J. Bastien, L. Sanchez, and D. Michaud, Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco). In: Pâques LE (ed) Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Managing Forest Ecosystems 25, pp.325-369, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268042

D. J. Durzan and P. K. Gupta, Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures, Plant Sci, vol.52, pp.229-235, 1987.
DOI : 10.1016/0168-9452(87)90056-2

F. Gao, Y. Zhou, W. Zhu, X. Li, L. Fan et al., Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves, Planta, vol.230, issue.5, pp.1033-1046, 2009.

Z. Y. Ge, P. J. Wan, G. Q. Li, Y. G. Xia, and Z. J. Han, Characterization of cysteine protease-like genes in the striped rice stem borer, Chilo suppressalis, Genome, vol.57, issue.2, pp.79-88, 2014.

M. Gliwicka, K. Nowak, E. Cie?la, and M. D. Gaj, Expression of seed storage product genes (CRA1 and OLEO4) in embryogenic cultures of somatic tissues of Arabidopsis, Plant Cell, Tissue and Organ Culture, vol.109, issue.2, pp.235-245, 2012.

D. De-la-goublaye and A. Franclet, Bouturage du Douglas: rétablissement de l'orthotropie, Annales AFOCEL, pp.277-295, 1978.

E. Van-der-graaff, T. Laux, and S. A. Rensing, The WUS homeobox-containing (WOX) protein family, Genome biology, vol.10, issue.12, p.248, 2009.

M. J. Green, J. K. Mcleod, and S. Misra, Characterization of Douglas fir protein body composition by SDS-PAGE and electron microscopy, Plant physiology and biochemistry, vol.29, issue.1, pp.49-55, 1991.

P. F. Gugger, A. González-rodríguez, H. Rodríguez-correa, S. Sugita, and J. Cavenderbares, Southward Pleistocene migration of Douglas-fir into Mexico: phylogeography, ecological niche modeling, and conservation of 'rear edge'populations, New Phytologist, vol.189, issue.4, pp.1185-1199, 2011.

F. Guo, C. Liu, H. Xia, Y. Bi, C. Zhao et al., Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants, PLoS One, vol.8, issue.8, p.71714, 2013.
DOI : 10.1371/journal.pone.0071714

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0071714&type=printable

J. Guo, J. Jia, and R. Jia, PTBP1 and PTBP2 impaired autoregulation of SRSF3 in cancer cells, Scientific reports, vol.5, 2015.

P. K. Gupta, Method for reproducing conifers by somatic embryogenesis using a maltose enriched maintenance medium: US Patent No, vol.563, p.61, 1996.

P. K. Gupta and D. J. Durzan, Somatic polyembryogenesis from callus of mature sugar pine embryos, Nature Biotechnology, vol.4, issue.7, pp.643-645, 1986.
DOI : 10.1038/nbt0786-643

P. K. Gupta and G. S. Pullman, Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation, U.S. Brevet No, vol.5, p.30, 1991.

P. K. Gupta and G. S. Pullman, Method for reproducing Douglas-fir by somatic embryogenesis, pp.31-1995, 1995.

P. K. Gupta and G. S. Pullman, Method for reproducing Douglas-fir by somatic embryogenesis, U.S. Brevet No, vol.5, p.9, 1996.

P. K. Gupta and R. Timmis, Mass propagation of conifer trees in liquid culturesprogress towards commercialization. In Liquid Culture Systems for in vitro plant propagation, vol.81, pp.339-346, 2005.

P. K. Gupta, R. Timmis, K. Timmis, W. Carlson, J. Grob et al., Plantlet regeneration via somatic embryogenesis in Douglas-fir (Pseudotsuga menziesii), TAPPI Proc. Bio. Science Symposium, pp.35-39, 1994.
DOI : 10.1007/978-94-011-0960-4_19

P. K. Gupta, R. Timmis, K. A. Timmis, W. C. Carlson, E. D. Welty et al., Somatic Embryogenesis in Douglas-fir (Pseudotsuga menziesii, Somatic embryogenesis in woody plants, pp.303-313, 1995.
DOI : 10.1007/978-94-011-0960-4_19

G. Gusmaroli, C. Tonelli, and R. Mantovani, Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits, Gene, vol.283, issue.1, pp.41-48, 2002.

E. Guzmán-garcía, C. Sánchez-romero, B. Panis, and S. C. Carpentier, The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado, Proteomics, vol.13, pp.3498-3507, 2013.

S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, Correlation between protein and mRNA abundance in yeast, Molecular and Cellular Biology, vol.19, issue.3, pp.1720-1730, 1999.
DOI : 10.1128/mcb.19.3.1720

URL : https://mcb.asm.org/content/mcb/19/3/1720.full.pdf

Y. Habu, H. Fukushima, Y. Sakata, H. Abe, and R. Funada, A gene encoding a major Kunitz proteinase inhibitor of storage organs of winged bean is also expressed in the phloem of stems, Plant molecular biology, vol.32, issue.6, pp.1209-1213, 1996.

K. Hadfi, V. Speth, and G. Neuhaus, Auxin-induced developmental patterns in Brassica juncea embryos, Development, vol.125, issue.5, pp.879-887, 1998.

A. Haecker, R. Groß-hardt, B. Geiges, A. Sarkar, H. Breuninger et al., Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana, Development, vol.131, issue.3, pp.657-668, 2004.

I. Hakman and S. Arnold, Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce), Journal of Plant Physiology, vol.121, issue.2, pp.149-158, 1985.
DOI : 10.1016/s0176-1617(85)80040-7

I. Hakman, H. Hallberg, and J. Palovaara, The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development, Tree physiology, vol.29, issue.4, pp.483-496, 2009.

A. Hall, Ras-related GTPases and the cytoskeleton, Molecular biology of the cell, vol.3, issue.5, pp.475-479, 1992.
DOI : 10.1091/mbc.3.5.475

URL : http://europepmc.org/articles/pmc275601?pdf=render

E. W. Harding, W. Tang, K. W. Nichols, D. E. Fernandez, and S. E. Perry, , 2003.

, Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15, Plant Physiology, vol.133, issue.2, pp.653-663

C. L. Hargreaves, C. B. Reeves, J. I. Find, K. Gough, P. Josekutty et al., Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation, Canadian Journal of Forest Research, vol.39, issue.8, pp.1566-1574, 2009.

C. L. Hargreaves, C. B. Reeves, K. Gough, M. I. Menzies, C. B. Low et al., Overcoming the challenges of family and genotype representation and early cell line proliferation in somatic embryogenesis from control-pollinated seeds of Pinus radiata, New Zealand Journal of Forestry Science, p.41, 2011.

L. Harvengt, J. F. Trontin, I. Reymond, F. Canlet, and M. Paques, Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis, Planta, vol.213, issue.5, pp.828-832, 2001.

L. He and G. J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation, Nature reviews. Genetics, vol.5, issue.8, p.631, 2004.
DOI : 10.1038/nrg1379

V. Hecht, J. P. Vielle-calzada, M. V. Hartog, E. D. Schmidt, K. Boutilier et al., The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture, Plant Physiology, vol.127, issue.3, pp.803-816, 2001.

D. Hegedus, M. Yu, D. Baldwin, M. Gruber, A. Sharpe et al., Molecular characterization of Brassicanapus NAC domain transcriptional activators induced in response to biotic and abiotic stress, Plant molecular biology, vol.53, issue.3, pp.383-397, 2003.

N. A. Helal, The green revolution via synthetic (artificial) seeds: a review, Res J Agric Biol Sci, vol.7, issue.6, pp.464-477, 2011.

A. J. Van-hengel, A. B. Van-kammen, and S. C. Vries, A relationship between seed development, arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis, Physiologia Plantarum, vol.114, issue.4, pp.637-644, 2002.

R. K. Hermann and D. P. Lavender, Douglas-fir planted forests, New Forests, vol.17, issue.1, pp.53-70, 1999.
DOI : 10.1007/978-94-017-2689-4_5

N. Hirokawa, Kinesin and dynein superfamily proteins and the mechanism of organelle transport, Science, vol.279, issue.5350, pp.519-526, 1998.

L. Hong, M. Boulay, P. K. Gupta, and D. J. Durzan, Variations in somatic polyembryogenesis: induction of adventitious embryonal-suspensor masses on developing Douglas fir embryos. Woody plant biotechnology, pp.105-121, 1991.

A. Horstman, BABY BOOM-induced somatic embryogenesis in Arabidopsis. Dissertation, 2015.

G. T. Howe, K. Jayawickrama, M. Cherry, G. R. Johnson, and N. C. Wheeler, , 2006.

, Breeding Douglas-fir, Plant Breeding Reviews, vol.27, p.245

R. Hu, Y. Sun, B. Wu, H. Duan, H. Zheng et al.,

, Somatic Embryogenesis of Immature Cunninghamia lanceolata (Lamb.) Hook Zygotic Embryos, Scientific Reports, vol.7, issue.1, pp.1-14

N. Imin, M. Nizamidin, T. Wu, and B. G. Rolfe, Factors involved in root formation in Medicago truncatula, Journal of Experimental Botany, vol.58, issue.3, pp.439-451, 2006.

D. Iraqi and F. M. Tremblay, Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development, Journal of Experimental Botany, vol.52, issue.365, pp.2301-2311, 2001.

T. Isah, Induction of somatic embryogenesis in woody plants, Acta physiologiae plantarum, vol.38, issue.5, 2016.

H. N. Jang, M. Lee, T. J. Loh, S. W. Choi, H. K. Oh et al., Exon 9 skipping of apoptotic caspase-2 pre-mRNA is promoted by SRSF3 through interaction with exon 8, Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, issue.1, pp.25-32, 2014.
DOI : 10.1016/j.bbagrm.2013.11.006

URL : http://europepmc.org/articles/pmc4547346?pdf=render

V. M. Jiménez, Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis, Plant Growth Regulation, vol.47, issue.2-3, pp.91-110, 2005.

L. Jo, A. L. Santos, C. A. Bueno, H. R. Barbosa, and E. I. Floh, Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential, Tree physiology, vol.34, issue.1, pp.94-104, 2013.
DOI : 10.1093/treephys/tpt102

K. L. Johnson, B. J. Jones, A. Bacic, and C. J. Schultz, The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules, Plant Physiology, vol.133, issue.4, pp.1911-1925, 2003.

M. W. Jones-rhoades, D. P. Bartel, and B. Bartel, MicroRNAs and their regulatory roles in plants, Annu. Rev. Plant Biol, vol.57, pp.19-53, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105218

R. V. Joosen, M. Lammers, P. Balk, P. Brönnum, M. C. Konings et al., Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays, Tree Physiology, vol.26, issue.10, pp.1297-1313, 2006.

M. N. Jordy and J. M. Favre, Spatio-temporal variations in starch accumulation during germination and post-germinative growth of zygotic and somatic embryos of Pinus pinaster, Biologia Plantarum, vol.46, issue.4, pp.507-512, 2003.

I. Jourdain, M. A. Lelu, and P. Label, Hormonal changes during growth of somatic embryogenic masses in hybrid larch, Plant Physiology and Biochemistry, vol.35, issue.9, pp.741-749, 1997.

A. Junker, G. Mönke, T. Rutten, J. Keilwagen, M. Seifert et al., Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana, The Plant Journal, vol.71, issue.3, pp.427-442, 2012.

L. Käll, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. Maccoss, Semisupervised learning for peptide identification from shotgun proteomics datasets, Nature methods, vol.4, issue.11, p.923, 2007.

Y. Kanayama, H. Mori, H. Imaseki, and S. Yamaki, Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple, Plant physiology, vol.100, issue.3, 1992.

U. Kanter, B. Usadel, F. Guerineau, Y. Li, M. Pauly et al., The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides, Planta, vol.221, issue.2, pp.243-254, 2005.

O. Karami and A. Saidi, The molecular basis for stress-induced acquisition of somatic embryogenesis, Molecular Biology Reports, vol.37, issue.5, pp.2493-2507, 2010.

P. Sterk and S. C. Vries, Molecular markers for plant embryos. Synseeds: Applications of synthetic seeds to crop improvement, pp.115-132, 1993.

F. C. Steward, M. O. Mapes, and K. Mears, Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells, American Journal of Botany, vol.45, pp.705-708, 1958.

D. Stock, A. G. Leslie, and J. E. Walker, Molecular architecture of the rotary motor in ATP synthase, Science, vol.286, issue.5445, pp.1700-1705, 1999.

S. L. Stone, L. W. Kwong, K. M. Yee, J. Pelletier, L. Lepiniec et al., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development, Proceedings of the National Academy of Sciences, vol.98, issue.20, pp.11806-11811, 2001.
DOI : 10.1073/pnas.201413498

URL : http://www.pnas.org/content/98/20/11806.full.pdf

S. L. Stone, S. A. Braybrook, S. L. Paula, L. W. Kwong, J. Meuser et al., Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis, Proceedings of the National Academy of Sciences, issue.8, pp.3151-3156, 2008.
DOI : 10.1073/pnas.0712364105

URL : http://www.pnas.org/content/105/8/3151.full.pdf

S. R. Strickler, A. Bombarely, and L. A. Mueller, Designing a transcriptome nextgeneration sequencing project for a nonmodel plant species1, American Journal of Botany, vol.99, issue.2, pp.257-266, 2012.
DOI : 10.3732/ajb.1100292

G. Strompen, J. Dettmer, Y. D. Stierhof, K. Schumacher, G. Jürgens et al., Arabidopsis vacuolar H+-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis, The Plant Journal, vol.41, issue.1, pp.125-132, 2005.
DOI : 10.1111/j.1365-313x.2004.02283.x

N. Su, Q. Wu, Y. Liu, J. Cai, W. Shen et al., Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation, Journal of agricultural and food chemistry, vol.62, issue.27, pp.6454-6462, 2014.

R. Timmis, J. A. Grob, P. K. Gupta, and S. D. Rayfield, Methods for increasing germination vigor by early singulation of conifer somatic embryos, vol.964, 2011.

D. Thakare, W. Tang, K. Hill, and S. E. Perry, The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean, Plant Physiology, vol.146, issue.4, pp.1663-1672, 2008.
DOI : 10.1104/pp.108.115832

URL : http://www.plantphysiol.org/content/146/4/1663.full.pdf

F. Thibaud-nissen, R. T. Shealy, A. Khanna, and L. O. Vodkin, Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean, Plant Physiology, vol.132, issue.1, pp.118-136, 2003.

K. U. Torii, Receptor kinase activation and signal transduction in plants: an emerging picture, Current opinion in plant biology, vol.3, issue.5, pp.361-367, 2000.
DOI : 10.1016/s1369-5266(00)00097-2

L. Tremblay and F. M. Tremblay, Effects of gelling agents, ammonium nitrate, and light on the development of Picea mariana (Mill) BSP (black spruce) and Picea rubens Sarg. (red spruce) somatic embryos, Plant Science, vol.77, issue.2, pp.233-242, 1991.

D. Treutter, Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant biology, vol.7, issue.06, pp.581-591, 2005.

D. K. Trivedi, M. W. Ansari, and N. Tuteja, Multiple abiotic stress responsive rice cyclophilin:(OsCYP-25) mediates a wide range of cellular responses, Communicative & integrative biology, vol.6, issue.5, p.25260, 2013.

J. F. Trontin, F. Canlet, I. Reymond, S. Debille, K. Durandeau et al., L'embryogenèse somatique: une méthode de multiplication végétative du pin maritime pour demain? FCBA INFO, pp.1-9, 2013.

J. F. Trontin, K. Klimaszewska, A. Morel, C. Hargreaves, and M. A. Lelu-walter, Molecular aspects of conifer zygotic and somatic embryo development: a review of genome-wide approaches and recent insights, Methods in Molecular Biology, vol.1359, pp.167-207, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01269052

J. F. Trontin, T. Aronen, C. Hargreaves, I. A. Montalbán, P. Moncaleán et al., International effort to induce somatic embryogenesis in adult pine trees. Vegetative Propagation of Forest Trees, pp.211-260, 2016.

Y. Uesono and A. Toh-e, Transient inhibition of translation initiation by osmotic stress, Journal of Biological Chemistry, vol.277, issue.16, pp.13848-13855, 2002.
DOI : 10.1074/jbc.m108848200

URL : http://www.jbc.org/content/277/16/13848.full.pdf

D. Uddenberg, S. Valladares, M. Abrahamsson, J. F. Sundström, A. Sundås-larsson et al., Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor, Planta, vol.234, pp.527-539, 2011.

M. Vágner, Z. Vondráková, Z. Strnadová, J. Eder, and I. Machá?ková, , 1998.

, Endogenous levels of plant growth hormones during early stages of somatic embryogenesis of Picea abies, Advances in Horticultural Science, vol.1, pp.11-18

M. Vágner, Z. Vondráková, J. ?pa?ková, M. Cvikrová, J. Eder et al., Norway spruce somatic embryogenesis: Endogenous levels of phytohormones during somatic embryo development, Altman A, Ziv M, Izhar S (éds), Plant Biotechnology and In Vitro Biology in the 21st, 1999.

F. Vandenbussche, J. Petrá?ek, P. ?ádníková, K. Hoyerová, B. Pe?ek et al., The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings, Development, vol.137, issue.4, pp.597-606, 2010.

M. Vanstraelen, D. Van-damme, R. De-rycke, E. Mylle, D. Inzé et al., Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells, Current Biology, vol.16, issue.3, pp.308-314, 2006.

M. Varhaníková, L. Uvackova, L. Skultety, A. Pretova, B. Obert et al., Comparative quantitative proteomic analysis of embryogenic and non-embryogenic calli in maize suggests the role of oxylipins in plant totipotency, Journal of proteomics, vol.104, pp.57-65, 2014.

J. J. De-vega-bartol, M. Simões, W. W. Lorenz, A. S. Rodrigues, R. Alba et al., Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster, BMC Plant Biology, vol.13, issue.1, 2013.

D. Vestman, E. Larsson, D. Uddenberg, J. Cairney, D. Clapham et al., Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression, Tree Genet Genomes, vol.7, pp.347-362, 2011.

L. N. De-vieira, C. Santa-catarina, F. H. De-freitas, A. L. Santos, D. A. Steinmacher et al., Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission, Plant Science, vol.195, pp.80-87, 2012.

Z. Vondráková, M. Cvikrová, K. Eliá?ová, O. Martincová, and M. Vágner, , 2010.

, Cryotolerance in Norway spruce and its association with growth rates, anatomical features and polyamines of embryogenic cultures, Tree physiology, vol.30, issue.10, pp.1335-1348

Z. Vondráková, K. Eliá?ová, L. Fischerová, and M. Vágner, The role of auxins in somatic embryogenesis of Abies alba, Open Life Sciences, vol.6, issue.4, pp.587-596, 2011.

Z. Vondráková, K. Eliá?ová, M. Vágner, O. Martincová, and M. Cvikrová, , 2015.

, Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant growth regulation, vol.75, pp.405-414

Z. Vondráková, J. Kraj?áková, L. Fischerová, M. Vágner, and K. Eliá?ová, , 2016.

Y. S. Park, J. M. Bonga, and H. K. Moon, Physiology and role of plant growth regulators in somatic embryogenesis, pp.123-169

B. Vooková, A. Kormu?ák, L. C. ;-w-wan, H. Zhang, S. Lu et al., Comparison of induction frequency, maturation capacity and germination of Abies numidica during secondary somatic embryogenesis, Biologia plantarum, vol.50, issue.4, pp.785-788, 2006.

, Transcriptome-wide identification and characterization of miRNAs from Pinus densata, BMC Genomics, vol.13, issue.1, p.132

W. Wang, B. Vinocur, O. Shoseyov, and A. Altman, Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response, Trends in Plant Science, vol.9, issue.5, pp.244-252, 2004.

K. E. Watt, A. Achilleos, C. L. Neben, A. E. Merrill, and P. A. Trainor, The roles of RNA polymerase I and III subunits Polr1c and Polr1d in craniofacial development and in zebrafish models of Treacher Collins Syndrome, PLoS genetics, vol.12, issue.7, p.1006187, 2016.

K. Weis, Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle, Cell, vol.112, issue.4, pp.441-451, 2003.

I. Weir, J. Lu, H. Cook, B. Causier, Z. Schwarz-sommer et al., , 2004.

, CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development, vol.131, pp.915-922

A. G. West, P. Shore, and A. D. Sharrocks, DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending, Molecular and Cellular Biology, vol.17, issue.5, pp.2876-2887, 1997.
DOI : 10.1128/mcb.17.5.2876

URL : http://europepmc.org/articles/pmc232140?pdf=render

A. M. Wickramasuriya and J. M. Dunwell, Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro, BMC genomics, vol.16, issue.1, p.301, 2015.

B. Wilkinson and H. F. Gilbert, Protein disulfide isomerase, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, vol.1699, issue.1, pp.35-44, 2004.

M. J. Wise and A. Tunnacliffe, POPP the question: what do LEA proteins do?, Trends in Pplant Science, vol.9, issue.1, pp.13-17, 2004.
DOI : 10.1016/j.tplants.2003.10.012

B. Wójcikowska, K. Jaskó?a, P. G?siorek, M. Meus, K. Nowak et al., , 2013.