J. Chevalier and L. Gremillard, Ceramics for medical applications: A picture for the next 20 years, Journal of the European Ceramic Society, vol.29, issue.7, pp.1245-1255, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00431366

H. , D. , and U. Knochenplombierung, , vol.804, 1982.

S. F04.13, Standard specification for high-purity dense aluminum oxide for medical application, ASTM F603-12, 2016.

D. Hannouche, Ceramics in total hip replacement, Clin Orthop Relat Res, issue.430, pp.62-71, 2005.

O. Ruff and F. E. , Contributions on the ceramics of highly fireproof material I: The forms of zirconium dioxide, Zeitschrift fur Anorg. und Allg. Chemie, vol.180, pp.19-41, 1929.

B. Cales and S. Y. , Mechanical characterization of a zirconia ceramic used as implant material, 1993.

S. Deville, A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia, J Biomed Mater Res B Appl Biomater, vol.72, issue.2, pp.239-284, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00436820

H. G. Richter, B. W. Willmann, and G. , Ceramic hip joint heads made from alumina zirconia comparison, Bioceramics: Materials and Applications, pp.73-81, 1995.

D. Aza, A. H. , C. J. Fantozzi, G. Schehl, M. Torrecillas et al., Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials, vol.23, issue.3, pp.937-982, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01670900

K. Tsukuma, U. K. Shimada, and M. , Strength and fracture toughness of isostatically hot-pressed composites of Al 2 O 3 and Y 2 O 3-partially-stabilized ZrO 2, J Am Ceram Soc, vol.68, issue.1, pp.4-5, 1985.

S. Deville, C. J. Fantozzi, G. Bartolome, J. Requena, J. Moya et al., Lowtemperature ageing of zirconia-toughened alumina ceramics and its implications in biomedical implants, Journal of the European Ceramic Society, vol.23, issue.15, pp.2975-2982, 2003.

T. Albrektsson, Osseointegrated titanium implants. Requirements for ensuring a longlasting, direct bone-to-implant anchorage in man, Acta Orthop Scand, vol.52, issue.2, pp.155-70, 1981.

R. A. Gittens, The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation, Biomaterials, vol.32, issue.13, pp.3395-403, 2011.

R. A. Gittens, Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants, Acta Biomater, vol.10, issue.8, pp.3363-71, 2014.

T. Kosmac, The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic, Dent Mater, vol.15, issue.6, pp.426-459, 1999.

R. J. Kohal, H. C. Finke, and G. Klaus, Stability of prototype two-piece zirconia and titanium implants after artificial aging: an in vitro pilot study, Clin Implant Dent Relat Res, vol.11, issue.4, pp.323-332, 2009.

P. C. Dm-dohan-ehrenfest and . Bs-kang, Albrektsson Classification of osseointegrated implant surfaces: materials, chemistry and topography, Trends Biotechnol, vol.28, issue.4, pp.198-206, 2010.

M. B. Della-bona, . Benetti, and . Cecchetti, Effect of surface treatments on the bond strength of a zirconia-reinforced ceramic to composite resin, Braz Oral Res, vol.21, issue.1, pp.10-15, 2007.

S. M. Kurtz, S. Kocagoz, C. Arnholt, R. Huet, M. Ueno et al., Advances in zirconia toughened alumina biomaterials for total joint replacement, J Mech Behav Biomed Mater, vol.31, pp.107-116, 2014.

B. Theelke, M. Kuntz, M. Zipperle, S. Eichhorn, and T. Boxleitner, Development of osseointegrative ceramic coatings based on ZPTA-Mechanical characterization and influence on the substrate, Biocer Develop Appl, 2011.

G. Mendonca, D. B. Mendonca, F. J. Aragao, and L. F. Cooper, Advancing dental implant surface technology-from micron-to nanotopography, Biomaterials, vol.29, issue.28, pp.3822-3835, 2008.

R. A. Gittens, T. Mclachlan, and R. Olivares-navarrete, The effects of combined micron/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation, Biomaterials, vol.32, issue.13, pp.3395-3403, 2011.

P. G. Coelho, J. R. Tovar, N. Bonfante, and E. A. , Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales, Dent Mater, vol.31, issue.1, pp.37-52, 2015.

T. Albrektsson and A. Wennerberg, Oral implant surfaces: Part 1-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them, Int J Prosthodont, vol.17, issue.5, pp.536-543, 2004.

H. J. Wenz, J. Bartsch, S. Wolfart, and M. Kern, Osseointegration and clinical success of zirconia dental implants: a systematic review, Int J Prosthodont, vol.21, issue.1, pp.27-36, 2008.

D. Yamashita, M. Machigashira, and M. Miyamoto, Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia, Dent Mater J, vol.28, issue.4, pp.461-470, 2009.

R. Depprich, H. Zipprich, and M. Ommerborn, Osseointegration of zirconia implants compared with titanium: an in vivo study, Head Face Med, vol.4, p.30, 2008.

Q. Flamant, C. Caravaca, and S. Meille, Selective etching of injection molded zirconiatoughened alumina: Towards osseointegrated and antibacterial ceramic implants, Acta Biomaterialia, vol.46, pp.308-322, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01670942

Y. S. Park, S. H. Chung, and W. J. Shon, Peri-implant bone formation and surface characteristics of rough surface zirconia implants manufactured by powder injection molding technique in rabbit tibiae, Clin Oral Implants Res, vol.24, issue.5, pp.586-591, 2013.

A. Wennerberg and T. Albrektsson, Suggested guidelines for the topographic evaluation of implant surfaces, Int J Oral Maxillofac Implants, vol.15, issue.3, pp.331-344, 2000.

R. Deltombe, K. J. Kubiak, and M. Bigerelle, How to select the most relevant 3D roughness parameters of a surface, Scanning, vol.36, issue.1, pp.150-160, 2014.

Q. Flamant, G. Marro, F. , R. Rovira, J. J. Anglada et al., Hydrofluoric acid etching of dental zirconia. Part 1: etching mechanism and surface characterization, Journal of the European Ceramic Society, vol.36, issue.1, pp.121-134, 2016.

J. P. Dillon, V. J. Waring-green, and A. M. Taylor, Primary human osteoblast cultures, Methods Mol Biol, vol.816, pp.3-18, 2012.

L. Tirkkonen, H. Halonen, and J. Hyttinen, The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells, J R Soc Interface, vol.8, issue.65, pp.1736-1747, 2011.

H. Ito, H. Sasaki, K. Saito, S. Honma, Y. Yajima et al., Response of osteoblast-like cells to zirconia with different surface topography, Dent Mater J, vol.32, issue.1, pp.122-129, 2013.

M. P. Whyte, Hypophosphatasia: nature's window on alkaline phosphatase function in humans. Principles of bone biology, vol.1, pp.1573-1598, 2008.

, Chapter 2 In vitro effects of micro-and micro-/nano-roughness of zirconia-toughened alumina PhD thesis Ana-Maria Stanciuc Page, vol.107

K. C. Popat, L. Swan, E. E. Mukhatyar, and V. , Influence of nanoporous alumina membranes on long-term osteoblast response, Biomaterials, vol.26, issue.22, pp.4516-4522, 2005.

L. F. Cooper, Y. Zhou, and J. Takebe, Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants, Biomaterials, vol.27, issue.6, pp.926-936, 2006.

J. S. Hayes, E. M. Czekanska, and R. G. Richards, The cell-surface interaction, Adv Biochem Eng Biotechnol, vol.126, pp.1-31, 2012.

J. S. Hayes and R. G. Richards, Surfaces to control tissue adhesion for osteosynthesis with metal implants: in vitro and in vivo studies to bring solutions to the patient, Expert Rev Med Devices, vol.7, issue.1, pp.131-142, 2010.

N. Eliaz, S. Shmueli, I. Shur, D. Benayahu, D. Aronov et al., The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomater, vol.5, issue.8, pp.3178-3191, 2009.

R. Olivares-navarrete, S. L. Hyzy, and M. E. Berg, Osteoblast lineage cells can discriminate microscale topographic features on titanium-aluminum-vanadium surfaces, Ann Biomed Eng, vol.42, issue.12, pp.2551-2561, 2014.

R. A. Gittens, R. Olivares-navarrete, and A. Cheng, The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells, Acta Biomater, vol.9, issue.4, pp.6268-6277, 2013.

E. M. Czekanska, M. J. Stoddart, R. G. Richards, and J. S. Hayes, In search of an osteoblast cell model for in vitro research, Eur Cell Mater, vol.24, pp.1-17, 2012.

E. T. Rochford, G. Subbiahdoss, and T. F. Moriarty, An in vitro investigation of bacteriaosteoblast competition on oxygen plasma-modified PEEK, J Biomed Mater Res A, vol.102, issue.12, pp.4427-4434, 2014.

S. Franz, S. Rammelt, D. Scharnweber, and J. C. Simon, Immune responses to implants-a review of the implications for the design of immunomodulatory biomaterials, Biomaterials, vol.32, issue.28, pp.6692-6709, 2011.

, PhD thesis Ana-Maria Stanciuc Page 118 de 202

, Reverse transcription was performed with 500 ng of total RNA per sample using TagMan reverse transcription reagents (Applied Biosystems, Foster City, CA) with random hexamer primers. Gene detection was carried out by using specific oligonucleotide primers and TaqMan probes (Microsynth, Switzerland) and Assays on Demand (Applied Biosystems, Foster City, CA) (set at 95°C for 10 min, followed by 40 cycles of amplification at 95°C for 15 sec and 60°C for 1 min. The ribosomal protein L13a (RPL13A) was used as endogenous control, Total RNA was extracted using TRI-reagent® (MRC)

, Probe:5'-CAT CAA ACA GCC TCT TCA GCA CAG TGA CAC-3' Human collagen type I (hCol I) Forward

, Primer and probe sequences used for real-time polymerase chain reaction. 3.4.3.7. Mineralisation assessment by alizarin Red S staining

R. A. Gittens, Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants, Acta Biomater, vol.10, issue.8, pp.3363-71, 2014.

M. Gahlert, A comparison study of the osseointegration of zirconia and titanium dental implants. A biomechanical evaluation in the maxilla of pigs, Clin Implant Dent Relat Res, vol.12, issue.4, pp.297-305, 2010.

R. Depprich, Osseointegration of zirconia implants: an SEM observation of the boneimplant interface, Head Face Med, vol.4, p.25, 2008.

B. Theelke, K. M. Zipperle, M. Eichhorn, S. Boxleitner, and T. , Development of osseointegrative ceramic coatings based on ZPTA Mechanical characterization and influence on the substrate

, Biocer Develop Appl, pp.1-4, 2011.

P. Miranda, Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications, Acta Biomater, vol.2, issue.4, pp.457-66, 2006.

S. Michna, W. Wu, and J. A. Lewis, Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds, Biomaterials, vol.26, issue.28, pp.5632-5641, 2005.

C. Petit, M. S. Maire, E. Gremillard, L. , A. J. Lau et al., Fracture behavior of robocast HA/?-TCP scaffolds studied by X-ray tomography and finite element modeling, Journal of the European Ceramic Society, vol.37, issue.4, pp.1735-1780, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01538186

C. F. Marques, Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties, Journal of the European Ceramic Society, vol.37, issue.1, pp.359-368, 2017.

T. Schlordt, Robocasting of alumina hollow filament lattice structures, Journal of the European Ceramic Society, issue.33, pp.3243-3248, 2013.

Y. C. Moon, I. Koh, and Y. ,

H. Kim, Macroporous alumina scaffolds consisting of highly microporous hollow filaments using three-dimensional ceramic/camphene-based coextrusion, Journal of the European Ceramic Society, issue.35, pp.4623-4627, 2015.

A. Fedorov, 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, vol.30, pp.1323-1341, 2012.

L. Silvio and N. G. , Primary mesenchymal cells, in Osteoblast, pp.221-241, 2001.

L. Tirkkonen, The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells, J R Soc Interface, vol.8, issue.65, pp.1736-1783, 2011.

J. Russias, Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting, Journal of Biomedical Materials Research Part A, vol.83, issue.2, pp.434-445, 2007.

A. Zocca, Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities, Journal of the American Ceramic Society, vol.98, issue.7, pp.1983-2001, 2015.

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, issue.27, pp.5474-91, 2005.

K. Rezwan, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, vol.27, issue.18, pp.3413-3444, 2006.

A. Butscher, Structural and material approaches to bone tissue engineering in powderbased three-dimensional printing, Acta Biomater, vol.7, issue.3, pp.907-927, 2011.

M. Houmard, On the structural, mechanical, and biodegradation properties of HA/beta-TCP robocast scaffolds, Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol.101, issue.7, pp.1233-1242, 2013.

J. Chevalier, What future for zirconia as a biomaterial?, Biomaterials, vol.27, issue.4, pp.535-543, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00436140

I. Denry and J. R. Kelly, State of the art of zirconia for dental applications, Dent Mater, vol.24, issue.3, pp.299-307, 2008.

M. Andreiotelli, H. J. Wenz, and R. J. Kohal, Are ceramic implants a viable alternative to titanium implants? A systematic literature review, Clin Oral Implants Res, vol.20, pp.32-47, 2009.

R. Depprich, H. Zipprich, and M. Ommerborn, Osseointegration of zirconia implants compared with titanium: an in vivo study, Head Face Med, vol.4, p.30, 2008.

M. Gahlert, S. Roehling, C. M. Sprecher, H. Kniha, S. Milz et al., In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae, Clin Oral Implants Res, vol.23, issue.3, pp.281-286, 2012.

R. J. Kohal, M. Knauf, B. Larsson, H. Sahlin, and F. Butz, One-piece zirconia oral implants: one-year results from a prospective cohort study. 1. Single tooth replacement, J Clin Periodontol, vol.39, issue.6, pp.590-597, 2012.

R. B. Osman, M. V. Swain, M. Atieh, S. Ma, and W. Duncan, Ceramic implants (Y-TZP): are they a viable alternative to titanium implants for the support of overdentures? A randomized clinical trial, Clin Oral Implants Res, vol.25, issue.12, pp.1366-1377, 2014.

S. Anil, P. S. Anand, H. Alghamdi, and J. A. Jansen, Dental Implant Surface Enhancement and Osseointegration, 2011.

R. A. Gittens, R. Olivares-navarrete, Z. Schwartz, and B. D. Boyan, Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants, Acta Biomater, vol.10, issue.8, pp.3363-3371, 2014.

A. Wennerberg and T. Albrektsson, On implant surfaces: a review of current knowledge and opinions, Int J Oral Maxillofac Implants, vol.25, issue.1, pp.63-74, 2010.

P. G. Coelho, J. R. Tovar, N. Bonfante, and E. A. , Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales, Dent Mater, vol.31, issue.1, pp.37-52, 2015.

C. G. Simon and S. Lin-gibson, Combinatorial and high-throughput screening of biomaterials, Adv Mater, vol.23, issue.3, pp.369-387, 2011.

N. H. Rizvi, Femtosecond laser micromachining: Current status and applications. Riken review, pp.107-112, 2003.

R. A. Delgado-ruiz, J. L. Calvo-guirado, and P. Moreno, Femtosecond laser microstructuring of zirconia dental implants, J Biomed Mater Res B Appl Biomater, vol.96, issue.1, pp.91-100, 2011.

R. A. Delgado-ruiz, J. L. Calvo-guirado, and M. Abboud, Histologic and histomorphometric behavior of microgrooved zirconia dental implants with immediate loading, Clin Implant Dent Relat Res, vol.16, issue.6, pp.856-872, 2014.

J. L. Calvo-guirado, A. Aguilar-salvatierra, and R. A. Delgado-ruiz, Histological and Histomorphometric Evaluation of Zirconia Dental Implants Modified by Femtosecond Laser versus Titanium Implants: An Experimental Study in Fox Hound Dogs, Clin Implant Dent Relat Res, vol.17, issue.3, pp.525-532, 2015.

R. A. Delgado-ruiz, G. Moreno, G. Aguilar-salvatierra, A. Markovic, A. Mate-sanchez et al., Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. An experimental in vitro study, Clin Oral Implants Res, vol.27, issue.11, pp.144-153, 2016.

, INSA Lyon, tous droits réservés Chapter 4 Multi-patterned ZTA PhD thesis Ana-Maria Stanciuc Page, vol.150, p.202

C. Hallgren, H. Reimers, D. Chakarov, J. Gold, and A. Wennerberg, An in vivo study of bone response to implants topographically modified by laser micromachining, Biomaterials, vol.24, issue.5, pp.701-710, 2003.

H. Jeon, C. G. Simon, J. Kim, and G. , A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure, J Biomed Mater Res B Appl Biomater, vol.102, issue.7, pp.1580-1594, 2014.

D. Nadeem, T. Sjostrom, and A. Wilkinson, Embossing of micropatterned ceramics and their cellular response, J Biomed Mater Res A, vol.101, issue.11, pp.3247-3255, 2013.

S. Y. Kim, J. H. Kang, and W. S. Seo, Effect of topographical control by a micro-molding process on the activity of human Mesenchymal Stem Cells on alumina ceramics, Biomater Res, vol.19, p.23, 2015.

C. C. Zhao, L. G. Xia, and D. Zhai, Designing ordered micropatterned hydroxyapatite bioceramics to promote the growth and osteogenic differentiation of bone marrow stromal cells, J Mater Chem B, vol.3, issue.6, pp.968-976, 2015.

M. Halai, A. Ker, and R. D. Meek, Scanning electron microscopical observation of an osteoblast/osteoclast co-culture on micropatterned orthopaedic ceramics, J Tissue Eng, vol.5, p.2041731414552114, 2014.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, Subwavelength ripple formation induced by tightly focused femtosecond laser radiation, Applied Surface Science, vol.252, issue.24, pp.8576-8579, 2006.

C. C. Berry, G. Campbell, A. Spadiccino, M. Robertson, and A. S. Curtis, The influence of microscale topography on fibroblast attachment and motility, Biomaterials, vol.25, issue.26, pp.5781-5788, 2004.

T. Kosmac, C. Oblak, P. Jevnikar, N. Funduk, and L. Marion, The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic, Dent Mater, vol.15, issue.6, pp.426-433, 1999.

Q. Flamant and M. Anglada, Hydrofluoric acid etching of dental zirconia. Part 2: effect on flexural strength and ageing behavior, Journal of the European Ceramic Society, vol.36, issue.1, pp.135-145, 2016.

D. Docheva, D. Padula, C. Popov, W. Mutschler, H. Clausen-schaumann et al., Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy, J Cell Mol Med, vol.12, issue.2, pp.537-552, 2008.

R. Mcbeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Dev Cell, vol.6, issue.4, pp.483-495, 2004.

A. Wilkinson, R. N. Hewitt, L. E. Mcnamara, D. Mccloy, D. Meek et al., Biomimetic microtopography to enhance osteogenesis in vitro, Acta Biomater, vol.7, issue.7, pp.2919-2925, 2011.

A. Cunha, A. Elie, and L. Plawinski, Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation, Applied Surface Science, vol.360, pp.485-493, 2016.

K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, Geometric cues for directing the differentiation of mesenchymal stem cells, Proc Natl Acad Sci U S A, vol.107, issue.11, pp.4872-4877, 2010.

J. J. Bara, Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic, Stem Cells, vol.32, issue.7, pp.1713-1736, 2014.

M. J. Stoddart, R. G. Richards, and M. Alini, In vitro experiments with primary mammalian cells: to pool or not to pool?, Eur Cell Mater, vol.24, pp.p. i-ii, 2012.

R. A. Gittens, The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation, Biomaterials, vol.32, issue.13, pp.3395-403, 2011.

A. Wennerberg and T. Albrektsson, Suggested guidelines for the topographic evaluation of implant surfaces, Int J Oral Maxillofac Implants, vol.15, issue.3, pp.331-375, 2000.

Q. Flamant, Roughness gradients on zirconia for rapid screening of cell-surface interactions: Fabrication, characterization and application, J Biomed Mater Res A, vol.104, issue.10, pp.2502-2516, 2016.

J. S. Hayes and R. G. Richards, Surfaces to control tissue adhesion for osteosynthesis with metal implants: in vitro and in vivo studies to bring solutions to the patient, Expert Rev Med Devices, vol.7, issue.1, pp.131-173, 2010.

C. Bergemann, Microstructured zirconia surfaces modulate osteogenic marker genes in human primary osteoblasts, J Mater Sci Mater Med, vol.26, issue.1, p.5350, 2015.

H. Ito, Response of osteoblast-like cells to zirconia with different surface topography, Dent Mater J, vol.32, issue.1, pp.122-131, 2013.

B. Theelke, B. M. Zipperle, M. Eichhorn, S. Boxleitner, and T. , Development of osseointegrative ceramic coatings based on ZPTA-Mechanical characterization and influence on the substrate, Biocer Develop Appl, issue.1, 2011.

K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials, vol.21, issue.7, pp.667-81, 2000.

, INSA Lyon, tous droits réservés PhD thesis Ana-Maria Stanciuc on zirconia for rapid screening of cell-surface interactions: Fabrication, characterization and application

, Mauro Alini 3 , Marianna Peroglio 3 and Marc Anglada 1,2,* 1 Department of Materials Science and Metallurgical Engineering, Christoph Martin Sprecher, vol.3, p.8028

E. , , pp.34-934054452

, Marc Anglada E-mail: marc.j.anglada@upc.edu Phone number, pp.34-934016701

, Journal of Biomedical Materials ResearchPart A, vol.104, pp.2502-2514, 2016.

J. Chevalier, What future for zirconia as a biomaterial?, Biomaterials, issue.27, pp.535-578, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00436140

I. Denry and J. R. Kelly, State of the art of zirconia for dental applications, Dent. Mater, vol.24, pp.299-307, 2008.

M. Andreiotelli, H. J. Wenz, and R. Kohal, Are ceramic implants a viable alternative to titanium implants? A systematic literature review, Clin. Oral Implants Res, vol.20, issue.4, pp.32-47, 2009.

R. Kohal, M. Knauf, B. Larsson, H. Sahlin, and F. Butz, One-piece zirconia oral implants: oneyear results from a prospective cohort study. 1. Single tooth replacement, J. Clin. Periodontol, vol.39, pp.590-597, 2012.

R. B. Osman, M. Swain, M. Atieh, S. Ma, and W. Duncan, Ceramic implants (Y-TZP): are they a viable alternative to titanium implants for the support of overdentures? A randomized clinical trial, Clin. Oral Implants Res, vol.25, pp.1366-77, 2014.

S. Anil, P. S. Anand, H. Alghamdi, and J. A. Jansen, Dental Implant Surface Enhancement and Osseointegration, in: Implant Dent, Rapidly Evol. Pract, pp.83-108, 2005.

A. Wennerberg and T. Albrektsson, On implant surfaces: a review of current knowledge and opinions, Int. J. Oral Maxillofac. Implants, vol.25, pp.63-74, 2009.

P. G. Coelho, R. Jimbo, N. Tovar, and E. Bonfante, Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales, Dent. Mater, vol.31, pp.37-52, 2015.

C. G. Simon and S. Lin-gibson, Combinatorial and high-throughput screening of biomaterials, Adv. Mater, vol.23, pp.369-87, 2011.

C. Zink, H. Hall, D. M. Brunette, and N. D. Spencer, Orthogonal nanometer-micrometer roughness gradients probe morphological influences on cell behavior, Biomaterials, vol.33, pp.8055-61, 2012.

T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients, Biomaterials, vol.28, pp.2175-82, 2007.

A. B. Faia-torres, S. Guimond-lischer, M. Rottmar, M. Charnley, T. Goren et al., Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients, Biomaterials, vol.35, pp.9023-9055, 2014.

N. J. Lin and S. Lin-gibson, Osteoblast response to dimethacrylate composites varying in composition , conversion and roughness using a combinatorial approach, Biomaterials, vol.30, pp.4480-4487, 2009.

C. V. Cremmel, C. Zink, K. Maniura-weber, L. Isa, and N. D. Spencer, Orthogonal Morphological Feature Size and Density Gradients for Exploring Synergistic Effects in Biology, Langmuir, vol.31, pp.8446-8452, 2015.

V. Dinca, P. Alloncle, P. Delaporte, V. Ion, L. Rusen et al., Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response, Appl. Surf. Sci, vol.352, pp.82-90, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01418526

, INSA Lyon, tous droits réservés Chapter 5 General conclusions PhD thesis Ana-Maria Stanciuc Page

D. Geblinger, C. Zink, N. D. Spencer, L. Addadi, B. Geiger et al., Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures, J. R. Soc. Interface, vol.9, pp.2711-2731, 2010.

P. Y. Wang, L. R. Clements, H. Thissen, A. Jane, W. B. Tsai et al., Screening mesenchymal stem cell attachment and differentiation on porous silicon gradients, Adv. Funct. Mater, vol.22, pp.3414-3423, 2012.

W. Yang, W. Han, W. He, J. Li, J. Wang et al., Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells, Mater. Sci. Eng. C, vol.60, pp.45-53, 2016.

A. Wennerberg and T. Albrektsson, Effects of titanium surface topography on bone integration: a systematic review, Clin. Oral Implants Res, vol.20, pp.172-84, 2009.

S. Morgenthaler, C. Zink, and N. D. Spencer, Surface-chemical and-morphological gradients, Soft Matter, vol.4, p.419, 2008.

T. P. Kunzler, T. Drobek, C. M. Sprecher, M. Schuler, and N. D. Spencer, Fabrication of materialindependent morphology gradients for high-throughput applications, Appl. Surf. Sci, vol.253, pp.2148-2153, 2006.

C. Huwiler, T. P. Kunzler, M. Textor, J. Vörös, and N. D. Spencer, Functionalizable nanomorphology gradients via colloidal self-assembly, Langmuir, vol.23, pp.5929-5935, 2007.

M. Gahlert, S. Röhling, M. Wieland, S. Eichhorn, H. Küchenhoff et al., A comparison study of the osseointegration of zirconia and titanium dental implants. A biomechanical evaluation in the maxilla of pigs, Clin. Implant Dent. Relat. Res, vol.12, pp.297-305, 2010.

M. Gahlert, S. Röhling, M. Wieland, C. M. Sprecher, H. Kniha et al., Osseointegration of zirconia and titanium dental implants: A histological and histomorphometrical study in the maxilla of pigs, Clin. Oral Implants Res, vol.20, pp.1247-1253, 2009.

Q. Flamant, F. García-marro, J. J. Roa-rovira, and M. Anglada, Hydrofluoric acid etching of dental zirconia. Part 1: etching mechanism and surface characterization, J. Eur. Ceram. Soc, 2015.

Q. Flamant and M. Anglada, Hydrofluoric acid etching of dental zirconia. Part 2: effect on flexural strength and ageing behavior, J. Eur. Ceram. Soc, 2015.

W. Dong, P. Sullivan, and K. Stout, Comprehensive study of parameters for characterising threedimensional surface topographyIII: Parameters for characterising amplitude and some functional properties, Wear, vol.178, pp.90127-90136, 1994.

W. P. Dong, P. J. Sullivan, and K. J. Stout, Comprehensive study of parameters for characterising three-dimensional surface topography: IV: Parameters for characterising spatial and hybrid properties, Wear, vol.178, pp.45-60, 1994.

K. J. Stout and L. Blunt, Three Dimensional Surface Topography, 2000.

C. Brown, P. D. Charles, W. Johnsen, and S. Chesters, Fractal analysis of topographic data by the patchwork method, pp.61-67, 1993.