J. Bastien, L. Sanchez, and D. Michaud, Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco). In: Pâques LE (ed) Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Managing Forest Ecosystems 25, pp.325-369, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268042

D. J. Durzan and P. K. Gupta, Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures, Plant Sci, vol.52, pp.229-235, 1987.
DOI : 10.1016/0168-9452(87)90056-2

C. L. Hargreaves, C. B. Reeves, J. I. Find, K. Gough, P. Josekutty et al., Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation, Can J Forest Res, vol.39, pp.1566-1574, 2009.

K. Klimaszewska, C. Hargreaves, M. Lelu-walter, and J. Trontin, Advances in conifer somatic embryogenesis since year, vitro embryogenesis in Higher plants, pp.131-166, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01269051

L. Thompson, D. Harvengt, L. Sanchez, L. Toribio, M. Pâques et al., Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction, Tree Genet Genomes, vol.9, pp.883-899, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268045

L. Klimaszewska, K. Miguel, C. Aronen, T. Hargreaves, C. Teyssier et al., Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: bottlenecks and recent advances, Somatic Embryogenesis-Fundamental Aspects and Applications, vol.19, pp.319-365, 2016.

J. D. Litvay, D. C. Verma, and M. A. Johnson, Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot, Daucus carota L.). Plant Cell Rep, vol.4, pp.325-328, 1985.

P. M. Pijut, S. S. Lawson, and C. H. Michler, Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity, In Vitro Cell Dev Biol Plant, vol.47, issue.1, pp.123-147, 2011.

T. Isah, Induction of somatic embryogenesis in woody plants, Acta Physiol Plant, vol.38, issue.5, p.118, 2016.

K. Klimaszewska, C. L. Hargreaves, M. Lelu-walter, and J. Trontin, Advances in conifer somatic embryogenesis since year 2000. In: In vitro embryogenesis in Higher plants, vol.2016, pp.131-162
URL : https://hal.archives-ouvertes.fr/hal-01269051

D. Durzan and P. Gupta, Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures, Plant Sci, vol.52, issue.3, pp.229-235, 1987.

C. Reeves, C. Hargreaves, J. Trontin, and M. Lelu-walter, Simple and efficient protocols for the initiation and proliferation of embryogenic tissue of Douglas-fir, Trees, 2017.

L. Gautier, F. Eliá?ová, K. Sanchez, L. Teyssier, C. Lomenech et al., High gellan gum concentration and secondary somatic embryogenesis: two key factors to improve somatic embryo development in Pseudotsuga menziesii, Plant Cell Tiss Organ Cult, 2017.

L. Thompson, D. Harvengt, L. Sanchez, L. Toribio, M. Pâques et al., Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction, Tree Gen Genomes, vol.2013, issue.4, pp.883-899
URL : https://hal.archives-ouvertes.fr/hal-01268045

L. Klimaszewska, K. Miguel, C. Aronen, T. Hargreaves, C. Teyssier et al., Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: Bottlenecks and recent advances, Somatic Embryogenesis: Fundamental Aspects and Applications, vol.2016, pp.319-365

J. Trontin, K. Klimaszewska, A. Morel, C. L. Hargreaves, and M. Lelu-walter, Molecular aspects of conifer zygotic and somatic embryo development: a review of genome-wide approaches and recent insights, In Vitro Embryogenesis in Higher Plants Methods in Molecular Biology. Edited by Germana M, Lambardi M, vol.1359, pp.131-166
URL : https://hal.archives-ouvertes.fr/hal-01269052

E. G. Williams and G. Maheswaran, Somatic embryogenesis: Factors influencing coordinated behaviour of cells as an embryogenic group, Ann Bot, vol.57, issue.4, pp.443-462, 1986.

P. Von-aderkas, C. Teyssier, J. Charpentier, M. Gutmann, L. Pâques et al., Effect of light conditions on anatomical and biochemical aspects of somatic and zygotic embryos of hybrid larch (Larix × marschlinsii), Ann Bot, vol.115, issue.4, pp.605-615, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01268887

A. Morel, C. Teyssier, J. Trontin, K. Eliá?ová, B. Pe?ek et al., Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses, Physiol Plant, vol.152, issue.1, pp.184-201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01179486

S. Merkle, Strategies for dealing with limitations of somatic embryogenesis in hardwood trees, Plant Tiss Cult Biotech, vol.1, pp.112-121, 1995.

A. Ballester, E. Corredoira, and A. Vieitez, Limitations of somatic embryogenesis in hardwood trees, Vegetative Propagation of Forest Trees, vol.2016, pp.56-74

P. Von-aderkas, J. Bonga, K. Klimaszewska, and J. Owens, Comparison of larch embryogeny in vivo and in vitro, pp.139-155, 1991.

F. Gautier, K. Eliá?ová, C. Reeves, L. Sanchez, C. Teyssier et al., What is the best way to maintain embryogenic capacity of embryogenic lines initiated from Douglas-fir immature embryos
URL : https://hal.archives-ouvertes.fr/hal-01603097

U. Egertsdotter, V. Arnold, and S. , Classification of embryogenic cell-lines of Picea abies as regards protoplast isolation and culture, J Plant Physiol, vol.141, issue.2, pp.222-229, 1993.

D. Breton, L. Harvengt, J. Trontin, A. Bouvet, and J. Favre, Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine, Plant Cell Tiss Organ Cult, vol.87, issue.1, pp.95-108, 2006.

D. Breton, L. Harvengt, J. Trontin, A. Bouvet, and J. Favre, High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in maritime pine, In Vitro Cell Dev Biol Plant, vol.41, issue.4, p.494, 2005.

M. Elhiti, C. Stasolla, and A. Wang, Molecular regulation of plant somatic embryogenesis, In Vitro Cell Dev Biol Plant, vol.49, issue.6, pp.631-642, 2013.

D. Rocha and M. Dornelas, Molecular overview on plant somatic embryogenesis, CAB Rev, vol.8, pp.1-17, 2013.

D. Lippert, Z. Jun, S. Ralph, D. E. Ellis, M. Gilbert et al., Proteome analysis of early somatic embryogenesis in Picea glauca, PROTEOMICS, vol.5, issue.2, pp.461-473, 2005.

E. Businge, J. Bygdell, G. Wingsle, T. Moritz, and U. Egertsdotter, The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos, Physiol Plant, vol.149, issue.2, pp.273-285, 2013.

C. Teyssier, C. Grondin, L. Bonhomme, A. Lomenech, M. Vallance et al., Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix × eurolepsis): a 2-DE proteomic analysis, Physiol Plant, vol.141, issue.2, pp.152-165, 2011.

C. Teyssier, S. Maury, M. Beaufour, C. Grondin, A. Delaunay et al., In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses, Physiol Plant, vol.150, issue.2, pp.271-291, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02087600

J. Zhao, H. Li, S. Fu, B. Chen, W. Sun et al., An iTRAQ-based proteomics approach to clarify the molecular physiology of somatic embryo development in Prince Rupprecht's larch (Larix principis-rupprechtii Mayr), PLOS ONE, vol.10, issue.3, p.119987, 2015.

Y. Zhen, Z. Zhao, R. Zheng, and J. Shi, Proteomic analysis of early seed development in Pinus massoniana L, Plant Physiol Biochem, vol.54, issue.0, pp.97-104, 2012.

A. Morel, J. Trontin, F. Corbineau, A. Lomenech, M. Beaufour et al., Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses, Planta, vol.240, issue.5, pp.1075-1095, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01179478

C. L. Hargreaves, C. B. Reeves, J. I. Find, K. Gough, P. Josekutty et al., Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation, Can J For Res, vol.39, issue.8, pp.1566-1574, 2009.

C. Hargreaves, C. Reeves, K. Find, K. Gough, M. Menzies et al., Overcoming the challenges of family and genotype representation and early cell line proliferation in somatic embryogenesis from control-pollinated seeds of Pinus radiata, vol.41, 2011.

Z. Vondráková, K. Eliá?ová, and M. Vágner, The anti-actin drugs latrunculin and cytochalasin affect the maturation of spruce somatic embryos in different ways, Plant Sci, pp.90-99, 2014.

M. Crouzet, S. Claverol, A. Lomenech, L. Sénéchal, C. Costaglioli et al., Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation, PLOS ONE, vol.2017, issue.7, p.180341

L. Kall, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. Maccoss, Semi-supervised learning for peptide identification from shotgun proteomics datasets, Nat Meth, vol.4, issue.11, pp.923-925, 2007.

J. A. Vizcaíno, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., update of the PRIDE database and its related tools, Nucl Acids Res, vol.44, issue.D1, pp.447-456, 2016.

H. Mi, A. Muruganujan, and P. Thomas, PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees, Nucl Acids Res, vol.41, pp.377-386, 2013.

A. Alexa, J. Rahnenführer, and T. Lengauer, Improved scoring of functional groups from gene expression data by decorrelating GO graph structure, Bioinformatics, vol.22, issue.13, pp.1600-1607, 2006.

P. Gupta, R. Timmis, K. Timmis, W. Carlson, and E. Welty, Somatic embryogenesis in Douglas-fir (Pseudotsuga menziesii), vol.3, pp.303-313

M. Pilarska, P. Malec, J. Salaj, F. Bartnicki, and R. Konieczny, High expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens, Protoplasma, vol.253, issue.2, pp.345-355, 2016.

D. I. Rocha, M. -. Bello, C. C. Aizza, L. Dornelas, and M. C. , A passion fruit putative ortholog of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed throughout the in vitro de novo shoot organogenesis developmental program, Plant Cell Tiss Organ Cult, vol.125, issue.1, pp.107-117, 2016.

A. Ramarosandratana, L. Harvengt, A. Bouvet, R. Calvayrac, and M. Pâques, Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos, Plant Sci, vol.160, issue.3, pp.473-479, 2001.

T. Winkelmann, Recent advances in propagation of woody plants, 2013. International Society for Horticultural Science (ISHS), pp.375-381

H. Laukkanen, L. Rautiainen, E. Taulavuori, and A. Hohtola, Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds, Tree Physiol, vol.20, issue.7, pp.467-475, 2000.

A. I. Baba, F. Nogueira, C. B. Pinheiro, J. N. Brasil, E. S. Jereissati et al., Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta), Plant Sci, vol.175, issue.5, pp.717-723, 2008.

F. Mahdavi-darvari, N. M. Noor, and I. Ismanizan, Epigenetic regulation and gene markers as signals of early somatic embryogenesis, Plant Cell Tiss Organ Cult, vol.120, issue.2, pp.407-422, 2015.

L. Van-zyl, P. V. Bozhkov, D. H. Clapham, R. R. Sederoff, V. Arnold et al., Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis, Gene Exp Pat, vol.3, issue.1, pp.83-91, 2003.

C. Stasolla, P. V. Bozhkov, T. Chu, L. Van-zyl, U. Egertsdotter et al., Variation in transcript abundance during somatic embryogenesis in gymnosperms, Tree Physiol, vol.24, issue.10, pp.1073-1085, 2004.

L. Jo, D. Santos, A. Bueno, C. A. Barbosa, H. R. Floh et al., Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential, Tree Physiol, vol.34, issue.1, pp.94-104, 2014.

L. H. Filonova, P. V. Bozhkov, V. B. Brukhin, G. Daniel, B. Zhivotovsky et al., Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce, J Cell Sci, vol.113, issue.24, p.4399, 2000.

P. V. Bozhkov, L. H. Filonova, and M. F. Suarez, 4-Programmed Cell Death in Plant Embryogenesis, Current Topics in Developmental Biology. Edited by Schatten GP, vol.67, pp.135-179, 2005.

A. Levine, R. Tenhaken, R. Dixon, and C. Lamb, H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell, vol.79, issue.4, pp.583-593, 1994.

A. Santos, P. Elbl, B. V. Navarro, L. F. De-oliveira, F. Salvato et al., Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential, J of Prot, vol.130, pp.180-189, 2016.

Y. Zhang, S. Zhang, S. Han, X. Li, and L. Qi, Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis), Plant Cell Rep, vol.31, issue.9, pp.1637-1657, 2012.

M. Wiweger, I. Farbos, M. Ingouff, U. Lagercrantz, V. Arnold et al., Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases, J Exp Bot, vol.54, issue.393, pp.2691-2699, 2003.

Y. Ge, Y. M. Cai, L. Bonneau, V. Rotari, A. Danon et al., Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis, Cell Death Differ, vol.23, p.1493, 2016.

Y. Zhen, J. Chen, Q. Chen, and J. Shi, Elemental analyses of calli and developing somatic embryo of hybrid liriodendron, Pakistan J of Bot, vol.47, issue.1, pp.189-196, 2015.

Z. Li, L. Tang, J. Qiu, W. Zhang, Y. Wang et al., Serine carboxypeptidase 46 Regulates Grain Filling and Seed Germination in Rice, Oryza sativa L.). PLOS ONE, vol.11, issue.7, p.159737, 2016.

M. Nakano, K. Kigoshi, T. Shimizu, T. Endo, T. Shimada et al., Characterization of genes associated with polyembryony and in vitro somatic embryogenesis in Citrus, Tree Gen Genomes, vol.2013, issue.3, pp.795-803

H. Liu, X. Tian, Y. Li, C. Wu, and C. Zheng, Microarray-based analysis of stressregulated microRNAs in Arabidopsis thaliana, RNA, vol.14, issue.5, pp.836-843, 2008.

B. Ahmadi, M. E. Shariatpanahi, T. Silva, and J. A. , Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell Tiss Organ Cult, vol.116, pp.343-351, 2014.

A. Linkies and G. Leubner-metzger, Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination, Plant Cell Rep, vol.31, issue.2, pp.253-270, 2012.

L. Pourcel, N. G. Irani, A. Koo, A. Bohorquez-restrepo, G. A. Howe et al., A chemical complementation approach reveals genes and interactions of flavonoids with other pathways, Plant J, vol.74, issue.3, pp.383-397, 2013.

J. Zhao, B. Wang, X. Wang, Y. Zhang, M. Dong et al., iTRAQ-based comparative proteomic analysis of embryogenic and non-embryogenic tissues of Prince Rupprecht's larch (Larix principis-rupprechtii Mayr). Plant Cell Tiss Organ Cult, vol.120, pp.655-669, 2015.

G. Agati, E. Azzarello, S. Pollastri, and M. Tattini, Flavonoids as antioxidants in plants: Location and functional significance, Plant Sci, vol.196, pp.67-76, 2012.

P. Luo, Y. Shen, J. S. Huang, S. Cheng, X. Wang et al., Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling, Plant Sci, pp.35-49, 2016.

S. Zhang, S. Han, Y. Wei, H. Zhang, M. Qi et al., Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis, Plant Cell Tiss Organ Cult, vol.100, issue.1, pp.21-29, 2010.

C. Kairong, J. L. Gengmei, X. Jianlong, L. Lihong, W. Yafu et al., Effect of hydrogen peroxide on synthesis of proteins during somatic embryogenesis in Lycium barbarum, Plant Cell Tiss Organ Cult, vol.68, issue.2, pp.187-193, 2002.

C. Parent, N. Capelli, and J. Dat, Formes réactives de l'oxygène, stress et mort cellulaire chez les plantes, Comptes Rendus Biologies, vol.331, issue.4, pp.255-261, 2008.

Z. Vondráková, J. Kraj?áková, L. Fischerová, M. Vágner, and K. Eliá?ová, Physiology and role of plant growth regulators in somatic embryogenesis, Vegetative Propagation of Forest Trees, vol.2016, pp.123-169

M. Khan, M. Fatma, T. S. Per, N. A. Anjum, and N. A. Khan, Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants, Front Plant Sci, vol.6, p.462, 2015.

O. K. Gondor, T. Janda, V. Soós, M. Pál, I. Majláth et al., Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment, Front Plant Sci, vol.7, 1447.

C. ,

E. Cabiscol, E. Piulats, P. Echave, E. Herrero, and J. Ros, Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.275, issue.35, pp.27393-27398, 2000.

M. Caillau and W. Quick, New insights into plant transaldolase, The Plant Journal, vol.43, issue.1, pp.1-16, 2005.

J. Cairney and G. S. Pullman, The cellular and molecular biology of conifer embryogenesis, New phytologist, vol.176, issue.3, pp.511-536, 2007.

J. Canales, R. Bautista, P. Label, J. Gómez-maldonado, I. Lesur et al., De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology, Plant biotechnology journal, vol.12, issue.3, pp.286-299, 2014.

F. Carrari and A. R. Fernie, Metabolic regulation underlying tomato fruit development, Journal of Experimental Botany, vol.57, issue.9, pp.1883-1897, 2006.

S. A. Casson and K. Lindsey, The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity, Plant Physiology, vol.142, issue.2, pp.526-541, 2006.

R. D. De-castro, A. A. Van-lammeren, S. P. Groot, R. J. Bino, and H. W. Hilhorst, Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not, Plant Physiology, vol.122, issue.2, pp.327-336, 2000.

V. Chalupa, Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.), Commun Inst For Cech, vol.14, pp.57-63, 1985.

S. Chang, J. Puryear, and J. Cairney, A simple and efficient method for isolating RNA from pine trees, Plant molecular biology reporter, vol.11, issue.2, pp.113-116, 1993.

C. Chapple, Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases, Annual review of Plant Biology, vol.49, issue.1, pp.311-343, 1998.

R. J. Cho and M. J. Campbell, Transcription, genomes, function, Trends in Genetics, vol.16, issue.9, pp.409-415, 2000.

A. Chugh and P. Khurana, Gene expression during somatic embryogenesis-recent advances, Current Science-Bangalore, vol.83, issue.6, pp.715-730, 2002.

V. T. Ciavatta, R. Morillon, G. S. Pullman, M. J. Chrispeels, and J. Cairney, An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine, Plant Physiology, vol.127, issue.4, pp.1556-1567, 2001.

S. Correia, R. Vinhas, B. Manadas, A. S. Lourenc?-o, P. Verí-ssimo et al., Comparative Proteomic Analysis of Auxin-Induced Embryogenic and Nonembryogenic Tissues of the Solanaceous Tree Cyphomandra betacea (Tamarillo), Journal of proteome research, vol.11, issue.3, pp.1666-1675, 2012.

K. Cui, H. Wang, C. He, D. Sun, J. Zhang et al., Analysis of culm elongation in photoheterotrophic status of Dendrocalamus sinicus by comparative proteomics, Trees, vol.31, issue.2, pp.687-704, 2017.

A. J. Cutler and J. E. Krochko, Formation and breakdown of ABA, Trends in Plant Science, vol.4, issue.12, pp.472-478, 1999.

M. Cvikrova, Z. Vondráková, K. Eliasova, B. Pesek, A. Travnickova et al., The impact of UV-B irradiation applied at different phases of somatic embryo development in Norway spruce on polyamine metabolism, Silvae Genetica, vol.30, issue.1, pp.269-275, 2008.

C. A. Dean, D. E. Welty, and G. E. Herold, Performance and genetic parameters of somatic and zygotic progenies of coastal Douglas-fir at 71/2-years across Washington and Oregon, Silvae Genetica, vol.58, issue.5/6, pp.212-219, 2009.

B. De-boer, Fusicoccin-a key to multiple 14-3-3 locks?, Trends in Plant Science, vol.2, issue.2, pp.60-66, 1997.

J. Dénarié, F. Debelle, and C. Rosenberg, Signaling and host range variation in nodulation, Annual reviews in Microbiology, vol.46, issue.1, pp.497-531, 1992.

N. De-diego, I. A. Montalbán, E. Fernandez-de-larrinoa, and P. Moncaleán, In vitro regeneration of Pinus pinaster adult trees, Canadian journal of forest research, vol.38, issue.10, pp.2607-2615, 2008.

J. T. Desano, L. Xu, E. L. Van-dijk, Y. Jaszczyszyn, and C. Thermes, Library preparation methods for next-generation sequencing: tone down the bias, Experimental Cell Research, vol.11, issue.4, pp.12-20, 2009.

R. A. Dixon and N. L. Paiva, Stress-induced phenylpropanoid metabolism, The plant cell, vol.7, issue.7, p.1085, 1995.

P. I. Dobrev and R. Vankova, Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues, Methods in Molecular Biology, vol.913, pp.251-261, 2012.

F. Gao, Y. Zhou, W. Zhu, X. Li, L. Fan et al., Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves, Planta, vol.230, issue.5, pp.1033-1046, 2009.

Z. Y. Ge, P. J. Wan, G. Q. Li, Y. G. Xia, and Z. J. Han, Characterization of cysteine protease-like genes in the striped rice stem borer, Chilo suppressalis, Genome, vol.57, issue.2, pp.79-88, 2014.

M. Gliwicka, K. Nowak, E. Cie?la, and M. D. Gaj, Expression of seed storage product genes (CRA1 and OLEO4) in embryogenic cultures of somatic tissues of Arabidopsis, Plant Cell, Tissue and Organ Culture, vol.109, issue.2, pp.235-245, 2012.

D. De-la-goublaye and A. Franclet, Bouturage du Douglas: rétablissement de l'orthotropie, Annales AFOCEL, pp.277-295, 1978.

E. Van-der-graaff, T. Laux, and S. A. Rensing, The WUS homeobox-containing (WOX) protein family, Genome biology, vol.10, issue.12, p.248, 2009.

M. J. Green, J. K. Mcleod, and S. Misra, Characterization of Douglas fir protein body composition by SDS-PAGE and electron microscopy, Plant physiology and biochemistry, vol.29, issue.1, pp.49-55, 1991.

P. F. Gugger, A. González-rodríguez, H. Rodríguez-correa, S. Sugita, and J. Cavenderbares, Southward Pleistocene migration of Douglas-fir into Mexico: phylogeography, ecological niche modeling, and conservation of 'rear edge'populations, New Phytologist, vol.189, issue.4, pp.1185-1199, 2011.

F. Guo, C. Liu, H. Xia, Y. Bi, C. Zhao et al., Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants, PLoS One, vol.8, issue.8, p.71714, 2013.
DOI : 10.1371/journal.pone.0071714

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0071714&type=printable

J. Guo, J. Jia, and R. Jia, PTBP1 and PTBP2 impaired autoregulation of SRSF3 in cancer cells, Scientific reports, vol.5, 2015.

P. K. Gupta, Method for reproducing conifers by somatic embryogenesis using a maltose enriched maintenance medium: US Patent No, vol.563, p.61, 1996.

P. K. Gupta and D. J. Durzan, Somatic polyembryogenesis from callus of mature sugar pine embryos, Nature Biotechnology, vol.4, issue.7, pp.643-645, 1986.
DOI : 10.1038/nbt0786-643

P. K. Gupta and G. S. Pullman, Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation, U.S. Brevet No, vol.5, p.30, 1991.

P. K. Gupta and G. S. Pullman, Method for reproducing Douglas-fir by somatic embryogenesis, pp.31-1995, 1995.

P. K. Gupta and G. S. Pullman, Method for reproducing Douglas-fir by somatic embryogenesis, U.S. Brevet No, vol.5, p.9, 1996.

P. K. Gupta and R. Timmis, Mass propagation of conifer trees in liquid culturesprogress towards commercialization. In Liquid Culture Systems for in vitro plant propagation, vol.81, pp.339-346, 2005.

P. K. Gupta, R. Timmis, K. Timmis, W. Carlson, J. Grob et al., Plantlet regeneration via somatic embryogenesis in Douglas-fir (Pseudotsuga menziesii), TAPPI Proc. Bio. Science Symposium, pp.35-39, 1994.
DOI : 10.1007/978-94-011-0960-4_19

P. K. Gupta, R. Timmis, K. A. Timmis, W. C. Carlson, E. D. Welty et al., Somatic Embryogenesis in Douglas-fir (Pseudotsuga menziesii, Somatic embryogenesis in woody plants, pp.303-313, 1995.
DOI : 10.1007/978-94-011-0960-4_19

G. Gusmaroli, C. Tonelli, and R. Mantovani, Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits, Gene, vol.283, issue.1, pp.41-48, 2002.

E. Guzmán-garcía, C. Sánchez-romero, B. Panis, and S. C. Carpentier, The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado, Proteomics, vol.13, pp.3498-3507, 2013.

S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, Correlation between protein and mRNA abundance in yeast, Molecular and Cellular Biology, vol.19, issue.3, pp.1720-1730, 1999.
DOI : 10.1128/mcb.19.3.1720

URL : https://mcb.asm.org/content/mcb/19/3/1720.full.pdf

Y. Habu, H. Fukushima, Y. Sakata, H. Abe, and R. Funada, A gene encoding a major Kunitz proteinase inhibitor of storage organs of winged bean is also expressed in the phloem of stems, Plant molecular biology, vol.32, issue.6, pp.1209-1213, 1996.

K. Hadfi, V. Speth, and G. Neuhaus, Auxin-induced developmental patterns in Brassica juncea embryos, Development, vol.125, issue.5, pp.879-887, 1998.

A. Haecker, R. Groß-hardt, B. Geiges, A. Sarkar, H. Breuninger et al., Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana, Development, vol.131, issue.3, pp.657-668, 2004.

I. Hakman and S. Arnold, Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce), Journal of Plant Physiology, vol.121, issue.2, pp.149-158, 1985.
DOI : 10.1016/s0176-1617(85)80040-7

I. Hakman, H. Hallberg, and J. Palovaara, The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development, Tree physiology, vol.29, issue.4, pp.483-496, 2009.

A. Hall, Ras-related GTPases and the cytoskeleton, Molecular biology of the cell, vol.3, issue.5, pp.475-479, 1992.
DOI : 10.1091/mbc.3.5.475

URL : http://europepmc.org/articles/pmc275601?pdf=render

E. W. Harding, W. Tang, K. W. Nichols, D. E. Fernandez, and S. E. Perry, , 2003.

, Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15, Plant Physiology, vol.133, issue.2, pp.653-663

C. L. Hargreaves, C. B. Reeves, J. I. Find, K. Gough, P. Josekutty et al., Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation, Canadian Journal of Forest Research, vol.39, issue.8, pp.1566-1574, 2009.

C. L. Hargreaves, C. B. Reeves, K. Gough, M. I. Menzies, C. B. Low et al., Overcoming the challenges of family and genotype representation and early cell line proliferation in somatic embryogenesis from control-pollinated seeds of Pinus radiata, New Zealand Journal of Forestry Science, p.41, 2011.

L. Harvengt, J. F. Trontin, I. Reymond, F. Canlet, and M. Paques, Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis, Planta, vol.213, issue.5, pp.828-832, 2001.

L. He and G. J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation, Nature reviews. Genetics, vol.5, issue.8, p.631, 2004.
DOI : 10.1038/nrg1379

V. Hecht, J. P. Vielle-calzada, M. V. Hartog, E. D. Schmidt, K. Boutilier et al., The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture, Plant Physiology, vol.127, issue.3, pp.803-816, 2001.

D. Hegedus, M. Yu, D. Baldwin, M. Gruber, A. Sharpe et al., Molecular characterization of Brassicanapus NAC domain transcriptional activators induced in response to biotic and abiotic stress, Plant molecular biology, vol.53, issue.3, pp.383-397, 2003.

N. A. Helal, The green revolution via synthetic (artificial) seeds: a review, Res J Agric Biol Sci, vol.7, issue.6, pp.464-477, 2011.

A. J. Van-hengel, A. B. Van-kammen, and S. C. Vries, A relationship between seed development, arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis, Physiologia Plantarum, vol.114, issue.4, pp.637-644, 2002.

R. K. Hermann and D. P. Lavender, Douglas-fir planted forests, New Forests, vol.17, issue.1, pp.53-70, 1999.
DOI : 10.1007/978-94-017-2689-4_5

N. Hirokawa, Kinesin and dynein superfamily proteins and the mechanism of organelle transport, Science, vol.279, issue.5350, pp.519-526, 1998.

L. Hong, M. Boulay, P. K. Gupta, and D. J. Durzan, Variations in somatic polyembryogenesis: induction of adventitious embryonal-suspensor masses on developing Douglas fir embryos. Woody plant biotechnology, pp.105-121, 1991.

A. Horstman, BABY BOOM-induced somatic embryogenesis in Arabidopsis. Dissertation, 2015.

G. T. Howe, K. Jayawickrama, M. Cherry, G. R. Johnson, and N. C. Wheeler, , 2006.

, Breeding Douglas-fir, Plant Breeding Reviews, vol.27, p.245

R. Hu, Y. Sun, B. Wu, H. Duan, H. Zheng et al.,

, Somatic Embryogenesis of Immature Cunninghamia lanceolata (Lamb.) Hook Zygotic Embryos, Scientific Reports, vol.7, issue.1, pp.1-14

N. Imin, M. Nizamidin, T. Wu, and B. G. Rolfe, Factors involved in root formation in Medicago truncatula, Journal of Experimental Botany, vol.58, issue.3, pp.439-451, 2006.

D. Iraqi and F. M. Tremblay, Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development, Journal of Experimental Botany, vol.52, issue.365, pp.2301-2311, 2001.

T. Isah, Induction of somatic embryogenesis in woody plants, Acta physiologiae plantarum, vol.38, issue.5, 2016.

H. N. Jang, M. Lee, T. J. Loh, S. W. Choi, H. K. Oh et al., Exon 9 skipping of apoptotic caspase-2 pre-mRNA is promoted by SRSF3 through interaction with exon 8, Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, issue.1, pp.25-32, 2014.
DOI : 10.1016/j.bbagrm.2013.11.006

URL : http://europepmc.org/articles/pmc4547346?pdf=render

V. M. Jiménez, Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis, Plant Growth Regulation, vol.47, issue.2-3, pp.91-110, 2005.

L. Jo, A. L. Santos, C. A. Bueno, H. R. Barbosa, and E. I. Floh, Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential, Tree physiology, vol.34, issue.1, pp.94-104, 2013.
DOI : 10.1093/treephys/tpt102

K. L. Johnson, B. J. Jones, A. Bacic, and C. J. Schultz, The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules, Plant Physiology, vol.133, issue.4, pp.1911-1925, 2003.

M. W. Jones-rhoades, D. P. Bartel, and B. Bartel, MicroRNAs and their regulatory roles in plants, Annu. Rev. Plant Biol, vol.57, pp.19-53, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105218

R. V. Joosen, M. Lammers, P. Balk, P. Brönnum, M. C. Konings et al., Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays, Tree Physiology, vol.26, issue.10, pp.1297-1313, 2006.

M. N. Jordy and J. M. Favre, Spatio-temporal variations in starch accumulation during germination and post-germinative growth of zygotic and somatic embryos of Pinus pinaster, Biologia Plantarum, vol.46, issue.4, pp.507-512, 2003.

I. Jourdain, M. A. Lelu, and P. Label, Hormonal changes during growth of somatic embryogenic masses in hybrid larch, Plant Physiology and Biochemistry, vol.35, issue.9, pp.741-749, 1997.

A. Junker, G. Mönke, T. Rutten, J. Keilwagen, M. Seifert et al., Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana, The Plant Journal, vol.71, issue.3, pp.427-442, 2012.

L. Käll, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. Maccoss, Semisupervised learning for peptide identification from shotgun proteomics datasets, Nature methods, vol.4, issue.11, p.923, 2007.

Y. Kanayama, H. Mori, H. Imaseki, and S. Yamaki, Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple, Plant physiology, vol.100, issue.3, 1992.

U. Kanter, B. Usadel, F. Guerineau, Y. Li, M. Pauly et al., The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides, Planta, vol.221, issue.2, pp.243-254, 2005.

O. Karami and A. Saidi, The molecular basis for stress-induced acquisition of somatic embryogenesis, Molecular Biology Reports, vol.37, issue.5, pp.2493-2507, 2010.

T. Lotan, M. A. Ohto, K. M. Yee, M. A. West, R. Lo et al., Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells, Cell, vol.93, issue.7, pp.1195-1205, 1998.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome biology, vol.15, issue.12, p.550, 2014.

P. Luo, Y. Shen, S. Jin, S. Huang, X. Cheng et al., Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling, Plant science, vol.245, pp.35-49, 2016.

R. Lyngved, J. Renaut, J. F. Hausman, T. H. Iversen, and A. K. Hvoslef-eide, , 2008.

, Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE, Journal of Plant Growth Regulation, vol.27, issue.4

J. J. Mackay, M. R. Becwar, Y. S. Park, J. P. Corderro, and G. S. Pullman, Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding, Tree Genetics & Genomes, vol.2, issue.1, pp.1-9, 2006.

F. Mahdavi-darvari, N. M. Noor, and I. Ismanizan, Epigenetic regulation and gene markers as signals of early somatic embryogenesis, Plant Cell, Tissue and Organ Culture (PCTOC), vol.120, issue.2, pp.407-422, 2015.

A. J. Manfre, G. A. Lahatte, C. R. Climer, and W. R. Marcotte, Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1, Plant and Cell Physiology, vol.50, issue.2, pp.243-253, 2009.

F. R. Mantiri, S. Kurdyukov, S. K. Chen, and R. J. Rose, The transcription factor MtSERF1 may function as a nexus between stress and development in somatic embryogenesis in Medicago truncatula, Plant Signaling &Behavior, vol.3, issue.7, pp.498-500, 2008.

K. A. Marrs, The functions and regulation of glutathione S-transferases in plants, Annual Review of Plant Biology, vol.47, issue.1, pp.127-158, 1996.

M. Marsoni, M. Bracale, L. Espen, B. Prinsi, A. S. Negri et al., , 2008.

, Proteomic analysis of somatic embryogenesis in Vitis vinifera, Plant Cell Reports, vol.27, issue.2, pp.347-356

M. Mathieu, G. Neutelings, S. Hawkins, E. Grenier, and H. David, Cloning of a pine germin-like protein (GLP) gene promoter and analysis of its activity in transgenic tobacco Bright Yellow 2 cells, Physiologia plantarum, vol.117, issue.3, pp.425-434, 2003.

M. Mathieu, M. A. Lelu-walter, A. S. Blervacq, H. David, S. Hawkins et al., Germin-like genes are expressed during somatic embryogenesis and early development of conifers, Plant Molecular Biology, vol.61, issue.4-5, pp.615-627, 2006.

R. Mittler, Oxidative stress, antioxidants and stress tolerance, Trends in plant science, vol.7, issue.9, pp.405-410, 2002.

A. Morel, C. Teyssier, J. F. Trontin, K. Eliá?ová, B. Pe?ek et al., Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses, Physiologia Plantarum, vol.152, issue.1, pp.184-201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01179486

A. Morel, J. F. Trontin, F. Corbineau, A. M. Lomenech, M. Beaufour et al., Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses, Planta, vol.240, issue.5, pp.1075-1095, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01179478

J. Mu, H. Tan, Q. Zheng, F. Fu, Y. Liang et al., LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis, Plant physiology, vol.148, issue.2, pp.1042-1054, 2008.

J. Mu, H. Tan, S. Hong, Y. Liang, and J. Zuo, Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development, Molecular Plant, vol.6, issue.1, pp.188-201, 2013.

F. Muñoz and L. Sanchez, breedR: Statistical Methods for Forest Genetic Resources Analysts. R package version 0, vol.11, 2015.

L. A. Mur, F. J. Sturgess, G. G. Farrell, J. Draper, T. Nagata et al., The AoPR10 promoter and certain endogenous PR10 genes respond to oxidative signals in Arabidopsis, International Journal of Developmental Biology, vol.5, issue.5, pp.321-327, 2002.

R. Nagmani, M. A. Johnson, and R. J. Dinus, Effect of explant and media on initiation, maintenance, and maturation of somatic embryos in Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir), pp.171-178, 1991.

R. Nagmani, A. M. Diner, S. Garton, A. E. Zipf, S. Jain et al., Anatomical comparison of somatic and zygotic embryogeny in conifers, Somatic embryogenesis in woody plants, vol.1, pp.23-48, 1995.

B. V. Navarro, P. Elbl, A. P. De-souza, V. Jardim, L. F. De-oliveira et al., Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia, PloS one, vol.12, issue.7, p.180051, 2017.

S. Pan, P. C. Sehnke, R. J. Ferl, and W. B. Gurley, Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex, The Plant Cell, vol.11, issue.8, pp.1591-1602, 1999.

B. Panaretou, G. Siligardi, P. Meyer, A. Maloney, J. K. Sullivan et al., Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1, Molecular cell, vol.10, issue.6, pp.1307-1318, 2002.

T. L. Parchman, K. S. Geist, J. A. Grahnen, C. W. Benkman, and C. A. Buerkle, , 2010.

, Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery, BMC genomics, vol.11, issue.1, p.180

Y. S. Park, Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations, Annals of Forest Science, vol.59, issue.5-6, pp.651-656, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00881918

S. Park, K. Klimaszewska, J. Y. Park, and S. D. Mansfield, Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees, Tree physiology, vol.30, issue.11, pp.1469-1478, 2010.

D. Pastore, D. Trono, M. N. Laus, N. Di-fonzo, and Z. Flagella, Possible plant mitochondria involvement in cell adaptation to drought stress: a case study: durum wheat mitochondria, Journal of Experimental Botany, vol.58, issue.2, pp.195-210, 2007.

W. A. Peer, A. Bandyopadhyay, J. J. Blakeslee, S. N. Makam, R. J. Chen et al., Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana, The Plant Cell, vol.16, issue.7, pp.1898-1911, 2004.

J. Petrek, O. Zitka, V. Adam, K. Bartusek, N. A. Anjum et al., Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised ?, PLoS One, vol.10, issue.12, p.144093, 2015.

K. Petroni, G. Falasca, V. Calvenzani, D. Allegra, C. Stolfi et al., The AtMYB11 gene from Arabidopsis is expressed in meristematic cells and modulates growth in planta and organogenesis in vitro, Journal of experimental botany, vol.59, issue.6, pp.1201-1213, 2008.

A. Pradet and P. Raymond, Adenine nucleotide ratios and adenylate energy charge in energy metabolism, Annual Review of Plant Physiology, vol.34, issue.1, pp.199-224, 1983.

G. S. Pullman, Y. Zhang, and B. H. Phan, Brassinolide improves embryogenic tissue initiation in conifers and rice, Plant cell reports, vol.22, issue.2, pp.96-104, 2003.

A. L. Santos, P. Elbl, B. V. Navarro, L. F. De-oliveira, F. Salvato et al., Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential, Journal of Proteomics, vol.130, pp.180-189, 2016.

A. N. Sasikumar, W. B. Perez, and T. G. Kinzy, The many roles of the eukaryotic elongation factor 1 complex, Wiley Interdisciplinary Reviews: RNA, vol.3, issue.4, pp.543-555, 2012.

J. A. Schloss, How to get genomes at one ten-thousandth the cost, Nature Biotechnology, vol.26, issue.10, pp.1113-1115, 2008.

E. D. Schmidt, F. Guzzo, M. A. Toonen, and S. C. Vries, A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos, Development, vol.124, issue.10, pp.2049-2062, 1997.

K. Schwarzerová, Z. Vondráková, L. Fischer, P. Boríková, E. Bellinvia et al., The role of actin isoforms in somatic embryogenesis in Norway spruce, BMC Plant Biology, vol.10, pp.89-89, 2009.

J. Shao, L. Wang, C. Zhong, R. Qi, and Y. Li, AHSA1 regulates proliferation, apoptosis, migration, and invasion of osteosarcoma, Biomedicine & Pharmacotherapy, vol.77, pp.45-51, 2016.

C. J. Shelbourne, C. B. Low, L. D. Gea, and R. L. Knowles, Achievements in forest tree genetic improvement in Australia and New Zealand 5: Genetic improvement of Douglas-fir in New Zealand, Australian forestry, vol.70, issue.1, pp.28-32, 2007.

M. Shih, F. A. Hoekstra, and Y. C. Hsing, Late embryogenesis abundant proteins, Advances in Botanical Research, vol.48, pp.211-255, 2008.

V. Silveira, T. S. Balbuena, C. Santa-catarina, E. I. Floh, M. P. Guerra et al., Biochemical changes during seed development in Pinus taeda L. Plant growth regulation, vol.44, pp.147-156, 2004.

H. Singh, W. Zimmerman, P. Ozenda, and H. D. Wulff, Handbuch der pflanzen-anatomie, pp.187-241, 1978.

K. B. Singh, R. C. Foley, and L. Oñate-sánchez, Transcription factors in plant defense and stress responses, Current opinion in plant biology, vol.5, issue.5, pp.430-436, 2002.

F. Skoog and C. Miller, Chemical regulation of growth and organ formation in plant tissues cultured in vitro, Symposia of the Society for Experimental Biology, vol.11, pp.118-130, 1957.

C. Smaczniak, R. G. Immink, G. C. Angenent, and K. Kaufmann, Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies, Development, vol.139, issue.17, pp.3081-3098, 2012.

A. Smith, A. Brownawell, and I. G. Macara, Nuclear import of Ran is mediated by the transport factor NTF2, Current biology, vol.8, issue.25, pp.1403-1404, 1998.

L. Spíchal, Cytokinins-recent news and views of evolutionally old molecules, Functional Plant Biology, vol.39, issue.4, pp.267-284, 2012.

C. Srinivasan, Z. Liu, I. Heidmann, E. D. Supena, H. Fukuoka et al., Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.), Planta, vol.225, issue.2, p.341, 2007.

C. Stasolla, Glutathione redox regulation of in vitro embryogenesis, Plant Physiology and Biochemistry, vol.48, issue.5, pp.319-327, 2010.

C. Stasolla and E. C. Yeung, Ascorbic acid metabolism during white spruce somatic embryo maturation and germination, Physiologia Plantarum, vol.111, issue.2, pp.196-205, 2001.

C. Stasolla, L. Kong, E. C. Yeung, and T. A. Thorpe, Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology, In Vitro Cellular & Developmental Biology-Plant, vol.38, issue.2, pp.93-105, 2002.

C. Stasolla, L. Van-zyl, U. Egertsdotter, D. Craig, W. Liu et al., The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos, Plant Physiology, vol.131, issue.1, pp.49-60, 2003.

C. Stasolla, P. V. Bozhkov, T. M. Chu, L. Van-zyl, U. Egertsdotter et al., Variation in transcript abundance during somatic embryogenesis in gymnosperms, Tree Physiology, vol.24, issue.10, pp.1073-1086, 2004.

W. I. Stein and P. W. Owston, Pseudotsuga Carr., Douglas-fir, pp.1-32, 2002.

T. Steinmann, N. Geldner, M. Grebe, S. Mangold, C. L. Jackson et al., Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF, Science, vol.286, issue.5438, pp.316-318, 1999.

P. Sterk, H. Booij, G. A. Schellekens, A. Van-kammen, and S. C. Vries, Cellspecific expression of the carrot EP2 lipid transfer protein gene, The Plant Cell, vol.3, issue.9, pp.907-921, 1991.

P. Sterk and S. C. Vries, Molecular markers for plant embryos. Synseeds: Applications of synthetic seeds to crop improvement, pp.115-132, 1993.

F. C. Steward, M. O. Mapes, and K. Mears, Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells, American Journal of Botany, vol.45, pp.705-708, 1958.

D. Stock, A. G. Leslie, and J. E. Walker, Molecular architecture of the rotary motor in ATP synthase, Science, vol.286, issue.5445, pp.1700-1705, 1999.

S. L. Stone, L. W. Kwong, K. M. Yee, J. Pelletier, L. Lepiniec et al., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development, Proceedings of the National Academy of Sciences, vol.98, issue.20, pp.11806-11811, 2001.
DOI : 10.1073/pnas.201413498

URL : http://www.pnas.org/content/98/20/11806.full.pdf

S. L. Stone, S. A. Braybrook, S. L. Paula, L. W. Kwong, J. Meuser et al., Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis, Proceedings of the National Academy of Sciences, issue.8, pp.3151-3156, 2008.
DOI : 10.1073/pnas.0712364105

URL : http://www.pnas.org/content/105/8/3151.full.pdf

S. R. Strickler, A. Bombarely, and L. A. Mueller, Designing a transcriptome nextgeneration sequencing project for a nonmodel plant species1, American Journal of Botany, vol.99, issue.2, pp.257-266, 2012.
DOI : 10.3732/ajb.1100292

G. Strompen, J. Dettmer, Y. D. Stierhof, K. Schumacher, G. Jürgens et al., Arabidopsis vacuolar H+-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis, The Plant Journal, vol.41, issue.1, pp.125-132, 2005.
DOI : 10.1111/j.1365-313x.2004.02283.x

N. Su, Q. Wu, Y. Liu, J. Cai, W. Shen et al., Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation, Journal of agricultural and food chemistry, vol.62, issue.27, pp.6454-6462, 2014.

M. F. Suarez, L. H. Filonova, A. Smertenko, E. I. Savenkov, and D. H. Clapham,

S. Arnold, B. Zhivotovsky, and P. V. Bozhkov, Metacaspase-dependent programmed cell death is essential for plant embryogenesis, Current Biology, vol.14, issue.9, pp.339-340, 2004.

L. Sun, Y. Wu, S. Su, H. Liu, G. Yang et al., Differential gene expression during somatic embryogenesis in the maize (Zea mays L.) inbred line H99, Plant Cell, Tissue and Organ Culture (PCTOC), vol.109, issue.2, pp.271-286, 2012.

Y. Sydorskyy, D. J. Dilworth, B. Halloran, T. Makhnevych, R. W. Wozniak et al., Nop53p is a novel nucleolar 60S ribosomal subunit biogenesis protein, Biochemical Journal, vol.388, issue.3, pp.819-826, 2005.

P. M. Szyjanowicz, I. Mckinnon, N. G. Taylor, J. Gardiner, M. C. Jarvis et al., The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana, The Plant Journal, vol.37, issue.5, pp.730-740, 2004.

R. P. Taber, C. Zhang, and W. S. Hu, Kinetics of Douglas-fir (Pseudotsuga menziesii) somatic embryo development, Canadian Journal of Botany, vol.76, issue.5, pp.863-871, 1998.

M. Takeuchi, L. A. Staehelin, and Y. Mineyuki, Actin-Microtubule Interaction in Plants, Cytoskeleton-Structure, Dynamics, Function and Disease, 2017.

W. Tang, Peroxidase activity of desiccation-tolerant loblolly pine somatic embryos, In Vitro Cellular & Developmental Biology-Plant, vol.36, issue.6, pp.488-491, 2000.

T. E. Tautorus, L. C. Fowke, and D. I. Dunstan, Somatic embryogenesis in conifers, Canadian Journal of Botany, vol.69, issue.9, pp.1873-1899, 1991.

V. V. Terskikh, J. A. Feurtado, S. Borchardt, M. Giblin, S. R. Abrams et al., In vivo 13 C NMR metabolite profiling: potential for understanding and assessing conifer seed quality, Journal of experimental botany, vol.56, issue.418, pp.2253-2265, 2005.

C. Teyssier, C. Grondin, L. Bonhomme, A. M. Lomenech, M. Vallance et al., Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix× eurolepsis): a 2-DE proteomic analysis, Physiologia plantarum, vol.141, issue.2, pp.152-165, 2011.

C. Teyssier, S. Maury, M. Beaufour, C. Grondin, A. Delaunay et al., In search of markers for somatic embryo maturation in hybrid larch (Larix× eurolepis): global DNA methylation and proteomic analyses, Physiologia Plantarum, vol.150, issue.2, pp.271-291, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02087600

R. Timmis, J. A. Grob, P. K. Gupta, and S. D. Rayfield, Methods for increasing germination vigor by early singulation of conifer somatic embryos, vol.964, 2011.

D. Thakare, W. Tang, K. Hill, and S. E. Perry, The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean, Plant Physiology, vol.146, issue.4, pp.1663-1672, 2008.
DOI : 10.1104/pp.108.115832

URL : http://www.plantphysiol.org/content/146/4/1663.full.pdf

F. Thibaud-nissen, R. T. Shealy, A. Khanna, and L. O. Vodkin, Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean, Plant Physiology, vol.132, issue.1, pp.118-136, 2003.

K. U. Torii, Receptor kinase activation and signal transduction in plants: an emerging picture, Current opinion in plant biology, vol.3, issue.5, pp.361-367, 2000.
DOI : 10.1016/s1369-5266(00)00097-2

L. Tremblay and F. M. Tremblay, Effects of gelling agents, ammonium nitrate, and light on the development of Picea mariana (Mill) BSP (black spruce) and Picea rubens Sarg. (red spruce) somatic embryos, Plant Science, vol.77, issue.2, pp.233-242, 1991.

D. Treutter, Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant biology, vol.7, issue.06, pp.581-591, 2005.

D. K. Trivedi, M. W. Ansari, and N. Tuteja, Multiple abiotic stress responsive rice cyclophilin:(OsCYP-25) mediates a wide range of cellular responses, Communicative & integrative biology, vol.6, issue.5, p.25260, 2013.

J. F. Trontin, F. Canlet, I. Reymond, S. Debille, K. Durandeau et al., L'embryogenèse somatique: une méthode de multiplication végétative du pin maritime pour demain? FCBA INFO, pp.1-9, 2013.

J. F. Trontin, K. Klimaszewska, A. Morel, C. Hargreaves, and M. A. Lelu-walter, Molecular aspects of conifer zygotic and somatic embryo development: a review of genome-wide approaches and recent insights, Methods in Molecular Biology, vol.1359, pp.167-207, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01269052

J. F. Trontin, T. Aronen, C. Hargreaves, I. A. Montalbán, P. Moncaleán et al., International effort to induce somatic embryogenesis in adult pine trees. Vegetative Propagation of Forest Trees, pp.211-260, 2016.

Y. Uesono and A. Toh-e, Transient inhibition of translation initiation by osmotic stress, Journal of Biological Chemistry, vol.277, issue.16, pp.13848-13855, 2002.
DOI : 10.1074/jbc.m108848200

URL : http://www.jbc.org/content/277/16/13848.full.pdf

D. Uddenberg, S. Valladares, M. Abrahamsson, J. F. Sundström, A. Sundås-larsson et al., Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor, Planta, vol.234, pp.527-539, 2011.

M. Vágner, Z. Vondráková, Z. Strnadová, J. Eder, and I. Machá?ková, , 1998.

, Endogenous levels of plant growth hormones during early stages of somatic embryogenesis of Picea abies, Advances in Horticultural Science, vol.1, pp.11-18

M. Vágner, Z. Vondráková, J. ?pa?ková, M. Cvikrová, J. Eder et al., Norway spruce somatic embryogenesis: Endogenous levels of phytohormones during somatic embryo development, Altman A, Ziv M, Izhar S (éds), Plant Biotechnology and In Vitro Biology in the 21st, 1999.

F. Vandenbussche, J. Petrá?ek, P. ?ádníková, K. Hoyerová, B. Pe?ek et al., The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings, Development, vol.137, issue.4, pp.597-606, 2010.

M. Vanstraelen, D. Van-damme, R. De-rycke, E. Mylle, D. Inzé et al., Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells, Current Biology, vol.16, issue.3, pp.308-314, 2006.

M. Varhaníková, L. Uvackova, L. Skultety, A. Pretova, B. Obert et al., Comparative quantitative proteomic analysis of embryogenic and non-embryogenic calli in maize suggests the role of oxylipins in plant totipotency, Journal of proteomics, vol.104, pp.57-65, 2014.

J. J. De-vega-bartol, M. Simões, W. W. Lorenz, A. S. Rodrigues, R. Alba et al., Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster, BMC Plant Biology, vol.13, issue.1, 2013.

D. Vestman, E. Larsson, D. Uddenberg, J. Cairney, D. Clapham et al., Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression, Tree Genet Genomes, vol.7, pp.347-362, 2011.

L. N. De-vieira, C. Santa-catarina, F. H. De-freitas, A. L. Santos, D. A. Steinmacher et al., Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission, Plant Science, vol.195, pp.80-87, 2012.

Z. Vondráková, M. Cvikrová, K. Eliá?ová, O. Martincová, and M. Vágner, , 2010.

, Cryotolerance in Norway spruce and its association with growth rates, anatomical features and polyamines of embryogenic cultures, Tree physiology, vol.30, issue.10, pp.1335-1348

Z. Vondráková, K. Eliá?ová, L. Fischerová, and M. Vágner, The role of auxins in somatic embryogenesis of Abies alba, Open Life Sciences, vol.6, issue.4, pp.587-596, 2011.

Z. Vondráková, K. Eliá?ová, M. Vágner, O. Martincová, and M. Cvikrová, , 2015.

, Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant growth regulation, vol.75, pp.405-414

Z. Vondráková, J. Kraj?áková, L. Fischerová, M. Vágner, and K. Eliá?ová, , 2016.

Y. S. Park, J. M. Bonga, and H. K. Moon, Physiology and role of plant growth regulators in somatic embryogenesis, pp.123-169

B. Vooková, A. Kormu?ák, L. C. ;-w-wan, H. Zhang, S. Lu et al., Comparison of induction frequency, maturation capacity and germination of Abies numidica during secondary somatic embryogenesis, Biologia plantarum, vol.50, issue.4, pp.785-788, 2006.

, Transcriptome-wide identification and characterization of miRNAs from Pinus densata, BMC Genomics, vol.13, issue.1, p.132

W. Wang, B. Vinocur, O. Shoseyov, and A. Altman, Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response, Trends in Plant Science, vol.9, issue.5, pp.244-252, 2004.

K. E. Watt, A. Achilleos, C. L. Neben, A. E. Merrill, and P. A. Trainor, The roles of RNA polymerase I and III subunits Polr1c and Polr1d in craniofacial development and in zebrafish models of Treacher Collins Syndrome, PLoS genetics, vol.12, issue.7, p.1006187, 2016.

K. Weis, Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle, Cell, vol.112, issue.4, pp.441-451, 2003.

I. Weir, J. Lu, H. Cook, B. Causier, Z. Schwarz-sommer et al., , 2004.

, CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development, vol.131, pp.915-922

A. G. West, P. Shore, and A. D. Sharrocks, DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending, Molecular and Cellular Biology, vol.17, issue.5, pp.2876-2887, 1997.
DOI : 10.1128/mcb.17.5.2876

URL : http://europepmc.org/articles/pmc232140?pdf=render

A. M. Wickramasuriya and J. M. Dunwell, Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro, BMC genomics, vol.16, issue.1, p.301, 2015.

B. Wilkinson and H. F. Gilbert, Protein disulfide isomerase, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, vol.1699, issue.1, pp.35-44, 2004.

M. J. Wise and A. Tunnacliffe, POPP the question: what do LEA proteins do?, Trends in Pplant Science, vol.9, issue.1, pp.13-17, 2004.
DOI : 10.1016/j.tplants.2003.10.012

B. Wójcikowska, K. Jaskó?a, P. G?siorek, M. Meus, K. Nowak et al., , 2013.

, LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis, Planta, vol.238, issue.3, pp.425-440

M. R. Woodford, D. M. Dunn, A. R. Blanden, D. Capriotti, D. Loiselle et al., , 2016.

, The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding, Nature communications, vol.7, pp.1-15

Q. Wu, C. Sun, H. Luo, Y. Li, Y. Niu et al., Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing, Planta medica, vol.77, issue.04, pp.394-400, 2011.

X. Wu, J. Chory, and D. Weigel, Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development, Developmental Biology, vol.309, issue.2, pp.306-316, 2007.

Q. Xie, A. P. Sanz-burgos, H. Guo, J. A. García, and C. Gutiérrez, GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein, Plant molecular biology, vol.39, issue.4, pp.647-656, 1999.

Z. Y. Xu, K. H. Lee, T. Dong, J. C. Jeong, J. B. Jin et al., A vacuolar ?-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis, New Phytologist, vol.24, issue.5, pp.1154-1169, 2010.

G. Yan, X. Menli, W. Guifeng, Y. Liwei, and S. Jisen, Molecular characteristics and expression analysis of PmSERK1 during somatic embryogenesis in Masson pine, Molecular Plant Breeding, vol.8, issue.1, pp.53-58, 2010.

X. Yang and X. Zhang, Regulation of somatic embryogenesis in higher plants, Critical Reviews in Plant Science, vol.29, issue.1, pp.36-57, 2010.

X. Yang, L. Wang, D. Yuan, K. Lindsey, and X. Zhang, Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis, Journal of experimental botany, vol.64, issue.6, pp.1521-1536, 2013.

L. Yang, Y. Lou, Z. Peng, H. Zhao, H. Sun et al., Molecular characterization and primary functional analysis of PeMPEC, a magnesium-protoporphyrin IX monomethyl ester cyclase gene of bamboo, Plant cell reports, vol.34, issue.11, pp.2001-2011, 2015.

C. Yanhui, Y. Xiaoyuan, H. Kun, L. Meihua, L. Jigang et al., The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family, Plant molecular biology, vol.60, issue.1, pp.107-124, 2006.

K. Yazawa, K. Takahata, and H. Kamada, Isolation of the gene encoding Carrot leafy cotyledon1 and expression analysis during somatic and zygotic embryogenesis, Plant Physiology and Biochemistry, vol.42, issue.3, pp.215-223, 2004.

E. C. Yeung and D. W. Meinke, Embryogenesis in angiosperms: development of the suspensor, The Plant Cell, vol.5, issue.10, p.1371, 1993.

J. C. Young, I. Moarefi, and F. U. Hartl, Hsp90. J Cell Biol, vol.154, issue.2, pp.267-274, 2001.

L. Yu, H. Chen, J. Sun, and L. Li, PtrKOR1 is required for secondary cell wall cellulose biosynthesis in Populus, Tree Physiology, vol.34, issue.11, pp.1289-1300, 2013.

F. Zeng, X. Zhang, L. Zhu, L. Tu, X. Guo et al., Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray, Plant molecular biology, vol.60, issue.2, pp.167-183, 2006.

C. Zhang, R. Timmis, and W. S. Hu, A neural network based pattern recognition system for somatic embryos of Douglas fir, Plant Cell, Tissue and Organ Culture, vol.56, issue.1, pp.25-35, 1999.

J. Zhang, H. Ma, S. Chen, M. Ji, A. Perl et al., Stress response proteins' differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon-a proteomic approach, Plant Science, vol.177, issue.2, pp.103-113, 2009.

S. Zhang, J. Zhou, S. Han, W. Yang, W. Li et al., Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and nonembryogenic callus tissues of Larix leptolepis, Biochemical and Biophysical Research communications, vol.398, issue.3, pp.355-360, 2010.

Y. Zhang, G. Cao, L. J. Qu, and H. Gu, Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis, Plant Cell Reports, vol.28, issue.3, pp.337-346, 2009.

Y. Zhang, S. Zhang, S. Han, X. Li, and L. Qi, Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis), Plant Cell Reports, vol.31, issue.9, pp.1637-1657, 2012.

Y. Zhang, A. Clemens, S. N. Maximova, and M. J. Guiltinan, The Theobroma cacao B3 domain transcription factor TcLEC2 plays a duel role in control of embryo development and maturation, BMC Plant Biology, vol.14, issue.1, p.106, 2014.

J. Zhao, B. Wang, X. Wang, Y. Zhang, M. Dong et al., iTRAQ-based comparative proteomic analysis of embryogenic and non-embryogenic tissues of Prince Rupprecht's larch (Larix principis-rupprechtii Mayr), Plant Cell, Tissue and Organ Culture, vol.120, issue.2, pp.655-669, 2015.

J. Zhao, H. Li, S. Fu, B. Chen, W. Sun et al., An iTRAQbased proteomics approach to clarify the molecular physiology of somatic embryo development in Prince Rupprecht's larch (Larix principis-rupprechtii Mayr), PloS one, vol.10, issue.3, p.119987, 2015.

Y. Zhen, Z. Z. Zhao, R. H. Zheng, and J. Shi, Proteomic analysis of early seed development in Pinus massoniana L, Plant Physiology and Biochemistry, vol.54, pp.97-104, 2012.

Y. Zhen, C. Li, J. Chen, Q. Chen, and J. Shi, Proteomics of embryogenic and nonembryogenic calli of a Liriodendron hybrid, Acta physiologiae plantarum, vol.37, issue.10, p.211, 2015.

Q. Zheng, Y. Zheng, and S. E. Perry, AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response, Plant Physiology, vol.161, issue.4, pp.2113-2127, 2013.

J. Zhou, J. Qiu, and Z. H. Ye, Alteration in Secondary Wall Deposition by Overexpression of the Fragile Fiber1 Kinesin-Like Protein in Arabidopsis, Journal of Integrative Plant Biology, vol.49, issue.8, pp.1235-1243, 2007.

S. P. Zhu, J. Wang, J. L. Ye, A. D. Zhu, W. W. Guo et al., Isolation and characterization of LEAFY COTYLEDON 1-LIKE gene related to embryogenic competence in Citrus sinensis, Plant Cell, Tissue and Organ Culture, vol.119, issue.1, pp.1-13, 2014.

J. L. Zimmerman, Somatic embryogenesis: a model for early development in higher plants, The Plant Cell, vol.5, issue.10, p.1411, 1993.

M. Zivy and D. De-vienne, Proteomics: a link between genomics, genetics and physiology, Plant Molecular Biology, vol.44, issue.5, pp.575-580, 2000.

J. Zuo, Q. W. Niu, Y. Ikeda, and N. H. Chua, Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes, Current Opinion in Biotechnology, vol.13, issue.2, pp.173-180, 2002.

I. I. Tableau, Le tableau donne le nombre de hits (occurrence) impliqués dans chaque catégorie fonctionnelle. Le pourcentage indiqué correspond au nombre de hits par groupe fonctionnel rapporté au nombre total de GO dans cette catégorie, Processus Biologiques ») des transcrits différentiellement exprimés entre ME et NE des 3 génotypes de Douglas étudiés, vol.7, pp.15-16

I. I. Tableau, Récapitulatif des groupes fonctionnels marqueurs communs aux trois génotypes de Douglas (TD15-1, SD4-8 et TD17-1), obtenus après analyses différentielles en protéomique et en transcriptomique des masses embryogènes (ME) et des cals non-embryogènes (NE)

. , SD4-8 et TD17-1) des 475 transcrits différentiellement exprimés en fonction de leur code GO (Gene Ontology) dans la catégorie fonctionnelle « processus biologique » chez le Douglas. Le nombre de protéines est le nombre de celles-ci impliquées dans chaque groupe (une protéine pouvant en avoir plusieurs). Le pourcentage correspond au nombre de protéines par groupe sur le nombre total retrouvées dans tous les groupes principaux, Tableau III.1 Répartition fonctionnelle selon les lignées primaires (I : SD4 et TD17) et secondaires (II : SD4-2, SD4-6

I. Tableau, 2 Identification des 12 transcrits communs avec le protéome, surexprimés dans lignées secondaires (TD17-1, SD4-2, SD4-6 et SD4-8) de Douglas après deux semaines de multiplication

, FC : ratio calculé entre les moyennes d'expression des lignées I et II dans les analyses de transcriptomique ; Nombre de GO : décompte des GO associés à chaque accession, L'accession, ainsi que la description des gènes/protéines peuvent être retrouvées sur la base de données PineRefSeq

. , GO Biological process : Groupe GO à un niveau

G. Florian, , 2017.