, Fracture surface of dense shell regions from samples containing a 5vol%, b 15vol%, c 30vol%, and d 60vol% platelets. Increasing platelets content decreases the TGG, as the thickness of the platelets decreases between 5 and 60vol%. At 5 and 15vol%, no equiaxed alumina grains can be observed

M. Ashby, Materials Selection in Mechanical Design, vol.2, 1999.
URL : https://hal.archives-ouvertes.fr/jpa-00251707

J. Seuba, S. Deville, C. Guizard, and A. J. Stevenson, The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics, Sci. Technol. Adv. Mater, vol.17, issue.1, pp.128-135, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01626686

A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philos. Trans. R. Soc. London, vol.221, pp.163-198, 1921.

. Samanta-rafaela-de-omena and . Pina, Luiz Claudio Pardini, and Inez Valéria Pagotto Yoshida. Carbon fiber/ceramic matrix composites: Processing, oxidation and mechanical properties, J. Mater. Sci, vol.42, issue.12, pp.4245-4253, 2007.

Y. Sugawara, K. Onitsuka, S. Yoshikawa, Q. Xu, R. E. Newnham et al., Metal-Ceramic Composite Actuators, J. Am. Ceram. Soc, vol.75, issue.4, pp.996-998, 1992.

J. M. Taboas, R. D. Maddox, P. H. Krebsbach, and S. J. Hollister, Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds, Biomaterials, vol.24, issue.1, pp.181-194, 2003.

I. W. Donald and P. W. Mcmillan, Ceramic-matrix composites, J. Mater. Sci, vol.11, issue.5, pp.949-972, 1976.

F. Bouville, E. Maire, S. Meille, B. Van-de-moortèle, .. J. Adam et al., Strong, tough and stiff bioinspired ceramics from brittle constituents, Nat. Mater, vol.13, issue.5, pp.508-522, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01761560

S. E. Naleway, M. M. Porter, J. Mckittrick, and M. A. Meyers, Structural Design Elements in Biological Materials: Application to Bioinspiration, Adv. Mater, vol.27, issue.37, pp.5455-5476, 2015.

F. Bosia, M. J. Buehler, and N. M. Pugno, Hierarchical simulations for the design of supertough nanofibers inspired by spider silk, Phys. Rev. E-Stat. Nonlinear, Soft Matter Phys, vol.82, issue.5, pp.1-7, 2010.

P. Egan, R. Sinko, P. R. Leduc, and S. Keten, The role of mechanics in biological and bio-inspired systems, Nat. Commun, vol.6, p.7418, 2015.

L. K. Grunenfelder, N. Suksangpanya, C. Salinas, G. Milliron, N. Yaraghi et al., Bio-inspired impact-resistant composites, Acta Biomater, vol.10, issue.9, pp.3997-4008, 2014.

W. C. John, P. Dunlop, and . Fratzl, Bioinspired composites: Making a tooth mimic, Nat. Mater, vol.14, issue.11, pp.1082-1083, 2015.

T. Miserez, C. Schneberk, F. W. Sun, J. H. Zok, and . Waite, The Transition from Stiff to Compliant Materials in Squid Beaks, Science, vol.319, issue.5871, pp.1816-1819, 2008.

Z. Liu, M. A. Meyers, Z. Zhang, and R. O. Ritchie, Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications, Prog. Mater. Sci, vol.88, pp.467-498, 2017.

Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell, vol.4, issue.2, pp.192-217, 1972.

. Sylvain-deville, J. Sylvain-meille, and . Seuba, A meta-analysis of the mechanical properties of ice-templated ceramics and metals, Sci. Technol. Adv. Mater, vol.16, issue.4, p.43501, 2015.

E. Munch, M. E. Launey, E. Alsem, A. P. Saiz, R. O. Tomsia et al., Tough, bio-inspired hybrid materials. Science (80-. ), vol.322, pp.1516-1536, 2008.

R. M. Erb, R. Libanori, N. Rothfuchs, and .. R. Studart, Composites Reinforced in Three Dimensions by Using Low Magnetic Fields. Science (80-. ), vol.335, pp.199-204, 2012.

M. M. Porter, P. Niksiar, and J. Mckittrick, Microstructural Control of Colloidal-Based Ceramics by Directional Solidification under Weak Magnetic Fields, J. Am. Ceram. Soc, vol.99, issue.6, pp.1917-1926, 2016.

D. Kokkinis, M. Schaffner, and A. Studart, Multimaterial magnetically assisted 3D printing of composite materials, Nat. Commun, vol.6, p.8643, 2015.

C. J. Russo, M. P. Harmer, H. M. Chan, and G. A. Miller, Design of a Laminated Ceramic Composite for Improved Strength and Toughness, J. Am. Ceram. Soc, vol.75, issue.12, pp.3396-3400, 1992.

W. J. Clegg, K. Kendall, N. Mcn, T. W. Alford, J. D. Button et al., A simple way to make tough ceramics, Nature, vol.347, issue.6292, pp.455-457, 1990.

.. J. Sánchez-herencia, J. Gurauskis, and C. Baudín, Processing of Al2O3/Y-TZP laminates from water-based cast tapes, Compos. Part B Eng, vol.37, issue.6, pp.499-508, 2006.

R. Bermejo, J. Pascual, T. Lube, and R. Danzer, Optimal strength and toughness of Al2O3-ZrO2 laminates designed with external or internal compressive layers, J. Eur. Ceram. Soc, vol.28, issue.8, pp.1575-1583, 2008.

M. G. Pontin, M. P. Rao, .. J. Sánchez-herencia, and F. F. Lange, Laminar Ceramics Utilizing the Zirconia Tetragonal-to-Monoclinic Phase Transformation to Obtain a Threshold Strength, J. Am. Ceram. Soc, vol.85, issue.12, pp.3041-3048, 2002.

Q. H. Qin and X. Zhang, Crack deflection at an interface between dissimilar piezoelectric materials, Int. J. Fract, vol.102, issue.4, pp.355-370, 2000.

N. P. Padture, Situ Toughened Silicon Carbide, J. Am. Ceram. Soc, vol.77, issue.2, pp.519-523, 1994.

M. D. Sacks, G. A. Gary-w-scheiffele, and . Staab, Fabrication of Textured Silicon Carbide via Seeded Anisotropic Grain Growth, 1996.

K. Hirao, T. Nagaoka, M. E. Brito, and S. Kanzaki, Microstructure Control of Silicon Nitride by Seeding with Rodlike Silicon Nitride Particles, J. Am. Ceram. Soc, vol.77, issue.7, pp.1857-1862, 1994.

. Matthew-m-seabaugh, H. Ingrid, G. Kerscht, and . Messing, Texture Development by Templated Grain Growth in Liquid-Phase-Sintered Alumina, J. Am. Ceram. Soc, vol.80, issue.5, pp.1181-88, 1997.

R. J. Pavlacka, Fracture Behavior of Layered Alumina Microstructural Composites with Highly Textured Layers, J. Am. Ceram. Soc, vol.96, issue.5, pp.1577-1585, 2013.

J. Robert, G. L. Pavlacka, and . Messing, Processing and mechanical response of highly textured Al2O3, J. Eur. Ceram. Soc, vol.30, issue.14, pp.2917-2925, 2010.

Y. Chang, S. Poterala, D. Yener, and G. Messing, Fabrication of Highly Textured Fine-Grained ?-Alumina by Templated Grain Growth of Nanoscale Precursors, J. Am. Ceram. Soc, vol.96, issue.5, pp.1390-1397, 2013.

Y. Chang, R. Bermejo, and G. L. Messing, Improved fracture behavior of alumina microstructural composites with highly textured compressive layers, J. Am. Ceram. Soc, vol.97, issue.11, pp.3643-3651, 2014.

J. Cesarano, A Review of Robocasting Technology, MRS Proc, vol.542, 1998.

J. Cesarano, H. Bruce, H. B. King, and S. Denham, National Laboratories. Recent Developments in Robocasting of Ceramics and MultimaterialDeposition, pp.697-704

J. A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc, vol.83, issue.10, pp.2341-2359, 2000.

A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities, J. Am. Ceram. Soc, vol.98, issue.7, 1983.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbertdemut et al., Additive manufacturing of ceramic-based materials, Adv. Eng. Mater, vol.16, issue.6, pp.729-754, 2014.

L. Ryan, J. A. Truby, and . Lewis, Printing soft matter in three dimensions, Nature, vol.540, issue.7633, pp.371-378, 2016.

J. E. Smay, J. Cesarano, and J. A. Lewis, Colloidal inks for directed assembly of 3-D periodic structures, Langmuir, vol.18, issue.14, pp.5429-5437, 2002.

J. A. Lewis, Direct-write assembly of ceramics from colloidal inks, Curr. Opin. Solid State Mater. Sci, vol.6, issue.3, pp.245-250, 2002.

J. A. Lewis, Direct ink writing of 3D functional materials, Adv. Funct. Mater, vol.16, issue.17, pp.2193-2204, 2006.

P. Miranda, E. Saiz, K. Gryn, and A. P. Tomsia, Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications, Acta Biomater, vol.2, issue.4, pp.457-66, 2006.

P. Miranda, A. Pajares, and F. Guiberteau, Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds, Acta Biomater, vol.4, issue.6, pp.1715-1739, 2008.

S. Eqtesadi, A. Motealleh, A. Pajares, F. Guiberteau, and P. Miranda, Improving mechanical properties of 13-93 bioactive glass robocast scaffold by poly (lactic acid) and poly (-caprolactone) melt infiltration, J. Non. Cryst. Solids, vol.432, pp.111-119, 2016.

A. Nommeots-nomm, S. Labbaf, A. Devlin, N. Todd, H. Geng et al., Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration, Mohammad Hossein Nasr Esfahani, vol.57, pp.449-461, 2017.

E. Garcia-tunon, S. Barg, J. Franco, R. Bell, S. Eslava et al., Printing in three dimensions with Graphene, Adv. Mater, vol.27, issue.10, pp.1688-1693, 2015.

T. Schlordt, S. Schwanke, F. Keppner, T. Fey, N. Travitzky et al., Robocasting of alumina hollow filament lattice structures, J. Eur. Ceram. Soc, vol.33, pp.3243-3248, 2013.

D. Homan, . Kolesky, . Skylar-scott, H. Herrmann, . Obuobi et al., Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips, Sci Rep, vol.6, p.34845, 2016.

D. Rotman, A 3-D Printing Breakthrough Jennifer Lewis at Harvard 3-D Prints Biological Tissue MIT Technology Review, 2014.

Z. Fu, M. Freihart, L. Wahl, T. Fey, P. Greil et al., Micro-and macroscopic design of alumina ceramics by robocasting, J. Eur. Ceram. Soc, vol.37, issue.9, pp.3115-3124, 2017.

E. Feilden, E. Garcia-tunon, F. Blanca, E. Giuliani, L. Saiz et al., Robocasting of structural ceramic parts with hydrogel inks, J. Eur. Ceram. Soc, vol.36, issue.10, pp.2525-2533, 2016.

A. Mbarki, L. Bocquet, and A. Stevenson, Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing, Sci. Rep, vol.7, issue.1, p.6017, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01685664

M. Gregory-m-gratson, J. A. Xu, and . Lewis, Direct writing of threedimensional webs, Nature, vol.428, issue.6981, p.2481, 2004.

Y. De-hazan, J. Heinecke, A. Weber, and T. Graule, High solids loading ceramic colloidal dispersions in UV curable media via combpolyelectrolyte surfactants, J. Colloid Interface Sci, vol.337, issue.1, pp.66-74, 2009.

M. Yoram-de-hazan, M. Thänert, J. Trunec, and . Misak, Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks, J. Eur. Ceram. Soc, vol.32, issue.6, pp.1187-1198, 2012.

H. V. , W. Herschel, and R. Bulkley, Konsistenzmessungen von GummiBenzollösungen. Kolloid-Zeitschrift, vol.39, issue.4, pp.291-300, 1926.

E. C. Bingham, Plasticity and elasticity, J. Franklin Inst, vol.197, issue.1, pp.99-115, 1924.

J. Mewis and N. J. Wagner, Colloidal Suspension Rheology, 2012.

H. Martin and . Blees, Foundations of Colloid Science, vol.210, 2002.

J. D. Ramsay, S. R. Daish, and C. J. Wright, Structure and stability of concentrated boehmite sols, Faraday Discuss. Chem. Soc, vol.65, issue.0, pp.65-75, 1978.

W. Shih, W. Shih, S. Kim, J. Liu, and I. Aksay, Scaling behavior of the elastic properties of colloidal gels, Phys. Rev. A, vol.42, issue.8, pp.4772-4779, 1990.

J. Goyon, C. Bocquet, ;. J. Drouin, T. Chopin, P. Nortier et al., How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity, J. Colloid Interface Sci, vol.6, issue.12, pp.314-326, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00539783

M. Van-bruggen, M. Donker, H. N-w-lekkerkerker, and T. L. Hughes, Anomalous stability of aqueous boehmite dispersions induced by hydrolyzed aluminium poly-cations, Colloids Surfaces A Physicochem. Eng. Asp, vol.150, issue.1-3, pp.115-128, 1999.

R. E. Mesmer and C. F. Baes, Acidity measurements at elevated temperatures. V. Aluminum ion hydrolysis, Inorg. Chem, vol.10, issue.10, pp.2290-2296, 1971.

E. Morgado, Y. Lau-lam, and L. F. Nazar, Formation of Peptizable Boehmites by Hydrolysis of Aluminum Nitrate in Aqueous Solution, J. Colloid Interface Sci, vol.188, issue.2, pp.257-269, 1997.

E. Morgado, S. Yiu-lau-lam, C. Maria, L. F. Menezes, and . Nazar, Characterization of Peptized Boehmite Systems: An 27Al Nuclear Magnetic Resonance Study, J. Colloid Interface Sci, vol.176, issue.2, pp.432-441, 1995.

C. , J. Brinker, and G. Scherer, Sol Gel Science: The physics and chemistry of sol-gel processing, 1990.

L. Rueschhoff, W. Costakis, M. Michie, J. Youngblood, and R. Trice, Additive Manufacturing of Dense Ceramic Parts via Direct Ink Writing of Aqueous Alumina Suspensions, Int. J. Appl. Ceram. Technol, vol.13, issue.5, pp.821-830, 2016.

K. Yadav, M. Jassal, and A. K. Agrawal, Shear reversible alumina gels for direct writing, J. Am. Ceram. Soc, vol.97, issue.12, pp.4031-4036, 2014.

S. Ananthakumar, K. Menon, K. Prabhakaran, and . Warrier, Rheology and packing characteristics of alumina extrusion using boehmite gel as a binder, Ceram. Int, vol.27, issue.2, pp.231-237, 2001.

M. Kumagai and G. L. Messing, Controlled Transformation and Sintering of a Boehmite Sol-Gel by Alumina Seeding, J. Am. Ceram. Soc, vol.68, issue.9, pp.500-505, 1985.

A. Daerr and A. Mogne, Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop, J. Open Res. Softw, vol.4, pp.2-6, 2016.

W. S. Janna, Introduction to Fluid Mechanics, 2010.

J. Läuger and H. Stettin, Differences between stress and strain control in the non-linear behavior of complex fluids, Rheol. Acta, vol.49, issue.9, pp.909-930, 2010.

F. Varnik, L. Bocquet, and J. L. Barrat, A study of the static yield stress in a binary Lennard-Jones glass, J. Chem. Phys, vol.120, issue.6, pp.2788-2801, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00019711

A. Franck, Understanding rheology of structured fluids, TA instruments, pp.1-11, 2004.

S. Yang, H. Yang, X. Chi, J. Evans, I. Thompson et al., Rapid prototyping of ceramic lattices for hard tissue scaffolds, Mater. Des, vol.29, issue.9, pp.1802-1809, 2008.

T. Schlordt, S. Schwanke, F. Keppner, T. Fey, N. Travitzky et al., Robocasting of alumina hollow filament lattice structures, J. Eur. Ceram. Soc, vol.33, pp.3243-3248, 2013.

J. C. Conrad, S. R. Ferreira, J. Yoshikawa, R. F. Shepherd, B. Y. Ahn et al., Designing colloidal suspensions for directed materials assembly, Curr. Opin. Colloid Interface Sci, vol.16, issue.1, pp.71-79, 2011.

D. Polsakiewicz and W. Kollenberg, Highly loaded alumina inks for use in a piezoelectric print head, Materwiss. Werksttech, vol.42, issue.9, pp.812-819, 2011.

L. Jørgensen and M. L. Merrer, Hélène Delanoë-Ayari, and Catherine Barentin. Yield stress and elasticity influence on surface tension measurements, Soft Matter, vol.11, issue.25, pp.5111-5121, 2015.

B. Géraud, L. Jørgensen, L. Petit, H. Delanoë-ayari, P. Jop et al., Capillary rise of yield-stress fluids, EPL (Europhysics Lett, vol.107, issue.5, p.58002, 2014.

G. Besendörfer and A. Roosen, Particle shape and size effects on anisotropic shrinkage in tape-cast ceramic layers, J. Am. Ceram. Soc, vol.91, issue.8, pp.2514-2520, 2008.

P. and W. Cannon, Anisotropic shrinkage in tape-cast alumina: Role of processing parameters and particle shape, J. Am. Ceram. Soc, vol.82, issue.10, pp.2619-2625, 1999.

A. Heunisch, A. Dellert, and A. Roosen, Effect of powder, binder and process parameters on anisotropic shrinkage in tape cast ceramic products, J. Eur. Ceram. Soc, vol.30, issue.16, pp.3397-3406, 2010.

H. E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand, vol.57, issue.4, p.217, 1934.

S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier et al., Control of the ?-alumina to ?-alumina phase transformation for an optimized alumina densification, Bol. la Soc. Esp. Ceram. y Vidr, vol.56, issue.2, pp.47-54, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01804220

X. Zhipeng, W. Li-wenchao-xu-lihua, and . Xidong, High toughness alumina ceramics with elongated grains developed from seeds, Sci. China, vol.46, issue.5, pp.527-536, 2003.

L. Xu, Z. Xie, L. Gao, X. Wang, F. Lian et al., Synthesis, evaluation and characterization of alumina ceramics with elongated grains, Ceram. Int, vol.31, issue.7, pp.953-958, 2005.

M. John-mattewson-john, B. Wachtman, and W. R. Cannon, Mechanical Properties of Ceramics, vol.16, 2009.

H. Kobayashi and H. Onoue, Brittle Fracture of Liberty Ships, Fail. Knowl. Database, vol.100, p.67, 1943.

W. , A statistical distribution function of wide applicability, 1951.

. Astm, Standard Practice for Size Scaling of Tensile Strengths Using Weibull Statistics for Advanced Ceramics, ASTM Int, pp.1-18, 2008.

J. B. Quinn and G. D. Quinn, A practical and systematic review of Weibull statistics for reporting strengths of dental materials, Dent. Mater, vol.26, issue.2, pp.135-147, 2010.

. Astm, Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics, Astm, i, pp.1-17, 2000.

A. Krell, P. Blank, H. Ma, T. Hutzler, P. B. Michel et al., Transparent Sintered Corundum with High Hardness and Strength, J. Am. Ceram. Soc, vol.86, issue.1, pp.12-18, 2003.

J. Wang and R. Stevens, Zirconia-toughened alumina (ZTA) ceramics, J. Mater. Sci, vol.24, issue.10, pp.3421-3440, 1989.

H. Mills and S. Blackburn, Zirconia toughened aluminas by hydro-thermal processing, J. Eur. Ceram. Soc, vol.20, issue.8, pp.1085-1090, 2000.

M. Rühle, N. Claussen, and A. H. Heuer, Transformation and Microcrack Toughening as Complementary Processes in ZrO2-Toughened Al2O3, J. Am. Ceram. Soc, vol.69, issue.3, pp.195-197, 1986.

M. Rühle, A. G. Evans, R. M. Mcmeeking, P. G. Charalambides, and J. W. , Hutchinson. Microcrack toughening in alumina/zirconia, Acta Metall, vol.35, issue.11, pp.2701-2710, 1987.

A. G. Evans, D. B. Marshall, and N. H. Burlingame, Transformation toughening in ceramics, 2013.

C. Kaya and E. G. Butler, Zirconia-toughened alumina ceramics of helical spring shape with improved properties from extruded sol-derived pastes, Scr. Mater, vol.48, issue.4, pp.359-364, 2003.

S. Hori, M. Yoshimura, S. Somiya, R. Kurita, and H. Kaji, Mechanical properties of ZrO2-toughened Al2O3 ceramics from CVD powders, J. Mater. Sci. Lett, vol.4, issue.4, pp.413-416, 1985.

H. Belhouchet, M. Hamidouche, N. Bouaouadja, V. Garnier, and G. Fantozzi, Elaboration and characterization of mullitezirconia composites from gibbsite, boehmite and zircon, Ceram.-Silikaty, vol.53, issue.3, pp.205-210, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01814984

F. F. Lange and M. M. Hirlinger, Hindrance of Grain Growth in Al2O3 by ZrO2 Inclusions, J. Am. Ceram. Soc, vol.67, issue.3, pp.164-168, 1984.

D. D. Upadhyaya, P. Y. Dalvi, and G. K. Dey, Processing and properties of Y-TZP / AI203 composites, J. Mater. Sci, vol.28, pp.6103-6106, 1993.

I. A. Aksay, F. F. Lange, and B. I. Davis, Uniformity of Al2O3???ZrO2 Composites by Colloidal Filtration, J. Am. Ceram. Soc, vol.66, issue.10, pp.190-192, 1983.

J. Chevalier, L. Gremillard, A. V. Virkar, and D. R. Clarke, The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends, J. Am. Ceram. Soc, vol.92, issue.9, pp.1901-1920, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00517678

E. Suvaci and . Gary-l-messing, Critical Factors in the Templated Grain Growth of Textured Reaction-Bonded Alumina, J. Am. Ceram. Soc, vol.48, pp.2041-2048, 2000.

E. Suvaci, K. S. Oh, and G. L. Messing, Kinetics of template growth in alumina during the process of templated grain growth (TGG), Acta Mater, vol.49, issue.11, pp.2075-2081, 2001.

E. Feilden, T. Giovannini, N. Ni, C. Ferraro, E. Saiz et al., Micromechanical strength of individual Al2O3 platelets, Scr. Mater, vol.131, pp.55-58, 2017.