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Introduction

Optical microscopy is an important tool in biological science, enabling to access detailed
information about living specimens. However, due to the diffraction effect of light, the
conventional optical microscopy has a resolution limit (Abbe diffraction limit) abo@N A
200nm, with  denoting the wavelength of light aiMIA the numerical aperture of the optical
system [ ]. It also lacks ability to perform three-dimensional (3D) imaging since the in-
focus information is always blurred by the out-of-focus information in thick samples.

Far- eld super-resolution uorescence microscopy has seen its prosperity over the past
twenty years, making the observation of structures below the Abbe resolution limit possible.
Several techniques have been developed, such as structured illumination microscopy (SIM)
[ ], stimulated emission depletion uorescence scanning microscopy (STED) [ 1,
stochastic optical reconstruction microscopy (STORM) [ ], photo activated localization
microscopy (PALM) [ ], and so on. Among them, SIM is a wide- eld technique
providing fast data acquisition and it does not require using speci ¢ uorophores. Moreover,
SIM also provides optical sectioning ability in 3D imaging [ 1 ]

In standard SIM, the object is illuminated by a set of harmonic patterns with known spatial
frequencies and phases. However, generating a perfect known harmonic illumination is a
dif cult task and strong distortions of the light grid can be induced within the sample volume
[ ]. Such uncertainty in the illumination process reduces the super-resolution capacity in
SIM and may generate strong artifacts [ ]. Hence, a so-called blind-speckle-SIM method
was proposed in [ ], where unknown speckle patterns are used as a substitute for the
harmonic illuminations. A super-resolution capacity has been observed in [ Z];although
this super-resolution is relatively weak compared with standard SIM. In this thesis, we explore
the super-resolution capacity and propose new reconstruction methods in a blind-speckle-
SIM approach (that is, with unknown illuminations) in order to obtain better super-resolution
capacity, by exploiting second-order statistics of the data and introducing new regularizers.

This thesis is composed of six chapters. In the rst chapter, we introduce the concepts of
point spread function (PSF) and optical transfer function (OTF) in microscopy. Then, we brie y
present the statistical properties of speckle patterns and the existing reconstruction methods in
blind-speckle-SIM.

In Chapter 2, we propose a joint reconstruction method (which jointly estimates the speckle
patterns and the object) by minimizing a data delity term penalized with a miygehorm
regularizer in order to enforce the joint sparsity of the data. The alternating direction method of
multipliers (ADMM) and the primal-dual algorithm are used to solve the optimization problem.

In Chapter 3, we explore the theoretical super-resolution capacity of blind-speckle-SIM by
exploiting the second-order statistics of the data with minimum prior information on the data.
A marginal estimator is proposed where the estimation is based on the statistics of the nuisance
parameters (the unknown speckle patterns) but not their true values. This marginal estimator is
shown to be an asymptotically consistent estimator.

The computational complexity of the marginal estimator proposed in Chapte®@\s),
which is too high for realistic image sizes. Thus, in Chapter 4, we propose a patch-based
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marginal approach in order to reduce its computational burden, with computational complexity
O(NZ?logN).

In chapter 5, we demonstrate the optical sectioning ability of blind-speckle-SIM with both
the .4 regularized joint estimator and the patch-based marginal estimator.

Chapter 6 is a conclusion of this thesis and introduces some possible future work.



Introduction

La microscopie optique est un outil important en sciences biologiques, permettant d'accéder
a des informations détaillées au sujet de spécimens vivants. Cependant, en raison de l'effet
de diffraction de la lumiére, la microscopie optique conventionnelle a une limite de résolution
(limite de diffraction d'’Abbe) de=2NA  200nm, ou estlalongueur d'onde de la lumiére et
NA est I'ouverture numérique du systéme optique [ ]. Elle souffre également d'incapacité
de réaliser une imagerie tridimensionnelle (3D) puisque l'information au plan focal est toujours
perturbée par le contenu défocalisé dans des échantillons épais.

La microscopie super-résolue par uorescence en champ lointain a connu une période de
prospérité au cours des vingt dernieres années, rendant possible I'observation de structures
a une résolution inférieure a la limite de résolution de Abbe. Différentes techniques ont
été développées, telles que la microscopie a illumination structurée (Structured lllumination
Microscopy, SIM) [ ], la microscopie a déplétion par émission stimulée (stimulated-
emission-depletion, STED) [ ], la microscopie de reconstruction optique stochastique
(stochastic optical reconstruction microscopy, STORM) [ ], ou la microscopie de
localisation photo-activée (photo-activated localization microscopy, PALM) [ ]. Parmi
ces méthodes, la microscopie a illumination structurée est une technique a large champ
permettant une acquisition rapide des données et ne nécessite pas de uorophores spéci ques.
De plus, cette méthode posséde également une capacité de sectionnement optique en imagerie
3D [ 11 1.

En SIM standard, l'objet est éclairé par un ensemble de motifs harmoniques de fréquences
spatiales et de phases connues. Cependant, générer une illumination harmonique parfaitement
connue est une tache dif cile en pratique et de fortes distorsions de la grille de lumiére peuvent
étre induites dans le volume étudié | ]. Lincertitude sur les motifs d'illumination
réduit alors la capacité de super-résolution de cette modalité d'imagerie et peut produire de
forts artéfacts [ ]. Par conséquent, une méthode diied-speckle-SIVa été proposée
dans [ ], ou des motifs d'illumination inconnus, de type speckle, sont utilisés a la
place d'illuminations harmoniques. Un pouvoir de super-résolution a ainsi été observé dans
[ ], cependant cette super-résolution est relativement faible comparée a la méthode
SIM standard. Dans cette these, nous explorons la capacité de super-résolution et proposons
de nouvelles méthodes de reconstruction dans une démarche aveegl@ (lluminations
inconnues) pour obtenir une meilleure capacité de super-résolution, en exploitant les statistiques
au deuxieme ordre des données et en proposant de nouvelles régularisations.

Cette thése est constituée de six chapitres. Dans le premier chapitre, nous introduisons
les concepts de fonction d'étalement ponctuel (point spread function, PSF) et de fonction
de transfert optique (optical transfer function, OTF) de la microscopie et nous présentons
brievement les propriétés statistiques des motifs de speckle et les méthodes de reconstruction
existantes de type blind-speckle-SIM.

Dans le Chapitre 2, nous proposons une méthode de reconstruction conjointe (estimation
des motifs de speckle et de I'objet) en minimisant un terme de délité des données pénalisé par
une fonction de régularisation en norme mixgg pour imposer la parcimonie conjointe des

X
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données. La méthode ADMM (Alternating Direction Method of Multipliers) et un algorithme
primal-dual sont utilisés pour résoudre le probléme d'optimisation.

Dans le Chapitre 3, nous explorons la capacité de super-résolution théorique d'approches
de type blind-speckle-SIM en exploitant les statistiques de second ordre des données avec un
minimum d'informations préalables sur les données. Un estimateur marginal est propose,
ou l'estimation est basée sur les statistiques des parameétres de nuisance (proIs de speckle
inconnus) et non pas sur leurs vraies valeurs. Nous montrons que cet estimateur marginal est
un estimateur asymptotiquement cohérent.

La complexité de calcul de I'estimateur marginal proposé au Chapitre 3 €3(Nn), ce
qui est trop élevé pour des tailles d'image réalistes. Aussi, dans le Chapitre 4, nous proposons
une approche marginale basée sur une décomposition des images en patches a n de réduire le
co(t de calcul, permettant d'obtenir une complexitéofiN 2 logN ).

Dans le Chapitre 5, nous démontrons la capacité de sectionnement optique de blind-speckle-
SIM avec l'estimateur conjoint régularisg, et I'estimateur marginal basé sur la décomposition
en patches précédemment introduite.

Le Chapitre 6 conclut ce travail et propose quelques pistes pour de possibles travaux futurs.



Chapter 1

Basic optical concepts

1.1 Introduction

Optical microscopy is a diffraction-limited system, where the image of a point source is not
resolved as a point. Instead, a spot of nite size is created, together with a series of concentric
bright rings, called the point spread function (PSF), or Airy pattern [ ]. When two points
are too close to each other, their images overlap and may become indistinguishable, giving rise
to the resolution limit of conventional microscopy.

Another way to characterize the resolution of an optical system considers its optical transfer
function (OTF), which is de ned as the Fourier transform of the PSF. The ner structure of the
object corresponds to high-frequency components in the Fourier domain. The OTF measures
how well each frequency component can be transmitted through the optical system. Only
the frequency components inside the OTF support can pass the optical system, and the high-
frequency part is lost during the imaging process.

My thesis focus on super-resolution microscopy induced by unknown speckle patterns
(blind-speckle-SIM). In this chapter | will brie y introduce where the resolution comes from in
conventional optical microscopy and present the state of the art of the super-resolution methods.
| rst give an analytical expression of the light eld in Section 1.2. The image formation model
of coherent and incoherent imaging systems are discussed in Sections 1.3. The super-resolution
techniques are presented in Section 1.4, while the existing reconstruction methods proposed in
blind-speckle-SIM are presented in Section 1.5.

1.2 Light eld

Light can be characterized as an electromagnetic wgd; t) varying in space (coordinate
r) and time (coordinaté). The Fourier transform afi(r ; t) in both space and time variables
reads: 7

t( ;v)=  u(r;t)e 120" Wdrdt; (1.1)

where = ( «; y; ), the Fourier conjugate variable of the position veatoris called
wavevector (or k vector) and denotes the temporal frequency. The wavenumbisrde ned
as:

V; (1.2)

o>



2 1.2 — Light eld

in whichn is the index of refraction of the medium and= 3  10° m/s denotes the speed of
light in empty space. The wavelength is then given by:

c 1
== (1.3)
According to the energy-momentum relation [ , Chapter 1]:
j k=2 (1.4)

We see from (1.2) and (1.4) that the magnitude of the wavevecisrxed by the wavelength

1.2.1 Monochromatic eld

Firstly, we focus our attention on a monochromatic eld. For the light propagating in a
dielectric medium that is linear, isotropic, homogeneous and nondispersive, the incident eld
can be described by a complex-valued analytic signal:

u(r;t)= U(r)exp( 2jvt) (1.5)
with v the frequency antd(r ) the complex phasor amplitude:

U(r) = ju(r)jexp j (r) (1.6)

1.2.2 Spatial coherence of polychromatic eld

The monochromatic assumption of light is overly restrictive in realistic conditions, even
illumination generated by lasers is not perfectly monochromatic. The polychromatic light
eld u(r;t) is de ned asnarrowbandwhen the bandwidth v is much smaller than its center
frequencw. For the narrowband case, the wave eld can be described as [ , Chapter 6]:

u(r;t)= U(r;t)exp( 2j vt) (1.7)
with the time varying complex phasor amplitude:
U(r;t) = ju(r;t)jexp j (r;t) : (1.8)

Since the phasor amplitude varies randomly with time, it is necessary to introduce some
statistical concepts to describe the wave eld. We consider two types of light here. The phasor
amplitudes of the rst type of light at all spatial points vary in union, calépatially coherent

While the second type of light is callegppatially incoherentvhere the phasor amplitudes at all
points vary in an uncorrelated fashion. Mathematically, this spatial coherence is described by
the mutual intensity concept:

Ju(ry;ra) = E U(rg;)U (ro;t) (2.9)

whereE[ ] means expectation in time. The illumination is said to be perfexiherentwhen
the time-varying phasor amplitudé(r ;;t) and U(r,;t) differ only by a complex constant.
Equivalently, it could be written as:

U(0;t)

U(r ,t) = U(I‘)W

(1.10)
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Here the time varying phasor amplitude at origin has been arbitrarily chosen as the phase
reference. Substituting (1.10) into (1.9), we obtain the mutual intensity of coherent light

Ju(ra;r2) = U(ru (ro): (1.11)

For perfectlyincoherentlight, the phasor amplitudes vary in a statistically independent way,
and the mutual intensity in this case is:

Ju(ra;ro) = &I(ry) (ry ry) (1.12)

in which &is a real constant andr) is a 2 dimensional Dirac delta function.

1.3 Image formation model in diffraction limited system

Under the narrowband assumption, the amplitude impulse response of the optical system
does not change for different optical speatrd herefore, we can write the time-varying phasor
of the imagédJ; as the convolution of a wavelength-independent impulse response with the time
varying phasor of the objeti, [ , Chapter 6]:
Z

U(r:t)=  ha(r r9Us(r%t adr® (1.13)

where ; denotes the time of light propagation from the object plane to the image plarig and
Is the amplitude point spread function (APSF).

1.3.1 Coherentimaging system

In practice, we cannot measure the light eld directly, instead we measure the intensity of

the eld, which is given by
. Z T:2. .2
I(r)= |TIIrII T T=2Ju(r,t)J dt (1.14)

In the monochromatic case, we havé) = jU(r)j? while in the narrowband non-
monochromatic case, we have:

I(r)= E jU(r;t)j? (1.15)
Combining (1.13) and (1.15), we obtain:
27
li(r) = ha(r  r)h,(r r2)E Ug(ro;t 11); Uo(rait  y2) dradr (1.16)

The APSFh, is nonzero over only a small region, so the integrand is nonzero only for points
r, andr, that are very close to each other. Hence the difference between the time delays
and ., is negligible under the narrowband assumption. Therefore, (1.16) can be equivalently
written as: zZZ

li(r) = ha(r — ro)ha(r  r2)Ju(ry;rp)drdr, (2.17)

When the light eld is perfectly coherent, by substituting (1.11) into (1.17), we get:
VA
2
()= ha(r rOU(r9ar® = (hy Uo)(r) ° (1.18)
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Finally, de ning a time invariant phasor amplitud&(r ) in image space relative 1d;(0; t) as
in (1.10), we can describe the coherent imaging system by:
Z

U(r)= ha(r  rUs(r9dr®=(ha Uo)(r) (1.19)

The coherent imaging system is thus linear in complex amplitude. By applying the convolution
theorem to (1.19), we have:
G( )= Ma( )0( ) (1.20)

whereh,, the Fourier transform olfi,, is called the coherent transfer function, or amplitude
transfer function (ATF).

1.3.2 Incoherent imaging system

When the light emitted from the object plane is totally incoherent, we substitute (1.12) into
(1.16) and get 7

Li(r)= jha(r  r9%j2lo(r9adr® (1.21)
We de ne the point spread function (PSR)of the incoherent system a&: = jh,j?. Then,

for the incoherent imaging system, the image intensity is the convolution ofhP&iEh the
intensity of object: 7

L(r)= h(r r9,r9dr®=(h Ig)(r) (1.22)
In the frequency domain, we have:
HOER@IFE (1.23)

wherefn( ) is the optical transfer function (OTF) of the optical system. An illustration of the
OTF is shown in Figure 1.1.

1.4 Super-resolution uorescence microscopy

Fluorescence microscopy is an optical microscopy method that uses uorescence to generate
an image. The uorophores absorbe energy from the incident light at a speci ¢ wavelength
and then emit light at longer wavelengths. There is a time delay of about several nanoseconds
between absorption and emission, which can be neglected in the imaging process. The emission
light of the uorophores is spatially incoherent.

The emission intensity is proportional to the excitation intensity when the excitation
intensity is low, which can be written as,: = | i, where thel o is the intensity emitted
and thel;, is the intensity of the excitation light. Normally, the uorophores are much smaller
than the resolution limit of the optical microscopy, thus they can be considered as a continuous
density. One de nes the functionsuch that:

S
(r)dr = | (1.24)

=1

whereL is the number of uorophores in the volunde and | is the emission coef cient of the
|-th uorophore. For the excitation intensity we can thus write the emission light intensity as
I . Inthe linear regime, the following effects are neglected:
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Figure 1.1 -ATF and OTF of the system (Figure courtesy of | ].) . All k-vectors of
waves in a single wavelengthlie on a spherical shell. Projecting the system's pupil function
onto the sphere yielding the k-vectors available for imaging, which is called amplitude transfer
function (ATF). The autocorrelation of ATF gives the optical transfer function (OTF) of the

system.
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— Photobleaching: The coef cient decreases with time and gradually, the sample cannot
uoresce any more. More precisely, the uorescence decay is proportional to the emitted
energy [ ].

— Photoblinking: The intensity of uorescence molecules repeatedly drops to zero and
then comes back to normal. This uctuation is the basis of the super-resolution technique
SOFI [ ]

1.4.1 Super resolution based on single-molecule uorescence localization

In conventional microscopy, there is a hidden assumption that two close points emit light at
the same moment. If two points do not emit light synchronously, we can locate them separately
by nding the centroid position of the PSF and thus break through the resolution limit. In the
past twenty years, several super-resolution techniques based on single-molecule uorescence
localization were proposed.

STORM/PALM - Stochastic optical reconstruction microscopy (STORM) | ] and
photo activated localization microscopy (PALM) [ ] utilize sequential activation of
photo switchable uorophores to create high resolution images. In each imaging cycle,
only a fraction of uorophores are activated at any given moment, so that the position of
each uorophore can be determined with high precision. The uorophore is subsequently
deactivated, and another subset is activated and imaged. We can reconstruct a super-resolution
image by repeating this process. The drawback of this technique is that it requires special
uorescent probes and the on-off cycles take a lot of time.

SOFI — Super-resolution optical uctuation imaging (SOFI) produces highly resolved images
based on uorescence blinking by exploiting high order statistical analysis of the temporal
uctuations recorded in a sequence of images [D09]. It requires that the uorescence
molecules uctuate repeatedly and independently from each other. A second-order SOFI
computes the empirical variance and this variance corresponds to the square of the original
PSF. Higher resolution is possible by using high order statistics of the data. The disadvantage
of SOFI is that the blinking rate of uorescent molecules could be faster than the frame rate in
video microscopy.

SPoD/ExPAN — The SPoD technique measures the orientation of the uorophores by rotating
the polarization of the excitation beam and detecting the periodic signals emitted with different
phases [ ]. This approach is not suitable for highly dynamic structures.

1.4.2 Super-resolution based on PSF engineering

STED - Stimulated emission depletion uorescence scanning microscopy (STED) creates
super-resolution images using two laser pulses. The object is illuminated by a point source
through the objective lens, stimulating the uorophores inside the region of PSF to their
uorescent state in the focal plane. With the help of an additional STED pulse, uorophores
in the outer regions of the excitation focus are quenched [ ]. In the ideal case, the STED
pulse creates a concentric annulus around the focal point, overlapping with the outer region of
the Airy disk. By scanning this focal spot in the object, one retrieves the image. Since the
super-resolution image is retrieved by scanning, this technique is time-consuming for large size
objects, even with parallelizing STED [ ].
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1.4.3 Super-resolution based on structured illumination

SIM — Structured illumination microscopy (SIM) retrieves the super-resolution image by
illuminating the sample with periodic light patterns, thus transfers otherwise unobservable
high-frequency information about the sample into a lower-frequency region [ ]. Suppose
the maximum spatial frequency can pass the microscopy is speci ég apd the frequency
information contained in illumination patternddg as shown in Figure 1.2, then the frequencies
will be observable as long §is kij < kg, thatis, the highest observable frequency is increased
from ko to ko + Kky. This high frequency information can be extracted by some post-processing
methods. As a wide- eld super-resolution technique, the structured illumination microscopy
(SIM) allows us to acquire images much faster than other super-resolution (SR) techniques,
such as STED or STORM. Super-resolution imaging in living samples has been demonstrated
in SIM [ ]

Figure 1.2 —Concept of resolution enhancement by structured illumination. (Figure
courtesy of | ].) (a.) The spatial frequencies that can pass the optical system de nes a
circular of radiusky in frequency space. (b.) If the illumination patterns contains a spatial
frequencyk;, then the maximum spatial frequency that can be detected (in this direction)
becomek, + kj.

Normallyk; kg since the illumination patterns are also limited by the diffraction effect
in the same way as the object. So conventional SIM can improve the resolution by a factor of
two at most. Saturated structured-illumination microscopy (SSIM) (also called non-linear SIM)
[ ] generates illumination patterns containing high spatial frequencies taking advantage
of the nonlinear properties of the uorescent response in saturation status, thus rkaking
Ko. The resolution limit of this technique is only bounded by the signal-to-noise ratio and
photostability of dyes.

Blind-speckle-SIM — In standard SIM, the object is illuminated by a set of harmonic patterns
with known spatial frequencies and phases. However, generating a perfectly known harmonic
illumination is a dif cult task and the blurring in the illumination will reduce the SR capacity in
SIM [ ]. Moreover, the application of SIM is restricted to thin samples or samples with
small refraction indices [ I

Blind-speckle-SIM achieves super-resolution using unknown speckle patterns as a substitute
for harmonic illuminations. Compared with harmonic illuminations, the speckle patterns are
easier to generate while the super-resolution is still attainable[VIE2}: We brie y review the
reconstruction methods proposed in speckle-SIM in Section 1.5.
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1.5 Existing reconstruction procedures in blind-speckle-SIM

In SIM using speckle illumination, the sample is successively illuminatéd bydependent
speckle patternks,,;m = 1; ;M. For each speckle pattern, the recorded ggtacan be
modeled as the convolution of the emitted density from the objeeith the point spread
function (PSFh:

Ym=h (I n)+ m; (1.25)

where represents the convolution operator argtands for noise and model errors. Since we
record digital signals physically, we rewrite Eq. (1.25) in matrix form as:

Yim = HRl m+ m (1.26)

with H 2 RN N the convolution matrix of PSR andR 2 RN N the diagonal matrix whose
diagonal values identify with the discretized object I, 2 RN is them-th realization of
speckle with homogeneous intensity méanNow the problem is to estimate the objedrom

a series of low resolution imaggs, .

1.5.1 Blind-SIM with positivity constraint

The idea of obtaining super-resolution with speckle patterns was rst proposed in [
with a reconstruction algorithm called blind-SIM simultaneous inversion (blind-SIM-SI). It
assumes that the sum of speckle patterns is homogeneous and that both the object and speckle
patterns are positive. The reconstruction procedure is based on minimizing the mismatch
between the acquired data and the model:

hd
min Kym HRI Kk

e mer (1.27)
st. lm O M [

To incorporate the positivity constraint, the auxiliary variablesd |, are introduced with
= 2andl, = 2. Then the variables are updated with respectand ., alternately using
conjugate gradient algorithm [ , chapter 5]. Though we retrieve partial super-resolution
information using this method, the modulation contrast in super-resolution part is relatively
weaker than standard SIM.

1.5.2 Blind-SIM with sparsity and positivity constraint

Our team propose to solve the problem (1.27) in [L1I] by breaking it intdM separate
deconvolution sub-problems. The auxiliary variabtgs = Im are introduced, with
denoting the element-wise product:

rEin KYym Hamk?® st gnm O (1.28)

P
After all f gmgM_, are obtained, the estimated object is givemby  _ gm=(M1 (). With the
assumption that the product imaggs tends to be a nearly black object [ ], a strictly
convex penalty term is added to the formula (1.28):

"Om; s )= kakg-" Kamky (1.29)
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with k kp denotingthe ,normand  0; > 0. Now we are led to the optimization problem:
min f (dm) := kym Hank?+ ' (dm) st gm O (1.30)

The problem (1.30) can be expressed by the sum of two functiqiug;) = f1(qm) + f2(am)
with f; a smooth function anfl, a non-differentiable one:

f1(dm) = Kym quk2X+ kdm k3

fo(Gm) = (Gnn) (1.31)
n
where is de ned as:
( 0
u; u
(u) = +1: u<o0

Though functiorf , is nondifferentiable, its proximal operator can be written analytically:
prox; ,(x) = vect(maxf x, ; 0g) (1.32)

with x, the n-th component of vectox. Now the optimization problem (1.30) can be solved
using a proximal gradient descent algorithm, such as FISTA | ]. However, the convergence
speed of FISTA in this problem is relatively slow and a preconditioned Primal-Dual splitting
algorithm has been showin [ ] to behave better in terms of convergence rate. The primal-
dual update reads:

Ok+1 = Ok B « (1.33a)
W1 = Wi + Po( k) W (133b)

with ¢ = r hy(g«) + wyg and the preconditioning matri® is chosen from the Geman and
Yang semi-quadratic construction:

B=(QHH+2 1y=a) ! (1.34)

wherea > 0 is a free parameter of the preconditioner. In the dual update (1.33b), we have
k=Wt (& 2B y)and

P»(x) = vect(minfx,; Q): (1.35)

When some conditions on parametérs; ;a g are met | ], the convergence of PPDS
algorithm is granted. One drawback of this method is that the hyperparamedads are not
easy to tune and they will in uence the quality of the reconstructed images.

1.5.3 Joint support recovery

In[ ] the object is obtained by assuming that the set of auxiliary vettprgM_,
share a common non-zero support, whegkeis given by the same de nition as in former
Section 1.5.2. The observation model in matrix form reads as:

Y = HQ + E (1.36)
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withY =[yy;  yml2RY M Q=[qy; ;qu]2 RN MandE=[ 1; ; m] Then,
the reconstruction approach is based on considering the following optimization problem:

Qs = arg m(%n KY HQK2+ kQkyo (1.37)

in whichk kg denotes the Frobenius norm aké#,. is the .0 norm de ned by:

X
kQkzo = (kq"kz) (1.38)

n=1

whereq" denotes tha@-th row of Q and (u) is the indicator function given by:

(
1, uso0
(u) = 0 u=0 (1.39)

The optimization problem of joint sparsity has received great attention recently and several
methods have been proposed, see | : : ]. A multiple sparse Bayesian
learning (M-SBL) algorithm was used in [ ] to approximately solve problem (1.37),
whereQ ;s was viewed as a typd maximum likelihood or evidence maximization problem
The conditional probability density(ymjgm) is assumed to be Gaussian with noise variance

2.

. - 1
P(Ymitm) = (2 ?) NZexp ﬁkym H Om k% (1.40)

Next, each row of) is assigned aM -dimensional Gaussian prior with hyperparametger
p(qn; n) =N (0; nlM) (1-41)

where , is the variance parameter afigy is theM M identity matrix. By combining all
these row priors, we have:

pQ; )= Rz P(@"; 1) (1.42)

where =1 1; ; n]' 2 R*. Then joint sparsity is achieved whenever aequals zero
sincep(g" = 0jY; , =0)=1. Thus minimizing th&kQk,, norm is shifted to estimating the
hyperparameter with the correct location of nonzero elements. The M-SBL method solves
this problem by treatin@ as nuisance parameters, integrates them out and then maximizes the
marginal likelihood function with respect ta

z
min 2log p(YjQ)p(Qj )dQ / MiTr( Yy M +logj j (1.43)
with- = HH T+ 21y, = diag ) and ? the noise variance. It is demonstrated in
[ ] that the minimization problem in (1.43) is equivalent to the following regularized
least-squares problem:
mgu kY HQkZ+ ?Tr(QT Q)+ M log j: (1.44)

Then (1.44) is solved by updating andQ alternately. Here, we use the subscipto
indicate the variable values latth iteration:

1. Minimization with respect tQ):

Q= HT 'Y (1.45)
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2. Minimization with respect to :

ik nk2
et = 1“”#; for n21 N (1.46)

nn;k= n:k
with gy then-th row inQy and .k the(n; n) elementin .

3. Estimate the noise variancé:

1 2

, _ EkY  HQRK
k+1 — F N
=1l nie

(1.47)

nn ;k+1

Once the matridQ is obtained, the author choose to estimate the objdxised on second
order statistics: q

(ry=" Covagq (r) (1.48)

The advantage of using second order statistics is that it produce an estimator less sensitive to the
background noise. One drawback of this method is that the computational burden and memory
requirement of the M-SBL algorithm is too high for realistic size images due to it involves a
matrix inverse operator of matrix in each iteration, whose sizehs N.

1.5.4 S-SOFI

The super-resolution optical uctuation imaging (SOFI) achieves super-resolution taking
advantage of the intrinsic blinking properties of protein uorophores. An S-SOFI method was
proposed in [ ] where the blinking is induced by speckle patterns. The speckle patterns
are supposed to form a second-order stationary random process with modi ed correlation
function given by pec ('), then the second-order correlation of the measured image can be
expressed as:

Z Z
y(r)=E[ Ym(r)z] = h(r rah(r rz) (r1) (rz2) spedr1 rz)dridr;
ro ria
h2 2
(1.49)
where ym = Ym Y. Then the object is estimated fromp(r ) with the Fourier reweighting
(FRW) method [ ]. With a simulated object including two points and a Gaussian PSF,

a resolution enhancement factor 1.6 is observed in [KE5]. The resolution improvement in
S-SOFI is demonstrated fof, no general conclusion about the super-resolution capacity for
could we make.

1.5.5 PE-SIMS

A so-called PE-SIMS (pattern estimation structured illumination microscopy with a sta-
tistical prior) method was proposed in | ]. This method includes two parts. Firstly
the speckle patterns are estimated based on the deconvolution of the wide eld image. Then
the object is estimated from the covariance between the measured inagesl the speckle
patternd ,,.
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1.5.5.1 Pattern estimation
A regularized deconvolution of the wide- eld image is given by:

F 1n y h 0
jnjz+

(1.50)

wherey represents the average of the measured image$ ahdienote the inverse Fourier
transform and is a small regularization parameter to make the solution robust with noise.

Then, the speckle patterns are estimated from the low-resolution deconvolved wide- eld
image .q4. TO avoid the reconstruction artifacts, the correct Fourier support constraint is added
to the original optimization problem via an indicator functiogt

argrlnin Kym HRuwalmk3+ c(Im); (1.51)

whereR 4 = diag| wq) and ¢(Im) is given by:

0 Im2C n 2NA°
m . C= IpnjTm(u)=0; 8u > ; (1.52)

lm) =" e "

where j, is the wavelength of the excitation light. The indicator functiofensures that
the frequency support of each speckle pattern is con ned within the OTF of the system. The
problem (1.51) is solved by a proximal gradient descent algorithm, which is designed to solve
convex optimization problem with two parts: one being a differentiable term and the other
being a nondifferentiable one. When the nondifferentiable part is an indicator function as in Eq.
(1.51), the method is also named as projected gradient method. The gradient of the differentiable
part in (1.51) with respect th, in k-th iteration is given by:
h [
glm;k = wd h ym h ( wd Im;k) (153)

Then the projection operat®, is used to force the frequency outside the OTF support be zero
at each iteration. To reduce the high-frequency artifacts, the following soft-edge lter is chosen:

NEt Img j'”spe(jo
j"'sped- +

P(lm)= F 1 (1.54)

where gpecis the covariance of speckle patterns as shown in Eq. (A.29) aledermines how
much the high frequency information is suppressed.

1.5.5.2 Object estimation

In the second part of the PE-SIMS method, the super-resolution object is reconstructed from
the covariance between measured imaggesnd the estimated speckle patterps

Ceolr) = E[ Ym(r) Im(r)l
(FOEL In(r) ImGrOInGr 9 (L.55

Z

(r% spedr  rOn(r r%dr®

with yn=ym Vyand I, =1, o Therefore, we have:
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Ceov=1(h sped : (1.56)

When the uorescent emission wavelength equals the excitation one, the frequency support
of specidenti es with h. Then the object is recovered by a standard regularized deconvolution
procedure:

n 0
C o]
_ 1 cov
= F o (1.57)
with O given by:
O=F h g (1.58)

The super-resolution capacity analysis of this method is based on a perfect reconstruction of
the unknown speckle patterns, which is impossible in practise. The in uence of the imperfect
speckle reconstruction on this estimator is theoretically unclear.

1.6 Conclusion

In this chapter, | have introduced the spatial coherence of the narrowband polychromatic
eld and PSF, OTF concepts of a diffraction-limited system, which determine the resolution
limit of conventional optical microscopy. The state of the art super-resolution techniques
in optical uorescence microscopy are presented including STED, STORM/PALM, SOFl,
and SIM. Specically, | focused on the blind-speckle-SIM technique and the associated
reconstruction methods that have been proposed are brie y described.






Chapter 2

A new joint reconstruction approach in
blind-speckle-SIM

2.1 Introduction

We note here that the rst three reconstruction methods in speckle-SIM presented in Section
1.5 are quite similar, namely they try to minimize the square of hre@rm of the error between
the measured data and the model, plus different constraints: positivity, sparsity, joint sparsity
or their combinations. In this chapter, | propose a similar model usiggegularizer. What is
more, we could combing,q regularizer with other prior information of the object, such as total
variation (TV) norm or positivity.

In Section 2.2 we solve thg,q minimization problem using alternating direction method of
multipliers (ADMM). Recently the ADMM approach has been successfully applied to several
convex or non-convex optimization problems, including-regularized problem [ ] and
total variation (TV) regularized problem | , ]. Two different splitting patterns
are presented, one for unconstrained form and the other for constrained form for the basis pursuit
denoising (BPDN) model. When thg, norm is combined with TV norm, we choose a primal-
dual approach to solve it as shown in Section 2.3.

2.2 " pghorm minimization

The data formation model in speckle-SIM is shown in (1.36). To reconstruct the super-
resolution image, we need to incorporate some prior information on the object. Speci cally, we
consider the following constrained form of basis pursuit denoising models:

argrréinkagq st. HQ Y (2.1)

F
where’ ;. normkQK,q is used to measure the joint sparsity of ma@ixvithp 1, 0 q 1L

X 1=
kKQkpg=  kq"kd 2.2)

n

In our model, we use,,, norm regularizer to enforce joint sparsity of mat@x Here we
describe how this sparsity implicitly correspond to a prior on objecFor then th line of
matrix Q, we have :

h | ]_:p

kanp: J nllnjp+ +j nIMnjp (2.3)

15
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whenp=1,
kq"kp = n(ilanj+  +jluni) = Ml q (2.4)
whenp =2
n, — 2 5> 12 P—
ka"kp = 0 I+t g, = Mk (2.5)
wherek is a constant for the fully developed speckle patterns | , Chapter 7]. So the sparsity

of kq"k, is equivalent with the sparsity of, whenp =1 or 2.

We note here that the blind-SIM-SD method presented in Section 1.5.2 is equivalent with
the regularizer kQky.; + kQKkg. To simplify the notation, we express the model in vector
form. Firstly we vectorize the variablds),,gM_, and rewrite the data observation model in
(1.36) as:

y=Hqg+e (2.6)
in which
2 3 2 3 2 3
H Y1 d1
H
H = 1y H:E ) z;y:vecmv>:§%2§;q=vecmq>:§‘122
H Ywm dm
(2.7)
Now the minimizing problem (2.1) in vector form is:
argminkgkd,, st kHgq yk (2.8)
q
wherekgkgpq indicates the g,q norm ofq de ned by:
X 1=q
KaKegpq = kdg, ko (2.9)
n=1

inwhichqg = q" is then-th row of Q. Obviously the de nition ofkgkeyq is consistent with

2.2.1 Unconstrained BPDN model

Rather than solving (2.8) directly, | rather consider its unconstrained form:
: 1
arg min kakdpg + 2—kH q yk3 (2.10)

where 2 R* is the regularization parameter. (2.8) and (2.10) are equivalent in the following
sense: for any > 0, the solution of (2.8) is either the null vector, or otherwise it is a solution
of (2.10) forsome > O] ]

There is no closed form solution for problem (2.10). To overcome this dif culty, | introduce
an auxiliary variablel and rewrite (2.10) as:

arg min kdkg,,. + ?zqu yki st d=q (2.11)
q

Now the variablesy have been split into two blocks of variablgsandd and the objective

function is separable in the form 61q) + g(d). Then the augmented Lagrangian associated

with (2.11) is:

rg_idnkdkgpq+52qu yk2  1(d q)+?lkd qk3 (2.12)
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with ;1 2 RMN and ; > 0. The ADMM method is used to solve problem (2.12) by
minimization with respect tq andd alternately. The-subproblem is given by:

rcpig Tq+ %kd qka+ Ezqu yk3
1 (2.13)
o minZa"(alun + HTH)G (ad o+ 2HTY)'g
Note that (2.13) is a convex quadratic problem and it is equivalent to the following linear system:
(1lun + 2HTH)g= 1d 1+ HTy (2.14)
An exact solution gives:

Yd o i+ HTy (2.15)

g= 1lwn + 2H'H
or we could use a gradient based iteration algorithm to upgtate
Oks1 = Ok «F Ok (2.16)
where the subscrigt indicates iteration number and the gradiert, is given by:

rage= 100 di)+ 1+ HT(Hge y) (2.17)

The corresponding-subproblem of (2.12) is given by:

min kdkdp,  1d+ Elkd qk3 (2.18)
According to the de nition of the g, Nnorm, we can reexpress (2.18) as:
" #
X ) 1 2
n=1 1 2
Let us denote: 1
n=dg * —1( )G, (2.20)
and
fapa(da,) = kdg ki + ks, nk3 (2.21)
Then the problem (2.19) has closed form solutions for the folloWmg) pairs [ I
— forp=2 andg=1 n L o
= 1 ——; 2.22
dg, = max X nk2,O n (2.22)
— forp=2 andq=0
8 P ——
2 n, K nky > (2= 1)
dg, = S Qor ,; koka=_ (2= 1) (2.23)

' O; k nk2< (2: l)
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— forp=2 andq=1=2

8
16k k2 C0§( ") i 3(1— 2=3
% L3416k 0k coz@(f o m Knkz > 5(1= 1)
d 16k n k3% cos(5 -1) . — 3(1= \2=3
G — EOO P 3+16k k2 CO§3( — i ns k nkz_ 2(1— 1)
0; K ok < 3(1= 1)?°
with
1 3 32
n = arccos 4—1 K K
— forp=2 andq=2=3
8 . _
5% ns kK nky > 2(%)3_4
dg, = BOorﬁﬁ ns K nky = 2(5%)%
"0 k nks < 2(%)3ﬂ1
with
$ —i—r! 1=2
1 .. 2k ko 2 2 1z ( n) B
== jaj+ — az ; a= p— — cosh
> 14 iaj \9—3 . 3 |
( n) = arccosh 16T13:2
— forp=1andq=1=2
8
2 *n; fn1120(*n) < n1,122(0)
dg, = S Oor en; fnri=2(*n) = fn1.1=2(0)
' O; fn;1;1=2(°n) > f n;1;1:2(0)
with
P3 |
= n p—— ()Slgr(n)
k nkicos - 3
M 3 32
( n) = arccos 7 K.k
— forp=1andqg=2=3
8
2 ns fn;1;2=3( n) <f n;1;2:3(0)
dGn = S Oor n; fn;1;2=3( n) = fn;1;2:3(0)
-0 fn1028( n) > n;1,0=3(0)
with
- 4 a sign( 1)
TN 3 w2e g, @ o
and 1
2 2M 1= (n) -
=p= — h
a p—3 coS 3

27 nif

( n) = arccosh m

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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Finaly, we update the multiplier; by:

1 1 1 1(d Q) (2.32)

where ; > 0denotes the step length. Brie y, the ADMM approach for the constrained BPDN
model is shown in Algorithm 1.:

Algorithm 1: ADMM algorithm for " ., minimization of unconstrained BPDN model
Initialize 1; ,2 RMN, ;> 0and ;> 0;
while stopping criterion is not medo
Updateq by (2.15) or (2.16) ;
Updated according the number @p; g pair;
1 1 1 1(dg);
end

o 00~ W N P

2.2.2 Constrained BPDN model

Although the unconstrained form of BPDN model (2.10) and its constrained form (2.8) are
equivalent, it is not easy to set the parameten (2.10). However, the parameterhas a
clear meaning related to the energy of the noise. Inspired by the so-called C-SALSA algorithm
[ ], we present an ADMM approach to solve (2.8) directly.

Firstly, we de ne the ellipsoid feasible sEf( ; H;y) as:

E(;H;y)=  2RVjkH  vyk (2.33)
Then the constrained problem (2.8) can be written as an unconstrained problem according to:
arg min kakd,q + {1y (HQ) (2.34)

To solve the problem (2.34), we introduce two auxiliary varialolesdz by:

_ oW q _ 9
0= o = Hq z= (2.35)
Then we can write (2.34) as:
arg min h(z2); st. Az=0 (2.36)
4

where

h(2) = f(@)+g(); f(q)=0; g0)= koWki,+ {£(:1)(0?)

2.37
A= B Lun ; B= M (237
H
The augmented Lagrangian associated with (2.36) is:
argmin f (g) + g(o) Az+ EkAZkZ
d (2.38)

, argmin f (q) + g(o) + EkBq o —k?
q
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Theq-subproblem is given by:
argminkBq  «k?*=(B"B) BT |
q

= Iyn +H™H ' @+pT @

wherek indicates the number of iterations and= o, + —&.
Theo-subproblem of (2.38) is given by:

arg min g(o) + EkBq"” 0o —K
° (2.39)

H 1) 1.9 2 2
. argmin koWkd o+ {e(:1:)(0?) + SKo sk

wheresy = Bq,,; . Clearly, the minimizatiom-subproblem could be decoupled, leading
to

o), =arg T(ll)n koM kd . + Eko(l) s 2 (2.40a)

0y =argmin {e(:1)(0®) + sko® 52K (2.40b)
[0}

which are the proximal operators of the corresponding functions. The proximal operator of
“mg NOrm has been shown in previous Section 2.2. The proximal operator of indicator function

{eCay is| I:
(

sy .k k
prox__,_(9)=y+ e =Y (2.41)

s y; ks yk
Finally, the multipliers are updated by:
ki1 = kt (AZua) = kt+ (BOwy  Oker) (2.42)

The resulting ADMM algorithm to solve the unconstrained BPDN model is as follows:

Algorithm 2: ADMM algorithm for " ,,; minimization of constrained BPDN model

Initialize 2 R?MN > 0;
while stopping criterion is hot medo

N -

3 k= O+ =,

& Gua= Iuy +HTH & D4 HT @
5 Sk = BOxra

| ol = poe,,. (62

7| ol = prox, - (sP);

8 ki1 = ko (BOsr  Oksr)

9 k k+1;

10 end




Chapter 2 — A new joint reconstruction approach in blind-speckle-SIM 21

2.3 pghorm plus TV norm minimization

In this section we incorporate more prior information on the object to the image reconstruc-
tion model, including positivity and the total variation (TV) regularizer:

argrginkagq+ k krv stky HQk ;Q O (2.43)

where theasotropic TV is adopted. For &; N, object , itis de ned as:

X1 X2 p
k kT\/ = ( [nl + l, n2] [nl; I'Iz])2 + ( [nl; n, + 1] [nl; nz])2 (244)

ni=1 no=1

Let us denote€C1;C, 2 RN N the two rst-order forward nite difference operators (see their
structures in Appendix C). For the vectorized obje@ RN, we have:

X
k kT\/ = kC k(j.,;z;l = k(C )Gh kz (245)

n=1

with C = (C1;C,) 2 R®™ N denoting the total nite dIi_i;ference operator afi@ )g, =
[(C1 )n;(C2 )n] 2 R?. According to the property = ﬁo = dm, We could write = Aq,
with matrix A 2 RN MN given by:

A= mle g n (2.46)

Let us denot® = CA, then the corresponding vectorized form of (2.43) is:

argminkgkd,, + {r- (@) + kDgkez1 s.t. kHg yk (2.47)
q

with (

w@= % 9% gk -X\Ik(D)k (2.48)
R +1 : otherwise ez V¥ '

n=1

2.3.1 Primal-dual algorithm for unconstrained BPDN model

Problem (2.47) can be solved by transforming it to its equivalent unconstrained form:

argmin JkHG YK+ afee @)+ okaklg+ KDKez: (249)
in which ,; 3 0. Here we add parametej 2 f 0; 1g, so that the model can be solved with
or without the positivity constraint. When, =1 and , = 3 =0, Eq. (2.49) reduces to the
model presented in Section 1.5.1. Here we choose the primal-dual splitting method proposed
in [ ] to solve the optimization problem in (2.49). Firstly, we introduce two auxiliary
variablesd; p by d = g andp = Dq and we rewrite (2.49) according to:

argmin (q) + 9(q) + hy(d) + hy(p)
with f(@)= 2kHa YK o@)= 1l (@) (2.50)

hi(d) = okdkd,, ha(p) = skgkea
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The dual problem associated with (2.50) is:
h [
argmin (f +¢) ( d D p)+ hy(d) + hy(p)
’ h

i (2.51)
argminmin £ ( d D p )+ g (a)+ hy(d)+ hy(p)
where we have used the following property:
(f+g(dD p)=mnft(dD p a+g() (2.52)

in which D denotes the conjugate transpose of marbandf is the convex conjugate of
functionf de ned as:
f (x)=sup hx;xi f(x) (2.53)

According to classical Karush-Kuhn-Tucker theory(§f 8: ) is a solution of the monotone
variational inclusion:

0 1 0 1
0 @M+ a+D p+r Q)
@oA2@ a+ @h(@) A (2.54)

0 D 4+ @h(p)

then§ is solution to the primal problem (2.50) afigp is the solution to the dual problem
(2.51). The primal-dual splitting method to solve (2.54) is shown in Algorithm 3:

Algorithm 3: Primal-dual splitting method to solvg.q plus TV norm minimization
Initialize the parameter, ; > 0andqg; do; Py

[y

2 while stopping criterion is not medo
3 if 1=1then
¢ | | dea=max g rf(@)+ dc+ D p 0
5 else
6 | Oer = Ok r f(gy)+ de+ D py
7 end
8 Oz = Ok +(1 )i
9 di+1 = Proxy | de+ (2011 Qi)
10 | Pysg = Prox, Pt D(20x1 Qi)
11 dys1 = dygs1 + (1 )dk ;
12 Psr = Prar v (1 )Pk
13 end
The convergence results of algorithm 3 is as follows [ I:

Property2.1 LetL be the Lipschitz constant of the gradient (or functionf is L-smooth)
and; > 0. Whenp 1landg=1, the sequencg, generated by Algorithm 3 converges to
a solution of problem (2.50) as long as the following holds:

— 5+ 1luywn+DD op <L wherek kop is theoperator norm

— 2 (0;1]

Whenq < 1, "4 is a nonconvex function and we cannot assure Algorithm 3 converges to its

global minimum.
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The Lipschitz constantaf f (q) = H Hq y is: L = kHk3, = kly k3 kHK,. Since
H is a lowpass convolution operator with symmetric boundary conditions, wekifrbkg, = 1,
sothatl = 1.

According of the de nition of norm,

with
kD Dkop = kDk3, kAk 2KCk3, (2.56)
According to the inequality between root-mean square and arithmetic mean, we have:
KA gk iqu% (2.57)
Ml o

SincekCk3, 8] ], combining Egs. (2.55)—(2.57):

lyw +DD 1+ % (2.58)
0

The proximal operator fon, could be found through the relation:

prox,, 1(x) =X prox, - (x=) (2.59)

2.3.2 Primal-dual algorithm for constrained BPDN model

The constrained form of (2.47) is:
arg n’(lqin {eGipHA) + afre (@) +  2kakdy,+ skDgkez (2.60)

To solve (2.60) with primal-dual algorithm, we introduce the auxiliary variablgs, r with
d = gandp = Dg andr = Hg. Then (2.60) can be rewritten as:

arg rr;in g(q) + hy(d) + hy(p) + ha(r)
with (@)= 1fr(q); hi(d) = okdkd, (2.61)
ho(p) =  skpKeai;  ha(r) = {g(;1)(r)

The primal-dual algorithm to solve (2.60) is as follows:

2.4 Simulation results

To study the numerical performance of the blind-SIM-JSP model, a 2D 'star-like' simulated
target is used as the true object, with a uorescence density givelirby) / 1+ cos(40) in
polar coordinates, as shown in Figure 2.1. Its spatial frequencies are higher closer to the star
center, making it easy to visualize the resolution improvement. The point spread function is
chosen as: 1,
J1(NAkor) k2
h(r; )= Ji(NAkor) kg (2.62)
kor

wherel, isthe rst order Bessel function of the rst kindyAis the objective numerical aperture
set to 1.49 and, = 2 is the free-space wavenumber witlthe emission and the excitation
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Algorithm 4: Primal-dual splitting method to solvg,, plus TV norm minimization of
form 2
1 Initialize the parameter, ; > 0andqg; do; Po; o

2 Setk=0

3 while stopping criterion is not medo

4 if ;=1 then

5 ‘ Oys1 = Max qy dc + D p+ Hrg ;0 ;
6 else

7 | Oeer =G A+ D pe+H g

8 end

9 Oesr = Oker +(1 )k

10 dks1 = prOXhl de + (2001 Q)
11| Pysr = ProXy Pt D(20x1 Qi)
12 Mear = Prox,  ret H(200n G
13 dis1 = disr + (1 )dk ;

14 Pe1 = Py +( )Pk ;
15 Nk+1 = Tk+1 T (l )rk ;
16 k k+1;

17 end

wavelengths. The speckle patterns are generated through the same optical device as the recorded
images. The sampling step in the object should be ner theBNAto observe an SR factor of

two. In our simulations, a larger SR factor is expected in some situations. Therefore, a sampling
step of = 20is adopted so that aliasing does not destroy the attainable SR. For the sampling rate
in the raw images, we will not lose the SR capacity as long as it is higher than the Nyquist rate
ANA= . In the simulations presented in this chapter, we use the same sampling rate for the raw
images and the object.

Firstly, we do simulations under 40dB Gaussian white noise and 300 speckle patterns
with different regularizers. The average of the raw images (wide- eld imagend its
Wiener deconvolution by Eq. (1.50) are shown in Figure 2.2(b,c). It is clear that we see
no super-resolution in the wide- eld image and its deconvolution. The reconstructed image
with positivity constraint is shown in Figure 2.2(d). We retrieve partial super-resolution with
weak modulation contrast after introducing positivity constraint, which is consistent with the

result shown in [ ]. Figure 2.2(e,f) are obtained witho norm regularizer with M-SBL
algorithm as in | ] and™; + ", norm plus positivity regularizer with PPDS algorithm
presented in [ ], respectively. We can see that the image reconstructed by M-SBL
algorithm asin | ] do not scale well and there are some artifacts in low resolution part.

The reconstructed objects obtained by usingnorms with differen{p; g pairs are shown
in Figure 2.3. The positivity constraint and the TV norm are not considered. The images in rst
line are obtained by minimizing the unconstrained BPDN model (2.12) with ADMM algorithm
and ; = , = 2. The results in second line are obtained with primal-dual algorithm by
minimizing unconstrained BPDN model (2.49) where we gset 3 =0 and , = 0:5. Here

= =1 and = 0:6 satisfy the convergence conditions of primal-dual algorithm when
p landg=1.

While the results shown in third line in Figure 2.3 are obtained by minimizing the
constrained BPDN model (2.60) with = 3 =0 and , > 0. For the hyperparametey we
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Figure 2.1 —The true object. The green solid circle corresponds to spatial frequencies
transmitted by OTF support, and red dashed circle corresponds to two times of the OTF support.
The Nyquist limit introduced by discretization is marked by the blue circle.

a) Quarter of true object b)Wide eld image ¢) Wiener deconvolution of

d)[ ] el ] il ]

Figure 2.2 —Joint reconstruction approach in blind-speckle-SIM using different regular-
izers with 300 speckle patterns and 40dB Gaussian noisal) is obtained using positivity
constraint as shown in [ ], e) is obtained with ;. norm regularizer using M-SBL
algorithm as in [ ] and f) is obtained with; + ", norm regularizer plus positivity
constraint using PPDS algorithm shown in [ ]
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set it equal to its true valugey = P MN with denoting the standard deviation of the noise,
unless otherwise stated. The primal-dual algorithm converge2]0; 2[ and % [ ]

It shows that the ;. norm regularizer can induce good super-resolution results. Particularly,
for the constrained BPDN model, we retrieve the super-resolution information twice better than
the conventional wide- eld image, as good as standard SIM. However, let us remark that prior
information introduces bias to the joint estimator.

ADMM for unconstrained BPDN

Primal-Dual for unconstrained BPDN

Primal-Dual for constrained BPDN

(col 1.) 2.1 norm (col 2.) ".4= norm (col 3.) 223 norm

Figure 2.3 -Reconstructed object with 300 speckle patterns and 40dB Gaussian noise by
minimizing " p,q Norm.

To measure the quality of the reconstructed images, we use the normalized radially averaged
power spectrum (RAPS) of the error image and the modulation contrast function of the
reconstructed object.

The normalized RAPS function is de ned as:

Hu) e(u)°d

e with u= 9
je(u)j

r sin

f(r)=

;r>0, 2(0;2) (2.63)
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(a) Normalized RAPS curves

(b) MCF curves

Figure 2.4 -The normalized RAPS and MCF curves of the reconstructed object by joint
estimators.

The period of the pattern taken on a circle of radRiss L(R) = 2 R=40 and the
modulation contrast function (MCF) is de ned as:

C(R) = 2fxr(1=L(R))=F&(0) (2.64)

wherefR is the 1D Fourier transform d& (s) / 1+cos(2s=L (R)) with s the arclength along
the circle. We can check that for the true object C(R) = 1 for all radiusR.

The normalized RAPS of errors and the MCF of the reconstructed object by constrained
BPDN model are shown in Figure 2.4. In the MCF curves, we see that the constraingd
or ",.,=3 regularizer give better contrast in high frequency part, however, their error energy in
high frequency part is also stronger, probably caused by the binary effect in the reconstructed
images. The reconstructed object by [ ] is not well scaled, so we do not plot its RAPS
curve. Generally, we can conclude that the constraipgdegularizer gives a balanced result
with respect to the constrast and error energy.



28 2.4 — Simulation results

2.4.1 In uence of the hyperparameter in constrained BPDN model

In this section, we explore how the parametein uence the estimator when it is not
correctly set in constrained BPDN form. The reconstruction results with 300 speckle patterns
and 40dB white noise using differentvalue are shown in Fig. 2.5. Whenis much lower
than its true value as shown in the second line of Figure 2-50(: 2 .5, We still retrieve good
super-resolution, nevertheless, some artifacts (random dots) appears in low-resolution part when
using 2.1- and ,.,-3 norm. When =5 ., as shown in rst line of Figure 2.5, we lost partial
super-resolution compared to the case when it is correctly set, however, it is still better than the
results obtained with only positivity constraint (Figure 2.2(c)).

=5 (eal

=0:2 (eal

(col 1.) 2.1 norm (col 2.) ".1= norm (col 3.) 2.3 nOrm

Figure 2.5 -Reconstructed object with 300 speckle patterns and 40dB Gaussian noise by
minimizing " ,.q norm of constrained form.

2.4.2 Resolution under different frequency support of speckle patterns

Surpassing the resolution limit more than a factor of two is possible in saturated structured
illumination microscopy (nonlinear SIM) [ ]. In this section the in uence by Fourier
support of speckle on the super-resolution imaging is explored. The reconstruction results of
the proposed method with speckle generated with different numerical apertujé (Néer 300
illumination and 40dB SNR are shown in Fig. 2.6. When the support of power spectral density
of the speckle patterns becomes smaller, we lost partial super-resolution, as shown in the rst
columnin Fig. 2.6. The super-resolution information beyond a factor of two is still inaccessible
under the situation the support of speckle spectral density is enlarged in the constrained BPDN
model.
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NAi|| =05NA
NAi|| =2NA
col.1) 2.1 norm col.2)"5.,-3 norm col.c) ",.0-3 norm

Figure 2.6 -Reconstructed object with 300 speckle patterns and 40dB Gaussian noise with
different frequency support of speckle patterns.

2.4.3 Resolution under Poisson noise

In the previous image formation model in Eq. (1.26), we does not consider the shot noise of
CCD caused by the random arrival of photons. For a given photon, the probability of its arrival
within a given time period is governed by Poisson distribution. In Figure 2.7, we show the
image formation model where a noise-free raw image is corrupted with the mixture of Poisson
and Gaussian noise. The number of photons per pixel on average is assumed to be 100 and the
SNR of Gaussian noise added is 15dB.

The reconstruction results by minimizing Eq. (2.60) with mixture of Poisson and Gaussian
noise using 300 speckle patterns are presented in Figure 2.8. The results shown in the

rst line are obtained by considering,q norm regularizer and the TV regularizer, with the
hyperparameters, = 1; 3 = 0:1, while the results shown in the second line are obtained by
only considering ,.q norm regularizer with , = 1; 3 = 0. We see that the super-resolution
can be retrieved with only,,, norm regularizer under mixture of Poisson and Gaussian noise,
and after introducing TV norm regularizer, the results become smoother as expected.

2.4.4 The comparison of two estimators

As has been indicated in Section 1.5, once the m&¥riz obtained, we could estimate the
object by either the mean:

1 1 X
N= __ - _ =
qum P Om (2.65)

m
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(@) (b) (©)

Figure 2.7 Hllustration of Gaussion and Poisson noise(a) A noise-free raw image. (b) The
noise-free image corrupted with Poisson noise. (c) The noise-free image corrupted with the
mixture of Poisson and Gaussian noise.

320:1

3=0
(col 1.) 2.1 norm (col 2.) 2.1 norm (col 3.) 2.3 nOrm

Figure 2.8 -Reconstructed object with 300 speckle patterns under mixture of Poisson and
Gaussian noise by minimizing(2.60) The SNR of Gaussian noise is 15dB and the number of
photons per pixel per measurement is set to 100.
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or by Its covariance: s

N —

1 X

Y On  Om ° (2.66)

m
The measured uorescence images are always blurred by the non-uniform background
comprising of detector offset, scattered light and the out-of-focus parts in sample. If we assume
the background keep xed in the imaging process, then the image formation model could be
described by:
Ym=HOm+ m+Db (2.67)

with b 2 RN denoting the background. So what we reconstructed imthéh column ofQ

isin fact§,, = gn + H"( m *+ b) instead ofg,,, with H* the pesudo inverse &f. Then the
expectation of},, will be blurred byH * b. However, the covariance df, is not in uenced by

the presentation of the background. To verify this point, simulation results using 300 speckle
patterns and 40dB Gaussian noise with a xed background (lena) are shown in gure 2.9. The
second line and the third line are obtained by minimizing the constrapeohd’ 1, regularizer,
respectively. As we expected, the meanpfare blured by the background while the square
root of covariance o) are rather clear. So in the reconstruction problem by the experimental
data as shown in next section, we choose Eqg. (2.66) to estimate the object.

2.5 Experiments with real data

The raw images are obtained with an objective of 1.49 NA &0@ magni cation. The
wavelength of excitation i488nm and520nm for the collection. The PSF used is simulated
using a ICY plug-in called PSF Generator with Gibson & Lanni 3D Optical Model. The
reconstructed objects by minimizing the constrainggdregularizer with 80 speckle patterns of
the Podosome and Actin sample are shown in Figure 2.10. Fourier transforms of the Podosome
images are displayed in Figure 2.11. The zoom of a small part of these images are shown in
Figure 2.12. Line sections extracted from the Podosome sample are plotted in Fig. 2.13. Clearly
we see better details using our proposed method compared with the Wiener deconvolution of
the average raw images in Podosome sample. The improvement in Actin sample is not easy to
visualize.

2.6 Conclusion

In this chapter | have presented a super-resolution image reconstruction approach based on
the prior information on the object. Speci cally, we usg, norm to enforce the joint sparsity
of matrix Q, which is equivalent with the sparsity of object Both the constraint form and the
unconstraint form of the BNDN model are presented. The hyperparameter in constraint form is
easier to tune than the unconstraint form since it has a clear meaning, which is proportional to
the standard deviation of the noise. The ADMM algorithm and the primal-dual algorithm are
chosen to solve the corresponding BPDN optimization problems. Other prior information of
the object can be incorporated into our method easily without big changes of the optimization
algorithm, such as TV regularizer or the positivity constraint. Simulation results show that our
proposed methods could retrieve good super-resolution information, even under the mixture of
Poisson and Gaussian noise.

Since we reconstruct the unknown speckle patterns and the object together, the proposed
method belongs to a joint reconstruction family. In the following chapters, we will present a
marginal reconstruction approach to speckle SIM, wihesieginalmeans that the reconstruction
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a.) Background b.) Wiener deconvolution
c.) “21 mean ofQ d.) "»; covariance of)
e.) 11 mean ofQ f.) "11 covariance of)

Figure 2.9 -Reconstruction results by 300 speckle patterns and 40dB Gaussian noise with
a xed background.
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Average of Raw images Average of Raw images

Deconvolution of average Deconvolution of average

Reconstruction with,.; norm regularizer ~ Reconstruction with,.; norm regularizer

Figure 2.10 —Reconstructed object with 80 speckle patterns of Podosome sample ( rst
column) and Actin (second column) sample.
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OTF of system Average of Raw images

Deconvolution of average Reconstruction with,.; norm regularizer

Figure 2.11 Fourier domain plot of Podosome images with 80 speckle patterns.
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Zoom of the green square
in Podosome sample

Zoom of the green square
in Actin sample

Zoom of the Red square
in Actin sample

(Col. 1) Average of Raw images (Col. 2) Deconvolution of Col. 1  (Col.,3)norm regularizer

Figure 2.12 Partial enlargement of the reconstructed object with 80 speckle patterns of
Podosome and Actin sample.
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Figure 2.13 -Line section plot extracted from the reconstructions of Podosome sample
shown in Fig. 2.12.

of speckle patterns is not necessary. Contrary to the methods presented in this chapter, only
minimal prior assumptions on the object are needed to produce a super-resolution factor equal
to two. What is more, the parameter of interest does not grow with the increasing number
of measurements in the marginal approach, and we will demonstrate that it is asymptotically
consistent.



Chapter 3

Super-resolution capacity using
second-order statistics

3.1 Introduction

In Section 1.5 and Chapter 2, | have presented some reconstruction metholitsdin
speckle-SIMAs it has been stated, there are no theoretical guarantees about the super-resolution
(SR) capacity in these methods except S-SOFI. In particular, since the number of unknowns
(which include both the unknown object and the speckle patterns) increases with the number of
observations, these methods are not generally reliable from the statistical viewpoint [ ].

In this chapter we study the SR capacity in blind-speckle-SIM, taking advantage of second-
order statistics. Let us denote the radii of the support of OTF and the speckle power spectral
density by psr and spec. When gpec psk, Our theoretical analysis demonstrates that the SR
capacity obtained by blind-speckle-SIM candegye= psr (asymptotically). Whengpec= 1 ,

a SR factor of two could be obtained for the square of the objeldb general conclusion could

we make in the casesg spec < 1 . Amarginal estimation approach based on such second-
order statistics is proposed in this chapter. Contrary to the reconstruction methods presented
previously, the marginal estimator is shown to be unbiased and consistent.

Section 3.2 gives the expression of the rst two moments of the observation data. We
explore the SR capacity under assumptions of uncorrelated and correlated speckle cases in
Section 3.3. A marginal estimation approach is proposed in Section 3.4, together with its
asymptotic statistical analysis, and a possible numerical implementation is discussed. The
in uence of using Poisson statistics is considered in Section 3.5. Finally, simulation results
are presented in Section 3.7. It is deserved to be mentioned here that most of the contents in
this chapter has been published in [ ] where | am a co-author.

3.2 First and second-order statistics of the data

I As shown in Eq. (1.26), the observation model in the speckle-SIM framework is given by:

7 Ym(r) = Km(r)+ m(r) (3.1a)
with  kn(r)=  h(r 9 ()1, (rddr® (3.1b)

in which I, is them-th realization of speckle and, stands for electronic noise and model
errors. In the analysis below, the following assumptions are adopted:

37
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1. The PSH is both integrable and square-integrable, and it is positive semide ireteifs
Fourier transform is real and nonnegative). Moreover, its Fourier transfdakes nite
values and vanishes outside a bounded set that wengte= fu j h(u) > Og.

2. The data grid is ne enough to sample the PSF without discretization error.
3. The object is integrable and takes nite, nonnegative values dr
4. The noise, and speckle patterrs, are second-order stationary and mutually uncorre-

lated random processes. Without loss of generality, we further assume that the noise is
centered, that i€ [ »(r)]=0.

5. The noise and illuminations are second-order stationary, mutually decorrelated random
processes.

6. The rst two moments of speckle patterns are assumed to be known with homogeneous
meanl , over the sample and covariancge{r). This is true for fully developed speckle
patterns according to our analysis in appendix A.

Our analysis is con ned to the second-order statisiies,only the mean and covariance of
the data are concerned. To characterize the SR capacity of second-order methods, we assign
each component of(u), the Fourier transform of the objectr ), to one of the three classes:
— Non-identi able components are those for which the second-order data statistics bring
no information.
— Partially identi able components are those for which the second-order data statistics
bring some information, but for which some ambiguity remains.
— ldenti able spectral components are those which are uniquely determined given the
second-order data statistics.

3.2.1 First-order statistics of data

As can be seen from Eq. (3.1), we can obtain the statistical meagn by:
Z

yr)=1o h(r 9 (r%dr® (3.2)
According to theconvolution theorenthe Fourier transform of, gives:
~y(U) = Tofi(u)~(u): (3-3)

Therefore, we know that any spectral component afiside the supporDpsk is identi able
from  provided that, 6 0. So, we have the following property:
Property3.1 The frequency component~u) is identi able from ~; ifand onlyif u 2 D,
with

D iflo60

D, = pskr T 1o . (3.4)
; otherwise
In any case, the rst-order statistics of the data bring no information of spectral components

outsideDpgr.

3.2.2 Second-order statistics of data

Since the noise is centered and both the speckle patterns and noise are second-order
stationary random processes, we write their correlation functions as:
spedl) = E[LGO)I(x )] 15 (3.5a)
(r)=E[(x) (x 1) (3.5D)
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Then the correlation function of the measured imggeés given by:

y(r)= ERm()ym(r]  y(r) y(r9: (3.6)
Since we assume that the speckle patterns and noise are mutually uncorrelated, we have:
y(rird= w(r;r%+ (9 (3.7)
where 77
W(rird = (x) (XOh(r  x)h(r® x9Y gpedx xYdxadx® (3.8)
A double Fourier transform of (3.8) with respect to space variabksdr ° gives:
2277
~(u;u% = (x) (xXh(r  x)h(r® x9e 2i"ue 21U L (x  xYdxdx%rdr®
(3.9)
According to Fubini's theorem [ ], we have
~«(u 'szO) = 7 7 (3.10)
(X) (XY sedx  xY  h(r x)e?"Udr  h(r® x9%e 2 "°U’dr® dxdx®
(3.11)
Substitutez = r  x;z%=r% x©thendz = dr;dz°= dr?, so:
Fgiu9 = z z
(X) (XY sedX XY  h(z)e 2T Udz  h(z9e 21 X Gz0 dxdx©
ZZ Z Z
= (X) (X9 spedx  x9e 21X Ue 21X°U°  niz)e 2iZugz  h(z%e 21 2°U"dz° dxdx®
ZZ
= h(u)h(u9 (x) (X9 spedx  x9e 21X Ue 21 x°U%x dx©
(3.12)
Let us de ne functiorg(u; u9 as:
7
g(u;ud = (X) (X9 spedx  x9e 21X Ue 21 XUy dx O
zZZ Z
- (X) (X%e 2ixue 2i x%u® ~Spec(u09e2iuoo(x Xo)dUOO dXdXO
Z Z z (3.13)
- (XO)e 2i xOW%u% (x)e 2ix (u uOC)dX dx © ~spe((u°3du°°
Z

~u u%~ou + U ~gpedu%du®

where ~,ec is called the power spectral density function of the speckle pattern, which is
identi ed by the Fourier transform of the correlation function gfecaccording to théViener-
Khinchin theorenq , Section 3.4]. The SR capacity analysis will be studied from the
above equations, which link in the Fourier domain “observable” quantiige the available
information of the object.
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3.3 SR capacity using second-order statistics

The noise covariance conveys no information about the objesb the knowledge of
y Is equivalent to that of .. According to Egs. (3.12)—(3.13), the spectral densify.

plays a central role in the identi cation of the spectral components of the sample. However,
there is no analytical expression to estimate the object from this set of Egs. (3.12)—(3.13)
in particular because of the quadratic functional dependence of the data correlation on the
unknown sample. Two special cases lend themselves to a deeper analysis, though. The rst
one corresponds to “suf ciently” correlated speckles, by saying which we mean the support
of the spectral power density of speckle is contained in the frequency support of the PSF. The
second one corresponds to uncorrelated speckle patterns. For brevity of notations, we introduce
the Minkowski difference of two sets:

A B=fx yjx2A;y2Bg (3.14)

3.3.1 “Suf ciently” correlated speckle case

First we assume that the frequency support of the speckle correlation is con ned to some
frequency domain that we noB,e. According to expression (3.12)(u; u9 vanishes when
eitheru or u®is outsideDpsr. On the other hand, according to (3.18fu;u% conveys no
information on the frequency componem{y) such thaty v ZDgpecOrv  U%2 D gpec.

Then, we conclude that the following property holds.

Property 3.2 Any spectral component~u) whereu 62 RBse D gpec iS NON-identi able
from the mean ,(r) and the correlation function (r;r9.

Property 3.2 de nes a boundary that cannot be surpassed from standard statistical informa-
tion. A further analysis allows us to draw a positive conclusion about what is accessible when
the support of the spectral power density of speckle is not larger than that of the PSF.
Property3.3. Provided that specis such thatDgpec D pse, any spectral component~(u)
is identi able from the mean (r) and the correlation function (r;r%ifu 2 D;[D ;

Wlth D2 = Dspec D spec-

Proof. Let gdenote the impulse response of the Iter de ned in the Fourier domain by:

1=2
"'spe((u) ;, uz2D spec
0; otherwise.

e(u) = (3.15)

Similarly to speo ¢ is positive semi-de nite, and it is a Hermitian symmetric function. So we
have~spec= €7, and hence

spec= 0 (3.16)
Let us de ne the following kernels: .
f(r:;r9=  qr x)q@r° x) (x)dx (3.17)
Z
F(r;r9= f(r;r%f (r;r%dr® (3.18)

and the induced integral operatdts andK g :
Z

(Ke )()= f(;r) (r)dr;
Z (3.19)

(Ke )(O)= F(:ir) (r)dr:
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Now let us review Eqg. (3.17. can be seen as the inner productipf x) andg(r® x) with
the reference measure induced byAccording to the Cauchy-Schwarz inequality, we have:
Z

if(rsr9i? jar x)i® (dxjar® x)i® (x)dx: (3.20)

As a consequence,
7 7 7

jif (r;r9j%drdr® jgr  x)j? (x)dxdr  jo(r® x)j® (x)dxdr®  (3.21)

Now notice that
Z Z

(x) jo(r x)jdrdx
z Z (3.22)
jo(r)j2dr (x)dx:

jo(r  x)j? (x)dxdr

Combining (3.21) and (3.22), we obtain:
YAV

jf (r;r9%j2drdr® ’ jo(r)j2dr ’ (x)dx 2: (3.23)
Since is integrable, and ,
jor)jPdr = ~gedu)du = ged0) < 1 ; (3.24)
So, we have 77
jif (r;r9j2drdr®< 1 (3.25)

ie.,f(r;r% 2 L3(RY R C), and consequentl is a Hilbert-Schmidt integral operator
[ ]. Now let us go to the heart of the proof, which is threefold. The rst step allows us to
show that kerndF is uniquely de ned from . In a second step, we establish thas uniquely
de ned fromF given (3.18). At this point, we conclude that the knowledgeoimplies that
of f , which is a linear functional of (whereas the dependency @fin is quadratic). The last
step consists in a Fourier analysisfqfin order to determine which spectral components of
are identi able from the knowledge df.

Step 1)Given (3.17) and (3.16), we have the following alternate expression for (3.18):

zZZ

F(r;r%= xX) x%q(r x)q(r® x9 spedx x9Ydxdx® (3.26)

Comparing it to (3.8), we can see that=  whenq = h, i.e., when the correlation function
of speckle ih h. More generally, the double Fourier transform of (3.26) gives:

F(u;u9=gu)e( u9eg(u;u

I’ieg(uu))l’?(( UUO)O) R-k(u ; U%; (U : UC) 2D specs (3.27)
0; otherwise

We note here thdi(u) 6 O since we have assum@&i,ec D pgsr.

Step 2)Kernelf is obviously symmetric. Moreover, it is positive semi-de nite, since for

any square integrable function
ZZ Z

f(r:rY (r) @9drdr®= jg j%x) (x)dx O (3.28)
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It is easy to check that kern€l is also positive semi-de nite. Moreoveéf  is bounded,
since it is a Hilbert-Schmidt operator. Being bounded and positive semi-dekKigeadmits a
unique square root | ]. In other worHs, is uniquely de ned giverK . Thus, given the
kernelF, there exists a unique kerrfelthat ful lls (3.18).

Step 3)The Fourier transform of (3.17) gives

u;u9 = gu)a( u)~u+ ud: (3.29)

The latter identity shows tha{u®+ u is identi able for all couplegu® u® such thati®and
u%belong toDpsr. We thus conclude that the frequency componefits are identi able

from kernelf , and thus from the data correlatiog, for allu 2 Dgpec D spec-
O

In 2D blind-speckle-SIM,Dpse and Dgyec are centered disks of radiipsg and  spec,
respectively. Under these conditionBgpec D spec IS @ disk with radius2 gpec. As a
consequence, wheb PSE spec psr, & SR factor oR s,e= psr is obtained. Considering
the caseDgpec = Dpse, Which occurs when the speckle illuminations and observations are
performedvia the same optical device, the second-order data statistics are suf cient to identify
the frequency components corresponding to a SR factor of two. So we retrieve the same SR
factor as with classical SIM [ ] with perfectly controlled illuminations in uorescence
microscopy.

3.3.2 Uncorrelated speckle case

In the uncorrelated speckle case, the correlation function of speckle patterns can be written
as: spedl') = sped0) (r), where (r) is the Dirac delta function. Then the correlation function
of the data becomes:

Z
k(MrY = oed0)  2(x)h(r  x)h(r® x)dx: (3.30)
The Fourier transform of (3.30) gives:
77 Z
~(U;uY = ed0) 2(x)h(r  x)h(r® x)e 21"ue 2i™°U’4xdrdr®  (3.31)
Similarly as in (3.12), we have
Z ZZ
~(U;uY = ed0)  F(x)e 2Tx(urud h(z)h(z%e 212Ye 212°U°4zdz° dx

Z
spe((o)h(U)h(U() Z(X)e 2ix (u+u0)dx

= spec(o)ﬁ(u)h(u() @(U + U()

(3.32)
From expression (3.32) we can see that the frequency component at’ of ? is accessible
when bothu andu®are restricted to the support of PBEse. So, the following property holds.

Property3.4. The frequency component&(u) is identi able from the correlation function
«(r ;19 under the uncorrelated speckle assumption if and only it 2 Dpse D psr.

We stress here that the spectral componéhts ~ ~can be retrieved 0Dpse D pse
does not mean thatcan be retrieved on the same domain, nor in any other domain.



Chapter 3 — Super-resolution capacity using second-order statistics 43

Remark3.1 We remark here that Property 3.4 still holds if only the variangg ;r) are

considered instead of all cross-correlation valug@ ;r9. Let us denote (r) = (r;r),
then we can deduce from (3.30):
(r)= sped0) (2 h?)(r): (3.33)

So the spectral components ¢{u) can be identi ed from (r) aslongasi 2 Dpse D psr.

3.4 A marginal reconstruction procedure
Let us recall that the observation model in discretized form is (1.26):
Ym=HRl m+ (3.34)

with H 2 RN N the convolution matrix an® = diag( ). |, 2 RN is them-th realization of
speckle illumination, with homogeneous intensity méanAccording to Egs. (3.3)—(3.8), we
have:

y=loH ; y=HR RH + Z21y (3.35)

where ; , are respectively the mean and the covariance matrix of each measuredyimage
while ¢ denotes the covariance matrix of speckle pattetpsis theN N identity matrix.
The principle of marginal estimation is to infer the samplfom the statistical characteristics
of the collected data. A typical marginal estimation procedure would consist in maximizing the
likelihood of the data as a function of, the unknown speckle illuminations being integrated
out of the likelihood. However, because of the complexity of the speckle statistics, it is hard or
even impossible to express such a likelihood in closed form.

A preferable procedure is to estimat&y minimizing the mismatch between the theoretical
second-order data statistics (3.35) and the empirical moments

1 )M XA t t

Ym; y = = YmYm Ay AyZ (336)
m=1 m=1
One possible choice of dissimilarity measure is the Kullback-Leibler (KL) divergbrce ) =
Dk (N (My; Ay)kN( yi y)), inwhich N ( ; ) is the normal distribution of mean and

covariance . An explicit expression foDy ( ) is [ , Chapter 9]:
1 ! 1. jyi N
Dm( )= ETV ylby +( oy by)t%( y by)+ élogjbﬁ 2 (3.37)

wherej j andTr( ) are the determinant and the trace of a square matrix, respectively. According
to the (weak) law of large numbers, we have:
P P

g (3.38)

"Ml y

A
Y mn y’

in which |°  means convergence in probabifttyand yi y denote the true values of the
corresponding quantities, that are obtained by Eq. (3.35) fegual to the true object. So,
asM 'l | we have:

Du( )!° D(); forevery (3.39)

. e P . . .
1. Convergence in probability®, ! i y 08 > 0limyy Prjby J)> =0.
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with
D( )= Dre(N( y; DKN( y; y)) (3.40)
Let us denote the minimizers &fy ( ) andD( ) by *v and”, respectively. According
to the property 3.32(u) is identi able fromD( ) as long asu 2 D, [ D ,. However, the

pointwise convergence of (3.39) is not strong enough to assure the converg\@ndep: A,
Because the valué,, depends on the whole functiddy ( ). Section 3.4.1 addresses the
consistency analysis dfy, .

3.4.1 Asymptotic analysis

The statistical principle behind such an inferential principle is caffedimum contrast

estimation| , ], or alternativelyM-estimation| , Chap.5]. Given a set of
observationgy:; ;ym) and unknown parameters 2 RN, the theory of minimum
contrast estimation relies on the following de nition.

De nition 1. Lety,,, m = 1;:::;M; be independent, identically distributed data vectors,
each taking its values inY, with a common probability distribution depending on a
parameter vector in . A function C : Y I R is acontrast functionfor if

its statistical expectationJ( ; ) = E[C(y; )] has a strict minimum at . Then, the
minimizer "\ of the contrast process

A 1 X
M = argmin M Clym: ); (3.41)

m=1
is called aminimum contrast estimate

The theory of minimum contrast estimation ensures the consistency (and asymptotic
normality) of "\ , under appropriate technical conditions [ ]. In particular,converges
in probability towards if the contrast process (3.41) converges uniformly intowards
D( ; )whenM !'1 |, beingabounded set. The bounded constraint ofiay be relaxed,
while still ensuring the consistency %, [ ]. Such technical aspects fall outside the
scope of the thesis.

To continue our asymptotic analysis, in order to get rid of the high-frequency parthat
cannot be identi ed (see Section 3.3), we de ne the variable S , in which S is an ideal
low-pass Iter with frequency support given liy; [D ,, and we not&S* the pseudo-inverse of
S. Now, consider the related cost function:

Ju( )= Du(S* ); with Dy de nedin Eqg. (3.37). (3.42)
Property3.5. The minimizer “u of Eqg. (3.42)is a minimum contrast estimate.

Proof. Let
N | t 1 S
Clhyi )=350 ),y y)+5logl i (3.43)
Comparing (3.37) and (3.43), straightforward manipulations yield

hd
W)= o Clmi )+ K

m=1
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whereK is a term that does not depend onMoreover, we could de ne the constrast function
J( 5 )by
J( 5 ) =E[C(y; )]=Di(N( y; DKN( y; y))
Compared with Eqg. (3.40), we can easily verify thét ; )= D(S* ). SinceDg_ (P1kP5,)
0 for all probability measure®,, P,, andDy, (P.kP,) = 0 if and only if P, = P, almost

everywhere, we deduce thBt( ; ) is minimum if and only if y = and , = .
According to Property 3.3, we conclude tligt ; ) has a strict minimum at . So ", the
minimizer of Eq. (3.42), is a minimum contrast estimate. O

Within the minimum contrast estimation framework, we can further prove thatis
consistent.

Property3.6. " is a consistent estimator for

Proof. To prove that 1 is consistent, we need two properties of functign( ) in (3.42):
— Jm () is a continuous function of
— Jum () converges uniformly td( ; ), i.e.

SZUIOJ'JM() JC 5!

Demonstrating the continuity propertyd ( ) is straightforward. We see in Eq. (3.37) that
every component ilb,( ) is continuous. According to the rules for constructing continuous

P

0

functions [ ], itis obvious thdd, ( ) is a continuous function, therefore salig ( ).
As for the uniform convergence df, ( ) toJ( ; ), we note that:
1 ! 1y
Dm() D()= éTr ylby +( oy by)t%( y by)+ §|09jb—yj
y
1 ! 1, i
Tty G g ) e
1 1 1,0yl
= éTI’ yl(Ay y) + ; yl( y by)+ éTr yl(byb; y yt) +§|ogj,\—yj
y
1 1,0yl
= o T A G VT §Iogﬁ
y
(3.44)
Since the covariance matrix, = HR (RH is a positive semi-de nite matrix, applying Weyl's
inequality [ ] to the de nition of | in Eq. (3.35), we have:
mn( y)  min( ) (3.45)
where in(A) denotes the smallest eigenvalue of the matviand - = ?Idy is the noise

covariance. Since, !is a symmetric, positive de nite, matrix, its-norm equals its maximum
eigenvalue and:

1 1
yl = max( yl): () - (3.46)
min y
Combining Egs. (3.38), (3.44) and (3.46), we have:
supjDu( ) D()j!" © (3.47)
2RN
Restricting the domainddy ( )tof j =S* ; 2 g, we obtain:
supjDw (S* ) D(S* )j!" 0 (3.48)
2

Now we have thafly, ( ) converges uniformly td( ; ). O
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3.5 Applying Poisson noise

The recorded data of detectors in imaging obeys Poisson statistics [ ]. A more accurate
observation model than Eq. (3.1) is:

Ym = P(Km)+ m; (3.49)

whereky, is given in Eq. (3.1) and (k) denotes a realization of the Poisson process with
meank,. For brevity of expression, we remove the subsampand writeg, = g(r); k. =

k(r), in whichr 2 f1; ;Ng denotes the spatial index, agd = P (k;). Sincek, are
still random variables, the Poisson variabtgsare calleddoubly stochastic Poisson random
variables| ]. The impact of Poisson statistics on the former developments amounts to
how the second-order statistics are modi ed, we are considering the knowledgekig] and

g instead ofE [k] and .

3.5.1 Mean of the Poisson vector

SinceE|[g jk:] = ki, it comes directly that
z

Elgjk1p(k:) dk

Elg]
Z

K p(kr) dk,

Elk]:

Therefore, the mean of the Poisson vedoequals the mean of its parametars,, E[g] =
E[k], withE[K] = E[ym] = loH

3.5.2 Covariance of the Poisson vector

Similarly, one can obtain the second-order statistiag pf
— forr 6 r@
E[9 grojke; ko] = E[grjke] E[grojkro] = krkeo:

Therefore, 77
E[gr o] = Ky krop(K; ; Kro)dk, dkro = E [K,ko:

Since from Section 3.5.1 we hal#dg, ] = E[k,], we conclude thaty(r;r9 = (r;r9.
— forr =r@
E[grzjkr] = Var(grzjkr) + ( E[grzjkr])2 =k + krz:

Therefore, 7
E[g7]= (ke + k)p(ki)dk: = E[k/]+ E[K7T:

We nally get 4(r;r)= E[gf] E[g]*= E[k]+E[K?] E[k]FP= «(r;r)+ E[k]I
Consequently, we can see that only the diagonal of the covariance matrix is modi ed when
the Poisson statistics are taken into consideration. So, the super-resolution analysis in 3.3 still
holds. As the second-order moments have a quadratic dependence in the randork,\tbetor
difference of the covariance matrix after introducing Poisson statistics can be neglected except
whenk is small in low photon counting cases.
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3.6 Numerical optimization

Up to an additive constamt , Eq. (3.37) admits the following alternative expression:
I T | 1
Du( )= Elogj vl ETr y W +K (3.50)

whereW = MiVV LwithV = (y; v Iywm y). In practice, the minimizef* of Dy
has no closed-form expression. Local optimization methods relying on gradient-based iterations
can be used to minimizZB\, , whose gradient reads (see appendix E):

rDu( )= '(, W) C |Iv|_o V1 (3.51)

where denotes the Hadamarde(, element-wise) productand = H. Then we choose a

quasi-Newton method to optimiZ2y, ( ). Given an approximatiohl ék) of the Hessian matrix
r 2Dwm ( «), @ quasi-Newton iteration is given by:

) SolveH®dy = r Dw( «)

i) Update 1 = «+ idi
wheredy is the descent direction at theth iteration and  is step length obtained by a line
search algorithm to satisfy the Wolfe conditions (see [ , Chapter 3]). If wkl fat=
r 2Dy ( k), it becomes a classical Newton method. In quasi-Newton methods, we approximate
the Hessian matri & using only the gradient of the objective function at each iteration.
Speci cally, in our simulations, we use the L-BFGS [ , Chapter 6] to optirbizg ) in
Eq. (3.50) and the L-BFGS-B | ] algorithm to incorporate positivity constraint. ok
brief discussion about the two algorithms can be found in Appendix D.

The gradient of current valug, involves the inverse of thl N covariance matrix ,
where the compuputational complexity@(N 3). Thus this method can only be applied for

moderate size problems. A method to reduce the memory and computational burden is proposed
in next chapter.

3.7 Simulation results

We now show simulation results under the same conditions as in Chapter 2 in order to
validate the theoretical developments and the estimator properties of the marginal approach.
Both the asymptotic caseM( = 1 ) and nite M are considered. The asymptotic case is
simulated by assignind\, and'\y their true valuesoH andHdiag ) sdiag )HT, with

the true value of object. Small-size obje®0( 60) and data are generated so that the
estimator de ned in Eqg. (3.50) can be computed. The correlation function of the speckle

patterns was set tOsped ) = %h(r ), unless stated otherwise.

The L-BFGS algorithm is chosen to optimize the marginal criterion. If the positivity
constraint on is considered, we use the L-BFGS-B algorithm. All simulations wege performed
with the same initialization, at the image obtained by averaging all measured i@,lﬁag%ym.

The number of corrections stored in the limited memory matrix is 20 (parameter L in L-BFGS).
The algorithm will terminate when either one of the following conditions is satis ed:
— The relative descend&§ue-{ k1) Due (i) 10 °for nite number of speckle patterns

Dwmp ( &)
and 2w (Dk:ﬂlp)( e (W 10 8forin nite speckle patterns

— The"; -norm of the gradierkr Dyp ( )ky 10 3.
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The reconstructed objects by our marginal approach, using different numbers of speckle
patternsf = 1 , M = 300 andM = 100), are shown in Figure 3.1. It turned out that the
positivity constraint can not further increase the super-resolution. In real experiments, the raw
images are blured by background noise. However, the reconstruction is still robust if we only
take the covariance information into consideration (see Section 3.8). The reconstructed results
by minimizing Eq. (3.53) are shown in the third line in Fig. 3.1.

The normalized RAPS of error and MCF curves (respectively de ned by (2.63) and (2.64))
of the reconstructed objects with 300 speckle patterns and SNR 40dB are shown in Fig. 3.2.
We see that the quality of the reconstructions by marginal approach are similar to that obtained
by the constrained,.; regularizer shown in Chapter 2.

The evolution of the normalized RAPS of errors and of the MCF during iterations in the
asymptotic case are shown in Figure 3.3. It shows that the information in low resolution part is
retrieved rst, and gradually, the information in super-resolution part is retrieved up to a factor
of two, which con rm the property 3.3 since the radius®fpec D spec iS twice of the radius
of OTF in this case.

3.8 Experiments with real data

In real data obtained from microscopy, there are three noise sources: photon noise, dark
noise and readout noise. Photon noise and dark noise are independent Poisson processes,
therefore so is their sum. The readout noise usually follows a Gaussian distribution. A more
legitimate data formation model of real data is then:

Ym = P(HRI ,+ b))+ |, (3.52)

whereP () denotes the realization of a Poisson process, N (0; 21y) denotes readout
noise, and 2 RN is the mean intensity of the background caused by out-of-focus light. Due
to the presence of backgroubgdour previous objective functioDy ( ) as shown in (3.37) is

not accurate, since the empirical mean of the data isgtbt any more. Instead of estimating

b and then subtracting it from the data, we notice that the empirical covariance of the data is
not affected byb. Therefore, we slightly adapt the objective function introduced in (3.50) and
reconstruct with only the second-order statistics (that is, we do not consider the mean values):

1 o1
Dr( )= Dk (N (0; *))kN (0; )= 5logj yj+ STr by + K (3.53)
whereK is a constant number. The gradient®f( ) is:
r Dr( )= t ., b, . (3.54)

The poisson noise is neglected. To make the reconstruction possible in normal computer, we
select only a small part from the raw images of Podosome sample and actin sample. The
reconstructions are shown in Figures 3.4,3.5,3.6. The spatial sampling rate of raw images is
equal or slightly above the Nyquist rajg,-. For the nal reconstructed object, an up-sampling
factor of two with respect to the camera acquisitions was applied so that the sampling rate
reaches that of the expected super-resolution. The wide eld image is plotted by averaging
1000 raw images, and the deconvolution is obtained by:

decon=argminky H k?+ k k2 (3.55)
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mean + covariance

mean + covariance + positivity

covariance only

covariance + positivity

col. 1) In nite patterns col. 2)300speckle patterns col. 300speckle patterns

Figure 3.1 —Reconstruction by marginal approach with different number of speckle
patterns and 40dB Gaussian white noiseThe rst row corresponds to the L-BFGS algorithm,
while the second line is obtained with the L-BFGS-B algorithm including the positivity
constraint. The third row shows the reconstructed objects with only the covariance information
taken into considered and the images shown in last row are obtained after adding positivity
constraint to the KL divergence of covariance .
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(a) The normalized RAPS curves. (b) The Contrast function.

Figure 3.2 -Measurements of error (left panel) and of contrast (right panel) as a function
of radial frequency / period of different reconstruction methods with 300 speckle patterns
and SNR 40dB.

with the regularizer parameter = 001. We see that the structure details in images
reconstructed by the marginal approach are clearer than those of the wide- eld images and
their deconvolution, even if we use only 50 speckle patterns. In raw images obtained with the
Podosome sample, we can see a strong photobleaching (section 1.4) effect (see Figure 3.7a), that
Is why the reconstruction with more speckle patterns does not appear better. On the contrary,
the uorophores emitted relatively stable light in experiments with Actin sample during the
imaging process (see Figure 3.7b).

3.9 Conclusion

In this chapter, we analyzed the SR capacity of blind-speckle-SIM reconstruction using
second-order moments tting. Our analysis demonstrates that we can (at most) double the
frequency support by using speckle patterns in asymptotic seesewith in nite humber
of speckle patterns. A marginal estimator is proposed by minimizing the Kullback-Leibler
divergence between the empirical moments and the theoretical ones. A theoretical analysis
showed that this estimator is a minimum contrast estimator and that it is asymptotically
consistent. Our analysis demonstrates that the SR capacity of the marginal approach also holds
under Poisson statistics. These theoretical analysis are demonstrated on both simulated and
experimental data.

Unfortunately, the computations of the objective function and of its gradient require the
explicit inversion of theN N covariance matrix , at each iteration of the optimization
procedure, the cost of which beir@(N %), with N the number of pixels. This is clearly an
unaffordable computing task for realistic size problems. Even worse, simply computing and
storing the matrix y is impossible in realistic conditions. For example, f@l® 512image,
storing , with double-precision requires 512 Gigabytes (see appendix B.2). Some possible
variations of the second-order method address this problem in Chapter 4.
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(a) Normalized RAPS curves of each iteration.

(b) Contrast function of each iteration.

Figure 3.3 —Behavior of L-BFGS iterations in the asymptotic case (in nite number of
speckle patterns). Measurements of error (top panel) and of quality (bottom panel) as a
function of radial frequency / period.
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Wide eld Deconvolution 50 speckle patterns

100 speckle patterns 300 speckle patterns 1000 speckle patterns

Figure 3.4 -Marginal reconstruction of a small patch in Posodome sample

Wide eld Deconvolution 50 speckle patterns

100 speckle patterns 300 speckle patterns 1000 speckle patterns

Figure 3.5 -Marginal reconstruction of a small sparse patch in actin sample
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Wide eld Deconvolution 50 speckle patterns

100 speckle patterns 300 speckle patterns 1000 speckle patterns

Figure 3.6 -Marginal reconstruction of a small dense patch in actin sample

(a) Podosome sample (b) Actin sample

Figure 3.7 —Mean value of raw images for 1000 speckle patterns.We can see strong
photobleaching effect in the Podosome sample, while the uorophores emitted relatively stable
with Actin sample.






Chapter 4

A patch-based approach to marginal
estimation

4.1 Introduction

As it has been presented in Chapter 3, the statistical analysibnofFspeckleSIMshows
that a super-resolution (SR) factor equal to two can be reached based on the second-order data
statistics, provided that suf ciently many speckle images are acquired. The marginal algorithm
proposed in Chapter 3 was validated on small size simulated blind-SIM examples. However,
the associated computing cost and storage requirement &¢Nr), with N the number of
pixels in each image, which makes it an unaffordable task for realistic image sizes.

In this chapter, we propose a new marginal blind-speckleSIM algorithm that scales to real-
size two-dimensional SIM. Our key idea is to neglect some of the long-distance correlations
between pixels in the acquired images, so that the resulting approximated covariance becomes
block-diagonal. Equivalently, each image is cut into a set of patches, which contribute
independently to the image formation model. Then, the required inverse matrix computations
and storage are performed in lower dimension, thus reducing the computational burden. In
Section 4.2 we introduce the patch-based marginal algorithm. The computational analysis is
presented in Section 4.3.

4.2 The patch-based marginal approach

Our main proposition consists in dividing the observed image grid fhtsubgrids. The
pixels belonging to each subgrid are not necessarily contiguous, and the subgrids are possibly
overlapping. For the sake of simplicity, let us consider that all subgrids contain the same number
L of pixels. Each observed imagg, then generateB subimageym = (Ym,;  :¥Ymp). IN
what follows, each subimage will be called a patch.

Since each patch is extracted frgm, whose data formation model is shown in Eq. (3.1),
the observation model for each patch reads:

Ymp, = HpRIm + 4.1)

P

where the lines oH, 2 R- N are extracted fronH according to the geometry of theth
patch. The mean vector and the covariance matrix.@ftake the following form:

yo = loHp ; yo = HpR SRHtp+ 1, (4.2)

55
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where 1, denotes the. L identity matrix. Our proposition consists in modifying the
previously introduced minimum contrast estimator shown in Section 3.4, so that the data are
taken into account independently from one patch to another. For this purpose, we simply replace
the KL divergence criterion (3.37) by a sum of KL divergence terms, each one being speci c to
one patch:

x
Dwp ()= DN (M, "y)KN( ypi )+ kK
Pt (4.3)
— 1)43 1 2 0
=5 log y, +Tr W, + k k+K
p=1
whereK °is an additive constant anlf , = &V ,V§, with V, = (Y, o YMmp p)-
The corresponding gradient expression is:
D _ X t W oty 1, +2 4.4
r Dwe ()= P Y P P s M PUPL (4.4)
p=1

with = tH, 2 R" N. Now the values of the elements i are assigned t6 when the
corresponding two pixels are not from the same patch, thulltheN matrix inversion ! is

y
replaced byP matrix inversions ypl of sizeL L.

The geometry shape of the patch could be rectangle, triangle or even irregular shape. The
pixels belonging to each patch are not necessarily contiguous. For the sake of simplicity, let
us consider that all subgrids contain the same nurhbef pixels. Considering the feasibility
of implementation, we choose rectangle patches in our simulation. The patches could overlap
each other or they could simply correspond to a partition of the plane.

4.3 Algebraic tricks

Now let us review the expression of the gradient in (4.4). We nd that, although most
computations involved in the evaluation of the cost function (4.3) and its gradient (4.4) are
matrix operations in size, the matrix ,( , Wy) o sisstillaN N matrix, which
is dif cult to deal with for realistic size images. This problem can be solved by re-expressing
the gradient with its equivalent form.

First, we introduce the auxiliary matriz, = , ~ W ,. For brevity, we abbreviate the
subscriptp here. Let us denote! 2 R- and! - 2 RN the *-th line and the -th column of
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matricesZ and ‘!, respectively. Then, we have:

t X_ t
Z S = l uZu S
u=1
X X
= ! u(Zuv)! \t/ s
u=1l v=1
X X
= My zw s(tv )
u=1l v=1 . (4'5)
[
= { s( { rep)Zt 1
h [
= ‘ sR t( W)t 1
h i
= ' GRHLL 'w) L
where o, = 1 2 RV ! is obtained by replicating times theN 1 column vector

corresponding to the object. Then, an equivalent expression for the graddgsg ( ) is:

e h i |
r Duwp( )= b SRHL(LL  Jtwy) 1 MO Vol +2 (4.6)
p=1

One possible implementation for both the objective function and its gradient is given in
algorithm 5. The main costs that are written as comments in the pseudo-code. 1t \uhen
we compute sAl, we choose the FFT algorithm sincg has the same structure as mattix
according to our analysis in Appendix A. The number of ops for one patch at each iteration
is therefore (reminding that we only take the multiplications into account and that the addition
operations are neglected):

fo(N)= LN logN +3L?N +3LN + ML2+2L3

If we consider non-overlapping patches, we hBve % patches, and the total number of
ops in one iteration is:

f(N)= N2logN + (3L +3)N?+ (ML +2L?N + N logN

Now the computational complexity for each iteration has reduced(td?(logN + L)).
What is more, this algorithm can be highly parallelized since each term in the sum of Eq.
(4.3) for one patch does not rely on the others and thus they can be processed by different
units in parallel. Once the expression of the gradient is obtained, L-BFGS and L-BFGS-
B algorithms are choosen to solve the optimization probieim Dyp ( ) without and with
positivity constraint, respectively.

4.4 Statistical analysis

Property4.1. The minimizer of Dyp is a minimum contrast estimate, provided that every
pixel pair f u; vg belongs at least to one patch.
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Algorithm 5: Pseudo-code to compute criterion (4.3) and its gradient (4.4).

1 ObjectGradient ) ;
Input : The currentvaluey, ,lg
Output: Dyp ( k) andr Dyp ( k)
2 Initialize DMp( k) andr DMP( k) ;
3 rep— k1l
4 Y =loH «; /' NlogN flops
s forp 1toP do

6 | generate the matrik ;

7l Yo=Y Y

8 | Ap=Hp L; II' Ap=HyR; LN flops
9 p=Yp,;

1 Bp= sAp; /Il LN logN flops
12 vo = ApBp; Iy, = HgR sRHL; L3N flops
13 v vt "1

1 | To= 3 VeV /' ML?+2L3 flops
15 | Dp( )= 3logj y,j+ 5Tr(Tp);

16 0= yiHps /I L?N flops
17 | rDp( W)= 5 Bp(lu Tp) 1L @ L(Vell); /1 LN +2LN flops

18 end P
19 Dup (k) = Fpr( KW+ kK
20r Dwp ()= ,rDp(W)+2
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Proof. Let ,and ,denote the mean and the covariance of the collected datarttheatch.
Indeed, one can extrac;, and p Egom yF;ind y» as a subvector and a submatrix, respectively.

Moreover, we hav® yp ( )— v m=1( pCp(Ymp; )) up to an additive constant, with
N R Co ST
Colyps )= > (Yp p) p (Yp p) * EJ pl s (4.7)
p=1
and " #
X X
Do( ; )=E Co(yps ) = Die(N(C p; DKN( p; p)): (4.8)
p p

Itis clear from (4.8) that eadB[C,] is minimal ifand only if ,= ,and ,= . Moreover,

D, is minimal when allE[C,] are minimal. If every pixel paif u; vg belongs at least to one
patch, this is equivalenttoy =  and y = , and we can terminate the proof as the one of
Property 3.5. [

4.5 Simulation results

We now evaluate the patch-base approach on simulations performed under similar condi-
tions as in Chapters 3. The same simulated objéct ) / [1 + cos(40)] is used as shown in
Figure 2.1. The point spread functibns given by Eg. (2.62). The PSF and the reconstructed
objects were discretized with sampling stef20. Raw images were also simulated at the same
sampling rate, unless otherwise stated.

4.5.1 Resolution under different patch sizes

First, we consider simulations under “theoretical” conditions.,(an in nite number of
speckle patterns and in nite SNR) to test the behavior of the patch-based marginal approach.
The L-BFGS algorithm is used to nd the minimizer of function (4.3). The simulations are run
ung,er different patch sizes with the same initialization, at the average of the measured images
M m Ym. The number of corrections stored in the limited memory matrix is 20. Termination
tolerances are adopted when either of the following conditions is met:

— The relative descend@vr (k1) Pue (W) 10 8
Dmp ( «)

— The’; -norm of the gradienkr Dyp ( ks 10 °.

The reconstructed objects are shown in Figure 4.1, and the corresponding normalized RAPS
curves (de nition given in (2.63)) for the error images and the MCF (de ned by (2.64)) are
shown in Figure 4.2.

It shows that even in the extreme case with one-pixel patches, i.e. only only the diagonal
of the covariance  is considere, we still retrieve some super-resolution. As the patch size
increases, the SR effect increases fast and becomes as good as the original marginal estimator
when the patch size reachgs 5.

The time elapsed using different patch sizes f80a 80 object on a normal computer with
intel CORE i5 CPU implemented by Matlab is plotted in Fig. 4.3. We see that except when
the patch size is very small (due to the inef cienct for-loop processing in Matlab and ifhpre
need to be generated), the time elapsed for one iteration increases almost linearly as the patch
Size grows.
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a)l 1patches b 2 patches cB 3patches

d)5 5patches el5 15patches f) Without patch (full image)

Figure 4.1 -Reconstructed objects under theoretical conditions (in nite number of speckle
patterns and in nite SNR) with different patch sizes. Graduations inx andy are in
wavelength , and the frequency in green circle (red circle) corresponds to cut-off frequency of
OTF (twice the cut-off frequency, respectively).

4.5.2 Positivity constraint

From Figure 3.1, we have known that the positivity constraint cannot further improve the
super-resolution capacity of marginal estimator. Since the super-resolution of the patch-based
marginal approach can not reach twice the resolution limit when the patch size is small, we
explore the in uence of the positivity constraint on patch-based marginal extimator by adding
the constraint 0 and then solve the minimization problem of Eq. (4.3) with the L-BFGS-B
algorithm (see Appendix D.2). The simulation results performed under theoretical conditions
are shown in Figure 4.4. Compared with the results shown in Figure 4.1, we conclude that
the positivity constraint can not further improve the super-resolution capacity of patch based
marginal estimator under same patch sizes.

4.5.3 Overlapping patches

The former simulations were performed with adjacent square patches. When the patch size
is small (smaller thaB 3for example), we have sacri ced partial super-resolution information
to accelerate the computational time and reduce the memory required. If the patches overlapped
with each other, equivalently more information in covariance mattixs used and thus we
have the possibility to obtain better super-resolution. Since we know that the overlapping
strategy can not give more informatin than the marginal estimator without patch, i.e. it can not
surpass more than twice the resolution limit, therefore we focus on overlapping small patches
in simulations. Simulation results under asymptotic conditions with overlapping patches are
shown in Figure 4.5. Each pair neighbour patches (left, right, up, down) overlap with each
other by one column or one line. Compared with the results shown in Figure 4.1, it shows
that the overlap patch strategy does not improve the super-resolution capacity compared with a
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(a) Normalized RAPS curves for error images with different patch sizes.

(b) Contrast function of reconstructed object with different patch sizes.

Figure 4.2 -The RAPS curves and contrast function of reconstructed object with different
patch sizes under theoretical condition (in nite number of speckle patterns and in nite
SNR).
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(a) Time elapsed per iteration (b) Total time elapsed

Figure 4.3 -The time elapsed for different Patch sizes for 80 800bject. X-axis represent
number of pixels in one patch, and Y-axis represents time with units seconds.

a)l 1patches CP 2patches

d)3 3patches edp 5patches

Figure 4.4 -Reconstructed objects under theoretical conditions and different patch sizes
(similar to Figure 4.1), by incorporating the positivity constraint.
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non-overlap adjacent patches under same patch sizes.

a) Overlappin@ 2 patches b) Overlapping 3 patches

Figure 4.5 -Reconstructed objects under theoretical conditions with overlapping patches
The overlapping area of neighbour patches (left, right, up, down) is one column or one line.

4.5.4 Resolution as a function of the numerical aperture

In realistic experimental conditions, the support of spectral density of speckle patterns may
differ from the frequency support of PSF due to the Stokes-shift effect in uorescence | 1,
or in total internal re ection uorescence microscopy (TIRF). We can simulate this effect
by generating the speckle patterns with different numerical aperture, and the corresponding
reconstructed objects are shown in Figure 4.6. Clearly, the resolution improves as the support of
the speckle spectral density increases when the patch size is small (e.g. piel 2pdtches).

The normalized RAPS and MCF curves of the reconstructed objects (Figure 4.7) show that we
can retrieve not only? s,ec When gpec <  psg as demonstrated in Chapter 3, but also part
of information betwee syec and gpec+ pse. FOr example, whengpec = 05 pse, We can
always retrieve some high frequency information higher apec =  spec = 2NA And when

spec > psr, the resolution beyond psr is still inaccessible, unlike the nonlinear-SIM which
has theoretically unlimited resolution [ ].

In conclusion, enlarging the support of spectral density of the speckle patterns allow us to
retrieve good super-resolution with very small patch sizes @.g.2), however, we do not
observe nonlinear-SIM effect in blind-speckle-SIM using marginal approach.

4.5.5 Resolution as a function of the sampling step

In the previous simulations, the sampling step of the measured inyag@ss set to the
same value as the oen of the object, thatss, Since we know that there are no useful
information in frequencies outside the support of OTF in data, the sampling length ner than
Nyquist rate;g  0.168 is enough to assure that we do not lose useful information in the
raw images. The simulation results performed under asymptotic conditions (in nite number of
speckle patterns and in nite SNR) with different sampling lengthes of the raw images are shown
in Figure 4.8. It shows that even the sampling rate of raw images is lower than the Nyquist
rate, for example in the second column in Figure 4.8, the marginal approach retrieves super-
resolution information as good as the simulation results performed with raw images sampled at
a ner rate than the Nyquist rate.
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a) NAspec= 05NA b) NAspeCZ 15NA C) NASpeCZ 2NA
d) NAspec= 0.5NA e) NAspec= 1.5NA f) NAspec= 2NA
9) NAspec= 0.5NA h) NAspec= 1.5NA i) NAspec= 2NA

Figure 4.6 —Reconstructed objects under theoretical conditions and varying support of
speckle patterns The rst row corresponds to use 1-pixel patches, the second row is obtained
with 2 2 patches and the last row wigh 5 patches.
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(a) Pixel patch (b) Pixel patch
(c)2 2patch (d)2 2patch
(e)5 5patch (H5 5patch

Figure 4.7 Normalized RAPS curves for error images as a function of the frequency ( rst
column) and MCF of the reconstructed objects as a function of the period (second column)
with varying support of speckle patterns
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patch size3 3

patch size5 5

marginal estimator

col 1. sampling length 0.15 col 2. sampling length 0.2 col 3. sampling length 0.25

Figure 4.8 —Reconstructed objects under asymptotic conditions with different image
sampling rates The image sampling step is 0.15in the rst column, 0.2 in the second
column and 0.25 in the third column. The Nyquist limit is 0.168
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4.5.6 Simulations under realistic imaging conditions

In this section, we simulate realistic imaging conditions by applying Poisson noise. The
total photon budget detected on one Nyquist pixel (pixel size correspondgitbA) is xed,
denoting asNy,. As the number of speckle patterns increases, the photons per Nyguist pixel
per measurement will be reduced. This can be achieved by reducing the exposure time or by
lowering the laser energy. The electronic noise is assumed to be 3-photon standard deviation
per pixel and per measurement. The noise level in this ca8¥#N,, corresponding to
SNR = 20dB when 100 speckle patterns are used for 30 000 photons per Nyguist pixel. In
our simulations the regularizer parameteis set to10 8. Optimization is performed by the
L-BFGS algorithm with same con guration as in previous problems. The reconstructed objects
under different number of speckle patterns are shown in Figure 4.9, and the RAPS and MCF
curves of the reconstructed objects are ploted in Figure 4.10. We see that once the total number
of photons per Nyquist pixel is xed, increasing the number of speckle patterns cannot improve
the resolution, since the SNR decreases at the same time.

4.6 Conclusion

In this chapter, we introduced a patch-based marginal estimator in order to reduce the
computational complexity and memory requirements of the marginal approach proposed
in Chapter 3. By cutting the each image into a set of patches and neglecting the correlation
information of pixels from different patches, we are able to retrieve a super-resolution image
with computational complexitP (N 2(logN + L)) with L the number of pixels in each patch,
instead ofO(N 3) while the memory requirement reduced fr@gN ?) to O(NL). Moreover,
the patch-based method enables most computations to be parallelized. We also explored the
in uence of the patch size, positivity constraint, overlapping strategy, correlation of speckle
patterns and the sampling rate of raw images on the marginal estimator.

Our simulations show that the positivity constraint and the overlapping strategy cannot
enforce the super-resolution capacity of the patch-based marginal estimator for a given patch
size. When the patch size is small, increasing the support of the speckle spectral density function
could help us retrieve better super-resolution information. Finally, even if the data sampling
rate is lower than the Nyquist limit, we could still reconstruct the object with a super-resolution
factor of two using the marginal approach.
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4.6 — Conclusion

a) 100 speckle
SNR.=15.2dB

d) 300 speckle
SNR.=10.4dB

g) 500 speckle
SNR.=8.2dB

j) 1000 speckle
SNR.=5.2dB

b) 100 speckle
SNR.=20dB

e) 300 speckle
SNR.=15.2dB

h) 500 speckle
SNR.=13dB

k) 1000 speckle
SNR.,=10dB

¢) 100 speckle
SNR,=30dB

) 300 speckle
SNRe =25dB

i) 500 speckle
SNRe=23dB

[) 1000 speckle
SNRe =20dB

Figure 4.9 -Reconstructed objects with Poisson statistics and Gaussian noise with different
numbers of speckle patterns, withS 5 patches The rst column corresponds to a total
photon budget o10* photons per pixel on average ( 10* and3 1 for the second column

and third column, respectively). Electronic noise with 3-photon standard deviation per pixel
and per measurement is add&N R, denotes the signal-to-noise ratio of electronic noise.
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(a) Total photon budget dfo* per pixel on average

(b) Total photon budget & 10* per pixel on average

(c) Total photon budget & 10° per pixel on average

Figure 4.10 -Normalized RAPS curves for error images as a function of the frequency
(rst column) and the modulation contrast of the reconstructed objects as a function of
the period (second column) for results shown in Figure 4.9






Chapter 5

Optical sectioning and super-resolution in
3D imaging

5.1 Introduction

The super-resolution methods presented in previous chapters are 2D imaging techniques
restricted to thin objects. For thick objects, the targeted in-focus image is always blurred
with the out-of-focus information. In frequency domain, the optical transfer function (OTF)
in axial directionu, is highly dependent on lateral frequencies, as shown in Figure 5.1(a).

In particular, for a uniform plane object, the intensity spectrum contains only zero frequency
component. Becaud®{u,) = 0 whenu, = 0, the axial structure is lost during the imaging
process. In other words, a uniform plane can not be axially resolved in conventional microscopy.
This is called the “missing cone” problem [ ]. Optical sectioning is de ned as the capacity
to provide axial resolution for all lateral frequencies within the OTF support to ful ll the
“missing cone”.

In section 5.2 we introduce the existing 3D super-resolution techniques. Simulation results
in Section 5.3 demonstrate the 3D sectioning ability using unknown speckle patterns by
constrained ., norm minimization and the patch based marginal approach.

(a) OTF forh in 3D imaging (b) OTF forh? in 3D imaging

Figure 5.1 -The Fourier transform for h and h? in 3D imaging. Figure courtesy in [ ]
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5.2 Existing super-resolution 3D imaging techniques

5.2.1 Confocal microscopy

The principle of confocal microscopy to achieve optical sectioning is by illumination-beam
scanning and image detection through a pinhole, as shown in Fig. 5.2. Unlike the wide eld
illumination technique, the sample is illuminated in confocal microscopy with a tightly focused
light beam. Correspondingly, only the signal emitted from the focused illuminated region is
detected. The illuminated 3D volume is called a probe volume and a pinhole is put in front of
the detector to reject the our-of-focus background. To obtain the whole 3D image of the sample,
either the probe volume is scanned in three dimension while keep the sample xed, or the probe
volume is held xed while the sample is scanned in three dimension. Then the nal 3D image
is synthesized from the detected signals.

One requirement of the light source in confocal microscopy is that the light should be
spatially coherent. This can be achieved either by using a laser or adding a pinhole after the
lamp beam. In uorescence confocal microscopy, the equivalent PB¥uader the in nitely

small pinhole assumption wheredenotes the PSF of wide- eld microscopy | ]. The
difference between the frequency suppot @ihdh? is shown in Figure 5.1. For more thorough
discussions about confocal microscopy, please refer to | 1 ].

Figure 5.2 — The geometries for confocal microscopy. (Figure courtesy of wikipedia.)

5.2.2 Two-photon microscopy

Two-photon uorescence microscopy takes advantage of the uorescence property that a
uorophore is excited by simultaneous absorption of two photons. It is an alternative optical
sectioning technique in 3D imaging. Similar as the confocal microscopy, the 3D image is
synthesized by scanning the two-photon excitation volume throughout the sample. Since two-
photon microscopy depends on the nonlinear uorescence excitation, the size of the scanning
probe volume in two-photon microscopy is governed only by the illumination optics, while in
confocal microscopy it is governed by both illumination and detection optics.

One typical optics geometry of two-photon microscopy is shown in Fig. 5.3, compared with
that of confocal microscopy, the pinhole in front of the detector is disappeared. The optical
sectioning capacity of two-photon microscopy is identical to a confocal microscopy, with an



Chapter 5 — Optical sectioning and super-resolution in 3D imaging 73

equivalent PSF oh?. For a more detailed description of two-photon microscopy, please see

[ 1l 1

Figure 5.3 — The geometry for typical two-photon microscopy. (Figure courtesy of Peter TC
So, Massachusetts Institute of Technology.)

5.2.3 3D STED

STED technique can be applied to 3D imaging with a 4Pi illumination geometry, where
the sample is placed in the common focus of two opposing lenses [DHB83hm axial
resolution was obtained in STED- microscopy, however, the lateral resolution does not
improve in STED4 . STED microscopy with super-resolution in all three dimensions are
proposed in [ ]. By introducing a two phase plate, a PSF with reduced length in all
three dimensions is obtained.

5.2.4 3D STORM/PALM
5.2.4.1 Astigmatism-based 3D STORM

The super-resolution 3D STORM was introduced in [ ] by adding a weak cylin-
drical lens into the imaging path as shown in gure 5.4. As a result, the PSF has an ellipticity
shape and its orientation varies as the position changes along the axial direction. By tting the
measured image with an elliptical Gaussian function, we can locate the position of uorophore
in lateral and axial coordinates. Since the axial location is based on the shape of the PSF,
the axial scanning is unnecessary in 3D STORM. One drawback of astigmatism-based axial
location is that the lateral resolution varies as a function of depth due to the changes of the lateral
shape in astigmatic PSF. A similar 3D super-resolution technique was presented inJf#
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where a double-helix PSF (DH-PSF) is generated through a spatial light modulator (SLM). The
individual uorophore is identi ed by the angular orientation of the 2 lobes of the DH-PSF,
as shown in gure 5.5. The DH-PSF has deeper imaging depth than astigmatism-based 3D
STORM, which can be applied to thick samptes2 um with a resolutiorlOnm laterally and

> 20nm axially.

Figure 5.4 — The geometries of 3D STORM. (Figure courtesy of [ D

5.2.4.2 Biplane FPALM

Another 3D super-resolution imaging technique is called biplane (BP) FPALM T0&].
Two axially separated planes are simultaneously detected by a 50:50 beam splitter to accelerate
the imaging process. Once the 3D data stack is obtained, the particles are identi ed in axial
coordinate by iteratively searching for the brightest pixels and eliminating regions within a
xed distance. The lateral resolution does not change as the image depth varies in BP FPALM
scheme.

5.25 3DSIM

The wide- eld uorescence microscopy using speckle patterns proposed in [ I ]
has an optical sectioning ability in theory as good as the confocal microscopy by recording
a sequence of reference speckle pattépnsogether with the images of speckle-illuminated
objecty,,. Taking advantage of the equality :

CoV(Ym: Im) = h? (5.1)

it is possible to retrieve the object with the equivalent point spread funbfipas good as the
ideal confocal microscopy.

SIM using harmonic patterns has been demonstrated to be able to enhance the spatial
resolution in all three dimensions [ ]. Although fewer illumination patterns are used
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Figure 5.5 — DH-PSF imaging system. (Figure courtesy of [PU%])

in [ ] than speckle-SIM, the illumination patterns are not maintained xed in relation to
the object in the imaging process, making the design of the devices quite complex. Moreover,
this technique and the speckle-SIM proposed in | ] could not be applied in scattering
media, just as the standard 2D-SIM.

Recently, a 3D super-resolution technique using saturated-speckle patterns is proposed
in [ ] by illuminating the object with saturated speckle patterns. Super-resolution is
observed after a direct deconvolution of the recorded data with the 3D saturated speckle PSF
(hls).

A technique called dynamic speckle illumination microscopy (DSI) produce optical section-
ing with totally unknown speckle patterns [ 1 1 1 1 ]. The
basic idea behind this technique is that the changing of the speckle patterns will cause a large
variation of the in-focus light but a small variation in the out-of-focus light. So the variation in
a sequence of imaggs, preferentially extracts the information from the focal plane.

5.3 3D super-resolution in blind-speckle-SIM

To check the optical sectioning ability of our proposed methods in blind-speckle-SIM, we
use the same 2D star-like object and put it inghe O plane. The uorescence density is given
by:

(x;y;2z) 1 [1+cos(40)] (y) (5.2)

with tan = z=x. The normalized bandwidth limit ol is set tofmax = 0:5in lateral
direction and0: 25 in axial direction, withf o« the cut-off frequency of the microscopy and
f s the spatial sampling frequency. The PSF and OTF used in simulation are shown in Fig. 5.7
and the reconstruction results by constrainggnorm minimization and patch based marginal
estimator are displayed in gure 5.8. We can see that the resolution in both the lateral and axial
direction are improved compared with the average wide- eld imagand its deconvolution.
The ideal confocal image is simulated by convolving the actual uorescence distribution of the
sample with the square of the point spread functidand then deconvolve it.
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Figure 5.6 — The concept of resolution improvement in 3D SIM with harmonic patterns.
(Figure courtesy of [ ].) (a and b) Observable regions for the conventional microscopy.
Resolution enhancement using two illumination beams (c), and three illumination beams in
one (d,e). (f) The three wave vectors corresponding to the three illumination beam directions
to generate 3D harmonic pattern. (g—h) The resulting spatial frequency components of the
illumination intensity for the two-beam (g) and three-beam (h) case. (i, j): xz (i) and xy (j)
sections through the OTF supports.

The other 3D simulations are performed with the synthetic voll2@ 128 128 of
spherical beads and hollow bars as shown in Fig. 5.9, which are available online [ ]
The beads are getting closer and closer in the Y and Z directions and the 3D bars data consist
of six parallel hollow bars. The normalized bandwidth limit of PSF is se}tﬂﬁg =04in
lateral direction an® 2 in axial direction. The deconvolution with Tikhonov regularlzator and
reconstruction with thé,.; regularizer of the proposed method using 90 speckle patterns are
shown in Fig. 5.11 and 5.12. In the Tikhonov regularized deconvolution, we see no structure
information in axial direction with 3D beads sample, while the beads in axial direction can be
well separated in low frequency part using our proposed method. The improvement in axial
resolution with hollow bars is also observed as shown in Fig. 5.12.
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a)) PSF b.) OTF

Figure 5.7 PSF and OTF in XZ axis.

Wide eld image Wiener deconvolution Ideal confocal image
“2.1 regularizer "2.1=p regularizer “2.0=3 regularizer
Pixel patch Patch siz&s 5 Patch size80 30

Figure 5.8 —Reconstruction results with 300 speckle patterns and 40dB Gaussian white
noise of 2D object iny = 0 plane. The second line are obtained by joint reconstruction
approach with ., norm regularizer, and the third line are obtained by patch based marginal

estimator.
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Figure 5.9 -Synthetic data of128 128 128cube of spherical beads and hollow bars.

Figure 5.10 -The 64th slice of spherical beads ( rst line) and the 68th slice of hollow bars
(second line) in the XY, XZ, YZ dimension shown in gure 5.9.
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The 3D deconvolution

" 2.1 reconstruction

* 5.1 Feconstruction

Figure 5.11 -Reconstruction of cube of spherical beads with 90 3D speckle¥he rst line
corresponds to certain slides in XY, XZ, YZ directions about the 3D deconvolution of the mean,
while the second and third lines show the slides in the same positions of the reconstructed object

using constraint,,; and ,.;-, regularizer.
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The 3D deconvolution

" 2.1 reconstruction

* 5.1 Feconstruction

Figure 5.12 -Reconstruction of hollow bars with 90 3D specklesThe rst line corresponds
to certain slides in XY, XZ, YZ directions about the 3D deconvolution of the mean, while the
second line and third line show the slides in the same positions of the reconstructed object using

constraint ,.; and ».1-, regularizers.
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5.4 Conclusion

In this chapter we brie y introduce the optical sectioning techniques in microscopy and
demonstrate the 3D imaging ability of blind-speckle-SIM using the constrajpgagularizer.
The simulation results show an evident improvement in axial resolution compared with the 3D
Wiener deconvolution.






Chapter 6

Conclusion and perspectives

This thesis proposes two new reconstruction methods in SIM using unknown speckle
patterns (blind-speckle-SIM). One joint reconstruction approach ygesgularizer wittp 1
and0 < q 1. Both the constrained form and the unconstrained form of feegularizer
are presented in Chapter 2. For the constrained form, the hyperparameter is easy to tune and
its associated optimization algorithm is assured to converge. The simulation results show that
we could retrieve better super-resolution using norm regularizer than the reconstruction
method shown in [ ] with positivity constraint regularizer. Moreover, the other prior
information about the object can be easily incorporated into our method, such as TV norm or
positivity constraint, without big changes of the associated primal-dual algorithm.

The theoretical analysis of the super-resolution capacity using second-order statistics of data
are presented in Chapter 3. Our analysis shows that it allows us to retrieve super-resolution with
equivalent PSH? by using fully developed speckle patterns with covariance identifying with
PSFh. Together with this theoretical analysis, a consistent marginal estimator is proposed by
minimizing the dissimilarity between the empirical and theoretical second-order statistics of
the data. The computational complexity of the marginal estimator(ls *) and the memory
requirement i©D(N 2), which is too high to apply it in realistic size imaging problems.

A patch-based marginal estimator is proposed in Chapter 4 by neglecting the correlation
information of pixels from different patches. Thus the computational complexity and the
memory request can be reducedoN ?(logN + L) andO(LN ), respectively. The simulation
results show that we could reach good super-resolution using relatively small patch sizes. Under
asymptotic conditions, even with pixel patch we can retrieve partial super-resolution. Besides
the theoretical assurance of the super-resolution capacity, the marginal estimator is more robust
to the background noise, since the covariance of data does not change when a stable background
noise is presented.

The conventional SIM and blind-SIM is a 2D super-resolution technique compatible with
very thin samples. In 3D imaging problems with thick samples, the image of a given focal plane
Is plagued by out-of-focus uorescence. The optical sectioning ability of blind-speckle-SIM is
demonstrated in Chapter 5. Simulation results show that our proposed methods can improve
both the lateral and the axial resolution in 3D imaging.

Surpassing the resolution limit beyond a factor of two is possible in saturated structured
illumination microscopy (nonlinear SIM) [ ]. However, we do not nd method to reach
resolution more than a factor of two in blind-speckle-SIM using speckle patterns with frequency
support higher than that of PSFas shown in Section 4.5.4. Whether we could surpass the
traditional resolution limit more than a factor of two in blind-speckle-SIM is still unclear.

When the support of the speckle spectral density is lower than the frequency support of PSF

spec < psk, the simulations show that we can not only retrieve frequency information interior
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of the circle with radiug s,ec as predicted by the theoretical analysis in Chapter 4 using the
marginal estimator, but also the information betw@ege. and s,ec+ pse. The theoretical
reason behind this phenomena deserve to be better understood.

Both the joint reconstruction approach with; g norm regularizer and the patch based
marginal approach allow parallel computing in optimization part. In the joint reconstruction
approach presented in Chapter 2, the varigpland the auxiliary variables can be decoulpled
column-wise or line-wise, so they can be processed by different cores in parallel. In the
patch based marginal approach, the gradient for the objective function of each patch could
be processed independently.

For the numerical optimization algorithms we used in the manuscript, the preconditioning
technique has the possibility to accelerate the ADMM and primal-dual algorithm presented
in Chapter 2. And the Majorize-Minimize algorithm for subspace optimization normally
converges faster than the L-BFGS algorithm used in Chapter 3 and Chapter 4 | ].

Finally, the speckle patterns can not only be used in uorescence microscopy, its application
in other imaging system, such as tomographic diffraction microscopy [ ], photoacoustic
imaging [ ], should be explored in future.



Appendix A

Statistical properties of speckle patterns

It was noted in the early 1960s that when an object is illuminateddherentlight (see
section 1.2.2), a high-contrast, ne-scale granular pattern would be observed [ ]. This
type of granularity pattern is known as “speckle”. Speckle also appears when coherent light is
transmitted through diffusers.

The origin of the speckle phenomenon is due to the roughness of the object surface at the
scale of optical wavelengths. The observed eld is composed of multiple randomly phased
elementary contributions, and these contributions interfere with each other to produce the
observed granular pattern.

Speckle is also found in other coherent imaging systems, including synthetic-aperture radar
[ ], ultrasound medical imaging of organs [ ], and coherent X-ray imaging
[ ]. Initially, speckle was considered mainly due to its negative impact and was treated
as a phenomenon that had to be suppressed. Recently, the positive impact of speckle has been
considered and it turned out that speckle can help us obtain better resolution in diffraction
limited systems | ]. Chapter 3 of the current manuscript is dedicated to such analysis.

Since the micro-structure of the surface roughness which generates speckle is unknown,
we cannot describe the speckle information exactly. However, it can be dscribed through
its statistical properties. Here we explore the statistical properties of the polarized fully
developed speckle patterns. It shows that for fully developed speckle patterns, the intensity
is homogeneous in average and that its image covariance has the same shape as the PSF of an
unaberrated system (where the pupil function is either 0 or 1). For more detailed description,
please see | , Section 7.7] and [ , Section 4.4].

A.1 Statistical properties of speckle at a single point

As has been discussed in section 1.2.2, the complex phasor amplitude of coherent light can
be written adJ(r). The optical eld at a single point in speckle is the superposition of multiple
randomly phased “elementary” complex components:

X Xe _
Ur)=  Un(r)=  ay(r)e ® (A1)

n n=1

with N, the number of components amg(r) = jU,(r)j. For brevity of expression, the
dependence ofr ) of U, is dropped and we write:

X .
U= ad " (A.2)

n
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Throughout our discussions, thdly developedspeckle patterns are concerned, that is, the
following assumptions abouat, are adopted [ ]:

1. The amplitudes, and phases, are statistically independentaf, and ., provided that
né m.

2. For anyn, a, and , are statistically independent.
3. For anyn, , are uniformly distributed of ; ).

A.1.1 First and second moments of real and imaginary parts of speckle

Given the assumptions above, we can write the mean of theugalahd imaginary (; )
parts ofU as:

X X

Elur]=  E[ancos n]=  E[an]E[cos ] =0; (A.3)
X X

E[u]=  E[asin n]=  E[a]E[sin ,]=0; (A.4)

where both the expectationsads ,, andsin |, are zero due to the uniform distribution of.
Since the means are zero, the variancerpofindu, are given by their second moments:

2 2 X\l X\I
g = E[ug] = E[a,an]E[cos , coSs ]
n=1 m=1
~ X X ~ X ) 1 1
= E[@%]E[cog ,]= E[sfJE[S + 5C0S2 ] (A.5)
n=1 n
_ X E[8]
- 2

n

in which we use the fact thdE[cos ,cos ] = E[cos ,]JE[cos ] = 0 whenn 6 m.
Similarly, we could obtain that:

X Elad]
2= %a“ (A.6)
n
The correlation between the real and imaginary parts of the speckle are given by:
X
riy = E[uru] = E[a%]E[cos ,sin ]

n

1 (A7)
EE[a,%]E[sin 2,]=0:

n

A.1.2 Circular complex Gaussian variable

When the number of elementary componeé¥itss very largeur andu, are given by sums
of a large number of independent random variables. According to the Central Limit Theorem
[ ], ur andu, are asymptotically Gaussian g ! 1 . Given the mean, variance and
correlation ofur andu, , we can write the joint probability density function of the speakle

by:
(A.8)

ug + u?
)

1
p(ur; U ) = > 5 XN 5
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with 2= 2 = 2. This complex phasod is called circular complex Gaussian variable.
Concerning the amplitudeand phase of the resultant phasar, we have:
q
a= u3+u?
U (A.9)
= arctan —
Ur

The joint probability density function with respectaand is related to that ofir ; u, by:
p(a; )= p ur(a; )iu(a; ) jJj (A.10)
in whichjJj represents the Jacobian matrix given by:

Q@& Quw cos asin

HI= %‘*‘: % ~ sin acos (A11)
Therefore, the joint probability density function wiand is:
a2
p(a; )= > 5 exp( 52 (A.12)
fora 0Oand , zero otherwise. The marginal probability density function of
amplitudea is: 7
. a a?
p(a) = p(a; )d = — exp( 52 (A.13)

fora Oandp(a) is called the Rayleigh probability density function | ].

A.1.3 Statistical properties of speckle intensity

Here we focus on intensity of speckle patterns. For the coherent illumination, we have
| = U? = a2. Combining with the probability density functigfa) in Eq. (A.13), we have:

o) =BT = S e 5 (A1)
forl 0. Thei-th order moment of this distribution is given by [ I
Ti=(2 2! (A.15)
Then we could express the rst and second moments of speckle intensity by:
| =2 2 12=8 4=2] 2 (A.16)

Now we can conclude that the intensity for fully developed speckle patterns is homogeneous in
average witH (r) =2 2.

A.2 Joint statistical properties of speckle at two points

After the discussion of statistical properties of one point in speckle, we explore the joint
properties of speckle patterns at two points in this subsection.
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A.2.1 Multivariate Gaussian statistics

The mathematical model to describe a fully developed speckle is a circular complex
Gaussian random process, with real and imaginary parts being real-valued Gaussian random

processes. Let) = [U;;  ;Uy]' be anN-dimensional random vector subject to circular
complex Gaussian distribution, its probability density function is given by [ ]:

(U) = ;ex }(U u)c(u Uv) (A.17)

P @ywicp2 P 2 |

with C denoting the covariance matrix atl the expectation otJ. The joint moments of a
zero-mean complex Gaussian random process can be found bgrtiex Gaussian moment
theorem| I:

X
EUU, UU@srUee  Ux = E[U, Uy, JE[U,Up, ] E[U Uy, ] (A.18)

X
where the symbol represents the sum over all possiblepermutationsp;;  ;pk) of

1 k).

A.2.2 Correlation of speckle through the imaging system

Now we turn attention to the speckle passing through an imaging system as shown in
Fig. A.1. A rough object is illuminated by coherent light. The light passes through the imaging
system and is then focused in the image plane.

Figure A.1 —Speckle formation in imaging system Figure courtesy from [ , Chapter 7]

Let h, denote the amplitude point spread function (APSF) of the system , then the complex
amplitude in the image plane is given by:
Z
S(r)y=(ha U)r)= ha(r r9u(r%dr® (A.19)

The correlation of complex phasor amplitude in image plane, sometimes also called ensemble-
averaged mutual intensity to distinguish from the time-averaged mutual intensity shown in
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Eq. (1.9), is given by:
hZ Z i
ha(k  x)Uxdx  h,(r y)U,dy
Z Z (A.20)
ho(r  y)ha(k  x)E[UcU, Jdxdy

|
m

E[SkSr] =

The correlation of the light in the source plane is determined by the surface-height
correlation function and the wavelength of incident light [ , Chapter 8]. For the moment,
we assume it can be represented by delta function:

E[UU,]=1 (x y) (A.21)
wherel is the ensemble average of the light intensity. Then we have:
Z
E[SkS, ]=1 h(r x)ha(k x)dx
[ k r] a( ) a( ) (A22)
=1 n(r Kk
in which ,, denotes the autocorrelation lof:
Z
ha( )= ha(X)hy(x )dx: (A.23)

The intensity of the speckle in the image plane is giver @) = jS(r)j?. Then the mean
intensity of speckle patterns in image plane is:

E[I(r)]1= E[SS]=1 1(0) (A.24)

It is clear from (A.24) that the average intensity does not depend on the posijtism the
intensity mean of speckle in image plane is still homogeneous and we denotéit t@s
distinguish from the intensity mean in source planérhe covariance of the speckle intensity
in the image plane is :

El(l 1o+ 1I=E[lkl] 13 (A.252)
=E[SxS.S'S, ] 1§ (A.25b)
=E[SS,JE[S'S, ]+ E[SS, JE[S;S,] 12 (A.25¢)
=E[S(S, JE[S:S] (A.25d)
=JE(SS,)i? (A.25€)
=12 .0 k° (A.25f)

2
:ﬁ W K (A.250)

where (A.25c) is obtained by applying tltemplex Gaussian moment theorémn(A.25b).

We see from(A.25) that the covariance of the intensity of speckle patterns can be totally
characterized by the difference of the position of two points. Let's denote the covariance of
speckle intensity byspe, We have :

_ 1 2
spedl) = (O ha () (A.26)
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The Fourier transform ofspecgives:

| 2
spe(( ) = ha ? ~ha (U)
I(O)‘ (A.27)
= - _ jM,j% ?jhaj? (u
J ha(O)JZ J a] J aj ( )
in which ? denotes the autocorrelation operator &ipdls the amplitude transfer function of the
system, which is the projection of the scaled pupil function on the Ewald sphere [ ]. When
the lens is not apodized, the pupil function equals eith@n0, so that we havfi,j? = h,. Thus
the shape of the Fourier transform of the covariance of speckle intensity identi es with the OTF
of the unaberrated system, up to a normalizing factor:

~spedU) = h(O) FT(U) (A.28)
According to thewWiener-Khinchin theorem..is identi ed by the power spectral density of
the speckle patterns [ , Section 3.4]. Taking the inverse Fourier transform of (A.28), we
have:

cpedT) = h(o)h(r) (A.29)

A.3 Simulation of speckle patterns

To simulate the speckle patterns with given meaand covariancesy{r), a simple way
is to pass a independent and identically distributed (i.i.d) gaussianUeldth a speci c lter

S(r)=(U )r) (A.30)
with _
U(r)= a(r)e ©
a(r) N (0; ? (A.31)
(r)=U(0;2)

whereU denotes uniform distribution. According to our previous analysis, let

2
()= 537 ISI0) (A32)
We have:
ENN(r)]= 1o
iz . (A.33)
CovI(r);l(k) = —2—j (r Kk)j?
(1) = gl Wi
For non-apodized lens, the covariance f) is identi ed with gpecas long as:
q
(r)= _=ped0) spedl) (A.34)

io
Three speci ¢ speckle realizations are shown in the rst line of Fig. A.2, and the empirical

mean and covariance of 300 speckle patterns are shown in the second line of Fig. A.2. We can
see that they match their theorical values (shown in the third line of Fig. A.2) very well.
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a) One realization b) One realization c) One realization
d) Empirical mean e) Empirical covariance f) FFT of (e)
g) Theoretical mean h) Theoretical covariance i) FFT of (h)

Figure A.2 —The speckle realizations ( rst line) and its empirical and theoretical mean and
covariance of 300 speckle patterns .
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Appendix B

The structure of 2D convolution matrix

B.1 The 2D convolution methods

. p_— p_ . pP_ p_

Suppose we have an object2 R " " and the bluring kerneh 2 R ™ ™, where

m  n, there are several ways to evaluate discrete convolationh . According to the
de nition of discrete convolution:

Xm Xm
. — 0. 0 0.,0
z(rq;rp) = (ro rira ryh(rg;ry (B.1)

0—1 (0=
ri=lry=1

A straightforward computation requirgsrﬁ P m multiplications and addations for each pixel

of z. Here the circular convolution is considered, i.e. the signal is supposed to be periodic. The
size ofz is the same as the object the computation complexity of convolution by de nition

Is O(mn).

B.1.1 Convolution by FFT

Circular convolution could be implemented with the help of discrete Fourier transform:
z=F Y~ n (B.2)

Taking advantage of the fast Fourier transform (FFT) algorithm, the computation complexity
to evaluate 2D convolution i©(nlogn). Linear convolution could also be implemented with
FFT by padding zeros to the original object and kernel to avoid overlap between one period and
the next. In the case whem  n, separate convolution and overlap convolution are strong
candidates for ef cient implementation.

B.1.2 Fast 2D convolution by SVD

The 2D fast convolution is based on the fact that when the convolution kernel has a product
decomposition, i.eh = uvT, withu;v 2 R™ 1, we have more ef cient ways to do the

convolution [ , 298-299].
2 3 2
hit hiz it hiy Ui
hoy hyp it hoy U,
. . ) . = . Vi V2 Vim
hmi hm2 0 hmm Um
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Simple manipulation of (B.1) gives:

§m &m
z(ry;r2) = (re r&ra rYh(rdrd
r{=1r9=1
§m &m
= (r1 e rHur)v(rsd) (B.3)
rf=1r9=1
§mo km

= (i rirz ru(ry) v(ry)

The bracketed term is the object convolving with column veatathen the result convolve
again with the line vectov™. As a result, the original 2D convolution are separated into 2
convolutions:

z=( u) v' (B.4)

The number of multiplications and additions required)i(San m). Next support the kerndi
can be expressed as the sunkKoseparable kernels:

X X
h = hy = UkV;(r (BS)
k=1 k=1
We have:
X X
z=  (he )= ( Uy w (B.6)
k=1 k=1

Such a separable representation is possible for any kérngy using singular value
decomposition (SVD):
'l
h=uUvVv T= vy (B.7)
i=1
Let the singular values; arrange in a decreasing order. Singedecay to zero rapidly,
only the rst few large values need to be kept. Suppossingular values are rstained, the
computational complexity for 2D convolution by using separate convoluti@{is = m).

B.1.3 Overlap methods

When we implement convolution by FFT, zeros are appended to the Kerteebet the
same size as the object. For large size object and small size kernels, a more ef cient way to
implement it is using blockwise linear convolution, which is the basic idea behind the overlap
methods.

In overlap add method, the blocks are non-overlapping and the linear convolution for each
block is achieved with circulant convolution by adding zeros to both the block data and the
kernel.

While in overlap save method, no zero padding is performed on the input data. The object
is cut into overlapping blocks, and then convolve each block with the kernel using circulant
convolution. The portions that “wrap around” are discarded and the left equivalent with linear
convolution is saved.

Suppose each block hbpixels (  m), the computational complexity for overlap methods
iIs O(nlogl). In practice,l is often chosen to be an integer power of 2 to achieve good
performance of FFT.
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B.2 Generating the convolution matrix for speci c patch
For the 2D convolutioty = h  ,withy;h; 2 R™ ", the associated matrix form is:
y=H (B.8)
wherey; 2 R™ andH 2 R™ ™" If only partial party, of y is concerned, we have:

Yp= Hp (B.9)

In the patch based marginal approach as presented in chapter 4, we need to generate the
convolution matrixH, given the location index of the corresponding patch. One possible
method is to construct the whole convolution matix2 RN N rst, then extractH , according
to the patch locations. However, when the object size is big, storing nktrsxvery memory
consuming. For example, ford2 512image, if we storéd with double-precision (8 bytes),
the memory required is:
512 512 8
210 210 210
which is unaffordable for normal computers, even for supercomputers. Next, we will introduce
a generation approach for patch convolution malttix based on the natural structure téf
where constructingd is not necessary.

= 512(GB) (B.10)

B.2.1 ConstructH, with BCCB H

With periodic boundary conditions of the object H is a block circulant with circulant
blocks (BCCB) matrix. Otherwise with zero boundary assumptibhas a block Toeplitz with
Toeplitz blocks (BTTB) structure [ ] Firstly we focus on BCEB Amn mn BCCB
matrix has the following form:

2 3
Bo Bmn 1 ::: Bi
B = g B.1 B.o 3.33 Bzz
Bn; 1 Bn; 5 ::.: B.o
inwhicheactB;,j =(0;1;, ;m 1),isan ncirculant matrix. To generate the convolution

matrix H, for p-th patch, we rstly construct the convolution mattik, explicitly for the rst
patch. Then we usH ; as reference and construdt, by circulating the lines and columns of
H ; according to their relatively position difference of the papadmnd the rst patch.






Appendix C
Implementing TV regularizer by FFT

For a discrete 2D objectp 2 RN* N2 theanisotropicTV is de ned as:

X1 X
TVa( 20) = [Ni+1;n]  [ng;ng] + [ngynz+1]  [ng;ng] (C.1)

ni=1 ny=1
and the so-calletsotropic TV is de ned as:

Wi W2
TVi( 20) = ([a+1iny]  [ng;na)2+( [nna+1]  [ng;ng))2 (C.2)

ni=1 ny=1

It is well known that the anisotropic TV is a poor de nition of discrete TV since it favors
horizontal and vertical structures, while the isotropic TV has good isotropic property in practical
application as its name implies. Some other formulation of the discrete TV has also been
proposed, such agpwindTV [ ], Shannon TV | ] to enforce the isotropic property.

In the method presented in section 2.3, we use isotropic TV.

C.1 Mixed norm representation of TV

First we vectorize the objecty in lexicological order and write it as 2 RN with N =
N;:N». Then we note that thEV;( ,p) can be expressed as the mixed nogp, norm ofC

X
T\/|( 2D): kC kg;z;]_: k(C )Gh k2 (CS)

n=1

with C = (Cy;C,) andCy; C, the rst-order horizontal and vertical nite difference
operators. The n-th grol(€ )g, =[(C1 )n;(C2 )n] 2 R?

C.2 Implementing the nite difference operator by FFT

Now let us zoom in the structure @f; andC,. Under the periodic boundary conditions for
op, C1; C, have a block Circulant with Circulant blocks (BCCB) structure:

2 3

In, 1, 0 ::: 0
cicf O o 0
1N, 0 0 i 1y
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98 C.3 — The transpose of nite difference operator

wherely, isaN; Nj identity matrix. Similarly,

2 3
A° 0 O ::: O
E 0 A° 0 ::: O z
C,= . . .o .
0O 0 0 ::: AP
whereA®isaN; Nj circulant matrix:
2 3
1 1 0: 0
E 0 11:: 0 z
A%=g
1 0O 0 ::: 1
A BCCB matrix can be diagonalized by 2D discrete Fourier transform [ ]. Let the rst
column ofC, bec4, we can write:
Ci1=(Fn, Fn,) ‘diaged)(Fn,  Fny) (C.4)

with F the discrete Fourier transform matrix aegd = (Fn, Fn,)Ci. ThenC; could be
implemented by:

Ci1 =(Fn, Fn,) 'diage)(Fn, Fn,) =F e ~ (C.5)

The implementation o€, can be treated similarly. On the other hand, under the Neumann
boundary condition of the objectp, C; andC, has a block Toeplitz-plus-Hankel structure,
andC; could be implemented with the help of discrete cosine transforms (DCTSs) [ ]

C.3 The transpose of nite difference operator
Let us denotgp = C 2 R?N. The operatiorC"p is required sometimes. Instead of
implementing it directly, we could spl into two parts[p1; p»] wherep, = C; andp, =
C, . ThenCTp could be expressed as the sum of two items:
C'p=Cjipi+ Clp2 (C.6)

where each item could be implemented with FFT:

CIplz F ! €1 P (C.7)



Appendix D

Numerical optimization methods

D.1 L-BFGS method

In this section we brie y present the L-BFGS algorithm to solve the optimization problem:

argmin Dy () (D.1)

In each iteration of BFGS algorithm, we require the approximation of inverse of Hessian
matrix B %) to satisfy the secant equation:

B&*Dz, = s,; wheresg= ki Zk =T Dm( 1) T Dm( «) (D.2)

Only the secant equation is not enough to determine a unique solutiB®t? . Thus we
impose additional conditions as well as the secant equati@td , that B<*Y should be
symmetric and the difference between succesBilf¢ andB *1) should have low rank. In
particular,B <*D is speci ed by the following conditions:

B =arg mBin kB B®ke st B=BT; Bz = s (D.3)

Then the BFGS updating formula is given as:

BE =(1y  t5z0)BM (I tiziesy) + tesisy (D.4)

where 1
{ = D.5
<= e (D.5)

Given an initial inverse Hessian approximatiBf), by repeating equation (D.4), the BFGS
updating formula reads:
B®=8S{, StmewB? Skmw Sk
Flomm Sk1 Sk m@ger Sk m0SKk m@g Sk msr Sk 1

+t maors Sk 1 Sk m(k)+2 Sk m(k)+1 Sk mk)+L SOk m(k2 Sk 1 (D.6)
+

.
+ 1k 1Sk 1Sk 1

in which
Sk = 1n tkSkZ-kr (D7)
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100 D.1 — L-BFGS method

In the BFGS updating schem®(k) = k and the initial inverse Hessian approximatBf is
often set a constant multiply the identify matrix.

When the dimension of is large, storing and manipulating ) is prohibitive. To
circumvent this problem, we set a numbde and only the recen, pairs off sy;zxg are
stored, which gives limited-memory BFGS (L-BFGS) algorithm. The updating ®f in L-
BFGS is same as shown in (D.6) witi(k) = min( k; M) and initial approximatiom © could
vary from iteration to iteration. For instandg( is typically replaced by ﬁo) where:

.
Zy 1Sk 1

D.8
Zy 12k 1 (B.-8)

B(ko) = «1n; with K =

The L-BFGS algorithm does not require to constiB€t explicitly. In practice, the product
B®r Dy ( «), rather tharB ¥ is updated. Specially, this is done by a two-loop recursion
algorithm as shown in algorithm 6. A complete statement of L-BFGS algorithm is presented in
algorithm 7.

Algorithm 6: L-BFGS two-loop recursion
1g r Du( W;
fori2fk 1 'k M,gdo
i tsfg; /I store i
g g iZi;
end
r= Bf(o)g ;
fori2fk M, ;k 1gdo
tiz'r ;
r r+ si( i );
10 end
1 B®r Dy( )=r;

a b~ wWwN

© 00 N O

Algorithm 7: L-BFGS algorithm

1 Initialize starting point o, integerM, > 0;

2k 0;

3 while stopping criterion is not medo

4 ChooseB (ko) ; /I for example using (D.8)

5 | Computedy = B®r Dy ( &) by two-loop recursion shown in algorithm 6 ;
6

7

8

9

Update 1 = k+ «dx where  is chosen to satisfy Wolfe conditions;
if K> M 5 then
Discard the pair§sk m;zx mQ;
Compute and storgy = +1 Zk =T Du( k+2) ¥ Dm( «);
10 k k+1;
11 end
12 end
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D.2 L-BFGS-B algorithm

Since we know that the uorescence object is non-negative, we can add positivity constraint
0 to the marginal approach (3.50) and then solve the optimization problem with
bound constrained limited memory BFGS algorithm (L-BFGS-B) | ]. The L-BFGS-B
algorithm is designed to iteratively solve optimization problam f (x) with bound constraints
| x u,wherel;u;x 2 RN. At the beginning of each iteration, the variable vakg the
function valuef (x ), the gradieng, and an approximation of Hessian matkHx obtained as
in L-BFGS method are given. Then the function can be approximated by the quadratic model:

1
me(x) = f (XK )+ ge (X Xi)+ E(X X ) TH (X Xy) (D.9)
The L-BFGS-B algorithm approximately minimizey (X ) subject to the bound constrairnts

X u. This is done by rstly nd a generalized Cauchy poirf, and then do a subspace
minimization along the free variables.

Generalized Cauchy point The generalized Cauchy point is de ned as the rst local
minimizer of the piece-wise quadratia (x(t)) wherex(t) is a piece-wise linear path obtained
by projecting the steepest descent direction onto the feasible region:

X(t) = proj(xk  tok;l;u) (D.10)

The projection operation is de ned as:

8
21, X<l

proj(Xik  tgw;l;u)i = S Xi i Xi U (D.11)
TUp; X > Uy

To simplify notation, we use® to denotexx andg for g, in this subsection. Each
coordinatex;(t) of the piece-wise linear path is given by:

xi()=x0 tgi; t2[0t] (D.12)

The breakpoint; is: 8
2(x uw)=g; g<0

ti=_( l)=g; g>0 (D.13)
B otherwise

Then we sorfft; j i = 1; ;Ngin a ordered sett! j t! ti*l:j =1; ;Ng. The
piece-wise linear patk(t) can be reexpressed usifs:

(
0 . t;
xi(t) = X.O tgi; t _ (D.14)
X; tig; otherwise
Inthe line intervalx(t! );x(t))], the quadratic modeh, (x(t)) can be writtenin t=1t tI !
as:

: 1
m( t)=f 1+f°, t+ éfj°°l t2 (D.15)
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where

fii=f(xX+gT(x(t 1) x%+ %(X(tj NxXO)THe(x( ) x9)
ij 1= gde l+(dj 1)THk(X(tj 1) XO) (D16)
ijOlz(dj 1)Tdej 1

The de nition ofd! 1is: ( ,
dj 1 _ G’ t! l<ti (D17)
! 0; otherwise '

Setting the gradient afil ( t) to zero, we obtain t = o=,

Subspace minimization Once the generalized Cauchy poiit is obtained, the variables
whose value are at the lower or upper bounds, comprising the activg(s&}, are held xed.
The quadratic model is minimized over the subspace of free variabbe% iA few methods
could be used to solve the minimization problem. For example, a direct primal method based on
the Sherman-Morrison-Woodbury formula gives a unconstrained sobigignin subspace. We
then nd the next iteration value by a line search method along the diregdtienxy+1 X that
satisfy the strong Wolfe conditions [ ]. To prevent the line search method from generating
infeasible points, we de ne a maximum step length as the step to the closest bounds alone the
search direction.

This procedure is repeated until the convergence condition is reached.



Appendix E

Gradient of Kullback-Leibler divergence

Here we derive the expression of the gradient of Kullback-Leibler divergence as shown in
(3.50)

Dy ( )= %Iogj Ji+ %Tr JIW K (E.1)
withW = 2VV tandV = (y; vl JYwm y). Our derivation of the gradient are based
on the following equations [ , Section 2] :

r logAj=Tr(A (r A))
r (A YHh= Al AA !
r (AB)=(r A)B+ A(r B) (E.2)
r Tr(A)=Tr(r (A))
r (AT =(r A)T

whereA andB are two matrix depending on a real scalar parametdfrom these relations,
we have: 1 1

@D ()= ST , Y@ )+ 5T (@ YW + ,'@w (E3)
with@ =r , and

rDum( )= vec @Dw( ) (E.4)

Where ve€vog=[vi; ;w]". According to (E.2,E.3), the expression@f , and@W are
required to derive the expressionoD), ( ). Lete, be the n-th canonical vectdrn,, be the
n-th column ofH andly =(1; ;1)" 2 RM. From (3.35) we have:

@ y=HR s@(RH N+ @HR )RH
=HR @RHT)+ HR @RHT) ' (E.5)
= HR se,h! +(HR ¢e,h)T
and similarly,
@QW = "VI—O Viyh! +(ViyhDT (E.6)
The derivative of the three terms in (E.3) could now be obtained. According to the identity:
Tr(Baa')= a'Ba (E.7)
with matrixB 2 RN N;a 2 RN, we have:
T @ y) =2Tr( ,"HR senh))

(E.8)
=2e!Xh,
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where we deneX = (RHT ' For the second and third term in (E.3)

T (@ ,HW = 2e/( ,'WX)h, (E.9)
and o
T( ,f@w) = Tohn Vi (E.10)
To obtain the full gradient dby, ( ), we deduce from (E.8) that
n 0
vec Tr ! =2 (XH) Iy 1
y (@ y) ( ) N N (Ell)
=2 (H" ,'H) &
where in the second step we have used the identity:
(Adiag )BT) Iy Iy =(A B) (E.12)
Similarly, we have
n 0
vec Tr (@ ,J)W = 2 ( "W ) (E.13)
and n 0 5
vec Tr( ,‘@W) = mlo V1, (E.14)
where = ylH. Plugging (E.3,E.11,E.13,E.14) into (E.4) reads:
rDu( )= '(y, W) . o 1y, (E.15)
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