrnbauer, D. Souchay, G. Wagner, and O. Oeckler, High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates, J. Am. Chem. Soc, vol.137, issue.39, pp.12633-12638, 2015.

, Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, p.126

T. Rosenthal, M. N. Schneider, C. Stiewe, M. Döblinger, and O. Oeckler, Real Structure and Thermoelectric Properties of GeTe-Rich Germanium Antimony Tellurides, Chem. Mater, vol.23, issue.19, pp.4349-4356, 2011.

E. M. Levin, A. H. Edwards, A. C. Pineda, P. A. Schultz, M. G. Martin et al., Effects of Ge Substitution in GeTe by Ag or Sb on the Seebeck Coefficient and Carrier Concentration Derived from 125 Te NMR, Phys. Rev. B, vol.2016, issue.4, p.93

K. M. Rabe and J. D. Joannopoulos, Theory of the Structural Phase Transition of GeTe, Phys. Rev. B, issue.4, pp.6631-6639, 1987.

K. Hoang, S. D. Mahanti, M. G. Kanatzidis, J. Li, Z. Chen et al., Electronic Origin of the High Thermoelectric Performance of GeTe among the P-Type Group IV Monotellurides, First Principles Methods Using CASTEP. Z. Für Krist.-Cryst. Mater, vol.2017, issue.11, pp.567-570, 2009.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, issue.18, pp.3865-3868, 1996.

A. Tkatchenko, M. Scheffler, H. J. Monkhorst, J. D. Pack, P. Blaha et al., Accurate Molecular Van Der Waals Interactions from GroundState Electron Density and Free-Atom Reference Data, An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, vol.102, pp.5188-5192, 1976.

K. Schwarz, . Techn, and . Universität-wien, , 2001.

A. F. May, E. S. Toberer, A. Saramat, and G. J. Snyder, Characterization and Analysis of Thermoelectric Transport in N-Type Ba8Ga16?xGe30+x, Phys. Rev. B, issue.12, p.125205, 2009.

E. S. Toberer, A. Zevalkink, N. Crisosto, G. J. Snyder, T. J. Scheidemantel et al., The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation, Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, vol.68, p.127, 2003.

G. K. Madsen, Automated Search for New Thermoelectric Materials: The Case of LiZnSb, J. Am. Chem. Soc, vol.128, issue.37, pp.12140-12146, 2006.

G. K. Madsen, D. J. Singh, and . Boltztrap, A Code for Calculating Band-Structure Dependent Quantities, Comput. Phys. Commun, vol.175, issue.1, pp.67-71, 2006.

H. Wiedemeier and P. A. Siemers, The Temperature-Composition Phase Diagram of the GeSeGeTe System, Modern High Temperature Science

J. L. Margrave and E. , , 1984.

E. M. Levin, M. F. Besser, R. Hanus, S. Perumal, P. Bellare et al., Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring, J. Appl. Phys, vol.2013, issue.8, pp.10426-10435

B. Srinivasan, C. Boussard-pledel, V. Dorcet, M. Samanta, K. Biswas et al., Thermoelectric Properties of Highly-Crystallized Ge-Te
URL : https://hal.archives-ouvertes.fr/hal-01504059

, Se Glasses Doped with Cu/Bi, Materials, vol.2017, issue.4, p.328

A. D. Lalonde, Y. Pei, and G. J. Snyder, Reevaluation of PbTe1?xIx as High Performance N-Type Thermoelectric Material, Energy Environ. Sci, vol.2011, issue.6, pp.2090-2096

H. Wang, A. D. Lalonde, Y. Pei, and G. J. Snyder, The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions, Adv. Funct. Mater, vol.23, issue.12, pp.1586-1596, 2013.

X. Chen, D. Parker, D. J. Singh, L. Xu, Y. Li et al., Local Order Origin of Thermal Stability Enhancement in Amorphous Ag Doping GeTe, Nanosecond Switching in GeTe Phase Change Memory Cells. Appl. Phys. Lett, vol.3, issue.42, p.43108, 2009.

J. Davidow and Y. Gelbstein, A Comparison Between the Mechanical and Thermoelectric Properties of Three Highly Efficient P-Type GeTe-Rich Compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-Doped Ge0.87Pb0.13Te, J. Electron. Mater, vol.42, issue.7, pp.1542-1549, 2013.

T. Schröder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier et al., Nanostructures in Te/Sb/Ge/Ag (TAGS) Thermoelectric Materials Induced by Phase Transitions Associated with Vacancy Ordering, Inorg. Chem, issue.14, pp.7722-7729, 2014.

S. Welzmiller, T. Rosenthal, P. Ganter, L. Neudert, F. Fahrnbauer et al., Layered Germanium Tin Antimony Tellurides: Element Distribution, Nanostructures and Thermoelectric Properties, pp.10529-10540, 2014.

A. Bali, H. Wang, G. J. Snyder, R. C. Mallik, Q. Zhang et al., Thermoelectric Properties of Indium Doped PbTe1-ySey Alloys, Z. Effect of Silicon and Sodium on Thermoelectric Properties of Thallium-Doped Lead TellurideBased Materials. Nano Lett, vol.116, issue.3, pp.2324-2330, 2014.

Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu et al., Enhancement of Thermoelectric Figure-of-Merit by Resonant States of Aluminium Doping in Lead Selenide, Energy Environ. Sci, vol.2012, issue.1, pp.5246-5251

B. Yu, Q. Zhang, H. Wang, X. Wang, H. Wang et al., Thermoelectric Property Studies on Thallium-Doped Lead Telluride Prepared by Ball Milling and Hot Pressing, J. Am. Chem. Soc, vol.2010, issue.1, pp.17731-17738

Q. Zhang, S. Yang, Q. Zhang, S. Chen, W. Liu et al., Nanostructures versus Solid Solutions: Low Lattice Thermal Conductivity and Enhanced Thermoelectric Figure of Merit in Pb9.6Sb0.2Te10-xSex Bulk Materials, J. Am. Chem. Soc, vol.2013, issue.34, pp.14347-14355, 2006.

P. F. Poudeu, J. Angelo, A. D. Downey, J. L. Short, T. P. Hogan et al., High Thermoelectric Figure of Merit and Nanostructuring in Bulk P-Type Na1?xPbmSbyTem+2

, Angew. Chem. Int. Ed, vol.45, issue.23, pp.3835-3839, 2006.

Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu et al., Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in P-Type PbTe, PbSe, and PbTe1-ySey, Adv. Energy Mater, vol.2012, issue.24, pp.1117-1123

P. Jood, M. Ohta, M. Kunii, X. Hu, H. Nishiate et al., Enhanced Average Thermoelectric Figure of Merit of N-Type PbTe1?xIx-MgTe, Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, vol.2015, pp.10401-10408

Q. Zhang and Y. , Increased Thermoelectric Performance by Cl Doping in Nanostructured AgPb18SbSe20?xClx, Nano Energy, vol.2013, issue.2, pp.1121-1127

H. Wang, J. Bahk, C. Kang, J. Hwang, K. Kim et al., Right Sizes of Nano-and Microstructures for High-Performance and Rigid Bulk Thermoelectrics, Proc. Natl. Acad. Sci, vol.111, pp.10949-10954, 2014.

L. Zhang, J. Wang, Z. Cheng, Q. Sun, Z. Li et al., Lead-Free SnTe-Based Thermoelectrics: Enhancement of Thermoelectric Performance by Doping with Gd/Ag, J. Mater. Chem. A, vol.2016, issue.20, pp.7936-7942

A. Banik, U. S. Shenoy, S. Anand, U. V. Waghmare, and K. Biswas, Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties, Chem. Mater, vol.27, issue.2, pp.581-587, 2015.

A. Banik and K. Biswas, AgI Alloying in SnTe Boosts the Thermoelectric Performance via Simultaneous Valence Band Convergence and Carrier Concentration Optimization, J. Solid State Chem, vol.242, pp.43-49, 2016.

A. Banik, B. Vishal, S. Perumal, R. Datta, and K. Biswas, The Origin of Low Thermal Conductivity in Sn1?xSbxTe: Phonon Scattering via Layered Intergrowth Nanostructures

. Sci, , vol.9, pp.2011-2019, 2016.

A. Orabi, R. Mecholsky, N. A. Hwang, J. Kim, W. Rhyee et al., Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys, Chem. Mater, vol.28, issue.1, pp.376-384, 2016.

Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu et al., High Thermoelectric Performance by Resonant Dopant Indium in Nanostructured SnTe

, Detrimental Effects of Doping Al and Ba on the Thermoelectric Performance of GeTe, Proc. Natl. Acad. Sci. 2013, vol.110, p.130

S. Perumal, S. Roychowdhury, and K. Biswas, High Performance Thermoelectric Materials and Devices Based on GeTe, J. Mater. Chem. C, vol.2016, issue.1, pp.7520-7536

, Detrimental Effects of Doping Al and Ba on the Thermoelectric Performance of GeTe, p.139

S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang et al., Nanostructures in HighPerformance (GeTe)x(AgSbTe2)100? x Thermoelectric Materials, Nanotechnology, vol.19, issue.24, p.245707, 2008.

T. Schröder, S. Schwarzmüller, C. Stiewe, J. De-boor, M. Hölzel et al., The Solid Solution Series (GeTe)x(LiSbTe2)2 (1 ? x ? 11) and the Thermoelectric Properties of (GeTe)11(LiSbTe2)2, Inorg. Chem, issue.19, pp.11288-11294, 2013.

T. Schröder, T. Rosenthal, N. Giesbrecht, S. Maier, E. Scheidt et al., TAGS-Related Indium Compounds and Their Thermoelectric Properties-the Solid Solution Series (GeTe)xAgInySb1?yTe2 (x = 1-12; y = 0.5 and 1), J. Mater

. Chem, , vol.2, pp.6384-6395, 2014.

M. Samanta, S. Roychowdhury, J. Ghatak, S. Perumal, and K. Biswas, Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)x(AgSbSe2)100?x, Chem. Eur. J, vol.23, pp.7438-7443, 2017.

F. Fahrnbauer, D. Souchay, G. Wagner, and O. Oeckler, High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates, J. Am. Chem. Soc, vol.137, issue.39, pp.12633-12638, 2015.

Y. Gelbstein and J. Davidow, Highly Efficient Functional GexPb1?xTe Based Thermoelectric Alloys

, Phys. Chem. Chem. Phys, vol.2014, issue.37, pp.20120-20126

S. Perumal, S. Roychowdhury, and K. Biswas, Reduction of Thermal Conductivity through Nanostructuring Enhances the Thermoelectric Figure of Merit in Ge1?xBixTe, Inorg. Chem. Front, vol.2016, issue.1, pp.125-132

D. Wu, L. Zhao, S. Hao, Q. Jiang, F. Zheng et al., Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3

. Doping, J. Am. Chem. Soc, vol.136, issue.32, pp.11412-11419, 2014.

L. Wu, X. Li, S. Wang, T. Zhang, J. Yang et al., Influence of Se Substitution in GeTe on Phase and Thermoelectric Properties, J. Electron. Mater, vol.2017, issue.1, pp.5533-5539, 2016.

S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of P-Type Ge1-xSbxTe, Chem. Mater, vol.27, issue.20, pp.7171-7178, 2015.

B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J. Halet et al., Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, Detrimental Effects of Doping Al and Ba on the Thermoelectric Performance of GeTe, pp.227-235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01709523

J. K. Lee, M. W. Oh, B. S. Kim, B. K. Min, H. W. Lee et al., Influence of Mn on Crystal Structure and Thermoelectric Properties of GeTe Compounds, Electron. Mater. Lett, vol.10, issue.4, pp.813-817, 2014.

Y. Rosenberg, Y. Gelbstein, and M. P. Dariel, Phase Separation and Thermoelectric Properties of the Pb0.25Sn0.25Ge0.5Te Compound, J. Alloys Comps, vol.526, pp.31-38, 2012.

J. Li, X. Zhang, S. Lin, Z. Chen, and Y. Pei, Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying, Chem. Mater, vol.29, issue.2, pp.605-611, 2017.

M. Samanta and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)1-2x(GeSe)x(GeS)x: Competition between Solid Solution and Phase Separation, J. Am

, Chem. Soc, vol.139, issue.27, pp.9382-9391, 2017.

S. Perumal, P. Bellare, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring, Chem. Mater, vol.2017, issue.24, pp.10426-10435

B. Srinivasan, C. Boussard-pledel, and B. Bureau, Thermoelectric Performance of Codoped (Bi, In)-GeTe and, SnTe Materials Processed by Spark Plasma Sintering, vol.230, pp.191-194, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874723

J. Li, X. Zhang, Z. Chen, S. Lin, W. Li et al., , vol.2, pp.976-987, 2018.

B. Srinivasan, A. Gellé, F. Gucci, C. Boussard-pledel, B. Fontaine et al., Realizing a Stable High Thermoelectric ZT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, Inorg. Chem. Front, 2018.

A. Orabi, R. Mecholsky, N. A. Hwang, J. Kim, W. Rhyee et al., Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys, Chem. Mater, vol.28, issue.1, pp.376-384, 2016.

G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, issue.3, pp.1758-1775, 1999.

G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, issue.16, pp.11169-11186, 1996.

, Detrimental Effects of Doping Al and Ba on the Thermoelectric Performance of GeTe, p.141

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, issue.18, pp.3865-3868, 1996.

H. Wang, A. D. Lalonde, Y. Pei, and G. J. Snyder, The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions, Adv. Funct. Mater, vol.23, issue.12, pp.1586-1596, 2013.

S. Roychowdhury, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Tailoring of Electronic Structure and Thermoelectric Properties of a Topological Crystalline Insulator by Chemical Doping

, Angew. Chem. Int. Ed, vol.54, issue.50, pp.15241-15245, 2015.

L. J. Zhang, P. Qin, C. Han, J. L. Wang, Z. H. Ge et al., Enhanced Thermoelectric Performance through Synergy of Resonance Levels and Valence Band Convergence via Q/In (Q = Mg, Ag, Bi) Co-Doping, J. Realizing ZT, vol.2018, issue.6, pp.2507-2516

Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen et al., Convergence of Electronic Bands for High Performance Bulk Thermoelectrics, Ge1?x?ySbxInyTe via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping, vol.30, pp.66-69, 2011.

, Thermoelectric Performance of Codoped (Bi, In)-GeTe and (Ag, In, Sb)SnTe Materials Chapter, p.142

L. Zhao, V. P. Dravid, and M. G. Kanatzidis, The Panoscopic Approach to High Performance Thermoelectrics, Energy Environ. Sci, vol.2013, issue.1, pp.251-268

B. Srinivasan, F. Gucci, C. Boussard-pledel, F. Cheviré, M. J. Reece et al., Thermoelectric Performance of N-Type Pb-Deficit Pb-Sb-Te Alloys
URL : https://hal.archives-ouvertes.fr/hal-01613123

, J. Alloys Compd, vol.729, pp.198-202, 2017.

S. Perumal, S. Roychowdhury, and K. Biswas, High Performance Thermoelectric Materials and Devices Based on GeTe, J. Mater. Chem. C, vol.2016, issue.32, pp.7520-7536

B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J. Halet et al., Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, J. Phys. Chem. C, issue.1, pp.227-235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01709523

F. Fahrnbauer, D. Souchay, G. Wagner, and O. Oeckler, High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates, J. Am. Chem. Soc, vol.137, issue.39, pp.12633-12638, 2015.

A. Banik, B. Vishal, S. Perumal, R. Datta, and K. Biswas, The Origin of Low Thermal Conductivity in Sn1?xSbxTe: Phonon Scattering via Layered Intergrowth Nanostructures, Energy Environ. Sci, vol.2016, issue.6, pp.2011-2019

Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu et al., High Thermoelectric Performance by Resonant Dopant Indium in Nanostructured SnTe, Proc

, Natl. Acad. Sci, vol.2013, issue.33, pp.13261-13266

, Thermoelectric Performance of Codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe Materials, p.151

A. Orabi, R. Mecholsky, N. A. Hwang, J. Kim, W. Rhyee et al., Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys, Chem. Mater, vol.28, issue.1, pp.376-384, 2016.

A. Orabi, R. Hwang, J. Lin, C. Gautier, R. Fontaine et al., Ultralow Lattice Thermal Conductivity and Enhanced Thermoelectric Performance in SnTe:Ga Materials, Chem. Mater, vol.2017, issue.2, pp.612-620
URL : https://hal.archives-ouvertes.fr/hal-01500409

S. Perumal, S. Roychowdhury, and K. Biswas, Reduction of Thermal Conductivity through Nanostructuring Enhances the Thermoelectric Figure of Merit in Ge1?xBixTe, Inorg. Chem. Front, vol.2016, issue.1, pp.125-132

L. Wu, X. Li, S. Wang, T. Zhang, J. Yang et al., High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence, J. Am. Chem. Soc, vol.2017, issue.1, pp.13068-13075, 2016.

S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of P-Type Ge1-xSbxTe, Chem. Mater, vol.27, issue.20, pp.7171-7178, 2015.

B. Srinivasan, C. Boussard-pledel, V. Dorcet, M. Samanta, K. Biswas et al., Thermoelectric Properties of Highly-Crystallized Ge-Te
URL : https://hal.archives-ouvertes.fr/hal-01504059

, Se Glasses Doped with Cu/Bi. Materials, vol.10, p.328, 2017.

, Realizing a Stable High zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, p.152

J. R. Sootsman, H. Kong, C. Uher, J. J. Angelo, C. Wu et al., Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring, Angew. Chem. Int. Ed, vol.47, issue.1, pp.8618-8622, 2008.

X. Su, P. Wei, H. Li, W. Liu, Y. Yan et al., Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications, vol.2017, p.1602013

, Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials, Adv. Energy Mater, vol.2015, issue.5, p.1401391

, Realizing a Stable High zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, p.170

D. T. Morelli, V. Jovovic, and J. P. Heremans, Intrinsically Minimal Thermal Conductivity in Cubic I-IV-VI2 Semiconductors, Phys. Rev. Lett, vol.101, issue.3, p.35901, 2008.

M. K. Jana and K. Biswas, Crystalline Solids with Intrinsically Low Lattice Thermal Conductivity for Thermoelectric Energy Conversion, ACS Energy Lett, vol.2018, issue.6, pp.1315-1324

M. Samanta, K. Pal, P. Pal, U. V. Waghmare, and K. Biswas, Localized Vibrations of Bi Bilayer Leading to Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Weak Topological Insulator N-Type BiSe, J. Am. Chem. Soc, vol.140, issue.17, pp.5866-5872, 2018.

B. C. Sales, D. Mandrus, and R. K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science, issue.5266, pp.1325-1328, 1996.

A. Banik, U. S. Shenoy, S. Anand, U. V. Waghmare, and K. Biswas, Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties, Chem. Mater, vol.27, issue.2, pp.581-587, 2015.

Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen et al., Convergence of Electronic Bands for High Performance Bulk Thermoelectrics, Nature, vol.473, issue.7345, pp.66-69, 2011.

L. D. Hicks and M. S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit, Phys. Rev. B, issue.19, pp.12727-12731, 1993.

J. M. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers et al., Demonstration of Electron Filtering to Increase the Seebeck Coefficient in InGaAs/InGaAlAs Superlattices, Phys. Rev. B, issue.20, p.205335, 2006.

, Proc. Natl. Acad. Sci, vol.110, pp.13261-13266, 2013.

S. Lin, W. Li, Z. Chen, J. Shen, B. Ge et al., Tellurium as a High-Performance Elemental Thermoelectric, Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials, vol.7, pp.1043-1053, 2007.

H. Wang, Y. Pei, A. D. Lalonde, and G. J. Snyder, Weak Electron-Phonon Coupling Contributing to High Thermoelectric Performance in n-Type PbSe, Proc. Natl. Acad. Sci, vol.109, pp.9705-9709, 2012.

Y. Pei, A. D. Lalonde, H. Wang, and G. J. Snyder, Low Effective Mass Leading to High Thermoelectric Performance, Energy Environ. Sci, vol.2012, issue.7, pp.7963-7969

, Realizing a Stable High zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, p.171

T. Mori, Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics, Small, vol.2017, issue.45, p.1702013

H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose et al., Thermoelectric Properties of a Magnetic Semiconductor CuFeS2. Mater. Today Phys, vol.3, pp.85-92, 2017.

K. Vandaele, S. J. Watzman, B. Flebus, A. Prakash, Y. Zheng et al., Thermal Spin Transport and Energy Conversion. Mater. Today Phys, vol.2017, pp.39-49

F. Ahmed, N. Tsujii, and T. Mori, Thermoelectric Properties of CuGa1?xMnxTe2: Power Factor Enhancement by Incorporation of Magnetic Ions, J. Mater. Chem. A, vol.2017, issue.16, pp.7545-7554

A. Orabi, R. Mecholsky, N. A. Hwang, J. Kim, W. Rhyee et al., Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys, Chem. Mater, vol.28, issue.1, pp.376-384, 2016.

A. Banik, U. S. Shenoy, S. Saha, U. V. Waghmare, and K. Biswas, High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence, J. Am. Chem. Soc, vol.138, issue.39, pp.13068-13075, 2016.

L. Wang, X. Tan, G. Liu, J. Xu, H. Shao et al., Manipulating Band Convergence and Resonant State in Thermoelectric Material SnTe by Mn-In Codoping, ACS Energy Lett, vol.2017, issue.23, pp.1203-1207

A. Banik, S. Roychowdhury, and K. Biswas, The Journey of Tin Chalcogenides towards HighPerformance Thermoelectrics and Topological Materials, Chem. Commun, vol.54, issue.50, pp.6573-6590, 2018.
DOI : 10.1039/c8cc02230e

B. Srinivasan, C. Boussard-pledel, B. Bureau, D. Bilc, S. D. Mahanti et al., Thermoelectric Performance of Codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe Materials Processed by Spark Plasma Sintering, Resonant States in the Electronic Structure of the High Performance Thermoelectrics AgPbmSbTe2+m: The Role of, vol.230, pp.191-194, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874723

A. Zhang, Q. Cao, F. Liu, W. Lukas, K. Yu et al., Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in P-Type PbTe, PbSe, and PbTe1-ySey, J. Am. Chem. Soc, vol.2012, issue.14, pp.198-202, 2004.

C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen et al., Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of Mg2Si1-xSnx Solid Solutions, Realizing a Stable High zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, vol.6, p.166601, 2015.

S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang et al., Nanostructures in HighPerformance (GeTe)x(AgSbTe2)100? x Thermoelectric Materials, Nanotechnology, vol.19, issue.24, p.245707, 2008.

T. Schröder, S. Schwarzmüller, C. Stiewe, J. De-boor, M. Hölzel et al., The Solid Solution Series (GeTe)x(LiSbTe2)2 (1 ? x ? 11) and the Thermoelectric Properties of (GeTe)11(LiSbTe2)2, Inorg. Chem, issue.19, pp.11288-11294, 2013.

T. Schröder, T. Rosenthal, N. Giesbrecht, S. Maier, E. Scheidt et al., TAGS-Related Indium Compounds and Their Thermoelectric Properties-the Solid Solution Series (GeTe)xAgInySb1?yTe2 (x = 1-12

. Chem, , vol.2, pp.6384-6395, 2014.

M. Samanta, S. Roychowdhury, J. Ghatak, S. Perumal, and K. Biswas, Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)x(AgSbSe2)100?x, Chem. Eur. J, vol.23, pp.7438-7443, 2017.

F. Fahrnbauer, D. Souchay, G. Wagner, and O. Oeckler, High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates, J. Am. Chem. Soc, vol.137, issue.39, pp.12633-12638, 2015.

Y. Gelbstein and J. Davidow, Highly Efficient Functional GexPb1?xTe Based Thermoelectric Alloys, Phys. Chem. Chem. Phys, vol.2014, issue.37, pp.20120-20126

S. Perumal, S. Roychowdhury, and K. Biswas, Reduction of Thermal Conductivity through Nanostructuring Enhances the Thermoelectric Figure of Merit in Ge1?xBixTe, Inorg. Chem. Front, vol.2016, issue.1, pp.125-132

D. Wu, L. Zhao, S. Hao, Q. Jiang, F. Zheng et al., Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3

. Doping, J. Am. Chem. Soc, vol.136, issue.32, pp.11412-11419, 2014.

L. Wu, X. Li, S. Wang, T. Zhang, J. Yang et al., Influence of Se Substitution in GeTe on Phase and Thermoelectric Properties, J. Electron. Mater, vol.2017, issue.1, pp.5533-5539, 2016.

, Realizing a Stable High zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, p.173

S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of P-Type Ge1-xSbxTe, Chem. Mater, vol.27, issue.20, pp.7171-7178, 2015.

E. Nshimyimana, X. Su, H. Xie, W. Liu, R. Deng et al., Realization of NonEquilibrium Process for High Thermoelectric Performance Sb-Doped GeTe, Sci. Bull, vol.63, issue.11, pp.717-725, 2018.

B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J. Halet et al., Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, J. Phys. Chem. C, issue.1, pp.227-235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01709523

Z. Zheng, X. Su, R. Deng, C. Stoumpos, H. Xie et al., Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity

, J. Am. Chem. Soc, vol.140, issue.7, pp.2673-2686, 2018.

J. K. Lee, M. W. Oh, B. S. Kim, B. K. Min, H. W. Lee et al., Influence of Mn on Crystal Structure and Thermoelectric Properties of GeTe Compounds, Electron. Mater. Lett, vol.10, issue.4, pp.813-817, 2014.

Y. Rosenberg, Y. Gelbstein, and M. P. Dariel, Phase Separation and Thermoelectric Properties of the Pb0.25Sn0.25Ge0.5Te Compound, J. Alloys Compd, vol.526, pp.31-38, 2012.

J. Li, X. Zhang, S. Lin, Z. Chen, and Y. Pei, Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying, Chem. Mater, vol.29, issue.2, pp.605-611, 2017.

M. Samanta and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)1-2x(GeSe)x(GeS)x: Competition between Solid Solution and Phase Separation, J. Am

, Chem. Soc, vol.139, issue.27, pp.9382-9391, 2017.

S. Perumal, P. Bellare, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring, Chem. Mater, vol.2017, issue.24, pp.10426-10435

J. Li, X. Zhang, Z. Chen, S. Lin, W. Li et al., , vol.2, pp.976-987, 2018.

S. Perumal, S. Roychowdhury, and K. Biswas, High Performance Thermoelectric Materials and Devices Based on GeTe, J. Mater. Chem. C, vol.2016, issue.32, pp.7520-7536
DOI : 10.1039/c6tc02501c

F. Gucci, T. G. Saunders, and M. J. Reece, Situ Synthesis of n-Type Unfilled Skutterudite with Reduced Thermal Conductivity by Hybrid Flash-Spark Plasma Sintering, vol.157, pp.58-61, 2018.

B. Srinivasan, B. Fontaine, F. Gucci, V. Dorcet, T. G. Saunders et al., Effect of the Processing Route on the Thermoelectric Performance of Nanostructured CuPb18SbTe20, Realizing a Stable High zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, pp.12976-12986, 2018.

G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, issue.3, pp.1758-1775, 1999.

G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, issue.16, pp.11169-11186, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/physrevlett.77.3865

K. Hoang, S. D. Mahanti, and M. G. Kanatzidis, Impurity Clustering and Impurity-Induced Bands in PbTe-, SnTe-, and GeTe-Based Bulk Thermoelectrics, Phys. Rev. B, vol.2010, issue.11, p.115106

A. F. May, E. S. Toberer, A. Saramat, and G. J. Snyder, Characterization and Analysis of Thermoelectric Transport in N-Type Ba8Ga16?xGe30+x, Phys. Rev. B, issue.12, p.125205, 2009.

E. S. Toberer, A. Zevalkink, N. Crisosto, and G. J. Snyder, The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation, Adv. Funct. Mater, issue.24, pp.4375-4380, 2010.

E. M. Levin, M. F. Besser, and R. Hanus, Electronic and Thermal Transport in GeTe: A Versatile Base for Thermoelectric Materials, J. Appl. Phys, vol.2013, issue.8, p.83713

E. M. Levin, J. Androulakis, I. Todorov, D. Chung, S. Ballikaya et al., Thermoelectric Enhancement in PbTe with K or Na Codoping from Tuning the Interaction of the Light-and Heavy-Hole Valence Bands, Phys. Rev. B, vol.2016, issue.4, p.115209, 2010.

S. Roychowdhury, U. ;. Sandhya-shenoy, U. Waghmare, and K. Biswas, An Enhanced Seebeck Coefficient and High Thermoelectric Performance in P-Type In and Mg Co-Doped Sn1?xPbxTe via the Co-Adjuvant Effect of the Resonance Level and Heavy Hole Valence Band, J. Mater

, Chem. C, vol.2017, issue.23, pp.5737-5748

M. Hong, Z. Chen, L. Yang, Y. Zou, M. S. Dargusch et al., J. Realizing ZT, vol.2, issue.3

J. Li, Z. Chen, X. Zhang, Y. Sun, J. Yang et al., Electronic Origin of the High Thermoelectric Performance of GeTe among the P-Type Group IV Monotellurides, Ge1?x?ySbxInyTe via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping, vol.30, p.353, 2018.

M. Hong, Z. Chen, Y. Pei, L. Yang, and J. Zou, Limit of zT Enhancement in Rocksalt Structured Chalcogenides by Band Convergence, Realizing a Stable High zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, p.161201, 2016.

Y. Pei, H. Wang, and G. J. Snyder, Band Engineering of Thermoelectric Materials, Adv. Mater, vol.2012, issue.46, pp.6125-6135

S. Roychowdhury and K. Biswas, Slight Symmetry Reduction in Thermoelectrics, Chem, vol.2018, issue.5, pp.939-942

H. ;. Fritzsche, E. A. Mott, and . Davis, Electronic Processes in Non-Crystalline Materials, Xiv, 438 Pp., Illus. 24. International Series of Monographs on Physics. Science, vol.176, issue.69, pp.1117-1117, 1971.

B. Du, F. Gucci, H. Porwal, S. Grasso, A. Mahajan et al., Flash Spark Plasma Sintering of Magnesium Silicide Stannide with Improved Thermoelectric Properties, J. Mater. Chem. C, vol.2017, issue.6, pp.1514-1521

C. Marco;-rashkova-boriana;-raj-rishi, Flash Sintering of Nanograin Zirconia in <5 s at 850°C, J. Am. Ceram. Soc, issue.11, pp.3556-3559, 2010.

M. Yu, S. Grasso, R. Mckinnon, T. Saunders, and M. J. Reece, Review of Flash Sintering: Materials, Mechanisms and Modelling, Adv. Appl. Ceram, vol.116, issue.1, pp.24-60, 2017.

E. A. Olevsky, S. M. Rolfing, A. L. Maximenko, and . Flash, Rapid) Spark-Plasma Sintering of Silicon Carbide, Sci. Rep, vol.6, issue.73, p.33408, 2016.

S. Grasso, E. Kim, T. Saunders, M. Yu, A. Tudball et al., Ultra-Rapid Crystal Growth of Textured SiC Using Flash Spark Plasma Sintering Route, Cryst. Growth Des, vol.16, issue.4, pp.2317-2321, 2016.

G. Salvatore,

S. Theo,

C. Omar,

J. Daniel-doni,

L. William and E. John,

W. Fahrenholtz, Flash Spark Plasma Sintering (FSPS) of Pure ZrB2, J. Am. Ceram. Soc, issue.8, pp.2405-2408, 2014.

J. L. Wang, H. Wang, G. J. Snyder, X. Zhang, Z. H. Ni et al., Characteristics of Lattice Thermal Conductivity and Carrier Mobility of Undoped PbSe-PbS Solid Solutions, J. Phys

, Bhuvanesh Srinivasan Equipe V&C, ISCR UMR 6226, Appl. Phys, vol.2013, issue.40

, Avenue du General Leclerc

F. Rennes and . Phone, +33223233688 ; Mobile : +33751382797 bhuvanesh.srinivasan@univ-rennes1.fr / s.bhuvanesh5@gmail.com Skype : bhuvanesh.srinivasan1

, PhD in Materials Science Carried out in the framework of European Commission's Horizon 2020 research & innovation program under the Marie Sk?odowska-Curie ITN actions-CoACH-ETN University of Rennes 1 (ISCR CNRS UMR 6226), 2015.

, Grade: 1.0 (German system

E. M. Master, Materials Science (MaMaSELF)

, Master 1 Internship (Supervisor-Prof, Jeroen von Bokhoven) Inst. for Chemical & Bioengineering, vol.9, issue.10

E. M. Master, Materials Science (MaMaSELF) University of Rennes 1

B. Srinivasan, S. Cui, C. Prestipino, A. Gellé, C. Boussard-pledel et al., Possible Mechanism for Hole Conductivity in Cu-As-Te Thermoelectric Glasses: A XANES and EXAFS Study, J. Phys. Chem. C, vol.121, pp.14045-14050, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01613090

B. Srinivasan, C. Boussard-pledel, V. Dorcet, M. Samanta, K. Biswas et al., Thermoelectric Properties of HighlyCrystallized Ge-Te-Se Glasses Doped with Cu/Bi, vol.10, p.328, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01504059

A. Kumar, B. J. Walder, A. Mohamed, A. Hofstetter, B. Srinivasan et al., The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate, J. Phys. Chem. C, vol.121, pp.17188-17196, 2017.

B. Srinivasan, F. Gucci, C. Boussard-pledel, F. Cheviré, M. J. Reece et al., Enhancement in thermoelectric performance of n-type Pb-deficit Pb-Sb-Te alloys, J. Alloys Compd, vol.729, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613123

B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J. Halet et al., Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, J. Phys. Chem. C, vol.122, pp.227-235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01709523

M. R. Andalibi, A. Kumar, B. Srinivasan, P. Bowen, K. Scrivener et al., On the mesoscale mechanism of synthetic calcium-silicate-hydrate precipitation: a population balance modeling approach, J. Mater. Chem. A, vol.6, pp.363-373, 2018.

B. Srinivasan, C. Boussard-pledel, and B. Bureau, Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering, Mater. Lett, vol.230, pp.191-194, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874723

B. Srinivasan, B. Fontaine, F. Gucci, V. Dorcet, T. G. Saunders et al., Effect of the Processing Route on the Thermoelectric Performance of Nanostructured CuPb18SbTe20, Inorg. Chem, vol.57, 2018.

B. Srinivasan, A. Gellé, J. Halet, C. Boussard-pledel, and B. Bureau, Detrimental Effects of doping Al and Ba on the Thermoelectric Performance of GeTe, Materials, vol.11, p.2237, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01926269

B. Srinivasan, A. Gellé, F. Gucci, C. Boussard-pledel, B. Fontaine et al.,

M. J. Halet, B. Reece, and . Bureau, Realizing a Stable High Thermoelectric zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, Inorg. Chem. Front, 2018.

T. Zhang, Z. Wang, B. Srinivasan, Z. Wang, J. Zhang et al., Ultra-Flexible Glassy Semiconductor Fibers for Thermal Sensing and Positioning, ACS Appl. Mater. Interfaces, 2018.

A. Kumar, B. Srinivasan, A. K. Mohamed, D. Lambert, G. Massonnet et al., Controlled synthesis and characterization of homogeneous Calcium Silicate Hydrates phase with high Calcium to Silicate ratio, Cem. Concr. Res

, Annual Seminar of the French Ceramic Society (GFC), 2017.

, th International Conference on Advanced Materials (IUMRS-ICAM), 2017.

, th International Conference on Thermoelectrics (ICT), 1 st-5 th, 2018.

, th International Conference on the Physics of Non-Crystalline Solids (PNCS-ESG), 9 th13 th, 2018.