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1
Introduction

Materials science is defined as "an interdisciplinary field concerned with the understand-
ing and application of the properties of matter. Materials scientists study the connec-
tions between the underlying structure of a material, its properties, its processing methods
and its performance in applications." (cite Nature definition). This definition summarizes
most of our work as material scientists: designing materials, using chemistry, physics,
and processing, to meet an application’s requirements.
Behind almost every technological progress, is a materials science advance. Historians
named the ages in which humankind lived and progressed after the materials they used
to achieve such progress (Stone Age, Bronze Age...). This concept of selecting the right
material for it’s properties and processability is fundamental.
Among the very large number and variety of materials we have access to, material sci-
entists pick one that fits the requirements, and try to maximize the relevant properties.
However, interesting combination of properties can be mutually exclusive, because of
intrinsic attributes of the material. For example, it is obvious that a material can not
be very porous and dense at the same time. That is why combining permeability, that
requires high porosity, and strength, usually linked to higher densities, is complicated.
Materials engineering is hence constantly confronted to trade-offs between two prop-
erties, or attributes. Cost is also a very important parameter to keep in mind. The
aerospatial industry is a striking example. Airplanes have a critical weight constraint,
but they still need to be stiff, tough, and preferably cheap. That is why airplane wings
are made of aluminium alloys. It is a good trade-off between weight, strength, and cost.
Titanium is lighter and stronger, but expensive. Steel is cheaper, but too heavy.
So far, materials scientist were good at maximizing one property at a time, using chem-
istry for angstrom level control and shaping for mm and more level control, leaving a
gap at micron scale control. There are however a few exceptions, like grain and pore
size, crystal growth control, or eutectic materials.
Composite material are the most common approach to palliate to some of the trade-
off issues. Ceramic-metal composites enabled a combination of metal toughness with
ceramic strength to provide a solution to the brittleness issue of ceramics. However,
as composites provide the advantages of both materials, they also combine their draw-
backs. This limits the use of ceramic-metal composites for instance, to relatively low
temperature applications (<1000 °C).
Generally, materials engineering increased the complexity of each step in the processing
chain, from the raw material selection, to the final shaping, improving the performances
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of the products, but also inevitably increasing the overall cost.
Ceramic materials have been extensively used in the industry for their unique properties,
as highest strengths and stiffness to weight ratio amongst all materials. The crystalline
structure of ceramics imparts them very high fusion temperatures, hence, very high
thermal stability. High temperature environments are indeed one of the most important
applications of ceramic materials. Ceramics also exhibit very high hardness, making
them a material of choice for all tribological applications.
Despite all these tremendous properties, ceramics are very brittle and fragile. Their iono-
covalent bonds do not allow any plastic deformation or ductile failure. This reduces
the use of ceramics to applications where they have very low failure probability. Pure
ceramic composites increase the complexity of each step of the ceramic processing chain
(see figure) (thermal expansion, grain size, sintering temperatures, drying behaviour,
solids content etc...). The need for higher toughness, higher strength, and more reliable
ceramics, is thus, of extremely high interest.
Nature provides, through a multitude of biological materials, analogous to ceramics,
numerous examples of strong and damage-resistant biomaterials. However, unlike syn-
thetic materials and the routes used by materials scientist, nature achieves tremen-
dous properties with a very limited set of materials. Minerals (calcium carbonate, sil-
ica, alumino-silicates...) or biopolymers (elastin, keratin, cellulose) are the main con-
stituents. However, these simple constituents are assembled together in very intricate
structures at different length scales to provide extraordinary combinations of properties,
often unachieved by synthetic materials. For instance, nacre’s unique brick and mortar
structure provides high strength and toughness. It is composed of platelets, aligned
in a manner that deviates the fracture as it propagates. Mantis shrimps are also a very
famous example of extremely interesting microstructure that provides incredible proper-
ties. These sea animal are famous for their claws, able to withstand several hundreds of
megapascals without breaking, thanks to their twisted plywood structure (also known
as Bouligand structure). Closer to our daily lives, human teeth, besides their complex
shape at macro scale, are a composite gradient structure with a hard and rigid surface,
and a more ductile phase. Gradient structures provide human teeth with crack deflec-
tion properties and toughening mechanism. The gradient assembly is oriented to with-
stand stresses in specific directions. All these structures are achieved with a bottom-up
approach that allows careful multi-purpose design at micron scale.
The limitation to transfer biomaterial design into functional ceramic objects is in large
part due to the inability of common ceramic processing methods to induce and/or con-
trol microstructural properties in a hierarchical way at different length scales. So far, ice
templating and magnetically assisted processes have been the most successful ways to
produce bioinspired materials with better mechanical properties.
More recently, additive manufacturing has been added to the list of ceramic processing
techniques that might be able to produce hierarchically controlled objects at different
scales. Very interesting papers highlighted the possibility to produce microstructural
assembly through different additive manufacturing techniques. This work focuses on
Direct Ink Writing. It involves some rheological phenomena, if properly tailored, are an
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asset for micron scale assembly. Compared to traditional ceramic processing, this contin-
uous filament based technique is a powerful tool for multimaterial processing. Objects
can for instance be designed to withstand stresses in specific directions, or have a porous
core with a dense layer, or even be textured as biomaterials in multiple orientations for
a single object.
The ultimate goal of this project is to combine the shape complexity allowed by additive
manufacturing to functionalization through complex microstructural design.
DETAIL OF THE MANUSCRIPT PLAN

1.1. Trade offs in ceramics

As in all materials engineering, using ceramics in industry is subject to trade-offs. De-
pending on the constraints and properties that need to be maximized, one property
often comes at the expense of another. Ashby [? ] wrote a whole book on the strategies
of materials selection, as a function of the properties (or property ratio) that need to be
maximized. Industrial filtration or catalysis for instance, require porous ceramic mate-
rials. Such applications usually involve high pressure and high stresses applied on the
support. However, strength and permeability are inversely related to the porosity. Other
strategies like pore directionality and shape have to be used to couple these mutually
exclusive properties [? ]. Hence, an optimal ratio between them must be determined
for each application. Another example that we discuss with more details over this work,
is the trade-off between toughness and strength. Toughness can be defined as the ability
of a material to absorb energy before failing, expressed as:

U =
∫ εf

0
σdε (1.1)

where U is the amount of energy absorbed, ε and εf are respectively the strain and the
failure strain, σ is the stress.
As opposed to a fragile failure, tough materials demonstrate ductile failure (or plastic
deformation). The fracture propagates in a stable way, progressively loosing energy
until stopping at a certain point. This property of stopping fracture propagation is called
fracture toughness, KIc, derived from the Griffith equation [? ]:

KIc = Y −1√
2γsE = Y −1σmax

√
πa (1.2)

where Y is a geometric parameter, E is the Young’s modulus, γs the surface energy, and
a the initial crack length.
There are many mechanisms that impart toughness to a material. For example, met-
als are ductile because metallic bonds are weak and unsaturated. Their constitutive
atoms are able to slide at the tip of the crack to prevent its propagation, imparting them
high toughness. This also explains why metals are weaker when exposed to tensile
or compressive stresses. On the other hand, ceramics have very strong and saturated
iono-covalent bonds. Atoms can not slide in the crystalline structure to form new bonds.
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Ceramics are thus very strong, but also very brittle. The nature of the bond, an intrinsic
attribute of the bulk material at the angstrom level, leads to mutually exclusive prop-
erties. Fig.1.1 shows that most synthetic materials fit into the so-called banana curve,
meaning they are either very strong, or very tough.

Figure 1.1.: Banana curve

In an attempt to increase their toughness, ceramics matrices are reinforced with fibrous
elements (like carbon fibers [? ]), metals [? ], or polymers [? ? ]. Fig.1.2 shows
toughness vs flexural strength values for different alumina matrix composites. The same
"banana curve" as for all the materials is observed, where most of the materials usually
stay close to the axis: the composites are either stronger or tougher.

Figure 1.2.: Strength vs. Toughness, from [? ]

Nacre-like alumina as developped by Bouville et. al [? ] is however out of the trend
line. As for natural nacre, where strength and toughness are higher than the elementary
constituents (calcium carbonate and silicon oxide), nacre-like alumina has a toughness
of 30 MPa.m1/2. In comparison, pure alumina has a toughness of 2 to 3 MPa.m1/2.
Nacre is just one example of many biological materials that have outstanding properties
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in terms of strength and toughness. As opposed to the strategies used by materials
scientists, nature achieves some of these supposedly exclusive properties by diligently
arranging simple building blocks into complex hierarchically organized structures in
that micron scale gap where we have very little control. The next section will present
some examples of extraordinary materials we can find in nature and their bioinspired
counterparts.

1.2. Biological design and bioinspired materials

In addition to the limited set of elements that can be found in biological materials, there
is a limited number of hierarchical micro-organization that nature uses to address the
mechanical constraints dictated by the environment. Most common elementary designs
have been classified by Naleway et al.[? ] in eight different categories, as shown in
Fig.1.3:

Figure 1.3.: Eight different designs

• Fibrous structures present a hierarchy of aligned fibers at different length scales.
They are designed to unidirectionally withstand extremely high tensile stresses [?
]. Spider silk, one of the toughest materials known in nature, is also hierarchically
organized as a fibrous structure.

• Helical structures, also referred to as "twisted plywood structures" at the nano-
micro scale, can be described as a directional change from one plane to another in
fiber layered materials. Helical structures provide more isotropic toughness, result-
ing from the different orientation of each layer. Propagating cracks are deflected
by the angle change, highly contributing to energy dissipation, alongside with the
toughness imparted by each individual fibrous layer. [? ? ]. Although more often
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present in non- to low-mineralized biomaterials, there are some noticeable exam-
ples of mineralized helical structures. The most famous one probably being the
mantis shrimp claws, that can deliver high velocity blows, up to 80 km.h−1 [? ].

Figure 1.4.: Lobster claw and helical Bouligand structure

• Gradient structures are composites that associate different materials with smooth
structural transitions between them. Gradients help reduce the stresses at the in-
terface of the materials, but also serve the multifunctionality of biomaterials, as
it associates mismatching properties in a single structure. Human teeth are an
interesting example. As the tooth’s interior requires porosity for growing blood
vessels, the dentin-enamel junction prevents the propagation of cracks from the
exterior [? ? ]. This toughening mechanism is achieved through an elastic modu-
lus mismatch between dentin and enamel [? ]. The gradient can be compositional,
microstructural(grain size, arrangement), or orientational [? ].

• Layered structures are composite materials where the changes in mechanical
properties are abrupt. This imparts them with the highest toughness as fractures
are weakened by the multiplicity of deviating interfaces, increasing the crack’s
tortuosity. A longer crack paths means a higher energy for its propagation.

• Tubular structures contain tubules ranging from 10 to a few hundred micron,
usually oriented perpendicularly to the stress direction. They are very impact
resistant and tough thanks to their ability to collapse when a crack propagates.
Their are numerous examples of tubular structure in nature, like human dentin,
mammalian bones or horse hooves.
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Figure 1.5.: Nacre-like alumina from [? ]

• Cellular structures are highly porous structures. Porosities can be open or closed,
but are often surrounded by dense walls. The strength of cellular structures de-
pends on the pore shape, size, directionality, and the stiffness of the walls. Cellular
materials provide a very high strength to weight ratio. This explains why they are
so predominant in bird bones.

• Suture structures have a characteristic structure where the different materials
interpenetrate at the interface. Mechanically, this ensures some flexibility to the
structure while preserving overall strength. The interface between the different
bones of the human skull is a sutured structure.

Biological materials often use a combination of these structures at different scales. The
example of the arthropods exoskeleton, as represented in Fig.1.4 by lobster claws, shows
how different levels of combinations can improve the macro-mechanical behaviour. At
the angstrom level, chitin molecules for long polymerized chains. These chains are min-
eralized and organized in fibers disposed in a layered structure described by Bouligand
[? ]. Successive layers are stacked at different angles to create a helical structure at the
micron scale. Each level of organization plays a role in the extraordinary toughness of
these materials: the Bouligand structure prevents the straight propagation of the frac-
tures, while the mineralized parts of the fibers fracture to allow strain absorption by the
chitin chains.
All these structure obviously exhibit very interesting properties and have logically at-
tracted the attention of materials scientists. It remains however complicated to replicate
such complex structures with synthetic materials. All these examples are built by living
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cells, "programmed" to create a hierarchical organization with a bottom-up approach,
at fairly mild conditions (ambient temperature and pressure, aqueous environment...).
"Mild conditions" is not an attribute of ceramic processing, as sintering temperatures,
just to mention one example, often exceed 1000 °C.
Ceramists have however figured several routes to mimic some of these structures and
functional materials in this emerging field of bioinspired materials. The next section
presents some examples of the processing techniques.

1.3. Processing routes towards microstructural assembly

The previous sections described the structure of biomaterials and their tremendous me-
chanical properties. Nature achieves the complex structures that are behind these prop-
erties with a hierarchical bottom-up approach. It is consequently challenging to fabri-
cate bioinspired materials.

1.3.1. Ice Templating

Figure 1.6.: The principle of ice-templating: a a colloidal suspension is frozen. Ice grows through the suspension, re-
pelling particles into walls b. The solvent crystals are sublimated to create a green body c, that is then
sintered d.

Ice-templating, also referred to as freeze casting, is a very popular way to produce
macroporous ceramic objects. The process is based on the segregatation of matter by
growing ice-crystals, as explained by Fig.1.6. All the particles and additives are repelled
into the walls. Ice-templating is a very versatile technique, as the suspension can be of
any nature, as long as a stable colloidal suspension can be made out of it. This technique
provides a macroporous structure, with very low tortuosity channels.
The morphology of ice-templated samples is strongly affected by several parameters
(freezing rate and temperature, solids loading, pH etc.). Porosity, pore size and struc-
ture, have an important impact on the strength and reliability values. Seuba et al. [?
] demonstrate that strength of ice-templated samples is mainly affected by porosity,
but also by wall-thickness. They also showed that the reliability of such objects (deter-
mined by the Weibull modulus), is strongly dependent on wall thickness. These results
show the importance of controlling microstructure to generate a designed mechanical
behaviour, as shown in Fig.1.8.
So far, ice-templating provided the most promising results for tough ceramic objects,
through different examples [? ? ]. Bouville et al. showed tremendous toughness
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Figure 1.7.: 3D reconstruction of an ice-templated alumina sample, obtained by x-ray tomography. Ice crystals were
grown in the vertical direction, creating the characteristic macroporosity with dense walls. From [? ]

Figure 1.8.: a Pore structure of ice templated YSZ samples, leading to b, progressive crushing behaviour where dense
walls fail by buckling mechanism

and strength results by ice-templating suspensions of alumina nanoparticles, alumina
platelets, and liquid phase precursors to build a nacre-like "brick and mortar" microstruc-
ture (Fig.1.9) [? ]. Ice-growth provides a driving force for local alignment of the
anisotropic alumina platelets. The alumina nanoparticles are trapped between the
platelets during ice growth and mimic the asperities and bridges found on nacre’s
CaCO3 platelets. These groundbreaking results show that by mimicking biomaterials
structures with stronger materials, synthetic materials can achieve unprecedented me-
chanical properties.
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Figure 1.9.: Self-organization of all the structural features occurs during the freezing stage. The growth of ordered-ice
crystals triggers the local alignment of platelets. Alumina nanoparticles and liquid-phase precursors are
entrapped between the platelets.

1.3.2. Magnetic field assisted processing

One strategy to generate alignment of anisotropic particles is to use magnetic field. It is
a straightforward way towards texturation for bioinspired materials. Even if very high
magnetic fields (larger than 1 T) can be used for any material, it is far more convenient
to work with smaller magnetic fields that can be applied and controlled by commercially
available magnets. Consequently, paramagnetic or superparamagnetic particles are the
only options for microstructural control. Superparamagnetism is a particularly interest-
ing property for such purpose: for ferromagnetic materials, when particle size is smaller
than 50 nm, they adopt a paramagnetic behaviour. At that size, they are composed of a
single Weiss domain where all the magnetic moments are aligned. They can thus be con-
sidered as a single spin (called the macro-spin approximation) and easily be controlled
by weak magnetic fields (as for ferrofluids).
This very interesting property has been used in combination with other ceramic shaping
processes for an additional level of microstructural control. Fig.1.10 and Fig.1.11 show
two examples of magnetic field assisted texturation.
Porter et al. [? ] show, as representend in Fig.1.10, microstructural control of ice-
templated samples in combination with magnetic alignment of colloidal Fe2O3 super-
superparamagnetic nanoparticles (probably a pleonasm...). They were able to enhance
mechanical properties of their samples in the perpendicular direction to ice growth. Min-
eral bridges were formed created between the walls, thanks to the magnetic alignment
of iron oxide particles. Compressive strength in perpendicular direction increased by
one order of magnitude. By changing Fe2O3 concentration and magnetic field intensity,
they were also able to tailor the size, orientation, and interconnectivity of the mineral
bridges to improve the mechanical properties.
Magnetic field has also been combined with additive manufacturing by Studart et. al [?
]. They demonstrate their ability to 3D-print complex heterogeneous composite objects
with local texturation, the latter being achieved by magnetic field. The strategy they
used is slightly different from what was described for Fig.1.10. In this case, anisotropic
alumina platelets (initially non-magnetic) adsorbed iron oxide nanoparticles to become
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Figure 1.10.: Magnetic Freeze Casting

responsive to magnetic field. They designed a composite staircase helix (Fig.1.11a),
with each step containing anisotropic particles, magnetically aligned, either radially or
tangentially. The programmed the magnetic field according to specific angles, leading to
6 different platelet orientation in a single object. The combination of complex shape con-
trol with local texturation demonstrated by Studart’s group proved to be very powerful
to create innovative bioinspired materials with complex microstructural control.

Figure 1.11.: Magnetic additive manufacturing

1.3.3. Tape Casting and Templated Grain Growth

Tape casting (also called doctor blading) is an important ceramic forming technique
widely used in the production of thin sheets of flexible tape. It has been used in the
industry to manufacture layered ceramic objects, like Solid Oxide Fuel Cells (SOFCs),
photovoltaic panels or capacitors. The reason tape casting is discussed in this section, is
because it grants facile access to multimaterial design. To mimic layered biostructures,
several studies demonstrated the ability to create tough structures with ceramic-metal
[? ] or ceramic-polymer composites. For pure ceramic laminates, Clegg et al. [?
] showed that one "simple way to make tough ceramics" (which is actually the title
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of the article...), is to introduce weak interfaces between layers to deflect a growing
crack. Weaknesses are created by residual stresses between layers. These stresses are
developed as a consequence of the thermal strain mismatch between layers of different
composition that occurs during cooling from sintering. This strain mismatch can be
intentionally designed through the use of constituent materials with differing thermal
expansion coefficients (ZrO2 and Al2O3 ) [? ? ] or by adding layers that undergo volume
changes through phase transformations [? ], to increase toughness and provide crack
deflection properties. He and Hutchinson explain that a material deflects a crack if [? ]:

Gic

Gc
>

Gd

Gp
(1.3)

where Gic is the toughness of the interface, Gc the toughness of the material were
the crack penetrate, and Gd and Gp are the energy release rate of the deflecting and
penetrating crack.

Figure 1.12.: Tape casting

Tape casting also allows microstructural texturation. The presence of a shear gradient
below the doctor blade, as shown in Fig.1.12, can orient anisotropic template platelets
through the entire thickness of the deposited layer. Several studies showed oriented
Si3N4 or SiC template particles through tape casting [? ? ? ] However, the best
texturation results were obtained by combining tape casting templated grain growth
(TGG). This technique is one of the best microstructural texturation method for ceramics.
In TGG process, sintering makes grain growth occur in the anisotropic direction of the
template particles [? ]. TGG can be combined with any of the previously described
processing methods to enhance texturation starting from anistropic particles. Pavlacka
et al. results show that adding anisotropic alumina platelets in a fine grained alumina
matrix can lead to highly textured laminates [? ? ]. Chang et al. showed improved
textured microstructure starting with boehmite gels and Al2O3 platelets [? ]. They
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combined equiaxed and textured layers of alumina to significantly increase the fracture
toughness compared to bulk materials. Alternating between different microstructures
helped build interlayer residual stresses to provide crack deflection properties [? ].
The next section will discuss Additive Manufacturing as ceramic processing technique
in general, and in more details, the ability to produce bioinspired materials through one
specific technique, Direct Ink Writing.

1.4. Additive manufacturing

1.4.1. Definition

Figure 1.13.: AM has the ability to change the way industry designs complex objects. Source: Bain Analysis

Since the mid-90s, Additive manufacturing (AM) techniques emerged as a potential
revolution in the manufacturing industry 1.13. They also offer the opportunity to design
objects unobtainable by conventional techniques (molding, tape casting...). Some of
these objects have been introduced in the market, but mostly from polymeric or metallic
materials. Even though AM additive manufacturing of ceramics has been a little behind
compared to other materials, tremendous progress has been made since the early 2000s
[? ? ? ]. Additive manufacturing is defined by ASTM as the "process of joining materials
to make objects from 3D model data, usually layer upon layer, as opposed to substractive
manufacturing methodologies, such as traditional machining". The size of the built
objects can vary from micron scale to building size.

1.4.2. Classification of AM techniques

AM techniques can be classified as Direct or Indirect methods. Direct methods deposit
the building material on the printing support to create an object with the final desired
shape. Indirect methods usually involve a bed (slurry or powder) of building material.
Each layer is subsequently built by agglomeration/densification of the raw material bed
to create a cross section of the desired object. The bed moves up or down, allowing the

27



1. Introduction

next raw material layer to be deposited and built. Very good reviews of the advantages
and drawbacks of each of these methods have been written [? ? ]. This section will
essentially focus on Direct Ink Writing.

Figure 1.14.: Classification of AM processes according to deposition method, feedstock type

1.4.3. Direct Ink Writing

Direct Ink Writing is an AM technique based on the continuous extrusion, through a noz-
zle, of a viscous ceramic paste. The nozzle is mounted on a moving head that supplies
the ceramic paste. Extrusion can be driven by air pressure, by a piston, or by an endless
screw 1.15. Some more complex systems involve piezoelectric actuators for precise vol-
umetric flow control. DIW was first developped by Cesarano et. al [? ] under the name
of "Robocasting" (this appellation remains common among the scientific community).
Nozzle sizes for DIW range between 100 μm and 1 mm, allowing a very precise deposi-
tion. However the surface quality is usually lower than for stereolithography or ink-jet
printing, being dependant on the nozzle size. It usually results to a trade-off between
surface quality and processing time (smaller nozzle, longer processing time, but higher
quality, and vice versa).
DIW has been extensively used to produce porous structures [? ? ? ? ]. On the contrary
of powder or slurry bed-based AM techniques, there is no excess material to be removed
after printing. This allows fabrication of open and closed cell porous structures that
would be otherwise unobtainable [? ]. Lattice structures are the typical demonstrative
objects printed by DIW, as shown in Fig.1.16. In this context of porous structure pro-
duction, a large part of the research in DIW focused on printing bioceramics as scaffolds
for bioregeneration, mainly hydroxyapatite [? ? ] or bioglass [? ? ] lattice struc-
tures. Scaffolds obtained by DIW usually have better compressive strengths than those
obtained by powder-bed techniques. This is mainly due to the density of the printed
green body, which is one of the advantages of using a concentrated colloidal suspension
for fabrication. DIW is a very versatile technique in terms of the size of printed objects.
At the moment, it is also the technique that offers the broadest choice of inks (graphene-
based, ceramics, ferroelectrics, biological material [? ? ? ]). DIW offers easier access to
composite objects by multiplying the printing heads ([? ] 1.16a).
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Figure 1.15.: DIW using viscoelastic inks. Three continuous extrusion methods are possible. The suspension can either
by driven by air pressure, usually using a plunger (pneumatic), mechanically by a piston, or through an
endless screw (from [? ]).

Figure 1.16.: a Lattice structure example showing that DIW is suitable for multimaterial printing by using multiple print-
ing heads [? ] b and c Most commonly printed lattice structures by DIW in literature [? ? ]

All these features make DIW a very promising candidate for composite, hierarchically
organized, bioinspired materials. However, most reviews describe DIW as unable to
produce dense monolithic ceramic objects [? ? ]. The key factor in dense structures
is that the cylinders deposited from the nozzles must fill the void space formed when
stacking cylinders. That is why the examples of dense parts obtained by DIW are very
few and worth noticing [? ? ].

1.4.4. The intimate link between DIW and rheology

The rheological properties of DIW inks can be considered as the most important param-
eter to successfully print objects, whether they are porous or dense. Several types of
inks have been developed to enable printing of complex objects (polymers matrices for
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ceramics [? ? ? ] or photocurable resin for UV solidification after printing [? ? ]). But
the predominant method remains using colloidal ceramic suspensions. There rheology
can be tailored over several orders of magnitude to fit the application or the shape com-
plexity. They can span gaps and can be stacked over several layers to produce centimer
scale objects. Moreover, the low amount of required organics makes them a material of
choice for microstructurally dense ceramics with high mechanical properties. Colloidal
inks are tailored to withstand their own weight when stacked during fabrication, relying
on self-support. This criterion generates crucial conditions for colloidal ink design ADD
REPORT OF RHEOLOGY IN APPENDIX :

• DIW colloidal inks must be viscoelastic to withstand deformation during printing

• Shear-thinning so their viscosity decreases under stress to allow extrusion through
very fine nozzles

• Closely associated to the first two criteria, yield stress is arguably the most im-
portant parameter. Colloidal inks must have a high enough dynamic yield stress
σDyn

y to withstand layer stacking, but a static yield stress σStat
y low enough to allow

extrusion

These yield-stress fluids shear-thinning fluids are well-described by the Herschel-Bulkley
equation [? ]. This empirical equation describes the power law flow behaviour of shear-
thinning suspensions after their stress exceeds a finite yield stress value, and can be
written as:

σ = σy + Kγ̇n (1.4)

where σ is the stress in Pa, σy the yield stress in Pa, K a model constant (in Pa.sn)
called the consistency index, and n the flow index. If n < 1, suspension is shear-thinning.
If n > 1, it becomes shear-thickening. And if n = 1, the equation is reduced to a Bing-
ham plastic behaviour [? ]. Usually, this equation is experimentally validated with
rheological flow curves (shear rate vs. stress). Depending on the protocol used to fit the
Herschel-Bulkley equation with rheological data, different understandings of the yield
stress can arise. If the shear rate (or stress) is increasing, the σy value is assimilated
to a static yield stress σStat

y . For decreasing shear rates (or stresses), the σy value is
a dynamic yield stress σDyn

y . Distinguishing between them is very important for DIW
applications, as the static yield stress is the stress that needs to be applied for the sus-
pension to flow through the nozzle, while the σDyn

y is defined as the residual yield stress
of a pre-sheared suspension. High values of σDyn

y are hence necessary to allow layer
stacking. A more detailed discussion of these subtilities is written in the "Rheological
Understanding of Printability" chapter.
To achieve these necessary rheological conditions, tailoring the ceramic suspension be-
haviour at the particle interaction level is crucial. The next section introduces some
basics of colloidal suspensions rheology.
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1.4.5. Designing colloidal suspensions for DIW

Introduction

Biphasic systems where a solid phase is dispersed in a continuous fluid are generally re-
grouped under this definition. However, distinction must be made in some terminology.
In a dispersion, particles are kept apart from each other, and the suspension is (stabi-
lized). Particles can also be aggregated to form flocculated systems. Particle size also
delimits the definition of a colloidal suspensions (Fig.1.17).

Figure 1.17.: Schematic representation of colloidal suspensions definition limits according to particle size.

Systems with particles smaller than 1 nm are called sub-nanometer suspensions, and can
be approximated to a monophasic liquid, whereas for particles larger than 1 μm, it is
not possible to establish rheological properties without macroscopic considerations of
sample size for instance. Everything we describe in this section is valid for particle size
between 1 nm and 1 μm dispersed in a liquid phase.
This review is specifically oriented toward robocasting applications. The inks used in
this process are usually viscous, gel-like suspensions, subjected to high stresses when
they flow through nozzles of tens or few hundreds of microns in diameter.

Particle interactions effect

Particles in colloidal suspensions interact with each other in four different ways[? ]:

• Hydrodynamic forces are disturbances induced in the fluid flow field when the
presence of a particle indirectly affects surrounding particles. This force is also
known as the Stokes drag F H with[? ]

F H = 6πηmaV (1.5)
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where ηm is the fluid viscosity (≈ 1mPa.s for water), a the particle radius and V
the particle velocity.

• Dispersion forces are induced dipole forces, arising from the fluctuation in the par-
ticles’ electron cloud. They are also referred to as London forces (that are a part
of Van der Walls interactions);

• Surface forces arise from adsorbed ions (ζ−potential), surfactans etc. or chemically-
bonded polymers. They can either have electrostatic, steric, or electrosteric ef-
fects);

• Finally, Depletion forces arise from soluble polymers or nanoparticles when they
are unable to access interparticular space.

These forces determine stability (or instability) of colloidal suspensions, and constitute
the total particle interaction potential[? ? ]. Depending on this potential, different
suspension behaviors emerge where the particles either aggregate (strongly or weakly),
disperse, or act as infinitely repulsive independent hard-spheres.

Dispersed suspensions

In stable colloidal dispersions, repulsive forces dominate and establish an equilibrium
distance between particles. IUPAC defines them by a "non-significant particle aggrega-
tion rate". The repulsive forces can either be electrostatic, steric, or both, as discussed
previously. When the particles are repulsive at all but short-ranges, the suspension is
stable, and under these conditions, rheological approximation with hard-sphere model
is legitimate. However, in most cases, the rheology differs strongly from that predicted
by the hard sphere model, and new models must be established.
Flow in dispersed suspensions occurs only if particles overcome the force field that links
them together, but electrosteric stabilizing forces lead to much greater repulsions and,
hence, an increase in elastic moduli. Many experiments pointed out the effect of elec-
trostatic repulsion on the rheological behavior. The curves for viscosity as a function
of solids loading diverge with increasing volume fraction, as for Brownian hard sphere.
But they diverge at lower volume fraction when the electrolyte concentration in the
suspensions decreased, meaning lower charge screening effects and higher repulsion.
Many semi-empirical equations have been proposed to describe viscosity’s relation with
concentration, and we present them in section add reference in appendix. Some au-
thors depicted the general flow behaviour as the sum of hydrodynamic contribution and
brownian contribution:

ηr = ηH
r + ηB

r (1.6)

Generally, the viscosity of DIW inks is tailored by using the Krieger-Dougherty equation.
Krieger Dougherty equation considers particle interaction and the way they rotate to
have an influence on the viscosity. A particle rotating alone is called a singlet, while
two particle rotating around each other a called a doublet, and this will increase the K
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Figure 1.18.: Effective colloid volume fraction vs. actual colloid volume for non-brownian spherical particles and differ-
ent adsorbed δ layers.

parameter (intrinsic viscosity). This is because these will not behave as perfect spheres
(the 2.5 parameter considers the colloids as perfect hard spheres).

ηr = (1 − φ

φm
)−Kφm (1.7)

where φm (≈ 0.6 − 0.7) is the packing parameter, chosen to match the asymptotic η limit
value when the particle concentration approaches the maximum packing concentration.
For flocculated systems, the particle concentration is replaced by the floc concentration
φf , and we can hence obtain the floc volume ratio CF P = φf /φp, that describes the
degree of openness of the flocs. This equation is the most commonly used for colloidal
suspensions in different reviews and articles on DIW and printing techniques.
On the other hand, in the effective volume fraction approach, colloidal particles are
approximated as hard-spheres, provided that particle radius a is replaced by an effective
particle radius aeff . This new radius accounts for an additional layer δ around the
particles below which particles are infinitely repulsive (like hard-spheres). The effective
volume fraction is related to aeff by:

φeff = φ(aeff

a
)3 (1.8)

Since aeff > a, the volume occupied by the hypothetical hard-sphere is larger than the
real particles volume. This leads to significant reductions in actual solids loading in
suspension, as we can see in Fig(1.18). The viscosity of a colloidal dispersion can often
be understood by replacing φ by φeff in a hard-sphere model equation, like Krieger-
Dougherty for instance (Eq.1.7). Such stabilization leads to additional contributions
to the viscosity and elasticity. Both of these are insensitive to high shear, where the
hydrodynamic forces prevail and deform the electrical double layer in the flow direction.
This increases the shear thinning behaviour of dispersions. Steric stabilization however,
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Figure 1.19.: Schematic representation of the relationship between the total interparticle potential energy and the result-
ing suspension structure.

increases the Stokes drag on the particles, raising the values of high and low shear
viscosities compared to strictly brownian hard spheres even at very high electrolyte
concentration.

Aggregated suspensions

In dispersed suspensions, particles don’t exhibit a tendency to cluster together, as repul-
sive forces were always stronger. The predominance of net attractive forces leading to
particle aggregation is a far more widespread situation in colloidal systems. A general
definition of an aggregate is a structure formed by the cohesion of a group of particles
held together by attractive forces. If the aggregation rate is high enough to induce phase
separation (sedimentation, creaming etc.), the suspension coagulates, whereas floccula-
tion describes the formation of loosely aggregated open floc network, not necessarily
leading to phase separation. Aggregation leads to more or less large clusters. For two
particles to aggregate, they must collide. At very small distances, Van der Walls attrac-
tions prevail and lead to a deep primary minimum, where aggregation is irreversible.
Brownian motion kinetic energy (kB.T ) must be higher than the energy barrier Umax.
In many systems, particles aggregate in shallow secondary minimum, thanks to a bal-
ance between attractive and repulsive forces. If Brownian energy is lower than Umax,
aggregation strength can not increase. The depth of the secondary minimum potential
gives an idea on the interparticle bond energy Ub (assimilable to the general cohesion
energy announced by Ramsay [? ] for boehmite gels). Depending on which minimum
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Figure 1.20.: Schematic representation of a fractal cluster network. The dashed circles’ radius is the efficient radius used
in 1.9.

potential particle aggregate in, they may be described as weakly aggregated systems (for
secondary minimum, 10kBT < Ub < 20kBT ), or strongly aggregated systems (primary
minimum and Ub > 20kBT ).
Gelation occurs with cluster crowding. Particles gradually stick to each other, leading
to a sample-sized fractal network with a permanent stress-bearing capacity. Since rheo-
logical characterization is often based on the volume fraction of the elementary particle
constituting the suspension, gelled systems require a correction to account for aggre-
gate volume fraction (an approach similar to the approximation of repulsive particles
to wider hard spheres (Eq.1.9). Cluster volume fraction is then defined by the smallest
sphere enclosing all the aggregated particles:

φc = φeff ≈ φ(R

a
)3−f (1.9)

a is the radius of the elementary particle constituting the clusters. R is the hydrodynamic
radius (radius of the smallest sphere) and f is the fractal dimension of the clusters. f
ranges from 1 (loosely flocculated systems, open structures) to 3 (f = 3 being the
value for maximum compaction, crystal-like structure). More typical values are f = 1.8
for when aggregation rate is fast, like in diffusion limited cluster aggregation (DLCA);
and f = 2.1 for reaction limited cluster aggregation (RLCA), a slower aggregation rate.
Thus, aggregation rate has a significant effect on microstructure and flow behavior, as
shown in Fig.1.21. Consequently, as for dispersed systems, viscosity can be obtained
by introducing the effective cluster volume fraction in a hard-sphere model equation
(usually Krieger-Dougherty).

Rheology and flow behavior of gelled systems

Significant changes in rheological behavior occur around the gel point, when φ > φgel:
the viscosity diverges, a low frequency elastic modulus appears, and the suspension ex-
hibit a yield stress. Commonly used rheological characteristics of a gelled suspension
are the elastic modulus(or storage modulus) and the yield stresses. They are both mani-

35



1. Introduction

Figure 1.21.: Structure of larger aggregates formed can be different. In the fast aggregation regime or DLCA regime, the
aggregates are more ramified, while in the slow aggregation regime or RLCA regime, the aggregates are
more compact.

festations of solid-like particulate fractal structure. In this section, we explain the origin
of the behavior they represent, and some models to estimate them. Concentrated col-
loidal suspensions often exhibit viscoelastic properties. This behavior is defined by the
combination of elastic solids properties and viscous fluids properties. When viscoelas-
tic materials undergo shear forces, consequent stress and strain are not in phase. The
resulting shear modulus G∗ can be decomposed into two components:

• Elastic modulus G′, the in-phase real part. Because of its description of elastic
behavior (energy restoring), G′ is called the storage modulus, accounting for the
memory of the material;

• Loss modulus G′′, the out-of-phase imaginary part, accounting for the viscous,
energy dissipative (loss) behavior.

and written as:
G∗ = G′ + iG′′ (1.10)

Elasticity in colloidal suspension is the result of a quick return to interaction equilib-
ria (potential minimum) after the stress is applied. We can then easily imagine that
increasing the volume fraction or particle interactions yields an increase in this elastic
behavior. Attractive interparticle forces generate storage moduli substantially higher
than those caused by repulsive forces. With increasing the volume fraction, as shown in
Fig.1.22,the slopes gradually decrease until reaching a plateau region at low frequencies
(G independant from the frequency). This behavior is similar to what stable suspensions
exhibit, and is typical for transition from a liquid suspension to a solid called gel.
Shih & al. [? ] developed a power law scaling model (Eq.1.11). to describe the vis-
coelastic properties of colloidal gels. Considering the network as closely packed fractal
flocs, they found that the critical strain nonlinearity and the plateau modulus value
depend on the strength of interaction between the flocs compared to within the flocs:

G′ ∼ φμ (1.11)

where μ is an exponent accounting for the relative inter-intra flocs strength and usually
ranges between 3 and 5.
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Figure 1.22.: Evolution of dynamic moduli with increasing volume fraction as a function of frequency

1.4.6. Direct Ink Writing of bioinspired composites

Overall, the general trend for research and industry is to use DIW, and AM in general, as
a complex shaping method. But with DIW, it is possible to create hierarchic composites
at different length scales. That is why, more recently, researchers are focus on fabricating
bioinspired materials as a more promising exploitation of DIW. One example that has
already been discussed, is the combination of DIW with magnetic field assistance to
control platelet orientation (see. Fig1.16a and b).
A very noteworthy specificity of DIW is the shear gradient or velocity profile occuring in
the nozzle during the extrusion of a shear-thinning suspension. The velocity profile can
be written as [? ]:

V (z) = L

ΔP

1
n
√

K

n

n + 1

[
(ΔP

2L
w − σy) − (ΔP

L
z − σy)

] n+1
n

(1.12)

where V (z) is the velocity at z position, L the nozzle length, ΔP the pressure drop, n
the shear-thinning index of the suspension, K a Herschel-Bulkley model constant and
σy the yield stress of the suspension.
Plotting this velocity equation shows a plug flow profile, as in Fig.1.23c. This means that
any anisotropic particle in the γ̇ �= 0 region (close to the nozzle walls) will get aligned in
the printing direction. As it can be concluded from the equation, the width of the align-
ment region depends on the yield stress of the suspension, the pressure drop, and the
length of the nozzle. This physical characteristic is a promising option to mimic textured
biomaterials with aligned platelets, as in nacre (Fig.1.5) or lobster claws (Fig.1.4). Inter-
estingly, no other external field (magnetic or electric) is required. Therefore, texturation
would not be limited to paramagnetic or superparamagnetic materials.

1.5. Conclusion

Materials science is paying an increasing attention the fairly recent field of bioinspira-
tion. Biomaterials have extremely intricate micron scale organization, providing them
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Figure 1.23.: a, b, 3D magnetic printing of platelet-reinforced composites, in which a magnetic field is used to induce the
desired platelet orientation, and digital light projection (DLP) is used to locally photopolymerize oriented
voxels (a). This motif mimics the layered architecture of abalone shells (b; scale bar, 25 μm; both a and
b) c DIW aligns anisotropic particles (fibers, platelets...) in the plug flow shear profile. At the extrusion,
any anisotropic platelet can be aligned in the printing direction d. This provides a supplementary degree
of hierarchical control. Nacre-like texturation is one example.

with tremendous mechanical properties. Some extraordinary structures, like nacre,
bones, arthropod skeletons or wood, seem to bridge the gap between commonly an-
tagonist properties. Nature achieves all of this with a very limited set of materials,
combining them with careful hierarchical design. Thus, it is safe and promising to think
that bioinspired structures supported by better starting materials will improve numerous
intrinsic properties of ceramic materials. Ceramists have been working on mimicking
some of the previously described structures with pure ceramic components to maintain
high temperature resistance. However, despite the growing understanding of the mech-
anisms behind the "success" of biomaterials, fabricating strong and reliable bioinspired
structures remains an open challenge. Translating the biological designs at different
length scales with regular ceramic processing methods is not trivial.
Direct Ink Writing appears as arguably the best candidate among additive manufactur-
ing techniques to achieve such a complex task. Its ability to fabricate composite objects
at the macro scale by multiplying nozzle heads, but also the access to complex mi-
crostructure by changing the ink composition is definitely in advantage. Through the
complex rheological phenomena that occur in the nozzle during printing, DIW has also
the ability to align any anisotropic particle. Mastering this property is step towards
brick-and-mortar or fiber-reinforced structures. Compared to other ceramic processing
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techniques that are also able to create microstructural texturation (Tape casting, ice-
templating...), DIW has the advantage of being a bottom-up process that in fine, can
also lead to very complex shapes.
This might be a good description of this entire project: using DIW to combine com-
plex shaping with complex microstructural control for enhanced mechanical properties.
Our project solely focuses on DIW of boehmite gels. This Al2O3 precursor is extremely
versatile in terms of microstructure. Only a few compositional changes are necessary
to significantly modify the microstructure, without compromising the rheological be-
haviour. As it is explained in the previous section, rheology is the key to master DIW
process. Whether it is for investigating printability, or for complex texturation, a pre-
cise understanding and tailoring of rheology is necessary. In this work, we always use
boehmite gels as a ceramic matrix for other constituents. Rheology and microstructure
are hence, the ultimate guidelines of this work.
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2
Introduction to Boehmite Chemistry

2.1. Introduction: Chemistry? What does it have to do with
DIW?

Despite numerous applications that were found to boehmite in the industry, there are
only few studies were on the chemistry behind boehmite peptization. Ramsay & al[? ],
and Drouin & al.[? ] were the first to investigate the peptization and gelation mecha-
nism of boehmite suspensions. They both came to the conclusion that this system is not
behaving as a regular colloidal suspension. Usually, DLVO theory is sufficient to describe
and anticipate suspension flow behavior in colloidal sols. In this case, anomalous stabil-
ity [? ] at high ionic strength and unpredicted flow behavior were encountered. Ramsay
and Drouin already studied the impact of multiple factors on viscoelastic properties of
boehmite gels. Intrinsic properties of the suspension, before gelation, are indeed very
important on the rheological properties.
In this section, we explain the well-known chemistry of inorganic alumina precursors,
and will try to bridge them with the specifities of boehmite dispersions. We also explore
some of the major studies conducted on this topic.

2.2. Solution Chemistry of Inorganic Alumina precursors

Aluminum is an amphoteric metal and in aqueous systems, tends to undergo hydrolysis
and form a myriad of polymers. Determining their exact nature is crucial for a com-
plete understanding of the behavior of aluminum suspensions, and hence, boehmite
dispersions. This requires a molecular level understanding of the formation mechanism
of these species including aggregation, nucleation, olation reactions, and formation of
soluble precursors.

2.2.1. Gelation

Gelation is defined as the transition from a liquid suspension (sol), to a solid state (gel)
without fluid removal. Monomers-oligomers of metallic ions undergo successive growth
reactions leading to either a flocculated nanoparticle system or a large network by reticu-
lation of these elementary clusters, depending on the physico-chemical conditions. The
sol-gel transition is often accompanied by dramatic changes in rheological behaviour.
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The gel acquires viscoelastic properties and the viscosity asymptotically tends to infinity
as the colloid concentration tends toward maximum packing concentration φ → φmax

(add reference to Krieger Dougherty plot). However, a distinction must be made
between physical and chemical gels, as we will briefly explain.

Physical gels

To understand the formation of physical gels, it is necessary to explain essential parame-
ters governing. Hereby, we will try to build up the knowledge provided by DLVO theory
that leads to the definition of physical gels. Colloidal systems can be described as a
large number of individual particles dispersed in a continuous suspending media. Since
the particles are usually small enough (1nm < ∅ < 1μm) to exhibit Brownian motion,
random and continuous collisions between them will create interactions. They will re-
main as individual particles as long as no permanent association (chemical reaction,
flocculation...) results from these random interaction.
When dispersed into water, colloids are generally electrically charged at the surfaces.
Those charges are balanced by the presence of counterions adsorbed on the particle
surface (usually negatively charged). They constitute the so-called electrical double-layer
(also referred to as the Stern layer) as described by DLVO theory. (Fig.2.1a). Particles
repel one another when the double-layers overlap. Colloids are also attracted to each
other by long-range Van Der Walls forces. The combination of both potentials is the
essence of DLVO theory. However, DLVO takes into account only the two first terms of

(a) (b)

Figure 2.1.: (a)The adsorption of counterions on the negatively charged colloid surface. The plot on bottom right shows
the decrease in potential energy when the distance from particle surface increases. (b) Potential energies for
electrostatic (top), and steric (bottom) forces as a function of characteristic length. The electrostaic repulsive
energy tends to infinity when h → 2κ−1(κ: double-layer "thickness"). Same for steric energy when h → 2δ.
(δ:adsorbed polymers layer thickness)

44



2.2. Solution Chemistry of Inorganic Alumina precursors

Figure 2.2.: Vtot as a function of interparticular distance with schematic illustration of their influence on suspension
structure.

the total interparticle interaction energy expression, given by:

Vtot = VV dW + Velect + Vsteric + Vstruct (2.1)

where:

• Vtot: Total interaction potential

• VV dW : Long-range Van der Walls attractive potential

• Velect: Electrostatic repulsive potential cause by double-layer ovelap

• Vsteric: Repulsive electrostatic interactions resulting from steric interactions be-
tween particle surfaces coated with adsorbed polymeric species

• Vstruct: : Potential energy resulting from the presence of nonadsorbed species in
solution that may either increase or decrease suspension stability

In the dispersed state, repulsive energies are much higher than Van der Walls attrac-
tion. Particle have no contact with each other and freely move according to Brownian
motion. If kbT is high enough to overstep the energy barrier, Vtot falls in the primary
minimum, and irreversible particle aggregation occurs, leading to a strongly flocculated
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state. Strongly aggregated particles behave as flocs and will either sediment, leaving a
more or less clear supernatant, or accumulate at the top. This latter phenomena is called
creaming. The addition of a stabilizer (like counter-ions, polymeric species adsorbed on
the surface...) to the suspension leads to a loosely flocculated system and sets up high
energy barrier between the primary minimum and the secondary minimum, where parti-
cles aggregate. The suspension is therefore stabilized, since particles are kept from each
other at a distance where Van der Walls and electrostatic forces reach an equilibrium. If
this state is kept long enough, a network based on this balance between attraction and
repulsion will grow, and eventually induce gelation. This specific state characterized by
dynamic cross-links, constantly created and broken, changing its behavior from solid to
liquid, is what defines a physical gel.

Chemical gels

As we described in the previous paragraph, physical gels are created by a balance in mul-
tiple forces that govern the colloidal suspension. They are a reversible system were the
clusters are linked to each by physical bonds. Chemical gels are formed by the presence
of strong covalent -oxo or -hydroxo bridges between metal cations. Metal monomers
undergo hydrolysis, similar to Eq.2.3. Afterwards (or often simultaneously), metal ions
form polymeric oxides by oxolation (Eq.2.2a for oxo bridge) or olation (Eq.2.2b for hy-
droxo bridge) reactions:

2. M−OH −M−O−M− + H2O (2.2a)

M−(OH)+M−OH −M−(OH)−M− + H2O (2.2b)

Those equations are fundamentally not different from those presented in 2.2.3 and what
happens in a physical gel. However, in the case of chemical gels, the network grows "in-
definitely" and doesn’t stop when polyoxocations are formed. Gelation point is defined
when the size of the network is about the size of the sample. Water is encaged in be-
tween this reticulated system formed by covalent bonds (Fig.2.3).
Both physical and chemical gels are created starting from a colloidal suspension. Reac-
tion conditions can lead to either of them. However a metallic cation’s specific properties
(coordination, oxidation state etc.) will lead it, charasterically, toward one or the other.
The specificity of boehmite systems is that both types of phenomena cause the gelation
point, and the mechanism behind it is more sophisticated than in a regular colloidal
suspension. In the following section, we will present the specificities of boehmite pepti-
zation and synthesis the understanding acquired in some major papers that treated the
topic.

2.2.2. Hydrolysis and predominant species

Al3+ has a coordination number N=6, and exists as a hexaaquo unhydrolized species
Al(H2O) 3+

6 below pH=3. With increasing pH, this monomer can react according to
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Figure 2.3.: Schematic representation of the reticulated network formed in chemical gels. Blue spheres are linked with
covalent bonds by either oxo or hydroxo bridges, encaging water in the network.

reaction Eq. 2.3, with h defined as the molar hydrolysis ratio:

Al(H2O) 3+
6 + h.H2O [Al(OH)h(H2O)(6−h)](3−h+) + h.H3O+ (2.3)

Subsequent olation and/or oxolation reactions (see next subsection) lead to the for-
mation of stable multiple di- or trimers with different hydrolysis ratios. At low pH, a
dramatic decrease in non-hydrolysed monomeric species occurs. As shown in Fig.2.4, for
highly concentrated alumina suspensions (0.1M Al(III)), consecutive hydrolysis and con-
densations transform them into mostly aluminum tridecamer Al13 predominant species.
Dimers and trimers reach a maximum relative concentration of 15% (h=1-2). For lower
concentrations (10−5 M Al(III)), the maximum tridecamer concentration is shifted to
pH=6 and doesn’t exceed 20% of the total alumina species.

Predominant species in the optimal boehmite peptization pH range are essentially monomers
and dimers. Since the dissolution of amorphous (or less crystalline) boehmite surface is
well established by different authors add reference, this raises a question on the exist-
ing aluminum species in boehmite sols. Is the monomeric aluminum concentration high
enough in boehmite peptization to create Al13 clusters at 2<pH<4 or are we more on a
low concentration distribution?

The condensation rate obviously has a huge impact on the crystalline order, the chem-
ical composition, and the particle size of boehmite sols. In addition, they are critically
dependant on temperature, ionic strength (and maybe ionic species involved in peptiza-
tion), initial particle size, solids loading, pH, and aging time. Answering this question
is therefore not trivial. In the following subsection, we explain the chemical reactions
and mechanism behind the formation of larger aluminum clusters (from dimer to tride-
camer).
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Figure 2.4.: Distribution diagram of Al(H2O) 3+
6 hydrolysis products at I=1 M, 25°Cfor (a)[Al(III]=0.1 M;

(b)[Al(III)]=10−5 M

2.2.3. Condensation mechanism

Alumina oligomer condensation occurs on the reaction pathway that favorises hydrogen
bondings (reference to wood and coworkers page 64 [4]). Preferred condensation sites
are consequently those maximizing the interaction between a lone pair electrons from a
hydroxo- group, bonded to one aluminum, and a hydrogen from an aquo- ligand bonded
to another aluminum. Dimers are formed by condensation of two monomers according
to Eq.2.4: .

2.[Al(OH)(H2O)5]2+ [Al2(OH)2(H2O)8]4+ + H2O (2.4)

A subsequent condensation between remaining monomers and the dimers formed ac-
cording to the previous reaction, finally leads to trimeric aluminum species:

[Al(OH)(H2O)5]2+ + [Al2(OH)2(H2O)8]4+ [Al3(OH)4(H2O)9]5+ + 2H2O + H3O+

(2.5)

The addition of the h=1 monomer to the dimeric specie preferentially leads to the more
compact μ3-OH trimer instead of linear edge sharing octahedrons. In this conformation
of face sharing octahedrons, one OH ligand bridges three aluminium ions, maximizing
hydrogen bonding between bridging or terminal hydroxides and water ligands. Further
condensation is promoted by the nucleophilic character of μ3-OH trimer. Nucleophilic
attack of 2 trimers on a monomer species initiates the formation of Al13. Steric effects
force the monomer to adopt a tetrahedral coordination (center of the Keggin structure).
Consecutive addition of two trimers leads to the alumina tridecamer (Fig.2.5a).
Potentiometric studies conducted by Baes and Mesmer [? ] on alumina precipitation
lead to the conclusion that monomeric species are formed very quickly inside the sys-
tem. These aggregate rapidly into di- and trimers. But the formation of Al13 appeared
to be very slow and condition-dependant (pH, ionic strength, temperature...). These
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(a) (b)

Figure 2.5.: (a) Sructure of the [AlO4Al12(OH)24(H2O)12]7+Keggin ion cluster. The tetrahedrally coordinated AlO4
appears in red. (b) 27Al NMR spectra of aluminum suspension at 20°C. We can see the characteristic 62.5
ppm peak arising from the higly symmetric AlO4.

same conditions influence the nature and amount of transitional species between the
monomer and the Keggin cluster. The kinetics of reactions 2.3, 2.4 and 2.5 are determi-
nant to understand the impact of aging time on boehmite suspensions.
Linking structural characterization with changes in flow behavior during gelation is
certainly one of the first connections we need to establish. As exposed in Morgado
et al. work[? ], 27Al NMR is a very powerful tool to track the aluminium species
distribution. Since they proved that solid state NMR of freeze-dried suspensions exhibit
the same spectra as in liquid state, freezing the system to stop the reaction at different
peptization times could provide information on the relation between aluminium species
distribution and rheological properties.

2.3. Boehmite Peptization

Peptization is defined by IUPAC as the dispersion of aggregates/colloids to form a stable
suspension. In case of boehmite, peptization is often conducted under acidic condi-
tions. The acidic peptization of boehmite sols, derived in situ from the hydrolysis and
condensation of aluminium salts, has been extensively reported in literature.

2.3.1. Mechanism

Studies conducted by Akittadd reference , Bruggen[? ], and Ramsay[? ] noticed a
special behaviour of boehmite suspensions: they remain stable even at very high ionic
strength. Ramsay noted the existence of short-range repulsions, different from regular
DLVO electrostatic repulsion. This conclusion came from the loosely flocculated system
he obtained when he increased anion concentration. Electrostatic repulsions became
negligible in these conditions, but he still obtained a stable and only loosely floccu-
lated system (aggregate size determined by light scattering). Measuring zeta potential
in these conditions could give us a clear idea on the distinction between both mecha-
nisms, but also on the adsorption and reactions involving nitric acid. Drouin suggested
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2. Introduction to Boehmite Chemistry

a partial dissolution of the poorly crystalline boehmite during peptization, with in situ
generation of monomeric species that eventually condense around boehmite colloids
to create a polymeric layer, responsible for short-range repulsion. Morgado [? ] con-
firmed this mechanism by 27Al NMR characterization. Fig.(2.6) shows the increase in
monomer concentration at the early stages (t ≈ 1000 min) of peptization, and decrease
in the concentration of polymeric species. This also probably indicates a dissolution-
recrystallization of the larger clusters.

Figure 2.6.: Absolute and relative concentration of monomeric (solid markers) and polymeric species (open markers),
for two concentrations, with [HNO3]/[Al]−−0.1, determined by NMR spectral integration.

Bruggen & al. formed aluminium polymers by in situ hydrolysis of aluminium chlorhy-
drate in boehmite suspensions. After polymers adsorbtion on the boehmite surface, they
investigated the stabilization effect of this additional layer. The interaction potential be-
tween two boehmite rods did not fit DLVO theory. An additional term was added to the
total potential equation:

Vtot = VV dW + Velect + Vpoly (2.6)

where Vpoly accounts for the repulsive potential of the adsorbed polymeric layer.
The influence of the polymeric layer on the total interparticle potential was investigated
in the same study. They plotted Vtot for different layer thickness 0.25 nm < δ < 2 nm and
noticed that small changes in δ considerably changes the potential-well depth Fig.(2.8).

Figure 2.8.: Vtot for different Al13 coating thickness
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Figure 2.7.: Representation of the surface of a boehmite colloid: a first layer, accounting for short-range repulsions is
filled with adsorbed Al clusters, after partial dissolution of the boehmite surface. The second layer is the
electrical double-layer accounted for by DLVO theory

2.3.2. NMR Investigation of Al13-Keggin ions existence

The presence of Al13 clusters can easily be established with 27Al NMR thanks to a distinct
narrow peak at 62.5 ppm, arising from highly symmetrical tetrahedrally coordinated
Al(O)4. However, in their study, Morgado & al. found no tetrahedrally coordinated
Al species for all gelation times and for any pH between 1.4 and 3.7 [? ]. Instead,
unidentified polymeric species (SB1) appeared with a broad peak at 8.5 ppm. This peak
decreases in intensity as a function of gelation time, overlapped by a very broad, low in-
tensity peak at 8 ppm (SB2). Both signals correspond to octahedral resonance systems.
SB2 species appear only in gelled systems suggesting a correlation between SB1 and SB2
where the first transform into the latter. This is supported by the non-existence of SB2
peaks in dilute systems, where gelation did not occur. The broadness of the peak could
be explained by limited mobility of more condensed clusters. This fits with the idea of
a very large structure formed by aggregation of SB1 species into an interconnected gel
network. Since the monomers’ peak didn’t exhibit any broadness induced by viscosity
increase, we can suppose they are not affected by gelation, and thus, can move freely
in the interstitial water contained in the gel. In other words, gelation is not induced by
physical aggregation of monomeric species. No direct proof of the presence of Keggin
structure in boehmite systems has been proved yet, at least for ph<3.7. However, the
assumption of their existence at boehmite optimal peptization pH, is well established.
Unfortunately, we couldn’t find many studies that used spectroscopic techniques to sup-
port this theory. NMR could be a powerful tool to indentify the involved species. But
intrinsic quadrupolar effect of Al, that leads to peak broadening, makes this technique
difficult to interpret.
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2. Introduction to Boehmite Chemistry

Figure 2.9.: 27Al NMR spectra (130 MHz) of a boehmite dispersion at 10%wt peptized with [HNO3]/[Al]−−0.1 (a) 60
min, (b) 240 min, (c) 420 min, (d)780 min, (e) 1200 min. Scale in x axis only valid for (a). Others were
equally displace for better lisibility

2.3.3. Relevant parameters

Acid ratio - pH

Boehmite peptization is usually conducted under acidic conditions using nitric acid. The
molar ratio R−−[HNO3]/[Al] and the pH are obviously intimately linked together. A
slight modification of these parameters changes physical interactions and equilibria, and
has a clear influence on macroscopic behavior. pH controls the physical interactions
between particles in a complex way, involving several parameters.

• At pH between 1.4 and 3.7, [? ] only monomeric to trimeric species exist. As
we can see in reactions (2.5) or (2.3) for instance, increasing the pH leads to
dissolution of polymeric species;

• Increasing the molar ratio contributes to higher charge screening and reduces the
term Velect. Vand der Walls forces start to predominate;

• A pH decrease finally reduces the overall particle size because of higher dissolu-
tion.

Ramsay determined the optimal R as 2.10−2, confirmed by Drouin as pH=4.5, for the
same molar ratio. He also noticed that the effect of pH on suspension flow behavior
isn’t linear. The storage modulus increases dramatically until reaching a maximum at
R = 0.2, and a minimum at R = 0.3. Higher solids loading were much more sensitive
to variations of acid ratio [? ] (Fig.2.10). Another interesting aspect is the pH increase
with peptization [? ]. In the slurries we previously studied, we measured an average
pH of 4 for R = 4.10−2. For such high molar ratios, pH is supposed to be lower. The
increase in pH after peptization (consumption of nitric acid for partial dissolution of
boehmite grains) might be an explanation for this behaviour. We can conclude that
low pH values yield clusters too small to overcome long-range Van der Walls attraction
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forces. In other words, the thickness, δ, of the polymeric layer isn’t high enough to
create short range repulsions when the electrostatic ones are totally suppressed. In basic
conditions, as it is known in sol-gel chemistry, condensation reactions are catalysed. We
can imagine the formation of large nanoparticles (eventually Al30 polyoxocation) that
do not adsorb on the boehmite surface anymore, and therefore, do not contribute to
interparticle potential anymore. We will discuss further, in rheology section, the possible
tailoring of rheological properties with acid molar ratio.

Figure 2.10.: Storage modulus G’ vs acid molar ratio for 3 different solids loadings

Particle size

The particle size effect after peptization is intimately linked to pH and acid ratio, but
also to aging time as pointed out by Morgado (Fig2.11). After 1h of peptization, smaller
particle size apparently yields a better dispersion, thanks to a higher value of R. We can
also notice a sudden increase in MPS at gelation time. Gelation seem to be accompanied
by a gradual increase in MPS. An interesting complementary study for us would be to
find a link between the initial grain size, acid ratios, pH, and flow behaviour.

Figure 2.11.: (a) Apparent viscosity and (b) mean particle size vs Aging time of boehmite dispersions for 10% wt and
R = 0.1 (solid markers) - R = 0.075 (open markers)
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Figure 2.12.: 27Al NMR spectra of a boehmite dispersion (10% wt Al203) peptized with [HNO3]/[Al]−−0.1, (a)sol-60 min
of peptization, (b) gel-1200 min peptization, (c) sol-1260 min of peptization, recorded at 80°C.

Temperature

Since we established the physical character of boehmite gels, the reversibility of sol-gel
transformation by thermal treatement seemed obvious: an increase in kBT increases
Brownian motion, and particles move too much to stick into the equilibrium distance.
We noticed in our suspensions a significant decrease in viscosity by heating at 70°C.
After bringing the system back to room temperature for a few hours, it recovers its
initial viscosity, as for the NMR spectra[? ]. The mechanism behind this behavior is a
dissolution of polymerized species to give back aluminium monomers ((a) and (b)).

2.4. Conclusion

As we suggested in the introduction, despite the frequent usage of boehmite as pre-
cursors for many materials in different applications, only few studies were conducted
to provide insights on the exact mechanism of boehmite peptization. An analogy with
aluminum solution chemistry might not be relevant since hydrolysis and condensation
pathways are very sensitive to aging, peptization, pH, and a lot of other intrinsic pa-
rameters. In addition, no existing proof of the supposedly predominant Al13 Keggin
structure has yet been provided for boehmite suspensions, even if many authors relayed
its presence. However, the investigated pH range in reviewed NMR study(1.7-3.9)[? ]
was not concomitant with Al13 predomination range[? ], and deeper characterization
could lead to more significant results.
The next chapter is a slightly "enhanced" version of an article we published on Scientific
Reports.
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3
Linking Rheology and Printability for Dense
and Strong Ceramics by Direct Ink Writing

3.1. Introduction

A major goal of ceramic processing science is to produce complex three dimensional
structures with excellent mechanical and/or functional properties. Multiple technolo-
gies where green bodies are built up layer-by-layer from simple building blocks have
been developed to extend the range of structures available in ceramic materials. These
processes are known by many names including additive manufacturing, 3D printing,
and solid freeform fabrication. One additive manufacturing technique that is of par-
ticular interest due to its ability to produce space filling and spanning structures and
relatively easy access to multimaterial printing is direct ink writing.
During direct ink writing, a colloidal suspension is passed through a computer controlled
needle depositing a spatially controlled continuous filament of material. This process
imposes stringent requirements on the rheological behaviour of the inks; they must eas-
ily flow through a narrow opening, but they must also resist deformation immediately
after printing.
There are two key strategies for tailoring this type of rheological behaviour. One ap-
proach is to produce a low viscosity ink that undergoes gelation after printing so that it
rapidly develops a high enough yield strength, through gelation, to resist deformation
after printing. A second approach is to produce inks with precisely controlled rheologi-
cal properties. Suspensions must be viscoelastic, with a sufficient yield stress to support
layer stacking. It is also essential to obtain a shear-thinning flow behaviour to facilitate
deposition through the needle. These rheological properties are often linked and can-
not, in general, be varied separately. In the present article, we will focus on the second
approach.
The rheological criteria for direct ink writing of spanning structures has been thoroughly
evaluated, and many different spanning structures have been developed using a wide
variety of colloidal and sol-gel inks [? ? ? ]. However, there have been relatively
few reports of dense, space filling structures produced by direct ink writing. The key
factor in dense structures is that the cylindrical depositions from the nozzles must flow
enough after deposition to fill the inevitable void space formed when stacking cylinders,
and must then resist larger scale slumping of the printed object. Achieving this narrow
range of rheological behaviour has been elusive. There are however a few exceptions [?
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? ] were dense samples were printed by DIW, but no rheological printability criterion
was established.
In this work, we define the rheological properties that lead to strong and dense materials
by direct ink writing.
We chose to develop DIW inks based on boehmite gels, a well-known and industrially
important α-Al2O3 precursor that results in highly dense, fine grained materials when
processed appropriately. Boehmite gelation occurs by the partial dissolution of boehmite
particle surfaces [? ? ] into monomeric aluminium species Al(H2O) 3+

6 , through suc-
cessive hydrolysis and condensation reactions. [? ? ] Most importantly, these reactions
lead to a time-dependent gelation that changes the ink rheology over time, and thus
provides a simple basis to scan many ink rheologies and understand their effects on
printability by direct ink writing. Little work has been done on using boehmite for DIW
[? ], despite its common usage in extrusion processes [? ]. In addition, there has been
no specific focus so far on obtaining boehmite based dense materials.
The goals of this work are to develop a definition of printability for space filling, dense
objects and link the printability of boehmite gels to their time-dependent rheological
behaviour. Using parallel plate rheometry, we study the viscoelastic flow behaviour of
boehmite gels as a function of time with special attention paid to the shear-dependent
viscosity and yield stress. These measured rheological parameters are then compared
to image analysis of printed objects to identify the physical forces behind shape defor-
mation after printing. Slumping is usually ascribed to gravitational forces, supposing
that the objects deform under their own weight if the yield stress after printing is not
sufficiently high. But we show in this work that yielding can also be induced by capillary
forces, that can even be stronger than gravity. Consequently, we develop a rheological
criteria for printability based on dynamic yield stress and surface energy. Finally, we
show that sintered objects printed from gels that meet this definition of printability are
highly dense and mechanically resistant.

3.2. Methods

3.2.1. Materials

Raw powders for boehmite suspensions were obtained by mixing Catapal B (Sasol) with
2.5%wtAlOOH of nitric acid. Powders were seeded with 1.5%wt 30 nm (agglomerate
size: 240 nm) α − Al2O3 particles (SBET = 84 m2.g−1). Seeding allows a denser and
finer microstructure at lower sintering temperatures (1300 °C)[? ]. All suspension
components (boehmite, acid, and seeds) were dispersed and drum dried to obtain the
raw powder.

3.2.2. Suspension preparation

Suspensions were prepared with deionized water. After adding half of the necessary
amount of powder, suspensions were sonicated for 1 min and mixed under vacuum
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for 15 min in a Harnisch & Rieth D-VM-10 mixer. The previous steps were repeated
after adding the rest of the powder. The boehmite mixture used for this study has been
optimized for other ceramic processes with a 2.5% [HNO3]/[Al] ratio. Immediately after
preparation, 43wt% and 45wt% suspensions are still newtonian liquids. Suspensions
were poured into 30cc plastic syringes (EFD, Nordson) and allowed to gel.

Table 3.1.: My caption

Boehmite Suspensions

Solids loading wt% Nozzle Size (μm) γ(mN.m−1

43 250 72
43 500 72
43 840 72
45 500 72

3.2.3. Rheological properties and surface tension

For each suspension, rheological data were gathered at different aging times. t=0 was
defined as the moment when suspension preparation was finished. Rheological prop-
erties were determined with a Kinexus rotational rheometer (Malvern), using a 20 mm
parallel plate geometry and a 20 mm pedestal plate. Both the geometry and the support
were sandblasted to avoid slipping. A PEG heat-exchanger stabilized the temperafture
at 25 °C ±0.05°C. Elastic and viscous moduli (G′ and G′′) were obtained by amplitude
sweep measurements at 1 Hz in the range of 0.1 − σy Pa. G′ and G” were taken at
plateau values in the linear viscoelastic region (LVR).
Static and dynamic yield stress (σStat

y and σDyn
y , respectively) were measured with a

Stress-Shear rate loop as described in Fig.3.2. This loop retraces the shear history of
boehmite inks printed in a DIW device. A stress is applied (step 1) until suspension is
extruded (step 2) through the nozzle at a certain shear rate (step 3). Stress relaxation
leads to σDyn

y once printing is completed. The value of σStat
y was estimated at the slope

change onset in the first part of the loop, and σDyn
y was obtained at the y-intercept after

fitting the data to the Herschel-Bulkley equation.
The surface tension of 45wt% suspension and deionized water was measured by pen-
dant drop method, using an ImageJ plug-in [? ]. Drops were suspended from 1.37
mm diameter nozzles and images were taken with a digital microscope with an intense
backlight to increase contrast.

3.2.4. Printing procedure and image analysis

Samples were printed by Direct Ink Writing (DIW), using a Nordson SL940 slurry de-
position system. A plunger is air pressure-driven through the syringe to dispense the
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Figure 3.1.: Loop flow curve of a 45wt% boehmite suspension aged for 8h. This protocol replicates the shear applied on
a printed ink, from the syringe to the printing support. While measuring γ̇, an increasing stress controlled
ramp was applied (1) until suspension yields at the σStat

y (2). When γ̇ exceeded 100 s−1 (3), a decreasing

shear rate controlled ramp was applied until γ̇ = 1s−1 and stress relaxes at σDyn
y value (4).

suspension while the printing head moves along programmed X-Y and Z axes. The op-
erator manually adjusted the pressure to ensure adequate flow through the nozzle, as a
function of printing speed. Each layer started by dispensing at the starting position for
500 ms (±100ms, depending on the applied pressure), and finished with a short non-
dispensing horizontal line to avoid a common defect generated by the vertical movement
of the printing head.
At different aging times for both suspensions, lines were superimposed at 3 mm.s−1 to
build an object 14 mm long, about 5 mm high, and nozzle size width object. The print-
ing was filmed at 2 frames per second, against a black matt background and support
to enhance contrast and decrease reflections in post-treatment. Collected images were
thresholded, cropped, and binarized with a custom Python script. White pixels, cor-
responding to the printed object, were summed to obtain the area A. The theoretical
area Ath was calculated as Ath = lnd, were l (mm) is the printed length, d the nozzle
diameter (mm), and n the number of stacked layers. The ratio A/Ath was automatically
calculated for each frame.
Three-point bending samples required additional precautions in printing paths. All
tested samples were printed with 500 μm nozzles. To prevent printing defects induced
by insufficient line merging, objects were printed alternatively in lengthwise and width-
wise directions. Each line was programmed to overlap the adjacent one in each layer
by 10% of the nozzle size (in this case, 500 μm). Bars were printed on microscope
glass slides and dried for 2-3 days at room temperature and 90rh% and then at ambient
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Figure 3.2.

humidity the sample became opaque. All samples were sintered at 1300°C for 60 min
and 5°C/min ramp. Three-point bending tests were performed on 23 unpolished bars
with a Shimadzu AGSX press at 0.2 mm.s−1. The span between bending points was 12
mm. Average sample size was 16.7x2.2x2.1 mm3.

3.3. Results and Discussion

3.3.1. Rheological Behaviour of Aging Boehmite gels

Viscoelastic suspensions are characterized by their complex shear modulus:

G∗ = G′ + iG” (3.1)

where G∗ is composed of a the real component (G′), the elastic (or storage) modulus,
and an imaginary component, (G′′), the viscous (or loss) modulus. Fig.3.3 shows G′

and G′′ vs γ∗ parallel plate oscillatory measurements at 1 Hz for 43 wt% solids loading
boehmite gel aged for 0 h (a) and 28 h (b). These two examples are indicative of the
general rheological behaviours observed in all suspensions. For the 0 h aged sample, G′′

is greater than G′ for all strains and the ink has a fluid like behaviour. After aging for
28 h, G′ is greater than G′′ up to 10% strain, at which point G′′ increases and intersects
G′. After this intersection, both moduli decrease with increasing γ∗ and G′′ is greater
than G′. The behaviour of the gel aged for 28h is emblematic of a gel-like viscoelastic
response where the rheological behaviour at strains < 10% is linearly viscoelastic and
10% is the yield strain, γy.
To assess the significant rheological changes in boehmite gels, samples were charac-
terized over aging times from 0 to 1200 h. The evolution of elastic modulus G′ as a
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Figure 3.3.: Elastic and viscous modulus vs. strain obtained by amplitude sweep at 1 Hz for 43wt% boehmite suspension
after aging for (a) 0h and (b) 28h. Before gelation, G′′ values are always higher than G′ at all strain values,
unlike at 28h where the gel transitions from a solid-like to a liquid-like behaviour.

function of aging time for 43 and 45 wt% solids loading gels is shown in Fig.3.4a.
Elastic modulus for both suspensions increases with aging time. For the 45 wt% gel,
G′ starts at 40 Pa and increases over two orders of magnitude from 1 h to 10 h aging
time. For the 43wt% sample, the general behaviour is the same, but shifted towards
later aging times. The elastic modulus is always lower than for the 45wt% suspension.
After 100h, both moduli values are very close (≈ 104 − 105) compared to early aging
times, where the 45wt% G′ is higher by 2 orders of magnitude.
To provide more insight into the fluid-like versus gel-like behaviour, Fig.3.4b shows the
ratio G”/G′ vs aging time. G”/G′ is a useful quantifier of viscoelasticity, as the gelation
point is defined by G”/G′ = 1 [? ]. G”/G′ values < 1 indicate a solid-like elastic
dominant behaviour, while values > 1 signify a liquid-like viscous dominant behaviour.
45wt% suspension reached gelation point after 3h while it took 10h for the 43wt%
sample. G”/G′ for both samples decreases with aging time, becoming relatively steady
after 10 h indicating relatively stable rheological behaviour. Importantly, the G”/G′

values for the 43 wt% inks are generally higher than the 45 wt% inks, which indicates
that the lower solids loading inks have a greater contribution of viscous, liquid-like
behaviour in their overall rheology.
Ceramic suspensions with solids loadings φ ≥ 0.3 and G’≥G" usually exhibit a shear-
thinning flow behaviour, approximated by the Herschel-Bulkley model [? ]:

σ = σDyn
y + Kγ̇n (3.2)

where σ is the stress (Pa), σDyn
y is the σDyn

y (Pa), K is a model factor (consistency index
in Pa.sn), γ̇ is the shear rate (s−1), and n is the flow index.
Fig.3.5a shows a log-log plot of viscosity versus shear rate and Fig.3.5b log-log plot of
stress versus shear rate for 43 wt% (green lines) and 45 wt% (blue hollow circles) solids
loading inks. In Figure 3.5a, for the 43wt% suspension, viscosity is independant from
shear rate at taging = 0h, indicating a Newtonian behaviour (slope = 0). On the con-
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Figure 3.4.: (a) Evolution of elastic modulus G’ for 43 and 45wt% suspensions measured at 1 Hz (b) Evolution of G”/G′
as a function of aging time for 43 and 45wt% solids loading.

trary, 45wt% exhibits a shear-thinning behaviour at taging = 0h, with a shear-thinning
index (proportional to the slope) lower than after gelation. Zero-shear viscosity values
increase from 102 to 105 mPa.s with time. 43wt% gel also progressively becomes a Bing-
ham shear-thinning fluid, until gelation point, where a yield stress appears (Herschel-
Bulkley model). After gelation, there is no increase in shear-thinning behaviour, since
all slopes are equal and proportional to γ̇n−1 (with n roughly equal to 0.5) despite in-
creasing viscosity. Compared to the 45wt% (blue hollow circles), there is no effect of
solids loading on the amount of shear-thinning, as the slope for 45wt% gels is identical
to 43wt% gels. A similar behaviour is observed in Fig.3.5b, showing stress as a func-
tion of shear rate. For 43wt% gel, logσ increases with aging time and is linear with
log(γ̇) for samples beyond gelation point. As expected by the logarithmic linearization
of the Herschel-Bulkley equation, the grey line represents the constant slope n, with no
increase in shear-thinning effect after gelation.
In summary, both solids loadings inks show shear thinning behaviour for aging times
beyond the gelation time. However, for all aging times and shear rates, the viscosity
of the 45 wt% inks is higher than the 43 wt% inks. This is consistent with the more
elastic-like behaviour observed for the 45 wt% inks observed in Figure 3.4b.
Yield stress is another important rheological parameter for viscoelastic fluids. For some
fluids, two different types of yield stress can be defined: the static yield stress σStat

y which
is the stress required to flow from a rest state, and the dynamic yield stress σDyn

y which
is the minimum stress required for a fluid in motion to continue flowing. As the inks
flow through the nozzle tip, it induces a shear rate that is maximal at the walls and can
be estimated by [? ]:

γ̇max = 4Q̇

πr3 (3.3)

with r the nozzle radius, and Q̇ the volumic flow rate, calculated as Q̇ = Sr2, with S the
printing speed. For example, γmax = 61s−1 for a 500 μm diameter nozzle, but is doubled
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Figure 3.5.: Evolution of viscosity ηapp (a) and stress σ (b) as a function of shear rate γ̇ for 43 and 45wt% suspension
at respectively taging = 0, 6, 16, 21, 44, 96h and taging = 0, 5, 8, 25h, from bottom to top for both plots.

for 250 μm nozzles. Thus, a distinction between both yield stresses is important because
the inks must flow through the nozzle, overcoming σStat

y , but at the same time, enduring
high shear rates and still form objects with minimum deformation after printing, which
requires a sufficient σDyn

y . Thus these values provide relevant process parameters for
DIW including minimum stress applied to the inks to start flowing, minimum stress
required for continuous flow and printing, and maximum stress that can be endured
after printing without causing deformation.

Figure 3.6.: a Shear rate versus time showing the control sequence for successively looped flow curves. This sequence
leads to figure b, log-log plot of stress as a function of strain for a 43wt% suspension aged for 94h. Both
curves come from the same sample that has been sheared twice in a row, according to the same protocol
described for Fig.3.2. Δσy1 and Δσy2 refer to the difference between σStat

y and σDyn
y for respectively the

first and the second loop.

Fig.3.6a shear rate versus time, describing the protocol used to obtain the hysteresis
loop in Fig.3.6b. A stress controlled mode, where stepwise changes in stress are applied,
is preferred for the first part of the loop (1 and 3) to determine σStat

y . This allows to
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study the gels properties without exceeding the σStat
y value. The protocol automatically

switches to shear controlled mode when the shear rate exceeds 100 s−1. On the other
hand, a shear controlled mode is preferred for the second part of the loop (2 and 4) to
determine the σDyn

y . If the stress is suddenly decreased to zero, the remaining inertia
of the instrument could underestimate the value of σDyn

y . Changing the control mode is
also very important in this type of experiments as yield stress fluids’ response to stepwise
changes in shear or stress can be very different outside of the linear viscoelastic region
[? ]. Fig.3.6b shows a log-log plot of two flow curves for 43wt% suspension aged
for 94h. Data were gathered in one run on a single sample, as described in Fig.3.6a,
to assess the difference between σStat

y and σDyn
y according to the shear history of the

sample. Green dots (1 and 2) correspond to the first loop. The sample was sheared
from a rest state according to the protocol described for Fig.3.2. Grey dots (3 and 4)
correspond to the second loop, performed after the end of the first one. The difference
between σStat

y and σDyn
y for the first loop, Δσy1 is approximately 500Pa. For the second

loop, the difference Δσy2 drops to approximately 100Pa. Similarly, the area within the
hysteresis loop is significantly lower in the second loop. This area represents the energy
consumed in structure breakdown [? ], that leads to yielding at σStat

y . One possible
explanation for the difference between Δσy1 and Δσy2 is the "double cage" structure
of boehmite gels. As the surface of boehmite particles is hydrolysed, covalent bridging
might occur between the particles [? ], creating chemically stabilized clusters. These
chemical bonds can not be broken by simply shearing the sample. The clusters are
also electrostatically stabilized as a physical gel. The σStat

y corresponds to the breaking
of the "physical gel" structure and σDyn

y is the residual strength provided by "chemical
gel" structure. Therefore, after the first loop, the breaking of physical interparticle bonds
decreases the required energy for structure breakdown, as can be observed in the second
loop. Indeed, the equivalent σStat

y for the second loop is more or less equal to the σDyn
y of

the first loop.

Although hysteresis loops are most commonly used to demonstrate thixotropic behaviour
[? ? ? ], it should be pointed out that the existence of such hysteresis is not an abso-
lute proof of thixotropy [? ], as viscoelastic suspensions often demonstrate this type of
behaviour.

Fig.3.7a shows a semi-log plot of σStat
y and σDyn

y as a function of aging time for both
solids loadings. Two regions can be distinguished: a region corresponding to aging
times below gelation point and another one beyond gelation point. In the first region,
43wt% inks are Newtonian fluids, as observed in Fig.3.5a, and do not exhibit any yield
stress. After gelation, σStat

y linearly increases with log tAging for both solids loading with
comparable slopes. A similar behaviour is observed for σDyn

y . It linearly increases with
logtAging, although the slope is different than for σStat

y , as it is shown in Fig3.7b. In
fact, for the 45wt% suspension, between 3h and 7h, the difference between σStat

y and
σDyn

y is small. After 8h, they separate, and σStat
y is always greater than σDyn

y at all aging
times. For both solids loadings, the divergence of the yield stresses occurs several hours
after the gelation point. As explained in Fig.3.5b, for a finite shear rate, stress values
increase with aging time and solids loading. In accordance, Fig3.7a shows that at all
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aging times beyond the gelation point, σStat
y is higher for 45wt% than for the 43wt%

suspension. The same observation was made for σDyn
y , with lower values than σStat

y .
The boehmite chemical structure is typical of this difference between yield stresses as
higher σStat

y values are required to break electrostatic bonds between boehmite clusters,
but once at rest, unbroken chemical bonds between boehmite particles maintains a
residual σDyn

y .

Figure 3.7.: (a) Evolution of static yield stress σStat
y as a function of aging time for 43wt% and 45wt% boehmite suspen-

sions (b) Static and dynamic yield stresses evolution as a function of aging time for 45wt% suspension.

Fig.3.7c and 3.7d also show that σStat
y and σDyn

y diverge after 20h for 43wt% suspension
and after 6h for 45wt%. This separation supports the existence of two structures in-
ducing boehmite gelation, specially since these aging times do not match with gelation
point (Fig.3.4b, G”/G′ = 1). It also justifies the distinction between σStat

y and σDyn
y for

DIW suspensions as the first must be outreached to extrude and the latter must be high
enough to build an object.
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3.3.2. Printability

Clear rheological criteria exist for printing spanning, woodpile type structures [? ? ],
but there has been little systematic exploration of the printability of dense and strong
structures that need to efficiently and completely fill space rather than spanning voids.
Therefore, printability is not universally defined by the rheologies previously reported,
it is also depends on the application. Even among the subset of DIW applications in-
volving dense structures, defining printability is subjective and is frequently posed as
an engineering tolerance problem: how much deformation can the structure tolerate
before functionality is harmed? It is also important to identify the physical parameters
behind shape deformation. How much slumping is induced by gravity and are capillary
forces equally important to consider?

Quantifying deformation

To develop a definition of printability, we will characterize the areal deformation of DIW
printed objects as a function of ink rheology. Fig.3.8 shows several objects printed with
different solids loadings at different aging times. Single lines were stacked to print a 14 x
5 mm object (from the right to left of each object on the images), and width was equal to
nozzle diameter. At low aging times (first column), all samples exhibit high deformation.
43wt% objects printed 840 μm nozzle better support layer stacking, as the deformation
is lower than for 250 μm and 500 μm nozzles, at equivalent rheological properties. This
is confirmed at around 17h and 20h. Earlier pictures of objects printed with 43wt%
suspensions are not presented because they invariably produced sessile droplets, and
thus, where not relevant in measuring areal deformation. With 45wt% ink and 500 μm,
the obtained object is very close to a droplet, but a certain form of shaping can already
be observed. With increasing aging time, deformation progressively decreases in all
conditions. After 21h, 43wt% suspension printed with 250 μm nozzle slumped more
than with 500 and 840 μm. 45wt% inks provided the same result after aging for only
7h. This result is consistent with the difference in gelation kinetics with solids loading
described in the rheological characterization (Fig3.4b,3.7). Objects printed after 10h
with 45wt% suspension did not show any deformation which is not the case with the
same nozzle and lower solids loading after about twice the time (19h). The visibility of
the printed lines is also a good indicator of slumping or excessive line merging. Lines
were not visible with the 250 μm nozzle until late aging times (37h) while they could
be clearly discerned with larger nozzles at equivalent aging time. Also for the 250 μm
nozzle, slumping occurred asymmetrically, as observed after 16 and 21h. This can be
explained by longer dispensing times at starting points to avoid initial printing defects,
hence locally increasing the objects’ width.

Gravitational slumping

If we take a closer look at 45wt% inks printed after 4h, they still led to slumped objects,
despite exceeding gelation point (Fig.3.4b) and 200 Pa σDyn

y (Fig.3.7). Considering a
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Figure 3.8.: 5 mm stacks of 43wt% and 45wt% boehmite suspensions printed with 250, 500 and 840 μm nozzles at
3 mm.s−1 after different aging times. 45wt% suspension became printable earlier than 43wt%, whatever
than nozzle size is. Nozzle size also impacts the printability as comparable aging times lead to different
results with the same suspension. With a σDyn

y of 200 Pa, 5h-45wt% object clearly confirms that yield stress
is not a sufficient criterion.

σDyn
y of 200 Pa, an estimation of the maximum printable height hmax can be calculated:

hmax =
σDyn

y

gρ

hmax ≈ 1.5cm

(3.4)

with ρ = 1.40kg.m−3 and 1.43kg.m−3, respectively for 43wt% and 45wt%; g = 9.81m.s−2.
With a 500 μm nozzle, that corresponds to approximately 30 layers. But Fig.3.8 shows
the slumping at 5h induced by stacking only 10 layers (5mm) of a 45wt% boehmite sus-
pension, despite a theoretically sufficient yield stress. Even though slumping decrease is
correlated with separation in σStat

y and σDyn
y values reported in Fig.3.7c&d (tsep = 20h

for 43wt% and tsep=6h for 45wt%), printability can not be defined by the yield stresses
alone.
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Figure 3.9.: Image of 45wt% boehmite gel printed after aging for more than 4h. Despite a supposedly sufficient yield
stress of 200 Pa, as calculated in Eq.3.4, the gel is clearly slumping. The shape of this object clearly confirms
that yield stress is not a sufficient criterion to assess the printability of a DIW ink.

Figure 3.10.: Frame superposition of 45wt% boehmite gel printed after 1h, 5h, and 10h of aging, with a 500 μm nozzle.

Impact of capillary forces

Fig.3.10 shows a superposition of three different frames taken from objects printed at
separate aging times with 45wt% suspension: 1h, 5h and 10h. After aging for 1h,
45wt% suspension still behaves as a Newtonian fluid with no yield stress (Fig.3.7). The
printed lines turn very quickly into drops as surface tension forces reduce overall in-
terface energy. At 5h, middle shape shows that 45wt% inks start to support stacking,
with a characteristic double peak shape (corresponding to printing start and end). The
object is not only slumping because of gravitational forces (black arrow), but surface
tension γs (blue arrows) tends to bring the extremities towards the center to reduce
surface energy and turn into a drop, until stabilizing into the intermediate red shape.
Finally, the height and length of the top shape both correspond to the path programmed
in the printer. There are no signs of slumping and each printed layer is clearly dis-
cernible. Hence, after aging for 10h, 45wt% suspension is considered to be printable.
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Compared to most commonly printed colloidal suspensions, boehmite gels have a signif-
icantly lower solids loading, and surface tension forces contribute more to deformation
in the few seconds following printing. Studies usually insist on the importance of yield
stress to prevent gravitational slumping [? ? ? ], but very few reported surface tension’s
relevance in DIW suspensions [? ? ], as it is considered to be more important for droplet
based techniques [? ? ].

Combining gravity and capillarity

In the light of these arguments, we suppose that σDyn
y should support printed object’s

own weight, but also capillary forces tending to minimize surface energy, such as a
suspension becomes printable when forces are balanced. Since we proved in Eq.3.4
that gravity is not sufficient, we evaluate the relative impact of both suspected physical
forces using two dimensionless numbers Ξ (Xi) and Ξγ such as:

Ξ =
σDyn

y

γR−1 + ρgh
and Ξγ =

σDyn
y

γR−1 (3.5)

with R the nozzle diameter and γs equal to the suspension’s surface tension. Measuring
the surface tension of a yield stress fluid is not trivial and extremely influenced by the
rheological properties and protocol[? ]. Measures were performed on five different
drops and the means values were very similar (about 1.3% difference in surface tension
between boehmite and water). This in accordance with other studies[? ] showing that
the surface tension of a yield stress fluid corresponds to the surface tension of its solvent
medium (in this case water, 72 mN.−1).

Figure 3.11.: Pendent drops pictures of 45wt% boehmite suspension aged for 0h (bottom row) and water drops(top
row). Water drops were used as a benchmark for the test and to evaluate the difference in surface tension
between boehmite gels and their solvent. Surface tension values are compiled in Table3.2

.
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Table 3.2.: Surface tension values measured for the drops in Fig.3.11

.

Drop
Surface tension (mN.m−1)

Water 45wt% Boehmite

1 68 68
2 70 74
3 67 74
4 68 70
5 68 69

Mean 68 71
SD 1 3

Figure 3.12.: Deformation ratio vs Ξ and Ξγ for 43wt% boehmite suspension with (a) 250 μm (b) 500 μm (c) 840 μm
nozzle and (d) 45wt% with 500 μm. Rheological measures for the 43wt% suspension come from different
suspension to ensure an exact correspondance between dynamic yield stress and deformation ratio. Colored
stripes were plotted to help see the trend.

By performing image analysis at several aging times on frames similar to those in Fig.3.8,
A/Ath can be defined as an objective deformation index. A/Ath is the ratio between
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the printed object’s area A in each frame and the theoretical area Ath programmed
with the printer. Fig.3.12 shows the evolution of A/Ath as a function of Ξ and Ξγ ,
calculated with all the rheological data gathered throughout suspension’s gelation time.
Each point in the plot corresponds to the image analysis result of an object printed
after a certain aging time and its corresponding value for Ξ and Ξγ . Since all printed
samples have approximately the same height, the term ρgh is constant. To change the
capillary term, we decided to use different nozzle sizes. In fact, we did not succeed
in significantly changing the boehmite gels’ surface tension without changing essential
parameters for boehmite peptization. A/Ath evolution is similar for both dimensionless
numbers, solids loadings, and nozzle sizes. It sharply increases from 40-60% for both
dimensionless numbers values between 0 and 1, and reaches a plateau of 100% for
higher Ξ and Ξγ values. Between Ξγ and Ξ, values are shifted to the left. This shift is
more important as the nozzle size increase, as it can be observed for the 840 μm nozzle
(Fig.3.13c). Ξ includes the effect of gravitational slumping, but Ξγ does not. Logically,
gravity plays a more substantial role when nozzle size increases because more material
is being deposited. In fact, the shift is almost negligible in Fig.3.13a with the 250 μm
nozzle. Even if summing capillary and gravitational forces is not trivial, it seems that Ξ
provides a more conclusive criterion for printability. Ξ = 1 corresponds indeed to A/Ath

values around 90%.

Figure 3.13.: A/Ath vs. Ξ of both boehmite suspensions and different nozzles sizes. Ξ = 1 establishes a clear limit of
printability as all the points beyond have a shape fidelity higher than 90% (Printable region, in yellow). For
Ξ < 1, the obtained objects are deformed and suspension is considered as non printable (Slumped region,
grey).

In Fig.3.13, the grey line corresponds to Ξ = 1. All points fall approximately in two dis-
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tinct regions. The grey region, where A/Ath is lower than 90% for Ξ inferior to one, and
the yellow region, where A/Ath is higher than 90% and Ξ superior to one. Hence, grey
region corresponds to non-printable suspensions and yellow region to printable suspen-
sions, separated by Ξ = 1 that establishes a clear limit. As σDyn

y is getting closer to the
sum of gravitational and capillary forces, printability increases. Thus, when inks’ yield
stress after printing (σDyn

y ) is able to overcome surface tension and gravity, objects can
be printed without deformation. These results show that Ξ is a reliable dimensionless
number in assessing printability for DIW inks.

3.3.3. Microstructure and Flexural Strengths of α-Al2O3 Bars Obtained by
DIW

When the rheological properties have been tailored in accordance to what was exposed
in the previous section, the challenge for DIW is to produce dense space-filling ceramic
objects with no printing defects. Fig.3.14a illustrates a fracture surface from an α-Al2O3
bar obtained by DIW. Boehmite bars have initially been printed, properly dried, and
sintered to obtain bars for three-point bending tests. To avoid microdefects caused by
bubbles formation, two drops of octan-1-ol (Sigma-Aldrich) per 100 mL of water were
added as a defoaming agent to the boehmite suspensions used to print these samples.

Figure 3.14.: (a) SEM image at x120 of fracture surface from Al2O3 bar obtained by sintering boehmite printed with
DIW. Fracture resulted from Three-point bending test. Stacked lines are not discernible in the center of the
sample, but clearly visible on the samples surface. (b) SEM image at x10000 of the same fracture surface.
The object is dense with a fine grained microstructure, suitable for high strength mechanical properties

Microstructure

Images show that there are no visible printing defects in the core of the sample. The sam-
ple surface is embossed by the printing path as it can be seen on the sides of the image.
Because of the alternate printing directionality, some layers are more protuberant than
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the others, such as it is possible to distinguish each printed layer. These surface defects
are inherent to most of additive manufacturing techniques as layer-by-layer building
forcibly leaves traces on the sample boundaries. Fig.3.14 shows that on the contrary,
inside the sample, all signs of layer stacking disappears. Lines have perfectly merged
to each other to produce a dense object, and even after sintering, printing does not
leave traces inside the sample and layers can not be distinguished. Fig.3.14b shows a
higher magnification (x10k) of the same sample. The microstructure has an average
grain size of 1 μm, with a high population of submicronic grains. Residual porosity is
predominantly located at triple-point.

Density and flexural strength

Sample density reaches 97% of theoretical Al2O3 density. Three-point bending results on
22 unpolished samples showed an average flexural strength of 591 MPa (± 149), with
a Weibull modulus of 4.5. Strength values range from 281 MPa up to 858 MPa. Even if
these values still present a moderate reliability and significant standard deviations, the
mean value is higher than what is reported for colloidal alumina and also higher than
commercially available material. Maximum values are also in the range of what was
reported for HIP sintered transparent α-Al2O3 .

3.4. Conclusion

The time-dependent rheology of boehmite gels was linked to deformation of 3D printed
objects in order to produce a dimensionless criterion for printability, Ξ. We showed that
capillary forces are an important parameter in tailoring the rheological properties of
DIW suspensions, and that deformation is not only caused by gravitational slumping.
We expect Ξ to be an accurate predictor of printability for other DIW inks because
it links physical parameters that are not related with the chemical properties of the
inks. Thus, while it is not evident that all starting materials can result in inks with
the rheological properties necessary for printability, those with a Ξ near one should be
capable of producing low deformation, high density and high strength materials like
those demonstrated here.
In the future, an upper limit for Ξ should be established where the capillary forces
between the printed lines are not sufficiently strong to merge them into defect free,
space-filling structures. A second, equipment based, upper limit should also be estab-
lished where the pressure applied by the printing system is insufficient to extrude the ink
through the chosen nozzle size. However, as described here, scientists can use Ξ to ra-
tionally design inks for printing dense and strong materials by tailoring their rheological
properties such that Ξ ≈ 1.
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Sintering and strength of boehmite
based Al2O3 bars
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4
Mechanical properties of α−Al2O3

4.1. Introduction

Review mechanical properties of alumina samples.
A plot of Strength vs grain size, Strength vs density, Density vs Grain Size.
For alumina in general at first, and for boehmite based samples, say that it simply doesn’t
exist, but comparable values were obtained with nanometric alumina.

4.2. Methods

4.2.1. Gel preparation

Raw powder for boehmite suspensions was obtained by mixing commercially available
Catapal B (Sasol, South Africa) with 2.5wt%AlOOH of nitric acid. This ratio was opti-
mized during applications for other ceramic processes in Saint-Gobain, and according
to literature [? ? ]. Powder was seeded with 1.5wt% of 30 nm α−Al2O3 nanoparticles
(SBET = 84m2.g−1). Boehmite, nitric acid, and alumina seeds were mixed in water ex-
cess and drum dried to obtain the raw material for gel preparation. Suspensions were
prepared by carefully mixing half of the required amount of boehmite and the water in
a paddle mixer. Suspensions were then ultrasonicated for 1 min to avoid agglomerates.
Removing bubbles is crucial for DIW as any remaining bubble could constitute a defect
in the final object. Hence, suspensions were mixed under strong vacuum in a Harnisch-
Rieth D-VM-10 dental mixer for 15 min. Previous steps were repeated after adding the
other half of the raw powder. DIW 30cc syringes (Nordson EFD, USA) were filled directly
after preparation when suspensions were still liquid enough to avoid any filling induced
bubbles. Details of suspensions rheological tailoring is available in a previous work [?
].

4.2.2. Direct Ink Writing of samples

Samples were printed layer-by-layer using a Nordson SL940 slurry deposition machine
(Nordson EFD). Suspensions were extruded through 500 μm nozzles by a pressure-
driven plunger. Layers were printed lengthwise. The operator manually adjusted the
pressure to fit the required flow for a certain printing speed (10 to 20 mm.s−1). Each
layer was programmed to begin with a 500 ms dispensing time at starting point to avoid
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Table 4.1.: Dilatometry tests

Solids loading(wt%) Sintering Temperature (°C) Heating rate (°C.min−1) Printing Pattern Aging Time of the gel Drying

41

1300

5

Alternate
Late

Transparent
10
20

43

5
10

10 White

10 Early

Transparent
10 Widthwise

Late
10 Lengthwise

45
5

Cross Hatch10
20

defects caused by precaucious movement. For the same reason, every layer ends by a
1 mm non-dispensing movement before starting the next layer. Samples were printed
on glass sides treated with commercially available hydrophobic coating. This ensured
a more homogeneous shrinkage during drying and facilitated sample removal as they
tended to stick to the glass slide. Samples for

4.2.3. Sintering analysis and protocol

Dilatometry

Directional sintering was observed using dilatometry at different conditions. Tests were
conducted to compare the impact of solids loading, printing pattern, aging time of the
gel, drying, and heating rate, on the densification during sintering. Table4.1 summarizes
the different testing conditions. Directional shrinkage was estimated by comparing the
initial and final dimensions of the sample after the test.

Drying and Sintering

Samples were dried in a humidity controlled oven at 30°C. Humidity was progressively
decreased from 90% to 50% over several days. Samples were sintered in box furnace at
1300°C at 10°C min−1.

4.2.4. Grain size and density measurements

Grain size measurements were conducted on 43wt% inks sintered at 1250°C, 1275°C,
1300°C, and 1325°C at 5 °Cmin−1 for 30 and 60 min.(Add some results with different
ramp to explain why we finally chose to sinter at 10°C per min. Measured grain
sizes were linked to density by image analysis. Samples were polished down to 1 μm
and plasma cleaned at the surface.
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4.2.5. Mechanical testing

Flexural strengths were evaluated by four-point bending according to ASTM C1161 A-
Size standards (25x1.5x2mm) on an Instron 3366 testing machine. A support span of
20 mm and a load span of 10 mm were used. Tests were conducted at a crosshead
travel speed of 0.2 mm.min−1. Two different batches (referred to as DIW1 and DIW2),
containing 34 and 80 samples were tested to increase reliability of Weibull statistics.
DIW1 samples were sintered at 1300°C , 5°C .min−1 heating rate, for 1h. DIW2 samples
were sintered at the same temperature, but for 30 min and with a 10°C .min−1 heating
rate. All samples were machined flat and parallel and samples with substantial defects
were eliminated after XRM imaging. Results were compared to 32 commercial grade
alumina samples (99.9% purity) bought as plates and cut to the appropriate dimensions.

4.3. Results

4.3.1. Dilatometry

Boehmite undergoes several dehydrations and crystalline reorganizations during sin-
tering cycle before transformation to α-Al2O3 . Boehmite successively transforms to
γ-Al2O3 , δ-Al2O3 , θ-Al2O3 , and α-Al2O3 at respectively 500, 800, 1000, and 1200 °C.
X-ray studies showed that the γ − δ − θ sequence corresponds to the transition of Al +

3
cations from octaedric to tetrahedric sites (CHECK MORE RECENT INFORMATION.
Previous (and famous) work by Kumagai et al.[? ] studied the impact of seeding on
the transformation of boehmite to α-Al2O3 . They showed that a small amount of sub-
micronic α-Al2O3 particles enhance the θ- to α- Al2O3 transformation, decreasing the
transition temperature from 1200°C to temperatures closer to 1100 °C . In fact, seed-
ing only improves the θ − α exothermic transformation. All boehmite gels used in this
work, unless otherwise specified, are seeded. The preparation constraints imposed by
the required rheology for DIW are detailed in our previous work [? ]. Knowing these
constraints, it seemed necessary to investigate their impact on the sintering behaviour
of the printed objects. Therefore, we investigated the transformation kinetics of printed
boehmite samples, according to the conditions detailed in Table4.1. Additionally, under-
standing the shrinkage behaviour is important to anticipate the final dimensions of the
printed object after sintering and hence, programming the printing pattern accordingly.
Fig.4.1a shows plots of relative shrinkage (DEPL) in percentage and temperature vs
time for a 43wt% boehmite objects sintered at 10°C min−1. Blue and red respectively
represents samples printed widthwise and lengthwise and tested in the thickness direc-
tion (as described by the arrow). Orange represents a lengthwise printed sample, but
tested in the length direction. All samples presented an initial shrinkage at 500°C cor-
responding to the dehydration of boehmite into γ-Al2O3 . For samples tested in the
thickness direction, this shrinkage is ≈ 3%. For the lengthwise sample tested in the
length direction, this shrinkage was limited to around 1%. The next shrinkage is very
quick and occurs around 1100 °C , caused by the θ − α transition (confirmed by TGA
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Figure 4.1.: Dilatometry curves obtained at different conditions, showing the impact of a printing pattern, b solids load-
ing, c heating rate, and d drying, on boehmite densification.

as an exothermal peak). Finally, densification and coarsening progressively decrease
the shrinkage slope until 1300°C . In the end, widhtwise (blue) and lengthwise (red)
samples exhibit slightly different linear shrinkage values in thickness(34% and 32.5%).
Printing pattern does not seem to significantly impact the shrinkage in the thickness
direction. However, sample tested in the length direction (orange) only shrank 27%,
demonstrating an anisotropic shrinkage behaviour. These results are in accordance with
the total measured shrinkage for flexural bending bars after drying and sintering, as
shown in Table.4.2.

Table 4.2.: Total shrinkage after drying and sintering of lengthwise printed bending bars before polishing

Length (mm) Thickness (mm) Width (mm)

Printed dimension 47 4.5 5
Sintered dimension 26.1 2.2 3.5

Mean shrinkage 45% 52% 29%
SD 1 3 4

78



4.3. Results

Shrinkage anisotropy factors Ka can be calculated as follows:

K lt
a =

(
1 − length shrinkage%

thickness shrinkage%

)
∗ 100, (4.1)

Kwl
a =

(
1 − width shrinkage%

length shrinkage%

)
∗ 100, (4.2)

Kwt
a =

(
1 − width shrinkage%

thickness shrinkage%

)
∗ 100 (4.3)

For the samples in Table4.2, K lt
a , Kwl

a , and Kwt
a were respectively 14(± 6), 44(±6), and

35(± 8). Anisotropic shrinkage is frequently observed in tape casting products [? ? ],
and explained by the alignment of anisotropic particles and binder molecules on pass-
ing the blade. Drying was also shown to have an effect on the overall shrinkage for
tape casting[? ]. However, there is supposedly no anisotropic particles in boehmite gels,
and no binders or other large molecules were used during the gel preparation. Fig.4.2
shows a fracture surface of 43wt% boehmite object sintered at the conditions of Fig.4.1a.
There is no apparent difference in microstructure between the top, the bottom, and the
center of the sample. Even though no specific circularity or sphericity was calculated,
the higher magnification images demonstrate the isotropy of the alumina particles af-
ter sintering. This strongly suggests that particle anisotropy is not an explanation for
the shrinkage difference. In addition, anisotropic particles would have aligned in the
printing direction (lengthwise), allowing width to present the most shrinkage. Kwl

a and
Table4.2 clearly show that width is the less shrinking dimension. Approximately half of
the total shrinkage occurs during drying. Water only evaporates on the surface of the
samples, and samples tend to stick to the support (even if the support is hydrophobic).
This anisotropy could be an explanation, as it creates residual stresses induces by the
capillary forces that drag water outside of the object. The lower shrinkage in length
because of the adhesion of the sample to the substrate also creates residual stresses that
might resolve during sintering, preventing a homogeneous shrinkage. Finally, the aspect
ratio of the object can also be an explanation for anisotropic shrinkage.

Fig.4.1b shows the derivative of linear shrinkage over time dDEPL as a function of
temperature for a 41wt% sample, sintered at 1300 °C with different heating rates (5
°C .min−1, 10 °C .min−1, and 20 °C .min−1). Curves show an increase in the θ − α
transition temperature with increased heating rate: 1096 °C at 5 °C .min−1, 1109 °C at
10 °C .min−1, and 1126 °C at 20 °C .min−1. We calculated the activation energy of the
transition temperature following the equation of Murray et al.[? ]:

Ae
−Ea
RTm = Ea

RT 2
m

φ (4.4)

with A an Arrhenius constant, Ea the activation energy of the θ − α transition, R the
ideal gas constant, Tm the peak transformation temperature, and φ the heating rate. A
simple linearisation from Eq.4.4 gives:

79



4. Mechanical properties of α−Al2O3

Figure 4.2.: SEM images showing surface fracture of 43wt% sample sintered at 10°C .min−1 and 1300°C . At the macro-
scopic level (left image), the printing pattern can not be distinguished and the rods perfectly merged together
to produce a dense monolithic alumina object. Higher magnification images taken on the top, center, and
bottom of the sample show no apparent microstructural difference that can explain the anisotropic shrink-
age.

ln
(

φ

T 2
m

)
= −Ea

RTm
+ Cst. (4.5)

We calculated Ea by plotting ln
(

φ
T 2

m

)
as a function of 1

T for all the samples. The slope
−Ea

R can help calculate the activation energy. The mean value of Ea was about 680
kJ.mol−1. This value is higher than what was found in litterature [? ] ADD KRELL
REFERENCE. Because of an earlier transformation to α-Al2O3 , grain coarsening and
densification also start earlier. As expected, the final densities estimated by dilatom-
etry clearly show higher densities for lower heating rates. Respectively for the 5, 10,
and 20 °C .min−1, total linear shrinkage were equal to 32.7%, 31.9%, 31.4%. Even
though we don’t have comparative grain size results, we can expect larger grain sizes
for lower heating rates. These results are interesting to optimize the sintering cycle for
mechanical properties. In Fig.4.1c, we studied the impact of solids loading on shrinkage
behaviour. The superposition of the curves around 1100 °C (the θ − α transition tem-
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perature) shows that the onset of transition is not impacted by solids loading. Also, the
three tested samples show similar linear shrinkage. An important distinction should be
made between the shrinkage during sintering that we measure with dilatometry with
the total shrinkage of the sample after drying and sintering. Even though no signifi-
cant difference is observed in Fig.4.1c, the shrinkage during drying is higher for lower
solids loading samples. We can suppose that the green density of dried samples is the
same for all three solids loadings. To confirm the impact of drying on densification,
DEPL is plotted as a function of temperature for samples that were differently dried in
Fig.4.1d. Boehmite samples are usually dried at high humidity and room temperature,
progressively decreasing the humidity. After this process, the samples have a translu-
cent appearance, demonstrating residual water content. The residual water can not
be removed without increasing the drying temperature, becoming white(ADD REFER-
ENCE TO DRYING CHAPTER... TO BE WRITTEN. Consequently, drying shrinkage of
white sample is higher than translucent sample. To obtain the white sample, we heated
a translucent sample at 50 °C and 40%rh. In Fig.4.1d, between 20 and 400 °C , translu-
cent samples exhibits a slightly higher shrinkage than the white one. This is probably
explained by the elimination of the water excess. After the dehydration of boehmite
into γ-Al2O3 , both curves are perfectly superimposed. This confirms that the drying
shrinkage has no impact on the sintering shrinkage and final density of the boehmite
samples.

4.3.2. Grain size and microstructure

Table 4.3.: Mean grain size and densities as a function of sintering temperature and time for 43wt% boehmite gel, sin-
tered at 5 °C .min−1.

Sintering Temperature (°C ) 1250 1275 1300 1325

Sintering time (min) 30 60 30 60 30 60 30 60

Mean Grain Size (STD) 230 nm (76) 279 nm (111) 293 nm (127) 407 nm (216) 432 nm (228) 586 nm (347) NA NA
Density (%) 97.3 98.6 98.2 99.4 99.6 99.5 99.2 99.0

Green boehmite objects were sintered and polished to calculate the average grain size
and density. Table.4.3 summarizes the results obtained for a 43wt% boehmite gel as a
function of sintering temperatures and times, for a constant ramp of 5 °C .min−1. To
improve the mechanical properties, finding the right trade-off between grain size and
density is important. All the calculated mean grain sizes were below 1 μm. As ex-
pected, lower sintering temperatures give the smaller grain sizes, but also the lowest
densities. Highest density values were obtained for samples sintered at 1300°C (99.6%
and 99.5%). Grain sizes were not measured for samples sintered at 1325°C because of
a large number of elongated grains. Fig.4.4a to h show SEM images of the samples used
to perform the measurements from Table4.3. All the studied temperatures are higher
than the θ − α transition temperature. However, samples sintered at 1250°C (Fig.4.4a)
still present a vermicular microstructure, characteristic of transitional aluminas. By in-
creasing the sintering time to 60 min, grain coalescence and boundary faceting starts
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Figure 4.3.: Summary of σ vs. d−1/2 data for alumina samples. Despite a large scattering of the data, they clearly show
a tendency to increasing strength with decreasing grain size. From [? ]

taking place. As sintering time and temperature progressively increases, porosity was
found to be mostly in triple-points, as shown by the arrows in Fig.4.4e and f (1300°C
for 30 and 60 min). A notable increase in mean grain size occurs when the sintering
time increases to 60 min at 1300°C . Also, first signs of anisotropic grain growth ap-
pear on Fig.4.4f. Elongated Grains are noted EG on the figure. The modification of
the microstructure morphology is accompanied with a slight decrease in density. Even
though the difference is probably lower than the error from the image analysis, it still
needs to be considered. Grain elongation "stretches" the microstructure and initiates
constraints during sintering, leading to weaker grain boundaries. The consequences are
clear on Fig4.4g and h: multiple intergranular pores (black arrows) appear on the vicin-
ity of elongated grains. Even though elongated grain growth might improve fracture
toughness of α-Al2O3 [? ? ], strength was the relevant parameter in this study. It is
well-known (and also intuitive) that strength increases with density. Also, strength is
linked to grain size through the empirical Hall-Petch equation:

σ = σy + kyd
−1/2 (4.6)

where σ is the fracture strength, σy is the "yield stress" of the material, equivalent to
fracture strength of the equivalent single crystal, ky is a model constant, and d is the
grain size. Fig.4.3 compiles strengths as a function of d−1/2 for alumina samples. Results
are scattered because the come from different sources with different interpretations of
d. Nevertheless, the trend of increasing strength with decreasing grain size is clear in
the plot.
We wanted to estimate the impact of the microstructure on the mechanical properties of
boehmite based α-Al2O3 . During sintering, a trade-off between grain size and density
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does not allow a simultaneous optimization of both parameters (minimum grain size,
maximum density). Therefore, on the light of the grain size and the density measure-
ments, four-point bending samples were sintered with different cycles: one for minimal
grain size, another for maximum density.

Figure 4.4.: SEM images of polished surfaces from 43wt% samples sintered at 5°C .min−1. a. and b. at 1250 °C for 30
and 60 min; c. and d. at 1275 °C for 30 and 60 min; e. and f. at 1300 °C for 30 and 60 min; g. and h. for
30 and 60 min. In Fig. f,g,h, EG means Elongated Grain growth. Arrows indicate porosity.
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4.3.3. Weibull analysis of 4 point-bending results

Theoretical background

The fracture behaviour of brittle materials is highly unpredictable and has important en-
gineering consequences. A famous example is the ductile to brittle fracture behaviour at
low temperatures that led to the Liberty Ship incident [? ]. Ceramics usually exhibit low
ductility and a linear strength-strain relationship. The flaw type, size, and distribution
can significantly vary inside the sample, but also between samples from the same set.
Strength measurements of ceramics are therefore subject to a large scatter in results.
This scattering is not considered as a measurement error or a lack of reproducibility, but
an inherent and instrinsic property of brittle materials in general, and ceramics in partic-
ular. However, this scattering generates issues in the understanding and interpretation
of strength results. Three major effects have to be considered for product design[? ]:

• The strength that can be safely used is lower than the measured mean strength of
the set;

• the failure probability of a material at a certain stress is higher if the sample size
increases because of a larger probability of finding a critical defect in the stressed
volume;

• finally, the measured strengths strongly depends on the measurement technique
because of the size effect, but also because of a different stress distribution in the
sample’s volume.

Any strength data must therefore be treated with great care. Materials scientist have
been using the Weibull distribution to describe the mechanical properties of ceramics
because it provides meaningful parameters to quantify and understand the effects ex-
plained above. Weibull statistics are based on the weakest link theory. It supposes that
a material is as strong as its weakest flaw (concept of critical defect). This means that
there is a volume dependency of the strength distribution, because increase the sample
volume, increases the likelihood of finding a critical defect. Weibull statistics also as-
sume a specific strength distribution (linked to the defect size distribution), as shown in
Fig.4.5.
Weibull distribution is defined by its probability function such as[? ]

Pf = 1 − exp
[(

−σ − γ

σ0

)m]
, (4.7)

where P (f) is the probability function, m the Weibull shape parameter or Weibull modu-
lus, σ the sample stress, σ0 the Weibull scale parameter, and γ the threshold stress value
below which there is zero failure probability. Eq.4.7 is actually called the 3-parameter
Weibull distribution. Another form of the distribution is the two-parameter form:

Pf = 1 − exp
[(

− σ

σ0

)m]
, (4.8)
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Figure 4.5.: a Weibull (red line) and Gaussian normal (dashed line) probability density functions calculated with char-
acteristic distribution values. Gaussian distribution is symmetric and centered towards the mean value.
Weibull distribution is not symmetric and is more representative of failure statistics of ceramics. b Effect
of the Weibull modulus on the probability density distribution. Higher m values narrows the distribution,
increasing the reliability of the results.

It is essentially the same as Eq.4.7, only it considers γ = 0. For ceramics engineering,
considering that there is a stress that zeroes the failure probability is a very risky assump-
tion. Although the three-parameter form can be encountered, Two-parameter form is
preferred for simplicity, and safety.

Determining the Weibull parameters can be achieved by a least-square fit (LSF) on
Eq.4.8, linearised twice by a natural logarithm. Maximum Likelihood method (ML)
is an alternative method that we will describe later in this section. Determining the
Weibull parameters starts by sorting the stress values σ in ascending order and assign-
ing a failure probability to each sample. A common used estimator for Pf , that has low
bias is:

Pf = i − 0.5
N

(4.9)

with i the rank of the data and N the total number of samples. The double logarithm of
Eq.4.8 gives:

ln ln
(

1
1 − Pf

)
= m ln σ − m ln σ0 (4.10)

Determining the Weibull scale and shape is then straightforward: m is the slope of the
LSF line and −m ln σ0 is the intercept, such as:

σ0 = [exp(−intercept)]1/m (4.11)

considering the intercept with y-axis. The intercept with the x-axis also can help calcu-
late σ0, as it corresponds to the stress for which Pf = 0.632.
LSF is a common method for determining Weibull parameters and is widely accepted
in literature. However, it makes assumptions about the data that are not valid for the
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Weibull fit. Since the strength data have been sorted and assigned a somewhat arbitrary
Pf value, considering that each point is statistically independent from the previous one
is false. It also neglects the uncertainty on the x-axis (ln σ). Also for more complicated
data analysis, such as when data come from different sample sizes or techniques and
must be pooled together, or when there is different types of critical flaws, the bias of
using LSF increases.
ML is a method specifically designed to estimate parameters of probability distribution.
It is widely used by statisticians and materials scientist for Weibull distribution. Rather
than using an arbitrary probability estimator for Pf , ML is based on a likelihood function.
For N samples of strengths σi (with 1 < i < N), the probability to obtain a strength σi

for a sample is pi. The maximum likelihood method tries, through several iterations, to
maximize the following function:

ln P =
N∑

i=1
ln pi (4.12)

The maximum value of P is calculated by partial derivations of P and by assigning pi

values that are proportional to the Weibull probability density, with respect to the stress
values. Maximizing P basically consists in finding the values of m and σ0 for which the
partial derivatives are equal to zero. This provides a pair of equations, function of m
and σ0:

N

m
+

N∑
i=1

ln σi − N

∑N
i=1 σm

i ln σi∑N
i=1 σm

i

= 0, (4.13)

σm
0 = 1

N

N∑
i=1

σm
i . (4.14)

ML method is preferred by statisticians because it has a much tighter confidence inter-
vals (90-95%) than LSF method. It is the method recommended by many authors and
required by virtually all standards organization [? ? ]. To find the Weibull strength and
shape of our datasets, we used a software called Minitab that relies on ML method to fit
a probability distribution to a dataset. In case of a Weibull distribution, Minitab solves
equation Eq.4.13 through several iterations until finding the optimum value of m, that
is then implemented in Eq.4.14 to find σ0.

Adapting Maximum Likelihood method to bending tests

Weibull distribution applied to ceramics supposes a distribution of flaws in the sample
volume. We assume by using this distribution, with respect to the weakest-link theory,
that every sample fails at a σi value in accordance with the critical defect size and loca-
tion in the total sample volume V . The stress value σi is also supposed to be maximized
and equal to the σmax value provided by the testing machine. However, the stress distri-
bution in bending tests is function of the positions and is always lower than or equal to
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the maximum σmax value. Also, over the length L (Fig.4.6a), only a small volume of the
sample is subject to the tensile stress σx creating a non-homogeneous stress field over.
As the stress increases during the test, the field shape does not change. An effective
volume Ve can be defined (Fig.4.6b). Ve is the volume of a hypothetical purely tensile
test sample, that if submitted to a stress σmax, has the same failure probability as vol-
ume V sample tested in bending under a stress σmax. Since the stress in the specimen is
always less than or equal to the maximum stress, Ve is always smaller than V and can
be calculated such as:

Ve = kV (4.15)

with k a dimensionless factor characteristic of the testing method, the sample geometry,
and the shape of your Weibull distribution (in other words, the distribution of flaws
inside the volume of stressed sample). k is 1 for an ideally loaded sample with homo-
geneous stress field. As we discussed before, ML method is very powerful to pool data
gathered from different tests and with different specimen size. So it can be very use-
ful to extrapolate the effective volume Ve from bending data, by adapting Eq.4.13 and
Eq.4.14, such as:

N

m
+

N∑
i=1

1
ki

dki

dm
+

N∑
i=1

ln σi − N

∑N
i=1[kiViσ

m
i ln σi + Viσ

m
i (dki/dm)]∑N

i=1 Vikiσm
i

= 0, (4.16)

and

σm
θ = 1

N

N∑
i=1

kiViσ
m
i . (4.17)

Figure 4.6.: a Schematic representation of a four-point bending test. σx shows the direction of the tensile stress. Only
a small region, represented by red area of the total volume V is subject to the tensile stress. b For a
given sample volume V , the effective volume Ve corresponds to the equivalent tensile sample that has same
strength as the 4-pt bending samples of volume V . Black arrows show the stress direction. L, w, and h
are respectively test span, width, and height of the sample. The volume factor k depends on the Weibull
modulus. Adapted from [? ].

Flaws inspection through XRM scanning

In this study, the purpose of the four-point bending tests was mainly to evaluate the
sample and his microstructure, more than the impact of processing steps. As far as

87



4. Mechanical properties of α−Al2O3

we know, no flexural measurements were ever conducted on boehmite-based α-Al2O3
. To be able to statistically validate the flexural properties of our samples, they had to
be screened for obvious outliers. Sample can be proof tested before flexural tests. This
consists in applying some stress to each specimen before the test. If it fails, it is obviously
discarded, otherwise, it is selected for flexural test. This guarantees a minimum stress,
analogous to the threshold value γ of the 3-parameter Weibull distribution (Eq.4.7).
Proof testing can be very useful to reduce the low strength failure probability. In this
work, before performing any mechanical test, XRM scanning was performed on every
sample to eliminate large defects. In an ideal situation, Weibull statistics estimates the
repartition of a single defect type. Eliminating large defects improves the reliability of
the statistical study, and is comparable to proof testing, even though it doesn’t provide
a stress threshold value.
Defects may occurs during virtually every step of the process (printing, drying, sinter-
ing). Printing and drying flaws were inspected by lighting the samples from beneath:
the boehmite gel is sufficiently translucent to allow large defects observation. How-
ever, some small drying induced cracks can still be exacerbated by the sintering. Fig.4.7
shows top-view XRM images obtained on samples obtained by DIW. Fig4.7a&b show
samples that were eliminated from the batch because of obvious defects. Sample a
presents a defect that runs through the entire length of the sample (yellow arrows).
Defects of this size are mainly attributable to the printing step. They are recognizable
because the usually follow the printing pattern (lengthwise in this case) and rarely devi-
ate (essentially straight lines). Sample b presents the most frequently obtained defects
(white arrows). These defects often initiate on the surface of the sample and do not
follow a particular pattern in shape or size. Most of them are generated during drying
and are worsened by sintering. Some may also be caused by excessive stress during
polishing. As shown in Fig.4.7b, some defects can reach 500 to 700 μm. Samples that
presented XRM scans like on Fig.4.7c were deemed fit for four-point bending test as
they did not present visible defects in the region that is going to undergo tensile stress.

Flexural test results

Table 4.4.: Summary of Four-point bending results for all tested samples

Commercial alumina DIW 1 DIW 2

Sintering conditions NA 1300 °C , 5 °C .min−1, 1h 1300 °C , 10 °C .min−1, 30 min
N 32 34 80
Mean σ̄ (MPa) 304 318 300
Std. Dev. 25.1 84.1 89.3

m 16.35 4.01 3.6
σ0 (MPa) 312 350 333
σtheta (MPa) 314 483 493

Table4.4 summarizes the four-point bending results obtained for the commercial alu-
mina, DIW1, and DIW2 samples. Samples exhibit comparable mean stress values, but
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Figure 4.7.: XRM images of 4 point bending samples performed to exclude any sample presenting major defects in
stressed regions during bending test. It also helps eliminate samples that present certain flaw types and sizes
that can significantly disturb the 2-parameter Weibull analysis. a Sample presenting probable printing defect
indicated by the yellow arrows. The defects run through the entire length; b Sample with characteristic dry-
ing cracks. We think that if the sample is not dried properly, some asperities on the surface can concentrate
stresses during water evaporation. These surface "defects", initially caused by the printing pattern, initiate
cracking. This type of defect is essentially found in the sample corners, where drying stress and defect
probability are maximized; c Sample presenting no apparent macroscopic defects, and selected for bending
tests.

with different standard deviations, demonstrating a larger scattering for DIW samples.
Weibull statistics confirm and explain the scattering. The commercial alumina demon-
strates a Weibull modulus m of 16.35, four times higher than for DIW1 and DIW2 sam-
ples (respectively m = 4.01 and m = 3.6). The Weibull scale for DIW samples (Eq.4.11)
is slightly higher than for commercial alumina, but the difference is not very significant.
DIW1 and DIW2 demonstrate very similar results despite the difference in sintering
cycle, with comparable Weibull modulus and σ0 (respectively 350 and 333).
Fig.4.8 represents the failure probabilities Pf as a function of four-point bending fail-
ure stresses for all tested samples, in a logit-log scale. Upper and lower bounds of the
confidence intervals are also plotted to show the 95% confidence interval. In Fig.4.8c,
commercial alumina demonstrates a very narrow distribution of the results, as expected
by the high Weibull modulus m. There is practically no deviation or wriggling around
the Weibull fit. The values do not curve at lower strengths. Only one outlier sample
obviously deviates from the rest, with a 200 MPa failure stress. The maximum strength
of the series was 344 MPa and the minimum 206 MPa. Results from DIW-1 are plotted
in Fig.4.8a. Values are more scattered than for commercial alumina: strength span be-
tween 167 and 545 MPa. Strength values oscillate around the Weibull fit with different
slopes and drop downwards for low stresses. This shows that even by eliminating the
samples with large defect through XRM scanning, some undistinguishable flaws may
remain and deviate the behaviour from the fit. The deviation from linearity of the data
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Figure 4.8.: Failure probability Pf as a function of stress σ for a DIW-1, b DIW-2, and c commercial alumina, tested with
four-point bending. Points are experimental data. Grey lines are Weibull fits with 95% confidence’s interval
upper and lower bounds.

is an evidence of multiple flaws distribution[? ]. Some authors recommend to analyse
each sample, post mortem through fractography to identify the critical flaw type and
censor the data according to each flaw type. Fig.4.8b compiles the strengths results
of DIW-2 samples. Overall, the same behaviour as for DIW-1 is observed: downwards
bending at low strengths, oscillations around Weibull fit, and scattered results (170-532
MPa). However, wriggling is less important than for DIW-1. This can be explained either
by the larger number of tested samples (80 vs. 34), or by fewer flaw types. Also, flaws
located on the surface of the sample tend to cause failure at lower stresses than flaws
of the same size located on the surface[? ]. The difference in sintering between DIW-1
and DIW-2 does not seem to particularly affect the flexural behaviour of our boehmite
samples. It might however explain the flaw type difference deduced from the curves.
As shown in Fig.4.4f, a longer sintering cycle starts to create grain elongation in the
microstructure. The constraints generated by this elongation can create new porosi-
ties (different from triple-point porosities). It can also induce residual stresses in the
microstructure that can be considered as flaws.
Fig.4.9a compiles the data from Fig.4.8 in the sample plot. It confirmes the similarity in
fracture behaviour of DIW-1 and DIW-2 samples. We wanted to compare these results
by scaling them to the effective volume, as explained in Fig.4.6, to determine the scaled
Weibull modulus, and more importantly, the scaled Weibull scale σθ. For four-point
bending, the scaling factor k is calculated by:

k = m + 2
4(m + 1)2 (4.18)

Using Eq.4.16, we found a value of m and used it to calculate σθ with Eq.4.17. The
results are shown in Table4.4. We also calculated a scaled stress value for each experi-
mental flexural strength (for commercial alumina, DIW-1, and DIW-2) and plotted it in
Fig.4.9b. While the curve of commercial alumina barely changes (σθ =314 MPa), the
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Figure 4.9.: Failure probability Pf as a function of stress σ for samples from Table4.4. a Experimental results and Weibull
fits for unscaled data. b Strengths scaled to the effective volume Ve.

results show a clear shift of the strength values of DIW samples to higher strength val-
ues. The scaled Weibull shape was found to be 483 and 493 MPa for DIW-1 and DIW-2,
respectively. The effective volume Ve for DIW-1 and DIW-2 samples was approximately
4 times larger than for commercial alumina (respectively 3.6, 4.1, and 1 mm3). This
confirms the large scattering in fracture origin for DIW samples observed in Fig.4.8a&
b. As of to the current mastering of DIW as a shaping method, it is still subject to flaws
and issues with sample reproducibility. Additionally, the high shrinkage of boehmite
during drying increases the probability to introduce microcracks that are undetectable
with pre-testing screening. However, these results are encouraging because they show
the potential for DIW of boehmite based alumina to reach very high flexural strengths if
the largest critical flaws can be eliminated. A smaller effective volume would increase
the reliability of the flexural tests and shift the Weibull scale to higher strength values.
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4.4. Conclusion

In this chapter, we investigated the sintering behaviour, microstructure, and mechanical
properties of monolithic boehmite based α-Al2O3 samples processed by DIW. A thorough
Weibull analysis was performed on four-point bending results. Data were fitted to the
Weibull distribution with a maximum-likelihood function, that was also used to scale the
strenghts of the samples to the effective volume. Data were compared to a commercially
available alumina. The large number of tested samples ensured statistical reliability of
the Weibull analysis. We showed that boehmite based alumina obtained by DIW has
comparable mean strength values, but lower reliability m. Boehmite samples presented
more scattered results, reaching maximum strength values significantly higher than for
commercial alumina (More than 500 MPa as opposed to 344 MPa for commercial alu-
mina). Data scaled to the effective volume demonstrated significantly higher strengths
for boehmite based samples, with scaled strengths σtheta of 483 and 493 MPa for both
tested sets. These values are comparable to four-point bending strengths of some HIP
sintered alumina [? ]. The sets were sintered differently to investigate the influence of
grain size and density on flexural strengths. No significant difference in flexural prop-
erties was observed between both sets. These results are, as far as we know, the most
complete investigation of flexural strengths of boehmite based alumina. The results are
very encouraging as they demonstrate the ability of boehmite, a very cheap raw material,
to compete with commercial alumina. Scaled also show that improving the processing
chain to get rid of large flaws could drastically increase the mechanical properties. Also,
MgO doping to reduce grain size and residual porosity, and prevent grain elongation,
might be a good way to improve these results even further.
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6
Methods

6.1. Gel preparation

The overall preparation protocol for all the suspensions is similar to what was described
in previous chapters. Ronaflair®White Sapphire α-Al2O3 (Merck Performance Materials,
Germany) platelets were used. Platelets had an average thickness of 500 nm and a
length of 10 μm. Tetraethyl orthosilicate -TEOS - 99% purity (Sigma-Aldrich, Germany)
was used as a source of SiO2 for the liquid phase. Calcium carbonate CaCO3 99% pu-
rity (Sigma-Aldrich, Germany) was used as a source of CaO for the liquid phase. Water,
platelets, TEOS, CaCO3, and boehmite were preferably mixed in this order. As in pre-
vious chapters, boehmite refers to the drum dried mix of Catapal B, 2.5wt%AlOOH of
HNO3, and 1.5wt% of 30 nm α-Al2O3 nanoparticles. Suspensions were not ball milled
to avoid crushing the platelets and potentially reducing their dimensions.

For the Al/Zr composites, 43wt% boehmite suspensions were doped with 1 and 5%
partially stabilized 3-YZS zirconia (Tosoh, Japan). Samples were printed into three-point
bending size, accounting for shrinkage, and sintered at 1450°C for 4h.

Table 6.1.: Percentage of platelets, boehmite, liquid phase in suspensions for textured structures. The boehmite content
is calculated independently from the other components. Platelets and liquid phase percentages are expressed
as a function of the total alumina content after boehmite conversion.

Platelets Boehmite liquid phase Si:Ca

wt% wt% wt% ratio

5 42
0.25 1:1
0.5 5:1

15 40
0.25 1:1
0.5 5:1

30 40
0.25 1:1
0.5 5:1
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Figure 6.1.: U-shaped single walls printed to study the orientation of the platelets as a function of different parameters
without the interference of overlapping. l is the non-aligned radius, w the aligned region thickness, R the
nozzle radius, and L the pressure drop length.

6.2. Direct Ink Writing of samples

6.2.1. Single walls

Six layers of U-shaped single walls (Fig.6.1) were printed to study the impact of nozzle
length, shape, diamater, and printing speed. We also tried to print the gel at different
aging times to assess the impact of yield stress σy on the thickness of the aligned region.

6.2.2. Textured structures and Al/Zr composites

Samples were printed with the same protocol as described previously link to previous
chapter. To improve the alignment between the printed lines, an overlap of 10% of the
nozzle diameter was used.
Macrocomposites were printed by alternating one layer of textured alumina with one
layer of Al/Zr suspension. We will refer to a Textured-Al/Zr composite with this alterna-
tion pattern as a Macro 1:1.

6.3. Drying and sintering

Before sintering, samples were dried as described in previous chapters. Samples were
sintered at 0.5 °C .min until 600°C . A low heating rate was used at this stage to mini-
mize the potential stress induced by the calcination of CaCO3 into CaO and CO2. The
heating rate was then increase to 5 °C .min until 1400°C and 1500°C , for 4 hours. Two
temperatures were studied to understand the impact on the microstructure. Samples
used for mechanical characterization were eventually sintered at 1500°C as templated
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grain growth was obviously more efficient at this temperature. Single pictures of sam-
ples sintered at 1400°C are shown in Appendix REF APPENDIX.

6.4. Mechanical testing

6.4.1. Flexural strengths

Three-point bending and Single Edge Notched Beam (SENB) were performed for flex-
ural strengths and toughness measurement on a Shimadzu ASTX press. Samples for
three-point bending were printed as 47x5x5 mm bars. After drying and sintering, they
fit the ASTM C1161 A-Size dimensions for three-point bending (25x1.2x2 mm). Sam-
ples were tested as fired without any grinding or polishing. Every batch had at least ten
flat samples. (reference to ASTM norm).
SENB was performed on a four-point bending set-up to ensure maximum stress at the
crack tip. The dimension of the samples was 25x5x2 mm, as recommended by ASTM
C1421 standard. Pre-notches were made with a 500 μmdiamond saw. Notch (or cracks)
were made with tungsten carbide coated razor blades and 1 μmdiamond paste on auto-
matic notching device. Surfaces were polished down to 10 μm. All the notches had a
radius of curvature below 20 micron. The crosshead travel speed was set to 1 μm.s−1

Figure 6.2.: Schematic representation of samples as they were machined for DCB testing a 3D representation, b Rear
view c Bottom view

In-situ double cantilever beam (DCB) test was conducted in an FEG SEM with a Deben
2 kN in-situ mechanical testing stage. Samples were machined as described in Fig.6.2
and polished down to 1 μm. The arm lengths was about 4.5 mm. A steel triangular
wedge was used to spread the arms and initiate the fracture at the crack tip, as shown
in Fig.6.3. The test was conducted at constant displacement, at a rate of 0.5 μm.s−1.
The crack tip and displacement of the arm were tracked separately. At initiation, an
image was taken to evaluate the arms’ displacement. Displacement was applied and
stopped to allow slow relaxation of the crack. KIc was calculated as following:
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6. Methods

KIc =

√
3E2h2d3

4c4 , (6.1)

with E the Young modulus, h the lateral arm displacement, d the half width of the
sample, and c the arm and crack length.

Figure 6.3.: SEM image of an in-situ DCB test in progress. The wedge pushes the arms aside initiating the fracture at the
notch.
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7
Results and Discussion

7.1. Alumina Zirconia composites using boehmite as a matrix

Zirconia has been widely used as dopant for alumina as a sintering aid or to enhance
toughening mechanisms [? ? ]. The so-called ZTA (Zirconia Toughened Alumina) are
characterized by the presence of two separate phases (alumina and zirconia). The pres-
ence of partially stabilized zirconia grains in the microstructure of ZTA enables various
toughening mechanisms, as stress induced transformation or crack deflection. Several
in-situ observation of crack propagation showed that zirconia undergoes tetragonal to
monoclinic transformation at the crack tip [? ? ]. The resulting volume expansion
(between 4 and 6% [? ]) shields the crack and can help to stop its propagation [? ].
Besides improving the fracture toughness, the addition of partially stabilized tetragonal
zirconia to alumina also significantly improves the flexural properties [? ]. Hori et
al.[? ] show that increasing volume fraction of zirconia from 1 to 10vol% improved the
flexural strength of Al/Zr composites from 430 MPa to a maximum of 660 MPa (three-
point bending values). However, significant increase in strength only appeared for more
than 4vol% fraction of zirconia. These results were confirmed by several other studies
[? ? ].
During sintering of Al/Zr composites, there is a mutual grain growth hindrance, such as
for a same sintering temperature, the alumina and zirconia grain sizes are smaller than
their single-phase counterparts. Lange et.al[? ] show that the mechanism behind mu-
tual grain size reduction is the inclusion of zirconia in 3 and 4 alumina grains junction,
preventing abnormal grain growth. They show that these inclusions were effective only
at volume fractions higher than 5vol%, explaining the correlation between higher zirco-
nia fraction and improvement in mechanical properties (both toughness and strength)
[? ? ].
In the larger scheme of printing layered composites through DIW, doping boehmite gels
with zirconia seemed interesting for several reasons:

1. Investigating the increase in flexural strengths of zirconia-doped boehmite gels, as
we report in this work the first boehmite-based alumina flexural properties;

2. inhibit the excessive grain growth of alumina in macrocomposite structures that
require high sintering temperatures;

3. increase the fracture toughness of alumina, in anticipation of the planned macro-
composites.
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7. Results and Discussion

Fig.7.1a and b show SEM images of two Al/5%Zr composites sintered at respectively
1300 °C and 1450 °C (1300 °C is the regular sintering temperature of seeded boehmite
gels, and 1450 °C is a temperature used for other boehmite-zirconia suspension[? ? ? ]).
At 1300 °C , alumina and zirconia show similar grain size, and no excessive growth of
alumina was observed, as it is expected at this temperature. The grain growth hindrance
mechanisms are usually investigated at temperatures above 1400 °C [? ]. Indeed, in the
Al/Zr phase, there are no clear sign of zirconia inclusion at grain junctions. Therefore,
it is not clear if the addition of zirconia significantly modified the sintering of alumina
grains. However, from the image, the density seems qualitatively lower than for single-
phase alumina sintered at 1300 °C (ADD REF TO SEM IMAGE FROM CHAPTER 3).
This suggest that there still might be an impact of zirconia doping at this temperature.
Fig.7.1a also shows a 30 μmzirconia agglomerate (confirmed by EDX) on the corner.
As no ball milling was used, this is probably the result of a bad zirconia dispersion in
the boehmite gels. These agglomerates are common in ZTA [? ]. Aksay et al. show
that when sintered, these agglomerates shrink away from the matrix and can generate
cracks that are dramatic for mechanical properties (around 60% of decrease in flexural
strength in their case)[? ]. Consequently, the boehmite-zirconia dispersion protocol was
improved with longer and stronger sonication.
In Fig.7.1b, temperature was increased to 1450 °C . Compared to 1300 °C , the zirconia
grain size did not change. However, the alumina grains grew significantly, with some
grains reaching 10 μm. In the figure, yellow circles highlight the inclusion of zirconia
in the alumina grains junction, showing that a certain mechanism of growth inhibition
occured. The low volume fraction of zirconia was however not sufficient to prevent the
abnormal elongation of alumina grains in the microstructure.

Figure 7.1.: a Al/5%Zr composite sintered at 1300 °C . A large zirconia agglomerate (≈ 30 μm) is observed in the
corner of the image. These type of defects are catastrophic for strength. Several sonications at higher power
during suspension preparation prevented their appearence or significantly decreased their size. b Al/5%Zr
composite sintered at 1450 °C , after the suspension preparation protocol was improved. The image shows
larger grain size compared to Fig.a with alumina grains elongation. Yellow circles highlight some examples
of zirconia inclusion in 3 and 4 alumina grains junction, as explained in [? ]
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7.1. Alumina Zirconia composites using boehmite as a matrix

As described in the literature, 5%vol fraction is the minimum amount of zirconia dop-
ing that needs to be added to trigger grain growth hindring. In Fig.7.2, samples were
sintered at 1450 °C with 0, 1, and 5vol% of zirconia. The microstructure of the single-
phase alumina sample in Fig.7.2a shows that without doping, the grain size of alumina
can exceed 50 μm. Such microstructure is not suitable for high mechanical properties.
Adding 1% zirconia did not drastically change the microstructure, even though qualita-
tively, a very small decrease in grain size can be observed around zirconia inclusions. At
these low volume doping percentages, some regions contain fewer zirconia inclusions
and can develop abnormal grain growth. Once a grain gets large enough, it can coa-
lesce with neighbouring grains and swallow the zirconia inclusions. The yellow circles
in Fig.7.2b show some examples of zirconia inclusions swallowed by large neighboring
alumina grains. These effects can both widen the general grain size distribution and
increase the alumina grain size [? ]. At 5% (Fig.7.2, the hindring mechanism operates
efficiently and the grain size of alumina is drastically decreased compared to the single-
phase counterpart of Fig.7.2a. Some elongated grains can however still be observed at
this doping fraction. Further increasing the zirconia fraction would have prevented the
alumina grains elongation, but also would have increased the probability of creating de-
fects with the volume expansion of the tetragonal - monoclinic transition after cooling
[? ].

Figure 7.2.: Microstructures of samples sintered at 1450 °C containing a0vol% Zr, b1vol% Zr, and c5vol% Zr. As the
zirconia content increases, the alumina grain size decreases. Yellow circles in b represent zirconia inclusions
swallowed by large alumina grains.

Table 7.1 shows the densities and flexural strengths of Al/Zr composites, at 1 and 5%
YSZ content. A reference three-point bending strength of undoped alumina is shown
for comparison. The results are consistent with literature, as the mean flexural strength
increases with increasing zirconia content (from 0 to 5%). Compared to the reference
undoped alumina samples sintered at 1300 °C , strength improved 8.7% with 1% Zr and
35% with 5% Zr. With 5% Zr, some samples even reached 800 MPa in flexural strength.
Fig.7.3b shows a fracture surface of Al/Zr-5 sample, sintered at 1450 °C after improv-
ing the protocol. The zirconia dispersion in the microstructure was more homogeneous,
preventing large agglomerates/defects as shown in Fig.7.1a. The critical flaw is identi-
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Table 7.1.: Densities and flexural properties of Al/Zr composites at different Zr contents.

Boehmite solids loading 3-YSZ Density Mean flexural strength (SD) Sintering temperature

wt% vol% % MPa °C

Reference boehmite 43 0 98.5 471 (± 65) 1300
Al/Zr-1 43 1 99.3 512 1450
Al/Zr-5 43 5 98.7 635 (± 83) 1450

Figure 7.3.: a Schematic representation of the typical fracture surface features occuring in brittle materialsb Fracture
surface of Al/Zr-5 sample sintered at 1450 °C after improving the zirconia dispersion protocol. The critical
flaw has been identified with the yellow circle, as well as the other fractographic features of brittle materials.

fied in Fig.7.3b with the yellow circle, as well as the mirror, mist, hackle, and branching
regions. The origin of the defect (about 1 μmin size) is hard to identify. As it is the
only defect of this size in the fracture surface, one explanation can be that a drying
defect or an agglomerate was strained during sintering and has potentially increased in
size. Despite this defect, this sample broke at more than 700 MPa. This result is en-
couraging as it shows the potential strength of the microstructure if critical flaws of this
size are removed in every step of the process (suspension preparation, printing, drying,
sintering).

7.2. Nacre-like structures

7.2.1. Microstructure

Textured structures combining boehmite, alumina platelets, and liquid phase, were ex-
tensively studied in literature by Messing et al. [? ? ? ] to achieve Templated Grain
Growth (TGG). In TGG, aligned template particles grow in a preferential direction by
consuming the non-oriented equiaxed matrix grains. Templating is favored when the
size ratio between template thickness and the matrix is higher than 1.5 [? ]. The
platelets used to prepare the suspension are 500 nm thick and 10 μmlong, with a 40
nm boehmite particle matrix. The final microstructure is composed of grains aligned
in the processing direction. Initially, the addition of SiO2 and CaO is to trigger liquid
phase assisted sintering. However, studies showed that the SiO2/CaO doping effectively
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7.2. Nacre-like structures

improves TGG after 1400 °C [? ? ? ? ]. This temperature corresponds to the formation
of a calcium aluminosilicate glassy phase, constitutive of the grain boundaries in TGG
structures. Fig.7.4 is an SEM image of a 43wt% sample with 2vol% platelets sintered at
1300 °C without liquid phase doping. This temperature is the temperature commonly
used for sintering seeded boehmite suspensions throughout this work. In Fig.7.4, at the
surface of the platelet, no templating is observed. Also, alumina did not properly sin-
ter as large porosities can be observed and the morphology of the grains is not faceted.
Fig.7.4b shows a fracture surface of the sample. Porosities can be observed around the
platelets and all the alumina matrix grains around the platelets are equiaxed, showing
no signs of templating. The samples from Fig.7.4 do not satisfy major criteria for effi-
cient TGG: the temperature is too low to trigger a surface energy anisotropy between
the platelets and the matrix [? ], and the absence of liquid phase prevents a continuous
diffusion of the boehmite on the surface of the platelets to modify the grain growth from
equiaxed to anisotropic.

Figure 7.4.: SEM images of a 43wt% suspension with 2vol% platelets without liquid phase, sintered at 1300 °C a Image
of a platelet on the surface of the sample showing no densification of the alumina on the platelet surface. b
Fracture surface of the sample showing platelets in the alumina matrix. During sintering, the alumina does
not diffuse properly on the surface of the platelets, leaving porosity after sintering.

Fig.7.5a to d show surface fractures of samples containing 5 (a and b) and 30vol% (c
and d) of platelets doped with 0.5wt% of Si:Ca and sintered at 1500 °C . Both samples
were printed lengthwise. The parallelogram pattern observed on the fracture surface
is a cross section of the printed lines. The platelets are radially oriented on the edge
of every unitary pattern (in yellow, Fig.7.5, according to the printing direction. The
parallelograms are the result of the printing pattern: even if all the layers are printed
lengthwise, the starting point of each layers is different. In Fig.7.5a and c, the tilting
of the parallelograms alternates between right and left. Every printed layer is sheared
by the subsequent layer in its printing direction, explaining why it is less pronounced in
the top layer in Fig.7.5c. The tilting is also induced by the overlapping of the adjacent
line. The printing pattern is programmed with an overlap between the lines equivalent
to 10% of nozzle diameter (50 μmis most cases as 500 μmis the nozzle that has been
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most used). The overlapping has another impact on the microstructure, as it induces
shearing and further alignment of the platelets in the overlapping region, creating a
skeleton of dense shells as they appear in Fig.7.5 (dashed lines). Increased the platelet
content did not affect this pattern composed of different parallelograms. At 30vol% of
platelets, a denser shell can still be observed.

Figure 7.5.: aFracture surface of 43wt% boehmite sample, with 5vol% platelets and 0.5wt% Si:Ca sintered at 1500 °C ,
printed lengthwise. It demonstrates the macroscopic arrangement controlled by printing direction. Dashed
lines represent the dense regions, corresponding to the regions where platelets are aligned. The yellow
parallelogram represents the unitary pattern: a porous core where platelets are not aligned, and a dense
shell, where platelets are aligned. A higher magnification of the pattern is shown in b. c Fracture surface
of a sample containing 30vol% platelets. The macroscopic structure is preserved (porous core, dense shell),
but the overall density decreases, as shown in d.

Samples were also printed as cross hatches, alternating between lengthwise (LW) and
widthwise (WW) printing. A fracture surface of cross hatch 5vol% platelet sample is
shown in Fig.7.6a. LW layers show an identical dense shell/porous core structure, only
in this case, the pattern is more circular because there is no shearing induced by the
subsequent layers, as they are printed WW. The latter layers show platelets also aligned
in the printing direction. These structures are very similar to what can be observed in the
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twisted plywood (or Bouligand structures) from lobster or mantis shrimp claws. There
are numerous examples in the literature showing attempts to replicate these bioinspired
structures [? ? ? ] A higher magnification of the interface between LW and WW layers
is shown in Fig.7.6b. A nice texture of platelets can be observed on the WW layer. There
are no signs of porosity at the interface between LW and WW layers. The top and the
bottom of the image are not in the focal plan: it is very common for fractures in these
type of microstructures (specifically in cross hatch printing pattern) to deviate along the
interface between the dense shell and the porous core (IMAGES IN APPENDIX).

Figure 7.6.: a Fracture surface of a cross hatch sample printed with 5vol% platelets, alternating between lengthwise
layers (LW) and widthwise layers (WW). Dashed lines show the separation between layersb Higher mag-
nification of the interface between a LW and a WW layer. The platelets get clearly aligned in the printing
direction.

As seen in Fig.7.5, increasing the platelet content does not affect the macroscopic struc-
ture of the sample. However, it changes the microstructure and the extent of TGG.
Fig.7.7 show fracture surfaces of samples from suspensions with 5,15,30,60vol% platelets
(respectively a,b,c,d). Increasing the initial platelet content, other things equal (mainly
liquid phase content and sintering cycle), clearly decreases the TGG effect. The average
thickness of the platelets for 5,15,30, and 60 vol% platelets was respectively 3.3, 1.7,
1.1, and 0.8 μmin the dense regions. Additionally, the proportion of equiaxed grain
growth from the matrix increased with increasing platelet content. TGG usually occurs
in three stages: densification of the matrix, radial growth of platelets until impinge-
ment, and template thickening. Thus, increasing the platelet content stops the second
and third step as the platelet impingement is initially high. These effects are well docu-
mented in literature [? ? ].
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Figure 7.7.: Fracture surface of dense shell regions from samples containing a 5vol%, b 15vol%, c 30vol%, and d 60vol%
platelets. Increasing platelets content decreases the TGG, as the thickness of the platelets decreases between
5 and 60vol%. At 5 and 15vol%, no equiaxed alumina grains can be observed. At higher platelet contents,
submicronic equiaxed alumina grains grow between the platelets.
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7.2.2. Strength of textured composites

Even though fully textured samples can be obtained without liquid phase doping, Chang
et. al demonstrated the benefits of liquid phase assisted sintering for TGG [? ]. With
only 0.25wt% Si:Ca doping, they significantly improved the density and texture quality
of the samples. Also it significantly reduces the TGG initiation temperature (from 1600
to 1400 °C in their case). However, the impact of strength as a function of platelet
and liquid phase content was not investigated. Fig.7.8a-c shows the mean three-point
bending flexural strength results and densities as a function of platelet content for 0.25
and 0.5wt% Si:Ca doping. The results show in Fig.7.8c that increasing the liquid phase
content has a positive effect on mechanical properties. The most significant increase
was for samples with 5% platelets, as the strength increased from 306 MPa (±46) to
428 MPa (±60). Mean strengths also increased at higher platelet content, from 325
to 342 MPa, and from 331 to 378 MPa for respectively 15% and 30%. The same data
are plotted in Fig.7.8a and b, with the relatives densities as function of platelet content.
As expected from the SEM images in Fig.7.5 and Fig.7.7, increaing platelet content sig-
nificantly decreases the density. With fully textured samples at 5% platelets, density
reached 92 and 95% for 0.25 and 0.5wt% Si:Ca, respectively. The density progressively
decreases to 63% for 60% platelet content and 0.5wt% Si:Ca (decreased to 77% for
30% platelets and 0.25wt% Si:Ca). Despite this significant decrease in density, samples
maintain a relatively high flexural strength, specially between 5 and 30% platelet con-
tent (Fig.7.8b). Fig.7.8d shows the impact of printing pattern on the strength. Mean
strengths are calculated with pooled data from different Si:Ca content. Data show that
strength values significantly decreases for cross hatch samples for all platelet contents
(43, 52, and 64% for 5,15,30vol% platelets, respectively).
Fig.7.8d shows the impact of printing pattern on the strength. Mean strengths are cal-
culated with pooled data from different Si:Ca content. Data show that strength values
significantly decrease for cross hatch samples for all platelet contents (43, 52, and 64%
for 5,15,30vol% platelets, respectively). Cross hatch samples were usually more compli-
cated to print and more keen to defect generation on the sides because of an increased
number of corners (changes in printing direction) on the widthwise layers. Fig.7.10a
shows a fracture surface of a cross hatch sample with very common defects (yellow) on
the sides. It is complicated to detect these defect prior to sintering or understand exactly
the processing step responsible for their appearence. A side view of a cross hatch sam-
ple is shown in Fig.7.10b. Every widthwise layer presents the same type of crescent-like
defects between the dense shell and the porous core of the printed line. The combina-
tion of alternating printing direction, hence shrinkage direction, with the presence of
platelets, can increase the constraints between the layers during sintering. The inter-
face between dense shell and porous core are probably the weak points that lead to this
defect. A higher platelet content increases the effects of constrained sintering [? ? ],
explaining why the drop in flexural strength was more pronounced for higher platelet
loadings in Fig.7.8d. These large defects constitute are an explanation for the lower
strengths between cross hatch and lengthwise samples shown in Fig.7.8d. However, not
all the cross hatch samples had these defects (specially at lower platelet contents), but
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Figure 7.8.: abcd

the average strengths still dropped significantly. Even at low platelet contents, the weak
points in widthwise layers still exist. As an explanation, an analogy with the rolling of
sushi mats can be made: sushi mats can not be rolled in the bamboo sticks direction
(widthwise), but only between the sticks (lengthwise). The spacing between the bam-
boo sticks can be assimilated to the weak points between the printed lines: if the printed
rods (with aligned platelets) are perpendicular to the bending direction, they are more
likely to fail (Note for Lydéric and Adam: I know this analogy seems very silly, but
I like how it could be an explanation. But... if you either disagree or find it stupid,
I can get rid of it.
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Figure 7.9.: Front a and side b view of a samples printed in cross hatch pattern showing very common defects (yellow
squares) observed on the sides of the samples. Corner effects during printing and constrained sintering can
be an explanation.

Figure 7.10.: Three-point bending flexural strength
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Conclusions and perspectives

113





This PhD was carried in Saint-Gobain CREE research center, in the LSFC lab, supervised
by Lyderic Bocquet and Adam Stevenson.

Direct Ink Writing is an additive manufacturing technique based on continuous layer-
by-layer filament deposition. Mostly used to print porous structures, DIW of dense and
strong ceramic objects remains an open challenge. However, the advantage of DIW
resides in its ability to print multimaterial objects, offering the possibility to combine
complex shaping to precise microstructural and functional control, from bioinspired ma-
terials, to novel composite structures. Our work focuses on using boehmite gels for
DIW, an Al2O3 precursor, as a ceramic matrix to obtain different microstructures. Very
small changes to the gels composition lead to completely different microstructures and
hence, functional properties. By combining the microstructural versatility of boehmite
gels with an understanding of rheology, we are able to print micro and macrocomposites
with enhanced mechanical properties. Printing dense and strong ceramic objects starts
with understanding the rheological properties that define a printable ink. Boehmite sus-
pensions were ideal to correlate geometrical criteria with rheology and surface tension
effects to provide a universal figure of merit for printability. We take advantage of the
flow behavior inside DIW nozzles to align alumina platelets during printing. This pro-
vides the printed object with increased fracture toughness in the desired direction, with
the ability to deviate the fracture propagation perpendicularly to the printing direction.
A single object can thus be precisely designed, alternating between dense, strong lay-
ers, and directionally tough, fracture deviating layers, to combine the complexity of the
shape with the tailoring of mechanical behaviour.

An essential step towards achieving microstructural control with DIW was to under-
stand the rheological properties required to print dense and strong objects. The aging
of boehmite suspensions constituted a fantastic laboratory to achieve this goal. We fol-
lowed the rheological evolution of boehmite over several days, sometimes weeks. These
results were correlated with a objective geometrical criteria to establish a first direction
towards printability. Multiple years of DIW studies did not provide a universal criterion
for printability. Using boehmite helped investigate it with a single suspension. After
the shape difference was correlated with the rheological evolution, we established a
universal figure of merit to evaluate the printability of an ink for DIW. We made a very
important distinction between static and dynamic yield stress and figured out that the
latter is more important to assess printability. Besides intrinsic rheological properties,
our figure of merit also assessed the impact of capillarity on printability. This is totally
new. We showed that an ink becomes printable if the dynamic yield stress is able to
withstand gravitational and capillary deformation. We regrouped these relations in a
dimensionless number that we hope will work for other direct ink writing inks.

Boehmite has been extensively used in the industry by Saint-Gobain for abrasive grains
and catalysis supports. However, making large defect free objects with seeded boehmite
was an open challenge: boehmite is difficult to dry and drying behaviour was not well
understood. In this work, we understood the drying behaviour of boehmite to be able
to produce samples for testing size. The seeded boehmite method was supposed to give
very good mechanical properties as the final alumina is fine grained and very dense. We
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performed the first reported flexural strengths on boehmite based alumina. Even though
the results were comparable to commercial alumina, a deeper Weibull analysis showed
that, providing a better control of the process, results that are better than commercial
alumina can be achieved, and boehmite is way cheaper than alumina.
After demonstrating that we were able to print large scale boehmite objects, we started
using DIW and boehmite for smaller scale control. There is a very interesting synergy
effect in using both techniques together. Boehmite is a very versatile material, as it
can provide very different microstructures with only small changes to the initial suspen-
sion. This allows to keep the initial rheological understanding of printability and totally
change the final object. Combined with DIW, it is a very powerfull tool for anisotropic
and bioinspired microstructures and materials. We made good use of the shear align-
ment of platelets inside DIW nozzles to make templated grain growth and create a very
nice microstructures that provides very nice mechanical properties. Also, we showed
that the obtained core shell structure because of the plug flow creates lightweight and
strong structures. The decrease in flexural strength for our objects was much lower than
what we found in literature, as object with only 60% density were able to widthstand
200 MPa as a mean strength. Besides, some of these structures demonstrated reinforce-
ment after crack initiation in SENB testing. A better control of the interface between the
platelets and the alumina matrix could improve the fracture behaviour while probably
maintaining nice mechanical properties.
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